
Games for Efficient Supervisor Synthesis

Daniel Hausmann, Prabhat Kumar Jha, and Nir Piterman

Abstract— In recent years, there has been an increas-
ing interest in the connections between supervisory
control theory and reactive synthesis. As the two
fields use similar techniques there is great hope that
technologies from one field could be used in the other.
In this spirit, we provide an alternative reduction from
the supervisor synthesis problem to solving Büchi games
via games with a non-blocking objective. Our reduction
is more compact and uniform than previous reductions.
As a consequence, it gives an asymptotically better
upper bound on the time complexity of the supervisory
control synthesis problem. Our reduction also breaks a
widely held belief about the impossibility of reducing
the supervisory control synthesis problem to a game
with a linear winning condition.

Supervisory control; Game theory; Discrete event
systems

I . Introduction

Supervisory control theory [1] provides a framework
for reasoning about the control structure for transi-
tion systems that have some controllable and some
uncontrollable components of behaviour. The desired
behaviour of the plant is described as reachability to
good states of plants, termed as non-blocking property.
The control structure is implemented in the form of
a supervisor that restricts the controllable events for
the plant in order to yield the desired behaviour. We
are interested in the synthesis of maximally permissive
non-blocking supervisors.
In [1], an algorithm for synthesizing non-blocking

supervisors has been described. The algorithm is based
on repeated backward searches using language refine-
ment of the generated language with the specification
language. Each backward search can be computed in
time 𝑂 (𝑛𝑒), where 𝑛 is the number of states of the plant
and 𝑒 is the number of events. There can be at most 𝑛

This work is supported by the ERC consolidator grant D-SynMA
(No. 772459) and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

D. Hausmann and N. Piterman are with the Department of Com-
puter Science and Engineering, University of Gothenburg, Gothenburg,
Sweden {hausmann|piterman}@chalmers.se

P. K. Jha is with the Department of Computer Science and
Engineering, Chalmers University of Technology, Gothenburg, Sweden
prabhar@chalmers.se

backward searches, so the overall worst-case runtime
complexity of this algorithm is in 𝑂 (𝑛2𝑒).
More or less at the same time that Ramadge and

Wonham established the supervisory control theory [1],
Pnueli and Rosner introduced the modern reactive
synthesis [2]. Here, the control structure is an automaton
and the specification is provided in some logic such
as linear temporal logic (LTL), computation tree logic
(CTL), etc. The two fields developed in isolation and
with very little contact. However, it turns out that the
techniques used are similar: iteration of backward and
forward searches in graph structures. Practitioners in
both fields started exploring the links between the two
[3] with the hope of cross-fertilization.
Motivated by techniques used in [4] and [3], [5]

considers the natural encoding of the supervisory
control synthesis problem to a game, where the choices
of the supervisor are encoded directly. Thus, their
approach involves a reduction to a game graph that is
of exponential size as all possible supervisor choices
are encoded as separate game vertices. Technically, they
are mostly interested in supervisory control where the
specification is a language of infinite words and use
a co-operative Büchi game to encode it. A fixpoint
computation for the co-operative Büchi objective is
used to solve the game. Due to the exponential size
of the game graph, this reduction requires exponential
time in the size of the event set.

In [3],1 there is a more involved reduction to a game,
which encodes the choices of the supervisor linearly.
Thus, the construction results in a game with a graph
of size 𝑂 (𝑛𝑒). In order to do that, special care has to
be given to the connectivity of a state leading to three
different encodings of states in the game depending on
state properties. The winning condition is described as
a non-linear condition, encoded in a branching time
logic. The interest in [3] is mainly in establishing the
connection between the two fields. However, using their
approach to solve the supervisory control synthesis
problem results in a runtime of 𝑂 (𝑛2𝑒3).

In this work, we provide a reduction from supervisor
synthesis to solving Büchi games. While previous

1Note that, chronologically, the work of Ehlers et al. appears earlier.

approaches concentrated on the choice of the controller
which events to allow, our approach concentrates on
the choice of the plant whether to allow the controller
to apply control at all. The result is a reduction where
every state of the plant is represented by exactly two
vertices in the game. In addition, the reduction is
totally uniform and handles all states in the same way
regardless of their properties. It follows that compared
to [3], our reduction is more efficient and cleaner. In
comparison to [5], our reduction (A) does not require co-
operation of players in Büchi games and instead yields
a conventional competitive Büchi game, and (B) gives
a graph of size double of that of the plant compared to
the exponential-sized graph obtained in the reduction
mentioned above.
In addition, our reduction disproves the widely

held belief (cf. [3], [6]) that the winning condition in
non-blocking games cannot be expressed by a linear
winning condition. Indeed, we show that the non-
blocking winning condition is equivalent to a Büchi
winning condition. The translation in [3] was intended
to establish further connections between supervisory
control and reactive synthesis. In this spirit, based on
our reduction, we are able to use optimal analysis
of Büchi games [7] to improve the upper bound on
time for solving the supervisory control problem to
𝑂 (max(𝑛2, 𝑛𝑒)).

I I . Preliminaries
A. Supervisory Control

A plant models possible behaviors of autonomous
systems. It is described using states and transitions
between the states, occurring as the result of some event.
Controllable events are controlled by the controller
part of the system and uncontrolled events are not
controlled by the system. Supervisors restrict the plant’s
controllable events. A closed-loop system 𝐺 ∥ 𝑆 is
a combination of a supervisor 𝑆 and a plant 𝐺 . It
restricts the plant by considering only the controllable
actions allowed by the supervisor. We are interested
in maximally permissive and non-blocking supervisors.
We define the set-up formally as follows.

