
ppLTLTT: Temporal testing for pure-past linear
temporal logic formulae⋆

Shaun Azzopardi , David Lidell , Nir Piterman , and Gerardo Schneider

University of Gothenburg, Gothenburg, Sweden

Abstract. This paper presents ppLTLTT, a tool for translating pure-
past linear temporal logic formulae into temporal testers in the form
of automata. We show how ppLTLTT can be used to easily extend ex-
isting LTL-based tools, such as LTL-to-automata translators and reac-
tive synthesis tools, to support a richer input language. Namely, with
ppLTLTT, tools that accept LTL input are also made to handle pure-
past LTL as atomic formulae. While the addition of past operators does
not increase the expressive power of LTL, it opens up the possibility
of writing more intuitive and succinct specifications. We illustrate this
intended use of ppLTLTT for Slugs, Strix, and Spot’s command line
tool LTL2TGBA by describing three corresponding wrapper tools pSlugs,
pStrix, and pLTL2TGBA, that all leverage ppLTLTT. All three wrapper
tools are designed to seamlessly fit this paradigm, by staying as close to
the respective syntax of each underlying tool as possible.

Keywords: Past Linear Temporal Logic · Temporal Testers · Omega-
Automata · Reactive Synthesis

1 Introduction

Linear temporal logic (LTL) is a popular choice of specification language for both
the formal verification and the synthesis of programs. It has been established
that LTL with past (pLTL) can be exponentially more succinct than LTL [13],
and perhaps more importantly, it allows for arguably more natural specifications
of real-world properties, reducing the risk of incorrectly formulating them. As
a fictional but plausible example, consider a program that may flag for two
different errors, represented by the variables err1 and err2. We may wish to
express that a termination signal, represented by the variable end, should be
triggered as soon as both errors have occurred, and only then. This can be done
in pLTL with the formula,

G ((O err1 ∧O err2 ∧ ỸH¬end) ⇔ end). (1)

⋆ This research is supported by the Swedish research council (VR) project (No. 2020-
04963) and the ERC Consolidator grant DSynMA (No. 772459).

https://orcid.org/0000-0002-2165-3698
https://orcid.org/0000-0003-2760-339X
https://orcid.org/0000-0002-8242-5357
https://orcid.org/0000-0003-0629-6853

2 Azzopardi et al.

An equivalent LTL formula is,

G (end⇒ XG¬end)∧
((¬err1 ∧ ¬err2 ∧ ¬end)W ((err1 ∧ ((¬err2 ∧ ¬end)W (err2 ∧ end)))∨
(¬err1 ∧ ¬err2 ∧ ¬end)W ((err2 ∧ ((¬err1 ∧ ¬end)W (err1 ∧ end))))))).

The above formula becomes significantly more complex when we add more errors
that should trigger termination (in fact, it is factorial in the number of errors
[9]). Doing the same for its pLTL counterpart only requires adding conjuncts
of the form O (erri). The past has been also suggested as a way to increase
the expressiveness of fragments of LTL that can be handled more efficiently for
synthesis, such as GR(1) [4].

Despite the above considerations, there is a lack of general-purpose tool sup-
port for pLTL. For example, LamaConv only allows for the translation of pLTL to
two-way Büchi (or parity(3)) automata [1], which limits opportunities for further
processing. FRET supports a limited notion of past in its specification language
[10], and SpeAR provides a natural language interface for writing pure-past LTL
requirements and checking them for logical consistency [8]. But neither FRET
nor SpeAR enable the usage of pure-past LTL beyond their workflows. GOAL,
with its capability to translate full pLTL to different types of ω-automata, comes
close to providing general support [17]. However, while feature-rich, GOAL was
designed to be used for educational purposes [18], and these translations are not
implemented with performance in mind. The lack of support for past is particu-
larly glaring for reactive synthesis tools, where it is vital to express specifications
as concisely as possible, due to the high computational complexity of synthesis.

