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Abstract

Methods of coherent di�ractive imaging (CDI) rely on iterative algorithms to reconstruct the
complex exit-surface wave (ESW) of the object being imaged from the measured di�raction
intensity only. In this thesis we investigate by simulation the artifacts on reconstruction when
noise are present in the measurement. We �rst con�rmed the results obtained by Williams et al.
[1, 2, 3] for plane-wave CDI, for reconstructions from simulated measurement data with various
amount of shot-noise, non-sample beam scatter and background levels. Two kinds of iterative
reconstruction algorithms were tested, error-reduction (ER) and hybrid-input output (HIO). An
analogous examination of the e�ects of noise for Fresnel coherent di�ractive imaging (FCDI) was
then undertaken. The technique of FCDI requires a separate algorithm to recover the phase of
the illumination, prior to the use of ER or HIO algorithm for obtaining the ESW of the object.
Thus we simulated measurements of both the illumination and the di�racted intensity, with a
certain amount of shot-noise and additionally equal or di�erent amounts of background noise.
This resulted in distinct artifacts on the reconstruction for the di�erent noise types. A wide range
of di�erent error metrics was investigated for each noise type and level, for the reconstructed
ESW and it's derived transmission function. Our results show that certain error metrics are very
useful for identifying a good estimate to the generally unknown true solution, in any amount
and type of noise tested. These observations will help to design FCDI experiments for optimal
use of the available signal and to design new algorithms for iterative phase retrieval that can be
applied to noisy data.
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Chapter 1

Introduction

The penetrating nature and short wavelength of X-rays has long made X-ray techniques popular
for investigating a wide range of materials. A popular form of an X-ray technique is X-ray crystal-
lography whereby detailed structural information are obtained from X-ray di�raction data. X-ray
crystallography has a record of extraordinary achievement in science, for example elucidating the
molecular structure of DNA [4]. It elucidates the structure of a molecules electron density, by
requiring repeating units of the molecule in a lattice such as a crystal, to achieve su�cient X-ray
di�raction signal. However a major problem for the design of new pharmaceuticals, is that mem-
brane proteins do not typically form the crystals needed to enable further investigation of their
structure [5]. The availability of third-generation synchotrons and X-ray free-electron lasers with
increasing brightness are driving the development of many new methods of microscopy. Among
these techniques is coherent di�ractive imaging (CDI), enabling nanometre-scale imaging of non-
crystallographic samples.

Coherent di�ractive imaging is a technique where a crystalline or non-crystalline sample is illumi-
nated with planar coherent X-rays and the di�racted photons form a pattern of varying intensity,
measured by a detector in a far �eld distance. In such a measurement, the phase information is
lost, however iterative algorithms are used that constrains the reconstructed �exit-surface wave�
leaving the sample to be mutually consistent with the measured di�raction intensity and a priori
knowledge of sample extent. An intrinsic problem of CDI is the uniqueness of the reconstruction,
one can prove that generally a unique solution exist, though there can be trivial ambiguities which
include phase o�sets, 'twin' images and variation in position of the reconstructed exit-surface
wave [6].
A similar technique called Fresnel coherent di�ractive imaging (FCDI) uses a curved illumina-
tion on the sample, producing a Fresnel di�raction intensity pattern from which one may retrieve
an image of the sample through iterative algorithms, similar to the case of CDI. In an FCDI
experiment the sample can be larger than the illumination, as the illumination extent provides a
constraint to the solution of the exit-surface wave. However characterisation of the illumination
is needed for the iterative algorithms to be applied [7]. It has been shown that there exists only
one unique solution to the FCDI problem [8], as such the ambiguities present in CDI does not
exist.

1.1 Motivation and Aim

The succesful application of any iterative algorithm requires an accurate model for the data
acqusition process. There have been research on the e�ects of deviation from perfect spatial
coherence of the illuminating beam, establishing that deviations from ideal conditions that are
implicit in formulation of CDI algorithms can have unfavorable e�ects on the quality of recon-
struction [9, 10]. Of additional concern is that there may be deviations from the ideal case
because of impact of noise due to low photon counts or other sources of noise. Since the mea-
surement of these di�raction patterns records the intensity in the reciprocal space [11], any errors
due to noise will probably not have a straightforward impact on the resulting real-space result.
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For the technique of CDI, the e�ects of noise in measurements has already been extensively
investigated by Williams et al. [1, 2, 3]. They simulated the e�ects on reconstruction for varying
ranges of alien x-ray beam scatter, shot-noise and background levels in the measured di�raction
intensity data. Williams et al. showed that the di�erent kinds of noise will result in characteristic
artifacts on the reconstruction [1, 2, 3]. Their analysis included the applicability of di�erent error
metrics to identify a reconstruction of acceptable quality and �delity, in the presence of noise.
In addition they investigated for how much levels of di�erent sources of noise are acceptable to
obtain a reconstruction of su�cient �delity. Their analysis included di�erent samples, iterative
algorithms and parameters. For this thesis the aim is to �rst reproduce a subset of the results
of Williams et al. [1, 2, 3]. Then our second aim is to extend the approach for an analogous
investigation to the technique of FCDI, for which such an analysis had not yet been performed.
For FCDI we wish to examine e�ects on the reconstruction for di�erent levels of shot-noise and
background-noise present in the data. This includes relative levels of background-noise in the
data from di�raction and illumination respectively, and how this may a�ect the reconstruction.
This is used to arrive at a prediction for what levels of noise can be tolerated to arrive at a
FCDI reconstruction of su�cient �delity. This analysis may have implication for the choice of
experimental parameters, algorithms and detector technology. Additionally we wish to examine
di�erent error metrics to see if they can be used to identify a reconstruction of su�cient �delity
in the presence of noise.
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Chapter 2

Coherent Di�ractive Imaging

In this chapter we provide a brief overview of the techniques and iterative algorithms for the
methods of coherent di�ractive imaging (CDI) in Section 2.1, and Fresnel coherent di�ractive
imaging (FCDI) in Section 2.2. An overview of noise in di�raction imaging will also be provided
in Section 2.3. The underlying theory of CDI including wave propagation and X-ray interaction
with matter is not covered in detail here, this are covered extensively in for example References
[12, 13, 14].

2.1 Plane wave CDI

Plane wave CDI is a lensless imaging technique where the intensity of the beam di�racted by
a sample is measured by a detector at a far-�eld distance. This measured di�raction pattern
intensity has a Fourier transform relationship with the sample. Through iterative algorithms
the phase of the di�raction pattern intensity is also retrieved and with it information about the
structure of the object illuminated.

In a CDI experiment [12, 15] a quasi-monochromatic beam of planar X-rays is incident on
a beam de�ning aperture in order to increase the coherence of the beam and de�ne an area of
illumination. The beam is then incident on a sample with dimensions less than the illumination
extent. Both transmitted light and the di�racted wave�eld propagate through free space to the
detector. The transmitted beam may be blocked by a beam stop to avoid damage to the CCD
detector. A schematic of a CDI experiment are shown in Figure 2.1.1.

Figure 2.1.1: Geometry of a plane wave CDI experiment. Incident planar X-rays are reduced by
a beam de�ning aperture, then incident on a sample smaller than the illumination extent. The
unperturbed and di�racted wave-�eld propagate to the detector, where the unperturbed beam
is blocked by a beam stop and the di�racted wave-�eld are measured.
Figure reprinted from [12], courtesy of C. T. Putkunz.
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The measured intensity is proportional to the square of the magnitude of the di�racted wave-
�eld, however the phase information of the di�racted wave-�eld is not measured by the detector
[12, 15]. The measured intensity I(ρd), is related to the di�racted wave-�eld in the detector
plane ψ(ρd), by

I(ρd) = |ψ(ρd)|2 , (2.1.1)

where ρd is the plane coordinate in the detector pixel array.
The samples exit surface wave (ESW) ψ(ρs), is related to the line integral of the sample

complex scattering potential, k
2

4π

´
zS

(1− n2(ρs))dz [12], where ρs is the plane coordinate in the
sample plane, n(ρs) is the refractive index of the sample, and z being the axis along the beam
trajectory.
The di�racted wave-�eld at the detector, with known magnitude and phase, are proportional to
the ESW by a two-dimensional Fourier transform, [12, 15]

ψ(ρd) ∝ F [ψ(ρs)]. (2.1.2)

Furthermore an inverse Fourier transform on the di�racted wave-�eld in the detector plane yields
the ESW in the sample plane. This relationship between the measured intensity and the ESW
is the basis of the formulation of CDI [12].

To recover the phase information of the di�racted wave-�eld and therefore the ESW, iterative
algorithms are used (to be explained in Section 2.1.1). These algorithms start with a random
guess of the phase of the di�racted wave�eld, and in order for them to converge to a solution,
an `oversampling condition' must be met. The oversampling condition is for two dimensional
imaging given by [13],

σ =
Total number of sample points

Number of sample points inside support
≥ 4 . (2.1.3)

The concept of the oversampling condition is related to the Fourier phase problem which involves
a large set of simultaneous non-linear equations that require ful�llment of both the support and
modulus constraints [12, 13, 15]. The support constraint de�nes a region containing the ESW of
sample, and requires the region outside to be zero. The modulus constraint [16] requires that the
intensity of the recovered wave-�eld at the detector plane agrees with the measured intensity. If
the oversampling condition is realised there will be more equations than unknowns, then iterative
algorithms can converge to a solution that is unique (although with ambiguities as translation
or phase o�sets in the case of CDI) [12].

