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Abstract

In the framework of Arakelov geometry one can define the height of a
polarized arithmetic variety equipped with an hermitian metric over its
complexification. When the arithmetic variety is Fano, the complex-
ification is K-semistable and the metrics are normalized in a natural
way, we find in this thesis a universal upper bound on the height in a
number of cases. For example for the canonical integral model of toric
varieties of low dimension (in paper 1) and for general diagonal hyper-
surfaces (in paper 2). The bound is sharp with equality for the pro-
jective space over the integers equipped with a Fubini-Study metric.
These results provide positive cases of a conjectural general bound that
we introduce, which can be seen as an arithmetic analog of Fujita’s
sharp upper bound on the anti-canonical degree of an n-dimensional
K-semistable Fano variety in [11]. An extension of the toric result to
arbitrary dimension hinges on a conjectural sharp bound for the sec-
ond largest anti-canonical degree of a toric K-semistable Fano variety
in a given dimension. A version of the conjecture for log-Fano pairs
is also introduced (in paper 2), which is settled in low dimensions for
toric log-pairs and for simple normal crossings hyperplane divisors in
projective space. Along the way we define a canonical height of a
K-semistable arithmetic (log) Fano variety, making a connection with
positively curved (log) Kähler-Einstein metrics.

Keywords: Arakelov geometry, Kähler-Einstein metrics, toric geom-
etry, K-stability, Fano varieties, height bounds
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Part 1

Introduction and summary

1.1 Elementary introduction

This thesis is about an invariant of certain arithmetic varieties that we
will refer to as the canonical height. From another perspective, it is
about universal height bounds on these arithmetic varieties. Arguably
the easiest example of height is that of the naive height of a rational
number, given by

h
(a
b

)
= logmax(a, b) (1.1)

where a and b are required to be relatively prime. The height can
be thought of as the arithmetic complexity of the rational number a

b
.

Indeed, when storing the rational number a/b in computer memory,
h(a/b) is approximately the number of bits needed.

Note that one could also first define the very naive height by just
letting h(a/b) = logmax(a, b), regardless of the relative primeness of
a or b. This is no longer a well defined notion for rational numbers,
rather for their actual symbolic representation as a over b. Then we
could define a canonical height by considering the infimum over such
representations and this would only depend on the actual rational
number. This will in fact coincide with the naive height, and indeed
representing a rational number by a/b for relatively prime a and b is

1



2 Part 1. Introduction and summary

one canonical representation of it. This is not, in spirit, unlike how
we will define a canonical height of an arithmetic Fano variety.

A more algebraic way of presenting the above is to consider instead of
the rational number the linear equation that defines it. Namely, the
rational number a/b is a solution to the equation a = bx. Since a and
b are only defined up to multiplying both of them with an integer, it
would be nice if the same was true for x. One can homogenize the
equation and consider the equation of two variables ay = bx. Any
integer solution x, y still represents the rational number a/b but now
there are many solutions, since we can multiply an old solution x, y

by an integer and get a new one. So the symbolic representation of
the rational number a/b just means an integer solution to ay = bx.

Remark. An elementary example where the ideas of heights appear,
can be found in a proof of the irrationality of

√
2. Lets work with

the definition of the canonical height of a symbolic representation of a
rational number. Assume, in pursuit of contradiction, that

√
2 = a/b (1.2)

for some integers a and b, so that
√
2 is rational. Then the canonical

height of
√
2 is at most logmax(a, b). It is a small exercise to realize

that by squaring both sides of (1.2), a and b must be divisible by two.
Thus the canonical height of

√
2 is at most log(max(a, b)/2). But

now we can repeat the above argument again and again, and infer
eventually that the canonical height of

√
2 must be −∞, which can be

shown is not the case for a rational number (by arguing via a relative
primeness).

Looping back to the discussion on representing rational numbers by
equations, we have shown above that the homogeneous equation 2b2 =

a2 does not have an integer solution.

The concept of height has been used for various problems in Dio-
phantine geometry. To show the flavour of this, consider an algebraic
equation of two variables, such as

x2 = y3 + 17. (1.3)
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If we are interested in rational solutions, a simple exercise shows that
we can just as well consider integral solutions to the homogenization

zx2 − y3 − 17z3 = 0 (1.4)

in projective three-space. In modern language, these solutions are
called rational points. The sought after results in Diophantine ge-
ometry are to understand the properties of the set of solutions. For
example, if there are a finite or infinite number of solutions, or if there
are any solutions at all. In any case, it has been useful to introduce
a size of a solution, the height. We can introduce a notion of height
of any solution (a, b, c) (where a, b, c are chosen relatively prime) by
letting

h([a, b, c]) = logmax(a, b, c), (1.5)

and consider the set of solutions of height bounded by B. This set
will always be finite. Thus a statement about the finiteness of the
set of solutions is equivalent to an upper bound on the height of the
solutions. In the case that there are infinitely many solutions, one
can ask refined questions about how the number of solutions of height
smaller than some number B grows as B becomes large.

Conjecturally these basic properties of the set of solutions should be
dictated by the geometry of the underlying analytic space consisting
of all solutions in the complex numbers. For algebraic curves, both
of these notions are in addition tightly connected to the degree of the
defining polynomial. This is particularly well understood in the case
of non-singular algebraic curves, like the example (1.4).

Firstly, for the arithmetic of algebraic curves, lets restrict for simplicity
to the case that there is at least one rational point (for more on this,
see the remark of section 1.6).

• Curves of degree one are in a very strong sense equivalent to
the projective line (the two-dimensional sphere). Curves of de-
gree two were understood by Euclid and can be related to the
projective line again by stereographic projection, this operation
preserves both the geometry and the study of rational points.
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The projective line over Z has infinitely many rational points
given by primitive pairs of integers (a, b).

• Curves of degree three can have both finitely and infinitely many
rational points, depending on the exact curve. In any case, it is a
finitely generated abelian group. This is the content of Mordell’s
theorem [22].

• Higher degree curves has finitely many rational points. This is
the content of Falting’s theorem [9].

Secondly, the degree is intertwined with the geometry of the space of
complex solutions, namely,

• if the degree is either one or two, the space is a sphere and the
geometry is positively curved in the sense that there exists a
Riemannian metric of constant positive curvature.

• If the degree is precisely three, the space is a torus (the surface
of a donut) and the geometry is flat in the sense that there exists
a flat Riemannian metric.

• If the degree is larger than three, the space is negatively curved
in the sense that there exists a Riemannian metric of constant
negative curvature. The topology becomes increasingly more
complicated with increasing degree in the sense that the space
has more and more ’holes’ (here, the sphere has zero ’holes’ while
the torus has one).

Going back to the arithmetics, the theorems of Mordell and Falting
both uses crucially some notion of height. In this thesis we will be
concerned with the case when the underlying analytic space is of any
dimension but positively curved in a certain sense, more precisely it
is Fano. Conjecturally according to part of the Manin conjecture [10],
the rational points are infinitely many in this case (if there are any at
all). Here heights enters when one tries to understand how the number
of solutions grows according to their height. How the questions in this
thesis enters more precisely, was described recently in [3].
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In addition to the height of points, which can be seen as zero-dimensional
varieties, it is useful to define the height of higher dimensional vari-
eties. Naively, for hypersurfaces, the height of a variety could be de-
fined as the height of the coefficient vector of the equation that defines
it. This fits nicely with the naive height of points of P1 which coincides
with the height in this sense of the linear equation that defines them.

One central point about heights whether of points or entire varieties, is
that there are many more sensible ways to define them than the naive
height. For some applications, not much would change by defining for
example

h([a : b : c]) = log(|a|2 + |b2|+ |c2|)1/2, (1.6)

since this new definition only differs up to a uniformly bounded term
from the old one. More generally, we could use any norm on, in this
case, R3. For higher-dimensional varieties, if we define the height as
the naive height of the coefficient vector, then we could still realize
the underlying abstract variety in different ways as a subscheme of
projective space.

In the generality of Arakelov theory, one can use any positively curved
hermitian metric on the complexification of an arithmetic line bundle
to define a notion of height in an intrinsic way. One benefit of this
framework is that it will be possible to find a type of canonical height
on an arithmetic Fano variety in a way that would not be possible
otherwise (see section 1.9).

As explained, the notion of height depends on a choice of metric.
The idea put forth in this thesis is to define a canonical height by
maximizing the height over all metrics, and in the meantime get a
universal bound for the height with respect to any metric. It turns
out that this invariant will only be finite under a subtle algebraic
condition on the underlying complex variety called K-semistability.
Additionally, under the slightly stronger condition of K-polystability,
there exists a maximizing metric which is a Kähler-Einstein metric.
A metric is Einstein if it is a solution of the vacuum Einstein field
equations from the theory of General Relativity. The potential role
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played by Einstein metrics in Arakelov geometry was perhaps first
pointed out by Yuri Manin in his New dimensions in geometry [21]
from -85. This thesis pursues that largely unexplored direction.

Organization

In sections 1.1 and 1.2 we introduce the analytic theory of complex
projective varieties upon which much of the sequel is built. In section
1.3 we introduce the algebro-geometric counterpart of height, degree.
In section 1.4 we briefly introduce arithmetic varieties. In section 1.5
we are finally ready to introduce the theory underlying the thesis,
Arakelov theory, built on both arithmetic and complex geometry. In
section 1.7 we introduce toric varieties, the class of varieties that large
parts of the papers studies. In section 1.8 we summarize the contents
of paper 1 about universal height bounds on arithmetic toric Fano va-
rieties. In section 1.9 we briefly describe logarithmic pairs. In section
1.10 we summarize paper 2, about a logarithmic generalization of pa-
per 1, and some applications to height bounds on arithmetic diagonal
Fano hypersurfaces.
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1.2 Complex projective varieties

Later on we will be concerned with varieties over Z, which are ob-
jects of a quite algebraic nature. However, one of the main points
of Arakelov geometry, the framework on which much of the thesis
is based, is that it is useful when studying algebraic equations with
coefficients in Z to also consider the complex space cut-out by the
polynomials. This brings us to complex projective varieties.

A complex projective variety is the zero set of one or more homoge-
neous polynomials in complex projective space. If the zero set of the
Jacobian of this polynomial never intersects the variety itself, it is
non-singular and we have a manifold. Many of the constructions in
this thesis are easier to understand in the non-singular setting, so this
is what we will focus on. They can often be extended to the singular
setting, with some restrictions on the severity of the singularities.

One important example is complex projective space, Pn, itself, given
by the space of complex lines through the origin in Cn+1. In the intro-
duction we saw another, given by the vanishing of the single homoge-
neous polynomial (1.4), a hypersurface in embedded in P3. Another
important class of examples in this thesis is that of toric varieties.
Due to their highly symmetric nature they have their whole own the-
ory, described in section 1.8. For now, we can think of them as the
projective varieties defined by the vanishing of one or more binomials.

1.3 Kähler geometry

Complex projective manifolds are special among differentiable mani-
folds and have many remarkable properties. For one, they are complex
manifolds, meaning that after identifying their charts with subsets of
Cn the transitions maps can be chosen to be holomorphic. This al-
lows to define what it means for a function, differential form or general
tensor field to be holomorphic. One can also introduce a ∂̄-operator,
whose kernel are precisely the holomorphic functions.
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Furthermore, even among complex manifolds projective manifolds are
special. Partly because they are Kähler, meaning that they admit
Kähler metrics. A Kähler metric is a Riemannian metric on a com-
plex manifold such that there exists holomorphic coordinates where
the metric looks like the standard metric on Cn to order one (not just
to order zero which one can always achieve). This turns out to be
an extremely useful condition and restricts the geometry and topol-
ogy of Kähler manifolds, and thus also of complex projective varieties,
in a variety of ways. Another way to define Kähler manifolds, is to
say they are Riemannian, symplectic and complex at the same time,
together with a relation relating the three structures. In terms of ten-
sor, we have by definition a Riemannian metric g, and symplectic form
ω, and a complex structure J , with the compatibility condition that
g(J ·, ·) = ω. A natural setting in complex algebraic geometry is to
fix the complex structure, and then to consider different Kähler struc-
tures, by varying ω. As long as one varies ω within one cohomology
class [ω0], it turns out that they are all of the form

ω = ∂∂̄u+ ω0,

a statement referred to as the ∂∂̄-lemma. This is convenient as it turns
equations for defining special Kähler metrics into equations for a real
valued function u.

Line bundles

On a compact Kähler manifold there are no non-constant holomorphic
functions. Instead, one has line bundles, whose sections are locally
holomorphic functions. For example, on projective space, on example
is the line bundle given at a point by the line naturally defined by
it. It is usually denoted by O(−1). Duals and tensor products in of
this line bundle are written in additive notation O(k) for k ∈ Z. The
fact that the space of sections, denoted H0(X,O(k)), are given by the
degree k homogeneous polynomials showcases the strong connection
to algebra. On any complex projective manifold, a realization of it
as a complex submanifold of projective space defines multiple line
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bundles on it by pullback of the O(k)’s. A more intrinsic approach is to
consider the variety in a more abstract language, equipped with a line
bundle whose space of sections embeds the variety in projective space,
and identifies the sections with homogeneous polynomials. These line
bundles are called ample, geometrically defined by them admitting
positively curved metrics.

Metrics on line bundles

A metric on a line bundle L is a pointwise norm || · || on each fiber
such that ||s||2 is a smooth function for any holomorphic section s.
Given a local trivialization e of the line bundle, i.e. locally s = fe for
a holomorphic function f , we can write

||s||2 = |f |2 exp(−ϕ) (1.7)

for a function ϕ. Even though ϕ is only defined locally, it is useful
to write ϕ for the metric, and then we mean a collection of locally
defined functions, which glues together to a globally defined metric.
The (Chern) curvature of the metric is given by i∂∂̄ϕ, and is a globally
defined, closed, 2−form. The class of the curvature form is called
the first Chern class c1(L) of the line bundle L. An alternative to
representing the metric with a locally defined function ϕ, is to choose
some reference metric ϕ0, then u+ ϕ0 is a new metric for any smooth
function u. The ∂∂̄−lemma from the section on Kähler geometry now
implies that any Kähler metric ω in the first Chern class of a line
bundle is the curvature form of some metric on the line bundle. I.e.

ω = i∂∂̄ϕ. (1.8)

This metric is by definition positively curved. Up to metric scaling
this is a one-to-one correspondence.

Looping back to the introductory discussion, on n−dimensional pro-
jective space, any norm on Cn+1 defines a positively curved metric
on O(1). The Euclidean norm gives the Fubini-Study metric. Addi-
tionally, for a line bundle on a general projective manifold, if one can
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embed it with the space of sections into projective space, one obtains a
positively curved metric by pullback of the Fubini-Study metric. More
precisely the embedding identifies the line bundle with the pullback of
some O(k). It should be noted that not every positively curved metric
on a line bundle is of this sort. However, the existence of a positively
curved metric implies that the line bundle is ample (by the Kodaira
embedding theorem [15]), so that the line bundle can be identified
with the pullback of some O(k) on projective space.

Fano varieties

On a projective manifold X there is a special line bundle, the canonical
line bundle, KX . The sections of it are locally of the form f(z)dz1 ∧
... ∧ dzn for f a holomorphic function and are thus sometimes called
holomorphic top-forms. One can also define the dual of this line bun-
dle, dubbed the anti-canonical line bundle, or −KX . The positivity
properties of KX and −KX play a major role for the geometry, and
mostly conjecturally, the arithmetic of the underlying arithmetic va-
riety (when there is one). The ones with KX ample are in a certain
sense negatively curved, while ones with −KX ample are positively
curved. The questions in this thesis concern the case when −KX is
positive. These projective manifolds are also called Fano manifolds,
or Fano varieties when possibly singular.

For metrics on −KX , the locally defined volume form

exp(−ϕ)dz1 ∧ dz̄1 · · · ∧ dzn ∧ dz̄n

glues together perfectly to become a global volume form and will be
denoted exp(−ϕ).

1.4 Degree and volume

If we have a polynomial, an obvious affine invariant is the degree. Al-
gebraically, the degree is one possible measure of the complexity of
the polynomial. Furthermore, recall from the introduction that the
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degree is also a measure on the geometric complexity of the under-
lying analytic space. For a polynomial in one complex variable, the
degree can be recovered geometrically by the number of zeros. For a
hypersurface X in complex projective space Pn+1, there is a similar
procedure where the degree of the defining polynomial can be recov-
ered by intersecting the variety with n hyperplanes, chosen generally
so that the intersections are transverse. This notion turns out to be
homological, i.e. only depending on an appropriate topological class
of the hyperplanes and the hypersurface. For the intersection number,
computing the degree in this case, we write

O(1)n ·X (1.9)

where O(1) is the line bundle whose zero sets of its sections are the
hyperplanes. Since it it homological, one can now compute this in
a variety of ways. Either in the above intersection theoretic way, or
cohomologically as an actual integral of a representative differential
form on X. Since any line bundle on Pn+1 is of the form O(k) for some
k, X sitting inside Pn+1 is cohomologically precisely O(d). Somewhere
along the line, it became usual to call the number Ln of a polarized
variety (X,L) the degree of L, comparing it to the elementary degree
of a hypersurface. However, note that these notions are distinct. The
first notion is relative to an embedding, while the second is intrinsic.
From now on, lets focus on the latter notion. We can also compute
the degree via differential forms on X. In particular, given any Kähler
metric ω in the first Chern class c1(L) of L, we have

Ln =

∫

X

ωn. (1.10)

Thus the algebraic invariant Ln/n! of the polarized manifold (X,L)

also coincides with the symplectic, and also the Riemannian volume
of the Kähler manifold X, equipped with the Kähler metric ω. For an
ample line bundle L, the number Ln/n! is called the volume of L.

There is yet another way of calculating the volume of an ample line
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bundle, called the Hilbert-Samuel formula, namely through the asymp-
totics of the dimension of the space of holomorphic sections H0(X, kL)

of higher and higher tensor powers kL (written here additively) of the
line bundle L. More precisely, by the Riemann-Roch theorem,

Vol(L) = lim
k→∞

1

n!kn
dimH0(X, kL). (1.11)

This result may seem like the most obscure way of computing the
degree or volume at the moment but in the arithmetic setting this is
the closest to how we will define the arithmetic volume or degree. This
arithmetic version of the degree will be the notion of height that we
work with.

Fujita’s universal sharp bound

In general, there cannot be any universal upper bound on the degree
of any line bundle over an n-dimensional projective variety without
further restrictions. For example, just take the repeated tensor power
of an ample line bundle. Thus the degree in the sense of Ln does not
really measure the complexity of the underlying variety X, rather of
the of the pair (X,L).

In the Fano case, there is a canonical choice of ample line bundle,
−KX . One can ask if there is a universal bound on the degree of the
anti-canonical line bundle for varieties of a fixed dimension n. If singu-
larities are allowed, there are no lower bounds other than zero. There
is however always an upper bound. For some time it was believed
in addition that projective space maximized the anti-canonical degree
among all Fano varieties of a given dimension. There are however
toric counterexamples already in dimension 4. What was eventually
established, first in [11] in the non-singular case, and then extended in
[18], is that projective space is the maximizer as long as one restrict
to varieties that satisfy a certain condition called K-semistability (see
section 5.1).



§1.5. Kähler-Einstein metrics 13

Theorem 1 (Fujita, Liu). Let X be a K-semistable Fano variety of
dimension n. Then

(−KX)
n ≤ (−KPn)n (1.12)

with equality if and only if X = Pn

So put differently, one can differentiate between any K-semistable Fano
variety and Pn just by looking at the degree of the anti-canonical line
bundle. The same is true for a number of other invariants such as
Seshadri constants, Fano index and alpha-invariants, see [20], [14] and
[24], respectively.

1.5 Kähler-Einstein metrics

A Kähler-Einstein metric is a Kähler metric (see section 1.3), which
is also a solution to the Einstein field equations, meaning that the
Ricci curvature is proportional to the metric. This condition restricts
the projective manifold to one of three cases depending on the sign of
the curvature. The case of positive curvatures corresponds exactly to
Fano manifolds. In terms of the symplectic form ω defining the Kähler
metric, the Kähler-Einstein equation in this case reads

Ric(ω) = ω,

after possible rescaling the metric.

As noted earlier, the height that we will consider will depend on a
choice of metric on a line bundle, specifically, on the anti-canonical line
bundle −KX . We will argue that a natural metric to use, when it is
available, is a Kähler-Einstein metric. Regardless, they will play a role
in finding metric-universal bounds on the height. Anyhow, we define
them and briefly mention the relevant theory. By a Kähler-Einstein
metric on −KX we mean a metric whose curvature form defines the
sympletic form of a Kähler metric which is Einstein. In fact, any
Einstein metric which is also Kähler on a Fano manifold essentially
arises as the curvature form of a metric on −KX . The equation that
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should be satisfies with a metric ϕ on −KX for the curvature form of
ϕ to be Einstein is the following complex Monge-Ampère equation.

(i∂∂̄ϕ)n = C exp(−ϕ(z)) (1.13)

for an arbitrary constant C (related to scaling the metric). The oper-
ator in the left hand side is usually called the complex Monge-Ampère
operator, a fully non-linear, second order differential operator which
locally takes the form

det

(
∂2

∂zi∂z̄j
ϕ

)

i,j

.

If equation (1.13) holds then the curvature form ω = i∂∂̄ϕ will be
Einstein due to the expression for the Ricci curvature

Ric(ω) = −i∂∂̄ log(ωn/dz ∧ dz̄) (1.14)

on Kähler manifolds

Variational theory

At this point, we have not explained why Kähler-Einstein metrics
might be natural to use to define canonical heights. This will become
clear in Section 7, where we will see that they appear as certain height-
maximizing metrics, after a normalization is introduced. Understand-
ing this turns out to be closely related to the variational theory of
Kähler-Einstein metrics.

The starting point of the variational theory is the complex Monge-
Ampère operator admits a functional primitive, i.e. there exists a
functional on the space of positively curved metrics on −KX , whose
functional derivative is the complex Monge-Ampère operator. This
functional is the Monge-Ampère energy, given by
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Eϕ0(ϕ) :=
1

n+ 1

n∑

j=0

∫
(ϕ− ϕ0)(dd

cϕ)j ∧ (ddcϕ0)
n−j. (1.15)

Here ϕ0 is another metric on −KX , which is needed to define the
functional but for the sake of the variational theory it is completely
arbitrary which one to use. The right hand side of the Kähler-Einstein
equation also admits a functional primitive and one can define the Ding
functional [8],

Dϕ0(ϕ) := Eϕ0 + log

∫
e−ϕ, (1.16)

whose Euler-Lagrange equation is the Kähler-Einstein equation (1.13).
It turns out that this functional is concave in an appropriate sense,
and through a vast body of work, the existence of Kähler-Einstein
metrics on Fano varieties is reduced to a coercivity notion of the Ding
functional. The coercivity condition is not always satisfied, and so
Kähler-Einstein metrics does not exist on all Fano varieties. This
is in contrast to the cases when KX is positive or trivial, and the
Ricci curvature is negative or zero, respectively. In these cases Kähler-
Einstein metric always exists.

Remarkably, the coercivity of the Ding functional can be charac-
terized by an algebraic condition on the underlying projective vari-
ety. Although it should be noted that this condition can be diffi-
cult to check in practice. This algebraic notion is called K-stability.
A slightly weaker notion, K-polystability, precisely characterizes ex-
istence of Kähler-Einstein metrics, allowing for continuous automor-
phisms that leave the Ding functional non-coercive in certain direc-
tions. This massive achievement is referred to as the, now settled,
Yau-Tian-Donaldsson conjecture [6][23]. The later proof in [4][5] was
based on the variational method and it was eventually extended to the
singular setting in [17][19]. An even weaker stability notion is called
K-semistability, and it precisely characterizes the case when the Ding
functional is bounded from above, see [16] and paper 1. Note that
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even in the K-semistable case, the supremum of the Ding functional
itself is not a very interesting invariant since it depends on the choice
of reference metric ϕ0.

1.6 Arithmetic varieties

An arithmetic variety is a certain scheme over Z with some addi-
tional properties. Every arithmetic variety (here assumed projective)
can always be realized as "something" cut-out by a tuple of homo-
geneous polynomials with coefficients in Z. So far, when discussing
varieties over C we have not made distinction between the abstract
variety as an algebraic object and the associated analytic space. For
the case of arithmetic varieties this is too sloppy. For example, the
arithmetic varieties X2 + Y 2 = Z2 and X2 + Y 2 = −Z2 clearly are
quite different from an arithmetic perspective. The first equation ad-
mits infinitely many integral points, called the Pythagorean triples,
given by X = a2 − b2, Y = 2ab, Z = a2 + b2 for arbitrary choices of
integers a and b. The second equation does not admit a single inte-
gral solution, indeed, it does not even admit a real solution. But the
analytic spaces they give rise to are exactly the same. A biholomor-
phism between them is given by sending Z 7→ iZ. The correct notion
which captures the arithmetic features of "things" cut-out by homo-
geneous polynomials with integer coefficients yet is flexible enough to
not differentiate between realizations that really give rise to the same
algebraic object is that of a projective scheme over Z.

Remark. Note that the above example seems to be a counterexample
to the statement that arithmetic Fano varieties admits many rational
points. And it is, if one is not cautious and reformulates the con-
jecture to be that there are many rational points if there are any at
all. Alternatively, one leaves the world of ordinary arithmetic and lets
Z be exchanged for another number field, in the above examples the
Gaussian integers, Z[i].

Just as for complex algebraic varieties, to an arithmetic variety X we
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will consider arithmetic line bundles L over X , and occasionally arith-
metic sections of L. These notions are easiest understood when X is
a hypersurface of projective space Pn

Z cut-out by an integer coefficient
degree d homogeneous polynomial. This polynomial is a section of
O(d) over X , the lattice of integer coefficient polynomials of degree
d. We get more arithmetic sections of arithmetic line bundles on X
by taking restrictions of integer coefficient homogeneous polynomials.
The space of arithmetic sections of an arithmetic line bundle is always
a lattice.

Lastly, some terminology that needs explanation is that of integral
models. An arithmetic variety X is clearly also a variety over Q. But
to one variety X over Q one can associated several arithmetic varieties.
Then X is called an integral model of X. For example, consider the
quadratic hypersurface X defined by

x2 + y2 = 0.

Consider the map F taking x = a − b and y = a + b. Pulling back
the hypersurface under this map results in the new hypersurface Y
defined by

2a2 + 2b2 = 0.

Since the map is defined over Z this counts as a morphism of arithmetic
varieties. However, note that the inverse of F is given by b = x+y

2
and

a = y−x
2

. Thus X and Y are not equivalent as arithmetic varieties.
However they are equivalent over Q, and we say that X and Y are
different integral models X, the hypersurface defined over Q.

1.7 Heights and Arakelov geometry

Accepting the analogy between heights and degree as different mea-
sures of complexity, one could try to obtain a theory of heights by
some intersection theory on arithmetic varieties. But it turns out
that it is quite difficult to construct a well-behaved intersection the-
ory for schemes over Z. A picture to have in mind is that schemes over
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Z have an extra scheme-theoretical ’dimension’ compared to the di-
mensions related to the accompanying analytic space. Moving in this
dimension is related to looking at the scheme from the perspective
of a larger and larger prime. More precisely, the arithmetic variety
fibers over this dimension and the fiber over a prime is precisely the
arithmetic variety over Zp that one obtains by reducing the coefficients
modulo p. This extra dimension poses some non-compactness (or non-
properness) issues for a well behaved intersection theory, analogous to
how two intersecting lines in the affine plane intersects exactly once,
only if they are not parallel, but always intersect exactly once in the
projective plane. The solution proposed by Arakelov in [1] (and ex-
tended to higher dimensions in [13]) is to compactify the situation by,
loosely speaking, add a (so to say) "prime at infinity". This turns
out to correspond to adding, in an appropriate sense, the correspond-
ing complex analytic space, together with an hermitian metric on an
accompanying line bundle.

With this data one can define a kind of intersection theory of metrized
arithmetic divisors that can be used to define a reasonable theory of
heights, that for zero-dimensional subvarieties, i.e. points, agrees with
the naive height if the correct metric is chosen. The theory is called
an intersection theory because it has many features that resembles
the ordinary algebro-geometric intersection theory. It should be noted
that intersection numbers in this theory can not as clearly be under-
stood as the actual number of elements in some set of intersection
points. But this is also good because we want the intersection theory
to describe heights, which even in the naive setting does not seem to
be related to the number of intersection points of anything.

The height, in the Arakelov sense, is associated with the data con-
sisting of an arithmetic variety X together with an arithmetic line
bundle L, where one in addition has fixed an hermitian metric ϕ on
the complexification L over X, the complexification of X . One de-
fines the height, or arithmetic degree, in parallel with the degree of a
line bundle over a complex variety, by the top arithmetic intersection
number
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(L)n+1
ϕ . (1.17)

The fact that it is an n + 1:th self-intersection is related to the extra
dimension from the Spec(Z)-direction.

Before we properly define the height in general, we showcase a formula
for it for a degree d hypersurface X of projective space. If X is cut-
out by a section s of O(d), then we can restrict O(k) to X to get an
arithmetic line bundle on X and then (up to some numerical constants
that we omit)

(O(k))n+1
ϕ =

1

2
E(ϕ′)ϕ0 +

∫

Pn+1

log ||s||ϕ′(∂∂̄ϕ′)n+1. (1.18)

Here ϕ is a positively curved metric on O(k)|X , and ϕ′ is an arbitrary
positively curved extension of ϕ to O(k). Here the reference metric ϕ0

is the metric on Pn associated to the max-norm in the naive definition
of the height. The required extension ϕ′ always exists, but the result
is independent of choice of the extension.