An interesting fragment of pLTL is LTL augmented atomically with pure-
past LTL (ppLTL) formulae, which we call LTL+pp. The property of exponential
succinctness of pLTL w.r.t. LTL is maintained by this fragment (the example
formula that proves it for pLTL is also in LTL+pp [13], as is the example above).
This fragment is arguably more intuitive than full pLTL, since it does not require
reasoning that in a complex manner mixes different time directions, by disallow-
ing the occurrence of future temporal operators under past temporal operators
in the syntax tree. Moreover, as we briefly describe in Section 4, LTL+pp allows
for a straightforward compositional approach to constructing corresponding au-
tomata.

In the next section, we describe the syntax and semantics of pLTL and of
the fragments LTL+pp and ppLTL, and define temporal testers [15]. Following
that, we describe ppLTLTT, a tool for generating temporal testers from ppLTL
formulae, and then propose this tool as the basis for a toolchain to allow the
input of existing tools for LTL-based tasks (e.g., for automata generators and
reactive synthesis) to be expanded from LTL to LTL+pp. We further describe
the application of our approach to Slugs [7], Strix [12,14], and Spot’s command
line tool LTL2TGBA [5], and describe three corresponding wrapper tools pSlugs,
pStrix and pLTL2TGBA, that all leverage ppLTLTT. We describe some experiments

ppLTLTT: Temporal testing for pure-past linear temporal logic formulae 3

performed to investigate the viability of this approach. ppLTLTT and the three
wrapper tools are available at GitHub1.

2 Linear Temporal Logic with Past and Temporal Testers

Formulae of pLTL are constructed from a set of propositional variables, Boolean
values and operators, and the temporal operators X, U, Y, and S.

Definition 1 (Syntax of pLTL). Given a set of propositional variables AP ,
the well-formed formulae of pLTL are generated by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Xφ | φUφ | Yφ | φSφ,

where p ∈ AP .

Formulae of pLTL are evaluated over infinite words, which are sequences of truth
assignments to the variables in AP . We call such a truth assignment a valuation.
We write (σ, t) |= φ to denote that the infinite word σ models φ at time t.

Definition 2 (Semantics of pLTL). Let σ = σ0σ1 · · · ∈ (2AP)ω be an infinite
word over a set of propositional variables AP , φ a pLTL formula, and t ∈ N.
The semantic entailment relation |= is defined by,

(σ, t) |= ⊤
(σ, t) |= p ⇔ p ∈ σt
(σ, t) |= ¬φ ⇔ (σ, t) ̸|= φ
(σ, t) |= φ1 ∧ φ2 ⇔ (σ, t) |= φ1 and (σ, t) |= φ2

(σ, t) |= Xφ ⇔ (σ, t+ 1) |= φ
(σ, t) |= φ1 Uφ2 ⇔ ∃k ≥ t . ((σ, k) |= φ2 ∧ ∀j ∈ [t, k) . (σ, j) |= φ1)
(σ, t) |= Yφ ⇔ t > 0 and (σ, t− 1) |= φ
(σ, t) |= φ1 Sφ2 ⇔ ∃k ≤ t . ((σ, k) |= φ2 ∧ ∀j ∈ (k, t] . (σ, j) |= φ1)

The rest of the standard Boolean and temporal operators can be formulated in
this language in the usual manner. We assume the reader is familiar with the
derivation of other Boolean operators, and only present the following derived
temporal operators:

Fφ := ⊤Uφ

Gφ := ¬F¬φ
φ1 Wφ2 := φ1 Uφ2 ∨Gφ1

φ1 Rφ2 := φ2 W (φ1 ∧ φ2)

Oφ := ⊤Sφ

Hφ := ¬O¬φ
φ1 S̃φ2 := φ1 Sφ2 ∨Hφ1

Ỹφ := Yφ ∨ ¬Y⊤

We define the fragments of pure-past LTL (ppLTL) and LTL with pure-past
subformulae as atoms (LTL+pp).