A plant 𝑃 is a 5-tuple 𝑃 = (𝑋, 𝑥0, 𝑋𝑚, 𝐸 = 𝐸𝑐 ⊎ 𝐸𝑢𝑐 , 𝛿)
where 𝑋 is a set of states, 𝑥0 ∈ 𝑋 is the initial state,
𝑋𝑚 ⊆ 𝑋 is a set of marked states, 𝐸 is a set of events
partitioned into the set 𝐸𝑐 of controllable events and the
set 𝐸𝑢𝑐 of uncontrollable events, and 𝛿 : 𝑋 × 𝐸 ⇀ 𝑋 is
a partial transition function. For 𝑥 ∈ 𝑋 , we denote the
plant 𝑃 with 𝑥 as the initial state by 𝑃𝑥 . A supervisor
for plant 𝐺 is a function 𝑆 : 𝐸∗ → 2𝐸𝑐 , assigning sets
𝑆 (𝑤) ⊆ 𝐸𝑐 of permitted controllable events to finite
words 𝑤 ∈ 𝐸∗. Let 𝜖 denote the empty word. Given

a plant 𝐺 and a supervisor 𝑆 , the induced closed-loop
system is 𝐺 ∥ 𝑆 = (𝑋 × 𝐸∗, (𝑥0, 𝜖), 𝑋𝑚 × 𝐸∗, 𝐸, 𝛿 ′), where
𝛿 ′ is defined by putting 𝛿 ′ ((𝑥, 𝜎), 𝑒) = (𝛿 (𝑥, 𝑒), 𝜎𝑒) for
𝑥 ∈ 𝑋 , 𝜎 ∈ 𝐸∗ and 𝑒 ∈ 𝑆 (𝜎) ∪ 𝐸𝑢𝑐 such that 𝛿 (𝑥, 𝑒) is
defined; otherwise, 𝛿 ′ ((𝑥, 𝜎), 𝑒) is left undefined. We co-
define the transition closure 𝛿∗ (𝑥,𝑤) and run 𝛿 (𝑥,𝑤) of a
plant on a word 𝑤 ∈ 𝐸∗ from a state 𝑥 ∈ 𝑋 inductively
with 𝛿∗ (𝑥, 𝜖) = 𝛿 (𝑥, 𝜖) = 𝑥 , 𝛿∗ (𝑥,𝑤𝑒) = 𝛿 (𝛿∗ (𝑥,𝑤), 𝑒)
and 𝛿 (𝑥,𝑤𝑒) = 𝛿 (𝑥,𝑤) · 𝛿∗ (𝑥,𝑤𝑒), where 𝑒 ∈ 𝐸. We say
that there is a path from 𝑥 to 𝑥 ′ if there is a word
𝑤 ∈ 𝐸∗ such that 𝛿∗ (𝑥,𝑤) = 𝑥 ′. A supervisor 𝑆 is
said to be non-blocking for 𝐺 , if for all states (𝑥, 𝜎)
in 𝐺 ∥ 𝑆 , if 𝛿 ′∗ ((𝑥0, 𝜖), 𝜎) = (𝑥, 𝜎), then there exists
a marked state 𝑥 ′ ∈ 𝑋𝑚 and a (possibly empty) word
𝜎 ′ ∈ 𝐸∗ such that 𝛿 ′∗ ((𝑥, 𝜎), 𝜎 ′) = (𝑥 ′, 𝜎𝜎 ′). If there
is a function 𝑓 : 𝑋 → 2𝐸𝑐 such that for every word
𝑤 ∈ 𝐸∗, 𝑆 (𝑤) = 𝑓 (𝛿∗ (𝑥0,𝑤)), then we say that 𝑆 is
memoryless. 𝑆 is said to be maximally-permissive non-
blocking for 𝐺 if it is non-blocking and for all non-
blocking supervisors 𝑆 ′ for 𝐺 and all words 𝜎 ∈ 𝐸∗, we
have 𝑆 ′ (𝜎) ⊆ 𝑆 (𝜎). The supervisory control problem
is to construct a maximally-permissive non-blocking
supervisor.

Definition II.1 (Supervisory control synthesis problem).
Given a plant 𝐺 , construct the maximally-permissive
non-blocking supervisor 𝑆 for 𝐺 , if it exists, or state
“no” if it does not exist.

Lemma II.1 ([1]). For every plant, if there exists a non-
blocking supervisor then there exists a memoryless and
maximally-permissive non-blocking supervisor.

B. Two-player Games
We are going to reduce the problem of supervisory

control synthesis to the solution of two-player games.
A game arena is a graph G = (𝑉 = 𝑉𝑐⊎𝑉𝑢𝑐 ,Δ ⊆ 𝑉 ×𝑉)

where 𝑉𝑐 denotes the set of vertices controlled by the
controller, 𝑉𝑢𝑐 denotes the set of vertices not controlled
by the controller, and Δ denotes transitions. A play is
an infinite sequence of vertices 𝜋 : N → 𝑉 such that
∀𝑖 .(𝜋 (𝑖), 𝜋 (𝑖 + 1)) ∈ Δ. An edge (𝑣, 𝑣 ′) occurs in play 𝜋

if for some 𝑖 we have 𝜋 (𝑖) = 𝑣 and 𝜋 (𝑖 + 1) = 𝑣 ′. A non-
blocking game is played on a game arena in which a set
𝑉𝑚 ⊆ 𝑉 of vertices is marked. The controller’s objective
is to keep marked vertices reachable. A Büchi game is
played on a game arena in which a set 𝐵 ⊆ Δ of edges is
marked. The controller’s objective is to use edges from
𝐵 infinitely often. Notice that a plant has states and a
game has vertices. The unravelling of a game arena G
starting at vertex 𝑣𝑖 is a labelled tree 𝑇𝑣𝑖 ⊆ 𝑣𝑖 ·𝑉 ∗ such
that 𝑣𝑖 ∈ 𝑇𝑣𝑖 and for each node 𝑛 = 𝑤 · 𝑣 𝑗 ∈ 𝑇𝑣𝑖 we have
𝑛 · 𝑣𝑘 ∈ 𝑇𝑣𝑖 if and only if (𝑣 𝑗 , 𝑣𝑘) ∈ Δ. Given a game