It is instructive to compare this to the naive height of a hypersurface.
Recall that the naive height in this case would be the logarithm of
the maximum of the coefficients of s, when the coefficients are chosen
relatively prime. From this it follows that if the coefficients are all
distinct, large, prime numbers, then the naive height is large as well.
From the above formula, one can guess that a similar behaviour is true
for the Arakelov height, noting that (∂∂̄ϕ)n+1 is a positive measure.

In general we define the height via an analog of the Hilbert-Samuel
formula (1.11). First, recall the notion of an arithmetic section of an
arithmetic line bundle. The set of arithmetic sections H0(X ,L) sits
inside H0(X,L) as a lattice, i.e. a free Z-module. Now, the analog
of the classical Hilbert-Samuel formula (1.11), is a sort of asymptotic
formula the number of points belonging to the lattice H0(X , kL) inside
the L∞-ball of H0(X, kL). More precisely, according to the arithmetic
Hilbert-Samuel formula (see [13]),
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(L)n+1
ϕ

(n+ 1)!
= lim

k→∞

1

kn+1
log vol{s ∈ H0(X , kL)⊗ R : sup

X
||s||kϕ ≤ 1}

(1.19)

where H0(X , kL)⊗R can be identified with the subspace of real sec-
tions in H0(X, kL). Here the volume should be computed with respect
to a Lebesgue measure normalized such that a fundamental domain
of the lattice H0(X , kL) gets unit volume. This normalization is es-
sentially where the arithmetic model enters.

Importantly, the definition leads to the following formula for the dif-
ference of the heights with respect to two metrics ϕ and ϕ0.

(L)n+1
ϕ − (L)n+1

ϕ0
=

(n+ 1)

2
Eϕ0(ϕ), (1.20)

revealing a connection between heights and Kähler-Einstein metrics,
which we will come back to in section 1.9.

1.8 Toric geometry

Toric varieties is a class of varieties that enjoy a particularly simple
and large group of symmetries that often makes their study consider-
able simpler than the case of a general variety. Many constructions
in algebraic geometry become combinatorial and convex geometric,
while their theory as Kähler manifolds becomes deeply intertwined
with convex analysis.

A projective toric variety X of dimension n admits a faithful action
of the complex torus C∗n := (C \ {0})n, (i.e., the action is as big as
possible). Additionally, there is a dense orbit. In other words, the
entirety of X can be though of as a compactification of C∗n. Given
an ample line bundle L on X, one can choose a basis of H0(X, kL)

which is equivariant with respect to the torus action. Over the dense
subset C∗n, these must be monomials. But not all monomials can
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become holomorphic sections in the compactification, since the space
of sections of a line bundle over a projective variety is always finite-
dimensional. In fact, to each toric variety equipped with an ample
line bundle there is a (non-unique) polytope, called the moment poly-
tope, such that a monomial za11 za22 ...zann is part of H0(X,Lk) if and
only if (a1, ..., an)/k ∈ P . Conversely, given any polytope with ra-
tional vertices, one gets a toric variety by (for a sufficiently large
k ∈ N) considering the closure of the image of the map (C∗)n → PN,
z → [zp1 , zp2 , ..., zpNk ] where we have used the notation zp = zp11 ...z

pNk
Nk

and where p1, ..., pNk
are the lattice (or integer) points of the scaled

polytope kP .

Once this correspondence between toric varieties equipped with ample
line bundles, (X,L), and polytopes, P , is set up, there is a vast and
growing dictionary translating between notions in algebraic and Käh-
ler geometry, to notions in convex geometry and analysis. The degree
of an ample line bundle is given by the volume of the correspond-
ing polytope. Toric Fano varieties equipped with the anti-canonical
line bundle correspond to (duals) of polytopes of a certain type called
Fano polytopes. (S1)n invariant metrics on L with positive curvature
correspond to convex functions u on Rn with a certain growth condi-
tion encoded by P . The Kähler-Einstein equation for (S1)n-invariant
metrics becomes a certain real Monge-Ampère equation, and it turns
out that all Kähler-Einstein metrics on toric Fano varieties has this
symmetry, up to biholomorphisms.

A neat fact about toric varieties is that they are naturally defined
over the integers. This can be seen directly from their occurrence as
closures of images of monomial maps into projective space. A mono-
mial is canonically defined over Z simply because we can choose the
coefficient in front of it to be one. Thus all toric varieties have a
canonical integral model (that we will just refer to as the canonical in-
tegral model). With respect to this model, the height of the canonical
integral model of a toric Fano variety takes the following form
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(−KX )
n+1
u = 2

∫

P

−u∗dp (1.21)

where u∗(p) := supx⟨x, y⟩ − u(x) is the Legendre transform of u.

1.9 Canonical heights and sharp height bo-
unds on toric Fano varieties (Paper 1)

There is a philosophy that virtually any statement in algebraic geome-
try should have a counterpart in Arakelov geometry. Recall the Fujita
theorem 1 about the sharp upper bound on the anticanonical degree
of a K-semistable Fano variety. In the first paper we introduce and in-
vestigate a possible arithmetic or Arakelov version of this, i.e. a sharp
upper bound on the arithmetic anti-canonical degree of an arithmetic
Fano variety. As is evident by now, the notion of arithmetic degree
also depends on a choice of metric on −KX . One immediate problem
with a bound of the type asked of above is that if one scales the met-
ric on −KX , i.e. ϕ 7→ ϕ + c, then the height changes additively as
(−KX )

n+1
ϕ+c = (−KX )

n+1
ϕ + (−KX)

nc. Thus we need to normalize the
metrics somehow. One seemingly natural normalization is to require
that the volume form defined by ϕ, denoted exp(−ϕ) has total volume
1, that is

∫
X
e−ϕ = 1. We call such metrics normalized and one can

wonder whether there is an upper bound on the possible anti-canonical
arithmetic degrees of arithmetic Fano varieties metrized with normal-
ized metrics. The first paper attached to the thesis introduces the
following conjecture regarding the above question.

Conjecture 1. Let X be an arithmetic Fano variety such that X is K-
semistable and ϕ a normalized, continuous, positively curved hermitian
metric on −KX , then

(−KX )
n+1
ϕ ≤ (−KPn

Z
)n+1
ϕFS

(1.22)

where Pn
Z is the projective space over the integers and ϕFS is up to a

biholomorphism the normalized Fubini-Study metric.
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Let us stress that the right hand side above is explicitly known,

(−KPn
Z
)n+1
ϕFS

=
1

2
(n+ 1)n+1((n+ 1)

n∑

k=1

k−1 − n+ log(
πn

n!
)). (1.23)

Let us for clarity also state the conjecture in convex-theoretic language
in the toric case.

Conjecture. Let P be the moment polytope of a toric Fano variety
with barycenter in the origin so that the variety is K-semistable. Let
u be any convex function on Rn with Legendre transformation with
domain P (finite on precisely P ). Then

2

∫

P

u∗(p)dp− 2V (P ) log

(
πn

∫

Rn

exp(−u)

)
≤ (−KPn

Z
)n+1
ϕFS

(1.24)

where V (P ) is the volume of P .

In general, we define the canonical height of an arithmetic Fano variety
to be the supremum of the height of a fixed arithmetic variety with
respect to continuous positively curved normalized metrics on −KX .

That the Fubini-Study metric, which is Kähler-Einstein, appears as
the maximizer of the height on projective space - and thus as a metric
whose height corresponds to the canonical heights - is part of a general
pattern. In fact we show the following series of statements relating
Kähler-Einstein metrics and K-stability with height maximization.

Proposition 1. If the supremum of (−KX )
n+1
ϕ over normalized met-

rics ϕ is attained, it is attained at a Kähler-Einstein metric. Con-
versely if X has a Kähler-Einstein metric, the normalization of it
attains the supremum. The supremum is finite if and only if X is
K-semistable.

The idea is quite simple, given the large existing body of work con-
cerning the variational theory of Kähler-Einstein metrics [4], and relies
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on the fact that taking the supremum of the height over all normal-
ized metrics is the same as taking the supremum over all metrics, if
one adds to the height the term (−KX)

n log
∫
X
exp(−ϕ). In the latter

case, the resulting functional differs from the Ding-functional by just
an additive metric independent term.

Remark. Let us note that the supremum in the definition could be
taken, without changing it, over all embeddings into projective space
and the metrics taken to be pullbacks of Fubini-Study metrics (this
follows from Demailly approximations [7]). In this way, one would
stay closer to the naive theory of heights. One advantage of fully
utilizing the generality of Arakelov theory is that the supremum is a
maximum whenever a Kähler-Einstein metric exists, this would likely
only happen on extremely rare occasions otherwise.

Remark. At least naively, to compute the canonical height, when it is
finite, one needs an explicit Kähler-Einstein metric. But this is almost
never the case. However upper bounds on the canonical height are by
definition also upper bounds for the height in general for normalized
metrics.

The main result of the paper is a resolution of the conjecture for toric
Fano varieties, equipped with their canonical integral model, for low
dimensions, or alternatively, if a conjecture that we dubbed the gap
hypothesis holds for the algebro-geometric degree.

Theorem 2. Conjecture 1 is true for the canonical integral model X
of any toric Fano manifold X as long as the dimension of X is at
most 6. It is also true in any dimension for certain classes of singular
toric Fano varieties (see paper 1 for the precise statement).

The proof is based on a metric independent bound for the toric Ding-
functional for K-semistable toric Fano varieties, utilizing the functional
Santalo inequality from [2]. More precisely, we can prove in this case
that
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(−KX )
n+1
ϕ ≤ n+ 1

2
(−KX)

n log

(
(2π2)nn!

(−KX)n

)
. (1.25)

The bound only depends on the degree (−KX)
n and the dimension,

but is not optimal. However given that the degree is at most the degree
of P1 × Pn−1, one can deduce the conjectural sharp bound. This last
step is what we call the gap hypothesis, or more precisely,

Conjecture 2. Let X be a K-semistable toric Fano variety which is
not Pn, then (−KX)

n ≤ (−KPn−1×P1)n.

For toric Fano varieties with certain singularities, for example quotient
singularities, the above conjecture can be proven by convex geometric
techniques. For non-singular toric Fano varieties there is a complete
classification up to dimension 6 for which Conjecture 2 can be checked
by going through the classification. This completes the proof of Con-
jecture 1 in these cases. Recall that since the volume of an ample line
bundle on a toric variety is related to the volume of the correspond-
ing polytope, the above conjecture can be formulated in the language
of volumes of a certain class of polytopes. Let us also note that, for
non-singular but possibly non-toric Fano varieties, there is no counter-
example produced by the existing classifications in dimension 2 and
3.

1.10 Logarithmic pairs

In the second paper of the thesis, summarized in the next section,
logarithmic pairs play an important role. A logarithmic pair, is just a
pair (X,∆), consisting of a variety X, and a divisor ∆, i.e. a formal
Z-linear combination of codimension one subvarieties. By definition
divisors are locally cut-out by holomorphic functions and in fact one
can always associated a line bundle with an associated section which
cuts out the divisor. For a divisor ∆ we will denote the line bundle
by ∆ as well. For a logarithmic pair one defines the log-canonical line
bundle by K(X,∆) = KX + ∆. In several ways, this line bundle will
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play the role of the ordinary canonical line bundle in the logarithmic
setting. The main merit of these definitions is that they naturally ap-
pear when doing various birational operations on an ordinary variety,
for example blow-ups.

Another situation where log pairs pop-up naturally are branched cov-
ers, of which a prototypical example is z 7→ zn on C. Since this map
has degenerate Jacobian at any coordinate hyperplane if n ≥ 2, a
holomorphic differential form on the image will not pull back to a
holomorphic differential form on the domain but will have a certain
singularity at 0. More precisely, if w = zn, then dz corresponds to
1
n
w1− 1

ndw outside of 0. The (affine) logarithmic pair (C, (1− 1/n)[0])

contains the information of the singularity of a differential forms that
arises from pullback under the zn map. In general, from a branched
cover, one can construct an associated log-pair in the sense that the
canonical line bundle pulls back to the log-canonical line bundle of the
log-pair.

Once log pairs have been introduced, many objects we have so far
mentioned generalize to logarithmic versions. We have log Fano pairs
for which −(KX +∆) admits a positively curved metric, and the cor-
responding algebraic degree-like invariant −(KX +∆)n. We have the
notion of log Kähler-Einstein metrics ω which satisfy in, a certain
precise sense, the singular Kähler-Einstein type equation

Ric(ω) = ω + [∆] (1.26)

where [∆] is the current of integration along ∆. This is also the
equation satisfied by the pullback of a smooth Kähler-Einstein metric
under a blow-up, or what should be solved on the base of a branched
cover for the pullback metric to be an ordinary Kähler-Einstein metric.
The theory of heights also admits a straightforward logarithmic version
if ∆ is a divisor cut-out by an arithmetic section.
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1.11 Canonical heights and sharp height
bounds on some logarithmic pairs and
diagonal hypersurfaces (Paper 2)

In the second paper, we extend conjecture 1 regarding the sharp upper
bound on the height of metrized arithmetic Fano varieties to logarith-
mic pairs. An arithmetic log Fano pair is an arithmetic log-pair where
the complexified log-anti-canonical bundle −(KX +∆) is ample.

If we have an arithmetic variety X and ∆ is cut-out by an arithmetic
section we have the notion of an arithmetic log-pair. We can consider
the Arakelov invariant, −(KX +∆)n+1

ϕ , for a metric ϕ on −K(X,∆). In
this setting, ϕ no longer defines a volume form but due to the arith-
metic structure on ∆, we have a preferred choice of section s∆ cutting
out ∆. Recall that the set of arithmetic sections is a lattice, so that
given any section cutting out a divisor, we can divide by an integer
to obtain a section corresponding to a primitive point of the lattice.
Clearly this section cuts-out the same complex analytic variety. Notice
that a similar procedure is not possible without the arithmetic infor-
mation. Thus, from the data of an arithmetic log Fano pair, we obtain
a measure on X by considering locally the expression exp(−ϕ)|s∆|2,
which glues into a global measure on X. We say that ϕ is normal-
ized when this integrates to 1. Thus we can still define a logarithmic
version of our canonical height on an arithmetic log Fano variety by
considering

sup
ϕ

−(KX +∆)n+1
ϕ , (1.27)

where the supremum is taken over normalized metrics. Analogous to
the non-logarithmic setting, whenever maximizers exists, they are log
Kähler-Einstein. The log-version of conjecture 1 reads

Conjecture 3. Let (X ,D) be an arithmetic Fano variety such that
(X,D) is K-semistable and ϕ a normalized, continuous, positively
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curved hermitian metric on −(KX +∆). Then

(−KX +D)ϕ ≤ (−KPn
Z
)ϕFS

, (1.28)

where Pn
Z is the projective space over the integers and ϕFS is the nor-

malized Fubini-Study metric. Additionally, equality happens only for
this case, up to a biholomorphism.

One of the main results is the resolution of the conjecture in the toric
case in low dimension.

Theorem 3. Conjecture 3 holds for the canonical integral model of
non-singular toric log-pairs of dimension at most 3.

The proof follows the same strategy as Theorem 1 from Paper 1 and
follows from a logarithmic version of the gap hypothesis, conjecture 2.
The added difficulty that restricts the dimension to at most 3 is that a
logarithmic version of the ’gap hypothesis’ must be established, while
there are uncountable many K-semistable non-singular toric log Fano
pairs, in any dimension.

A second result, that goes beyond the toric setting, is that in the
particular case where X = Pn

Z, and D is supported on hyperplanes
that are in simple normal crossing arrangement (an snc hyperplane
arrangement for short), then the main conjecture is true.

Theorem 4. If X = Pn
Z, and D is supported on a simple normal

crossings hyperplane arrangement (equipped with the canonical integral
model), then Conjecture 3 holds.

Although the result goes beyond the toric setting, the proof uses an
elementary convexity property of the height in the logarithmic case,
together with an explicit characterization of the K-semistable log Fano
snc hyperplane arrangements from [12] to reduce to the toric case. For
toric hyperplane arrangements, the canonical height can be explicitly
calculated.

As explained in section 10, logarithmic pairs appear naturally in cer-
tain constructions in algebraic geometry. For example in the case of
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branched covers. This is used in another result of paper 2, where we
consider conjecture 1 for the arithmetic Fano diagonal hypersurfaces.
These are the hypersurfaces of the form,

n+1∑

k=0

akX
d
k = 0. (1.29)

Here ak are integers and d ≤ n+ 1 so that the above equation defines
an arithmetic Fano variety. A computation shows that the canonical
height is minimized when ak = 1∀k, the so called Fermat hypersur-
face of degree d. The map Xk 7→ Xd

k on Pn+1 expresses the Fermat
hypersurface as a branched cover over Pn. The branching happens
precisely over a simple normal crossings hyperplane arrangement and
the techniques from the proof of 4 we can prove the following.

Theorem 5. Conjecture 1 is true for diagonal Fano hypersurfaces.

Remark. The above statement is formulated entirely in terms of heights
and arithmetic. But our proof, while quite simple, requires deep input
from the theory of K-stability and Kähler-Einstein metrics. For exam-
ple the explicit characterization of K-semistable simple normal cross-
ing hyperplane arrangements, or that a Kähler-Einstein metric on a
toric log-pair, when it exists, is invariant under the real torus action
(up to a biholomorphism).
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SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE TORIC FANO
VARIETIES, I.

ROLF ANDREASSON, ROBERT J. BERMAN

Abstract. Inspired by Fujita’s algebro-geometric result that complex projective space has
maximal degree among all K-semistable complex Fano varieties, we conjecture that the height
of a K-semistable metrized arithmetic Fano variety X of relative dimension n is maximal when
X is the projective space over the integers, endowed with the Fubini-Study metric. Our main
result establishes the conjecture for the canonical integral model of a toric Fano variety when
n ≤ 6 (the extension to higher dimensions is conditioned on a conjectural “gap hypothesis”
for the degree). Translated into toric Kähler geometry this result yields a sharp lower bound
on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi
functional. We furthermore reformulate our conjecture as an optimal lower bound on Odaka’s
modular height. In any dimension n it is shown how to control the height of the canonical
toric model X , with respect to the Kähler-Einstein metric, by the degree of X . In a sequel to
this paper our height conjecture is established for any projective diagonal Fano hypersurface,
by exploiting a more general logarithmic setup.

1. Introduction

1.1. The height of K-semistable Fano varieties. Let (X ,L) be a projective flat scheme X
over Z of relative dimension n, endowed with a relatively ample line bundle L. The complexi-
fication of (X ,L) will be denoted by (X,L). In other other words, X is the complex projective
variety consisting of the complex points of X and L is the corresponding ample line bundle over
X.

A central role in arithmetic and Diophantine geometry is played by the height of (X ,L),
which is defined with respect to a continuous metric ‖·‖ on L. This is an arithmetic analog
of the algebro-geometric degree of (X,L), i.e., of the top intersection number Ln on X. The
height of (X ,L, ‖·‖) - also known as Faltings’ height - is defined as the (n+ 1)−fold arithmetic
intersection number of the metrized line bundle (L, ‖·‖) on X , introduced by Gillet-Soulé in the
context of Arakelov geometry [43, 19] (see Section 1.1). We recall that in Arakelov geometry the
metric ‖·‖ on L plays the role of a “compactification” of X . Accordingly, a metrized line bundle
(L, ‖·‖) is usually denoted by L. The definition of height naturally extends to any Q−line bundle
L, using homogeneity.

In contrast to the algebro-geometric degree of L the height of L can rarely be computed
explicitly and all one can hope for, in general, is explicit bounds on the height. When L is the
relative canonical line bundle, that we shall denote by KX and n = 1, such conjectural upper
bounds are motivated by the Bogolomov-Miyaoka-Yau inequality on X and imply, in particular,
the effective Mordell conjecture, concerning explicit upper bounds on the number of rational
points on XQ and the abc-conjecture [79, 95, 84]. Here we shall be concerned with the opposite
situation where X is an arithmetic Fano variety, in the sense that the relative anti-canonical
line bundle is defined as a relative ample Q−line bundle that we denote by −KX , using additive
notation for tensor products (see Section 2.2.1). In particular, X is a complex Fano variety ;
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a variety whose canonical line bundle −KX defines an ample Q−line bundle. We will also, for
simplicity, assume that X is normal. As shown in [10] in the toric case and then [46] in general,
for any complex Fano variety X

(1.1) (−KX)n ≤ (−KPnC )n

under the assumption that X is K-semistable. Moreover, equality holds iff X = PnC [61]. In
contrast, when X is not K-semistable the degree (−KX)n gets arbitrarily large in any given
dimension n, for singular X (see [34, Ex 4.2] for simple two-dimensional toric examples). The
notion of K-stability first arose in the context of the Yau-Tian-Donaldson conjecture for Fano
manifolds, saying that a Fano manifold admits a Kähler-Einstein metric if and only if it is K-
polystable [92, 38]. The conjecture was settled in [28] and very recently also established for
singular Fano varieties [57, 63]. From a purely algebro-geometric perspective K-stability can
be viewed as a limiting form of Chow and Hilbert-Mumford stability [82], that enables a good
theory of moduli spaces (see the survey [98]).

Is there an arithmetic analog of the inequality 1.1? More precisely, it seems natural to ask
if, under appropriate assumptions, the height (−KX )n+1 is bounded from above by the height
(−KPnZ )n+1 of the relative anti-canonical line bundle on the projective space PnZ over the integers,
endowed with its standard Kähler-Einstein metric (the Fubini-Study metric)? This would yield
an explicit bound on the height (−KX )n+1, since the height of Fubini-Study metric on projective
space was explicitly calculated in [52, §5.4], giving, after volume-normalization,

(1.2) (−KPnZ )n+1 =
1

2
(n+ 1)n+1

(
(n+ 1)

n∑

k=1

k−1 − n+ log(
πn

n!
)

)

If such a universal bound is to hold one needs, however, to impose a normalization condition on
the metric on −KX . Indeed, L

n+1
is additively equivariant with respect to scalings of the metric.

Accordingly, the metric ‖·‖ on −KX will henceforth be assumed to be volume-normalized in
the sense that the corresponding volume form on X has total unit volume. As it turns out,
the supremum of the height −KX

n+1
over all volume-normalized metrics on −KX with positive

curvature current is finite if and only if X is K-semistable (Theorem 2.4). It seems thus natural
to make the following conjecture:

Conjecture 1.1. Let X be an arithmetic Fano variety of relative dimension n over Z. If the
complexification X of X is K-semistable, then the following height inequality holds for any
volume-normalized continuous metric on −KX with positive curvature current:

(−KX )n+1 ≤ (−KPnZ )n+1,

where −KPnC is endowed with the volume normalized Fubini-Study metric. Moreover, if X is
normal equality holds if and only if X = PnZ and the metric is Kähler-Einstein, i.e. coincides
with the Fubini-Study metric, modulo the action of an automorphism.

More generally, when Z is replaced by the ring of integers of a number field F, i.e. a finite
field extension F of Q, the height (−KX )n+1 should be divided by the degree [F : Q]. But, for
simplicity, we will focus on the case when F = Q (see Section 6.2 for a generalization of the
previous conjecture). The converse “only if” statement to the previous conjecture does hold (as
a consequence of Theorem 2.4). Moreover, the conjecture is compatible with taking products
(Prop 2.10). The inequality in the previous conjecture is equivalent to the following inequality
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for any continuous metric on −KX with positive curvature current, as follows from a simple
scaling argument,

(1.3)
(−KX )n+1

(n+ 1)
+

(−KX)n

2
logµ(X) ≤ cn

where µ(X) denotes the volume of X with respect to the measure µ on X corresponding to
the metric ‖·‖ on −KX and cn denotes the constant in the right hand side of formula 1.2.
Some intruiging relations between the conjectural bound 1.3 and the Manin-Peyre conjecture,
concerning the density of rational points on Fano varieties, are discussed in [7].

Our main result concerns the case when X is toric and X is its canonical toric integral model
(see [68, Section 2] and [22, Def 3.5.6]).

Theorem 1.2. Let X be an n−dimensional K-semistable toric Fano variety and denote by X
its canonical model over Z. Then the previous conjecture holds under anyone of the following
conditions:

• n ≤ 6 and X is Q−factorial (equivalently, X is non-singular or has abelian quotient
singularities)
• X is not Gorenstein or has some abelian quotient singularity

Note that when n = 2 any toric variety is, in fact, Q−factorial. More generally, we will show
that the curvature assumption may be dispensed with if the height (−KX )n+1 is replaced by
the χ−arithmetic volume v̂olχ

(
−KX

)
of −KX (whose definition is recalled in Section 2.2.2).

We expect that the maximum of v̂olχ
(
−KX

)
over all integral models (X ,−KX ) of a given toric

Fano variety (X,−KX) is attained at the canonical integral model X featuring in the previous
theorem. This expectation is inspired by a conjecture of Odaka discussed in Section 1.4 below.

The key ingredient in the proof of Theorem 1.2 is the following bound estimating the arith-
metic volume v̂olχ

(
−KX

)
of any volume-normalized metric on −KX in terms of the algebro-

geometric volume vol(X) (Prop 3.7):

(1.4) v̂olχ
(
−KX

)
≤ −1

2
vol(X) log

(
vol(X)

(2π2)n

)
vol(X) := (−KX)n/n!

Since vol(X) is maximal for X = Pn the right hand side above is bounded by a constant Cn
only depending on the dimension n. Under the “gap hypothesis” that Pn−1 × P1 has the second
largest volume among all n−dimensional K-semistable X we show that the bound 1.4 implies
Conjecture 1.1 for the canonical integral model X of a toric Fano variety X. The proof of
Theorem 1.2 is concluded by verifying the gap hypothesis under the conditions in Theorem 1.2.
But we do expect that the gap hypothesis above holds for any toric Fano variety (see Section
3.2.1).

In a sequel [1] to the present paper Conjecture 1.1 is established for any diagonal Fano
hypersurface X in Pn+1

Z (i.e. X is the subscheme cut out by a homogeneous polynomial of the
form a0x

d
0 + ...+ an+1x

d
n+1 for any given integers ai, with no common divisors, and d ≤ n+ 1).

Although X is not toric the proof, somewhat suprisingly, is reduced to a simple toric logarithmic
case.

1.2. The height of toric Kähler-Einstein metrics. In the toric case, X is K-semistable if
and only if it is K-polystable and thus admits a toric Kähler-Einstein metric [96, 8], i.e. a toric
continuous metric on −KX whose curvature form defines a Kähler metric with constant positive
Ricci curvature on the regular locus of X. Moreover, in general, any volume-normalized Kähler-
Einstein metric maximizes (−KX )n+1. This means that the inequality in the previous theorem

3



is equivalent to the corresponding inequality for the volume-normalized toric Kähler-Einstein
metric on −KX . The special role of the Kähler-Einstein condition in arithmetic (Arakelov)
geometry - as an analog of minimality of X over Spec Z - was emphasized already in the early
days of Arakelov geometry by Manin [69]. It is, however, rare that the Kähler-Einstein metric
and the corresponding height, can be explicitly computed. In fact, in the Fano case this seems
to only have been achieved when X is homogeneous [67, 25, 54, 88, 89, 90]. The following
result, complementing the general upper bound 1.4, yields a rather precise control on its height
(−KX )n+1 in the toric case:

Theorem 1.3. Let X be an n−dimensional toric Fano variety and denote by X its canonical
model over Z. Then the height (−KX )n+1 of any volume-normalized Kähler-Einstein metric
satisfies

(n+ 1)!

2
vol(X) log

(
n!mnπ

n

vol(X)

)
≤ (−KX )n+1 ≤ (n+ 1)!

2
vol(X) log

(
(2π)nπn

vol(X)

)

where mn denotes the largest lower bound on the Mahler volume of a convex body. In particular,
(−KX )n+1 > 0.