1 https://github.com/DoppeD/ppLTLTT

4 Azzopardi et al.

Definition 3 (ppLTL and LTL+pp). Given a set of propositional variables
AP , the well-formed formulae of ppLTL (ψ) and LTL+pp (φ) are generated by
the following grammar:

ψ ::= ⊤ | p | ¬ψ | ψ ∧ ψ | Yψ | ψ Sψ

φ ::= ψ | ¬φ | φ ∧ φ | Xφ | φUφ.

The semantics is the same as that of pLTL.

Definition 4 (Temporal testers). Let φ be a ppLTL formula and z a propo-
sitional variable that does not appear in φ. A temporal tester Tz(φ) = (S, s0, δ)
for φ is a deterministic Büchi automaton with alphabet 2V ar(φ)∪{z}, that recog-
nizes exactly the formula G (z ⇔ φ), where S is its set of states, of which all
are accepting, s0 is its initial state and δ its transition relation.

Since temporal testers contain no sink states, the variable z acts as a monitor
for the truth value of φ for every prefix of an input word. In the sequel, we will
refer to z in the above definition as the monitor variable of the temporal tester.

We refer the reader to [15] for a more in-depth presentation of temporal
testers, and of pLTL and its properties.

3 ppLTLTT

We present ppLTLTT, a tool that translates ppLTL formulae into temporal testers,
which are output in Hanoi Omega-Automata format [3]. For example, a temporal
tester for the simple formula φ := Y p generated by ppLTLTT is represented in
Figure 1.

In addition to the Boolean operators ∧,∨,¬,⇒,⇔, and ⊕ (exclusive or),
ppLTLTT supports both the primitive and the derived past operators described
in Section 2.

Fig. 1: Temporal tester for the formula φ = Yψ, generated by ppLTLTT.

3.1 ppLTL to Temporal Testers

The tool takes a pure-past LTL formula φ and constructs a temporal tester for
it. Each state of the temporal tester corresponds to the subset of subformulae
of φ that are true when a run reaches that state. Accordingly, every transition,
updates the set of true subformulae after reading one more input letter. The

ppLTLTT: Temporal testing for pure-past linear temporal logic formulae 5

Algorithm 1: The ppLTLTT algorithm
1 Function BuildTT(φ, z):
2 AP ← Var(φ)
3 Q, q0, δ ← ∅
4 Pφ ← {ψ | Yψ ∈ Sub(φ) ∨ ∃ψ1, ψ2 . ψ ∈ {Oψ1, ψ1 Sψ2} ∩ Sub(φ)}
5 Pφ ← Pφ ∪ {¬ψ | Ỹψ ∈ Sub(φ) ∨ ∃ψ1, ψ2 . ψ ∈ {Hψ1, ψ1 S̃ψ2} ∩ Sub(φ)}
6 S ← S.push(q0)
7 while ¬(S.empty) do
8 s← S.pop
9 if s /∈ Q then

10 Q← Q ∪ {s}
11 forall v ∈ 2AP do
12 s′ ← {ψ ∈ Pφ | Jψ, s, vK = ⊤}
13 S ← S.push(s′)
14 if Jφ, s, vK = ⊤ then
15 δ ← δ ∪ {(s, v ∪ {z}, s′)}
16 else
17 δ ← δ ∪ {(s, v, s′)}
18 return (Q, q0, δ)

construction is detailed in Algorithm 1, which uses the evaluation function in
Algorithm 2. Given a ppLTL formula φ, Algorithm 1 first collects all subformulae
that appear immediately under a Y and all subformulae that appear in O and
S subformulae (line 4). Moreover, it collects the negation of subformulae that
appear immediately under a Ỹ and all subformulae that appear in H and S̃
subformulae (line 5). States of the constructed temporal tester will then be
subsets of these collected formulae (Pφ), where a subformula ψ ∈ Pφ is in a
given state s iff all prefixes that reach s satisfy, at their final position, Y ψ.
For each subformula we choose the polarity that is suitable for our choice of
identifying the initial state q0 as the empty set of formulae. At the beginning of
a trace before having read even the first letter, every formula of the form Y ψ,
Oψ, or ψ1 Sψ2 does not hold. Conversely, every formula of the form Ỹ ψ, Hψ,
or ψ1 S̃ψ2 does hold. Thus, by choosing to follow the negations of the latter we
can start with the initial state q0 = ∅ (line 3).