2

arena G = (𝑉 = 𝑉𝑐 ⊎ 𝑉𝑢𝑐 ,Δ ⊆ 𝑉 × 𝑉), we define the
computation forest F =

⋃
𝑣𝑖 ∈𝑉 𝑇𝑣𝑖 as the union of the

unravellings with respect to all the different starting
vertices. We say that 𝑢 ∈ F is a child of 𝑤 ∈ F if there
is a vertex 𝑣 ∈ 𝑉 such that 𝑢 = 𝑤𝑣 . It follows that for
𝑤 · 𝑣1 · 𝑣2 ∈ F such that (𝑣1, 𝑣2) ∈ Δ, 𝑤 · 𝑣1 · 𝑣2 is a child
of 𝑤 · 𝑣1. We say that 𝑢 ∈ F is a descendant of 𝑤 ∈ F if
there is a word 𝑤 ′ ∈ 𝑉 ∗ such that 𝑢 = 𝑤𝑤 ′. A strategy
for controller is a sub-forest 𝐹 of the computation forest
F of the game such that for all 𝑢 ∈ (𝑉 ∗ · 𝑉𝑢𝑐) ∩ 𝐹 if
𝑣 ∈ F is a child of 𝑢 then 𝑣 ∈ 𝐹 . A play 𝜋 is contained
in a strategy 𝐹 if for every 𝑖 we have 𝜋 (0), . . . , 𝜋 (𝑖) ∈ 𝐹 .
Given a node 𝑤𝑣 ∈ 𝐹 we say that 𝑤𝑣 is marked (in a
non-blocking game) if 𝑣 ∈ 𝑉𝑚 . Strategy 𝐹 is winning
for the non-blocking objective if every unmarked node
in the strategy has a descendant in 𝐹 that is marked.
Given a node 𝑤𝑣 ∈ 𝐹 and its child 𝑤𝑣𝑢 ∈ 𝐹 we say that
the edge (𝑤𝑣,𝑤𝑣𝑢) is marked if (𝑣,𝑢) ∈ 𝐵. Strategy 𝐹

is winning for the Büchi objective if every vertex in
𝐹 has at least one child in 𝐹 and every infinite play
contained in 𝐹 has infinitely many marked edges. A
winning strategy 𝐹 is said to be maximal if for all
winning strategies 𝐹 ′, we have 𝐹 ′ ⊆ 𝐹 . 𝐹 is said to
be memoryless if for all sequences 𝜎 ∈ 𝑉 ∗ and for all
vertices 𝑢, 𝑣 ∈ 𝑉 , we have 𝜎𝑢𝑣 ∈ 𝐹 if and only if 𝑢𝑣 ∈ 𝐹

and 𝜎𝑢 ∈ 𝐹 .

Lemma II.2 (Existence and memorylessness of maximal
strategies in non-blocking games). Given a non-blocking
game, there is a memoryless and maximal (potentially
empty) winning strategy.

Proof: The proof is based on adaptation of Lemma
II.1 for non-blocking games. Given a game arena G =

(𝑉 = 𝑉𝑐 ⊎𝑉𝑢𝑐 ,Δ) and a set 𝑉𝑚 ⊆ 𝑉 of marked vertices,
we define the plant induced by G and starting in state
𝑣𝑖 ∈ 𝑉 by 𝑃𝑣𝑖 = (𝑋 = 𝑉 , 𝑥0 = 𝑣𝑖 , 𝑋𝑚 = 𝑉𝑚, 𝐸 = 𝐸𝑐⊎𝐸𝑢𝑐 , 𝛿),
where 𝐸𝑐 = {(𝑣, 𝑣 ′) ∈ Δ | 𝑣 ∈ 𝑉𝑐 } and 𝐸𝑢𝑐 = {(𝑣, 𝑣 ′) ∈
Δ | 𝑣 ∈ 𝑉𝑢𝑐 } and 𝛿 is defined by putting 𝛿 (𝑥, (𝑥,𝑦)) = 𝑦

for 𝑥 ∈ 𝑉 and (𝑥,𝑦) ∈ Δ. In the case that there is
no non-blocking supervisor for 𝑃𝑣𝑖 , we put 𝜏𝑣𝑖 = {}.
Otherwise, let 𝑆𝑣𝑖 be the maximally-permissive non-
blocking and memoryless supervisor for 𝑃𝑣𝑖 that exists
by Lemma II.1, let 𝑃𝑣𝑖 ∥ 𝑆𝑣𝑖 = (𝑉 × 𝐸∗, (𝑣𝑖 , 𝜖),𝑉𝑚 ×
𝐸∗, 𝐸, 𝛿 ′𝑖) be the induced closed-loop system and put
𝜏𝑣𝑖 = {𝛿 (𝑣𝑖 ,𝑤) | ∃𝑣 ∈ 𝑉 . 𝛿 ′∗𝑖 ((𝑣𝑖 , 𝜖),𝑤) = (𝑣,𝑤)}. The
tree 𝜏𝑣𝑖 contains all sequences of vertices corresponding
to paths originating from (𝑣𝑖 , 𝜖) in 𝑃𝑣𝑖 | | 𝑆𝑣𝑖 . Notice that
for all 𝑤 ∈ 𝐸∗ and (𝑢, 𝑣) ∈ 𝐸 we have 𝑆𝑣𝑖 (𝑤 · (𝑢, 𝑣)) =
{(𝑣, 𝑣 ′) ∈ 𝐸𝑐 | 𝛿 (𝑣𝑖 ,𝑤).𝑢𝑣𝑣 ′ ∈ 𝜏𝑣𝑖 }.
That is, for 𝑣 ∈ 𝑉𝑐 the supervisor defines exactly

the strategy and for 𝑣 ∈ 𝑉𝑢𝑐 the set is empty. This
correspondence between 𝜏𝑣𝑖 and 𝑆𝑣𝑖 implies that there

is a path from (𝑣𝑖 , 𝜖) to a marked vertex in the closed-
loop system iff there is a path from 𝑣𝑖 to a marked node
in 𝜏𝑣𝑖 . Hence, 𝑆𝑣𝑖 is non-blocking iff 𝜏𝑣𝑖 is winning. The
same correspondence also provides that for 𝑤 ending in
a vertex in 𝑉𝑐 we have (𝑢, 𝑣) ∈ 𝑆𝑣𝑖 (𝑤) iff 𝛿 (𝑣𝑖 ,𝑤) ·𝑣 ∈ 𝜏𝑣𝑖 .
Hence 𝑆𝑣𝑖 is maximally-permissive iff 𝜏𝑣𝑖 is the maximal
winning sub-tree of 𝑇𝑣𝑖 which is the unravelling of the
game arena with 𝑣𝑖 as the starting vertex. Now consider
𝐹 =