We also provide an infinite family of toric varities X for which the height of the corresponding
Kähler-Einstein can be explicitely computed as a function f(v) of vol(X) of the same form as in
the previous theorem; f(v) = v log(av−1) for some constant a. The constant mn in the previous
theorem is the largest constant satisfying

mn ≤ vol(P )vol(P ∗),

where P ∗ denotes the polar dual of any given convex body P containing the origin in its interior
(the role of P in the present setting is played by the moment polytope of X). According to
Mahler’s conjecture, the constant mn is equal to (n+1)n+1/(n!)2 (which is realized for a simplex
P ). The case n = 2 was settled in [66], but for our purposes the following general bound from
[51] will be enough:

mn ≥ (
π

2e
)n−1(n+ 1)n+1/(n!)2,

which implies the strict positivity of (−KX )n+1. Combining the previous theorem with the upper
bound 1.1 thus yields the following universal bounds:

Corollary 1.4. Let X be an n−dimensional toric Fano variety and denote by X its canonical
model over Z. Then the height (−KX )n+1 of any volume-normalized Kähler-Einstein metric
satisfies the following universal bounds

0 < (−KX )n+1 ≤ n(n+ 1)n+1

2
log

(
2π2n!

n+ 1

)

Incidentally, the upper bound above is related to a question posed in [73], asking whether
(−KX )n+1 is bounded from above by a universal constant Cn, under the assumption that X be
non-singular and −KX be relatively ample. This is a stronger condition than having positive
curvature, as we assume. We also allow singularities, but our results concern only the toric case.
Under the conditions in Theorem 1.2 our upper bound may be improved to the sharp bound
(−KPnZ )n+1 (given by formula 1.2). As for the lower bound it is sharp in any dimension n.
Indeed, there are n−dimensional K-semistable (Q-factorial) Fano varieties X such that vol(X)
and thus (by Theorem 1.3) (−KX )n+1 is arbitrarily close to 0; see Example 3.1.
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1.3. Donaldson’s toric invariant. Let now (X,L) be a polarized complex projective manifold.
A prominent role in Kähler geometry is played by Mabuchi’s K-energy functionalM [65], defined
on the space H(X,L) of all smooth metrics ‖·‖ on L with positive curvature. Its critical points
are the metrics whose curvature form ω define a Kähler metric on X with constant scalar
curvature. The precise definition of M is recalled in Section 4.1. Since the definition of M
only involves its differential, the functionalM is only defined up to addition by a real constant.
However, when (X,L) is toric Donaldson [38] exploited the toric structure to define the Mabuchi
functionalM as a canonical functional on toric metrics:

(1.5) ML :=

∫

∂P

udσ − a
∫

P

udx−
∫

P

log det(∇2u)dx, a :=

∫

∂P

dσ/

∫

P

dx

where P is the moment polytope in Rn corresponding to the polarized toric manifold (X,L),
whose boundary ∂P comes with a measure dσ induced by Lebesgue measure dx on Rn and
the lattice Zn in Rn and u is the smooth bounded convex function on P corresponding to a
toric metric on L under Legendre transformation (see Section 3.1.2). In particular, in the last
section of [38] Donaldson introduced an invariant of a polarized toric manifold (X,L), defined
as the infimum of the toric Mabuchi functionalML defined by formula 1.5. Here we show that
Theorem 1.2 implies that when X is a Fano variety and L = −KX a slight perturbation of
Donaldson’s invariant is minimal when X is complex projective space, under the conditions on
X appearing in Theorem 1.2:

Theorem 1.5. Let X be a K-semistable toric Fano variety of dimension n, satisfying the con-
ditions in Theorem 1.2. Then the invariant

X 7→ inf
H(X,−KX)

M−KX −
(−KX)n

n!
log

(
(−KX)n

n!

)

is minimal for X = Pn (and only then), where the inf is attained at the metric on −KPn induced
by the Fubini-Study metric.

In the previous theorem the Fano variety X is allowed to be singular. The Mabuchi functional
for singular general Fano varieties was introduced in [37, 9] and Donaldson’s formula 1.5 was
extended to singular toric Fano varieties in [8]. In general, for Fano varieties the Mabuchi
functional M is bounded from below iff X is K-semistable [56] (see the discussion following
Theorem 2.4).

1.4. The arithmetic Mabuchi functional and Odaka’s modular height. For a general
polarized manifold (X,L) the infimum of the Mabuchi functionalM is not canonically defined
(sinceM is only defined up to addition by a constant). But to any given integral model (X ,L) of
a polarized complex variety (X,L) one may, as shown by Odaka [77], attach a particular Mabuchi
functionalM(X ,L) which (up to a multiplicative normalization) is given as the following sum of
arithmetic intersection numbers:

(1.6) M(X ,L)(L) :=
a

(n+ 1)!
Ln+1 − 1

n!
(−KX ) · Ln, a = −n(KX · Ln−1)/Ln

where, as in the previous section, L denotes the metrized line bundle (L, ‖·‖). In the definition
of the second arithmetic intersection number above one also needs to endow −KX with a metric
and one is confronted with two different natural choices: either the metric induced by the volume
form ωn/n! of the Kähler metric ω defined by the curvature form of (L, ‖·‖) or the normalized
volume form ωn/Ln (which has unit total volume). The first choice is the one adopted in [77]
and we show that when X is a toric Fano variety and (X ,L) is the canonical integral model of
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(X,L) this choice coincides with Donaldson’s one (formula 1.5). However, for our purposes the
second volume-normalized choice turns out to be the appropriate one. It yields, in particular,
the shift by the logarithm of (−KX)n appearing in Theorem 1.5:

2M(X ,−KX) =M−KX −
(−KX)n

n!
log

(
(−KX)n

n!

)

(Prop 5.2). The point is that with this choice the following formula holds in the arithmetic
setting:

(1.7) sup
(−KX )n+1

(n+ 1)!
= − inf

H(X,−KX)
M(X ,−KX )

where the sup ranges over all volume-normalized metrics in H(X,−KX) (see Prop 5.3). As a
consequence, Conjecture 1.1 is equivalent to the inequality

(1.8) inf
H(X,−KX)

M(X ,−KX ) ≥ inf
H(Pn,−KPn )

M(PnZ ,...).

Theorem 1.5 thus follows from Theorem 1.2.

1.4.1. Odaka’s modular height. Let (XF , LF ) be an n−dimensional polarized variety defined
over a number field F. In [77] Odaka introduced the following invariant of (XF , LF ), dubbed
the intrinsic K-modular height of (XF , LF ) :

(1.9) h(XF , LF ) = inf
(X ,L)

inf
H(X,L)

M(X ,L),

where (X ,L) is a model of (XF , LF ) over the rings of integers OF ′ of a finite field extension
F ′ of F and M(X ,L) now denotes the arithmetic K-energy 1.6, divided by the degree [F ′ : Q].
In contrast to [77], we will employ the volume-normalized metric on −KX in the definition
of M(X ,L), discussed in the previous section. As shown in 1.6, for a polarized abelian variety
(XF , LF ), Odaka’s modular height h(XF , LF ) essentially coincides with Faltings’ stable modular
height of (XK , LK) [41] (see Section 6.4). Furthermore, as explained in [77], h(XF , LF ) can be
viewed as a “large rank limit” of Bost’s and Zhang’s intrinsic heights appearing in [17, 18, 101],
where the role of K-semistability is played by Chow semistability (see formula 6.7). We propose
the following
Conjecture 1.6. Let XQ be a Fano variety defined over Q. Then Odaka’s modular invariant
h(XQ,−KXQ), normalized as above, is minimal when XQ = PnQ.

According to a conjecture of Odaka [78] any globally K-semistable integral model (X ,−KX )
of (X,−KX) minimizes M(X ,L) over all models (X ,L) (the function field analog of this min-
imization property is established in [16]; see also [98, Remark 7.9]). Global K-semistability
means that all the fibers of X → Spec OF are K-semistable. In other words, in addition to the
K-semistability of the generic fiber XF this means that the variety XFp over the finite field Fp,
corresponding to the integral model X , is K-semistable for any prime ideal p. For example, as
pointed out to us by Odaka the canonical model X of a K-semistable toric Fano variety XQ
appearing in Theorem 1.2 is globally K-semistable. Thus if Odaka’s minimization conjecture
holds, then Theorem 1.2 implies Conjecture 1.6 for any toric Fano variety XQ satisfying the
conditions in Theorem 1.2.1 Anyhow, the positivity statement in Theorem 1.3 implies that the
modular invariant h(XQ,−KXQ) is negative for any K-semistable toric Fano variety XQ.

1During the revision of the first preprint version of the present paper Odaka’s minimization conjecture was
settled in [49] under slightly stronger assumptions than global K-semistability.
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1.5. Organization. In Section 2 we start by recalling the complex-geometric and arithmetic
setup before proving Theorem 2.4, relating upper bounds on the height of Fano varieties to
K-semistability. The proof leverages an arithmetic analog of the Ding functional. In Section 3
we specialize to the toric situation and prove the sharp height inequality in Theorem 1.2, stated
in the introduction and the height bounds for Kähler-Einstein metrics in Theorem 1.3. We also
show that Conjecture 1.1 is compatible with taking products. We then go on, in Section 4, to
deduce Theorem 1.5 concerning the sharp lower bound on Donaldson’s toric Mabuchi functional.
In Section 5 Donaldson’s functional is related to Odaka’s arithmetic Mabuchi functional, which,
in turn is related to the arithmetic Ding functional. In the last section we make a comparison
with the function field case, formulate a generalized version of Conjecture 1.1 and compare with
previous work of Bost and Zhang, Odaka and Faltings.

We have made an effort to make the paper readable for the reader with a background in
arithmetic geometry, as well as for the complex geometers, by including most of the background
material needed for the proofs of the main results.

1.6. Acknowledgements. We are grateful to Bo Berndtsson, Dennis Eriksson, Gerard Freixas
i Montplet, Benjamin Nill, Yuji Odaka, Per Salberger, Chenyang Xu and Ziquan Zhuang for
illuminating discussions/comments and, in particular, to Alexander Kasprzyk for updating the
database [72]. This work was supported by grants from the Knut and Alice Wallenberg founda-
tion, the Göran Gustafsson foundation and the Swedish Research Council.

2. Heights, arithmetic volumes and K-stability of Fano varieties

In this section we show, in particular, that the height of a polarized integral model (X ,L) of
a Fano manifold (X,−KX) is bounded from above - as the metric on L ranges over all volume-
normalized metrics with positive curvature current - if and only if (X,−KX) is K-semistable
(Theorem 2.4). See also [77] for further connections between K-stability of polarized varieties
(X,L) and arithmetic geometry. The main new feature here, compared to [77], is that we
leverage an arithmetic version of the Ding functional in Kähler geometry, while [77] considers
an arithmetic version of the Mabuchi functional (the two functionals are compared in Section
5).

2.1. Complex geometric setup. Throughout the paper X will denote a compact connected
complex normal variety, assumed to be Q−Gorenstein. This means that the canonical divisor
KX on X is defined as a Q−line bundle: there exists some positive integer m and a line bundle
on X whose restriction to the regular locus Xreg of X coincides with the m:th tensor power
of KXreg , i.e. the top exterior power of the cotangent bundle of Xreg . We will use additive
notation for tensor powers of line bundles.

2.1.1. Metrics on line bundles. Let (X,L) be a polarized complex projective variety i.e. a
complex normal variety X endowed with an ample line bundle L. We will use additive notation
for metrics on L. This means that we identify a continuous Hermitian metric ‖·‖ on L with a
collection of continuous local functions φU associated to a given covering of X by open subsets
U and trivializing holomorphic sections eU of L→ U :

(2.1) φU := − log(‖eU‖2),

which defines a function on U. Of course, the functions φU on U do not glue to define a global
function on X, but the current

ddcφU :=
i

2π
∂∂̄φU
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is globally well-defined and coincides with the normalized curvature current of ‖·‖ (the normal-
ization ensures that the corresponding cohomology class represents the first Chern class c1(L) of
L in the integral lattice of H2(X,R)). Accordingly, as is customary, we will symbolically denote
by φ a given continuous Hermitian metric on L and by ddcφ its curvature current. The space
of all continuous metrics φ on L will be denoted by C0(L). We will denote by C0(L) ∩ PSH(L)
the space of all continuous metrics on L whose curvature current is positive, ddcφ ≥ 0 (which
means that φU is plurisubharmonic, or psh, for short). Then the exterior powers of ddcφ are
defined using the local pluripotential theory of Bedford-Taylor [11]. The volume of an ample
line bundle L may be defined by

(2.2) vol(L) := lim
k→∞

k−n dimH0(X,L⊗k) =
1

n!
Ln =

1

n!

∫

X

(ddcφ)n

using in the second equality the Hilbert-Samuel theorem and where φ denotes any element in
C0(L) ∩ PSH(L).

More generally, metrics φ are defined for a Q−line bundle L : if mL is a bona fide line bundle,
for m ∈ Z+, then mφ is a bona fide metric on mL.

Remark 2.1. The normalization of φU used here coincides with the one in [6, 8], but it is twice
the one employed in [11].

2.1.2. Metrics on −KX vs volume forms on X. First consider the case when X is smooth. Then
any smooth metric ‖·‖ on −KX corresponds to a volume form on X, defined as follows. Given
local holomorphic coordinates z on U ⊂ X denote by eU the corresponding trivialization of
−KX , i.e. eU = ∂/∂z1 ∧ · · · ∧ ∂/∂zn. The metric on −KX induces, as in the previous section, a
function φU on U and the volume form in question is locally defined by

(2.3) e−φU (
i

2
)n

2

dz ∧ dz̄, dz := dz1 ∧ · · · ∧ dzn,

on U, which glues to define a global volume form on X. In other words, e−φU is the density of
the volume form with respect to the local Euclidean volume form. Accordingly, we will simply
denote the volume form in question by e−φ, abusing notation slightly. When X is singular any
continuous metric φ on −KX induces a measure on X, symbolically denoted by e−φ, defined as
before on the regular locus Xreg of X and then extended by zero to all of X. We will say that
a measure dV on X is a continuous volume form it it corresponds to a continuous metric on
−KX . A Fano variety has log terminal singularities iff it admits a continuous volume form dV
with finite total volume [9, Section 3.1].

2.1.3. K-semistability. We briefly recall the notion of K-semistability (see [38, 82, 97, 75] for
more background). A polarized complex projective variety (X,L) is said to be K-semistable
if the Donaldson-Futaki invariant DF(X ,L ) of any test configuration (X ,L ) for (X,L) is
non-negative. A test configuration (X ,L ) is defined as a C∗−equivariant normal model for
(X,L) over the complex affine line C. More precisely, X is a normal complex variety endowed
with a C∗−action ρ, a C∗−equivariant holomorphic projection π to C and a relatively ample
C∗−equivariant Q−line bundle L (endowed with a lift of ρ) :

(2.4) π : X → C, L →X , ρ : X × C∗ →X
8



such that the fiber of X over 1 ∈ C is equal to (X,L). ItsDonaldson-Futaki invariant DF(X ,L ) ∈
R may be defined as a normalized limit, as k → ∞, of Chow weights of a sequence of one-
parameter subgroups of GL

(
H0(X, kL)

)
induced by (X ,L ) (in the sense of Geometric In-

variant Theory). As a consequence, (X,L) is K-semistable if, for example, (X, kL) is Chow
semi-stable, for k sufficiently large [82]. However, for the purpose of the present paper it will
be more convenient to employ the intersection-theoretic formula for DF(X ,L ) established in
[97, 75]:

DF(X ,L ) =
a

(n+ 1)!
L

n+1
+

1

n!
KX /P1 ·L n

, a = −n(KX · Ln−1)/Ln

where L denotes the C∗−equivariant extension of L to the C∗−equivariant compactification
X of X over P1 and KX /P1 denotes the relative canonical divisor.

Remark 2.2. Usually the definition of DF(X ,L ) involves a factor of 1/Ln, but the present
definition will be more convenient here (since the factor Ln is positive it does not alter the
definition of K-stability). It is made so that DF(X ,L ) = L

n+1
when L = −KX /P1 .

2.2. Arithmetic setup. We will say that X is an arithmetic variety, if X is a a projective flat
scheme X → Spec Z of relative dimension n and X is reduced and satisfies Serre’s conditions
S2 (this is, for example, the case if X is normal). A polarized arithmetic variety (X ,L) is an
arithmetic variety endowed with a relatively ample Q−line bundle L. We will denote by X the
n−dimensional complex projective algebraic variety consisting of the complex points of X , which
is assumed to be normal and by L the ample line bundle over X induced by L. This means that
L is the restriction to the complexification X of the generic fiber XQ of the structure morphism
X → Spec Z. We will then say that (X ,L) is a model for (X,L) over Z (or an integral model
for (X,L))). For any positive integer k we may identify the free Z−module H0(X , kL) with a
lattice in H0(X, kL) :

H0(X , kL)⊗ C = H0(X, kL).

By definition a metrized line bundle L is a line bundle L → X such that the corresponding line
bundle L → X is endowed with a metric ‖·‖ . We will use the additive notation φ for metrics
‖·‖ on L discussed in the previous section:

L := (L, φ) .

2.2.1. Arithmetic Fano varieties. We will say that the relative canonical line bundle of an arith-
metic variety X is defined as a Q−line bundle, denoted by K, if there exists a positive integer m
such that the mth reflexive power ω[m]

X/SpecZ of the dualizing sheaf ωX/SpecZ of X is locally free.

Then the line bundle mK over X may be identified with ω
[m]
X/SpecZ (see [55, Section 1.1] for a

more general setup of canonical line bundles attached to schemes over regular excellent rings).
An arithmetic variety X → Spec Z will be called an arithmetic Fano variety if

• the canonical line bundle K of X is well-defined as a Q−line bundle and its dual −K is
relatively ample
• the complexification X of X is normal and thus defines a complex Fano variety (i.e.
−KX is ample)

Example 2.3. If X is, locally, a complete intersection, then K is defined as a line bundle (i.e.
m = 1) [55, Section 1.1]. In particular, if X is the subscheme of Pn+1

Z cut out by an irreducible
homogeneous polynomial of degree d with integer coefficents, then K is well-defined as a line
bundle and X is an arithmetic Fano variety iff d ≤ n+ 1.

9



2.2.2. The χ−arithmetic volume, heights and arithmetic intersection numbers. In the arithmetic
setup there are different analogs of the volume vol(L) of an ample line bundle L. Here we shall
focus on the one defined by the following asymptotic arithmetic Euler characteristic originating
in [42] (called the χ−arithmetic volume [22, 23] and the sectional capacity in [83]):

(2.5) v̂olχ
(
L
)

:= lim
k→∞

k−(n+1) logVol
{
sk ∈ H0(X , kL)⊗ R : sup

X
‖sk‖φ ≤ 1

}
,

where H0(X , kL)⊗R may be identified with the subspace of real sections in H0(X, kL). If the
metric on L has positive curvature current, then, by the arithmetic Hilbert-Samuel theorem
[53, 99],

(2.6) v̂olχ
(
L
)

=
Ln+1

(n+ 1)!
,

where Ln+1
denotes the top arithmetic intersection number in the sense of Gillet-Soulé [52],

which, defines the height of X with respect to L [43, 19]. For the purpose of the present paper
formula 2.5 may be taken as the definition of Ln+1

(arithmetic intersections between general
n+ 1 metrized line bundles could then be defined by polarization). More generally, v̂olχ

(
L
)
is

naturally defined for Q−line bundles, since it is homogeneous with respect to tensor products
of L :

(2.7) v̂olχ
(
mL
)

= mn+1v̂olχ
(
L
)
, if m ∈ Z+

Moreover, v̂olχ
(
L
)
is additively equivariant with respect to scalings of the metric:

(2.8) v̂olχ (L, φ+ λ) = v̂olχ
(
L
)

+
λ

2
vol(L), if λ ∈ R,

as follows directly from the definition.

2.3. Upper bounds on the χ−arithmetic volume vs K-semistability of Fano varieties.
We are now ready to prove the following theorem, relating upper bounds on the χ−arithmetic
volume of a metrized integral model of (X,−KX) to K-semistability:

Theorem 2.4. Let (X ,L) be a polarized arithmetic variety such that X is a Fano variety and
L = −KX . Then the following is equivalent:

(1) (X,−KX) is K-semistable
(2) The supremum of v̂olχ (L, φ) over all continuous volume-normalized metrics φ on −KX

is finite.
(3) The supremum of v̂olχ (L, φ) over all continuous volume-normalized metrics φ on −KX ,

which are invariant under complex conjugation, is finite.

Recall that on any complex projective variety X which is defined over R there is a globally
defined complex conjugation map (whose orbits on X correspond to the maximal ideals of the
scheme XR) and in Arakelov geometry it is often assumed that the metrics are invariant under
complex conjugation [86].

Before embarking on the proof we recall the definition of the Ding functional on C0(−KX)e
PSH(−KX), introduced in [36], which depends on the choice of a reference metric ψ0 in C0(−KX)e
PSH(−KX):

(2.9) Dψ0(ψ) := − 1

vol(−KX)
Eψ0(ψ)− log

∫

X

e−ψ,

10



where the functional Eψ0
is a primitive of (ddcψ)n/n! (see formula 2.12). More generally, as

shown in [9] Dψ0(ψ) can be extended to the space E1(−KX) of all metrics in PSH(−KX) with
finite energy and a finite energy metric ψ minimizes Dψ0

(ψ) iff ψ is a Kähler-Einstein metric, i.e.
ddcψ defines a Kähler metric on the regular locus of X with constant positive Ricci curvature.
When ψ is volume-normalized this equivalently means that

(ddcψ)n

vol(−KX)n!
= e−ψ

on the regular locus of X. The identity 2.6 was extended to finite energy metrics in [12]. But
for our purposes it will be enough to work with continuous metrics.

Remark 2.5. In general, any Kähler-Einstein metric ψ in E1(−KX) is locally bounded [9]. In
the toric case this implies that ψ is, in fact, continuous [32, Prop 4.1].

By introducing an arithmetic version of the Ding functional we show that item 2 in the
previous theorem is equivalent to the Ding functional Dψ0 being bounded from below on
C0(−KX) e PSH(−KX) (which is equivalent to lower boundedness of the Mabuchi functional;
see 4.7). By [56] this is equivalent to K-semistability when X is non-singular. In the proof of
Theorem 2.4 we explain how to extend this result to general Fano varieties, leveraging the very
recent solution of the Yau-Tian-Donaldson conjecture for singular Fano varieties [57, 63]. The
equivalence with item 3 leverages the recent result [102].

Remark 2.6. The proof will also reveal that (X,−KX) is K-polystable iff the supremum in item
2 above is attained at some locally bounded metric ψ in PSH(−KX). In general, any such a
maximizer is a Kähler-Einstein metric.

2.3.1. Proof of Theorem 2.4. We start with two lemmas. First, to a given continuous metric
φ on L we associate, following [11], a continuous psh metric ψ on L defined as the following
point-wise envelope:

(2.10) Pφ := sup {ψ : ψ psh, ψ ≤ φ} .
Remark 2.7. More generally, when L is big the envelope above has to be replaced by its upper
semi-continuous regularization in order to obtain a psh metric. However, when L is an ample
line bundle over a normal variety X, as we assume here, the envelope Pφ is already continuous
(see [21, Lemma 7.9]).

Lemma 2.8. Assume that L is relatively ample and let φ be a continuous metric on L with
positive curvature current. Then the arithmetic χ−volume may be expressed as the following top
arithmetic intersection number:

v̂olχ (L, φ) =
(L, Pφ)

n+1

(n+ 1)!
.

Proof. When φ is psh the lemma follows directly from [99, Thm 1.4] (the latter proof reduces to
the original arithmetic Hilbert-Samuel theorem in [53], where X is assumed non-singular, using
a perturbation argument on a resolution of X). In fact, the result [99, Thm 1.4] applies more
generally when L is merely assumed to be relatively nef over the closed points of Spec Z . Next,
the general case follows from the case when φ is psh (applied to Pφ) by the following simple
observation:

sup
X
‖s‖φ = sup

X
‖s‖Pφ , if s ∈ H0(X, kL),

as follows directly from the definition 2.10 of Pφ (see [11, Prop 1.8]). �
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In order to state the next lemma consider the following functional on C0(L)∩PSH (L), defined
with respect to a given reference ψ0 ∈ C0(L) ∩ PSH(L) :

(2.11) Eψ0(ψ) :=
1

(n+ 1)!

∫

X

(ψ − ψ0)

n∑

j=0

(ddcψ)j ∧ (ddcψ0)n−j

Alternatively, the functional Eψ0
may be characterized as the primitive of the one-form on

C0(L) ∩ PSH(L) defined by the measure (ddcψ)n/n!:

(2.12) dEψ0
(ψ) =

1

n!
(ddcψ)n, Eψ0

(ψ0) = 0.

It follows directly from the definition of Eψ0
(ψ) and the classical Hilbert-Samuel formula 2.2

that

(2.13) Eψ0
(ψ + c) = Eψ0

(ψ) + cvol(L), ∀c ∈ R .

The following lemma is an arithmetic refinement of the previous formula:

Lemma 2.9. (change of metrics formula). For any two continuous metrics on L, which are
invariant under complex conjugation,

(2.14) v̂olχ (L, φ1)− v̂olχ (L, φ2) =
1

2
(Eψ0

(Pφ1)− Eψ0
(Pφ2))

Proof. When φi are psh this is well-known and follows from basic properties of arithmetic
intersection numbers; see formula 5.1 or [77, Prop 2.2]). Alternatively, the result follows from
the previous lemma combined with [11, Thm A]. In order to check that the multiplicative
normalizations adopted here are compatible note that the scaling relations 2.8 and 2.13 are
indeed compatible. �

2.3.2. Conclusion of the proof of Theorem 2.4. Consider the following functional on the space
C0(−KX) of continuous metrics on −KX

(2.15) DZ(φ) := −2
v̂olχ (L, φ)

vol(−KX)
− log

∫

X

e−φ.

Since this functional is invariant under scalings of the metric, φ 7→ φ+c, the finiteness statement
in the second point of the proposition amounts to showing that the infimum of DZ(φ) over
C0(−KX) is finite. Now fix a continuous psh metric ψ0 on −KX and consider the following
extension of the Ding functional 2.9 to all of C0(−KX) :

(2.16) Dψ0
(φ) := − 1

vol(−KX)
Eψ0

(Pφ)− log

∫

X

e−φ.

Combining the previous two lemmas reveals that

(2.17) DZ(φ) = Dψ0
(φ) + C0, C0 := − 2 (L, ψ0)

n+1

vol(−KX)(n+ 1)!

Next, observe that

(2.18) inf
C0(−KX)

Dψ0
= inf
C0(−KX)ePSH(−KX)

Dψ0

Indeed, this follows directly from the fact that the operator φ 7→ Pφ from C0(L) to C0(L) e
PSH(L) is increasing and satisfies P 2 = P.
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”3” =⇒ ”1”. Let us first recall how Item 2 implies Item 1. First Item 2 implies, thanks to the
identities 2.17 and 2.18, that the infimum of Dψ0 over C0(−KX) e PSH(−KX) is finite. Thus
it follows from results in [6] that (X,−KX) is K-semistable. Let us next show how to refine
the proof in [6] to show the stronger statement ”3” =⇒ ”1”. More generally, we will show
that when X is defined over the real field R X is K-semistable if the infimum of Dψ0

over the
space C0(−KX) e PSH(−KX) is finite, where C0(L) denotes the subspace of C0(L) consisting
of metrics which are invariant under complex conjugation. To this end let us first summarize
the main steps in the proof in [6]. First, a test configuration (X ,L ) for (X,−KX) and a given
metric φ for −KX in C0(−KX) e PSH(−KX) determines a ray φt in PSH(−KX) emanating
from φ parametrized by t ∈ [0,∞[ (i.e. φ0 = φ). Using the notation in formula 2.4 the ray φt is
defined by

φ− log |τ | = ρ(τ)∗(Φ|Xτ
), τ ∈ C∗

where Φ is the S1−invariant metric on the restriction of L to the inverse image π−1(D) in X of
the unit-disc D ⊂ C defined by

(2.19) Φ := sup
{

Ψ : Ψ|π−1(∂D) = φ, Ψ ∈ C0(L) e PSH(L|π−1(D))
}
,

where we have used the C∗−action ρ to identify X with Xτ for any τ in the unit-circle ∂D. By
[6, Thm 1.3]

vol (−KX)−1DF (X ,L )≥ lim
t→∞

(
t−1Dφ0

(φt)
)
.

When Dφ0(φt) is bounded from below this means that DF(X ,L ) ≥ 0, showing that X is K-
semistable. Now assume that X is defined over the real field R. Then it follows from [102, Thm
1.1] that in order to check K-semistability of (X,−KX) it is enough to consider test configu-
rations (X ,L ) defined over R. Thus, we just have to verify that for such test configurations,
if the given metric φ is taken to be in C0(−KX) e PSH(−KX), then the ray φt remains in
C0(−KX) e PSH(−KX), for all t > 0. Since (X ,L ) is defined over R there is a complex con-
jugation map F from X to X (that lifts to L ) and thus it is enough to show that F ∗φ = φ
implies that F ∗Φ = Φ. But this follows from the definition 2.19 of Φ only using that F ∗ preserves
the psh property of a metric (as follows from a direct local calculation that reduces to the fact
that the Laplacian i∂z∂z̄ in C is invariant under z 7→ z̄).

”1” =⇒ ”2”. First recall that any K-semistable normal Fano variety (i.e. such that (X,−KX)
is K-semistable) has log terminal singularities [74, Thm 1.3]. In the case that X is non-singular
it was shown in [56] that if X is K-semistable, then the infimum of the Ding functional Dψ0

over C0(−KX) e PSH(−KX) is finite. Thus, by formula 2.18, so is the infimum of Dψ0
over

C0(−KX). The proof in [56] relied, in particular, on the resolution of the Yau-Tian-Donaldson
conjecture in [28] for Fano manifolds. But thanks to the recent resolution of the Yau-Tian-
Donaldson conjecture for singular Fano varieties the proof in [56] can be extended to singular
Fano varieties, mutatis mutandis. We briefly summarize the argument, using Deligne pairings
as in [6] (rather than the Bott-Chern classes used in [56]). The starting point is the result
[60, Thm 1.3], saying that if X is K-semistable then there exists a test configuration (X ,L )
for (X,−KX) whose central fiber X0 is given by a K-polystable Fano variety. More precisely,
the test configuration is special in the sense that L is the relative anti-canonical line bundle.
Since the central fiber X0 of X is K-polystable it admits, by the solution of the Yau-Tian-
Donaldson conjecture for singular Fano varieties [63] (building on [57]) a Kähler-Einstein metric
φKE . It thus follows from [9, Thm 4.8] that the Ding functional is bounded from below on
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C0(−KX0
)ePSH(−KX0

). More precisely, its infimum is attained at the Kähler-Einstein metric
φKE :

(2.20) inf
C0(−KX0

)ePSH(−KX0
)
D = D(φKE) > −∞.

