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Abstract

In the framework of Arakelov geometry one can define the height of a
polarized arithmetic variety equipped with an hermitian metric over its
complexification. When the arithmetic variety is Fano, the complex-
ification is K-semistable and the metrics are normalized in a natural
way, we find in this thesis a universal upper bound on the height in a
number of cases. For example for the canonical integral model of toric
varieties of low dimension (in paper 1) and for general diagonal hyper-
surfaces (in paper 2). The bound is sharp with equality for the pro-
jective space over the integers equipped with a Fubini-Study metric.
These results provide positive cases of a conjectural general bound that
we introduce, which can be seen as an arithmetic analog of Fujita’s
sharp upper bound on the anti-canonical degree of an n-dimensional
K-semistable Fano variety in [11]. An extension of the toric result to
arbitrary dimension hinges on a conjectural sharp bound for the sec-
ond largest anti-canonical degree of a toric K-semistable Fano variety
in a given dimension. A version of the conjecture for log-Fano pairs
is also introduced (in paper 2), which is settled in low dimensions for
toric log-pairs and for simple normal crossings hyperplane divisors in
projective space. Along the way we define a canonical height of a
K-semistable arithmetic (log) Fano variety, making a connection with
positively curved (log) Kéhler-Einstein metrics.

Keywords: Arakelov geometry, Kahler-Einstein metrics, toric geom-
etry, K-stability, Fano varieties, height bounds
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Part 1

Introduction and summary

1.1 Elementary introduction

This thesis is about an invariant of certain arithmetic varieties that we
will refer to as the canonical height. From another perspective, it is
about universal height bounds on these arithmetic varieties. Arguably
the easiest example of height is that of the naive height of a rational

number, given by
a

h <3> = log max(a, b) (1.1)

where a and b are required to be relatively prime. The height can
be thought of as the arithmetic complexity of the rational number .
Indeed, when storing the rational number a/b in computer memory,

h(a/b) is approximately the number of bits needed.

Note that one could also first define the very naive height by just
letting h(a/b) = log max(a,b), regardless of the relative primeness of
a or b. This is no longer a well defined notion for rational numbers,
rather for their actual symbolic representation as a over b. Then we
could define a canonical height by considering the infimum over such
representations and this would only depend on the actual rational
number. This will in fact coincide with the naive height, and indeed
representing a rational number by a/b for relatively prime a and b is

1



2 Part 1. Introduction and summary

one canonical representation of it. This is not, in spirit, unlike how
we will define a canonical height of an arithmetic Fano variety.

A more algebraic way of presenting the above is to consider instead of
the rational number the linear equation that defines it. Namely, the
rational number a/b is a solution to the equation a = bz. Since a and
b are only defined up to multiplying both of them with an integer, it
would be nice if the same was true for . One can homogenize the
equation and consider the equation of two variables ay = bx. Any
integer solution x,y still represents the rational number a/b but now
there are many solutions, since we can multiply an old solution z,y
by an integer and get a new one. So the symbolic representation of
the rational number a/b just means an integer solution to ay = bx.

Remark. An elementary example where the ideas of heights appear,
can be found in a proof of the irrationality of \/2. Lets work with
the definition of the canonical height of a symbolic representation of a
rational number. Assume, in pursuit of contradiction, that

V2 =a/b (1.2)

for some integers a and b, so that \/2 is rational. Then the canonical
height of v/2 is at most log max(a,b). It is a small exercise to realize
that by squaring both sides of (1.2), a and b must be divisible by two.
Thus the canonical height of /2 is at most log(max(a,b)/2). But
now we can repeat the above argument again and again, and infer
eventually that the canonical height of /2 must be —oo, which can be
shown is not the case for a rational number (by arguing via a relative
primeness).

Looping back to the discussion on representing rational numbers by
equations, we have shown above that the homogeneous equation 2b* =
a® does not have an integer solution.

The concept of height has been used for various problems in Dio-
phantine geometry. To show the flavour of this, consider an algebraic
equation of two variables, such as

2? = y® 4+ 17. (1.3)
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If we are interested in rational solutions, a simple exercise shows that
we can just as well consider integral solutions to the homogenization

zo? — P —172° =0 (1.4)

in projective three-space. In modern language, these solutions are
called rational points. The sought after results in Diophantine ge-
ometry are to understand the properties of the set of solutions. For
example, if there are a finite or infinite number of solutions, or if there
are any solutions at all. In any case, it has been useful to introduce
a size of a solution, the height. We can introduce a notion of height
of any solution (a,b,c) (where a, b, ¢ are chosen relatively prime) by
letting

h(la, b, c]) = log max(a, b, ¢), (1.5)

and consider the set of solutions of height bounded by B. This set
will always be finite. Thus a statement about the finiteness of the
set of solutions is equivalent to an upper bound on the height of the
solutions. In the case that there are infinitely many solutions, one
can ask refined questions about how the number of solutions of height
smaller than some number B grows as B becomes large.

Conjecturally these basic properties of the set of solutions should be
dictated by the geometry of the underlying analytic space consisting
of all solutions in the complex numbers. For algebraic curves, both
of these notions are in addition tightly connected to the degree of the
defining polynomial. This is particularly well understood in the case
of non-singular algebraic curves, like the example (1.4).

Firstly, for the arithmetic of algebraic curves, lets restrict for simplicity
to the case that there is at least one rational point (for more on this,
see the remark of section 1.6).

e Curves of degree one are in a very strong sense equivalent to
the projective line (the two-dimensional sphere). Curves of de-
gree two were understood by Euclid and can be related to the
projective line again by stereographic projection, this operation
preserves both the geometry and the study of rational points.



4 Part 1. Introduction and summary

The projective line over Z has infinitely many rational points
given by primitive pairs of integers (a, b).

e Curves of degree three can have both finitely and infinitely many
rational points, depending on the exact curve. In any case, it is a
finitely generated abelian group. This is the content of Mordell’s
theorem [22].

e Higher degree curves has finitely many rational points. This is
the content of Falting’s theorem [9].