⋃
𝑣𝑖 ∈𝑋 𝜏𝑣𝑖 . Since each 𝜏𝑣𝑖 is the maximal winning

sub-tree of the respective 𝑇𝑣𝑖 , 𝐹 is the maximal winning
sub-forest of F i.e. maximal winning strategy.
It remains to show that 𝐹 is memoryless. For each

𝑣𝑖 ∈ 𝑉 , let 𝑓𝑣𝑖 : 𝑋 → 2𝐸𝑐 be a function such that
𝑓𝑣𝑖 (𝛿 (𝑣𝑖 ,𝑤)) = 𝑆𝑣𝑖 (𝑤) for all 𝑤 ∈ 𝐸∗; such a function
exists since 𝑆𝑣𝑖 is memoryless. Let us consider two
vertices 𝑢, 𝑣 ∈ 𝑉 . We note that 𝑣 ∈ 𝑓𝑣𝑖 (𝑢) ⇐⇒ 𝜎𝑢 ∈
𝜏𝑣𝑖 =⇒ 𝜎𝑢𝑣 ∈ 𝜏𝑣𝑖 from the definitions of 𝜏𝑣𝑖 and 𝑓𝑣𝑖 .
Let a vertex 𝑣 𝑗 ∈ 𝑉 . Assume towards a contradiction
that 𝑓𝑣𝑖 ≠ 𝑓𝑣𝑗 . Then we construct a tree 𝜏 ′𝑣𝑖 by putting
𝑣 ∈ 𝑓𝑣𝑖 (𝑢) ∪ 𝑓𝑣𝑗 (𝑢) ⇐⇒ 𝜎𝑢 ∈ 𝜏 ′𝑣𝑖 =⇒ 𝜎𝑢𝑣 ∈ 𝜏 ′𝑣𝑖 and
𝑣𝑖 ∈ 𝜏 ′𝑣𝑖 . We construct 𝜏 ′𝑣𝑗 analogously. We note that 𝜏 ′𝑣𝑖
and 𝜏 ′𝑣𝑗 are winning and either 𝜏𝑣𝑖 is a strict sub-tree
of 𝜏 ′𝑣𝑖 or 𝜏𝑣𝑗 is a strict sub-tree of 𝜏 ′𝑣𝑗 . This contradicts
maximality of 𝜏𝑣𝑖 and 𝜏𝑣𝑗 , implying that 𝑓𝑣𝑖 = 𝑓𝑣𝑗 . Now
𝑢𝑣 ∈ 𝐹 iff 𝑣 ∈ 𝑓𝑣𝑖 (𝑢) iff 𝜎𝑢 ∈ 𝐹 =⇒ 𝜎𝑢𝑣 ∈ 𝐹 . Hence 𝐹

is memoryless.
Lemma II.3 (Existence of memoryless strategies for
Büchi games [8]). Given a game arena and a marked
subset of edges 𝐵, if a vertex 𝑣 is in any winning strategy
for controller then there is a memoryless winning strategy
𝐹𝐵 for controller such that 𝑣 ∈ 𝐹𝐵 .

Definition II.2 (Winning region). A vertex 𝑣 ∈ 𝑉 is
said to be in the winning region of controller if 𝑣 is
contained in some winning strategy. We denote the set
of winning vertices as 𝑉𝑤𝑖𝑛 .

Lemma II.4 ([7]). The winning region in a Büchi game
with 𝑛 vertices can be computed in time 𝑂 (𝑛2).

I I I . Games for Supervisory Control

In this section we give a reduction from supervisory
control to non-blocking games and Büchi games. Inter-
estingly, the reduction uses the same game arena for
both cases based on an appropriate definition of marked
vertices (for the non-blocking game) and of marked
edges (for the Büchi game). As mentioned, our reduction
is different from existing reductions by diverging from
the natural paradigm of "supervisor needs to choose
the controllable events to implement". Instead we base
our reduction on "environment chooses when to allow
supervisor to implement controllable events".

3

𝑥

𝑥𝑐𝑛

𝑥𝑐1

𝑥𝑢1

𝑥𝑢𝑚

𝑐1
·
𝑐𝑛

·

𝑢1
·

𝑢𝑚

·

𝑢 (𝑥) 𝑐 (𝑥)

𝑢 (𝑥𝑢1) 𝑢 (𝑥𝑢𝑛) 𝑢 (𝑥𝑐1) 𝑢 (𝑥𝑐𝑛)

· · · ·· ·

Fig. 1: Converting a state 𝑥 of a plant to a pair of
vertices 𝑢 (𝑥) and 𝑐 (𝑥) of a game

A. Plant to Game Arena

Next, we introduce the transformation that constructs
a game arena from a plant.

Definition III.1. Given a plant 𝑃 = (𝑋, 𝑥0, 𝑋𝑚, 𝐸 = 𝐸𝑐 ⊎
𝐸𝑢𝑐 , 𝛿), we define the game arena G𝑃 = (𝑉 = 𝑉𝑐⊎𝑉𝑢𝑐 ,Δ),
where 𝑉 is a set of vertices containing two vertices 𝑐 (𝑥)
and 𝑢 (𝑥) for each state 𝑥 ∈ 𝑋 .

𝑉𝑐 := {𝑐 (𝑥) | 𝑥 ∈ 𝑋 } 𝑉𝑢𝑐 := {𝑢 (𝑥) | 𝑥 ∈ 𝑋 }
Δ := {(𝑢 (𝑥), 𝑐 (𝑥)), (𝑐 (𝑥), 𝑢 (𝑥)) | 𝑥 ∈ 𝑋 } ∪

{(𝑢 (𝑥), 𝑢 (𝑥 ′)) | ∃𝑒𝑢 ∈ 𝐸𝑢𝑐 . 𝛿 (𝑥, 𝑒𝑢) = 𝑥 ′} ∪
{(𝑐 (𝑥), 𝑢 (𝑥 ′)) | ∃𝑒 ∈ 𝐸 . 𝛿 (𝑥, 𝑒) = 𝑥 ′}

The construction of G𝑃 is illustrated in Figure 1.
We note that |𝑉 | = 2|𝑋 |. Given a run 𝛿 (𝑥,𝑤) =

𝑥1, . . . 𝑥𝑛 of 𝑃 , where 𝑥1 = 𝑥 , let 𝑠𝑒𝑞(𝛿 (𝑥,𝑤)) be
𝑢 (𝑥1), 𝑐 (𝑥1), 𝑢 (𝑥2), 𝑐 (𝑥2), . . . , 𝑢 (𝑥𝑛), 𝑐 (𝑥𝑛).