Now, given a metric φ in C0(−KX) e PSH(−KX) let Φ be the corresponding metric on L →
π−1(D) defined by formula 2.19. It induces a metric on the (n + 1)−fold Deligne pairing
〈L ,L , ...,L 〉 → D that we denote by 〈Φ〉 (see [6, Section 2.3]). Consider the correspond-
ing twisted metric on −〈L ,L , ...,L 〉 → D defined by

−〈Φ〉 − log

∫

Xτ

e−Φ|Xτ ,

dubbed the Ding metric in [6]. Fixing a trivialization S(τ) of 〈L ,L , ...,L 〉 → D we may
identify this metric with a function ψ(τ) on D :

ψ(τ) := log
(
‖S(τ)‖2〈Φ〉

)
− log

∫

Xτ

e−Φ|Xτ ,

For a fixed τ this metric coincides with the Ding functional D(φτ ) up to an additive constant
depending on τ (by the “change of metrics formula” for Deligne pairing; see [6, Section 2.3]). In
particular, there exists a ∈ R such that

(2.21) ψ(1) := Dψ0
(φ) + a, ψ(0) ≥ b := log

(
‖S(0)‖2〈φKE〉

)
− log

∫

X0

e−φKE ,

using 2.20 in the inequality. As shown in [6, Prop 3.5] ψ(τ) is subharmonic on D and the
first term 〈Φ〉 is continuous on D (as follows from [71, Thm A]; see the proof of [6, Prop 3.6]).
Moreover, the second term is also continuous on D, as shown when X is non-singular in [56,
Lemma 1.9] and in general in [58, Lemma 7.1]. As a consequence,

ψ(0) ≤
∫

∂D

ψdθ = ψ(1),

using that ψ(τ) is S1−invariant in the last equality. Finally, invoking formula 2.21 shows that
Dψ0

(φ) is uniformly bounded from below, as desired.

2.4. Compatibility of Conjecture 1.1 with taking products. The previous theorem shows,
in particular, that the K-semistability assumption in Conjecture 1.1 is necessary. We next show
that the conjecture is compatible with taking products:

Proposition 2.10. Let X1, ...,Xm be arithmetic Fano varieties which are K-semistable over
C. Assume that the inequality in Conjecture 1.1 holds for all Xi (for any volume-normalized
metrics on −KXi with positive curvature current). Then the inequality holds for X1 × · · · × Xm
with strict inequality (for any volume-metric normalized metric on −KX1×···×Xm with positive
curvature current). More precisely,

v̂olχ(−KX1×···×Xm) < v̂olχ(−KPnZ ).

Proof. By a simple induction argument it is enough to consider the case when m = 2. First note
that, in general, given two polarized metrized arithmetic varieties (Xi,Li) of relative dimension
ni

(2.22)
v̂olχ

(
ρ∗1L1 ⊗ ρ∗2L2

)

vol
(
ρ∗1L1 ⊗ ρ∗2L2

) =
v̂olχ

(
L1

)

vol
(
L1

) +
v̂olχ

(
L2

)

vol
(
L2

)
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where ρ1 and ρ2 denote the natural morphisms from X1 × X2 to X1 and X2, respectively (as
follows readily from formula 2.5).

Assume now that the inequality in Conjecture 1.1 holds for −KX1
and −KX2

. Endow
−KX1×X2

with the induced product metric (which is volume-normalized, since the metrics
on −KXi are assumed to be volume-normalized). The identity 2.22 yields

v̂olχ
(
−KX1×X2

)
= v̂olχ

(
−KX1

)
vol (−KX2) + v̂olχ

(
−KX1

)
vol (−KX1) .

Accordingly, by assumption,

v̂olχ
(
−KX1×X2

)
≤ v̂olχ

(
−KPn1

Z

)
vol (−KX2

) + v̂olχ
(
−KPn2

Z

)
vol (−KX1

) ,

where the projective spaces have been induced by the volume-normalized Fubini-Study metric
and we have used that v̂olχ

(
−KPnZ

)
is positive for any n (as shown in 3.6). Hence, applying

Fujita’s inequality 1.1, yields

v̂olχ
(
−KX1×X2

)
≤ v̂olχ

(
−KPn1

Z

)
vol
(
−KPn1

C

)
+ v̂olχ

(
−KPn2

Z

)
vol
(
−KPn2

C

)
.

But, the rhs above equals v̂olχ
(
−KPn1

Z ×P
n2
Z

)
(by the identity 2.22), which is strictly smaller

then v̂olχ
(
−KPn1+n2

Z

)
, by the toric case, considered in Section 3.2.2.

All that remains is thus to show that the sup of v̂olχ(−KX1×X2
) over all continuous volume-

normalized metrics coincides with the sup restricted to the ones which have positive curvature
current and are product metrics. First, as shown in the proof of Theorem 2.4 we may restrict
to those with positive curvature current. To prove that we may restrict to product metrics first
consider the case when (Xi,−KXi) are both K-polystable. They thus admit Kähler-Einstein
metrics and the corresponding product metric is Kähler-Einstein on X1 × X2 and, as a con-
sequence, realizes the sup of (−KX1×X2

)n+1, as pointed out in Remark 2.6 (strictly speaking,
in the singular case the Kähler-Einstein metric is merely known to be locally bounded, but
it can, in a standard way, be approximated by continuous ones). Finally, in the case when
(Xi,−KXi) are merely K-semistable we will use the following general observation. If X1 and
X2 are K-semistable Fano varieties over C, then the inf of the Ding functional (formula 2.9)
corresponding to X1 ×X2 coincides with the inf over product metrics. To prove this first recall
the definition of the twisted Ding functional Dψ0,γ corresponding to a given locally bounded psh
metric ψ0 and γ ∈]0, 1] :

Dψ0,γ(ψ) = − 1

vol(−KX)
Eψ0

(ψ)− log

∫

X

e−(γψ+(1−γ)ψ0)

By Hölder’s inequality Dψ0,γ(ψ) is decreasing in γ. Since, as shown in the proof of Theorem
2.4, Dψ0,1 is bounded from below when X is K-semistable, so is Dψ0,γ(ψ) for any γ ∈]0, 1[.
More precisely, Dψ0,γ(ψ) is coercive for any given γ ∈]0, 1[ (see the proof of [5, Cor 3.6]) and
thus Dψ0,γ admits a minimizer ψγ and the minimizers are precisely the solutions to the twisted
Kähler-Einstein equation

(ddcψ)n/n!

vol(−KX)
=

e−(γψ+(1−γ)ψ0)

∫
X
e−(γψ+(1−γ)ψ0)

(see [9]). Accepting this claim for the moment we may, given two K-semistable Fano varieties
X1 and X2 and γ ∈]0, 1[ thus take two twisted KE-metrics ψ(1)

γ and ψ(2)
γ on −KX1

and −KX2
,
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respectively. The corresponding product metric ψγ on −KX1×X2
is a twisted KE-metric and

thus minimizes the twisted Ding function Dψ0,γ on X1 ×X2. Moreover, as γ → 1

(2.23) Dψ0
(ψγ)→ inf Dψ0

.

Indeeed, in general, the inf of Dψ0,γ converges towards the inf of Dψ0,1 (as follows from a general
simple convexity/continuity argument, using that Dψ0,γ(ψ) is concave in γ, detailed in [1]).
Since Dψ0,γ(ψ) is decreasing in γ this proves the convergence 2.23. Finally, since in our setup
ψγ is a product metric it follows that the inf of Dψ0

coincides with the inf restricted to product
metrics, as desired. �

3. Sharp height inequalities in the toric case

We now specialize to the case when X is toric Fano variety.

3.1. The toric setup. We start by recalling the notation for toric metrics employed in [8] and
the relation to the canonical toric integral model.

3.1.1. The moment polytope P (L). Let X be an n−dimensional complex projective toric variety,
i.e. a complex projective variety endowed with the action of the n−dimensional complex torus
C∗n with an open dense orbit. We shall denote by Tc the complex torus and by T the real
maximal compact subtorus of Tc, i.e. T = (S1)n. Let L be a toric ample line, i.e. an ample line
bundle over X endowed with a Tc−action covering the action of Tc on X. It induces a bounded
convex polytope P (L) in Rd with non-empty interior, defined as follows. Consider the induced
action of the group Tc on the space H0(X, kL) of global holomorphic sections of kL → X
(for k a given positive integer). Decomposing the action of Tc according to the corresponding
one-dimensional representations em, labeled by m ∈ Zn :

(3.1) H0(X, kL) = ⊕m∈BkCeα

the lattice polytope P(X,L) may be defined as the convex hull of k−1Bk in Rn. More generally,
by homogeneity, P(X,L) is defined for any ample Q−line bundle.

In particular, if X is Fano, then the polytope P (−KX) has vertices in Qn and may be
represented as follows:

(3.2) P (−KX) = {p ∈ Rn : 〈lF , p〉 ≥ −1, ∀F} ,

where F ranges over all facets of P (−KX) and lF denotes the unique primitive element in
Zn which is an interior normal to the facet F (i.e. P (−KX) is the dual of the polytope with
primitive vertices lF ). Conversely, any such polytope corresponds to a Fano variety X [33, 8].

Example 3.1. When X = Pn the polytope P (−KX) is (n + 1) (Σn − (1, ...., 1)) where Σn
denotes the n−dimensional unit-simplex. An infinite family of two-dimensional toric Fano vari-
eties Xp,q, parametrized by two prime numbers p and q, is obtained by letting P (−KXp,q ) be the
polytope which is dual to the polytope with the four primitive vertices (±p,±q). In particular,
vol(−KXp,q ) = 2/(pq) tends to zero when pq tends to infinity.

Remark 3.2. From an invariant point of view, the real vector space Rn above arises as M ⊗Z R,
where M is the lattice Hom(Tc,C∗) of characters of the group Tc (cf. [33]).
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3.1.2. Logarithmic coordinates and the Legendre transform φ∗ of a metric φ on L. Since X is
toric we can identify Tc with its open orbit in X. Let Log be the map from Tc to Rn defined by

Log:Tc → Rn, Log(z) := x := (log(|z1|2), ..., log(|zn|2).

The real compact torus T acts transitively on its fibers. We will refer to x as the (real) logarithmic
coordinates on Tc. Let L be a toric ample line bundle over X and assume that P contains the
origin, 0 ∈ P, and denote by e0 the corresponding T−invariant element in H0(X, kL). Any
continuous T−invariant metric ‖·‖ on L induces a continuous function on Rn that we shall
denote by φ(x), defined as

φ(x) := − log
(∥∥e0

∥∥2
(z)
)
, z ∈ Tc b X, x := Log z.

Thus, in the present additive notation φ for metrics we have φ(x) = φU (z), when U = Tc, abusing
notation slightly. The Legendre transform of φ(x), which defines a lower-semicontinuous convex
function on Rn (taking values in ]−∞,∞]) will be denoted by φ∗ :

φ∗(p) := sup
x∈Rn

〈p, x〉 − φ(x).

A T−invariant continuous metric ψ on L is psh iff the corresponding function ψ(x) on Rn is
convex (iff ψ(x) = ψ∗∗(x)). We will denote by ψP (L) the unique continuous convex function
on Rn whose Legendre transform is equal to 0 on P (L) and equal to ∞ on the complement of
P (L) :

(3.3) ψP (L)(x) := sup
p∈P (L)

〈p, x〉 (ψ∗P (L) = 0 on P, ψ∗P (L) =∞ on P (L)c)

It corresponds to a continuous psh metric on L (see the proof of [8, Prop 3.3]) and it will be
used as a canonical reference metric in the present toric setup. It follows that for any other
continuous metric φ on L

(3.4) φ− ψP (L) ∈ L∞(Rn), P (L) = {φ∗ <∞} .
Remark 3.3. From an invariant point of view the logarithm coordinates take value in N ⊗ R,
where N is the lattice Hom(C∗, Tc) of one-parameter subgroups of Tc, i.e. the dual of the lattice
Hom(Tc,C∗) of characters of Tc.

3.1.3. Pushing forward measures from X to Rn. For any T−invariant continuous psh metric ψ
on L the push-forward of the measure (ddcψ)n/n! on L under the map Log is given by

Log
(

(ddcψ)n

n!

)
= det(∇2φ)dx,

(since the integral along the Tn−fibers equals (2π)n). The measure in the right hand side is
defined in the weak sense of Alexandrov. Since the closure of the image of Rn under the sub-
gradient map of φ(x) equals P it follows that

vol(L) =

∫

P

dy := Vol(P ).

Next consider the case when L = −KX . Then

(3.5) e0 := z1
∂

∂z1
∧ · · · ∧ zn

∂

∂zn

defines a Tc−invariant global holomorphic section of −KX , trivializing −KX over U := C∗n.We
can thus identify a continuous metric φ on −KX with the corresponding function φU on C∗n
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(formula 2.1) and volume form on X (formula 2.3) expressed as follows on C∗n, with respect to
the local holomorphic coordinate log z :

e−φU (
i

2
)nd(log z1) ∧ d(log z1) ∧ · · · ∧ d(log zn) ∧ d(log zn)

symbolically denoted by e−φ. Using again that the integral along the Tn−fibers equals (2π)n

yields

(3.6)
∫

X

e−φ = πn
∫

Rn
e−φ(x)dx.

3.1.4. K-semistability and toric Kähler-Einstein metrics. We recall the following result, which
is a combination of the results [8, Thm 1.2] and [6, Cor 1.2] (which are formulated in terms of
Tc−equivariant K-polystability and K-polystability, respectively).

Proposition 3.4. Let X be a toric Fano variety. The following is equivalent:

• X is K-semistable
• X is K-polystable
• X admits a T−invariant Kähler-Einstein metric
• The barycenter of P (−KX) coincides with the origin 0.

3.1.5. The arithmetic χ−volume of a toric metric. Any toric ample line bundle L→ X admits
a canonical integral model L → X over Z with X normal (see [68, Section 2] and [22, Def 3.5.6]).

The following result is a special case of the main result of [22, Thm 3] (combined with Lemma
2.8):

Proposition 3.5. Let L→ X be an ample toric line bundle and denote by (X ,L) its canonical
toric model over Z. Assume that φ is a continuous T−invariant metric on L. Then

2v̂olχ (L, φ) = −
∫

P (L)

φ∗dλ

An alternative analytic proof of this formula can also be given, using that the integral lattice
H0(X , kL) in H0(X, kL) is generated by the Tc−equivariant bases em appearing in the decom-
position 3.1 [68]. Since this basis is ortonormal wrt the L2−norm on H0(X, kL) induced by
the metric ψP (L) on L, defined by formula 3.3 and the Haar measure on the unit-torus T b X,
applying [11, Thm A] yields

(3.7) 2̂vol (L, φ) = EψP (L)
(φ).

When φ is toric the right hand side above coincides, by [8, Prop 2.9], with the right hand side
of the formula in the previous proposition.

3.1.6. Arithmetic toric Fano varieties. Now assume that X is a toric Fano varity, so that −KX

defines an ample Q−line bundle. Then the canonical integral model X of X over Z is a normal
arithmetic Fano variety, i.e. the relative anti-canonical divisor −K on X defines a relatively
ample Q−line bundle on X . Indeed, −K coincides with the canonical integral model L of −KX .
This follows (just as in the function field case considered in [6, Lemma 2.2]) from the fact that
the fibers of the structure morphism X →Spec Z are reduced and irreducible.
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3.2. Proof of Theorem 1.2. Given a Fano variety X, let φ be a continous metric on −KX

which is volume-normalized. We will prove the following more general formulation of the in-
equality in Theorem 1.2 (where the psh assumption on φ has been dispensed with):

v̂olχ (−K, φ) ≤ v̂olχ
(
−KPnZ

)

where the metric on −KPn is the one induced by the volume-normalized Fubini-Study metric.
A T−invariant continuous metric φ will, as above, be identified with a function φ(x) on Rn.

If φ is moreover volume-normalized Prop 3.5 gives

(3.8)

2v̂olχ (−K, φ) /vol(−KX) = −DZ(φ) = −DψP (φ) = −
∫

P

φ∗dy/V + log

∫

Rn
e−φ(x)dx+ n log π,

where DZ(φ) and DψP (φ) are the Ding type functionals defined by formula 2.15 and formula
2.16, respectively, and we have used formula 3.6.

We start by recording the following explicit formula for the arithmetic volume of projective
space Pn, endowed with a volume normalized Kähler-Einstein metric (which may be assumed
to be the metric induced by the Fubini-Study metric).

Lemma 3.6. The following formulas holds for the metrics φKE on the anti-canonical line
bundles of PnC induced by a volume normalized toric Kähler-Einstein metric:

X = PnC =⇒ 2v̂olχ (−K, φKE) =
(n+ 1)n

n!

(
(n+ 1)

n∑

k=1

k−1 − n+ log(
πn

n!
)

)
> 0

Proof. First consider the case when X = PnC, whose canonical integral model is given by X = PnZ.
The canonical model of the anti-canonical line bundle of PnC is given by O(1)⊗n+1 → PnZ. As
shown in [52, §5.4] (using the induction formula for the height; see also [85, Prop 3.10]) the
height hFS of O(1)→ PnZ endowed with the Fubini-Study metric φFS is given by

hFS =
1

2

n∑

k=1

k∑

m=1

m−1.

Since (n+ 1)φFS defines a Kähler-Einstein metric on −KPn and π−n
∫
Pn e

−(n+1)φFS = 1/n! this
gives

2v̂olχ (−K, φKE)−n log π = (n+1)n+1 hFS
(n+ 1)!

+
(n+ 1)n

n!
log(

1

n!
) =

(n+ 1)n

n!

(
hFS + log(

1

n!
)

)
,

using formula 2.6 in the first term, combined with the homogeneity property 2.7 and, in the
second term, the scaling property 2.8. Rewriting the formula for hFS above as a triangle sum
and changing the order of summation then concludes the proof of the formula of the lemma.
The last positivity statement will be shown in the course of the proof of Lemma 3.8. �

The key ingredient in the proof of Theorem 1.2 is the following universal bound on the
arithmetic volume, in terms of the ordinary volume:

Proposition 3.7. For any n−dimensional toric Fano variety X which is K-semistable, the
following bound holds for any volume-normalized continuous metric φ on −KX ,

2v̂olχ (−K, φ) ≤ −vol(X) log

(
vol(X)

(2π2)n

)
, vol(X) := vol(−KX).
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Proof. First recall that, as shown in the beginning of the proof of Theorem 2.4, it is equivalent
to establish the upper bound for −DψP (φ) when φ is a continuous psh metric on L. Since X is
assumed K-semistable it follows from Prop 3.4 that X admits a T−invariant Kähler-Einstein
metric. In general, a Kähler-Einstein metric φ on −KX minimizes the Ding functional Dψ0

[9]. Thus in the toric case the infimum of Dψ0
coincides with the infimum over all continuous

T−invariant psh metrics. As explained in Section 3.1.2 such a metric may be identified with a
convex function φ(x) on Rn satisfying φ − ψP ∈ L∞(Rn). By formula 3.8 it will be enough to
show that for such convex functions

(3.9) −
∫

P

φ∗dy/V + log

∫

Rn
e−φ(x)dx ≤ − log V + n log(2π), V := vol(−KX).

Since 0 is contained in the interior of P the measure e−φdx on Rn has finite moments. Recall
that, by Prop 3.4 the barycenter of P coincides with 0 ∈ Rn and, as a consequence, the left
hand side in inequality 3.9 is invariant under translations of φ, φ(x) 7→ φ(x + a) for any given
a ∈ Rn [8, Lemma 2.14]. As a consequence, in order to prove the inequality 3.9 we may as well
assume that ∫

Rd
xe−φdx = 0.

By the functional form of Santaló’s inequality [3, Lemma 2.14] this implies that
∫

Rn
e−φ

∗(y)dy ·
∫
e−φ(x)dx ≤ (2π)n

(where equality holds if φ = φ∗ i.e. if φ(x) = |x|2/2). Moreover, by Jensen’s inequality

−
∫

P

φ∗dλ/V ≤ log

(∫

P

e−φ
∗(y)dy/V

)
= log

(∫

Rn
e−φ

∗(y)dy/V

)
,

using in the last equality that φ∗ = ∞ on the complement of P (see formula 3.4). Combining
the latter two inequalities yields the desired inequality 3.9. �

Recall that Pn has maximal volume among all K-semistable n−dimensional Fano varieties
(as shown in [10] in the toric case and in [46] in general). We next show that it will be enough
to prove that, in the toric case, the next to largest volume is attained by Pn−1 × P1 :

Lemma 3.8. For any n−dimensional toric Fano variety X which is K-semistable

vol(X) ≤ vol(Pn−1 × P1) =⇒ v̂olχ (−K, φ) < v̂olχ
(
−KPnZ

)

where −KPn is endowed with the volume-normalized Fubini-Study metric.

Proof. First observe that the function of vol(X) appearing in the rhs of the inequality in the
previous proposition is increasing when vol(X) ≤ (2π2)n/e. This bound is, in fact, satisfied for
any K-semistable X. Indeed, by [10],

(3.10) vol(X) ≤ vol(Pn) =
(n+ 1)n

n!
< (2π2)n/e.

(using, in the last inequality a simple induction argument). Thus, by the previous proposition,
it will be enough to show that

(3.11) −vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) < 2v̂olχ
(
−KPnZ

)
.
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for any n ≥ 2. To this end first note that

−vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) = − 2nn−1

(n− 1)!
(log(

2nn−1

(n− 1)!
)− n log(2π2))

We check that the inequality holds for n = 2 and with induction in mind we simplify the right
hand side of 3.11 with n+ 1 for n and get

2v̂olχ
(
−KPn+1

Z

)
=− (n+ 2)n+1

(n+ 1)!
(n+ 1− (n+ 2)

n+1∑

k=1

1

k
+ log((n+ 1)!)− (n+ 1) log(π))

=− (
n+ 2

n+ 1
)n+1 (n+ 1)n

n!
((n− (n+ 1)

n∑

k=1

1

k
+ log(n!)− n log(π))+

(1− (n+ 2)
n+1∑

k=1

1

k
+ (n+ 1)

n∑

k=1

1

k
+ log(n+ 1)− log(π)))

=(
n+ 2

n+ 1
)n+12v̂olχ

(
−KPnZ

)
− (

n+ 2

n+ 1
)n+1(1− log(π) + log(n+ 1)− n+ 2

n+ 1
−

n∑

k=1

1

k
)

Here we observe for later use that v̂olχ
(
−KPnZ

)
> 0∀n ≥ 1 by evaluating it at n = 1 and then

using the above to perform induction and noting that

−(1− log(π) + log(n+ 1)− n+ 2

n+ 1
−

n∑

k=1

1

k
) > −(− log(π) + log(2)) = log(

π

2
) > 0

for n ≥ 1. We have used that − log(n + 1) +
∑n
k=1

1
k is increasing and can thus be estimated

from below by putting n = 1. We also simplify the left hand side of 3.11,

−vol(Pn × P1) log(vol(Pn × P1)/(2π2)n+1) =− 2(n+ 1)n

n!
(log(

2(n+ 1)n

n!
)− (n+ 1) log(2π2))

=− (
n+ 1

n
)n

2nn

n!
((log(

2nn

n!
)− n log(2π2))+

(log((
n+ 1

n
)n − log(2π2))

=− (
n+ 1

n
)nvol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n)

− 2
(n+ 1)n

n!
(− log((

n+ 1

n
)n)− log(2π2)).

Fix n ≥ 2 and assume −vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) ≤ 2v̂olχ
(
−KPnZ

)
. Define for

brevity en = (1 + 1
n )n and estimate

21



2v̂olχ
(
−KPn+1

Z

)
− (−vol(Pn × P1) log(vol(Pn × P1)/(2π2)n+1))

=en+1v̂olχ
(
−KPnZ

)
− (−envol(Pn × P1) log(vol(Pn × P1)/(2π2)n))

+ 2
(n+ 1)n

n!
(log(

(n+ 1)n

n
)− log(2π2))

− (n+ 2)n+1

(n+ 1)!
(1− log(π) + log(n+ 1)− n+ 2

n+ 1
−

n∑

k=1

1

k
)

>2
(n+ 1)n

n!
(log(

(n+ 1)n

n
)− log(2π2))

− (n+ 2)n+1

(n+ 1)!
(1− log(π) + log(n+ 1)− n+ 2

n+ 1
−

n∑

k=1

1

k
)

=
(n+ 2)n+1

(n+ 1)!
(
(n+ 1)n

n!
/

(n+ 2)n+1

(n+ 1)!
2(log((

n+ 1

n
)n)− log(2π2))

− 1 + log(π)− log(n+ 1) +
n+ 2

n+ 1
+

n∑

k=1

1

k
)

=
(n+ 2)n+1

(n+ 1)!
[

2

en
(log(en)− log(2π2)) + log(π) +

n+1∑

k=1

1

k
− log(n+ 1)].

In the inequality above we have used v̂olχ
(
−KPnZ

)
> 0∀n ≥ 1 and en < en+1 and the induction

hypothesis. Next check numerically that this last expression is positive for n = 2, 3. For n ≥ 4
we have

2

en
(log(en)− log(2π2)) + log(π) +

n+1∑

k=1

1

k
− log(n+ 1)

>
2

e4
(log(e4)− log(2π2)) + log(π) + γ > 0.

We used again that en < en+1 and the fact that
∑n+1
k=1

1
k − log(n + 1) > γ [93], where γ is the

Euler-Mascheroni constant. The last inequality is checked numerically. �

We expect that any K-semistable toric Fano variety X, not equal to Pn, satisfies the volume
bound in the previous lemma (see the following section). Here we will show that this is the case
under the conditions of Theorem 1.2. First, the singular cases are handled using the following
bound.

Lemma 3.9. Let X be a singular K-semistable toric Fano variety. Then

vol(−KX) ≤ 1

2
(n+ 1)n/n!

if anyone of the following conditions hold:
• X is Q−factorial (or equivalently, X has abelian quotient singularities).
• X is not Gorenstein
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In particular, by the first point, when n = 2 this inequality holds for any singular K-semistable
toric Fano variety X.

Proof. The result concerning the first point is the toric case of [61, Thm 3] concerning quotient
singularities, but in the toric case it also follows from the proof of [10, Thm 1.2]. For future
reference we recall the argument in [10]. Let P be a given polytope with rational vertices and
represent P as the intersection of hyperplanes {p ∈ Rn : 〈lF , p〉 ≥ −aF } , where the index F
ranges over the facets of P, lF is a primitive vector in Zn and aF is a non-zero positive numbers.
In the present Fano case aF = 1. Moreover, since X is assumed to be Q−factorial for any
vertex p0 of P there are precisely n facets F1, ..., Fn of P intersecting p0, numbered so that the
corresponding normals define a positively oriented bases in Rn [33]. Fixing a vertex p0 of P we
denote by P ′ the image of P under the map

(3.12) p 7→
( 〈lF1

, p〉+ aF1

aF1

, ...,
〈lFn , p〉+ aFn

aFn

)
,

which is a polytope in [0,∞[n. Moreover, assuming that 0 is the barycenter of P the barycenter
of P ′ is (1, ..., 1). By [10, Thm 1.5] the volume Vol(P ′) of any such polytope is maximal when
P ′ is (n+ 1) times the unit-simplex in [0,∞[n with vertex at (0, ..., 0). Hence,

(3.13) Vol(P′) ≤ (n + 1)n/n!, Vol(P ′) =
δ

aF1
· · · aFn

Vol(P )

where δ is the determinant of the map p 7→ (〈lF1
, p〉 , ..., 〈lFn , p〉) . Thus δ is a positive integer

and δ = 1 iff the map is invertible, i.e. if and only if lF1
, ..., lFn generate Zn, which is equivalent

to the Tc−invariant neighbourhood U0 corresponding to the vertex p0 being biholomorphic to
Cn [33]. Hence, if X is singular (i.e. X is not non-singular), then there must be some vertex p0

with δ ≥ 2. Since aFi = 1 this concludes the proof.
To prove the second point we employ a similar argument. This time, for X possibly not

Q-factorial, there might be more than n facets intersecting a vertex p0. Still, there are at least
n facets intersecting at p0, and we can construct the map 3.12 by choosing any n of them. Next
note that if δ = 1, the map and its inverse have integer coefficients (since aFi = 1 when X is
Fano) and since p0 is mapped to 0, p0 ∈ Zn. Since p0 was arbitrary, it follows that P is a lattice
polytope and hence X is Gorenstein. Thus δ ≥ 2 and we are done. �

The volume bound in the previous lemma implies the volume bound in Lemma 3.8 is satisfied:

(3.14)
(n+ 1)n

2n!
≤ 2nn−1

(n− 1)!
⇐⇒ (1 + 1/n)

n ≤ 4.

The lhs in the latter inequality increases to e, which is, indeed, smaller than 4. This proves
Theorem 1.2 in the singular cases. Finally, in the case that X is non-singular there are, for any
given dimension n only a finite number of cases to check in order to verify the volume bound
in Lemma 3.8. When n ≤ 6 we may apply the database [72] of all non-singular Fano varieties
of dimension n. The condition that the barycenter of P vanishes, corresponds in the data base
to the condition “zero dual barycentre”. Adding the condition (−KX)n ≥ n!vol(Pn−1 × P1) the
database only furnishes Pn and Pn−1 × P1, as desired.