Secondly, the degree is intertwined with the geometry of the space of
complex solutions, namely,

e if the degree is either one or two, the space is a sphere and the
geometry is positively curved in the sense that there exists a
Riemannian metric of constant positive curvature.

e If the degree is precisely three, the space is a torus (the surface
of a donut) and the geometry is flat in the sense that there exists
a flat Riemannian metric.

e If the degree is larger than three, the space is negatively curved
in the sense that there exists a Riemannian metric of constant
negative curvature. The topology becomes increasingly more
complicated with increasing degree in the sense that the space
has more and more ’holes’ (here, the sphere has zero 'holes’ while
the torus has one).

Going back to the arithmetics, the theorems of Mordell and Falting
both uses crucially some notion of height. In this thesis we will be
concerned with the case when the underlying analytic space is of any
dimension but positively curved in a certain sense, more precisely it
is Fano. Conjecturally according to part of the Manin conjecture [10],
the rational points are infinitely many in this case (if there are any at
all). Here heights enters when one tries to understand how the number
of solutions grows according to their height. How the questions in this
thesis enters more precisely, was described recently in [3].
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In addition to the height of points, which can be seen as zero-dimensional
varieties, it is useful to define the height of higher dimensional vari-
eties. Naively, for hypersurfaces, the height of a variety could be de-
fined as the height of the coefficient vector of the equation that defines
it. This fits nicely with the naive height of points of P! which coincides
with the height in this sense of the linear equation that defines them.

One central point about heights whether of points or entire varieties, is
that there are many more sensible ways to define them than the naive
height. For some applications, not much would change by defining for
example

h(la: b c]) = log(|al* + 6% + |¢*])'/2, (1.6)

since this new definition only differs up to a uniformly bounded term
from the old one. More generally, we could use any norm on, in this
case, R3. For higher-dimensional varieties, if we define the height as
the naive height of the coefficient vector, then we could still realize
the underlying abstract variety in different ways as a subscheme of
projective space.

In the generality of Arakelov theory, one can use any positively curved
hermitian metric on the complexification of an arithmetic line bundle
to define a notion of height in an intrinsic way. One benefit of this
framework is that it will be possible to find a type of canonical height
on an arithmetic Fano variety in a way that would not be possible
otherwise (see section 1.9).

As explained, the notion of height depends on a choice of metric.
The idea put forth in this thesis is to define a canonical height by
maximizing the height over all metrics, and in the meantime get a
universal bound for the height with respect to any metric. It turns
out that this invariant will only be finite under a subtle algebraic
condition on the underlying complex variety called K-semistability.
Additionally, under the slightly stronger condition of K-polystability,
there exists a maximizing metric which is a Kéhler-Einstein metric.
A metric is Einstein if it is a solution of the vacuum Einstein field
equations from the theory of General Relativity. The potential role
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played by Einstein metrics in Arakelov geometry was perhaps first
pointed out by Yuri Manin in his New dimensions in geometry [21]
from -85. This thesis pursues that largely unexplored direction.

Organization

In sections 1.1 and 1.2 we introduce the analytic theory of complex
projective varieties upon which much of the sequel is built. In section
1.3 we introduce the algebro-geometric counterpart of height, degree.
In section 1.4 we briefly introduce arithmetic varieties. In section 1.5
we are finally ready to introduce the theory underlying the thesis,
Arakelov theory, built on both arithmetic and complex geometry. In
section 1.7 we introduce toric varieties, the class of varieties that large
parts of the papers studies. In section 1.8 we summarize the contents
of paper 1 about universal height bounds on arithmetic toric Fano va-
rieties. In section 1.9 we briefly describe logarithmic pairs. In section
1.10 we summarize paper 2, about a logarithmic generalization of pa-
per 1, and some applications to height bounds on arithmetic diagonal
Fano hypersurfaces.
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1.2 Complex projective varieties

Later on we will be concerned with varieties over Z, which are ob-
jects of a quite algebraic nature. However, one of the main points
of Arakelov geometry, the framework on which much of the thesis
is based, is that it is useful when studying algebraic equations with
coefficients in Z to also consider the complex space cut-out by the
polynomials. This brings us to complex projective varieties.

A complex projective variety is the zero set of one or more homoge-
neous polynomials in complex projective space. If the zero set of the
Jacobian of this polynomial never intersects the variety itself, it is
non-singular and we have a manifold. Many of the constructions in
this thesis are easier to understand in the non-singular setting, so this
is what we will focus on. They can often be extended to the singular
setting, with some restrictions on the severity of the singularities.

One important example is complex projective space, P", itself, given
by the space of complex lines through the origin in C**!. In the intro-
duction we saw another, given by the vanishing of the single homoge-
neous polynomial (1.4), a hypersurface in embedded in P3. Another
important class of examples in this thesis is that of toric varieties.
Due to their highly symmetric nature they have their whole own the-
ory, described in section 1.8. For now, we can think of them as the
projective varieties defined by the vanishing of one or more binomials.

1.3 Kahler geometry

Complex projective manifolds are special among differentiable mani-
folds and have many remarkable properties. For one, they are complex
manifolds, meaning that after identifying their charts with subsets of
C" the transitions maps can be chosen to be holomorphic. This al-
lows to define what it means for a function, differential form or general
tensor field to be holomorphic. One can also introduce a d-operator,
whose kernel are precisely the holomorphic functions.
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Furthermore, even among complex manifolds projective manifolds are
special. Partly because they are Kdhler, meaning that they admit
Kéhler metrics. A Kdhler metric is a Riemannian metric on a com-
plex manifold such that there exists holomorphic coordinates where
the metric looks like the standard metric on C™ to order one (not just
to order zero which one can always achieve). This turns out to be
an extremely useful condition and restricts the geometry and topol-
ogy of Kéahler manifolds, and thus also of complex projective varieties,
in a variety of ways. Another way to define Kéhler manifolds, is to
say they are Riemannian, symplectic and complex at the same time,
together with a relation relating the three structures. In terms of ten-
sor, we have by definition a Riemannian metric g, and symplectic form
w, and a complex structure J, with the compatibility condition that
g(J-,-) = w. A natural setting in complex algebraic geometry is to
fix the complex structure, and then to consider different Kéhler struc-
tures, by varying w. As long as one varies w within one cohomology
class |wpl, it turns out that they are all of the form

w = 00u + wy,

a statement referred to as the 90-lemma. This is convenient as it turns
equations for defining special Kahler metrics into equations for a real
valued function wu.