The algorithm then proceeds to construct a temporal tester for φ incremen-
tally, starting from a stack of states consisting of only the initial state. At each
step, all possible transitions are considered (line 11), and for each such transition
the set of formulae of Pφ that are true after the transition are collected (line 12),
capturing the next state s′. This state is added to the state stack, and z added
to the transition label only if the full formula φ is true at that time point (lines
14-17).

The evaluation function from Algorithm 2 is used to determine when a for-
mula is true on a transition from a state s (see lines 12 and 14), by using
the knowledge of what happened now (the transition label v) and what held

6 Azzopardi et al.

Algorithm 2: The evaluation function
1 Function Jψ, s, vK:
2 switch ψ do

/* We omit the cases for Boolean connectives */
3 case p do
4 return (p ∈ v)
5 case Yψ1 do
6 return (ψ1 ∈ s)
7 case Ỹψ1 do
8 return (¬ψ1 ̸∈ s)
9 case Oψ1 do

10 return (Jψ1, s, vK ∨ (Oψ1 ∈ s))
11 case Hψ1 do
12 return (Jψ1, s, vK ∧ (¬Hψ1 /∈ s))
13 case ψ1 Sψ2 do
14 return ((Jψ1, s, vK ∧ (ψ1 Sψ2 ∈ s)) ∨ Jψ2, s, vK)
15 case ψ1 S̃ψ2 do
16 return ((Jψ1, s, vK ∧ (¬(ψ1 S̃ψ2) /∈ s)) ∨ Jψ2, s, vK)

true before (the formulae from Pφ in s). This algorithm exploits the expan-
sion law for the temporal operators, which implies that the truth value of each
(pure-past) temporal subformula at each time step is completely determined
by its truth value in the previous state, together with the current valuation.
For example, the expansion of the Since operator (lines 13-14 in Algorithm 2) is
φ1 Sφ2 ≡ φ2∨(φ1∧Y (φ1 Sφ2)). We omit the cases for the Boolean connectives
in the algorithm; these are as expected.

As states are represented by subsets of subformulae of φ, the algorithm re-
turns an automaton with at most 2n states, where n is the size of the formula.
Moreover, since the transitions from a state correspond in a one-to-one manner
to valuations of the propositional variables in φ, the automaton is deterministic.

3.2 Implementation Notes

The tool is implemented in Haskell. Subformulae are collected by traversing the
abstract syntax tree of the input formula. Each unique subformula with a top-
level past operator is annotated with an index, as is every propositional variable.
Each state (set of subformulae) is internally represented as an Integer2, where
bit i represents the truth value of the subformula with index i.

2 Note that Haskell Integers are of arbitrary precision; the input formula’s size is only
limited by the computer’s memory.

ppLTLTT: Temporal testing for pure-past linear temporal logic formulae 7

Fig. 2: The proposed toolchain.

4 Adding Past to Existing Tools

ppLTLTT is intended to be used as part of a toolchain to extend existing LTL-
based tools to LTL+pp, as illustrated in Figure 2. A given LTL+pp specification
is first separated into an LTL and a ppLTL part by replacing each pure-past
subformula with a fresh variable. Each such subformula and its corresponding
monitor variable are then translated into a temporal tester by ppLTLTT. The
resulting temporal tester is combined with the LTL specification in a way that
is dependent on the target tool, to which the result is then passed on. By using
ppLTLTT in this way, it is possible to extend existing tools that interact with
LTL specifications to support a larger fragment of pLTL, namely LTL+pp, in a
straightforward manner.