3.2.1. Remarks on the “gap hypothesis”. In order to extend the proof of Theorem 1.2 to a any
dimension n one would need to establish the following conjecture (established above under the
conditions in Theorem 1.2):

23



Conjecture 3.10. (the “gap hypothesis”). For any n−dimensional toric K-semistable Fano
manifold X different from Pn, vol(X) ≤ vol(Pn−1 × P1).

This conjecture might even hold without the toric assumptions in any dimension (as pointed
out to us by Ziquan Zhuang this appears to be a folklore conjecture). For example, when n = 3
and X is non-singular it follows from the well-known classification of three dimensional Fano
manifolds (see the “big table” in [2, Section 6]) that the only Fano manifolds X, different from P3,
which do not satisfy the inequality in question are P3 blown-up in one point and P(O⊕O(2)). But
both of these are K-unstable, i.e. they are not K-semistable. Indeed, these two Fano manifolds
are toric and if they were K-semistable they would satisfy the gap hypothesis, by the toric case
(n ≤ 6) applied to n = 3. Let us also point out that in the toric case it is only Pn−1 × P1 that
saturates the inequality in the “gap hypothesis” when n ≤ 6 and it seems thus natural to ask if
this is also the case when n > 6? However, in the general non-toric case the inequality is also
saturated by the non-singular quadratic hypersurface X2 in Pn+1, i.e. the base of the Ordinary
Double Point (ODP). Moreover, as pointed out to us by Yuji Odaka, in the general case our
“gap hypothesis” is reminiscent of the ODP-conjecture in [87], very recently settled in the toric
case [70]. More precisely, in our setup, the ODP-conjecture implies that

(3.15) vol(X) ≤ vol(Pn−1 × P1)(n/I(X)),

where I(X) denotes the Fano index of X (i.e. largest positive integer such that KX/I(X) is
a line bundle). However, I(X) ≤ n when X 6= Pn (with equality iff X = X2) and hence the
inequality 3.15 is weaker than our “gap hypothesis”.

3.2.2. The case of products in any dimension.

Lemma 3.11. The “gap hypothesis” holds when X is the product of K-semistable Fano varieties
X1, ...., XM (not necesseraily assumed toric).

Proof. By a simple induction argument we may as well assume that M = 2. Let, without
loss of generality, n := dim(X1) ≥ dim(X2) =: m > 1. Note that if m = 1 we are done
since then, vol(X) = vol(X1)vol(X2) ≤ vol(PN−1)vol(P1) = vol(PN−1 × P1) using that, by
Fujita’s inequality 1.1, complex projective space maximizes the volume among K-semistable
Fano varieties in each dimension. Using again that complex projective space maximizes the
volume in each given dimension and defining for brevity ek := (1 + 1

k )k we get vol(X) =
vol(X1)vol(X2) ≤ vol(Pn)vol(Pm)

=
(n+ 1)n

n!

(m+ 1)m

m!
=

(n+ 2)n+1

(n+ 1)!

mm−1

(m− 1)!
(
n+ 1

n+ 2
)n+1(

m+ 1

m
)m

=
(n+ 2)n+1

(n+ 1)!

mm−1

(m− 1)!

em
en+1

<
(n+ 2)n+1

(n+ 1)!

mm−1

(m− 1)!
= vol(Pn+1)vol(Pm−1)

where in the last inequality we have used that ek is increasing in k. We may continue in similar
manner until we have vol(PN−1 × P1) in the right hand side and we are done. �

As explained in the previous section, it follows from the previous lemma that Conjecture 1.1
holds when X is a product of toric arithmetic Fano varieties, i.e. X = X1 × · · · × XM , where Xi
is endowed with its canonical integral structure.
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3.3. The height of toric Kähler-Einstein metrics; proof of Theorem 1.3. By Prop 3.7
it only remains to prove the lower bound. Using the notation in the proof of Prop 3.7 we have
that, for any continuous convex function ψ on Rn such that ψ − ψP is bounded,

2(−KX )n+1/vol(−KX) ≥ −
∫

P

ψ∗dy/Vol(P) + log

∫

Rn
e−ψdx+ n log π

In particular, taking ψ = ψP the first term in the right hand side vanishes. Moreover,

I :=

∫

Rn
e−ψP dx = n!Vol(P ∗),

where P ∗ denotes the polar dual of P, i.e. P ∗ consists of all x ∈ Rn such that x · p ≤ 1 for all
p ∈ P. Indeed,

I =

∫

[0,∞[

e−t(ψP )∗dx =

∫
e−t

dV (t)

dt
dt =

∫
e−tV (t)dt =

∫ ∞

0

e−ttndtVol(P ∗),

where V (t) is the Lebesgue volume of {ψP < t} i.e. of tP ∗. Hence,
2(−KX )n+1 ≥ Vol(P ) (log (n!Vol(P ∗)) + n log π) .

Since, by definition, Vol(P ∗)Vol(P ) ≥ mn this concludes the proof of the lower bound in the
theorem. Next, by [51, Cor 1.8] (see also [14])

mn ≥ (
π

2e
)n−1(n+ 1)n+1/(n!)2 = (

π

2e
)n−1 (n+ 1)

n!
σn,

where σn = vol(Pn). Since Vol(P ) ≤ σn (by 3.10) this means that

n!πnmnVol(P )−1 ≥ n!πnmnσ
−1
n = π(

π2

2e
)n−1(n+ 1) > 1

proving the positivity in the theorem.

3.4. Examples. We next provide examples of families of toric varities X for which the height
of the corresponding Kähler-Einstein can be explicitely computed as a function of vol(X) of the
same form as in Theorem 1.3. The examples are based on the following

Proposition 3.12. Let X1 and X2 be two K-semistable toric Fano varieties of dimension n with
moment polytopes P1 and P2 such that P2 = AP1 for an invertible linear transformation A (the
polytopes are linearly equivalent). Denote the canonical integral models of X1 and X2 by X1 and
X2 respectively. Then, with heights taken with respect to the volume-normalized Kähler-Einstein
metrics,

(−KX2
)n+1/(n+ 1)!

(−KX2
)
n
/n!

=
(−KX1

)n+1/(n+ 1)!

(−KX1
)
n
/n!

− 1

2
log detA.

As a consequence, for X a K-semistable toric Fano variety of dimension n,

(3.16) (−KX )n+1 =
(n + 1)!

2
vol(X) log

(
a

vol(X)

)

where a is a constant independent of the choice of X within a class of toric varieties with linearly
equivalent moment polytopes. More precisely,

(3.17) a = vol(X) exp(
2(−KX )n+1/(n+ 1)!

vol(X)
)

and Proposition 3.12 ensures the claimed independence.
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Proof. (of Proposition 3.12) Recall that, with heights taken with respect to Kähler-Einstein
metrics,

(−KX2)n+1/(n+ 1)!

(−KX2
)
n
/n!

= −1

2
sup
φ
− 1

vol(P2)

∫

P2

φ∗(p)dp+ log

∫

Rn
exp(−φ(x))dx.

Changing variables in the integrals, p 7→ Atp′ and x 7→ Ax′ we get

(−KX2
)n+1/(n+ 1)!

(−KX2
)
n
/n!

= −1

2
( sup
φ(A·)

− 1

vol(P1)

∫

P1

φ∗(Atp′)dp′+log

∫

Rn
exp(−φ(Ax′))dx′+log detA).

Next we rename φ′ = φ(A·) and use that then φ′∗ = φ∗(At·) to get the result. �

Example 3.13. Recall the K-semistable toric Fano varieties Xq,p parametrized with two prime
numbers from Example 3.1. The corresponding polytope P (−KXp,q ) is the image of the polytope
P (−KP1×P1) = conv{(1, 1), (1,−1), (−1, 1), (−1,−1)} under the linear map A given in matrix

form by
[ 1

2p
1
2p

−1
2q

1
2q

]
. Thus the family F = {P1 × P1, Xp,q : p, q prime} comprise an example of

a family of K-semistable toric Fano varieties with linearly equivalent moment polytopes. Thus
by 3.16, for X ∈ F ,

(−KX )n+1 =
(n + 1)!

2
vol(X) log

(
a

vol(X)

)

with, by 3.17, 3.6 and a simple computation,

a = vol(P1 × P1) exp(
2(−KP1×P1)n+1/(n+ 1)!

vol(P1 × P1)
) = 4 exp(2− log π2).

Recall also that vol (−KXp,q ) = 2/(pq) so that in this family the heights with respect to the
Kähler-Einstein metrics are explicitely computed by the previous formula.

4. Sharp bounds on Donaldson’s toric Mabuchi functional

Let (X,L) be a polarized complex manifold and denote by H(X,L) the space of all smooth
metrics ψ on L whose curvature form ddcψ is positive, ddcψ > 0.

4.1. The Mabuchi functional (recap). The Mabuchi functional M on H(X,L) is defined,
up to addition by a constant, by declaring that its differential on H(X,L) at a given point ψ is
represented by the following measure on X :

(4.1) dM|ψ := (−S(ψ) + a)
(ddcψ)n

n!
, a := n(−KX) · Ln−1/Ln,

where S(ψ) denotes the scalar curvature of the Kähler form (ddcψ), i.e. the trace of the Ricci
curvature:

S(ψ)
(ddcψ)n

n!
:= Ric (ddcψ) ∧ (ddcψ)n−1

(n− 1)!
.

Recall that the Ricci curvature Ric(ddcψ) of the Kähler form ddcψ is the (1, 1)−form defined
as the curvature of the metric on −KX induced by the volume form of ddcψ. We have followed
Donaldson’s multiplicative normalizations in [38, formula 3.2.1], which differ from the original
definition in [65], where the measure (ddcψ)n

n! on X is volume-normalized. At any rate, formula
4.1 only determines the Mabuchi functionalM up to an additive constant.
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4.1.1. The case when X is a Fano manifold and L = −KX . We now specialize to the case when
L = −KX and note that a choice of reference metric ψ0 in C0(L)∩PSH(L) induces a particular
choice of Mabuchi functional, i.e. a functional whose differential satisfies formula 4.1, that we
shall denote by Mψ0

. This is a consequence of the thermodynamical formalism introduced in
[5], which expresses

(4.2) Mψ0
(ψ) := vol(−KX)Fψ0

(MA(ψ)) ,

where MA(ψ) is the probability measure on X defined by the normalized volume form of the
Kähler metric ddcψ :

(4.3) MA(ψ) :=
1

n!
(ddcψ)n/vol(L)

and Fψ0
(µ) denotes the free energy functional on the space P(X) of all probability measures

on X,defined as follows:

(4.4) Fψ0(µ) := −Eψ0(µ) + EntdV0(µ) ∈]−∞,∞]

Here EntdV0
(µ) denotes the entropy of µ relative to the volume form dV0 on X induced by ψ0

(i.e. dV0 = e−ψ0 in the notation of Section 2.1.2) defined by

EntdV0(µ) :=

∫
log

µ

dV0
µ

when µ ∈ L1(X, dV0) and otherwise EntdV0
(µ) := ∞. Furthermore, Eψ0

(µ) is the pluricomplex
energy of µ, relative to ψ0, introduced in [4], which may be defined as a Legendre-Fenchel
transform of the functional Eψ0/vol(L) (defined by formula 2.11). For our purposes it will be
enough to define Eψ0

(µ) when µ is of the form µ = MA(ψ) for ψ in C0(L) ∩ PSH(L) :

(4.5) Eψ0
(MA(ψ)) =

Eψ0(ψ)

vol(L)
−
∫

X

(ψ − ψ0)MA(ψ).

We recall that formula 4.2 follows readily from the fact that on the subspace of all volume forms
µ in P(X) the differential of Eψ0

at µ ∈ P(X) is represented by the function ψ0 − ψµ :

dEψ0|µ = −(ψµ − ψ0)

(this formula is dual to formula 2.12 in the sense of Legendre transforms; see [5]).

Remark 4.1. Formula 4.2 defines Mψ0
(ψ) on the space C0(L) ∩ PSH(L) as a function tak-

ing values in ] − ∞,∞]. More generally, the functional Mψ0
(ψ) is well-defined as soon as

E(MA(ψ)) <∞ (see [5, 9]). For ψ smooth formula 4.2 is essentially equivalent to a formula for
the Mabuchi functional appearing in [91] and [27].

4.1.2. The case when X is a singular Fano variety. In the case when X is a singular Fano
variety we will denote by H(X,−KX) the space of all continuous metrics ψ on L such that ψ is
smooth on the regular locus Xreg of X and ddcψ > 0 on Xreg.

4.2. Proof of Theorem 1.5. First recall the following basic inequality that holds on any Fano
variety [9, Lemma 4.4]:

(4.6) Fψ0
(MA(ψ)) ≥ Dψ0

(ψ)
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as follows from the non-negativity of the relative entropy between two probability measures (or
Jensen’s inequality). In fact, the following identity holds [9, Lemma 4.4]:

(4.7) inf
C0(L)∩PSH(L)

Fψ0
(MA(ψ)) = inf

C0(L)∩PSH(L)
Dψ0

(ψ),

(the two infima above may, equivalently, be restricted to H(X,L); see the regularization result
in [13]).

Combining Theorem 1.2 with the inequality 4.6 the proof is concluded by invoking the fol-
lowing formula relatingMψP (where ψP is the canonical toric reference defined by formula 3.3)
to Donaldson’s toric Mabuchi functional

(4.8) M−KX (ψ) :=

∫

∂P

ψ∗dσ − n
∫

P

ψ∗dx−
∫

P

log det(∇2ψ∗)dx,

where ψ∗ denotes the Legendre transform of the T−invariant metric ψ ∈ H(X,−KX) and dσ is
the measure on ∂P, absolutely continuous wrt the (n−1)−dimensional Lebesgue measure dλ∂P ,
defined by dσ = dλ∂P / ‖lF ‖ on a facet F of ∂P, where ‖lF ‖ denotes the Euclidean norm of a
primitive normal vector to F.

Lemma 4.2. Let X be an n−dimensional toric Fano variety. The following identity holds on
the space of all T−invariant metrics in H(X,−KX) :

MψP =M−KX − vol(−KX) log vol(−KX)

Proof. This formula is essentially the content of [8, Prop 4.6], but since the normalizations are
a bit different we recall the proof. First identifying a toric metric ψ with a convex function on
Rn (as in Section 3.1.2) formula 4.2, combined with formula 4.5, yields

MψP (ψ) = −EψP (ψ) +

∫

Rn
(ψ − ψP )(ddcψ)n/n! +

∫

Rn
log

(
MA(ψ)

e−ψP dx

)
vol(−KX)MA(ψ) =

=

∫

P

ψ∗dλ+

∫

Rn
ψ(ddcψ)n/n! +

∫

Rn
log det(∇2ψ) det(∇2ψ)− vol(−KX) log vol(−KX).

By [8, Lemma 4.7] making the change of variables y = ∇ψ the second term above may be
expressed

(4.9)
∫

Rn
ψ(ddcψ)n/n! =

∫

∂P

ψ∗dσ − (n+ 1)

∫
udp,

giving

MψP (ψ) =

∫

∂P

ψ∗dσ − n
∫

P

ψ∗dλ+

∫

Rn
log det(∇2ψ) det(∇2ψ)− vol(−KX) log vol(−KX).

Again making the change of variables y = ∇ψ in the remaining integral over Rn concludes the
proof, using the standard relation det(∇2ψ)(x) det(∇2ψ∗)(∇ψ(x)) = 1 (which follows from the
fact that the map y 7→ ∇ψ∗(y) is the inverse of x 7→ ∇ψ(x)). �

5. Relations to the arithmetic Mabuchi functional

Given an integral model (X ,L) of a polarized variety (X,L) consider the arithmetic Mabuchi
functional M(X ,L) on H(X,L) defined by

M(X ,L)(ψ) :=
a

(n+ 1)!
Ln+1

+
1

n!
KX · L

n
, a = −n(KX · Ln−1)/Ln
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where L = (L, ψ) and KX is endowed with the metric induced by the measure MA(ψ) on
X, i.e. the normalized volume form of the Kähler form ddcψ. As discussed in Section 1.4
this functional coincides, up to additive and multiplicative normalizations, with the arithmetic
Mabuchi functional introduced in [77].

Lemma 5.1. The differential of the functional ψ 7→ 2M(X ,L)(L, ψ) on H(X,L) satisfies the
defining formula 4.1 of the Mabuchi functional.

Proof. As pointed out in [77] this formula can be deduced from the formula for the Mabuchi
functional in [91, 27]. But for completeness and to check the normalizations we provide a simple
direct proof. First recall the following property of arithmetic intersection numbers which holds
if L0 → X is the trivial line bundle (which is a consequence of the restriction formula [19, Prop
2.3.1]):

(5.1) (L0, φ0) · (L1, φ0) · ... · (Ln, φn) =
1

2

∫

X

φ0dd
cφ1 ∧ · · · ∧ ddcφn,

where φ0 is the globally well-defined function on X defined by formula 2.1 when eU is the
standard global trivialization 1 of the trivial line bundle over X, i.e. φ0/2 = − log ‖s‖φ0

, where
s is a global trivialization of L. In particular, differentiating along a curve t 7→ ψt in H(X,L)
and using the symmetry of arithmetic intersection numbers gives

d

dt

(
(L, ψt)n+1

)
= (n+ 1)

(
L0,

dψt
dt

)
· (L, ψt)n =

1

2

∫

X

dψt
dt

(ddcψ)n

where dψt
dt is a globally well-defined function on X and can thus be identified with a metric on

the trivial line bundle that we denote by L0. Likewise, denoting by ρt a local density forMA(ψt)
with respect the Euclidean measure defined by local holomorphic coordinates,
(5.2)
d

dt
((KX , log ρt) (L, ψt)n) = (KX , log ρt)n

(
L, dψt

dt

)
· (L, ψt)n−1

+

((
L0,

d

dt
log ρt

)
· (L, ψt)n

)

where we have used Leibniz rule. Applying formula 5.1, the second term above may, after
multiplication by 2, be expressed as

=

∫

X

d

dt
log ρt(dd

cψt)
n = n!vol(L)

∫

X

d

dt
log ρtρt = n!vol(L)

d

dt

∫

X

ρt = 0,

using in the last equality that
∫
X
ρt = vol(L) for any t. Likewise, applying formula 5.1 to the

first term in formula 5.2 yields

2 (KX , log ρt)

(
L, dψt

dt

)
/n =

∫

X

dψt
dt

ddc (log ρt)∧(ddψt)
n−1 = −

∫

X

dψt
dt

Ric(ddcψt)∧(ddψt)
n−1.

All in all, this concludes the proof. �

The following proposition relates the arithmetic Mabuchi functional M(X ,−KX ) to Donald-
son’s toric Mabuchi functionalM−KX (formula 4.8):

Proposition 5.2. Given a toric Fano variety X denote by X its canonical integral model. Then
the following formula holds for any T−invariant metric in H(X,−KX) :

2M(X ,−KX ) =M−KX − vol(−KX) log vol(−KX)
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Proof. In this case a = n and we can thus decomposeM(X ,L)(ψ) as

(5.3)
1

(n+ 1)!
Ln+1

+
1

n!
(L+KX ) · Ln = − 1

(n+ 1)!
Ln+1

+
1

2

∫
log(

MA(ψ)

e−ψ
)(ddcψ)n/n!,

where, in the last equality, we have exploited that L+KX is trivial so that formula 5.1 applies.
Applying formula 3.7 to the first term in the rhs above thus gives

2M(X ,L)(ψ) := −EψP (ψ) +

∫
log(

MA(ψ)

e−ψ
)(ddcψ)n/n! =

= vol(−KX)

(
− 1

V (X)
EψP (ψ) + 〈ψ − ψP ,MA(ψ)〉+

∫
log(

MA(ψ)

e−ψP
)MA(ψ)

)
.

The rhs in the last equation above equals MψP (ψ) (by definition 4.2). Invoking Lemma 4.2
thus concludes the proof. �

Next, consider an arithmetic Fano variety X (defined in Section 2.2.1). Denote by DZ(ψ)
the functional defined by formula 2.15, corresponding to the integral model L = −KX . In this
arithmetic setup the following variants of the inequality 4.6 and the identity 4.7 hold.

Proposition 5.3. When L = −KX the following relations hold:

2M(X ,−KX ) ≥ vol(−KX)DZ

and
inf

C0(L)∩PSH(L)
2M(X ,L) = vol(−KX) inf

C0(L)∩PSH(L)
DZ.

Proof. First note that the second term in the decomposition 5.3 of M(X ,−KX )(ψ) is precisely
the entropy of (ddcψ)n/n! relative to e−ψ :

M(X ,−KX )(ψ) = − (L, ψ)n+1

(n+ 1)!
+ Ente−ψ ((ddcψ)n/n!) .

Since the entropy between two probability measure is non-negative (by Jensen’s inequality) this
proves the inequality in the proposition when the measure e−ψ has unit total volume. Then
general case then follows from a simple scaling argument. Next, to prove the identity in the
proposition fix a reference metric ψ0 in H(X,−KX) and rewrite the previous formula as

(5.4)
M(X ,−KX )(ψ)

vol(−KX)
= −

(
(L, ψ)n+1

(n+ 1)!vol(−KX)
+ 〈ψ − ψ0,MA(ψ)〉

)
+

1

2
Ente−ψ0 (MA(ψ)) .

Accordingly, expressing (L, ψ)n+1 = (L, ψ0)n+1 + (n+ 1)!Eψ0(ψ)/2, using Lemma 2.9, gives

M(X ,−KX )(ψ)

vol(−KX)
= −1

2
Fψ0

(MA(ψ))− 1

(n+ 1)!
(L, ψ0)n+1,

where Fψ0
(µ) is the free energy functional 4.4. The proof is thus concluded by invoking the

identity 4.7 and using Lemma 2.9 again. �

Remark 5.4. When −KX admits a Kähler-Einstein metric φKE both infima in the previous
proposition are attained at φKE [9]. The identity then follows directly from the Kähler-Einstein
equation, giving MA(φKE) = e−φKE , when φKE is volume-normalized.

In Section 6.2 the inequality in the previous proposition will be generalized to any model
(X ,L) of (X,−KX), by introducing an arithmetic Ding functional D(X ,L), coinciding with the
functional DZ under the conditions in the previous proposition.

30



6. Discussion and outlook

6.1. The function field analog. Recall that, according to the philosophy of Arakelov geom-
etry, the function field analog of a metrized arithmetic variety X → Spec Z is a flat projective
morphism

X → B

from a normal complex projective variety X to a fixed regular complex projective curve B. In
particular, the analog of the setup of arithmetic Fano varieties in Conjecture 1.1 appears when
X is normal, the relative anti-canonical divisor −KX /B defines a relatively ample Q−line
bundle and the generic fiber is K-semistable. The analog of the inequality in Conjecture 1.1
does hold in this situation, but not the uniqueness statement. More precisely, if (X,−KX) is
assumed K-semistable then it follows from [31] (see the beginning of [31, Section 1.7.1]) that

(6.1) (−KX /B)n+1 ≤ 0.

Equality holds for the trivial fibrations X = X ×B for any K-semistable X. In particular,

(6.2) (−KX /B)n+1 ≤ (−KPn×B/B)n+1(= 0)

which is the function field analog of the inequality in Conjecture 1.1. Note that when B = P1

and the standard C∗−action on P1 lifts to X , the inequality 6.1 follows directly from the
definition of K-semistability.

Remark 6.1. The analog of the volume-normalization (appearing in Conjecture 1.1) is automat-
ically satisfied in the function field case. Indeed, the second term in the corresponding Ding
functional D(XX /B,−KX /B), discussed in the following section, then vanishes.

In contrast to Conjecture 1.1 projective space thus plays no special role in the function field
case (since equality holds in the inequality 6.2 for any product X = X ×B). Conversely, it
should be stressed that the analog of the inequality 6.1 fails in the arithmetic situation (by
the strict positivity in Lemma 3.6). Hence, the function field analogy is somewhat deceptive.
Our general motivation for Conjecture 1.1 is rather the analogy with the corresponding result
over C (corresponding to the trivial morphism X → Spec C) and the fact that projective space
maximizes the degree of −KX [46], among K-semistable X of a given dimension (as well as a
range of other positivity properties of −KX ; see, for example, the discussion and references in
the introduction of [62]).

6.2. A generalization of Conjecture 1.1. Consider a Fano variety XF defined over a number
field F, i.e. a field extension F of Q of finite degree [F : Q]. Let (X ,L) be a normal irreducible
model of (XF ,−KXF ) over the ring of integers OF of F such that KX/SpecOF is defined as a
Q−line bundle. We will denote by ψ a collection of continuous psh ψσ metrics on −KXσ as σ
ranges over all embeddings of the field F into C, where Xσ denotes the corresponding complex
projective varieties. To the model (X ,L) we attach an arithmetic Ding functional, defined as
follows. First consider a model (X ,L) of (XF ,−KXF ) such that L+KX/SpecOF defines a bona
fide line bundle. Then

D(X ,L)(ψ) := − (L, ψ)n+1

[F : Q](n+ 1)(−KX)n
+

1

[F : Q]
d̂egπ∗(L+KX/SpecOF ),

where the second term above denotes the arithmetic (Arakelov) degree of the line bundle
π∗(L + KX/SpecOF ) → SpecOF , endowed with the L2−metric induced by the metric ψ on
L (i.e. on −KX). More generally, when KX/SpecOF is merely defined as a Q−line bundle we
fix a positive integer r such that r(L + KX/SpecOF ) is defined as a line bundle and replace
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d̂egπ∗H0(X , (L + KX/SpecOF ) with r−1d̂egπ∗H0(X , (r(L + KX/SpecOF )), where now π∗(r(L +

KX/SpecOF )) is endowed with the L2/r−metric induced by ψ. Concretely, this means that

(6.3) 2r−1d̂egπ∗(r(L+KX/SpecOF )) = −
∑

σ

log

∫

Xσ

|sr|2/re−ψσ ,

where sr is a generator of the rank one OF−module H0(X , r(L+KX/SpecOF )) and |sr|2/re−ψσ
denotes corresponding measure on Xσ.

The functional D(X ,L) coincides with the functional DZ, defined in formula 2.15, up to an
additive constant and a factor of two. Indeed, replacing sr with 1 ∈ H0(Xσ,C) in formula 6.3
and applying the product formula in OF gives

(6.4) [F : Q]D(X ,L)(ψ) := DZ(ψ)/2 +
1

r
log |p|

∑

p

ordp(1),

where ordp(1) denotes the order of vanishing at the closed point p in SpecOF of the rational
section ”1” of the line bundle π∗(r(L+KX/SpecOF ))→ SpecOF coinciding with 1 ∈ H0(XQ) on
the generic fiber and |p| denotes the norm of the ideal in OF defined by p (i.e., the cardinality
of the corresponding residue field; in particular, log |p| ≥ 0).

Remark 6.2. The functional D(X ,L)(ψ) is the arithmetic analog of the degree of the Ding line
bundle of a test configuration (X ,L ) for (X,−KX) introduced in [6]. As shown in [47] a Fano
variety X is K-semistable iff the degree of the Ding line bundle is non-negative for any test
configuration (X ,L ).

Now consider the following invariant of the Fano variety XF :

D(XF ) := (−KX)n inf D(X ,L),

where the inf runs over all integral models (X ,L) of (X,−KX) and metrics ψ as above.

Conjecture 6.3. Let XF be a K-semistable Fano variety defined over a number field F. Then

D(XF ) ≥ (−KPn)nD(PnZ ,−KPnZ
)(ψFS),

where ψFS denotes the volume-normalized Fubini-Study metric ψFS on −KPn . Equivalently, for
any model (X ,L) and continuous psh metric ψ, normalized so that d̂egπ∗H0(X , (L+KX/SpecOF ) =
0,

1

[F : Q]
(L, ψ)n+1 ≤ (−KPnZ , ψFS)n+1.

Moreover, equality holds if and only if (X ,L) = (PnZ,−KPnZ ) and ψ coincides with ψFS , up to
the action of an automorphism of Pn.

For example, by formula 6.4, when F = Q and L equals −KX/SpecOF the second inequality
in the previous conjecture specializes to Conjecture 1.1 if π∗OX coincides with OF (which
ensures that the integral lattice in H0(X,OX) corresponding to H0(π∗O(X )) is generated by
the constant function 1 on X). This condition can always be achieved after a base change, using
Stein factorization (thanks to Dennis Eriksson and Gerard Freixas i Montplet for pointing this
out). We expect that any integral model (X ,L) which is globally K-semistable realizes the
infimum defining the invariant D(XF ), inspired by Odaka’s conjecture discussed in Section 1.4.

In general, the following inequality between the arithmetic Mabuchi functional and the arith-
metic Ding functional holds, showing, in particular, that Conjecture 6.3 implies Conjecture 1.6
concerning Odaka’s modular invariant.
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Proposition 6.4. Let (X ,L) be a normal irreducible model of (X,−KX) over Spec OF which
is Q−Gorenstein. Then

M(X ,L)(ψ) ≥ vol(-KX)D(X ,L)(ψ)

with equality iff ψ is a Kähler-Einstein metric and L = −KX/SpecOF .