Line bundles

On a compact Kéhler manifold there are no non-constant holomorphic
functions. Instead, one has line bundles, whose sections are locally
holomorphic functions. For example, on projective space, on example
is the line bundle given at a point by the line naturally defined by
it. It is usually denoted by O(—1). Duals and tensor products in of
this line bundle are written in additive notation O(k) for k € Z. The
fact that the space of sections, denoted H°(X, O(k)), are given by the
degree k homogeneous polynomials showcases the strong connection
to algebra. On any complex projective manifold, a realization of it
as a complex submanifold of projective space defines multiple line
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bundles on it by pullback of the O(k)’s. A more intrinsic approach is to
consider the variety in a more abstract language, equipped with a line
bundle whose space of sections embeds the variety in projective space,
and identifies the sections with homogeneous polynomials. These line
bundles are called ample, geometrically defined by them admitting
positively curved metrics.

Metrics on line bundles

A metric on a line bundle L is a pointwise norm || - || on each fiber
such that ||s||? is a smooth function for any holomorphic section s.
Given a local trivialization e of the line bundle, i.e. locally s = fe for
a holomorphic function f, we can write

1] = [ fI* exp(—¢) (1.7)

for a function ¢. Even though ¢ is only defined locally, it is useful
to write ¢ for the metric, and then we mean a collection of locally
defined functions, which glues together to a globally defined metric.
The (Chern) curvature of the metric is given by i90¢, and is a globally
defined, closed, 2—form. The class of the curvature form is called
the first Chern class ¢;(L) of the line bundle L. An alternative to
representing the metric with a locally defined function ¢, is to choose
some reference metric ¢g, then u + ¢q is a new metric for any smooth
function u. The d0—lemma from the section on Kéahler geometry now
implies that any Kéhler metric w in the first Chern class of a line
bundle is the curvature form of some metric on the line bundle. I.e.

w = i00¢. (1.8)

This metric is by definition positively curved. Up to metric scaling
this is a one-to-one correspondence.

Looping back to the introductory discussion, on n—dimensional pro-
jective space, any norm on C"*! defines a positively curved metric
on O(1). The Euclidean norm gives the Fubini-Study metric. Addi-
tionally, for a line bundle on a general projective manifold, if one can
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embed it with the space of sections into projective space, one obtains a
positively curved metric by pullback of the Fubini-Study metric. More
precisely the embedding identifies the line bundle with the pullback of
some O(k). It should be noted that not every positively curved metric
on a line bundle is of this sort. However, the existence of a positively
curved metric implies that the line bundle is ample (by the Kodaira
embedding theorem [15]), so that the line bundle can be identified
with the pullback of some O(k) on projective space.

Fano varieties

On a projective manifold X there is a special line bundle, the canonical
line bundle, Kx. The sections of it are locally of the form f(z)dz; A
... Ndz, for f a holomorphic function and are thus sometimes called
holomorphic top-forms. One can also define the dual of this line bun-
dle, dubbed the anti-canonical line bundle, or —Kx. The positivity
properties of Kx and —Kx play a major role for the geometry, and
mostly conjecturally, the arithmetic of the underlying arithmetic va-
riety (when there is one). The ones with Kx ample are in a certain
sense negatively curved, while ones with —Kx ample are positively
curved. The questions in this thesis concern the case when —Kx is
positive. These projective manifolds are also called Fano manifolds,
or Fano varieties when possibly singular.

For metrics on — Ky, the locally defined volume form
exp(—¢)dzy Adzy -+ Adz, Adz,

glues together perfectly to become a global volume form and will be
denoted exp(—¢).

1.4 Degree and volume

If we have a polynomial, an obvious affine invariant is the degree. Al-
gebraically, the degree is one possible measure of the complexity of
the polynomial. Furthermore, recall from the introduction that the
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degree is also a measure on the geometric complexity of the under-
lying analytic space. For a polynomial in one complex variable, the
degree can be recovered geometrically by the number of zeros. For a
hypersurface X in complex projective space P**!, there is a similar
procedure where the degree of the defining polynomial can be recov-
ered by intersecting the variety with n hyperplanes, chosen generally
so that the intersections are transverse. This notion turns out to be
homological, i.e. only depending on an appropriate topological class
of the hyperplanes and the hypersurface. For the intersection number,
computing the degree in this case, we write

O(1)" - X (1.9)

where O(1) is the line bundle whose zero sets of its sections are the
hyperplanes. Since it it homological, one can now compute this in
a variety of ways. Either in the above intersection theoretic way, or
cohomologically as an actual integral of a representative differential
form on X. Since any line bundle on P"*! is of the form O(k) for some
k, X sitting inside P"™! is cohomologically precisely O(d). Somewhere
along the line, it became usual to call the number L™ of a polarized
variety (X, L) the degree of L, comparing it to the elementary degree
of a hypersurface. However, note that these notions are distinct. The
first notion is relative to an embedding, while the second is intrinsic.
From now on, lets focus on the latter notion. We can also compute
the degree via differential forms on X. In particular, given any Kahler
metric w in the first Chern class ¢;(L) of L, we have

L":/Xw". (1.10)

Thus the algebraic invariant L"/n! of the polarized manifold (X, L)
also coincides with the symplectic, and also the Riemannian volume
of the Kéahler manifold X, equipped with the Kéhler metric w. For an
ample line bundle L, the number L™ /n! is called the volume of L.

There is yet another way of calculating the volume of an ample line
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bundle, called the Hilbert-Samuel formula, namely through the asymp-
totics of the dimension of the space of holomorphic sections H%(X, kL)
of higher and higher tensor powers kL (written here additively) of the
line bundle L. More precisely, by the Riemann-Roch theorem,

Vol(L) = lim —

dimH°(X, kL). (1.11)
k—oo NIK™
This result may seem like the most obscure way of computing the
degree or volume at the moment but in the arithmetic setting this is
the closest to how we will define the arithmetic volume or degree. This
arithmetic version of the degree will be the notion of height that we
work with.

Fujita’s universal sharp bound

In general, there cannot be any universal upper bound on the degree
of any line bundle over an n-dimensional projective variety without
further restrictions. For example, just take the repeated tensor power
of an ample line bundle. Thus the degree in the sense of L" does not
really measure the complexity of the underlying variety X, rather of
the of the pair (X, L).