2.1.1 CDI Phase-Retrieval Algorithms

In this thesis we only investigate two common phase-retrieval algorithms, error reduction (ER)
[16] and hybrid-input output (HIO) [16, 17]. These are only two amongst several iterative
methods used to retrieve the phase of the di�racted wave�eld in the detector plane [13]. Common
to all of these iterative algorithms are the support and modulus constraints, illustrated in Figure
2.1.2. The support constraint operator πs de�nes a region S in the sample plane containing the
ESW and makes everything outside to zero [12, 13],

ψ′(ρs) =

{
0 ∀ρs /∈ S
ψ(ρs) ∀ρs ∈ S

. (2.1.4)

The modulus constraint operator π̂m (where ˆ refers to the detector plane) replaces the magnitude
of the wave�eld ψ′(ρd) of the current iterate to the measured intensity

√
I for each pixel [12, 18],

ψ′(ρd) =
√
I(ρd)

ψ(ρd)

|ψ(ρd)|
. (2.1.5)

The propagated modulus constraint is used in the sample plane,
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πm = F−1π̂mF , (2.1.6)

where F is the Fourier transform.

Figure 2.1.2: Illustration of two operators with application in iterative algorithms. �Apply sup-
port� means to set the complex numbers to zero outside a region containing the iterate. �Apply
modulus� means that one Fourier transforms the current iterate, replaces the magnitude of the
di�racted wave�eld with the square root of the measured intensity, however keeping the phase,
then an inverse Fourier transform back to the sample plane is performed. Figure reprinted from

[12], courtesy of C. T. Putkunz.

With these operators the error reduction algorithm is given by ,

ρk+1 = πsπmρk , (2.1.7)

where ρk is the k'th iterate of the ESW in sample plane. This algorithm thus consists of a
propagation to detector plane, application of the modulus constraint, propagation back to sample
plane, and the application of the support constraint.

The hybrid-input output algorithm are given by,

ρk+1 = [1 + (1 + β)πsπm − πs − βπm]ρk , (2.1.8)

where β is a real scalar.

2.2 Fresnel Coherent Di�ractive Imaging

In an FCDI experiment coherent planar X-rays illuminate a focusing optic, for example a Fresnel
zone plate (FZP) [19]. The combination of the FZP central beam-stop and an order sorting
aperture (OSA) allows only the �rst order illumination to exit the OSA to illuminate the sample.
A sample which can be larger than the incident beam is placed at a de-focused distance from the
OSA, with the illumination de�ning the area to be imaged. A schematic of an FCDI experiment
is shown in Figure 2.2.1. To obtain the bene�ts of FCDI, su�cient curvature in the illumination
are required. The degree of curvature required is de�ned by a Fresnel number NF to be greater
than or equal to �ve across the sample [12, 20]. This in turn determines the distance between
the the focal point and the sample zFS . The Fresnel number is de�ned as [21]

NF =
a2

λzFS
, (2.2.1)

where a is a measure of the sample radius, λ is the x-ray wavelength.
The resulting di�raction pattern at the detector at a far-�eld distance, consists of a holo-

graphic region which contains the interference information between the di�raction from the
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sample and the diverging undi�racted beam. In addition at higher angles than the extent of
the undi�racted illumination there is higher resolution information of the sample, available from
di�raction intensity.

Figure 2.2.1: Schematic of a Fresnel CDI experiment. Planar X-rays are incident on the Fresnel
zone plate and then conditioned by an order sorting aperture. Interaction of the diverging curved
illumination and the sample produces a Fresnel di�raction pattern in the far �eld, which includes
a central holographic region and high angle scatter.
Figure reprinted from [12], courtesy of C. T. Putkunz.

2.2.1 Fresnel CDI Phase Retrieval Algorithms

In general the iterative algorithms used for CDI are also applicable to FCDI. However instead
of a Fourier transform, there is a Fresnel transform relationship between the samples ESW and
the measured intensity at detector. This relationship between arbitrary planes i, j is called the
Fresnel free space propagator or Fresnel transform [12, 22],

ψ(ρj , zj) =
π

λzij
eikzije

iπρ2
d

λzij F [ψ(ρi, zi)e
iπρ2

i
λzij ] = FFψ(ρi) = A(ρj , zij)F [ψ(ρi, zi)B(ρi, zij)] ,

(2.2.2)
where F is a Fourier transform, FF is a Fresnel transform, k is the wave-number and zSD

is the distance from sample to detector. The functions A and B can further be described in
operator form; πijA and πijB . Thus one may write the Fresnel transform and its inverse in an
operator form,

Fresnel Transform FF := πijAFπ
ij
B ,

Inverse Fresnel Transform F−1
F := πjiAF−1πjiB .

The Fresnel transform allows phase retrieval using spherical illumination. By the projection
approximation [14], the ESW of the sample is given by [12, 22],

ψ(ρs) = e−ik
´ z δ(ρs,z)−iβ(ρs,z)dzψ0(ρs) = T (ρs)ψ0(ρs) , (2.2.3)

where ψ0(ρs) is the illumination and T (ρs) is the transmission function, δ is the real and β
the complex part of the refractive index, z is the distance in the direction of propagation. The
amplitude and phase component of the transmission function is thus given by,

e−ik
´ z δ(ρs,z)−iβ(ρs,z)dz = e−k

´
z
βdze−ik

´
z
δdz = |T |eiφT , (2.2.4)

|T | = e−k
´
z
βdz , (2.2.5)
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φT = −k
ˆ
z

δdz . (2.2.6)

The incoming illumination, henceforth refered to as the white-�eld, is subtracted from the
iterate of the estimation to the ESW,

ψ?(ρs) = ψ0(ρs)T (ρs)− ψ0(ρs) = ψ0(ρs)[T (ρs)− 1] . (2.2.7)

Hence to obtain the transmission function, we recast Equation 2.2.7,

T (ρs) =
ψ?(ρs)

ψ0(ρs)
+ 1. (2.2.8)

The Fresnel support constraint πFs (same as πs in CDI) is acting on the white �eld subtracted
iterate ψ?(ρs) [23].

The Fresnel modulus constraint πFm, consists of the following steps: (i) propagate from the
sample plane to detector plane, FF , (ii) add the recovered white �eld to ψ?(ρd), πWF , (iii)
enforce the measured intensity, π̂m, (iv) subtract the white �eld, π−1

WF , (v) and propagate back
to the detector plane, F−1

F , [20]

πFm = F−1
F π−1

WF π̂mπWFFF . (2.2.9)

Replacing the Fresnel support and modulus constraint operators in the CDI iterative algo-
rithms, the analogous forms are obtained for use in FCDI [22],

(ER) : ρk+1 = πFs π
F
mρk , (2.2.10)

(HIO) : ρk+1 = [1 + (1 + β)πFs π
F
m − πFs − βπFm]ρk . (2.2.11)

where ρk is the k'th iterate of the samples ESW.

2.2.2 White-Field Recovery

In contrast to CDI, FCDI requires that the white-�eld (or diverging illumination) incident on the
sample to be known, in order to correctly separate its features from those of the sample's ESW.
Here an iterative algorithm is described which retrieves the phase of the white-�eld, demonstrated
in Quiney et al [7] and Reference [12], the notation from Reference [12] is used.

This algorithm uses the Fresnel free space propagator Equation 2.2.2, and requires the mea-
surement of the far-�eld intensity of the diverging beam, the size of the pupil function of the
focusing optic, it's focal length and the distance from the focal plane to the detector. The proce-
dure uses propagation between three planes perpendicular to the beam propagation direction: the
lens plane at zL; the focal plane at zF ; and the detector plane at zD. We denote the coordinates
in the lens plane by ρl, in the focal plane by ρf , and in the detector plane by ρd. The iterative
determination of the white-�eld follows the propagation cycle zD → zF → zL → zF → zD.

The illumination in the lens plane and the detector can respectively be written as,

ψ(ρl, zL) = P (ρl)exp
[
− iπρ

2
l

λzLF

]
, (2.2.12)

and

ψ(ρd, zD) = Q(ρd)exp
[
+
iπρ2

d

λzFD

]
, (2.2.13)

, where zLF and zFD are the lens to focus, and focus to detector distances respectively. P (ρl)
and Q(ρd) contain only the slowly varying components of ψ(ρl, zL) and ψ(ρd, zD) respectively,
allowing the removal of rapidly varying phase components from the iterate within the reconstruc-
tion, which would typically inhibit the algorithm due to insu�cient sampling [12]. The extent
of the focusing optic typically a Fresnel zone plate, is used as the support.
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For a Freznel zone plate X-ray illumination, assuming zero perturbation of the white-�eld
being perfectly spherical at the detector, gives a good starting guess of the solution [12],

Q(ρd) =
√
I(ρd) , (2.2.14)

where I(ρd) is the measured data.
The iterative algorithm in order of operations is,

Propagate fromDetector toFocus ψ(ρf , zF ) = A(ρf , zDF )F−1 [Q(ρd)]

Propagate fromFocus toLens P′(ρl) = −iexp [ikzFL]F−1
[
B(ρf , zFL)ψ(ρf , zF )

]
Apply SupportConstraint P(ρl) = πsP

′(ρl)

Propagate fromLens toFocus ψ(ρf , zF ) = A(ρf , zLF )F [P (ρl)]