We note that for an uncontrollable action 𝑢 and a
transition 𝛿 (𝑥,𝑢) = 𝑥 ′ it is possible to follow 𝑢 from 𝑥

to 𝑥 ′ in the game arena by either moving directly from
𝑢 (𝑥) to 𝑢 (𝑥 ′) or by moving from 𝑢 (𝑥) to 𝑐 (𝑥) and from
there to 𝑢 (𝑥 ′). The sequence 𝑠𝑒𝑞(𝛿 (𝑥,𝑤)) is the fixed
sequence where we do the latter.

B. Supervisory Control to Non-Blocking Games

Next, we show that the supervisory control problem
reduces to a non-blocking game over G𝑃 with an
appropriate set of marked vertices.

The non-blocking game G𝑃𝑚 is defined over the game
arena G𝑃 , using the set 𝑉𝑚 = {𝑐 (𝑥𝑚), 𝑢 (𝑥𝑚) | 𝑥𝑚 ∈ 𝑋𝑚}
of marked vertices. We show that the maximal winning
strategy for G𝑃𝑚 yields the maximally-permissive non-
blocking supervisor for plant 𝑃 (if it exists).

Lemma III.1 (From plant to non-blocking game). The
following are equivalent:

1) The vertex 𝑢 (𝑥0) is in the maximal winning strategy
𝐹𝑚𝑎𝑥 in the non-blocking game G𝑃𝑚 .

2) The supervisor 𝑆 (𝑤) = {𝑒 𝑗 ∈ 𝐸𝑐 | 𝑠𝑒𝑞(𝛿 (𝑥0,𝑤𝑒 𝑗)) ∈
𝐹𝑚𝑎𝑥 } is the maximally permissive non-blocking
supervisor.

3) There exists a non-blocking supervisor for 𝑃 .

Proof: We begin by proving (1) =⇒ (2). First
we show that 𝑆 is a non-blocking supervisor for 𝑃 . In
𝑃 | | 𝑆 = (𝑋 × 𝐸∗, (𝑥0, 𝜖), 𝑋𝑚 × 𝐸∗, 𝐸, 𝛿 ′), consider a state
(𝑥,𝑤) ∈ 𝑋 × 𝐸∗, such that 𝛿 ′∗ ((𝑥0, 𝜖),𝑤) = (𝑥,𝑤). We
have to show that if (𝑥,𝑤) is unmarked then there is a
word 𝑤 ′ ∈ 𝐸∗ such that 𝛿 ′∗ ((𝑥,𝑤),𝑤 ′) is marked. Since
𝑠𝑒𝑞(𝛿 (𝑥0,𝑤)) = 𝜎𝑢 (𝑥), we have that 𝑢 (𝑥) is in 𝐹𝑚𝑎𝑥 as
𝐹𝑚𝑎𝑥 is memoryless. Then either 𝑢 (𝑥) ∈ 𝑉𝑚 or there is
a word 𝜎𝑢 (𝑥)𝜎 ′𝑣𝑚 ∈ 𝑉 ∗ such that 𝑣𝑚 ∈ 𝑉𝑚 . In the first
case, we have 𝑥 ∈ 𝑋𝑚 and are done. In the second case,
consider the word 𝑤 ′ ∈ 𝐸∗ such that 𝑠𝑒𝑞(𝛿 (𝑥0,𝑤

′)) =
𝜎𝑢 (𝑥)𝜎 ′𝑣𝑚 . Since 𝑠𝑒𝑞(𝛿 (𝑥0,𝑤)) = 𝜎𝑢 (𝑥), there is a word
𝑤 ′′ ∈ 𝐸∗ such that 𝑠𝑒𝑞(𝛿 (𝑥,𝑤 ′′)) = 𝜎 ′𝑣𝑚 . Then we have
𝛿 ′∗ ((𝑥,𝑤),𝑤 ′′) = (𝑥 ′𝑚,𝑤 ′) such that either 𝑣𝑚 = 𝑢 (𝑥 ′𝑚)
or 𝑣𝑚 = 𝑐 (𝑥 ′𝑚). In both cases, 𝑥 ′𝑚 ∈ 𝑋𝑚 and hence
(𝑥 ′𝑚,𝑤 ′) is a marked state of 𝑃 | | 𝑆 , as required. Hence
𝑆 is a non-blocking supervisor.

Suppose 𝑆 is not maximally permissive. Then let 𝑆 ′ ≠
𝑆 be the maximally permissive non-blocking supervisor
for 𝑃 . There is a word 𝑤 ∈ 𝐸∗ such that 𝑆 ′ (𝑤) ≠ 𝑆 (𝑤).
Let 𝑒 𝑗 ∈ 𝐸𝑐 be an event such that 𝑒 𝑗 ∈ 𝑆 ′ (𝑤) and 𝑒 𝑗 ∉

𝑆 (𝑤). According to the definition of 𝑆 , 𝑠𝑒𝑞(𝛿 (𝑥0,𝑤𝑒 𝑗)) ∉
𝐹𝑚𝑎𝑥 . The definition of non-blocking supervisors and
the fact that 𝑆 ′ is a non-blocking supervisor implies that
there exists 𝑤 ′ ∈ 𝐸∗ such that 𝛿 ′∗ (𝛿 ′∗ ((𝑥0, 𝜖),𝑤𝑒 𝑗),𝑤 ′)
is marked. Hence 𝜎 = 𝑠𝑒𝑞(𝛿 (𝑥0,𝑤𝑒 𝑗𝑤