Proof. To simplify the notation we assume that r = 1 and F = Q (but the proof in the general
case is essentially the same). Let s be a generator of the rank one module H0(X ,L+K), where
K := KX/SpecOF . It follows directly from the definitions that we need to prove that

1

n!Ln
(L+K) · Ln − d̂egπ∗(L+KX/SpecOF ) ≥ 0

with equality iff the conditions in the proposition hold. After scaling the metric we may as well
assume that d̂egπ∗(L+KX/SpecOF ) = 0, i.e. that |s|2e−ψ is a probability measure on X. Then

2

n!Ln
(L+K) · Ln ≥

∫

X

log(
MA(ψ)

|s|2e−ψ )MA(ψ) =: Ent|s|2e−ψ (MA(ψ))

Indeed, by the restriction formula for arithmetic intersection numbers [19, Prop 2.3.1]

(6.5)
2

n!Ln
(L+K) · Ln =

∫

X

log

(
MA(ψ)

|s|2e−ψ
)
MA(ψ) + (s = 0) · Ln,

where (s = 0) denotes the subscheme of X cut out by s. The second term above is non-negative
since (s = 0) is supported on the closed fibers (by assumption s is non-vanishing over the
generic fiber). Moreover, since L is relatively ample the term vanishes iff s is globally non-
vanishing, i.e. L + K is trivial. Finally, the first term above is proportional to the relative
entropy Ent|s|2e−ψ (MA(ψ)) between the probability measures MA(ψ) and |s|2e−ψ and thus
non-negative and vanishes iff the two probability measures coincide, i.e. ψ is Kähler-Einstein. �

6.3. Comparison with bounds on Bost-Zhang’s normalized heights. The arithmetic
Ding functional D(X ,L) is reminiscent of Bost’s normalized height hnorm , introduced in [18] in
the general setup of polarized variety (XF , LF ) defined over a number field F :

hnorm (L, ψ) :=
(L, ψ)n+1

[F : Q](n+ 1)(LF )n
− 1

[F : Q]N
d̂egπ∗(X ,L),

assuming that the rank N of the vector bundle π∗(X ,L)→ SpecOF is non-zero and π∗(X ,L) is
endowed with the L2−norm induced by the continuous psh metrics ψσ on Lσ and the volume
forms MA(ψσ) on Xσ (defined by formula 4.3). When LF is very ample it is shown in [18] that
the functional hnorm (L, ·) is bounded from below iff the Chow point of (XF , LF ) is semistable
wrt the action of the group GL(N,F ) on the Chow variety (in the sense of Geometric Invariant
Theory). More precisely, it it shown in [18] that the semi-stability in question is equivalent to
a lower bound on Bost’s intrinsic normalized height of (XF , LF ) :

inf hnorm > −∞
where the infimum runs over all models (X ,L) and metrics ψ as above. In fact, by [18, Prop
2.1] and [101, Thm 4.4] the Chow-semistability in question is equivalent to the following explicit
lower bound:

(6.6) hnorm (L, ψ) ≥ −1

2

N+1∑

n=1

n∑

m=1

1

m
− 1

2
logN
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(it is moreover conjectured in [101] that the first term in the right hand side above may be
replaced by 0).

In this setup the role of the normalization d̂egπ∗H0(X , (L + KX/SpecOF ) = 0 in Conjecture
6.3 is thus played by the normalization d̂egπ∗H0(X ,L) = 0. However, in contrast to Conjecture
6.3 the lower bound 6.6 on hnorm (L, ψ) corresponds to a lower bound on (L, ψ)n+1 for any
normalized metric. Note also that one virtue of the normalization condition in Conjecture 6.3
is that it is comparatively explicit, since π∗(L + KX/SpecOF ) has rank one (so that formula
6.3 applies, showing that it is enough to assume that the volume forms |sr|2/re−ψσ on Xσ

are normalized). Another advantage of this normalization condition is that it applies to any
continuous metric ψ (at the price of replacing (L, ψ)n+1 with the χ−arithmetic volume of L, as
in Theorem 2.4).

Finally, we recall that when L is replaced by kL for a large positive integer k it follows from
[77, Thm 3.7] that there exists constants a and b (depending only on (XF , LF )) such that a > 0

(6.7) M(X ,L)(ψ)/Ln = hnorm (kL, ψ)− a logNk + b+ o(1),

as k → ∞, where Nk denotes the rank of π∗H0(X , kL) which diverges as k → ∞. Unfortu-
nately, the diverging term a logNk makes it impossible to infer lower bounds on M(X ,L)(ψ)
from lower bounds on hnorm (kL). Since M(X ,L)(ψ) coincides with D(X ,L)(ψ) when L equals
−KX/SpecOF this means that Conjecture 6.3 can not be deduced from bounds of the form 6.6 by
letting k (and hence N) tend to infinity.

6.4. Comparison with Odaka’s and Faltings’ modular heights. Finally, let us compare
our normalizations of the arithmetic Mabuchi functional with those of Odaka [78] and Faltings
[44]. First of all our multiplicative normalization for the arithmetic Mabuchi functionalM(X ,L)

(formula 1.6) are made so that ±M(X ,±KX ) = (±KX )n+1/(n + 1)!, assuming that F = Q (in
the general caseM(X ,L) is divided by [F : Q]). Moreover, as discussed in Section 1.4.1, we are
employing the metric on −KX induced by the normalized volume form ωn/Ln of the Kähler
form ω defined by a given metric ψ on L with positive curvature (i.e. ω = ddcψ). Comparing
with Odaka’s arithmetic Mabuchi functional, that we shall denote byM(O)

(X ,L)(ψ), thus yields

(6.8)
1

(n+ 1)!Ln
M(O)

(X ,L) =M(X ,L) +
1

2

Ln

n!
log(Ln/n!).

In the case that X is an abelian variety it was shown in [78] that the infimum of Odaka’s
arithmetic Mabuchi functional over all metrics on L with positive curvature coincides with
Faltings’ (modular) height [44], up to a multiplicative and additive constants depending on Ln.
Here we note that our additive normalizations are consistent with those of Faltings:

Proposition 6.5. Let X be a projective and flat scheme over Z and assume that KX is trivial.
For any relatively ample line bundle L over X

(6.9) inf
ψ

1

V
M(X ,L)(ψ) = − 1

2[F : Q]
log

1

2n

∣∣∣∣∣

∫

X(C)

Ω ∧ Ω̄

∣∣∣∣∣ ,

where Ω is a generator of H0(X ,KX ) and the inf ranges over all psh metrics ψ on L and
V := Ln/n!.

Proof. This is essentially equivalent to [78, Thm 2.11], using the relation 6.8. Anyhow, in
order to verify that all normalizations are consistent we provide a simple direct proof. Assume,
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to simplify the notation, that F = Q. Recall that Faltings’ modular height [44] is defined as
the arithmetic degree of π∗(X ,KX ), with respect to the L2−metric on H0(X,KX) defined by
‖Ω‖2 := 1

2n

∣∣∣
∫
X(C)

Ω ∧ Ω̄
∣∣∣ . This is precisely the right hand side in formula 6.9. As for the the

the left hans side it is is given by
∫

X

log

(
(ddcψ)n/V n!

in2/2

2n Ω ∧ Ω̄/ ‖Ω‖2

)
(ddcψ)n

V n!
=

∫

X

log

(
(ddcψ)n/V n!

in2/2

2n Ω ∧ Ω̄/ ‖Ω‖2

)
(ddcψ)n

V n!
− log ‖Ω‖2 .

(as follows readily from the definitions, just as in formula 6.5). Now, by Jensen’s inequality this
expression is minimal precisely when the two probability measures (ddcψ)n/V n! and 2−nin

2/2Ω∧
Ω̄/ ‖Ω‖2 coincide, which, equivalently, means that ddcψ is a Kähler-Einstein metric. By the
Calabi-Yau theorem such a metric exists for any given ample L, which concludes the proof. �

The previous proposition has the following consequence, when combined with well-known
properties of Faltings’ modular height of abelian varieties (cf. the discussion in relation to [78,
Thm 2.11] and [78, Section 2.3.2]). Consider a polarized abelian variety (XF0

, LF0
) defined

over a given number field F0. Then the infimum of vol(L)−1M(X ,L) over all metrics, finite
field extensions F, models over OF and positively curved metrics on L → XF(C) is attained
at any semi-stable reduction of the Néron model X of XF, when L is endowed with a Kähler-
Einstein metric. Moreover, in the particular case of elliptic curves it was observed in [35,
page 29] that the minimal value of the aforementioned infimum over all XF is attained at the
semistable reduction of the Néron model X0 of any elliptic curve with vanishing j−invariant
(X0 is uniquely determined for any sufficently large field extension). Thus the role of X0 among
all models of elliptic curves, is somewhat analogous to the role of PnZ in Conjectures 1.1, 1.6.
However, it should be stressed that in the setup of Fano varieties the choice of multiplicative
normalization is crucial. Indeed, while PnZ minimizes M(X ,−KX )(ψKE) over the canonical toric
integral models of all K-semistable toric Fano varieties X (assuming that n ≤ 6) it does not
minimize vol(−KX)−1M(X ,−KX )(ψKE). In fact, for all we know it could actually be the case
that vol(−KX)−1M(X ,−KX )(ψKE) is maximal on PnZ. For example, this turns out to be the case
in the more general setup of Fano orbifolds (not assumed toric) when X has relative dimension
one (a proof will appear in a separate publication).
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SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE TORIC FANO
VARIETIES II, THE LOG CASE

ROBERT J. BERMAN, ROLF ANDREASSON

Abstract. In our previous work we conjectured - inspired by an algebro-geometric result of
Fujita - that the height of an arithmetic Fano variety X of relative dimension n is maximal
when X is the projective space Pn

Z over the integers, endowed with the Fubini-Study metric,
if the the corresponding complex Fano variety is K-semistable. In this work the conjecture
is settled for diagonal hypersurfaces in Pn+1

Z . The proof is based on a logarithmic extension
of our previous conjecture, of independent interest, which is established for toric log Fano
varieties of relative dimension at most three, hyperplane arrangements on Pn

Z , as well as for
general logarithmic arithmetic Fano surfaces.

1. Introduction

This is a sequel to [2], where a conjectural arithmetic analog of Fujita’s sharp bound for the
degree (volume) of K-semistable Fano varieties over C was proposed, concerning arithmetic Fano
varieties X . In [2] the case when X is the canonical integral model of a toric Fano variety X
was settled when the relative dimension n is at most six (the extension to any n is conditioned
on a conjectural gap hypothesis for the algebro-geometric degree). Here we will, in particular,
show that the conjecture introduced in [2] holds for any diagonal Fano hypersurface X in Pn+1

Z
(see Section 1.1.3 below). The proof is based on the following extension of the conjecture in [2]
to the logarithmic setting, which is the main focus of the present work:

Conjecture 1.1. Let (X ,D) be an arithmetic log Fano variety. Then the following inequality of
arithmetic intersection numbers holds for any volume-normalized continuous metric on −(KX +
∆) with positive curvature current if (X,∆) is K-semistable:

(−K(X ,D))
n+1 ≤ (−KPnZ )n+1,

where −KPnC is endowed with the volume-normalized Fubini-Study metric. Moreover, if X is
normal equality holds if and only if (X ,D) = (PnZ, 0) and the metric is Kähler-Einstein, i.e.
coincides with the Fubini-Study metric up to the action of an automorphism of PnC.

By definition, an arithmetic log Fano variety (X ,D) is a projective flat scheme X over Z
together with an effective Q−divisor D on X such that

−K(X ,D) := −(KX +D)

defines a relatively ample Q−line bundle, where KX denotes the relative canonical divisor on X .
We also assume that the corresponding complex variety X is normal and thus defines a complex
Fano variety. Following standard procedure we denote by L a metrized line bundle, i.e. a line
bundle L on X endowed with an Hermitian metric over the complex points X of X . Arithmetic
intersection numbers of metrized line bundles were introduced by Gillet-Soulé in the context
of Arakelov geometry [7]. The top arithmetic intersection number of L is called the height of
L. The height of −KPnZ with respect to the volume-normalized Fubini-Study metric, appearing
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in the previous conjecture, is explicitly given by the following formula [1, Lemma 3.6], which,
essentially, goes back to [20, §5.4]:

(1.1) (−KPnZ )n+1 =
1

2
(n+ 1)n+1

(
(n+ 1)

n∑

k=1

k−1 − n+ log(
πn

n!
)

)
.

As for the notion of K-stability it originally appeared in the context of the Yau-Tian-Donaldson
conjecture for Fano manifolds X (see the survey [49] for recent developments, including connec-
tions to moduli spaces and the minimal model program in birational geometry). By [30] and [32,
Thm 1.6] a log Fano variety (X,∆) over C is K-polystable (which is a slightly stronger condition
than K-semistability) if and only if it admits a log Kähler-Einstein metric, i.e. a locally bounded
metric on X whose curvature current ω induces a Kähler metric with constant Ricci curvature
on the complement of ∆ in the regular locus of X. After volume-normalization such a metric
maximizes the height (−K(X ,D))

n+1 among all volume-normalized locally bounded metrics on
−(KX + ∆) with positive curvature (as shown precisely as in the case that D = 0 considered in
[2, Section 2.3]).

The K-semistability of (X,∆) implies that (X,∆) is Kawamata Log Terminal (klt) in the
usual sense of birational geometry (see Remark 2.1). An important class of klt log Fano varieties
(X,∆) is provided by (smooth) Fano orbifolds, where the coefficients of ∆ are of the form
(1 − 1/mi) for positive integers mi. Diophantine aspects of Fano orbifolds have recently been
explored in a number of works, building on Campana’s program [13] and its developments by
Abramovich [1] (see [46] for a very recent survey). In particular, a logarithmic generalization of
the Manin-Peyre conjecture for the density of rational points of bounded height on Fano varieties
is proposed in [41], which, for example, is addressed for log Fano hyperplane arrangements and
toric varieties in [11] and [40], respectively. See [4] for relations between height bounds, K-
stability and the Manin-Peyre conjecture.

1.1. Main results.

1.1.1. Toric log Fano varieties. We first consider the case when (X ,D) is the canonical integral
model of a toric log Fano variety (X,∆) (see [34, Section 2] and [12, Def 3.5.6]). One advantage
of the logarithmic setup is that on any given toric Fano variety X there exist an infinite number
of toric Q−divisors D such that −(KX + ∆) is a K-semistable log Fano variety. Building on [1],
where the case when D = 0 was considered, we show

Theorem 1.2. Let (X ,D) be the canonical integral model of a K-semistable toric log Fano
variety (X,∆). Conjecture 1.1 holds for (X ,D) under anyone of the following conditions:

• n ≤ 3 and X is Q−factorial (equivalently, X has at worst abelian quotient singularities)
• X is not Gorenstein or has some abelian quotient singularity

The starting point of the proof is the bound

(1.2)
(−K(X ,D))

n+1

(n+ 1)!
≤ 1

2
vol(X,∆) log

(
(2π2)n

vol(X,∆)

)
vol(X,∆) :=

−(KX + ∆)n

n!
,

shown precisely as in the case when ∆ = 0, considered in [1]. For X = Pn the previous theorem
is verified by an explicit calculation. In the remaining case, X 6= Pn, the bound in Conjecture
1.1 follows, just as in [1], from combining the bound 1.2 with the following logarithmic analog
of the “gap hypothesis” introduced in [1]:

(1.3) vol(X,∆) ≤ vol(Pn−1 × P1)
2



for any K-semistable n−dimensional Fano variety (X,∆) such that X 6= Pn. In the case that
X is singular the logarithmic gap hypothesis does hold in any dimension, just as in [1]. In the
non-singular case there is, for any dimension, only a finite number of toric Fano varieties X. For
n ≤ 6 these appear in the database [52], which, as observed in [1], settles the gap hypothesis
for n ≤ 6, when ∆ = 0. However, in the present case there is for any given toric variety X an
infinite number of toric divisors ∆ on X such that (X,∆) is a K-semistable Fano variety. In
order to establish the logarithmic gap-hypothesis 1.3 we thus introduce the following invariant
of a Fano manifold X :

S(X) := sup
∆
{vol(X,∆) : (X,∆)K-semistable log Fano}

and show, by solving the corresponding optimization problem, that S(X) ≤ vol(Pn−1 × P1)
when X 6= Pn and n ≤ 3.

The invariant S(X) and the corresponding maximizers ∆ appear to be of independent interest
in Kähler geometry. This is illustrated by some examples in Section 3.1, where we make contact
with a rigidity property of the corresponding log Kähler-Einstein metric, first exhibited in [43].

1.1.2. Hyperplane arrangements. We next turn to the case when X is the projective space over
the integers, X = PnZ and D is a hyperplane arrangement, i.e. its irreducible components are
hyperplanes.

Theorem 1.3. Conjecture 1.1 holds when X = PnZ and D is a hyperplane arrangement with
simple normal crossings.

The proof employs a convexity argument to reduce the problem to the case when D is toric,
which is covered by Theorem 3.1. The argument leverages the explicit characterization of K-
semistable hyperplane arrangements established in [24] and yields the following explicit bound:

(1.4)
(−K(X ,D))

n+1

(n+ 1)!
≤ 1

2
vol(X,∆) log

(
(n+ 1)ne2an

(n+ 1)!vol(X,∆)

)
, an =

(−KPnZ )n+1

(n+ 1)
n+1

with equality iff D is toric.

1.1.3. Application to diagonal hypersurfaces. Given a positive integer d and integers ai, consider
the diagonal hypersurface Xa of degree d in Pn+1

Z cut out by the homogeneous polynomial

n+1∑

i=0

aix
d
0,

The corresponding complex variety Xa is Fano if and only if d ≤ (n + 1) and is always K-
polystable (and, in particular, K-semistable); see, for example, [51] for an algebraic proof. Using
the results stated in the previous two sections we will establish Conjecture 1.1 for Xa, endowed
with the trivial divisor 0 :

Theorem 1.4. Conjecture 1.1 holds for any diagonal hypersurface Xa which is Fano (i.e. d ≤
n+ 1) when the divisor D is trivial. More precisely,

(−KXa)n+1 ≤ (−KPnZ )n+1 + (1− d)(n+ 2− d)n
n+1∑

i=0

log |ai|.

and the inequality is strict if d ≥ 2.
3



Note that the schemes Xa are mutually non-isomorphic over Z, for any given degree d of at
least two. In fact, in general, they are not even isomorphic over Q. The proof of the previous
theorem is first reduced to the case of a Fermat hypersurface, i.e. the case when ai = 1.
Expressing Xa as a Galois cover of PnZ the estimate 1.4 can then be applied with X = PnZ and ∆
the corresponding branching divisor, which reduces the problem to a simple toric case.

We recall that the Manin-Peyre conjecture has been settled for Fano hypersurfaces of suffi-
ciently small degree [39]. In particular, there is an extensive literature on the diagonal case (see,
in particular, [9] for Diophantine result with respect to random coefficients ai).

1.1.4. Arithmetic log surfaces. Consider a polarized arithmetic log surface (X ,D;L), i.e. an
arithmetic log surface (X ,D) endowed with a relatively ample line bundle L. Assume that
the complexification L ⊗ C is isomorphic to −K(X,∆) (where (X,∆) denotes, as before, the
complexification of (X ,D)). The arithmetic log Mabuchi functional of (X ,D;L) is defined by

(1.5) M(X ,D)(L) :=
1

2
L2

+K(X ,D) · L,

where K(X ,D) is endowed with the volume-normalized metric induced by the curvature current
ω of L (when D = 0 this coincides, up to normalization, with the arithmetic Mabuchi functional
introduced in [38]). For a given integral modelM(X ,D)(L) is minimized on a log Kähler-Einstein
metric, if such a metric exists, and then

M(X ,D)(L) = −(−K(X ,D))
2/2,

if the metric is volume-normalized and L = −K(X ,D).

Theorem 1.5. Let (X ,D;L) be a polarized arithmetic log surface (X ,D;L) such that the com-
plexification (X,∆) of (X ,D) is a K-semistable Fano variety and L ⊗ C = −K(X,∆). Then

M(X ,D)(L) ≥M(P1
Z,0)(−KP1

Z
) (= −1− log π)

where −KP1
Z
is endowed with the Fubini-Study metric. Moreover, equality holds iff (X ,D) is

isomorphic to (P1
Z, 0) and L is isomorphic to −KP1

Z
, endowed with a metric coinciding with the

Fubini-Study metric, up to the application of an automorphism of P1
Z and a scaling of the metric.

Corollary 1.6. Conjecture 1.1 holds for arithmetic log Fano surfaces.

In the setup of the previous theorem the corresponding complex variety X is always equal to
P1 and thus (X,∆) is a hyperplane arrangement. Accordingly, applying Theorem 1.3, the proof
of Theorem 1.5 is reduced to showing that the canonical integral model (Xc,Dc;−K(Xc,Dc)) of
(X,∆;−K(X,∆)) obtained by setting Xc = P1

Z and taking Dc to be the Zariski closure of ∆Q in
Xc minimizes M(X ,D)(L) over all integral models (X ,D;L) of (X,∆;−K(X,∆)), for any fixed
metric on −K(X,∆). This minimization property can be viewed as logarithmic version of Odaka’s
minimization conjecture (proposed in dimension in [38]). Our proof builds on [38], leveraging
log canonical thresholds. We also show that the minimum is uniquely attained for (P1

Z, 0). See
also [22] for very recent progress on Odaka’s minimization conjecture in another direction.

1.2. Outlook on the case of P1
Z endowed with a divisor with three components. Con-

sider now the special case of (P1,Dc), where Dc is the canonical model of a divisor ∆Q on P1 with
three components and −K(P1,∆Q) is endowed with the volume-normalized log Kähler-Einstein

4



metric. In this case an explicit formula for the canonical height (−K(P1
Z,Dc))

2 is established in
the sequel [3] to the present work. More precisely, expressing

∆Q =

3∑

i=1

wipi, V = 2−
3∑

i=1

wi > 0

(where V is the algebraic degree of −K(P1,∆Q)) it is shown in [3] that, when (P1,∆Q) is K-
polystable,

(1.6)
(−K(P1

Z,Dc))
2

2V
=

1

2
(1 + log π − log

V

2
)− γ(0, V2 ) +

∑3
i=1 γ(wi, wi + V

2 )

V
,

where γ(a, b) may be expressed in terms of Hurwitz zeta function ζ(s, x) and its derivative
ζ ′(s, x) wrt s :

γ(a, b) = F (b) + F (1− b)− F (a)− F (1− a), F (x) := ζ(−1, x) + ζ ′(−1, x).

Moreover, the right hand side of formula 1.6 is shown to extend real-analytically, wrt the coef-
ficients wi, to the case K(P1,∆Q) > 0 (i.e. V < 0), as long as wi ∈]0, 1]. In this case formula 1.6
computes (K(P1

Z,Dc))
2/2V and can be related to Kudla’s program [29] and the Maillot-Rössler

conjectures [35, 36], expressing the height of Shimura varieties (X ,D), wrt canonical metrics, in
terms of the Dedekind zeta function ζF(s) of the number field F attached to (X ,D) and its de-
rivative ζ ′F(s) at s = −1. More precisely, this connection concerns the 18 Shimura varieties that
are isomorphic to (P1,∆) over F, for a particular orbifold divisor ∆. This leads, in particular,
to some intriguing connections to the recent work [50] on quaternionic Shimura curves.

1.3. Acknowledgments. Thanks to Dennis Eriksson, Mattias Jonsson and Yuji Odaka for
discussions. This work was supported by a Wallenberg Scholar grant from the Knut and Alice
Wallenberg foundation.

2. General setup

2.1. Log Fano varieties over C and volume-normalized metrics on −(KX + ∆). A log
pair (X,∆) over C is a normal complex projective varietyX together with an effective Q−divisor
∆ on X such that KX + ∆ is Q−Cartier, i.e. defines a Q−line bundle, where KX denotes the
canonical divisor on X [27]. In the logarithmic setting this bundle plays the role of the canonical
line bundle and is thus called the log canonical line bundle and is denoted by K(X,∆). A log
pair (X,∆) is said to be a log Fano pair if ∆ is effective and −(KX + ∆) > 0. Any continuous
metric ‖·‖ on −(KX + ∆) induces a measure µ on X in a standard fashion. Indeed, when X is
regular and ∆ = 0 this follows directly from the definition of metrics on −KX (see [2, Section
2.1.2]). In general, denoting by Xreg the regular locus of X, this construction yields a measure
on Xreg − supp(∆) whose push-forward to X, under the inclusion map, yields a measure on X
(see also [5, Section 3.1] for a slightly different representation of this measure). This measure
has finite mass iff the log pair (X,∆) is klt in the standard sense of birational algebraic geometry
(see [5, Section 3.1] and Remark 2.1 below). A continuous metric on −(KX + ∆) will be said
to be volume-normalized if the corresponding measure is a probability measure.
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2.1.1. Local representations of metrics and measures. As in [1] we will use additive notation
for metrics on holomorphic line bundles L → X. This means that we identify a continuous
Hermitian metric ‖·‖ on L with a collection of continuous local functions φU associated to a
given covering of X by open subsets U and trivializing holomorphic sections eU of L→ U :

(2.1) φU := − log(‖eU‖2).

The curvature current of the metric may then, locally, be expressed as

ddcφU :=
i

2π
∂∂̄φU

Accordingly, as is customary, we will symbolically denote by φ a given continuous Hermitian
metric on L and by ddcφ its curvature current. We will denote by C0(L) ∩ PSH(L) the space
of all continuous metrics on L whose curvature current is positive, ddcφ ≥ 0 (which means that
φU is plurisubharmonic, or psh, for short).

Given a log Fano pair (X,∆) the measure corresponding to a given continuous metric φ on
−K(X,∆) may be locally on Xreg be expressed as

µφ = e−φU |sU |−2
(
i

2
)n

2

dz ∧ dz̄, dz := dz1 ∧ · · · ∧ dzn
by taking eU = ∂/∂z1 ∧ · · · ∧ ∂/∂zn⊗ e∆ where e∆ is a local trivialization of the Q−line bundle
over Xreg corresponding to the divisor ∆ and sUe∆ is the (multi-valued) holomorphic section
cutting out ∆.

2.1.2. Log Kähler-Einstein metrics. Given a log Fano pair (X,∆) a metric φ on (X,∆) is said
to be a log Kähler-Einstein metric, if φ is a locally bounded metric and its curvature current
ddcφ induces a Kähler metric with constant positive Ricci curvature on the complement of ∆ in
Xreg [5]. When X is smooth any log Kähler-Einstein metric is, in fact, continuous (see [26, 21]
for more general higher order regularity results).

2.1.3. K-semistability. We next recall the definition of K-semistability in terms of intersection
numbers (see the survey [49] for more background). A test configuration for a log Fano pair
(X,∆) is a C∗−equivariant normal model (X ,L ) for (X,−(K(X,∆)) over the complex affine line
C.More precisely, X is a normal complex variety endowed with a C∗−action ρ, a C∗−equivariant
holomorphic projection π to C and a relatively ample C∗−equivariant Q−line bundle L (en-
dowed with a lift of ρ) :

(2.2) π : X → C, L →X , ρ : X × C∗ →X

such that the fiber of X over 1 ∈ C is equal to (X,−(K(X,∆)). A log Fano pair (X,∆) is said to
be K-semistable if the Donaldson-Futaki invariants DF∆(X ,L ) are non-negative for any test
configuration (X ,L ) of (X,∆) :

n!DF∆(X ,L ) =
n

(n+ 1)
L

n+1
+ K(X ,D)/P1 ·L n

,

where L denotes the C∗−equivariant extension of L to the C∗−equivariant compactification
X of X over P1 and K(X ,D)/P1 denotes the relative log canonical divisor of the pair (X ,D)
with D denoting the flat closure in X of the C∗−orbit of the divisor ∆.

Remark 2.1. If a log Fano variety (X,∆) is K-semistable, then (X,∆) is klt [10, Cor 9.6]. When
X is non-singular and ∆ has simple normal crossings this means that all the coefficients of ∆
along its irreducible components are strictly smaller than 1.
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2.2. Arithmetic log Fano varieties. As explained in the book [28] the notion of log pairs
can be extended to schemes over excellent rings. Here we will consider the case when the ring
in question is Z. Henceforth, X will denote an arithmetic variety, i.e. a projective flat scheme
X → Spec Z of relative dimension n such that X is reduced and satisfies Serre’s conditions S2

(this is, for example, the case if X is normal). We will denote by π the corresponding structure
morphism to Spec Z,

π : X → Spec Z.

A log pair (X ,D) over Z (also called an arithmetic log variety) of relative dimension n is
an arithmetic variety X endowed with an effective Q−divisor D on X such that KX + D is
Q−Cartier, i.e. defines a Q−line bundle, where KX denotes the relative canonical divisor on X
(see [28, Section 1.1]). The complexification of (X ,D) will be denoted by (X,∆) and (X ,D) will
be called an integral model of (X,∆) (although, strictly speaking, (X ,D) is an integral model
of the corresponding log pair over Q). A log pair (X ,D) over Z will be called an arithmetic
log Fano variety if −(KX +D) is relatively ample and the corresponding complex variety X is
normal. In particular, (X,∆) is a log Fano variety over C.

More generally, an arithmetic variety X endowed with a relatively ample line bundle L will
be said to be polarized.