Propagate fromFocus toDetector Q′(ρd) = −iexp [ikzFD]F
[
B(ρf , zFD)ψ(ρf , zF )

]
ApplyModulusConstraint Q(ρd) = πmQ

′(ρd)

To the already de�ned operator notation we may add the notation πijp = −iexp [ikzij ]. The
white-�eld recovery algorithm can then be written as a single expression,

Qk+1 = πmπ
FD
p FπFDB πLFA FπsπFLp F−1πFLB πDFA F−1Qk . (2.2.15)

2.3 Noise in Di�raction Imaging

In the measurement of a di�raction pattern in a CDI experiment, various sources of noise are
present. Typically the noise is dominated by beam scatter from sources other than the sample,
shot-noise (photon counting statistics), background photons, and noise generated by the X-ray
detection system for example a charge coupled device (CCD) [12, 1].
Sources of beam X-ray scattering other from that of the sample, we refer to as alien scattering.
Alien scattering includes beam scattered photons from the sample substrate, incoherently illu-
minated parts of the sample, air scatter, and other obstacles in the beam path such as upstream
pinholes [1].
The inherent shot-noise is due to the probability that a di�racted photon will arrive in a pixel.
This probablity follows a Poisson distribution, and so the expected uncertainty in a measurement
of m photons, will have a standard deviation or noise

√
m [1, 2]. The Poisson distribution for r

events of a measured photon in a given pixel is given by [24],

P (r) =
mre−m

r!
. (2.3.1)

For the X-ray photons incident on a pixel, the fraction of photons detected is given by the
quantum e�ciency of the detector [12],

q(Eν) =
Nd
ν

Nν
, (2.3.2)

where Ev is the photon energy (at frequency ν), Nd
ν is the number of detected photons and

Nν is the number of incident photons. The detected photons travelling through the layers of a
CCD, can lose energy through a number of di�erent mechanisms. In photon energy range 30 eV
to 20 keV these mechanisms are typically Compton scattering, �uorescence and the photoelectric
e�ect. The main form of energy dissipation is from photoelectric e�ect which refers to creation
of a number of electron-hole pairs proportional to the incident photon energy. For silicon the
energy ζ to produce one electron-hole pair and thus an detectable electron is approximately 3.65
eV [12, 25].

The number of detected electrons Ne− is therefore [12],

Ne− =
qNνEν
ζ

. (2.3.3)
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In addition to electrons generated by the incident photons, a large amount of CCD detectors
have further electronic noise, read-noise and dark-current, which along with background pho-
tons contribute to background noise. The read-noise NR [e−rms] can be minimised by using

slower readout speeds [12]. The dark-current ND
[

e−

pixel×s

]
, originates from thermal excitation of

electron-hole pairs [1, 2], and can be minimised by cooling or using shorter exposure times for
each data-frame [12]. CCD detectors also degrade and get radiation damage with time and the
dark-current in these regions may not be the same as in undamaged ones [1].

When undertaking di�raction imaging experiments it is important to understand the relation
between incident X-ray photons and measurement from a CCD. In each pixel of the CCD, photon
counts are converted to analog-to-digital-units (ADUs) which are the internal units of the CCD

camera [12]. Conversion of electrons to ADUs is dependent on the gain g
[
e−

ADU

]
of the CCD

camera, which is typically a �oating number that can be calibrated. The number of ADUs in a
given pixel NA, as a function of the number of incident photons Nν , is given by [12],

NA =
1

g

(
qNνEν
ζ

+NR +ND

)
. (2.3.4)

The pixelwise ADU-values will determine the �nal data frame (or frames), and will consist of
the desired signal, and inherent noise that has to be dealt with prior to reconstructing the sample.

2.3.1 An Example of Measured Data

Here we demonstrate an example illustrated in Reference [12]. The data was aqcuired at beamline
2-ID-B of the Advanced Photon Source, and is for an FCDI experimental setup. This example
is used in Chapter 4, where the details of an experimental setup are described. From the data
collected, the gain and the pixelwise ADU values are retrieved. The detector used was an in
vacuo Princeton Instruments PI-MTE CCD [26], with 2048x2048, 13.5µm pixels.

In Figure 2.3.1, a histogram of the lowest ADU counts, collected in a 1 second interval,
for an illumination of diverging 2.535 keV X-rays is shown. The green curve corresponds to a
histogram of raw data and the blue curve to a histogram of the background noise. The dark-
current contribution is neglected due to the short exposure time. In addition the contribution
from background photons was negligible and the background noise therefore consists primarily
of read-out noise. Hence when the background noise is subtracted from the data, the resulting
ADU counts (red curve) are proportional to the number of incident photons on the detector.

The detector quantum e�ciency is q = 82% (at the X-ray energy 2.535 keV) [26], and ζ = 3.65
eV so the above equations yields on average N−e = 570 electrons per incident X-ray photon.
According to the single photon peak in Figure 2.3.1, one X-ray photon converts to NA = 157

ADU counts. The corresponding gain is thus g ≈ 3.63
[
e−

ADU

]
. We also note that the single

energy peak above the underlying histogram distribution is approximately Gaussian distributed
[24, 27],

P (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.3.5)

with a mean µ ≈ 157ADUs of standard deviation σ ≈ 30ADUs. Furthermore the background
noise histogram may also be approximated by a Gaussian distribution with mean µ ≈ 210ADUs
of standard deviation σ ≈ 14ADUs.

10
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Figure 2.3.1: Histogram of ADU counts for a single 1 second (1s) frame of data after background
subtraction has taken place. The black box indicates the �rst photon peak, used to calculate the
gain ratio. The green curve shows the un-adjusted data frame, which includes the background
noise. The blue curve is the histogram for the background noise. Figure reprinted with permission
from [12], courtesy of C. T. Putkunz.
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Chapter 3

Noise Simulation for Coherent

Di�ractive Imaging

This chapter reproduces the procedure and a subset of the results obtained by Williams et al.
[1, 2, 3]. This provides a basis for extending the procedure to FCDI in Chapter 4 and allow
a comparison of noise e�ect's in CDI and FCDI. The procedure by Williams et al. [1, 2, 3]
shows how to simulate a di�raction intensity measurement including experimental realities and
noise in di�raction imaging, our usage of this procedure are described in Section 3.1. Varying
ranges of Poisson distributed shot-noise, alien scattering from the incident x-ray beam, and noise
generated in a typical CCD detector are included in our analysis. The behaviour of the iterative
algorithms ER and HIO (Section 2.1.1) in reconstructing phase from the noise added di�raction
patterns are investigated in Section 3.2. Conclusions are given in Section 3.3.
The simulations were developed in C++ by the author using as a foundation code from the
�Nadia Software Project� a software for electron and X-ray di�ractive imaging [28].

3.1 Experiment simulation

Here we describe how to simulate measurement data, with di�erent amount of shot-noise, alien
scattering, or background noise level. (The parameters chosen explore a range of possible exper-
imental scenarios of interfering noise according to [1, 2, 3].)
Once the level of noise from the three preceding sources has been chosen a signal-to-noise ratio
(SNR) was calculated according to

SNR =

N∑
n=1

I(ρd)

N∑
n=1

(√
I(ρd) + P (ρd) +B(ρd)

) , (3.1.1)

where I(ρd) is the intensity in ADUs at detector pixel coordinate ρd, P (ρd) is additional signal
due to alien scattered x-ray beam photons in ADUs, and B(ρd) is the remaining background
level after a background subtraction in ADUs arising from the detector and electronics, the sums
are carried out over all N pixels.

To simulate the data with a wide range of SNR the following procedure was employed:

(i) To simulate an arbitrarily scaled exit-surface wave (ESW) ψ(ρs), an 256×256 pixel object
density projection as seen in Figure 3.1.1(a) was selected. This object was chosen to
have a non-symmetric shape to determine when twin-mixing occurs in reconstruction. It
was created by �rst having zero value outside and maximum inside the boundaries of
object, then convolved to give smoothened edges. Every real number at each pixel of this
256×256 pixel object array, were then transformed to a complex number whose magnitude
corresponds to the initial real number, yielding the arbitrarily scaled ESW ψ(ρs).

12
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(ii) A fast Fourier transform (FFT) of the arbitrarily scaled ESW ψ(ρs) was performed. The
modulus squared of each complex number in the array gave the di�racted intensity pattern
|ψ(ρd)|2. The sum of the intensity over all pixels of this arbitrarily scaled di�raction

intensity
N∑
n=1
|ψ(ρd)|2, was then converted to correspond to any selected total number of

measured photons M to be present in a measurement, between the range 9 × 104 − 109

photons. Summing the di�raction intensity over all pixels, then dividing by the selected
number of total photons, yields

Ξ =

N∑
n=1
|ψ(ρd)|2

M
. (3.1.2)

Every pixel value at coordinate ρd in the arbitrarily scaled di�raction intensity |ψ(ρd)|2
were divided by this quantity Ξ, yielding a probabilistic value of photons at every pixel

|ψM (ρd)|2. Thus
N∑
n=1
|ψM (ρd)|2 = M .

(iii) To include the e�ects of shot-noise, each pixel in the scaled di�raction intensity |ψM (ρd)|2,
was replaced with a value |ψS(ρd)|2 drawn from a Poisson distribution with mean |ψM (ρd)|2
and uncertainty

√
|ψM (ρd)|2.