′)) ∉ 𝐹𝑚𝑎𝑥 . Put
𝐹 ′ = 𝐹𝑚𝑎𝑥∪{𝜎 ′ ∈ 𝑉 ∗ |∃𝜎 ′′ ∈ 𝑉 ∗ . 𝜎 = 𝜎 ′𝜎 ′′}. The strategy
𝐹 ′ is winning as 𝜎 is marked (recall that 𝜎 is marked
if the last vertex in 𝜎 is marked).
For (2) =⇒ (3) we note that the maximally

permissive non-blocking supervisor is in particular a
non-blocking supervisor.
In order to prove (3) =⇒ (1), we construct a

winning strategy 𝐹 for the game G𝑃𝑚 from 𝑆 . Note
that constructing some winning strategy suffices since
if 𝑢 (𝑥0) is in some winning strategy then 𝑢 (𝑥0) is in
the maximal winning strategy.
Put 𝑢 (𝑥0) ∈ 𝐹 . For all 𝑥𝑖 ∈ 𝑋 and all (𝑢 (𝑥𝑖), 𝑣) ∈ Δ

such that 𝑤 · 𝑢 (𝑥𝑖) ∈ 𝐹 , we require 𝑤 · 𝑢 (𝑥𝑖) · 𝑣 ∈ 𝐹 .
For all 𝑥𝑖 ∈ 𝑋 , all ℎ ∈ 𝐸∗ and all 𝑒 ∈ 𝑆 (ℎ) such that
𝛿∗ (𝑥0, ℎ) = 𝑥𝑖 , we require that 𝑤 · 𝑐 (𝑥𝑖) · 𝑢 (𝛿 (𝑥𝑖 , 𝑒)) ∈ 𝐹

whenever 𝑤 · 𝑐 (𝑥𝑖) ∈ 𝐹 . For all 𝑥𝑖 ∈ 𝑋 and all ℎ ∈ 𝐸∗

such that 𝑆 (ℎ) = ∅ and 𝛿∗ (𝑥0, ℎ) = 𝑥𝑖 , we require that
𝑤 · 𝑐 (𝑥𝑖) · 𝑢 (𝑥𝑖) ∈ 𝐹 whenever 𝑤 · 𝑐 (𝑥𝑖) ∈ 𝐹 .

It remains to show that 𝐹 is a winning strategy for
the non-blocking objective. Since 𝑆 is a non-blocking
supervisor for 𝑃 , from every unmarked vertex (𝑥 𝑗 , 𝜎)

4

that is reachable from (𝑥0, 𝜖) there is a path to a marked
vertex (𝑥𝑚, 𝜎𝜎 ′) in 𝑃 | | 𝑆 . By definition of closed-loop
systems and by the construction of 𝐹 , if there is a
path from (𝑥0, 𝜖) to (𝑥 𝑗 , 𝜎) in 𝑃 | | 𝑆 then for 𝑢 (𝑥0)
there is some descendant 𝑤 · 𝑢 (𝑥 𝑗) ∈ 𝐹 , where 𝑤 ∈ 𝑉 ∗.
Furthermore, if there is a path from (𝑥 𝑗 , 𝜎) to (𝑥𝑚, 𝜎𝜎 ′)
then there is a descendant 𝑤 · 𝑢 (𝑥 𝑗) · 𝑤 ′ · 𝑢 (𝑥𝑚) ∈ 𝐹 ,
where 𝑤 ′ ∈ 𝑉 ∗ and 𝑢 (𝑥𝑚) ∈ 𝑉𝑚 , as required.

Consider a node 𝑤 · 𝑐 (𝑥) ∈ 𝐹 . By definition 𝑤 · 𝑐 (𝑥)
has a descendant 𝑤 · 𝑐 (𝑥) · 𝑢 (𝑥 ′) ∈ 𝐹 . From the
previous paragraph, it follows that some marked vertex
is reachable from 𝑢 (𝑥 ′) and we are done.

C. Supervisory Control to Büchi Games
We now show that the same game arena captures

the same supervisor control problem but this time as a
Büchi game. This goes against the widely held belief that
the supervisory control synthesis problem is inherently
non-linear [3], [6].

The Büchi game G𝑃𝐵 is defined over the game arena
G𝑃 with the following set of marked edges:

𝐵 = {(𝑢 (𝑥), 𝑢 (𝑥 ′)) ∈ Δ} ∪
{(𝑢 (𝑥), 𝑐 (𝑥)), (𝑐 (𝑥), 𝑢 (𝑥)) | 𝑥 ∈ 𝑋𝑚}

We show that the winning region for the non-blocking
condition can be computed from the winning region
for the Büchi condition.

Lemma III.2 (From non-blocking game to Büchi game).
The following are equivalent:
1) The vertex 𝑢 (𝑥0) is in the maximal winning strategy

𝐹𝑚𝑎𝑥 in the non-blocking game G𝑃𝑚 .
2) The vertex 𝑢 (𝑥0) is in the winning region 𝑉𝑤𝑖𝑛 in

the Büchi game G𝑃𝐵 .

Proof: We prove (1) =⇒ (2) by constructing a
winning strategy 𝐹𝐵 for the Büchi game from 𝐹𝑚𝑎𝑥 . In
order to construct 𝐹𝐵 , we inductively define a distance
function 𝑑 : 𝐹𝑚𝑎𝑥 → N ∪ {0} such that if 𝑣 ∈ 𝑉𝑚
and 𝜎𝑣 ∈ 𝐹𝑚𝑎𝑥 , then 𝑑 (𝜎𝑣) = 0 and otherwise 𝑑 (𝜎) =
min({𝑑 (𝜎𝑣) | 𝜎𝑣 ∈ 𝐹𝑚𝑎𝑥 , 𝑣 ∈ 𝑉 }) + 1.

Since every 𝜎 ∈ 𝐹𝑚𝑎𝑥 has a descendant that is marked,
𝑑 is well-defined. We define 𝐹𝐵 to contain 𝑉 ∩ 𝐹𝑚𝑎𝑥 .
Furthermore, we require that for all 𝑣𝑢𝑐 ∈ 𝑉𝑢𝑐 and all
𝜎 ∈ 𝑉 ∗ such that 𝜎𝑣𝑢𝑐 ∈ 𝐹𝐵 and 𝜎𝑣𝑢𝑐𝑣 ∈ 𝐹𝑚𝑎𝑥 , we also
have 𝜎𝑣𝑢𝑐𝑣 ∈ 𝐹𝐵 . For every vertex 𝑣𝑐 ∈ 𝑉𝑐 , if 𝜎𝑣𝑐 ∈ 𝐹𝐵
and 𝑑 (𝜎𝑣𝑐) > 0, then for all 𝑣 ∈ 𝑉 and 𝜎 ∈ 𝑉 ∗ such
that 𝜎𝑣𝑐𝑣 ∈ 𝐹𝑚𝑎𝑥 and 𝑑 (𝜎𝑣𝑐𝑣) < 𝑑 (𝜎𝑣𝑐), we require
𝜎𝑣𝑐𝑣 ∈ 𝐹𝐵 . For all 𝑣𝑐 ∈ 𝑉𝑐 and 𝜎 ∈ 𝑉 ∗ such that 𝜎𝑣𝑐 ∈ 𝐹𝐵
and 𝑑 (𝜎𝑣𝑐) = 0 and all 𝑣 ∈ 𝑉 such that 𝜎𝑣𝑐𝑣 ∈ 𝐹𝑚𝑎𝑥