In the Fano case, there is a canonical choice of ample line bundle,
—Kx. One can ask if there is a universal bound on the degree of the
anti-canonical line bundle for varieties of a fixed dimension n. If singu-
larities are allowed, there are no lower bounds other than zero. There
is however always an upper bound. For some time it was believed
in addition that projective space maximized the anti-canonical degree
among all Fano varieties of a given dimension. There are however
toric counterexamples already in dimension 4. What was eventually
established, first in [11] in the non-singular case, and then extended in
[18], is that projective space is the maximizer as long as one restrict
to varieties that satisfy a certain condition called K-semistability (see
section 5.1).
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Theorem 1 (Fujita, Liu). Let X be a K-semistable Fano variety of
dimension n. Then

(—Kx)" < (—=Kpn)" (1.12)
with equality if and only if X =P

So put differently, one can differentiate between any K-semistable Fano
variety and P" just by looking at the degree of the anti-canonical line
bundle. The same is true for a number of other invariants such as
Seshadri constants, Fano index and alpha-invariants, see [20], [14] and
[24], respectively.

1.5 Kahler-Einstein metrics

A Kahler-FEinstein metric is a Kahler metric (see section 1.3), which
is also a solution to the Einstein field equations, meaning that the
Ricci curvature is proportional to the metric. This condition restricts
the projective manifold to one of three cases depending on the sign of
the curvature. The case of positive curvatures corresponds exactly to
Fano manifolds. In terms of the symplectic form w defining the Kéhler
metric, the Kéahler-Einstein equation in this case reads

Ric(w) = w,

after possible rescaling the metric.

As noted earlier, the height that we will consider will depend on a
choice of metric on a line bundle, specifically, on the anti-canonical line
bundle —Kx. We will argue that a natural metric to use, when it is
available, is a Kdhler-Einstein metric. Regardless, they will play a role
in finding metric-universal bounds on the height. Anyhow, we define
them and briefly mention the relevant theory. By a Kaéhler-Einstein
metric on —Kx we mean a metric whose curvature form defines the
sympletic form of a Ké&hler metric which is Einstein. In fact, any
Einstein metric which is also Kéhler on a Fano manifold essentially
arises as the curvature form of a metric on —Kx. The equation that
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should be satisfies with a metric ¢ on —Kx for the curvature form of
¢ to be Einstein is the following complex Monge-Ampére equation.

(1009)" = C exp(—¢(2)) (1.13)

for an arbitrary constant C (related to scaling the metric). The oper-
ator in the left hand side is usually called the complex Monge-Ampére
operator, a fully non-linear, second order differential operator which
locally takes the form

82
det ( — qb) .
3zi82j i
If equation (1.13) holds then the curvature form w = i09¢ will be
Einstein due to the expression for the Ricci curvature

Ric(w) = —id0log(w"/dz A dZ) (1.14)

on Kéahler manifolds

Variational theory

At this point, we have not explained why Ké&hler-Einstein metrics
might be natural to use to define canonical heights. This will become
clear in Section 7, where we will see that they appear as certain height-
maximizing metrics, after a normalization is introduced. Understand-
ing this turns out to be closely related to the variational theory of
Kéhler-Einstein metrics.

The starting point of the variational theory is the complex Monge-
Ampeére operator admits a functional primitive, i.e. there exists a
functional on the space of positively curved metrics on —Kx, whose
functional derivative is the complex Monge-Ampére operator. This
functional is the Monge-Ampere energy, given by
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1

Enld) = —=

i J=on@rey naaoy. (L)

Here ¢g is another metric on —Kx, which is needed to define the
functional but for the sake of the variational theory it is completely
arbitrary which one to use. The right hand side of the Kéahler-Einstein
equation also admits a functional primitive and one can define the Ding
functional (8],

Di(9) 1= Eay +1og [ e (1.16)

whose Euler-Lagrange equation is the Kéhler-Einstein equation (1.13).
It turns out that this functional is concave in an appropriate sense,
and through a vast body of work, the existence of Kéhler-Einstein
metrics on Fano varieties is reduced to a coercivity notion of the Ding
functional. The coercivity condition is not always satisfied, and so
Kahler-Einstein metrics does not exist on all Fano varieties. This
is in contrast to the cases when Ky is positive or trivial, and the
Ricci curvature is negative or zero, respectively. In these cases Kéahler-
Einstein metric always exists.

Remarkably, the coercivity of the Ding functional can be charac-
terized by an algebraic condition on the underlying projective vari-
ety. Although it should be noted that this condition can be diffi-
cult to check in practice. This algebraic notion is called K-stability.
A slightly weaker notion, K-polystability, precisely characterizes ex-
istence of Kéahler-Einstein metrics, allowing for continuous automor-
phisms that leave the Ding functional non-coercive in certain direc-
tions. This massive achievement is referred to as the, now settled,
Yau-Tian-Donaldsson conjecture [6][23|. The later proof in [4][5] was
based on the variational method and it was eventually extended to the
singular setting in [17][19]. An even weaker stability notion is called
K-semistability, and it precisely characterizes the case when the Ding
functional is bounded from above, see [16] and paper 1. Note that
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even in the K-semistable case, the supremum of the Ding functional
itself is not a very interesting invariant since it depends on the choice
of reference metric ¢q.

1.6 Arithmetic varieties

An arithmetic variety is a certain scheme over Z with some addi-
tional properties. Every arithmetic variety (here assumed projective)
can always be realized as "something" cut-out by a tuple of homo-
geneous polynomials with coefficients in Z. So far, when discussing
varieties over C we have not made distinction between the abstract
variety as an algebraic object and the associated analytic space. For
the case of arithmetic varieties this is too sloppy. For example, the
arithmetic varieties X2 +Y? = Z2 and X? + Y? = —Z2 clearly are
quite different from an arithmetic perspective. The first equation ad-
mits infinitely many integral points, called the Pythagorean triples,
given by X = a? — b, Y = 2ab, Z = a* + V? for arbitrary choices of
integers a and b. The second equation does not admit a single inte-
gral solution, indeed, it does not even admit a real solution. But the
analytic spaces they give rise to are exactly the same. A biholomor-
phism between them is given by sending Z — ¢Z. The correct notion
which captures the arithmetic features of "things" cut-out by homo-
geneous polynomials with integer coefficients yet is flexible enough to
not differentiate between realizations that really give rise to the same
algebraic object is that of a projective scheme over Z.