As a proof of concept, we implemented this toolchain for three existing tools:
Slugs, Strix, and Spot’s command-line tool LTL2TGBA, which we describe below.
These are (if not the best then among the best) state-of-the-art tools for differ-
ent usage of LTL: Slugs handles GR(1) synthesis, Strix handles general LTL
synthesis, and Spot converts LTL to automata and implements many automata
transformations. We begin by explaining the encoding of the characteristic LTL
formula of a given temporal tester.

4.1 Encoding Temporal Testers in LTL

Let Tz(φ) = (S, s0, δ) be a temporal tester generated for the ppLTL formula φ,
with monitor variable z /∈ Var(φ) and alphabet AP = Var(φ) ∪ {z}. For every
state s, let β(s) denote its encoding as a Boolean formula3. We encode Tz(φ) as

3 The auxiliary tools described in Section 4 default to a binary encoding, but users
can opt for a one-hot encoding instead.

8 Azzopardi et al.

the following LTL formula:

β(s0) ∧
∧
s∈S

∧
v∈2AP

G

(
β(s) ∧

∧
p∈v∩Var(φ)

p ∧
∧

q∈Var(φ)\v

¬q ⇒ JzK ∧X (β(δ(s, v)))

)
(2)

where JzK = z if z ∈ v and JzK = ¬z otherwise

Note that we here treat δ as a function, to simplify the presentation.
In practice, instead of generating complete temporal testers, we do not gen-

erate and encode transitions in which the truth value of the monitor variable
z does not match the current truth value of the formula φ, which is entirely
determined by the valuation v ∩ Var(φ) together with the current state.

Consider the temporal tester in Figure 1. It consists of two states s0 and
s1 (0 and 1 in the figure). Using a binary encoding, these are represented by a
single propositional variable s. With the state encoding β(s0) = ¬s, β(s1) = s,
the tester is encoded as,

¬s ∧G(¬s ∧ p⇒ ¬z ∧X s) ∧G(¬s ∧ ¬p⇒ ¬z ∧X¬s)
∧G(s ∧ p⇒ z ∧X s) ∧G(s ∧ ¬p⇒ z ∧X¬s).

4.2 Adding Past to Slugs: pSlugs

Slugs [7] is a tool for GR(1) synthesis [16]. It requires input GR(1) specifications
written in the slugsin format, using prefix notation. A more syntactically ex-
pressive structured format is also available; specifications written in this format
must be converted into slugsin before being passed to Slugs.

Given a slugsin specification, pSlugs converts the pure-past subformulae
into temporal testers as described at the start of Section 4, and encodes each into
the specification in the manner described in Section 4.1. To encode the temporal
tester in slugsin, we allocate the required number of Boolean variables to encode
the states (in binary or unary as explained). These new variables are added as
output variables, while the initialization and transition invariants mentioned in
Section 4.1 are added to the system’s initialization and transition invariants,
respectively. As Slugs treats specifications as well-separated [11], there is no
problem with the controller breaking safety.

4.3 Adding Past to Strix: pStrix

Strix [12,14] is a reactive synthesis tool for full LTL. It takes as input an LTL
formula and a designation of input and output variables. The corresponding
wrapper tool pStrix is broadly identical to pSlugs in function and interface, but
the temporal testers generated from its input are encoded directly as conjuncts
in the form of Equation 2. To avoid issues with well-separation of the resulting
specification, the final format of the formula given to Strix is the conjunction
of the formulae relating to the newly allocated output variables with the LTL
formula resulting from the removal of pure-past. That is, if φ is an LTL+pp
formula with non-overlapping pure-past subformulae ψ1, . . . , ψn, then the final
specification for Strix is φ[z1/ψ1, ..., zn/ψn] ∧

∧
i∈[1..n] Tzi(ψi).

ppLTLTT: Temporal testing for pure-past linear temporal logic formulae 9

4.4 Adding Past to LTL2TGBA: pLTL2TGBA

LTL2TGBA [5] is a component of Spot [6]. It is a command-line tool that trans-
lates LTL formulae into various kinds of automata. Although the wrapper tool
pLTL2TGBA follows the same initial steps of formula separation and conversion
into temporal testers as pSlugs and pStrix, it combines the results differently.
While pSlugs and pStrix syntactically manipulate the input, pLTL2TGBA works
directly with the automata by making use of autfilt (another Spot command-
line tool). Once the input has been separated, the LTL part is translated by
LTL2TGBA into the desired automaton type. This LTL-automaton is then com-
posed with the temporal testers by taking their product using autfilt. Finally,
monitor variables become redundant and we instruct autfilt to remove them.