Additional shot-noise due to alien scattering was included in this step, by assuming in
each pixel a spatially uniform Poisson distributed number of alien photons with mean A
here between 0.0005, 0.0013, 0.005, 0.05, 0.5. Thus we added a number from this Poisson
distribution with mean A and standard deviation

√
A, to each pixel value of |ψS(ρd)|2.

(iv) To simulate what happens in an actual experiment the di�raction intensity was converted
from photons to an integer number of 'analog to digital units' (ADUs). This conversion
may be understood by viewing a histogram of experimental di�raction data, that the sin-
gle energy photon peak is roughly Gaussian distributed (see Figure 2.3.1 for example). In
accordance with experimental di�raction data used in References [1, 2, 3], the Gaussian
distribution were chosen to have a mean of 324 ADUs with standard deviation 32 ADUs.
Thus the number of photons in each pixel |ψS(ρd)|2, was replaced by |ψS(ρd)|2 summed
numbers from this Gaussian distribution. The resulting value of ADUs in each pixel is
rounded to an integer number of ADUs, and possible negative values were set to zero.
The resulting measurement intensity is I(ρd), accounting for the measured sample scat-
tered photons, and P (ρd) accounting for any additional intensity caused by alien scattered
photons, which are used in the calculation of SNR (Equation 3.1.1). An example of the
steps until here with 9× 104 photons measured without including alien scatter can be seen
in Figure 3.1.1(b), and with additional alien scattered photons in each pixel for Poisson
mean A = 0.05 in Figure 3.1.1(c).

(v) To simulate background noise all aspects of the CCD that gives rise to this background
was combined. Through a �t to experimental di�raction data the background distribution
is seen to be approximately Gaussian (see Figure 2.3.1 for example). In accordance to
data used in References [1, 2, 3] this distribution were chosen to have a mean of 1000
ADUs with standard deviation 27 ADUs. This background scales with exposure time,
corresponding to the time in which 9× 104 photons are measured [1, 2, 3]. A number were
added from this Gaussian distribution to I(ρd) at each pixel. To provide di�ering amount
of background-noise level, a certain percentage 0-100% of the Gaussian mean (1000 ADUs)
were subtracted from each pixel, and any resulting negative values were set to zero, the
remaining background distribution is B(ρd) used in the SNR calculation (Equation 3.1.1).
No rounding to nearest integer was performed, this was done so that very small values of the
background relative to a photon's integer ADU conversion level in step (iv) may be explored
[2]. An example are seen in Figure 3.1.1(d) of the steps until here for di�raction data with
9× 104 measured photons, no included alien scatter and a 0% subtracted background.

The utility of simulating di�raction data from scratch rather than adding noise to an existing
data set, is that one can create a true ESW to compare the reconstruction to. This was done by

13
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following steps (i-ii) that is with no included noise. A multiplication were then performed by a

factor of 324
[
ADU
photon

]
, to be in the same scale as the analog-to-digital converted noise simulated

di�raction data obtained by step (i-v) [1, 2]. Furthermore a FFT back to real-space was done to
generate the true ESW seen in Figure 3.1.2.

(a) (b)

(c) (d)

Figure 3.1.1: Examples of the simulation of measurement data with di�erent sources of noise for
the procedure described in Section 3.1.
(a) The selected object density in step (i).
(b) The simulated di�raction data after steps (i-iv) with a choice of 9× 104 photons (log-scale).
(c) Additional alien scattering to (b) with Poisson mean of 0.05 photons per pixel (log-scale).
(d) After adding background noise to (b) without background subtraction (log-scale).
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Figure 3.1.2: The true ESW generated as described in Section 3.1 used for comparison to recon-
structions in Section 3.2.

3.2 Reconstructions

Simulated di�raction data with various sources and levels of noise was generated according to the
method described in the previous section. Here the results on the quality of reconstructions are
examined, in the presence of varying noise levels of three di�erent types: photon number (Section
3.2.1), alien scattering (Section 3.2.2) and background noise (Section 3.2.3). The iterative phase
retrieval algorithms tested are ER and HIO (described in Section 2.1.1).

For each of the three types of noise simulation the following procedure was followed: the
true ESW and the simulated di�raction data were generated as 256 × 256 pixel arrays, and
reconstructions were carried out in the same array size. The real-space support used was 70×80
pixels. A HIO parameter value β = 1 (this value was chosen because it yields good convergence
in HIO [1]). The standard procedure was to perform �ve reconstructions by 500 iterations for
each algorithm at each noise level. Each of the �ve reconstructions started with a di�erent set
of random phase for the simulated di�raction data, within the range ±0.2π for each pixel. A
convention is to regard ρk as the iterate, and πmρk as an estimate of the ESW that is a potential
solution [1]. However for this Chapter we investigate the iterate ρk in accordance with References
[2, 3].

At each noise level in di�raction data and reconstruction by ER and HIO, the following error
metrics are reported:

The error between magnitude of the best reconstructed iterate |ρ1
500| (after an iteration k =

500), and magnitude of the true ESW |O|, refered to as the �delity [2, 3],

ξ0
1 =

N∑
n=1

[
|ρ1

500(ρs)| − |O(ρs)|
]2

N∑
n=1

I(ρd)

. (3.2.1)

The error between magnitude of the best reconstructed iterate |ρ1
500|, and magnitude of the

second best iterate |ρ2
500|, which one may refer to as the reproducibility [2, 3],

ξ2
1 =

N∑
n=1

[
|ρ1

500(ρs)| − |ρ2
500(ρs)|

]2
N∑
n=1

I(ρd)

. (3.2.2)
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The error metric between magnitude of solution |πmρ1
500|, and magnitude of the iterate |ρ1

500|,
in real space [1],

χ2 =

N∑
n=1

[
|ρ1

500(ρs)| − |πmρ1
500(ρs)|

]2
N∑
n=1

I(ρd)

. (3.2.3)

And the equivalent χ2 error metric in reciprocal space [12, 20],

χ2
reciprocal =

N∑
n=1

[
|F(ρ1

500(ρs))| −
√
I(ρd)

]2
N∑
n=1

I(ρd)

, (3.2.4)

where F is a Fourier transform. The �ve best reconstructions were ranked by the lowest
χ2
reciprocal.

Di�erent in Reference [1] are ξ0
1 , ξ

2
1 where they've used solution (πmρ500) instead of iterate

(ρ500), however in this chapter we considered the iterate as they've done in Reference [2, 3]. The
same conclusions about the correlation of ξ0

1 , ξ
2
1 , χ

2 is infered in References [2, 3] and [1], that
is regardless of considering the iterate or solution. In this chapter we compare the magnitude
entities in ξ0

1 , ξ
2
1 , χ

2 apart from References [1, 2, 3] where they've compared the complex entities.
And comparison of magnitude instead of the complex values of the reconstructed iterates may
have some e�ects on the error metrics values, and may be cause of some di�erence in results to
References [1, 2, 3].
The error metrics calculated for Section 3.2.1-3.2.3 (where there is further explanation) compar-
ing magnitude entities are shown in Figure 3.2.1. There is a problem with the error metrics ξ0

1 ,
ξ2
1 since they are not always correctly calculated because the reconstructions may be displaced
or are reconstructed as a twin image (�mirror image�) [6] or a mixture of the twin images [2],
and may not overlap. The tedious work of overlapping entities before calculation was not done
here. The error metrics χ2, χ2

reciprocal assume already overlapping entities.
The original metric values from Reference [1] are shown in Figure 3.2.2, where overlapping com-
plex entities are compared. The higher value of HIO metrics in Figure 3.2.1 may partly be due
to that the iterate is not to be regarded as a solution and contains density outside of support,
the HIO entities may have been dealt with di�erently in Reference [1], Figure 3.2.2. The ER
algorithm do end with a support constraint and thus everything outside the support is zero, and
ER error metrics shows better agreement with the results in Figure 3.2.2. The comparison of
non-overlapping entities in Figure 3.2.1 seems to explain partly the deviations in ξ0

1 , ξ
2
1 from

Figure 3.2.2. The HIO algorithm in particular may be more deviating as it is sensitive to for
example the tightness of support. There may be some deviation due to that in the original work
they've used a modi�ed πs.
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Figure 3.2.1: Scatter plots of ξ0
1 , ξ

2
1 , and

χ2 against SNR for the three tests of noise
level described in Section 3.2. (a) Photon
number. (b) Alien scattering. (c) Back-
ground noise (or bias level). Lower values of
all three quantitities indicate better agree-
ment. Note the similarity with Figure 3.2.2
for the behaviour of the reliably calculated
χ2. Note ξ0

1 , ξ
2
1 are sometimes not valid

since comparison of non-overlapping quan-
tities occurs.

Figure 3.2.2: Scatter plots of ξ0
1 , ξ

2
1 and χ

2 against
SNR for the original work in Reference [1] by
equivalent three tests of noise level as described in
Section 3.2. (a) Photon number. (b) Alien scat-
tering. (c) Background noise. Lower values of all
three quantitities indicate better agreement. No-
tice the behaviour of ξ2

1 more closely resembles
the behaviour of ξ0

1 than does χ2, revealing its
importance as an indicator of a correct solution
in the presence of noisy di�raction data.
Figure reprinted with permission from [1], cour-
tesy of G. J. Williams.