Remark. Note that the above example seems to be a counterexample
to the statement that arithmetic Fano varieties admits many rational
points. And it is, if one is not cautious and reformulates the con-
jecture to be that there are many rational points if there are any at
all. Alternatively, one leaves the world of ordinary arithmetic and lets
Z be exchanged for another number field, in the above examples the
Gaussian integers, Z[i].

Just as for complex algebraic varieties, to an arithmetic variety X we
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will consider arithmetic line bundles £ over X', and occasionally arith-
metic sections of L. These notions are easiest understood when X is
a hypersurface of projective space Pj cut-out by an integer coefficient
degree d homogeneous polynomial. This polynomial is a section of
O(d) over X, the lattice of integer coefficient polynomials of degree
d. We get more arithmetic sections of arithmetic line bundles on X
by taking restrictions of integer coefficient homogeneous polynomials.
The space of arithmetic sections of an arithmetic line bundle is always
a lattice.

Lastly, some terminology that needs explanation is that of integral
models. An arithmetic variety X is clearly also a variety over Q. But
to one variety X over Q one can associated several arithmetic varieties.
Then X is called an integral model of X. For example, consider the
quadratic hypersurface X defined by

2%+ y* = 0.

Consider the map F' taking x = a — b and y = a + b. Pulling back
the hypersurface under this map results in the new hypersurface Y
defined by

2a° +2b* = 0.

Since the map is defined over Z this counts as a morphism of arithmetic
varieties. However, note that the inverse of F'is given by b = :”Tﬂ’ and
a = % Thus X and ) are not equivalent as arithmetic varieties.
However they are equivalent over Q, and we say that X and ) are

different integral models X, the hypersurface defined over Q.

1.7 Heights and Arakelov geometry

Accepting the analogy between heights and degree as different mea-
sures of complexity, one could try to obtain a theory of heights by
some intersection theory on arithmetic varieties. But it turns out
that it is quite difficult to construct a well-behaved intersection the-
ory for schemes over Z. A picture to have in mind is that schemes over
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7, have an extra scheme-theoretical 'dimension’ compared to the di-
mensions related to the accompanying analytic space. Moving in this
dimension is related to looking at the scheme from the perspective
of a larger and larger prime. More precisely, the arithmetic variety
fibers over this dimension and the fiber over a prime is precisely the
arithmetic variety over Z, that one obtains by reducing the coefficients
modulo p. This extra dimension poses some non-compactness (or non-
properness) issues for a well behaved intersection theory, analogous to
how two intersecting lines in the affine plane intersects exactly once,
only if they are not parallel, but always intersect exactly once in the
projective plane. The solution proposed by Arakelov in [1| (and ex-
tended to higher dimensions in [13]) is to compactify the situation by,
loosely speaking, add a (so to say) "prime at infinity". This turns
out to correspond to adding, in an appropriate sense, the correspond-
ing complex analytic space, together with an hermitian metric on an
accompanying line bundle.

With this data one can define a kind of intersection theory of metrized
arithmetic divisors that can be used to define a reasonable theory of
heights, that for zero-dimensional subvarieties, i.e. points, agrees with
the naive height if the correct metric is chosen. The theory is called
an intersection theory because it has many features that resembles
the ordinary algebro-geometric intersection theory. It should be noted
that intersection numbers in this theory can not as clearly be under-
stood as the actual number of elements in some set of intersection
points. But this is also good because we want the intersection theory
to describe heights, which even in the naive setting does not seem to
be related to the number of intersection points of anything.

The height, in the Arakelov sense, is associated with the data con-
sisting of an arithmetic variety X together with an arithmetic line
bundle £, where one in addition has fixed an hermitian metric ¢ on
the complexification L over X, the complexification of X. One de-
fines the height, or arithmetic degree, in parallel with the degree of a
line bundle over a complex variety, by the top arithmetic intersection
number
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(L)g. (1.17)

The fact that it is an n + 1:th self-intersection is related to the extra

dimension from the Spec(Z)-direction.

Before we properly define the height in general, we showcase a formula
for it for a degree d hypersurface X of projective space. If X is cut-
out by a section s of O(d), then we can restrict O(k) to X' to get an
arithmetic line bundle on X" and then (up to some numerical constants
that we omit)

O™ = 56+ |

tog s/l (906" (118)
P+l
Here ¢ is a positively curved metric on O(k)|y, and ¢’ is an arbitrary
positively curved extension of ¢ to O(k). Here the reference metric ¢y
is the metric on P™ associated to the max-norm in the naive definition
of the height. The required extension ¢ always exists, but the result
is independent of choice of the extension.

It is instructive to compare this to the naive height of a hypersurface.
Recall that the naive height in this case would be the logarithm of
the maximum of the coefficients of s, when the coefficients are chosen
relatively prime. From this it follows that if the coefficients are all
distinct, large, prime numbers, then the naive height is large as well.
From the above formula, one can guess that a similar behaviour is true
for the Arakelov height, noting that (99¢)"*! is a positive measure.

In general we define the height via an analog of the Hilbert-Samuel
formula (1.11). First, recall the notion of an arithmetic section of an
arithmetic line bundle. The set of arithmetic sections H°(X, L) sits
inside H°(X, L) as a lattice, i.e. a free Z-module. Now, the analog
of the classical Hilbert-Samuel formula (1.11), is a sort of asymptotic
formula the number of points belonging to the lattice H(X, kL) inside
the L>-ball of H°(X, kL). More precisely, according to the arithmetic
Hilbert-Samuel formula (see [13]),
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|
(n+ 1)1 koo knHL

logvol{s € H*(X kL) @ R : sup ||s]|rs < 1}
X
(1.19)

where H°(X, kL) ® R can be identified with the subspace of real sec-
tions in H(X, kL). Here the volume should be computed with respect
to a Lebesgue measure normalized such that a fundamental domain
of the lattice H°(X, kL) gets unit volume. This normalization is es-
sentially where the arithmetic model enters.