2.3. Arithmetic intersection numbers and heights. We recall some well-known facts about
heights (see[2] for more background and references). A metrized line bundle L is a line bundle
L → X such that the corresponding line bundle L → X is endowed with a metric, that we
shall denote by φ (as in Section 2.1.1); L := (L, φ) . The χ−arithmetic volume of a polarized
arithmetic variety (X ,L) is defined by

(2.3) v̂olχ
(
L
)

:= lim
k→∞

k−(n+1) logVol
{
sk ∈ H0(X , kL)⊗ R : sup

X
‖sk‖φ ≤ 1

}
,

where H0(X , kL)⊗ R may be identified with the subspace of real sections in H0(X, kL). More
generally, v̂olχ

(
L
)
is naturally defined for Q−line bundles, since it is homogeneous with respect

to tensor products of L :

(2.4) v̂olχ
(
mL
)

= mn+1v̂olχ
(
L
)
, if m ∈ Z+

Moreover, v̂olχ
(
L
)
is additively equivariant with respect to scalings of the metric:

(2.5) v̂olχ (L, φ+ λ) = v̂olχ
(
L
)

+
λ

2
vol(L), if λ ∈ R.

If the metric on L has positive curvature current (i.e. if φ is psh), then, by the arithmetic
Hilbert-Samuel theorem,

(2.6) v̂olχ
(
L
)

=
Ln+1

(n+ 1)!
,

where Ln+1
denotes the top arithmetic intersection number in the sense of Gillet-Soulé [20],

which, defines the height of X with respect to L [19, 7]. For the purpose of the present paper
formula 2.6 may be taken as the definition of Ln+1

(arithmetic intersections between general
n + 1 metrized line bundles could then be defined by polarization, i.e. using multilinearity).
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Following standard practice we will use the shorthand hφ(X ,L) for the height (L, φ)n+1 and
ĥφ(X ,L) for the normalized height:

hφ(X ,L) := (L, φ)n+1, ĥφ(X ,L) :=
(L, φ)n+1

(n+ 1)Ln
.

The definition of ĥφ(X ,L) is made so that

ĥφ+λ(X ,L) = ĥφ(X ,L) + λ/2, if λ ∈ R

We also recall that, given two continuous psh metrics φ and φ0 on the complexification L→ X
of L → X , we have that

(2.7) 2h (L, φ)− 2h (L, φ0) = E(φ, φ0) :=
1

(n+ 1)!

∫

X

(φ− φ0)

n∑

j=0

(ddcφ)j ∧ (ddcφ0)n−j .

2.4. The canonical height of an arithmetic log Fano variety. We define the canonical
height hcan(X ,D) of an arithmetic log Fano variety (X ,D) by

hcan(X ,D) := sup

{
hφ
(
−K(X ,D)

)
: φ cont. psh,

∫

X

µφ = 1

}

(when D = 0 we shall use the short hand hcan(X ) for hcan(X , 0)). As shown precisely as in the
case D = 0, considered in [2], hcan(X ,D) < ∞ iff the corresponding log Fano variety (X,∆)
over C is K-semistable. Moreover, (X,∆) is K-polystable iff the sup defining hcan(X ,D) is
attained at some continuous metric φ, namely a log Kähler-Einstein metric. Hence, if (X,∆) is
K-polystable, then the canonical height hcan(X ,D) is computed by any volume-normalized log
Kähler-Einstein metric.

3. Toric log Fano varieties

A log pair (X,D) over C is said to be toric if X and D are toric, i.e. if X is toric and the
Q−divisor D is invariant under the torus action on X. Any toric log Fano variety admits a
canonical integral model (X ,D) which is log Fano (see [34, Section 2] and [12, Def 3.5.6]). In
this section we will prove the following

Theorem 3.1. Let (X ,D) be the canonical integral model of a K-semistable toric log Fano
variety (X,D). Conjecture 1.1 holds for (X ,D) under anyone of the following conditions:

• n ≤ 3 and X is Q−factorial (equivalently, X has at worst abelian quotient singularities)
• X is not Gorenstein or has some abelian quotient singularity

We start by introducing some notation, following [6]. Given a toric log Fano variety (X,D)
set L = −(KX + ∆) and denote by P the corresponding moment polytope in Rn. Then

(3.1) P = {p ∈ Rn : 〈lF , p〉 ≥ −aF , ∀F} ,
where aF ∈]0, 1] (generalizing the Fano case when aF = 1∀F ; see [6]) and lF is a primitive
integer vector. As shown in [6] (X,∆) is K-semistable iff 0 is the barycenter of P iff the log
Ding functional DψP is bounded from below. Moreover, the infimum of DψP is attained at a
T−invariant psh metric φ on L.We will identify the metric φ with a continuous convex function
on Rn as in [2]. More precisely, on (C∗)n ↪→ X, let xi = log(|zi|2). Trivializing −(KX + ∆)
with dz1

z1
∧ ...∧ dzn

zn
⊗ sUe∆ over U = (C∗)n, and abusing notation slightly, we let φ(x) := φU (z)
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in the chosen trivialization over U = (C∗)n. Then φ as a function of x is a continuous convex
function on Rn and as in formula 3.8 in [2], we still have that

DψP (φ) =

∫

P

φ∗dy/V − log

∫

Rn
e−φ(x)dx− n log π, V := vol(P )

(since the support of D is contained in the complement of (C∗)n in X). Thus the inequality
in Proposition 3.7 in [2] generalizes to the canonical toric model L of L (which coincides with
−K(X ,D)) :

(3.2) 2v̂olχ
(
−K(X ,D), φ

)
≤ −vol(X,∆) log

(
vol(X,∆)

(2π2)n

)
vol(X,∆) := vol(−K(X,∆).

We will first prove Theorem 3.1 in the case that X = Pn, using the following lemma, formu-
lated in terms of the divisor D0 cut out by the Tc−invariant element of H0(X,−KX) (given by
dz1
z1
∧ ... ∧ dzn

zn
over (C∗)n). In other words,

D0 =
∑

F

DF ,

where DF is the irreducible divisor corresponding to the facet F of the moment polytope corre-
sponding to X (see [6]). The lemma is a special case of formula Proposition 3.12 from [2].

Lemma 3.2. Let X be the canonical integral model of an n−dimensional K-semistable toric
Fano variety X and denote by D0 the standard anti-canonical divisor on X. Then

(−K(X ,(1−t)D0))
n+1/(n+ 1)!

(−(KX + (1− t)D0))
n
/n!

=
(−KX )n+1/(n+ 1)!

(−KX)
n
/n!

−1

2
log(tn) tn =

(
(−(KX + (1− t)D0))

n

(−KX)
n

)

with respect to the volume-normalized Kähler-Einstein metrics.

We next deduce the following

Lemma 3.3. Let (X ,D) be a toric K-semistable log Fano variety such that X = PnZ. Then
(−K(X ,D))

n+1 ≤ (−KPnZ )n+1 with equality iff D = 0.

Proof. First observe that there exists t ∈ [0, 1] such that D = (1 − t)D0 =: Dt. This is a
special case of [24, Cor 1.6], which applies to Pn, in any dimension n, using that toric log Fano
varieties are never uniformly K-stable. It will thus be enough to show that t 7→ (−K(PnZ ,Dt))

n+1

is increasing on [0, 1] (and thus its maximum is attained at t = 1). By the previous lemma

2(−K(PnZ ,Dt))
n+1/(n+ 1)!

(−KPn)n/n!
= tn2

(−KPnZ )n+1/(n+ 1)!

(−KPn)n/n!
− tn log(tn).

Differentiating wrt (tn) reveals that the right hand side above is increasing with respect to t

iff 2
(−KPnZ

)n+1/(n+1)!

(−KPn )n/n! ≥ 1. The latter inequality is indeed satisfied, as follows from the explicit
formula 1.1. �

Combining the universal bound 3.2 with Lemma 3.8 from [2], all that remains to prove
Theorem 3.1 is to establish the “logarithmic gap hypothesis”

(3.3) vol(X,∆) ≤ vol(Pn−1 × P1).
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Proposition 3.4. The logarithmic gap hypothesis holds for all toric K-semistable log Fano
varieties (manifolds) (X,∆) such that X 6= Pn iff the following bound holds for all Fano varieties
(manifolds) X 6= Pn

(3.4) S(X) ≤ vol(Pn−1 × P1) S(X) := sup {vol(−(KX + ∆)) : (X,∆)K-semistable} .
The “logarithmic gap hypothesis” holds for all log Fano varieties (X,∆) such that X is Q−factorial
and of dimension n ≤ 3 and for any dimensions n if X has some abelian quotient singularity
or if X is not Gorenstein.

Proof. Since, trivially, vol(X,∆) ≤ S(X) the first equivalence follows directly from the defini-
tions. Next, let us show the last statement of the proposition, first assuming that X is singular,
which means that the moment polytope P of (X,∆) is “singular” in the sense that there exists
a vertex of ∂P such that the corresponding primitive vectors lF1 , ..., lFn do not generate Zn. It
follows from the proof of Lemma 3.9 from [2] that

vol(P ) ≤ 1

2
(n+ 1)n/n! ≤ vol(Pn−1 × P1))

Indeed, since aF ≤ 1 the first inequality follows from the inequality (3.13) from [2], using that
δ ≥ 2, according to the singularity assumption on P (for the the second inequality see formula
(3.14) from [2]). All that remains is thus to show the bound 3.4 for S(X) when n ≤ 3 and X is
non-singular. First assume that n = 2. This means, by classical classification results, that X is
either P1×P1 or the blow-up X(m) of P2 in m points for m ≤ 3. But (−KX(m))2 = (−KP2)2−m
and thus vol(X1) ≤ 4 = vol(Pn−1×P1), proving the bound 3.4. Finally, consider the case when
n = 3. Starting with the trivial bound vol(X,∆) ≤ vol(X) it follows the classification [52] of
all non-singular toric Fano varieties of dimension 3 that it is enough to show that the bound
3.4 holds when X is P3 blown-up in one point or P(O(1) ⊕ O(2)) (whose degrees are 56 and
62, respectively). According to the following proposition the corresponding invariants S(X)n!
are, approximately, given by 41.8 and 30.3, respectively, which are well below the degree 54 of
P2 × P1, as desired. �

3.1. The invariant S(X) for n ≤ 3. In the proof above we used the following result.

Proposition 3.5. After rounding to the nearest decimal place the invariant n!S(X) (formula
3.4) is given by 41.8 and 30.3 when X equals P3 blown up in one point and P(O ⊕ O(2)),
respectively.

Proof. Given a convex subset P of Rn let

s(P ) := sup {vol(P0) : P0 ⊂ P, bP0 = 0} ,
where P0 is a closed subset of P with barycenter bP0 at the origin. We will compute s(P )
when P is the moment polytope of the manifolds X appearing in the proposition, showing at
the same time that s(P ) = S(X). The moment polytopes P of both P3 blown up in one point
and P(O ⊕ O(2)) are of the form a simplex, with a simplex subset removed, by chopping off a
vertex (see ID 20 and ID7 in the database [52])). After a general linear transformation, they
are of the form (a∆3 − 1) − (b∆3 − 1) where ∆3 is the standard unit simplex in dimension
three, 1 is the vector with all ones and a and b are positive real numbers. For P3 blown up in
one point we can transform the moment polytope to (4∆3 − 1)\(2∆3 − 1) and for P(O⊕O(2))
we get (5∆3 − 1)\(∆3 − 1). In the first case, the linear transformation is unimodular, but in
the second case the transformation has determinant 2. This will not matter when computing
s(P ) as long as we correct for the non-unit determinant. Next we compute the barycenter bP

10



of these polytopes, a simple task using the explicit barycenter of the standard unit simplex,
b∆n = 1/(n+ 1), and then scaling and linearity properties of the volume times the barycenter.
The barycenter of (a∆3 − 1)\(b∆3 − 1) is given by a3/3!(a/4−1)−b3/3!(b/4−1)

a3/3!−b3/3! 1. Next we use a
general fact, to be proved in the lemma below, stating that the closed subset P ′ of P which
maximizes volume, with the relaxed constraint

(3.5) bP ′ · 1 = 0

is the one given by P ∩ H where H is a half-space with normal 1. In our case, by symmetry,
this P ′ automatically satisfies the stronger constraint bP ′ = 0. Moreover, since the boundary of
P ∩ H is parallel to a facet of P it corresponds to a divisor ∆ on X defining a log Fano pair
(X,∆). Thus (X,∆) is also the K-semistable log Fano pair realizing the sup in the definition
of S(X), showing that s(P ) = S(X). We can find H by imposing the constraint. We introduce
the weight w such that

P ∩H = ((a− w)∆3 − 1)\(b∆3 − 1).

From here it is clear that if bP ′ · 1 = 0, then, in fact, the entire barycenter will vanish and the
condition bP ′ · 1 = 0 turns into the following fourth order polynomial equation for w :

(a− w)3/3!((a− w)/4− 1)− b3/3!(b/4− 1) = 0.

The solution w and the corresponding value s(P ) for P3 blown up in one point, is given by
w = 2

3 (5− 4
3
√

19−3
√

33
− 3
√

19− 3
√

33) and n!s(P) = n!vol(P ′) = ((4− w)3 − 23) ≈ 41.8 and for

P(O⊕O(2)), w = (4− 3

√
4

2−
√

2
− 3

√
2(2−

√
2)) and n!S(P) = 1

2n!vol(P ′) = 1
2 ((5−w)3−13) ≈ 30.3,

where we have corrected for the non-unimodular transformation used in the second case. �
In the above proof we used the following

Lemma 3.6. Let P be a closed subset of Rn with the origin as an interior point. Given v ∈ Rn
assume that

∫
P
x · v > 0. Then the maximum

max
Q⊂P :

∫
Q
v·xdλ(x)=0

∫

Q

dλ

is attained at Q = P ∩H with H a closed half-space with outward pointing normal v. Here dλ
is Lebesgue measure.

Proof. Without loss of generality we can assume that v = (0, ..., 0, 1).Denote by (x1, x2, ..., xn−1, y)
the coordinates on Rn. Since the origin is an interior point of P and

∫
P
x ·v > 0 there is a closed

half-space H as in the lemma satisfying
∫
P∩H ydλ = 0. Hence, any candidate Q for the max-

imum in question satisfies
∫
P∩H ydλ =

∫
Q

ydλ. Subtracting the left hand side from the right
hand side and vice versa yields

∫
P∩H\Q ydλ =

∫
Q\P∩H

ydλ. Since supP∩H\Q y ≤ infQ\(P∩H) y it
follows that vol(P ∩H\Q) ≥ vol(Q\P ∩H) which, in turn, implies that vol(P ∩H) ≥ vol(Q),
as desired. �

In fact, with just a slight variation of the argument above, any maximizer must be of the
special form above and, in addition, assuming connectedness of P , the maximizer is unique. The
proof of the previous proposition thus reveals that the unique toric divisor ∆ on X realizing the
sup defining the invariant S(X) is a multiple of the prime divisor DF defined by the zero-section
of P(O ⊕ O(2)) → P2 and hyperplane “at infinity” in P3 blown up at the origin in C3 ⊂ P3,
respectively (i.e the zero-section of P(O ⊕ O(1)) → P2). A similar argument also applies when
X is the blow-up of P2 at the origin in C2 (i.e. the first Hirzebruch surface P(O⊕O(1))→ P2).
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The unique maximizer for the invariant S(X) is then a log Fano pair (X,∆) for a multiple of
the hyperplane D “at infinity” (i.e. the zero-section of P(O⊕O(1))→ P2). Interestingly, this K-
polystable log pair (X,∆) was also singled out in [43, Cor 1.5] by the following rigidity property
(answering a question of Cheltsov): it admits a rigid Kähler-Einstein metric in the sense that
for any other multiple cD the log pair (X, cD) does not admit a Kähler-Einstein metric. The
same rigidity property holds for the two three-dimensional log pairs discussed above (since there
is a unique half-space H satisfying the constraint in formula 3.5).

3.2. Estimates on the canonical height. Theorem 1.3 from [2] (and its corollary) generalizes
directly to the case of log Fano pairs and their Kähler-Einstein metrics in any relative dimension
n (with the same proof, by letting P be the moment polytope corresponding to (X,∆)) :

1

2
vol(X,∆) log

(
n!mnπ

n

vol(X,∆)

)
≤ hcan(X ,D)

(n+ 1)!
≤ 1

2
vol(X,∆) log

(
(2π)nπn

vol(X,∆)

)

Interestingly, Lemma 3.2 reveals that the family of log Fano pairs (X ,D) appearing in the
lemma may be explicitly expressed in terms of the algebro-geometric volume vol(X,∆) in the
same functional form as the one appearing in the previous upper and lower bounds:

(−K(X ,D))
n+1

(n+ 1)!
=

1

2
vol(X,∆) log

(
be2a

vol(X,∆)

)

with a := (−KX )n+1/(n+1)!
(−KX)n/n! and b = vol(X).

4. Hyperplane arrangements

In this Section we prove Theorem 1.3 concerning hyperplane arrangements. Recall that a log
Fano pair (X,∆) is called a log Fano hyperplane arrangement if X = Pn and ∆ =

∑m
i=1 wiHi

where wi ∈ Q>0 and the Hi are distinct hyperplanes. Furthermore we will call (X,∆) simple
normal crossing, abbreviated snc, if the support of ∆ has simple normal crossings.

For an snc log Fano hyperplane arrangement, if m = n+ 1 and all the weights wi are equal,
then (X,∆) is a toric log-pair (see Lemma 3.2). The following lemma shows that for given
hyperplanes H1, ...,Hm and a fixed volume vol(X,∆), the “toric” weights form the vertices of
the convex polytope of all weights wi corresponding to K-semistable (X,∆).

Lemma 4.1. Fix m ≥ 1 and a real number 0 < D ≤ (−KPn)n = (n + 1)n. Let as before for a
real m-tuple w, ∆ =

∑m
i=1 wiHi for distinct hyperplanes Hi. Then the set of weights

S = {w ∈ Rn : (−(KPn + ∆))n = D and (Pn,∆) is K− semistable}
is either empty or m ≥ n + 1 and S is a polytope with

(
n
m

)
vertices given by any reordering of

the tuple w1 = w2 = ... = wn+1 = 1
m (n+ 1−D1/n) , wl = 0 ∀l > n+ 1.

Proof. By [24], for w ∈ Rn and ∆ =
∑m
i=1 wiHi , (Pn,∆) is K-semistable and log Fano if and

only if w is in the convex set C defined by the following inequalities:

0 ≤ wi < 1 ∀i = 1, ...,m

k
m∑

i=1

wi ≥ (n+ 1)
k∑

j=1

wij ∀1 ≤ k ≤ n ∀1 ≤ i1 < ... < ik ≤ m.(4.1)
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Here it should be noted that in fact, it suffices to consider the second inequality for index
combinations ij of length 1. The other inequalities for larger index combinations follows. Hence,
K-semistability of (Pn,∆) is equivalent to

0 ≤ wi < 1 ∀i = 1, ...,m

wi ≤
1

n+ 1

m∑

j=1

wj ∀i = 1, ...,m.(4.2)

Fix m and D as in the statement of the theorem. The goal is to understand the intersection of
the above set with the set {w : −(KPn + ∆) = D}. Note first that

(−(KPn +
m∑

i=1

wiHi))
n = (n+ 1−

m∑

i=1

wi)
n.

Let C := n + 1 − D1/n, so that {w : −(KPn + ∆) = D} = {w :
∑m
i=1 wi = C}. Thus with S

defined as in 4.1

S = {w :
m∑

i=1

wi = C

0 ≤ wi < 1 ∀i = 1, ...,m

wi ≤
C

n+ 1
∀i = 1, ...,m}

Observe that since 0 ≤ C < n + 1, the inequality wi < 1 is superfluous. After a convenient
rescaling we get

n+ 1

C
S = {w :

m∑

i=1

wi = n+ 1

0 ≤ wi ≤ 1 ∀i = 1, ...,m}.

Clearly if m < n + 1, n+1
C S is empty. For m ≥ n + 1, any vertex of n+1

C S is given by the
intersection of n+1

C S with some collection of the inequalities put to equality. But clearly all such
points must be of the form of having n+ 1 ones and m− (n+ 1) zeros. And on the other hand
any such point is a vertex. �

Fixing the volume vol(X,∆) is, when X = Pn, tantamount to fixing the isomorphism class of
the Q−line bundle −(KX + ∆) (since the rank of the Picard group of Pn is one). The following
lemma shows that, in this case, the maximal height is convex with respect to the weights of ∆.

Lemma 4.2. Consider an arithmetic Fano variety X and a curve t 7→ (X ,Dt) of arithmetic
log Fano varieties where Dt =

∑m
i=1 wi(t)Di for some m ≥ 1, irreducible divisors Di over Z and

w : [0, 1] → Rm an affine function. Additionally assume that all the Dt are linearly equivalent,
which equivalently means that −(K+Dt) isomorphic to L for a line bundle L → X independent
of t. Then the function h : [0, 1]→]−∞,∞] defined as

(4.3) t 7→ hcan(X ,Dt)

is strictly convex. Equivalently the function t 7→ ĥcan(X ,Dt) is strictly convex.
13



Proof. By assumption we can identify −(K +Dt) with L for a line bundle L independent of φ.
Thus the height hφ(X ,Dt) for a fixed metric on L is independent of t. Likewise, hcan(X ,Dt)
coincides with ĥcan(X ,Dt) up to multiplication by a constant independent of t. Next, express

ĥcan(X ,Dt) = sup
φ
ĥ(X ,Dt) +

1

2
log

∫

X

µ(φ,Dt),

where the sup ranges over all continuous psh metrics on L. Introducing an arbitrary volume
form dV on X we can rewrite

∫

X

µ(φ,Dt) =

∫

X

exp(−φ−
m∑

i=1

wi(t)ψDi − log dV )dV.

By Hölder’s inequality this expression is convex in t, since wi(t) is affine. It is even strictly convex
since the Di are distinct. This means that ĥcan(X ,Dt) is the supremum over a set independent
of t, of a collection of strictly convex functions and thus is itself, strictly convex. �

4.1. Conclusion of the proof of Theorem 1.3. In the following we will use the notation
Dw =

∑m
i=1 wiHi for w ∈ Rm for fixed hyperplanes Hi defined over Z. Let (PnZ,Dw′) be a

K-semistable snc log Fano hyperplane arrangement. Define for brevity d := (−(KPn +∆(w′)))n.
Set, as in Lemma 4.1, S = {w ∈ Rn : (−(KPn + ∆w))n = d and (PnZ,Dw) is K− semistable}.
Consider the function h(w) defined by

h(w) = hcan(PnZ,Dw)

Restricted to the convex set S, h|S is convex by Lemma 4.2. Next by Lemma 4.1, S is the
convex hull of weight vectors (wk)k=1,...,( m

n+1)
, each corresponding to toric log Fano pairs, all

equivalent to (PnZ, (1 − t)D0). Here D0 is the toric standard anti-canonical divisor and t is the
unique number such that (−(KPn + (1 − t)D0)n = d. By Jensens inequality it follows directly

from expressing w as a convex combination of the wk, i.e. w =
∑( m

n+1)
k=1 λkw

k, that

h(w) ≤
( m
n+1)∑

k=1

λkh(wk) = h(w1) = hcan(PnZ, (1− t)D0)

with equality iff ∆w is toric. We have thus reduced to a toric case, which we have already
handled. Specifically, the bound 1.4 follows directly from Lemma 3.2. For Theorem 1.3, recall
that it was observed in the proof of Lemma 3.3 that the volume dependent bound in 1.4 is
increasing with volume, so that a universal bound is given for maximal volume, i.e. when
∆ = 0, yielding the result.

5. Diagonal hypersurfaces

In this section we will deduce Theorem 1.4 from the results in the previous sections. The
starting point of the proof is the following analytic representation of the height:

Lemma 5.1. (Restriction formula) Let X be the subscheme of Pn+1
Z cut out by a homogeneous

polynomial s of degree d with integer coefficients and φ a continuous psh metric on O(d)→ Pn+1
C .

Then the height hφ(Xd,O(d)) of the restriction of (O(d), φ) to X may be expressed as

2hφ(Xd,O(d))

(n+ 1)!
= (n+ 2)E(φ, dφ0) +

∫

Pn+1

log
(
‖s‖2φ

) (ddcφ)n+1

(n+ 1)!
,
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where φ0 is the Weil metric on O(1) and E is the functional defined by formula 2.7, corresponding
to O(d)→ Pn+1.

Proof. This is well-known, but for completeness we provide a proof. Consider first the general
situation where X is a subscheme (of relative dimension n) of a regular projective flat scheme
Y cut out by a section s of a relatively ample line bundle L → Y. Then, given a metric φ on
the complexification L of L → Y, the restriction formula for arithmetic intersection numbers [7,
Prop 2.3.1] gives

(5.1) (L, φ)n+2 · Y = (L, φ)n+1 · X −
∫

Y

log ||s||φ(ddcφ)n+1

In particular, setting Y = Pn+1
Z and L = O(d) gives and

2hφ(Xd,O(d))

(n+ 1)!
= (n+ 2)

hφ(Pn+1
Z ,O(d))

(n+ 2)!
+

∫
log ||s||2φ

(ddcφ)n+1

(n+ 1)!
.

The proof is thus concluded by invoking the well-known fact that hφ(Pn+1
Z ,O(d))/(n + 2)! =

EPn+1(φ, φ0). For example, this is a special case of the toric formula in [1, formula 3.7]. �

In general, if X is subscheme of Pn+1
Z of codimension one, then KX is well-defined as line

bundle over X .More precisely, by the adjunction formula, there is an isomorphism of line bundles
over Z,

KX '
(
KPn+1

Z
−O(I/I2)

)
X
,

where I is the ideal sheaf cutting out X [28, formula 1.6.2, page 8]. In particular, if X is cut
out by a homogeneous polynomial s of degree d, then

(5.2) −KX ' −KPn+1
Z
−O(d) ' O(n+ 2− d).

Hence, −KX is relatively ample iff d ≤ n+ 1. Now assume that the complex variety X defined
by the complex points of X is non-singular. Then, by the adjunction isomorphism 5.2, a metric
φ0 on O(n+ 2− d)|X may be identified with a metric on −KX .

5.1. Reduction to Fermat hypersurfaces. Given integers ai consider the subscheme Xa of
Pn+1
Z cut out by the homogeneous polynomial

sa :=
n+1∑

i=0

aix
d
i .

Denote by Xa the corresponding complex variety, which is non-singular and consider the map

(5.3) Fa(x) := (a
−1/d
0 x0, ..., a

−1/d
n+1 xn+1) : Cn+2 → Cn+2.

We will identify the map Fa with an automorphism of Pn+1, admitting a standard lift to the
total space of O(1)→ Pn+1. We can then express

Xa = Fa(X1).

Proposition 5.2. Let k be a positive integer and φ a metric on O(n+ 2− d)|Xa . Then

2ĥφ(Xa,O(n+ 2− d)) + log

∫

Xa

e−φ =

= 2ĥF∗aφ(X1,O(n+ 2− d)) + log

∫

X1

e−F
∗
aφ + (

n+ 2− d
(n+ 1)

− 1)d−1
∑

i

log(|ai|2).
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The proof of the proposition follows from combining the following two lemmas:

Lemma 5.3. Let k be a positive integer and φ a metric on O(k). Then

2ĥφ(Xa,O(k)) = 2ĥF∗aφ(X1,O(k)) +
1

d

∑

i

log(|ai|2)
k

(n+ 1)

Proof. We will use that any continuous psh metric φ on O(k)|X is the restriction of a continuous
psh metric on O(k) → Pn+1, that we shall denote by the same symbol φ [15]. First consider
the case when k = d and denote by sa the section of O(d) cutting out the scheme Xa. By the
restriction formula (Lemma 5.1)

2

(n+ 1)!
hφ(Xa,O(k)) = (n+ 2)EPn+1(φ, dφ0) +

∫

Pn+1

log |sa|2φMA(φ).

Rewriting∫

Pn+1

log |sa|2φMA(φ) =

∫

Pn+1

log |(F−1
a )∗s1|2φMA(φ) =

∫

Pn+1

log |s1|2F∗aφMA(F ∗aφ),

thus reveals that
2

(n+ 1)!
hF∗aφ(X1,O(k))− 2

(n+ 1)!
hφ(Xa,O(k)) = (n+ 2) (EPn+1(F ∗aφ, dφ0)− EPn+1(φ, dφ0))

Now, denote by Ga the standard lift of Fa from X to −KX and its tensor powers. We can then
express

G∗aφ = F ∗aφ+ ca, ca :=
k

(n+ 2)

1

d

∑

i

log(|ai|2)

Indeed,

(5.4) G∗a(e−
n+2
k φdzdz̄) = (e−

n+2
k F∗aφ)F ∗a (dzdz̄) = (e−

n+2
k F∗aφ)

∏

i

|ai|−2/d(dzdz̄).

Hence,

2hF∗aφ(Pn+1,O(k)) = 2hG∗aφ−ca(Pn+1,O(k)) = 2hG∗aφ(Pn+1,O(k))− ca
kn+1

(n+ 1)!

But, by Lemma 7.1 in the appendix

EPn+1(G∗aφ, dφ0) = EPn+1(φ, dφ0)

Hence, 2
(n+1)!hF∗aφ(X1,O(k))− 2

(n+1)!hφ(Xa,O(k)) =

= (n+ 2) (EPn+1(F ∗aφ, dφ0)− EPn+1(φ, dφ0)) = −(n+ 2)ca
k(n+1)

(n+ 1)!