To exemplify the process, let φ be the pLTL formula presented in the intro-
duction (1). The pure-past subformula will be replaced with a fresh variable z
by pLTL2TGBA, resulting in the two formulae,

φf = G (z ⇔ end)

φp = z ⇔ O err1 ∧O err2 ∧ ỸH¬end.

The formula φf is translated into an automaton A(φf) by LTL2TGBA, while φp is
translated into a temporal tester Tz(φp) by ppLTLTT. The two are then combined
by autfilt to obtain an automaton whose language is exactly the models of φf ,

G (z ⇔ end) ∧G (z ⇔ O err1 ∧O err2 ∧ ỸH¬end),

which is clearly equivalent to φ.

5 Experimental Evaluation

All experiments in this section were performed on a Dell Latitude 5420, with
an Intel Core i7-1185G7 clocked at 3GHz, and 32GB of DDR4 RAM clocked at
3200MHz, running 64-bit Ubuntu 22.04.1 LTS. For comparisons with other tools
we use the latest versions at time of writing. For Goal we use the version dated
2020-05-06, for Strix v.21.0.0, for Spot v.2.11.5, and for Slugs we use the code
in commit dc2b1e0 from [2].

For pStrix and pSlugs we use arbiter specifications as test cases, a com-
monly used example for synthesis. An arbiter is conceived of as a controller
granting access to resources as they are requested by clients. For n clients, there
are request variables r1, r2, . . . , rn and grant variables g1, g2, . . . , gn. The require-
ments of the controller are that a) only one grant is given at a time, b) it is
strongly fair, and c) it will not grant access to a resource if there is no open
request for it. We can express these conditions as follows:∧

i ̸=j

G(¬gi ∨ ¬gj) ∧
∧
i

(GFri ⇒ GFgi) ∧
∧
i

G(gi ⇒ Y(¬gi S ri)).

10 Azzopardi et al.

No. of Clients # of Added Variables Synthesis (s) No. of States
Arbiter with Strong Fairness, pStrix

1 2 0.03s 2
2 4 0.04s 8
3 6 0.6s 48
4 8 1.04s 384
5 10 16.37s 3840
6 12 OOM N/A

Arbiter, pSlugs
1 4 0.02s 6
2 8 0.03s 72
3 12 0.10s 552
4 16 1.46s 3904
5 20 34.30s 26720
6 24 714.43s 180096

Table 1: Results of synthesizing arbiters with pStrix and pSlugs.

Arbiter with Strong Fairness, pLTL2TGBA and Goal timings
No. of Clients pLTL2TGBA ltl2aut ltl2aut+ couvreur ltl2buchi modella

1 0.058s 0.646s 0.587s 0.622s 0.629s 0.651s
2 0.071s 5.108s 2.956s 9.864s 5.690s 11.779s
3 15.143s TO TO TO TO TO

Table 2: Timings of translating arbiters to NBA with pLTL2TGBA and different
algorithms of Goal.

The multi-variable strong fairness condition cannot be expressed in GR(1),
however. In pSlugs, we replace it with GF(¬ri S̃ gi), which is equivalent to the
requirement G(ri ⇒ Fgi). That is, every request should eventually be followed
by a grant. It is well known how to encode future-time formulae of the latter
form in GR(1) by adding an additional variable [4]. In our case, however, we use
the LTL+pp equivalent, which is automatically handled by ppLTLTT:∧

i ̸=j

G(¬gi ∨ ¬gj) ∧
∧
i

GF(ri S̃ gi) ∧
∧
i

G(gi ⇒ Y(¬gi S ri)).