and 𝑑 (𝜎𝑣𝑐𝑣) = 𝑑 (𝜎𝑣𝑐), we require 𝜎𝑣𝑐𝑣 ∈ 𝐹𝐵 . Denote
𝑣𝑐 = 𝑐 (𝑥) for some 𝑥 , this is particularly the case for
𝑢 (𝑥) that is marked as well.

To see that 𝐹𝐵 is a winning strategy, let 𝜌 be a play
that is contained in 𝐹𝐵 . We distinguish cases: (1) There
are infinitely many 𝑖 ∈ N such that 𝜌 (𝑖) ∈ 𝑉𝑢𝑐 and
𝜌 (𝑖 + 1) ∈ 𝑉𝑢𝑐 . (2) There are finitely many 𝑖 ∈ N such
that 𝜌 (𝑖) ∈ 𝑉𝑢𝑐 and 𝜌 (𝑖 +1) ∈ 𝑉𝑢𝑐 . In case (1), 𝜌 contains
infinitely occurrences of marked edges as all edges of
form (𝑢 (𝑥 ′), 𝑢 (𝑥 ′′)) are marked. In case (2), consider
𝑗 ∈ N such that for every 𝑖 > 𝑗 , if 𝜌 (𝑖) ∈ 𝑉𝑢𝑐 then
𝜌 (𝑖 +1) ∉ 𝑉𝑢𝑐 , that is, 𝜌 (𝑖 +1) ∈ 𝑉𝑐 . We have 𝑑 (𝜎𝑢 (𝑥)) ≥
𝑑 (𝜎𝑢 (𝑥)𝑐 (𝑥)) since for every 𝜎𝑢 (𝑥)𝑣 ∈ 𝐹𝑚𝑎𝑥 such that
𝑣 ≠ 𝑐 (𝑥), we also have 𝜎𝑢 (𝑥)𝑐 (𝑥)𝑣 ∈ 𝐹𝑚𝑎𝑥 (due to 𝐹𝑚𝑎𝑥

being the maximal strategy). From 𝑖 on, the play 𝜌 is
of the shape 𝑢 (𝑥𝑖), 𝑐 (𝑥𝑖), 𝑢 (𝑥𝑖+1), 𝑐 (𝑥𝑖+1), . . ., where the
distance function 𝑑 is by construction guaranteed to
decrease on moves of the shape (𝑐 (𝑥 𝑗), 𝑢 (𝑥 𝑗+1)) and
does not increase on moves of the shape (𝑢 (𝑥 𝑗), 𝑐 (𝑥 𝑗)).
Therefore, the distance eventually becomes zero. Since
𝑑 (𝑣) = 0 only when 𝑣 is marked, the play reaches a
marked vertex and since every outgoing edge of the
marked vertex is marked, the play has an occurrence of
as many marked edges as many times 𝑑 evaluates to 0.
Since 𝑑 is a non-increasing function if no consecutive
pair of vertices are uncontrollable, it does not increase
and has value 0 infinitely often so 𝜌 contains infinitely
many edges from 𝐵. We get that in both cases (1) and
(2), the play has infinite occurrences of marked edges,
hence 𝐹𝐵 is winning for the game G𝑃𝐵 .

In order to show (2) =⇒ (1), we construct a strategy
𝐹 in G𝑃𝑚 from the winning region 𝑉𝑤𝑖𝑛 of G𝑃𝐵 . For
every 𝑣 ∈ 𝑉𝑤𝑖𝑛 , we put 𝑣 ∈ 𝐹 . For all 𝑢, 𝑣 ∈ 𝑉𝑤𝑖𝑛 such
that (𝑢, 𝑣) ∈ Δ, we require 𝜎𝑢𝑣 ∈ 𝐹 whenever 𝜎𝑢 ∈ 𝐹 .

Since there is no vertex outside 𝑉𝑤𝑖𝑛 in 𝐹 , it suffices
to prove that from every vertex 𝑣 ∈ 𝑉𝑤𝑖𝑛 , there is a
descendant in 𝐹 that is marked. Suppose there is a
vertex 𝑣 ′ = 𝑢 (𝑥) ∈ 𝑉𝑤𝑖𝑛 that has no marked descendant
in 𝐹 . Consider a winning Büchi strategy 𝐹𝐵 such that
𝑉𝑤𝑖𝑛 ⊆ 𝐹𝐵 . By construction 𝐹𝐵 ⊆ 𝐹 . For all 𝑥 ∈ 𝑋 ,
𝑢 (𝑥) ∈ 𝑉𝑢𝑐 , and (𝑢 (𝑥), 𝑐 (𝑥)) ∈ Δ, if 𝜎 · 𝑢 (𝑥) ∈ 𝐹𝐵 then
we have 𝜎 · 𝑢 (𝑥) · 𝑐 (𝑥) ∈ 𝐹𝐵 . Consider a play 𝜋 in
𝐹 such that 𝜋 (1) = 𝑣 ′ and for every 𝑖 ∈ N, 𝑖 ≥ 1, if
𝜋 (𝑖) = 𝑢 (𝑥) for some 𝑥 ∈ 𝑋 then 𝜋 (𝑖 + 1) = 𝑐 (𝑥) and
if 𝜋 (𝑖) = 𝑐 (𝑥) for some 𝑥 ∈ 𝑋 then 𝜋 (𝑖 + 1) = 𝑣 ′′

such that 𝜋 (1)𝜋 (2)...𝜋 (𝑖)𝑣 ′′ ∈ 𝐹𝐵 . In case there are
multiple candidates for 𝑣 ′′, choose one of those. Then
𝜋 is contained in 𝐹𝐵 . Note that we choose 𝜋 such that
there is no 𝑖 such that both 𝜋 (𝑖) and 𝜋 (𝑖 + 1) are in 𝑉𝑢𝑐 .
In addition, from our assumption, 𝑣 ′ has no marked
descendant in 𝐹 . It follows that there are no marked
edges in 𝜋 . Hence, 𝜋 is not Büchi winning, yielding
a contradiction. We conclude that the strategy 𝐹 is a
winning strategy.