As a consequence,

2ĥF∗aφ(X1,O(k))− 2ĥφ(Xa,O(k)) = −(n+ 2)ca
kn+1

(n+ 1)!
.

1

dkn/n!
= −(n+ 2)ca

k

d(n+ 1)
=

= −1

d

∑

i

log(|ai|2)(n+ 2)
k

(n+ 2)

k

d(n+ 1)
= −1

d

∑

i

log(|ai|2)
k2

d(n+ 1)

Since we have assumed that k = d this means that

2ĥφ(Xa,O(k))− 2ĥF∗aφ(X1,O(k)) =
1

d

∑

i

log(|ai|2)
d

(n+ 1)
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Finally, for any given integer k we can express k = dλ for λ = k/d and use the basic scaling
property

ĥλφ(X , λL) = λĥφ(X ,L),

to get

2ĥφ(Xa,O(k))− 2ĥF∗aφ(X1,O(k)) =
1

d

∑

i

log(|ai|2)
k

(n+ 1)

which concludes the proof. �

Lemma 5.4. Given a metric φ on O(n+ 2− d) we have that

log

∫

Xa

e−φ = log

∫

X1

e−F
∗
aφ − d−1

∑

i

log(|ai|2).

Proof. It will be convenient to lift the integrals to the corresponding affine cones. To this end
let X be the non-singular hypersurface of Pn+1, cut out by a given homogeneous polynomial s
in Cn+2. Let AX be the affine cone over X :

AX = {s = 0} ⊂ Cn+2

Let Ωs be the holomorphic top form on AX − {0} defined by the relation

Ωs ∧ ds = dz on Y , dz := dz0 ∧ · · · ∧ dzn+1.

Denote by δ interior multiplication with the generator of the standard R+−action, acting by
scalings, on Cn+2. Assume now that X is Fano. A given metric φ on −KX then induces a
one-homogeneous function r on A (using the adjunction isomorphism 5.2 and by identifying
Cn+2 − {0} with the complement of the zero-section in O(1)∗ → X). Moreover, lifting the
adjunction isomorphism 5.2 to AX yields the following well-known formula (which applies in
the general setup of Fano varieties over local fields; cf. [39, Lemma 4.2.2]):

∫

X

e−φ = c

∫

{r=1}∩AX
δ(Ωs ∧ Ωs)

for a non-zero constant c only depending on n and d. Hence, recalling that F denotes the scaling
map in formula 5.3 on Cn+2,

∫

X

e−φ = c

∫

{F∗r=1}∩F∗AX
F ∗(δ(Ωs ∧ Ωs).

Using that the R+−action commutes with F thus gives
∫

X

e−φ = c

∫

{F∗r=1}∩AF∗X
δ(F ∗(Ωs) ∧ F ∗Ωs).

Applying F ∗ to the defining relation for Ωs yields

F ∗Ωs ∧ d(F ∗f) = F ∗dz on Y .

Since F ∗dz = a
−1/d
0 · · · a−1/d

n+1 dz this shows that F ∗Ωs = ΩF∗sa
−1/d
0 · · · a−1/d

n+1 , which concludes
the proof. �

It follows directly from Proposition 5.2 that

(5.5) hcan (Xa) = hcan (X1) + (n+ 1)(n+ 2− d)nd

(
n+ 2− d
(n+ 1)

− 1

)
d−1

∑

i

log(|ai|2).
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In particular, since n+ 2− d ≤ n+ 1, this means that hcan (Xa) ≤ hcan (X1) and thus the proof
of Theorem 1.4 is reduced to the case of the Fermat hypersurface X1.

Remark 5.5. More generally, let X be a hypersurface in Pn+1
Z cut-out by a homogeneous polyno-

mial s of degree d of the form T ∗s1 where T ∈ GL(n+2,C). Then formula 5.5 can be generalized
as follows (as shown in essentially the same manner as before):

hcan (X ) = hcan (X1) + (n+ 1)(n+ 2− d)nd

(
n+ 2− d
(n+ 1)

− 1

)
log(|detT |2).

5.2. Reduction to log hyperplane arrangements. Fix a degree d(≤ n + 1) and denote
by X the corresponding Fermat hypersurface. The Fermat hypersurface of degree one will be
denoted by Y. We will next express the canonical height hcan (X ) in terms of the canonical
height hcan (Y,D) where D is the divisor on Y defined by

D = (1− 1/d) [x0 = 0] + ...+ (1− 1/d) [xn+1 = 0] ,

where xi denotes the homogenous coordinates on Pn+1
Z restricted to Y.

Proposition 5.6. Denote by X the Fermat hypersurface of a given degree m(≤ n + 1) and by
Y the Fermat hypersurface of degree one, endowed with the divisor D. Then

(5.6) ĥcan (X ) = ĥ(Y,D)− 1

2
log

V (X)

V (Y,∆)

Proof. By the adjunction formula we have isomorphisms −KX ' (n + 2 − m)O(1)|X and
−K(Y,∆) ' (n+ 2−m)(1/m)O(1)|Y . Consider the following morphism:

F : Cn+2 → Cn+2, (x0, ..., xn+1) 7→ (xm0 , ..., x
m
n+1),

which induces a map Pn+1 → Pn+1 and a lift to O(1), which is naturally defined over Z and
satisfies F ∗O(1) ' mO(1). In particular, it induces a morphism

F : X → Y, F ∗(−K(Y,∆)) ' −KX
under the adjunction isomorphisms. We recall that, by basic functorial properties of heights,

(5.7) ĥ(X , F ∗L) = ĥ(Y,L).

In fact, in this case this formula follows directly from the analytic representation of the height
in Lemma 5.1, using that F preserves the Weil metric φ0. In particular, setting L := (n + 2 −
m)(1/m)O(1)|Y and using the adjunction isomorphisms yields ĥ(X ,−KX , F ∗φ) = ĥ(Y,−K(Y,∆), φ).
Thus, all that remains is to show that

∫

X

µF∗φ = m−(n+1)

∫

Y

µφ,

where we have used that F ∗φ induces a metric on −KX and φ induces a metric on −K(Y,∆).

Since F has topological degree m(n+1) we have F∗[Xm] = m(n+1)[Y ] as homology classes and
thus it will be enough to show that

F ∗µφ = m2(n+1)µφ.

To this end consider the affine piece Cn+1 of Pn+1 where x0 6= 0. Setting zi = xi/x0 for
i = 1, ..., n+ 1) we can, locally, parametrize X by the coordinates z1, ..., zn. In these coordinates
a metric ψ on the restriction of O(1) to X induces, by the adjunction isomorphism, a metric on
−KX and thus a measure on X locally expressed as
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(5.8) µψ =
e−(n+2−m)ψ

(m|zn+1|m−1)
2

i

2
dz1 ∧ dz̄1 · · ·

i

2
dzn ∧ dz̄n.

To see this, recall that, by definition,

µψ := ‖dz1 ∧ · · · ∧ dzn‖−2
ψ

i

2
dz1 ∧ dz̄1 · · ·

i

2
dzn ∧ dz̄n.

In the affine piece Cn+1 of Pn+1 we can express

s = fx⊗2
0 , f = 1 +

n∑

i=1

zmi + zmn+1

By the adjunction isomorphism 5.2 we have

‖dz1 ∧ · · · ∧ dzn‖ := ‖dz1 ∧ · · · ∧ dzn ∧ ds‖ = ‖dz1 ∧ · · · ∧ dzn ∧ df‖
∥∥x⊗m0

∥∥ .
Since dz1 ∧ · · · ∧ dzn ∧ df = dz1 ∧ · · · ∧ dzn ∧ dzn+1∂f/∂zn+1 this means that

‖dz1 ∧ · · · ∧ dzn‖2 :=

∣∣∣∣
∂f

∂zn+1

∣∣∣∣
2

‖dz1 ∧ · · · ∧ dzn ∧ dzn+1‖
∥∥x⊗m0

∥∥ = e(n+2)ψe−mψ,

giving

(5.9) µφ =
e−(n+2−m)ψ

|∂f/∂zn+1|2
i

2
dz1 ∧ dz̄1 · · ·

i

2
dzn ∧ dz̄n,

which proves 5.8. Likewise, we can parametrize the affine piece of Y by the coordinates z1, ..., zn.
A given metric φ on the restriction of O(1) to Y induces, by the adjunction isomorphism a
measure (defined with respect to the divisor D)

µφ = e−(n+2−m)m−1φ |zn+1|−2(1−1/m) |z1|−2(1−1/m) · · · |zn|−2(1−1/m) i

2
dz1 ∧ dz̄1 · · ·

i

2
dzn ∧ dz̄n.

Since F ∗zi = zmi this means that

F ∗µφ = e−(n+2−m)f∗(m−1φ) |zn+1|−2(m−1) |z1|−2(m−1) · · · |zn|−2(m−1) i

2
d(zm1 )∧d(z̄m1 ) · · · i

2
d(zmn )∧d(z̄mn ).

Finally, since d(zm) = mzm−1 this proves the desired identity 5.6, using the representation 5.9
with ψ = F ∗(m−1φ). �

5.3. Conclusion of the proof of Theorem 1.4. The affine projection (x0, .., xn+1) 7→ (x0, ..., xn)
induces an isomorphism from Y to PnZ, identifying (Y,D) with a hyperplane arrangement (PnZ,D)
with simple normal crossings. It follows readily from the definition of D and the criterion 4.1
that (PnZ,D) is K-semistable. Hence, combining Proposition 5.6 with refined bound following
the statement of Theorem 1.3 yields

ĥcan (X ) ≤ ĥcan (PnZ,Dt)−
1

2
log

V (X)

V (Pn,∆t)
,

where Dt is the toric divisor on PnZ such that (PnZ,Dt) is K-semistable and V (Pn,∆t) = V (Pn,∆).

The explicit formula for ĥcan (PnZ,Dt) thus yields

ĥcan (X ) ≤ ĥcan (PnZ)− 1

2
log

V (X)

V (Pn)
.
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Multiplying both sides with V (X) reveals that

hcan (X ) ≤ λhcan (PnZ)− 1

2
V (X) log λ, λ := V (X)/V (Pn).

Since λ ∈]0, 1[ it thus follows from Lemma 3.2 that the right hand side above is increasing with
respect to λ and thus maximal when λ = 1, giving hcan (X ,D) ≤ hcan (PnZ). Moreover, the
equality is strict if d ≥ 2 since then λ < 1.

6. Arithmetic log surfaces

In this section we will prove Theorem 1.5. As explained in Section 1.1.4, by Theorem 1.3,
the proof is reduced to showing that for any fixed metric on −K(X,∆) :

• The canonical integral model (Xc,Dc;−K(Xc,Dc)) of (X,∆;−K(X,∆)) obtained by setting
Xc = P1

Z and taking Dc to be the Zariski closure of ∆Q in Xc minimizesM(X ,D)(L) over
all integral models (X ,D;L) of (X,∆;−K(X,∆))

• When D = 0 the minimum is uniquely attained for X = P1
Z, up to isomorphisms over Z.

6.1. Preliminaries on log canonical thresholds. Following [28, 45] a log pair (X ,D) is said
to be log canonical (lc) if for any normal blow-up morphism p : Y → X

KY/X − p∗D =
∑

i

aiEi, ai ≥ −1, KY/X := KY − p∗KX

where the prime divisor Ei is either an exceptional divisor of p or the proper transform of a
component of D. The log canonical threshold of a Q−divisor F on X with respect to the log
pair (X ,D) is defined by

lct (X ,D;F ) := sup
t>0
{t : (X , tF +D) is lc}

The following lemma follows readily from the definition:

Lemma 6.1. For any normal blow-up morphism p : Y → X

lct (X ,D;F ) ≤ inf
i

ai − bi + 1

ci
where ai, bi and ci denote the order of vanishing along the p−exceptional prime divisor Ei of
KY/X , p∗D and p∗F, respectively and i ranges over all p−exceptional prime divisors.

6.2. Preparations for the proof of Theorem 1.5. The following result is a logarithmic
generalization of [38, Thm 2.14 (3)] (in the case of arithmetic surfaces).

Lemma 6.2. Let (X,D) be a log Fano curve over C and (X ,D) an arithmetic log Fano model
for (X,D) such the fibers Xb of X are reduced and irreducible and the divisor D is horizontal
(i.e. D is the Zariski closure of D). Assume that

α(X ,D) := inf
b,F

lct (X ,D + Xb; F ) ≥ 1/2

where the inf runs over all effective Q−divisors F on X linearly equivalent to −K(X ,D) and
closed points b in the base B := Spec Z such that F does not contain the support of Xb. Then

1

2
L2

+K(X ′,D) · L ≥
1

2
L2

+K(X ,D) · L

for any relatively ample model (X ′,D′;L′) of (X,D;−K(X,D)) and given metrics on −K(X,D)

and L.
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In the proof we fix once and for all metrics on −K(X,D) and L and set

(6.1) M(X ,D)(L) :=
1

2
L2

+K(X ,D) · L

for the corresponding metrized lines bundles L and K(X ,D). ThusM(X ,D)(L) specializes to the
arithmetic log Mabuchi functionalM(X ,D)(L) (formula 1.5) precisely when the metric on K(X ,D)

is the one induced from the curvature form ω of L. But here it will be convenient to consider
the present more general setup.

Proof when D is trivial. To fix ideas we first consider the case whenD is trivial. Set B := Spec Z
and L := −KX . To simplify the notation we will remove the bar indicating the metric in the
notation for the arithmetic intersection numbers. Anyhow, all the arithmetic intersections will
be computed over the closed points b in the base B and are thus independent of the choice of
metric (since they are proportional to the algebraic intersections on the scheme π−1(b) over the
residue field of b). If F1 and F2 are Q−divisors we will write F1 ≥ F2 if F1 − F2 is effective.

Step 1: It is enough to consider the case of a relatively semi-ample model of the form
(X ′,L′) = (Y, p∗L − E) where p : Y → X is the blow-up along a closed subscheme Z of X
and E is an effective p−exceptional divisor on Y whose support contains all the p−exceptional
prime divisors and such that for any b ∈ π(Z) p∗L−E admits a global section sb not vanishing
identically along Yb.

This is shown precisely as in the proof of [37, Prop 3.10] - for completeness a proof is given
in Step 1 in Section 6.3 below.

Step2: The inequality holds in the case of Step 1.
First observe that

(6.2) MY(L′)−MX (L) = L′ ·
(
KY/X −

1

2
E

)
.

Indeed, rewriting

MX (L) = −L
2

2
+ ·L · (L+KX )

(and likewise for (Y,L′)) the left hand side in formula 6.2 may be expressed as

p∗L2 − L′2
2

+ L′ · (KY/X − E) =
E · (p∗L+ L′)

2
+ L′ · (KY/X − E).

Since E · p∗L = 0 this proves formula 6.2.
Since L′ is relatively semi-ample it will thus be enough to show that the vertical exceptional

divisor KY/X − 1
2E is effective. This means, by the assumption on α(X )(:= α(X , 0)), that it is

enough to show that

(6.3) KY/X − α(X )E ≥ 0

To fix ideas first assume that π(Z) is supported on a single point that we denote by b. By Step
1, we can express sb = p∗s for a global section s of L → X whose zero-divisor F does not vanish
identically on Xb and such that p∗F −E is effective. Since F is a contender for the inf defining
α(X ) we have

α(X ) ≤ lct(X ,Xb; F ),

Next, since p∗F ≥ E it follows from Lemma 6.1 that

lct(X ,Xb; F ) ≤ inf
i

ai + 1− bi
ci
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where i runs over the p−exceptional irreducible prime divisors Ei of Y and ai, bi and ci denote
the order of vanishing along Ei of KY/X , Yb and Eex respectively. Note that ci > 0 (since the
support of E contains the support of all p−exceptional divisors) and bi ≥ 1 (since Z is assumed
to be supported in Xb). Thus

α(X ) ≤ inf
i

ai + 1− bi
ci

≤ inf
i

ai
ci
,

giving

KY/X − α(X )E ≥
∑

i

aiEi −
(

min
j

aj
cj

)
Ei =

∑

i

(
ai
ci
−
(

min
j

aj
cj

))
ciEi ≥ 0,

which proves 6.3. Finally, consider the general case when the support of π(Z) consists of a finite
number of points bm in B. We then split the vertical divisors KY/X and E into the components
K(m)
Y/X and E(m) over bm :

KY/X − α(X )E =
∑

m

K(m)
Y/X − α(X )E(m)

and apply the previous bound for each fixed m (with b replaced by bm) to get that K(m)
Y/X −

α(X )E(m) ≥ 0 and thus KY/X − α(X )E ≥ 0, as desired.

Proof for log pairs. Just as in the previous case it is enough to consider the special case of Step
2. In this case formula 6.2 readily generalizes to

M(Y,q∗D′)(L′)−M(X ,D)(L) = L′ ·
(
D′ − p∗D +KY/X −

1

2
E

)
.

As before it will thus be enough to show that

(6.4) KY/X + q∗D′ − p∗D − α(X ,D)E ≥ 0.

To simplify the exposition we will assume that π(Z) is a single closed point in B, denoted by
b (the general case is shown in a similar way by decomposing wrt the components of π(Z) as
above). By the definition of α(X ,D)

(6.5) α(X ,D) ≤ lct(X ,D + Xb; F ),

Next, since p∗F − E is effective, i.e. p∗F ≥ E Lemma 6.1 yields

lct(X ,D + Xb; F ) ≤ inf
i

ai + 1− di − bi
ci

,

where ai, bi, ci and di are the order of vanishing along Ei of KY/X , Yb, Eex and p∗D respectively.
In particular, bi ≥ 1 since Z is supported in Xb, Hence,

α(X ,D) ≤ inf
i

ai + 1− di − bi
ci

.

Next, we may decompose
p∗D = (p∗D)hor + (p∗D)ex,

where (p∗D)hor is the horizontal divisor obtained as the proper transform of the horizontal
divisor D and (p∗D)ex is p−exceptional. By 6.5 KY/X − (p∗D)ex − αEex ≥

≥
∑

i

(ai−di)Ei−
(

min
j

aj − bj + 1− dj
cj

)
ciEi ≥

∑

i

(
(ai − di)

ci
Ei −

(
min
j

aj − dj
cj

))
ciEi ≥ 0
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using that bj ≥ 1. Hence,

KY/X +D′ − p∗D − α(X ,D)Eex ≥ D′ − (p∗D)hor .

But, since both (X ′,D′) and (X ,D) are models for (X,D) and D is assumed horizontal it follows
that q∗D′ − (p∗D)hor is an effective vertical divisor and hence

q∗D′ − (p∗D)hor ≥ 0,

which concludes the proof of the inequality 6.4.

Lemma 6.3. Assume that (X,D) is a K-semistable log Fano curve over C. For the canonical
model (P1

Z,D) of (X,D)

α(X ,D) ≥ 1/2.

Proof. By inversion of adjunction on surfaces over excellent schemes [45]

lct (X ,D + Xb; F ) = lct (X ,D|Xb ;F|Xb),
if F does not contain the support of the divisor Xb. In the present case Xb = P1

Fb , where b has
been identified with a prime number and Fb denotes the field with b elements. Decomposing

D =
∑

wiDi

the K-semistability assumption is, by 4.2, equivalent to the condition

(6.6) wj ≤
1

2

∑

i

wi, ∀j.

We recall that for any curve C over a perfect field (here taken to be P1
Fb) an effective Q−divisor

F on C is lc iff all its coefficients are less then are equal to one [28, 45]. Since −KP1
Fb

is
linearly equivalent to O(2) and Di|Xb is linearly equivalent to O(1) it thus follows from the
weight condition 6.6 that lct(X ,D|Xb ;F|Xb) ≥ 1/2. Indeed, it is enough to consider the case
when F = (2−∑i wi)[x], where [x] denotes the prime divisor on P1

Fb corresponding to a closed
point x in P1

Fb . Then
1

2
F +D|Xb = (1− 1

2

∑

i

wi)[x] +
∑

wi[xi],

In the case that x 6= xi for any i the coefficients of F/2 +D|Xb are indeed less than or equal to
1, since wi ∈ [0, 1]. Moreover, if x = xj then the coefficient of index j equals (1− 1

2

∑
i wi) +wj

which is less than are equal to 1, by the weight condition 6.6.
We will also need the following lemma, shown precisely as in the case when D = 0 considered

in [1, Prop 5.3]. �

Lemma 6.4. Let (X ,D;L) be a polarized arithmetic log surfaces (X ,D;L) such that the com-
plexification (X,∆) of (X ,D) is a Fano variety and L ⊗ C = −K(X,∆). A metric realizes the
infimum

inf
‖·‖
M(X ,D)(L, ‖·‖)

over all locally bounded metrics on −(K(X,D)) with positive curvature current iff the metric is
a log Kähler-Einstein metric. In particular, in the case when D = 0 any minimizer coincides
with the Fubini-Study metric up to the application of an automorphism of X and a scaling of
the metric. Moreover,
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inf
‖·‖
M(P1

Z,D)

(
−K(P1

Z,D), ‖·‖
)

= − sup
‖·‖

1

2

(
−K(P1

Z,D), ‖·‖
)2

where the sup in the right hand side is restricted to volume-normalized metrics.

6.3. Conclusion of the proof of Theorem 1.2 and Corollary 1.6. Combining the previous
first two lemmas immediately yields

M(X ′,D′)(L′) ≥M(P1
Z,D)(−K(P1

Z,D)).

Applying the third lemma above thus gives

M(X ′,D′)(L′) ≥ − sup
‖·‖

(
1

2

(
−K(P1

Z,D), ‖·‖
)2
)

where the infimum in the left hand side is restricted to volume-normalized metrics. Invoking
Theorem 1.3 and using that the Fubini-Study metric is a minimizer when D = 0 (by Lemma
6.4) thus proves the inequality in Theorem 1.5 and it corollary. Moreover, Theorem 1.3 implies
that the inequality is strict, as soon as D is non-trivial.

6.3.1. The equality case. Consider now the case of equality in Theorem 1.5 (and, as a conse-
quence, D = 0) :

(6.7) M(X ′,D′)(L′) =M(P1
Z,0)(−KP1

Z
)

where, in the rhs, −KP1
Z
is endowed with the Fubini-Study metric. By the minimizing property

in Lemma 6.1, when D = 0, the metric on L coincides with the Fubini-Study metric up to the
application of an automorphism of X and scaling of the metric. All that remains is to show is
thus that (X ′,D′) is isomorphic to (P1

Z, 0). To this end first note that since X (= P1
Z) and X ′

have the same generic fiber they are birationally equivalent. Thus, there exists a normal variety
Y, which is flat and projective over B, dominating both X and X ′, with birational morphisms

(6.8) p : Y → X , q : Y → X ′

which are the identity over the generic point in B (a concrete construction is given in Step 1
below). It will thus be enough to show that the equality 6.7 implies that p can be taken to be
an isomorphism. Indeed, if p is an isomorphism we get a birational morphism q from P1

Z to X ′
and any such morphism is an isomorphism (since the fibers of P1

Z over B are all reduced and
irreducible). Moreover, when X ′ is equal to P1

Z any L whose complexification equals −KP1 is
isomorphic to −KP1

Z
and the components of any divisor D′ on X ′ whose complexification is trivial

are fibers Xbi of P1
Z (using again that the fibers of P1

Z over B are all reduced and irreducible).
Hence, the assumed equality 6.7 implies, since X 2

bi
= 0 and −KP1

Z
is relatively ample that D′ is

trivial, i.e. D′ = 0.
Thus all that remains is to show that the assumed equality in formula 6.7 implies that the

morphism p : Y → X (in formula 6.8) can be taken to be an isomorphism.
Step 1: In the case of arithmetic surfaces p : Y → X can be taken as the successive blow-ups of

X along a finite number of closed points xi in regular surfaces Xi and there exists a p−exceptional
and p−ample divisor E on Y and a morphism q from Y to X such that q∗L′ = p∗L − E. In
particular,MX ′(L′) =MY(p∗L − E).

This is shown as in the beginning of the proof of [37, Prop 3.10], as next explained. First
note that since X and X ′ have the same generic fiber they are birationally equivalent. Since X
is normal this means that there exists a morphism h : U → X ′ from a Zariski open subset U in
X of codimension two. As a consequence, h∗L′ extends to a Q−line bundle L′′ on X coinciding
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with −KX on the generic fiber. Since X = P1
Z this implies that L′′ is isomorphic to −KX (using,

for example, that π : X → Spec Z has reduced irreducible fibers). Now fix a positive integer k
such that kL′ is a relatively very ample line bundle and take a basis s′i in the free Z−module
H0(X ′, kL′). Then si := h∗si extends, since X is normal, to a unique element in H0(X , kL).
Denote by J the ideal sheaf on X generated by the sections si. Since X is a regular surface we
get after successive blow-ups (as stated in Step 1) a morphism p : Y → X from a regular surface
Y to X with the property that p∗J defines an effective p−exceptional divisor Ek on Y (using
that Z is an excellent ring) [53]. Set

E := k−1Ek (Ek := p∗J )

By construction, Ek is p−ample,

(6.9) H0(Y, kp∗L − Ek) ∼= H0(X , kL ⊗ J ) ∼= H0(X ′, kL′)
and the global sections of kp∗L − Ek induce a morphism q to X ′ such that q∗L′ = p∗L − E.
Finally, note that

MX ′(L′) =MY(q∗L′),
as follows directly from the fact that p is an isomorphism between Zariski open subsets of X ′
and Y and, as a consequence, the Q−line bundle q∗L′ is trivial on the support of the divisor
q∗KX −KY .

Step 2: MY(p∗L − E) =MX (L) =⇒ p is an isomorphism, when X = P1
Z

Replacing q∗L′ with p∗L − E in formula 6.2 yields, sinceMY(p∗L − E) =MX (L),

(p∗L − E) ·
(
KY/X −

1

2
E

)
= 0.

It follows, since, by construction, p∗L − E is p−ample, that

(6.10) KY/X =
1

2
E.

Now, since p : Y → X is the blow-up along a finite number of closed points xi in regular surfaces
Xi,
(6.11) KY/X =

∑
ciEi, ci ≥ 1

where the sum runs over all prime p−exceptional divisors Ei. Hence,
E =

∑

i

2ciEi ≥
∑

i

2Ei.

But this contradicts the isomorphisms 6.9, if the number of points xi is non-zero. Indeed, denote
by E1 the strict transform of the p−exceptional divisor on Y induced from the exceptional divisor
on the first point x1 blown-up on X (= P1

Z). Then it it follows from the previous inequality and
the construction of E that the restriction of the ideal sheaf J on X to a neighbourhood of x1 in
the fiber Xπ(x1) is contained in the 2kth power m2k

x1
of the maximal ideal mx1

on Xπ(x1) defined
by the point x1. But, in general, for X = P1

Z, the line bundle kL|Xπ(x)
⊗m2k

x on Xπ(x) is trivial for
any closed point x on X (since L|Xb := −KXb = OP1

Fb
(2)). But this contradicts the isomorphism

6.9, since L′ is relatively ample. Hence, the number of points xi must be zero, as desired.
Combing these two steps thus concludes, as discussed above, the proof of Theorem 1.5.

Finally, Corollary 1.6 can be deduced from Theorem 1.5 using a generalization of Lemma 6.4.
But here we instead proceeds as follows. Given an arithmetic log Fano surface (X ,D) set
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L := −KX and endow L and −KX with the same metric induced from a volume-normalized
metric on −KX with positive curvature current. Then, by definition 6.1,

−1

2
K2

(X ,D) =M(X ,D)(L).

Hence, combining Step one and Step two above yields

−1

2
K2

(X ,D) ≥M(P1
Z,0)(−KP1

Z
) = −1

2
(−KP1

Z
)2

and the equality case is deduced precisely as before.

7. Appendix

In the proof of Lemma 5.3 we used the following result (applied to X = PnC).

Lemma 7.1. Let X be a Fano manifold and V a holomorphic vector field on X. Denote by Ft
the flow of the real part of V on X at time t and by (FVt )∗φ its action on a given continuous
metric φ on −KX with positive curvature current. If X admits a Kähler-Einstein metric, then

d

dt
E(F ∗t φ, ψ0) = 0

for any fixed metric ψ0 on −KX .

Proof. This is well-known and essentially goes back to [25], but for the convenience of the reader
we provide a proof in the spirit of the present paper and its precursor [2]. Consider the Ding
functional on the space of all continuous metrics on −KX with positive curvature current,
defined by

D(φ) := − n!

(−KX)n
E(φ)− log

∫

X

µφ,

where µφ is the measure on X corresponding to the metric φ (see Section 2.1, with ∆ = 0)
and E(φ) is a shorthand for the functional E(φ, ψ0) defined in formula 2.7. Since, µF∗φ = F ∗µφ
for any biholomorphism F of X it follows that E(F ∗t φ) and D(Ft

∗φ) have the same derivative.
Moreover, in general, the function t 7→ D(F ∗t φ) is linear. Indeed, its derivative is the Futaki
invariant of V (see the claim on page 73 in [47], where D is denoted by Fω ). Hence, all that
remains is to verify that D is bounded from below (since then t 7→ D(F ∗t φ) must be constant).
But this follows from the existence of a Kähler-Einstein metric, since such a metric minimizes
D, as recalled in [2, Section 2.3]. �
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