.
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3.2.1 Photon Number

Simulated di�raction data with varying number of measured photons between 9×104−109 were
obtained by steps (i-iv) in Section 3.1, with SNR between 299 and 25172. The error metric values
obtained for this range are shown in Figure 3.2.1(a). The reconstructed iterate magnitude for
high shot-noise (SNR=299) and low shot-noise (SNR=25172) are shown in Figure 3.2.3. (All the
simulated di�raction data and the reconstructed iterates are shown in Appendix A.1).
A qualitative observation is that the HIO algorithm obtains a better reconstruction as SNR
increases, where as the reconstruction quality of the ER algorithm does not seem to vary as much,
similar to the corresponding results in References [1, 2], and in agreement with the behaviour of
ξ0
1 , ξ

2
1 in Figure 3.2.2(a) from Reference [1]. There is good similarity with the trend of χ2 for

ER and HIO in Figure 3.2.1(a), 3.2.2(a), although the possible di�erences in ξ0
1 , ξ

2
1 have been

discussed already. However we observed a similar trend as in Figure 3.2.2(a), through qualitative
comparison of the involved entities in error metrics.
The higher value of χ2 for HIO than ER in both Figure 3.2.1(a), 3.2.2(a) is deceiving since HIO
has a better resemblance to the true ESW, infered by inspection in this work and the lower ξ0

1

in Figure 3.2.2(a), suggesting that χ2 is not an ideal metric for HIO [1].
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. ER HIO

(a)

. ER HIO

(b)

Figure 3.2.3: Magnitude of reconstructed iterate (|ρ1
500|) from di�raction data that has only

shot-noise inherent for measurements of (a) 9 × 104 photons, and (b) 109 photons, obtained by
steps (i-iv) in Section 3.1. For both (a) and (b): di�raction data (left), ER iterate (middle), HIO
iterate (right).
Here the distortion of the HIO reconstructed iterates due to the reconstructed �support-frame�
and surrounding is evident (with the images normalised to their respective maximum value).
For HIO the iterate is not regarded as a potential solution, but after an modulus constraint has
been applied, making the outside support region diminish and is then regarded as a solution or
a better reconstruction. By comparison ER has zero values outside support, and is much alike
the solutions (that is when an modulus constraint have been applied to the iterate).
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3.2.2 Alien Sources of X-ray Scatter

We chose the simulated data with 9 × 104 measured photons having a high amount of shot-
noise, for the inclusion of alien scattered photons. (This case was chosen due to experimental
congruence in Reference [1]). By the procedure of Section 3.1, di�raction data was simulated by
steps (i-v) and including in step (iii) a Poisson distributed mean number of alien photons between
0.0005-0.5 per pixel. This yielded simulated di�raction data with a SNR between 258-3.53. The
error metric values obtained for this range are shown in Figure 3.2.1(b). The di�raction data
and the reconstructed iterate magnitude, for high alien scattering (SNR=3.53) and low alien
scattering (SNR=258) are shown in Figure 3.2.4. (All the simulated di�raction data and the
reconstructed iterates are shown in Appendix A.2).
The amplitude variations and 'bluriness' in the reconstructed iterate were observed for di�raction
data of 9× 104 measured photons with inherent shot-noise in Section 3.2.1. Here the additional
shot-noise due to alien photons gives a real-space result with an even noisier appearance. Again
there are already explained di�erences in Figure 3.2.1(b) from the original work in Figure 3.2.2(b),
though again χ2 shows similar behaviour, especially for ER. However qualitative comparison of
the involved entities in error metrics implies a similar trend as in Figure 3.2.2(b).
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. ER HIO

(a)

. ER HIO

(b)

Figure 3.2.4: Magnitude of reconstructed iterate (|ρ1
500|) from di�raction data with inherent

shot-noise for 9 × 104 photons and additional shot-noise from a Poisson distributed mean of
alien photons, obtained by steps (i-iv) of Section 3.1. (a) Poisson mean of alien photons 0.5
(SNR=3.53), and (b) Poisson mean of alien photons 0.0005 (SNR=258). For both (a) and (b):
di�raction data (left), ER iterate (middle), HIO iterate (right).
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3.2.3 Incomplete Background Subtraction

Here we again use the simulated data with 9× 104 measured photons and including the inherent
background noise, created by steps (i-v) of Section 3.1. Subtracting 0-100% of the background
mean from each pixel gives di�raction data with a SNR between 0.442 and 35.92. The error
metric values obtained for this range are shown in Figure 3.2.1(c). The di�raction data and
reconstructed iterate for 0% background subtraction (SNR=0.442) and 100% background sub-
traction (SNR=35.92), are shown in Figure 3.2.5. (All the simulated di�raction data and their
respective iterates are shown in Appendix A.3).
One can clearly see that an incomplete background subtraction has a quite di�erent e�ect on
the iterate than alien photon shot-noise of Section 3.2.2. High levels of alien scattering resulted
in a generally more 'noisy' image, by instead adding high levels of background it arises an even
'noisier' real-space result with rapidly varying magnitude. The cause of this artifact can be
seen as zero-magnitude dots in the reciprocal magnitude of the reconstructed iterate, in Fig-
ure 3.2.5(a) for example. These zero-magnitude dots are called phase-singularities or vortices,
that are a stagnation problem and has been reported in Reference [29]. It can be seen in Ap-
pendix A.3, that these vortices appear in reciprocal space of the reconstructed iterates until at
least 95% background subtracted, or for in each pixel about 50 ADUs of background noise, or
15% (= 0.015 = 50

324 ) of the ADUs caused by a one photon event. This is in agreement with
results of References [1, 2, 3]. Due to the good congruence with results of the original work, the
de�nition is assumed to be the same as in Reference [2], where these vortices are de�ned to be
comprised of a group of two-four adjacent pixels with near zero-amplitude points and a phase
that changes rapidly by 2πn (n integer) - occuring as a loop around the group as traversed.
Comparing Figure 3.2.1(c); 3.2.2(c), the similar behaviour of χ2 is seen, possible di�erences of
all error metrics have been discussed previously. In Figure 3.2.2 one may notice that the linear
dependence of increasing ξ0

1 with decreasing SNR is steeper for the case of added background
than for the case of alien scattering. Thus an indication that the algorithms are less tolerant of a
background level than they are to alien scattering. This result is at least qualatively seen in the
reconstructed iterates of Appendix A.2, A.3. And also seen in the corresponding reconstructions
of References [2, 3] which have the same tested noise ranges for alien scattering and background
noise.
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.
. ER HIO

(a)

. ER HIO

(b)

Figure 3.2.5: Magnitude of reconstructed iterate (|ρ1
500|) from di�raction data with inherent

shot-noise for 9 × 104 photons and inclusive background noise, and then subtracting di�erent
amount of background, (a) 0%, (b) 100%. Di�raction data obtained by steps (i-v) in Section
3.1. For both (a) and (b): di�raction data (left), ER iterate (middle), HIO iterate (right). In
addition for (a) in second row we see the respective |ρ1

500| in reciprocal space zoomed in to a
region of 64×64 in the upper left corner of the 256×256 array. Where zero-magnitude vortices
are revealed. These are not apparent in case (b). Further explanation in text.

23



3.3. Conclusions Chapter 3. Noise Simulation for Coherent Di�ractive Imaging

3.3 Conclusions

In Chapter 3 we examined the e�ects of noise for plane wave CDI. In particular the e�ects of
varying number of measured photons, background levels, or alien beam scatter. The method and
results obtained have been infered to be essentially the same as in the corresponding work by
Williams et al [1, 2, 3]. However the intention was not to replicate all the original conclusions and
discussion. Due to that the original work is more comprehensive in some aspects, for example
by use of other phase retrieval algorithms and objects. Nevertheless the reproduction of key
elements of the original work, is a validation of the method and main results.
The larger ranges of noise from di�erent sources encompassed in References [1, 2, 3], is understood
to be approximations of worse scenarios, in agreement with actual experimental data examined
in References [1, 2, 3].

For the wide range of shot-noise examined, increasing number of measured photons and thus
an increasing SNR, for the HIO algorithm, indicates a better agreement between the recon-
structed iterate and the true ESW. Although the worse reconstruction �delity of ER does not
show much improvement with more measured photons.
Large amounts of alien photons seems troublesome, yielding a noisier appearance of the recon-
struction, but if it's presence is not overwhelming, it does not yield a much notable impact, in
agreement with References [1, 2]. It was assumed that the alien scattering occured with uniform
probability over the detector. One might ask what e�ect a spatially non-uniform probability may
have, for example with �contaminated� di�raction data where some intensity is measured from
an interfering crystal, like a metal contaminant or the experimental apparatus [2].
Background noise is more harmful to the reliability of the reconstruction, causing vortices for
less than 95% background subtracted, in agreement with References [1, 2, 3]. These vortices
gives rise to a rapidly varying magnitude of the real-space magnitude, which might be mistaken
for actual physical phenomena. As such, care should be taken to perform a good background
subtraction [1, 2].
Interestingly when all the background has been subtracted, but the remaining variation of the
Gaussian mean has not been removed (thresholded), the reconstructions becomes more similar
to the case of alien scattering. This is reasonable since as the subtracted level nears the mean of
the Gaussian distributed background, some pixels are reduced to zero while their neighbors still
possess signal [3].
Several strategies may be employed to enchance the quality of the reconstructions presented here.
For example the HIO algorithm is sensitive to the tightness of the support [1]. In addition it
should be noted that the results of the noise simulation method used here, may depend to some
extent of the real-space object chosen. We used a single compact object with an asymmetric
shape and smooth edges. This object are similar but not identical to the one used in References
[1, 2], and a di�erent object is used in Reference [3]. It's also important to note that a mixture
of ER and HIO has shown to be particularly e�ective, with the combination providing a better
reconstruction than either algorithm alone [1, 2, 29].