Importantly, the definition leads to the following formula for the dif-
ference of the heights with respect to two metrics ¢ and ¢,.

(L) = () = (0, (1.20)
revealing a connection between heights and Kéahler-Einstein metrics,
which we will come back to in section 1.9.

1.8 Toric geometry

Toric varieties is a class of varieties that enjoy a particularly simple
and large group of symmetries that often makes their study consider-
able simpler than the case of a general variety. Many constructions
in algebraic geometry become combinatorial and convex geometric,
while their theory as Kéahler manifolds becomes deeply intertwined
with convex analysis.

A projective toric variety X of dimension n admits a faithful action
of the complex torus C** := (C\ {0})", (i.e., the action is as big as
possible). Additionally, there is a dense orbit. In other words, the
entirety of X can be though of as a compactification of C**. Given
an ample line bundle L on X, one can choose a basis of H°(X, kL)
which is equivariant with respect to the torus action. Over the dense
subset C*", these must be monomials. But not all monomials can
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become holomorphic sections in the compactification, since the space
of sections of a line bundle over a projective variety is always finite-
dimensional. In fact, to each toric variety equipped with an ample
line bundle there is a (non-unique) polytope, called the moment poly-
tope, such that a monomial z{'z3...z%" is part of H(X, LF) if and
only if (ay,...,a,)/k € P. Conversely, given any polytope with ra-
tional vertices, one gets a toric variety by (for a sufficiently large
k € N) considering the closure of the image of the map (C*)* — PN
z — [2P1) 22 2PNk] where we have used the notation z? = 27" ...zifzk
and where py, ..., py, are the lattice (or integer) points of the scaled

polytope kP.

Once this correspondence between toric varieties equipped with ample
line bundles, (X, L), and polytopes, P, is set up, there is a vast and
growing dictionary translating between notions in algebraic and Kéah-
ler geometry, to notions in convex geometry and analysis. The degree
of an ample line bundle is given by the volume of the correspond-
ing polytope. Toric Fano varieties equipped with the anti-canonical
line bundle correspond to (duals) of polytopes of a certain type called
Fano polytopes. (S')"™ invariant metrics on L with positive curvature
correspond to convex functions v on R™ with a certain growth condi-
tion encoded by P. The Kéhler-Einstein equation for (S')"-invariant
metrics becomes a certain real Monge-Ampére equation, and it turns
out that all Kahler-Einstein metrics on toric Fano varieties has this
symmetry, up to biholomorphisms.

A neat fact about toric varieties is that they are naturally defined
over the integers. This can be seen directly from their occurrence as
closures of images of monomial maps into projective space. A mono-
mial is canonically defined over Z simply because we can choose the
coefficient in front of it to be one. Thus all toric varieties have a
canonical integral model (that we will just refer to as the canonical in-
tegral model). With respect to this model, the height of the canonical
integral model of a toric Fano variety takes the following form
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(—KCx)itt = 2/ —u*dp (1.21)

P

where u*(p) := sup,(x,y) — u(z) is the Legendre transform of w.

1.9 Canonical heights and sharp height bo-
unds on toric Fano varieties (Paper 1)

There is a philosophy that virtually any statement in algebraic geome-
try should have a counterpart in Arakelov geometry. Recall the Fujita
theorem 1 about the sharp upper bound on the anticanonical degree
of a K-semistable Fano variety. In the first paper we introduce and in-
vestigate a possible arithmetic or Arakelov version of this, i.e. a sharp
upper bound on the arithmetic anti-canonical degree of an arithmetic
Fano variety. As is evident by now, the notion of arithmetic degree
also depends on a choice of metric on —Kx. One immediate problem
with a bound of the type asked of above is that if one scales the met-
ric on —Kx, i.e. ¢ — ¢ + ¢, then the height changes additively as
(—Kx)ile = (—Kx)i™ + (—Kx)"c. Thus we need to normalize the
metrics somehow. One seemingly natural normalization is to require
that the volume form defined by ¢, denoted exp(—¢) has total volume
1, that is | X e~ = 1. We call such metrics normalized and one can
wonder whether there is an upper bound on the possible anti-canonical
arithmetic degrees of arithmetic Fano varieties metrized with normal-
ized metrics. The first paper attached to the thesis introduces the
following conjecture regarding the above question.

Conjecture 1. Let X be an arithmetic Fano variety such that X is K-
semistable and ¢ a normalized, continuous, positively curved hermitian
metric on —Kx, then

(—Ka)y™ < (=K )it (1.22)

where PY, is the projective space over the integers and ¢ps is up to a
biholomorphism the normalized Fubini-Study metric.
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Let us stress that the right hand side above is explicitly known,

n n

1 T
n+l __ n+1 -1 T
(=Key)5y = 5+ 1" ((n+1) 3 7=t log(—)) (L.23)

Let us for clarity also state the conjecture in convex-theoretic language
in the toric case.

Conjecture. Let P be the moment polytope of a toric Fano variety
with barycenter in the origin so that the variety is K-semistable. Let
u be any convexr function on R™ with Legendre transformation with
domain P (finite on precisely P). Then

2 /P W (p)dp — 2V(P) log (w / nexp(—u)) < (~Kpp)m (1.24)

where V(P) is the volume of P.

In general, we define the canonical height of an arithmetic Fano variety
to be the supremum of the height of a fixed arithmetic variety with
respect to continuous positively curved normalized metrics on —Kx.

That the Fubini-Study metric, which is Kéhler-Einstein, appears as
the maximizer of the height on projective space - and thus as a metric
whose height corresponds to the canonical heights - is part of a general
pattern. In fact we show the following series of statements relating
Kahler-Einstein metrics and K-stability with height maximization.

Proposition 1. If the supremum of (—ICX)Zle over normalized met-
rics ¢ is attained, it is attained at a Kahler-Finstein metric. Con-
versely if X has a Kdhler-Finstein metric, the normalization of it
attains the supremum. The supremum is finite if and only if X 1is
K-semistable.

The idea is quite simple, given the large existing body of work con-
cerning the variational theory of Kéhler-Einstein metrics [4], and relies
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on the fact that taking the supremum of the height over all normal-
ized metrics is the same as taking the supremum over all metrics, if
one adds to the height the term (—Kx)"log [, exp(—¢). In the latter
case, the resulting functional differs from the Ding-functional by just
an additive metric independent term.