Table 1 shows the result of synthesizing arbiters with a varying number of
clients using pStrix and pSlugs. It shows how many variables were added to
each specification, the time it took to synthesize the translated specification,
and the number of controller states. OOM indicates that the program ran out
of memory. For general reactive synthesis with pStrix (or Strix) OOM is to be
expected with larger formulae, given the 2EXPTIME-complete complexity of
reactive synthesis.

As Goal is the only tool that we are aware of able to translate pLTL to Büchi
automata, we compare the performance of pLTL2TGBA to Goal in translating

ppLTLTT: Temporal testing for pure-past linear temporal logic formulae 11

arbiters to nondeterministic Büchi automata, using the same specifications as
for pStrix. Because Goal offers a choice of several translation algorithms, we
only include the five most performant. We set a timeout of ten minutes; TO
indicates that the process did not finish within this time limit. The results are
shown in Table 2.

6 Conclusion

We have presented ppLTLTT, a tool for translating pure-past linear temporal
logic formulae into temporal testers in the form of automata. We have inte-
grated ppLTLTT with three existing LTL-based tools, namely Slugs, Strix and
Spot’s command-line tool LTL2TGBA, with the aim, among other things, of mak-
ing controller synthesis more scalable. As future work we intend to optimize the
encoding of temporal testers in LTL, and add features such as allowing the user
to have fine grained control over how pure-past subformulae are abstracted.

12 Azzopardi et al.

References

1. Lamaconv—logics and automata converter library. https://www.isp.uni-luebeck.
de/lamaconv, institute for Software Engineering and Programming Languages,
University of Lübeck. Accessed on: 14th October 2022

2. Slugs. https://github.com/VerifiableRobotics/slugs, verifiable Robotics Research
Group, Cornell University. Accessed on: 14th October 2022

3. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi Omega-Automata Format. In: CAV’15. pp.
479–486. Springer (2015)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

5. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal
on Critical Computer-Based Systems 5(1/2), 31–54 (Mar 2014)

6. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: What’s new? In: CAV’22. LNCS, vol. 13372, pp. 174–187.
Springer (2022)

7. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) Synthesis. In: CAV’16. pp. 333–
339. Springer (2016)

8. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: Spear v2.0: Formalized past ltl specification and analysis of requirements. In:
NASA Formal Methods. pp. 420–426. Springer (2017)

9. Grekula, O.: SeqLTL and ωLTL — Tight witnesses for composing LTL formulas.
Master’s thesis, Chalmers University of Technology and University of Gothenburg,
Gothenburg, Sweden (2023)

10. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.: Cap-
ture, analyze, diagnose: Realizability checking of requirements in fret. In: CAV’22.
pp. 490–504. Springer (2022)

11. Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: HVC’10.
LNCS, vol. 6504, pp. 161–181. Springer (2010)

12. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3–36 (2020)

13. Markey, N.: Temporal Logic with Past is Exponentially More Succinct. Bulletin-
European Association for Theoretical Computer Science 79, 122–128 (2003)

14. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: CAV’18. LNCS, vol. 10981, pp. 578–586. Springer (2018)

15. Piterman, N., Pnueli, A.: Temporal Logic and Fair Discrete Systems, pp. 27–73.
Springer (2018)

16. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: VM-
CAI’06. pp. 364–380. Springer (2006)

17. Tsai, M.H., Tsay, Y.K., Hwang, Y.S.: Goal for games, omega-automata, and logics.
In: CAV’13. pp. 883–889. Springer (2013)

18. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C.: Goal: A graphical tool
for manipulating büchi automata and temporal formulae. In: Grumberg, O., Huth,
M. (eds.) TACAS’07. pp. 466–471. Springer (2007)

https://www.isp.uni-luebeck.de/lamaconv
https://www.isp.uni-luebeck.de/lamaconv
https://github.com/VerifiableRobotics/slugs

	ppLTLTT: Temporal testing for pure-past linear temporal logic formulae