Overall Chapter 3 shows agreement with the corresponding work of References [1, 2, 3], in
regard to the reconstructions and conclusions. Noteworthy is the similarity of the reconstructions
shown in Appendix A with the corresponding ones in Reference [2]. Also there is agreement in
the χ2 trends. Additionally it is noted that χ2

reciprocal (Equation 3.2.4) overlaps (though with
a factor larger for the HIO errors) with χ2 (calculated in real space), so that either one may
be used. However in Figure 3.2.1 the results of ξ0

1 , ξ
2
1 were not reliable though di�erences to

the original work, Figure 3.2.2, were discussed. A main conclusion of the original work is the
correlation between ξ0

1 and ξ2
1 (seen in Figure 3.2.2), and the usage of the calculable ξ2

1 and χ2

for a stronger identi�cation when a good estimate is found of the unknown truth ESW. This
result is anticipated to be clearly seen in this work if ξ0

1 , ξ
2
1 were comparing overlapping entities,

as misplaced reconstruction occur in CDI. For FCDI there is only a unique solution such that
the reconstruction always appear in the same location. Thus for FCDI, analogous ξ0

1 , ξ
2
1 error

metrics will compare overlapping entities.
We have in Chapter 3 infered that the main results of Williams et al. [1, 2, 3] has been reached.
This will allow a comparison, to an analogous analysis, for the technique of FCDI in Chapter 4.
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Chapter 4

Noise Simulation for Fresnel

Coherent Di�ractive Imaging

In this chapter we will use a real experiment as an example and basis for our simulation, along
with how the data is gathered and treated in Fresnel coherent di�ractive imaging (FCDI), which
will be described in Section 4.1.
The procedure used in Chapter 3 is extended to a FCDI geometry, to simulate an ESW and it's
measurement data with noise incorporating varying ranges of Poisson distributed shot-noise, and
noise generated in a typical CCD detector, to be described in Section 4.2.
Behaviour of the iterative algorithms ER and HIO in reconstructing a sample from the noisy
di�raction data are investigated in Section 4.3, and conclusions are given in Section 4.4.
The simulations were developed in C++ by the author with support from supervisors, using as
a foundation the �Nadia Software Project� a software for electron and X-ray di�ractive imaging
[28]. The particular experimental data used as an example for this chapter was collected by C.
T. Putkunz and co-workers and is described in Reference [12]. The analysis of simulation results
was undertaken by the author with support from supervisors.

4.1 Experiment

Here we describe a typical experimental setup and how the data are treated and combined
in FCDI. The details are from a real experiment taken from Reference [12]. This has been
already partly described in the example of Section 2.3.1, holding some details about detector,
measurement and inherent noise in example data.

4.1.1 Geometry & Parameters

Here we describe the experimental parameters that were used in the simulation, the schematic
of a FCDI experiment is shown in Figure 4.1.1.
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Figure 4.1.1: Illustration of a Fresnel CDI experimental geometry. Planar X-rays of wavelength λ
are incident upon a Fresnel zone plate (FZP). A central beam stop and an order sorting aperture
(OSA) obstruct all but the �rst order focus of the zone plate. The gold test sample (or object)
is placed downstream of the focal plane, where the illuminating wave has a curved wavefront. A
two-dimensional CCD detector are located at a far-�eld distance of the sample's scattering. The
schematic is not to scale.

The wavelength of the illuminating X-rays was λ = 4.891× 10−10 m (2.535 keV). With a �ux
F ∼ 107[photons

s
] of the incident beam across it's cross-section. The sample was 150 nm thick,

homogenous gold. For gold at 2.535 keV the real and imaginary parts of the refractive index,
1− δ(ρ, z) + iβ(ρ, z), will have values δ = 3.21× 10−4, and β = 1.88× 10−4 [30].

The Fresnel zone plate (FZP) had a radius of R = 80µm and outer zone width ∆R = 50 nm.
It's focal length is given by [12],

f =
2R∆R

λ
= 16.3566mm . (4.1.1)

A central beam stop with radius 20µm [31] was located in the inner region of the FZP.
The focal to sample distance was zFS = 1.45mm, the focal to detector distance was zFD =

0.9m, and the sample detector distance was thus zSD = 0.89855m (=zFD − zFS).
A segment XS at the sample will be magni�ed by a factor M to a segment XD in detector

plane by [12],

M =
XD

XS
=
zFD
zFS

= 621 . (4.1.2)

The beam radius at the sample was 7.092µm (= FZP radius
f ×zFS), and the beam-stop radius

at the sample was 1.773µm (= Beamstop radius
f × zFS).

With a sample chosen to be inside this illumination of radial length 5.319 µm, the Fresnel
number will be at most

NF =
a2

λ× zFS
=

( 5.319µm
2 )2

4.891Å× 1.45mm
= 9.973 .

The beam will cover a radius on the detector of 326 pixels (= FZP radius
f × zFD

∆xD
) of pixel

width ∆xD = 13.5µm, and the beam-stop a radius of about 81.5 pixels (Beamstop radius
f × zFD

∆xD
).
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The pixel size at the sample is, [12]

∆xS =
λ× zSD
n×∆xD

=
4.891Å× 0.89855 m

2048× 13.5µm
= 15.9 nm,

where n is the number of pixels along a side of the CCD.
In the example of Reference [12], a di�erent sample were used and zFS = 600µm and zFD =
0.5006m. Nevertheless, experimental parameters derived from this real experiment provides a
realistic scenario for our simulation. We use a similar simulated sample as for the CDI case
(Chapter 3) so that results can be compared.

4.1.2 Combining CCD Data

To obtain better statistics a signi�cant number of frames (short-time measurements) are collected,
of the di�raction data (illumination with sample) and white-�eld data (illumination only).
Also the use of a diverging illumination on the sample gives a magni�cation of holographic region
in the detector plane which makes the measurement sensitive to movement of sample and focusing
optics. In addition for a curved wave-�eld it's phase varies continously across the sample and thus
movement will distort, in contrast to a planar wave-�eld when the phase is continious across the
sample. To sum data frames that are di�erent due to sample motion, or any other varying source
of noise, would result in an inaccurate FCDI reconstruction. (In Reference [32] they demonstrate
an approach to ameliorate the e�ect of using uncorrelated frames due to sample motion). To
determine the most correlated frames, one calculates a cross correlation curve of a single data
frame against all other frames as [12, 22],

Rij =

N∑
n=1

Ii(ρd)× Ij(ρd)

N∑
n=1

Ii(ρd)
N∑
n=1

Ij(ρd)

, (4.1.3)

where ρd is the pixel coordinate, and N is the number of pixels within the frame.
The cross correlation for the collected frames are shown in Figure 4.1.2. The poor cross correlation
curve results from the high level of motion in the imaging system. A typical cuto� used for this
data is about Rij = 0.99, yielding about 100 frames that may be summed together.

Before a phase-retrieval algorithm can be applied to experimental data, the background noise
in the data must be eliminated to minimize it's e�ect on the reconstruction. Data without X-ray
illumination are collected to determine the background noise including the dark-current, readout
noise and any source of photons not related to the beam. A number of background frames are
collected and averaged, to reduce the uncertainty. For each of the selected correlated frames
of the white-�eld and di�raction data, a background subtraction is carried out pixel by pixel.
The stochastic nature of the background noise prevents this subtraction from being complete.
Therefore a threshold is performed from the background subtracted data frame, where all values
less than a certain number of ADU's are set to zero. As shown in for example Figure 2.3.1, the
single-energy (2.535 keV) photon peak is clearly visible in the intensity histogram, the threshold
should be chosen below this peak [12, 22].
After that the highly correlated frames have been selected, background subtracted and thresh-
olded, the data are summed together. Some treated data from this example are shown in Figure
4.1.3.
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Figure 4.1.2: Cross correlation function, for 400 data frames collected. Frame 350 was used as a
basis for the correlation. Figure reprinted from [12], courtesy of C. T. Putkunz.

28



4.1. Experiment Chapter 4. Noise Simulation for Fresnel Coherent Di�ractive Imaging

Figure 4.1.3: (A) Background image. (B) Raw single data frame. (C) Single data frame after
background subtraction. (D) Single data frame after background subtraction and noise thresh-
olding. (E) 100 combined di�raction data frames, each has been background subtracted and
thresholded. (F) The white-�eld data frames corresponding to (E). Images (B) through (E) are
shown in a logarithmic colour palette. Figure reprinted from [12], courtesy of C. T. Putkunz.

29



4.2. Experiment simulationChapter 4. Noise Simulation for Fresnel Coherent Di�ractive Imaging

4.2 Experiment simulation

The procedure described here is similar to the one in Section 3.1, though extended to the method-
ology of FCDI. We build here on the experiment given in the previous section and describe our
method to simulate measurements of di�raction and white-�eld data. In particular data that has
di�erent number of measured photons with inherent shot noise, and additionally varying levels
of background noise. Once the level of noise from the two preceding sources had been chosen a
signal to noise ratio (SNR) were calculated only for the di�raction data,

SNR =

N∑
n=1

I(ρd)

N∑
n=1

(√
I(ρd) +B(ρd)

) , (4.2.1)

where ρd is the pixel coordinate, I(ρd) is the number of measured photons converted to ADUs,
and B(ρd) is the background in ADUs.