Remark. Let us note that the supremum in the definition could be
taken, without changing it, over all embeddings into projective space
and the metrics taken to be pullbacks of Fubini-Study metrics (this
follows from Demailly approximations [7]). In this way, one would
stay closer to the naive theory of heights. One advantage of fully
utilizing the generality of Arakelov theory is that the supremum is a
mazimum whenever a Kdhler-FEinstein metric exists, this would likely
only happen on extremely rare occasions otherwise.

Remark. At least naively, to compute the canonical height, when it is
finite, one needs an explicit Kdhler-Finstein metric. But this is almost
never the case. However upper bounds on the canonical height are by
definition also upper bounds for the height in general for normalized
metrics.

The main result of the paper is a resolution of the conjecture for toric
Fano varieties, equipped with their canonical integral model, for low
dimensions, or alternatively, if a conjecture that we dubbed the gap
hypothesis holds for the algebro-geometric degree.

Theorem 2. Conjecture 1 is true for the canonical integral model X
of any toric Fano manifold X as long as the dimension of X is at
most 6. It is also true in any dimension for certain classes of singular
toric Fano varieties (see paper 1 for the precise statement).

The proof is based on a metric independent bound for the toric Ding-
functional for K-semistable toric Fano varieties, utilizing the functional
Santalo inequality from [2]. More precisely, we can prove in this case
that
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(Kt < M o () )

The bound only depends on the degree (—Ky)" and the dimension,
but is not optimal. However given that the degree is at most the degree
of P! x P*~! one can deduce the conjectural sharp bound. This last
step is what we call the gap hypothesis, or more precisely,

Conjecture 2. Let X be a K-semistable toric Fano variety which is
not P, then (—Kx)" < (—Kpn-1xp1)".

For toric Fano varieties with certain singularities, for example quotient
singularities, the above conjecture can be proven by convex geometric
techniques. For non-singular toric Fano varieties there is a complete
classification up to dimension 6 for which Conjecture 2 can be checked
by going through the classification. This completes the proof of Con-
jecture 1 in these cases. Recall that since the volume of an ample line
bundle on a toric variety is related to the volume of the correspond-
ing polytope, the above conjecture can be formulated in the language
of volumes of a certain class of polytopes. Let us also note that, for
non-singular but possibly non-toric Fano varieties, there is no counter-
example produced by the existing classifications in dimension 2 and
3.

1.10 Logarithmic pairs

In the second paper of the thesis, summarized in the next section,
logarithmic pairs play an important role. A logarithmic pair, is just a
pair (X, A), consisting of a variety X, and a divisor A, i.e. a formal
Z-linear combination of codimension one subvarieties. By definition
divisors are locally cut-out by holomorphic functions and in fact one
can always associated a line bundle with an associated section which
cuts out the divisor. For a divisor A we will denote the line bundle
by A as well. For a logarithmic pair one defines the log-canonical line
bundle by K(x a) = Kx + A. In several ways, this line bundle will
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play the role of the ordinary canonical line bundle in the logarithmic
setting. The main merit of these definitions is that they naturally ap-
pear when doing various birational operations on an ordinary variety,
for example blow-ups.

Another situation where log pairs pop-up naturally are branched cov-
ers, of which a prototypical example is z — 2" on C. Since this map
has degenerate Jacobian at any coordinate hyperplane if n > 2, a
holomorphic differential form on the image will not pull back to a
holomorphic differential form on the domain but will have a certain
singularity at 0. More precisely, if w = 2", then dz corresponds to
%wl_%dw outside of 0. The (affine) logarithmic pair (C, (1 — 1/n)[0])
contains the information of the singularity of a differential forms that
arises from pullback under the z™ map. In general, from a branched
cover, one can construct an associated log-pair in the sense that the
canonical line bundle pulls back to the log-canonical line bundle of the
log-pair.

Once log pairs have been introduced, many objects we have so far
mentioned generalize to logarithmic versions. We have log Fano pairs
for which —(Kx + A) admits a positively curved metric, and the cor-
responding algebraic degree-like invariant —(Kx + A)™. We have the
notion of log Kdihler-FEinstein metrics w which satisfy in, a certain
precise sense, the singular Kéhler-Einstein type equation

Ric(w) = w + [A] (1.26)

where [A] is the current of integration along A. This is also the
equation satisfied by the pullback of a smooth Kéahler-Einstein metric
under a blow-up, or what should be solved on the base of a branched
cover for the pullback metric to be an ordinary Kéhler-Einstein metric.
The theory of heights also admits a straightforward logarithmic version
if A is a divisor cut-out by an arithmetic section.
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1.11 Canonical heights and sharp height
bounds on some logarithmic pairs and
diagonal hypersurfaces (Paper 2)

In the second paper, we extend conjecture 1 regarding the sharp upper
bound on the height of metrized arithmetic Fano varieties to logarith-
mic pairs. An arithmetic log Fano pair is an arithmetic log-pair where
the complexified log-anti-canonical bundle —(Ky + A) is ample.

If we have an arithmetic variety X and A is cut-out by an arithmetic
section we have the notion of an arithmetic log-pair. We can consider
the Arakelov invariant, —(Kxy + A)ZH, for a metric ¢ on —K(x a). In
this setting, ¢ no longer defines a volume form but due to the arith-
metic structure on A, we have a preferred choice of section sp cutting
out A. Recall that the set of arithmetic sections is a lattice, so that
given any section cutting out a divisor, we can divide by an integer
to obtain a section corresponding to a primitive point of the lattice.
Clearly this section cuts-out the same complex analytic variety. Notice
that a similar procedure is not possible without the arithmetic infor-
mation. Thus, from the data of an arithmetic log Fano pair, we obtain
a measure on X by considering locally the expression exp(—¢)|sal?,
which glues into a global measure on X. We say that ¢ is normal-
ized when this integrates to 1. Thus we can still define a logarithmic
version of our canonical height on an arithmetic log Fano variety by
considering

sup—(lCX—i—A)g“, (1.27)
¢

where the supremum is taken over normalized metrics. Analogous to
the non-logarithmic setting, whenever maximizers exists, they are log
Kahler-Einstein. The log-version of conjecture 1 reads

Conjecture 3. Let (X,D) be an arithmetic Fano variety such that
(X, D) is K-semistable and ¢ a normalized, continuous, positively
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curved hermitian metric on —(Kx + A). Then

(=Kx + D)y < (—Kpy)ops: (1.28)

where P7 is the projective space over the integers and ¢ps is the nor-
malized Fubini-Study metric. Additionally, equality happens only for
this case, up to a biholomorphism.