5

We note that the strategy 𝐹 constructed in the second
part of the above proof is maximal: Every larger strategy
necessarily contains some play that leaves 𝑉𝑤𝑖𝑛 which
is in contradiction to the claim of the lemma.

Theorem III.3. Given a plant 𝑃 = (𝑋, 𝑥0, 𝑋𝑚, 𝐸 = 𝐸𝑐 ⊎
𝐸𝑢𝑐 , 𝛿), a maximally-permissive and non-blocking supervi-
sor, if it exists, can be constructed in time 𝑂 (max(𝑛2, 𝑛𝑒))
where 𝑛 = |𝑋 | and 𝑒 = |𝐸 |.

Proof: Using Lemma III.1, we convert a plant to a
non-blocking game of twice the size of the plant. The
construction of the maximally-permissive supervisor
from the maximal strategy is described in the lemma.
Lemma III.2 provides a reduction of a non-blocking
game to a Büchi game with the same arena. The
construction of the maximal strategy for the non-
blocking game from the winning region of the Büchi
game is given in the proof. Computing winning regions
for Büchi games can be done in time 𝑂 (𝑛2) as per
Lemma II.4. Hence the maximally-permissive supervisor
can be constructed in time 𝑂 (𝑛2) from the description
of the plant. The description of the plant is of size
|𝑋 | · |𝐸 | = 𝑛𝑒 leading to overall time complexity in
𝑂 (max(𝑛2, 𝑛𝑒)).

D. A simple example
Here we describe a simple example of a plant with

three states in Fig. 2, in which 𝑋 = {𝑥0, 𝑥1, 𝑥2}, 𝐸𝑐 =

{𝑐1, 𝑐2, 𝑐3}, 𝐸𝑢𝑐 = {𝑢1}, 𝑋𝑚 = {𝑥2} and transitions are as
depicted in Fig. 2. Using our reduction we construct a
game arena as shown in Fig. 3. Vertices corresponding
to marked vertex 𝑥2 i.e. 𝑢 (𝑥2) and 𝑐 (𝑥2) are marked
for the non-blocking game. Accordingly for the Büchi
game, Büchi edges are labelled with B as shown in
Fig. 3. Vertices 𝑢 (𝑥1) and 𝑐 (𝑥1) are not winning for
the controller due to the 𝑢 (𝑥1) − 𝑐 (𝑥1) loop which
has no Büchi edge. The winning region for the Büchi
game, {𝑢 (𝑥0), 𝑐 (𝑥0), 𝑢 (𝑥2), 𝑐 (𝑥2)} is colored. A winning
strategy for the Büchi game can be described as a
function of choices from each controllable vertex in the
winning region due to memorylessness of strategy. In
this example, from vertex 𝑐 (𝑥0) controller can take the
edge (𝑐 (𝑥0), 𝑢 (𝑥2)) and from vertex 𝑐 (𝑥2) controller can
take the edge (𝑐 (𝑥2), 𝑢 (𝑥0)). From the winning region,
we can obtain the maximally-permissive supervisor for
the plant by allowing all controllable events which result
in states corresponding to the winning region. Since
this is memoryless it can also be described using a
function from states to subsets of controllable events,
i.e. 𝑓 (𝑥0) = {𝑐2, 𝑐3} and 𝑓 (𝑥1) = 𝑓 (𝑥2) = ∅ where the
maximally-permissive supervisor is defined by 𝑆 (𝑤) =
𝑓 (𝛿 (𝑥0,𝑤)). Note that the edge corresponding to event

Fig. 2: A simple plant

Fig. 3: Game corresponding to the plant in Fig. 2

𝑐3 from state 𝑥0 in the game is not in the winning
strategy for the Büchi game, however it is enabled by
the maximally-permissive supervisor.

IV. Conclusion
We have provided a reduction of the supervisor

synthesis problem for terminating processes to solving
Büchi games. Our reduction is more compact and
uniform than previous reductions and establishes a
better complexity bound for supervisor synthesis. It will
be interesting to investigate whether the supervisory
control problem for non-terminating processes [4] can
be reduced to linear games as well. Another direction
to extend this work is towards composition-based and
modular synthesis of non-blocking supervisors.

References
[1] P.J. Ramadge and W.M. Wonham. The control of discrete event

systems. Proc. IEEE, 77(1):81–98, 1989.
[2] A. Pnueli and R. Rosner. On the synthesis of a reactive module.

In POPL ’89, page 179–190, 1989. ACM.
[3] R. Ehlers, S. Lafortune, S. Tripakis, and M.Y. Vardi. Supervisory

control and reactive synthesis: a comparative introduction. Discret.
Event Dyn. Syst., 27(2):209–260, 2017.

[4] R. Majumdar and A.-K. Schmuck. Supervisory controller synthesis
for non-terminating processes is an obliging game. IEEE
Transactions on Automatic Control, pages 385–392, 2022.

[5] A.-K. Schmuck, T. Moor, and K.W. Schmidt. A reactive synthesis
approach to supervisory control of terminating processes. IFAC-
PapersOnLine, 53(2):2149–2156, 2020. 21st IFAC World Congress.

[6] R. Ehlers. Personal communication.
[7] K. Chatterjee and M. Henzinger. An O(n2) time algorithm for

alternating büchi games. In SODA ’12, pages 1386–1399. SIAM,
2012.

[8] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and
determinacy (extended abstract). In FOCS ’91, pages 368–377.
IEEE Computer Society, 1991.

6

	I Introduction
	II Preliminaries
	II-A Supervisory Control
	II-B Two-player Games

	III Games for Supervisory Control
	III-A Plant to Game Arena
	III-B Supervisory Control to Non-Blocking Games
	III-C Supervisory Control to Büchi Games
	III-D A simple example

	IV Conclusion
	References