To generate the data with varying levels of SNR the following procedure was employed, �rst
written in short statements followed by their detailed descriptions:

(i) Simulate an arbitrarily scaled white-�eld ψ0(ρs) and sample ESW ψ(ρs); (ii) propagate
the ESW and white-�eld to detector plane to retrieve the arbitrarily scaled di�raction and
white-�eld intensity. Then respectively scale to correspond to a given number of total photons;
(iii) include inherent shot-noise to the di�raction and white-�eld intensity respectively; (iv) for
the di�raction and white-�eld intensity convert photon number in each pixel to correspond to
a number of ADUs; (v) include to this data of di�raction and white-�eld intensity inherent
background noise present in a measurement, and perform a subtraction of a certain percentage
of this background.

(i) To simulate an arbitrarily scaled sample ESW ψ(ρs) = T (ρs)ψ0(ρs), an object density was
selected seen in Figure 4.2.1a with zero outside and maximum value inside the boundaries
of object, then convolved with a small Gaussian width to give less sharp edges. Every pixel
value in this 2048×2048 object array was divided by the largest number in the array, then
multiplied by the sample thickness τ(ρs) = 150nm. To obtain the magnitude and phase of
the transmission function T (ρs), in each pixel we assume that the sample is homogenous
gold and by the Equations 2.2.4-2.2.6, set the magnitude and phase respectively as

|T | = exp [−βkτ(ρs)] and

φT = −δkτ(ρs) .

To obtain magnitude and phase of the white-�eld in the detector plane ψ0(ρd), we simu-
lated a white-�eld intensity distribution in the detector plane by assigning to each pixel in
detector plane a magnitude equal to

e
− ρd

(2×G×∆xD) ,

(where G is a decay constant and ∆xD = 13.5 µm is the pixel width), and phase equal to

πρ2
d

λ× ( −1
zFD−zFS + 1

zFD
)
.

The resulting complex array was multiplied pixelwise with a complex valued circle (that
�rst was a real circle with magnitude 1 between beam stop radius and the beam radius and
zero otherwise, then convolved and then turned into a complex circle with a magnitude
equal to the corresponding real pixel value), which resulted in a precursor white-�eld in
the detector plane, whose magnitude and phase are given in Figure 4.2.1bc.
Then only the magnitude of the white-�eld were kept and utilizing the white-�eld phase
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recovery algorithm (Section 2.2.2) by 21 iterations, to recover the phase seen in Figure
4.2.1d, yielding the arbitrarily scaled ψ0(ρd). (This reconstruction was done so that the
phase matches the one recovered by the same algorithm from simulated noisy white-�eld
data described in Section 4.3).
This white-�eld was then propagated to the sample plane by a Fresnel transform yielding
ψ0(ρs), then multiplied pixelwise with the transmission function array, resulting in the
arbitrarily scaled ESW ψ(ρs).

(ii) The ESW ψ(ρs) was propagated to the detector plane by a Fresnel transform. Taking
the modulus squared of each complex value in the resultant array yielded it's di�raction

intensity |ψ(ρd)|2. The sum of all intensity over all pixels
N∑
n=1
|ψ(ρd)|2 of this arbitrarily

scaled di�raction intensity, was then converted to correspond to a selected number of total
measured photons M . The range of M examined we chose between 5×105−1014 photons.
A 1 second data frame is taken to correspond to 107 measured photons. Thus equivalently
a corresponding range of 0.05− 107 number of frames were selected.
Summing all pixel values in the di�raction intensity, divided by the selected number of
photons, yields

Ξ=

N∑
n=1
|ψ(ρd)|2

M
.

Each pixel value at coordinate ρd in the arbitrarily scaled di�raction intensity |ψ(ρd)|2
and white-�eld intensity |ψ0(ρd)|2, was divided by this quantity Ξ, yielding a probabilistic

value of photons in that pixel ψM (ρd) and ψ
M
0 (ρd) respectively. The sum

N∑
n=1
|ψM (ρd)|2

was then equal to the number of photons M , and the resulting sum
N∑
n=1
|ψM0 (ρd)|2 was

equal to a number a few percent larger than M .

(iii) To include shot-noise to the di�raction intensity each pixel photon value ψM (ρd), was
replaced with a number ψS(ρd) drawn from a Poisson random distribution with a mean
ψM (ρd) and uncertainty

√
ψM (ρd). Analogously to include shot-noise to the white-�eld

intensity each pixel photon number ψM0 (ρd), was replaced with a number ψS0 (ρd) drawn
from a Poisson random distribution with a mean ψM0 (ρd) and uncertainty

√
ψM0 (ρd). The

result is di�raction and white-�eld intensity with the inherent Poisson distributed shot-
noise. (This shot-noise is a valid approximation also for FCDI [12, 33, 34]).

(iv) To simulate what happens in an actual experiment the di�raction and white-�eld intensity
was converted from photons to an integer number of 'analog to digital units' (ADUs). This
may be approximated by viewing the histogram of experimental intensity data that the
single energy photon peak is roughly Gaussian distributed. In accordance to the single
energy peak (λ = 2.535 keV) in the histogram of experimental intensity data of Figure
2.3.1, this Gaussian distributed variable x was chosen to have a mean µ = 157ADUs and
standard deviation σ = 30ADUs. Thus in the di�raction intensity the number of photons
in each pixel ψS(ρd), was replaced with ψS(ρd) summed numbers from this Gaussian
distribution. Analogously for the white-�eld intensity the number of photons in each pixel
ψS0 (ρd), was replaced with ψS0 (ρd) summed numbers from this distribution. (To save
computation in Gaussian distribution summation, we used the fact that summing a number
of Gaussian distributed variables x1, x2, x3..., is the same as drawing a number from a
Gaussian distributed variable x with mean µ = µ1 +µ2 +µ3... and variance σ2 = σ2

1 +σ2
2 +

σ2
3 ... [35]). The resulting value of ADUs in each pixel was rounded to an integer number

of ADUs and any negative values were set to zero [24]. The resulting measurement data
to this point are I(ρd) in Equation 4.2.1 (though only the di�raction data were used for
all SNR calculations). Figure 4.2.1e shows an example of di�raction data I(ρd) with the
steps until here for 109 measured photons, equivalent to 100 frames of 1 second exposure
data that are perfectly correlated, background subtracted and thresholded.
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(v) To simulate background noise for the di�raction and white-�eld data respectively. All as-
pects of the CCD plus photons from the surrounding that gives rise to this background
are combined. A background distribution in an histogram of experimental intensity data
is approximately Gaussian distributed. In accordance with Figure 2.3.1 (which shows
background noise accumulated for a 1 second measurement of data), this Gaussian dis-
tributed variable xB was chosen to have a mean of µB = 210 ADUs and standard devi-
ation σB = 14ADUs. For background in di�raction and white-�eld data simulations we
only considered 100 and 104 second measurement data with inherent background noise. For
example 100 seconds of exposure time equivalent to 109 measured photons (up to step (iv)
above), we added 100 seconds of background noise by adding in each pixel 100 numbers of
the Gaussian distributed variable xB .
To mimick the stochastic noise left from a background subraction and provide di�ering val-
ues of SNR. A certain percentage 0-100% of the Gaussian mean 100× µB were subtracted
from each pixel, in the same or di�erent percentage in the di�raction and white-�eld data.
Any negative values were set to zero. The resulting amount of background noise left after a
background subtraction is B(ρd) in Equation 4.2.1 (though only the di�raction data were
used for all SNR calculations).
Figure 4.2.1f shows an example of di�raction data (I(ρd)+B(ρd)) with the steps until here
for 109 measured photons, equivalent to 100 frames of 1 second exposure data, where 0%
of the background is subtracted.

The true ESW to compare reconstructions to in Section 4.3 was made by following the two
step procedure (i-ii), in addition subtracting the white-�eld and multipliplying by a factor of

157
[
ADU
photon

]
(to be in the same scale as the respective 'analog-to-digital' converted noise simulated

di�raction data). Furthermore a Fresnel transform back to the real space was done to generate
the true ESW. The transmission function (TF) generated in step (i) we used for comparison to
reconstructions of Section 4.3. It can be seen in Equation 2.2.8 that the TF are independent of
scaling. This true ESW and it's TF are seen in Figure 4.2.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2.1: Examples for the procedure of Section 4.2, for simulating noisy di�raction and
white-�eld data.
(a) The initial real object density that was used in step (i).
(b) Simulated magnitude of white-�eld in detector plane of step (ii).
(c) Simulated phase of white-�eld in detector plane of step (ii).
(d) The recovered phase of the white-�eld intensity of step (ii).
(e) The di�raction data after step (i-iv), with 109 measured photons or equivalently 100 frames
of measurement data. Corresponding to perfectly correlated, background subtracted and thresh-
olded data. Log-scale.
(f) After step (v), that is adding 100 frames of background noise to (e). Corresponding to
perfectly correlated data that have no background subtracted. Log-scale.
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(a) (b)

(c) (d)

Figure 4.2.2: The true ESW, (a) magnitude, (b) phase. And the true TF; (c) magnitude, (d)
phase. Generated as described in Section 4.2, used for comparison to reconstructions in Section
4.3. The ESW magnitude is zero outside and positive inside object, scale bar included for phase.
The TF has inverted colours since the magnitude has value 1 outside object and 0.7 inside. And
phase has zero value outside object and -0.62 inside. (All simulated images in this thesis are .ti�
format which use black for the lowest value and white for the highest, and gray scale in between).