One of the main results is the resolution of the conjecture in the toric
case in low dimension.

Theorem 3. Conjecture 3 holds for the canonical integral model of
non-singular toric log-pairs of dimension at most 3.

The proof follows the same strategy as Theorem 1 from Paper 1 and
follows from a logarithmic version of the gap hypothesis, conjecture 2.
The added difficulty that restricts the dimension to at most 3 is that a
logarithmic version of the 'gap hypothesis’ must be established, while
there are uncountable many K-semistable non-singular toric log Fano
pairs, in any dimension.

A second result, that goes beyond the toric setting, is that in the
particular case where X = P7, and D is supported on hyperplanes
that are in simple normal crossing arrangement (an snc hyperplane
arrangement for short), then the main conjecture is true.

Theorem 4. If X = P}, and D is supported on a simple normal
crossings hyperplane arrangement (equipped with the canonical integral
model), then Conjecture 3 holds.

Although the result goes beyond the toric setting, the proof uses an
elementary convexity property of the height in the logarithmic case,
together with an explicit characterization of the K-semistable log Fano
snc hyperplane arrangements from [12] to reduce to the toric case. For
toric hyperplane arrangements, the canonical height can be explicitly
calculated.

As explained in section 10, logarithmic pairs appear naturally in cer-
tain constructions in algebraic geometry. For example in the case of
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branched covers. This is used in another result of paper 2, where we
consider conjecture 1 for the arithmetic Fano diagonal hypersurfaces.
These are the hypersurfaces of the form,

n+1

> aXi =0 (1.29)
k=0

Here a;, are integers and d < n + 1 so that the above equation defines
an arithmetic Fano variety. A computation shows that the canonical
height is minimized when a, = 1Vk, the so called Fermat hypersur-
face of degree d. The map X; — X on P"! expresses the Fermat
hypersurface as a branched cover over P". The branching happens
precisely over a simple normal crossings hyperplane arrangement and
the techniques from the proof of 4 we can prove the following.

Theorem 5. Conjecture 1 is true for diagonal Fano hypersurfaces.

Remark. The above statement is formulated entirely in terms of heights
and arithmetic. But our proof, while quite simple, requires deep input
from the theory of K-stability and Kdhler-Finstein metrics. For exam-
ple the explicit characterization of K-semistable simple normal cross-
ing hyperplane arrangements, or that a Kdhler-Einstein metric on a
toric log-pair, when it exists, is tnvariant under the real torus action
(up to a biholomorphism).
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SHARP BOUNDS ON THE HEIGHT OF K-SEMISTABLE TORIC FANO
VARIETIES, 1.

ROLF ANDREASSON, ROBERT J. BERMAN

ABsTRACT. Inspired by Fujita’s algebro-geometric result that complex projective space has
maximal degree among all K-semistable complex Fano varieties, we conjecture that the height
of a K-semistable metrized arithmetic Fano variety X of relative dimension n is maximal when
X is the projective space over the integers, endowed with the Fubini-Study metric. Our main
result establishes the conjecture for the canonical integral model of a toric Fano variety when
n < 6 (the extension to higher dimensions is conditioned on a conjectural “gap hypothesis”
for the degree). Translated into toric Kahler geometry this result yields a sharp lower bound
on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi
functional. We furthermore reformulate our conjecture as an optimal lower bound on Odaka’s
modular height. In any dimension n it is shown how to control the height of the canonical
toric model X, with respect to the Kdhler-Einstein metric, by the degree of X. In a sequel to
this paper our height conjecture is established for any projective diagonal Fano hypersurface,
by exploiting a more general logarithmic setup.

1. INTRODUCTION

1.1. The height of K-semistable Fano varieties. Let (X, L) be a projective flat scheme X
over Z of relative dimension n, endowed with a relatively ample line bundle £. The complexi-
fication of (X, £) will be denoted by (X, L). In other other words, X is the complex projective
variety consisting of the complex points of X and L is the corresponding ample line bundle over
X.

A central role in arithmetic and Diophantine geometry is played by the height of (X, L),
which is defined with respect to a continuous metric ||-|| on L. This is an arithmetic analog
of the algebro-geometric degree of (X, L), i.e., of the top intersection number L™ on X. The
height of (X, L, ||-||) - also known as Faltings’ height - is defined as the (n + 1)—fold arithmetic
intersection number of the metrized line bundle (£, ||-||) on X, introduced by Gillet-Soulé in the
context of Arakelov geometry [43, 19] (see Section 1.1). We recall that in Arakelov geometry the
metric ||| on L plays the role of a “compactification” of X. Accordingly, a metrized line bundle
(L, ||]l) is usually denoted by £. The definition of height naturally extends to any Q—line bundle
L, using homogeneity.

In contrast to the algebro-geometric degree of L the height of £ can rarely be computed
explicitly and all one can hope for, in general, is explicit bounds on the height. When £ is the
relative canonical line bundle, that we shall denote by Ky and n = 1, such conjectural upper
bounds are motivated by the Bogolomov-Miyaoka-Yau inequality on X and imply, in particular,
the effective Mordell conjecture, concerning explicit upper bounds on the number of rational
points on Xq and the abc-conjecture [79, 95, 84]. Here we shall be concerned with the opposite
situation where X is an arithmetic Fano variety, in the sense that the relative anti-canonical
line bundle is defined as a relative ample Q—line bundle that we denote by —K y, using additive
notation for tensor products (see Section 2.2.1). In particular, X is a complex Fano variety;
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a variety whose canonical line bundle — K x defines an ample Q—line bundle. We will also, for
simplicity, assume that X is normal. As shown in [10] in the toric case and then [46] in general,
for any complex Fano variety X

(L1) (—Kx)" < (~K)"

under the assumption that X is K-semistable. Moreover, equality holds iff X = Pg [61]. In
contr