4.3 Reconstructions

Simulated experimental measurement of di�raction and white-�eld data, with various sources
and levels of noise were generated according to the method described in the previous section.
Here the results on the quality of reconstructions are examined. In Section 4.3.1 we will �rst
show an example of a reconstruction when no noise is included. Then in Section 4.3.2 a wide
range of shot-noise will be examined, and also a wide range of iteration numbers for a certain
amount of shot-noise. And lastly in Section 4.3.3 we investigate a wide range of background noise
of di�erent proportions in the di�raction and white-�eld data. The iterative phase retrieval algo-
rithms tested are Error Reduction (ER) and Hybrid Input-Output (HIO), which are introduced
in Section 2.2.1.

For all tests in this chapter the true ESW, true TF and the simulated measurement data were
generated as 2048×2048 pixel arrays. And the reconstructions were carried out in the same array
size. The real space support used were 420×470 pixels in extent. For HIO, β = 1 [28], the same
as in Chapter 3. For each test of simulated data we used the procedure in Section 2.2.2 by 21
iterations, to recover a phase for the white-�eld data to be used in the iterative algorithms.

To recover a phase for the di�raction data, the standard procedure was to perform �ve re-
constructions by 125 iterations for each algorithm at each noise level. Each of these �ve iterative
reconstructions start with a di�erent set of random phases, this was done by subtracting the
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white-�eld from the di�raction data and setting the phase of each pixel to a random value be-
tween ±0.2π, then propagating to the sample plane and applying a support. We regard the
quantity ρnk as the iterate, where k is the iteration number and n is the ranking of the �ve recon-
structions. The convention is that πFmρ

n
k is an estimate of the ESW, that is a solution [20, 23, 22].

The following error metrics were calculated for each reconstruction and algorithm at each noise
level, a large value of these error metrics indicates a poor agreement between the two compared
arrays, and a zero value would indicate perfect agreement.:

Mean square deviation of the best solution and the true ESW (or true solution) (denoted by
0(ρs)),

ξ0
1 =

N∑
n=1

[
πFmρ

1
k(ρs)− 0(ρs)

]2
N∑
n=1

I(ρd)

. (4.3.1)

Mean square deviation of the best and second best solution,

ξ2
1 =

N∑
n=1

[
πFmρ

1
k(ρs)− πFmρ2

k(ρs)
]2

N∑
n=1

I(ρd)

. (4.3.2)

Mean square deviation of best solution and it's iterate in real space,

χ2 =

N∑
n=1

[
ρ1
k(ρs)− πFmρ1

k(ρs)
]2

N∑
n=1

I(ρd)

. (4.3.3)

And the equivalent error metric in reciprocal space [12, 20],

χ2
reciprocal =

N∑
n=1

[
|F(ρ1

k(ρd))| −
√
I(ρd)

]2
N∑
n=1

I(ρd)

. (4.3.4)

The �ve best solutions was ranked by the lowest χ2
reciprocal.

We also calculated the analogous error metrics for the transmission function of solutions (obtained
by Equation 2.2.8):

TF ξ0
1 =

N∑
n=1

[
(
πFmρ

1
k(ρs)
ψ0

+ 1)− TF 0(ρs)
]2

N∑
n=1

I(ρd)

, (4.3.5)

TF ξ2
1 =

N∑
n=1

[
(
πFmρ

1
k(ρs)
ψ0

+ 1)− (
πFmρ

2
k(ρs)
ψ0

+ 1)
]2

N∑
n=1

I(ρd)

, (4.3.6)

TFχ2 =

N∑
n=1

[
(
πFmρ

1
k(ρs)
ψ0

+ 1)− (
ρ1
k(ρs)
ψ0

+ 1)
]2

N∑
n=1

I(ρd)

. (4.3.7)

In addition we have for all tests calculated the magnitude and phase entity of ξ0
1 , ξ

2
1 , χ

2 and
TF ξ0

1 ,
TF ξ2

1 ,
TFχ2 (included in Appendix B.2.4). However in this chapter we will only show the
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error metrics above comparing the complex entity. The error metrics comparing magnitude or
complex entity have almost identical behaviour, whereas the ones comparing phase entity shows
resembling behaviour, to be discussed later in this chapter.

For this chapter we will mostly show the solution of ER and HIO. Since the TF of solution
display same appearance with regard to variation and artifacts as the solution for all tests. (All
solutions with TF are given in Appendix B).

4.3.1 Zero Noise Solution

For this example we obtained a reconstruction from di�raction and white-�eld data with no noise
inherent as shown in Figure 4.3.1. The data were generated by a modi�ed procedure of Section
4.2, that is step (i-ii) with 1014 measured photons selected and excluding step (iii-v), that is no
shot noise or background included, and in step (iv) there are no variation from the Gaussian
mean 157 [ ADU

photon ] in the photon to ADU conversion. We note the blurred internal features within
and surrounding the boundary of the solution, which is as expected. (A complex constraint for
a similar experimental setup [36] has been shown to greatly increase the reconstruction quality,
though in this work a complex constraint were not applied).
The error metric values for this reconstruction are seen in Table 4.1. The number of 1014

measured photons we chose because shot-noise for this number of photons is negligible. Thus to
show that the error metrics including shot-noise in Section 4.3.2 for 1014 photons, has the same
value as in Table 4.1. Note a scaling in number of measured photons will cancel out in numerator
and denominator of ξ0

1 , ξ
2
1 , χ

2, but in the TF ξ0
1 ,

TF ξ2
1 ,

TFχ2 the numerator will cancel out, and
the denominator will be scaled.

ER ξ0
1 ξ2

1 χ2

1.31× 10−2 1.18× 10−4 3.73× 10−6

ER TF ξ0
1

TF ξ2
1

TFχ2

1.74× 10−10 1.1× 10−10 1.65× 10−10

HIO ξ0
1 ξ2

1 χ2

1.23× 10−2 1.66× 10−4 9.8× 10−4

HIO TF ξ0
1

TF ξ2
1

TFχ2

4.5× 10−9 2.17× 10−9 2.32× 10−7

Table 4.1: The error metric values for the case when no noise is included in data as described in
Section 4.3.1.

It is seen in Figure 4.3.1 that solutions by ER and HIO show similar quality, also their
respective �rst and second best solutions show similar quality. In addition the χ2

reciprocal values
for sorting the 5 reconstructed iterates in table 4.2. This indicates that a unique solution is
obtained regardless of which random start-phases are used, when no noise is inherent in the
data.

ER 1 2 3 4 5
χ2
reciprocal 1.14× 10−3 1.15× 10−3 1.166× 10−3 1.178× 10−3 1.179× 10−3

HIO 1 2 3 4 5
χ2
reciprocal 3.75× 10−6 3.78× 10−6 3.83× 10−6 3.86× 10−6 3.9× 10−6

Table 4.2: The χ2
reciprocal values used for sorting the reconstructed iterates, from di�raction and

white-�eld data with no noise inherent.
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(a)

.

. ER HIO

(b)

. ER HIO

(c)

Figure 4.3.1: Solutions (support region displayed) from data with no noise inherent.
(a) The di�raction data (left) and white-�eld data (right). (b) The best solution of ER and
HIO respectively: First row show the solution (πFmρ

1
k), magnitude (left) and phase (right). In

second row we see the retrieved transmission function ( πFmρ
1
k

ψ0
+ 1), magnitude (left) and phase

(right). (To make the transmission function magnitude visible, everything above 1 is replaced
with the value 1). The scale bar included applies to both phase of solution and it's TF. (c) The
second best solution of ER and HIO respectively: Here only the magnitude of solution (πFmρ

2
k)

are shown, note the identical quality as (πFmρ
1
k).
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4.3.2 Photon Number

Here we use the steps (i-iv) in Section 4.2 to simulate di�raction and white-�eld data. These
data have a wide range 5 × 105 − 1014 measured photons, which equals 0.05 − 107 one second
frames of data, with 107 measured photons per frame. This exceedingly wide range of photons
are to investigate the behaviour of iterative algorithms for large amounts of shot-noise. With the
inherent shot-noise of the photons measured, this yields SNR calculated only for the di�raction
data in the interval 19 to 212923. These data corresponds to a summation of di�raction and
white-�eld 1 second frames of data respectively that are perfectly correlated, background sub-
tracted and thresholded. Three examples of the solution (or reconstructed ESW) are shown in
Figure 4.3.2 and the error metric values are shown in Figure 4.3.3. (The entire range of simulated
data and their respective solution are shown in Appendix B.1).
Although the solution and it's calculated TF will have the same quality and artifacts within
the support region, they di�er in the whole 2048×2048 array, and thus their error metric values
di�ers as seen in Figure 4.3.3. For HIO TF ξ0

1 ,
TF ξ2

1 have high correlation and for ER TF ξ0
1 ,
TF ξ2

1 ,
TFχ2 have high correlation. Revealing the possible importance of the calculable error metrics (
TF ξ2

1 ,
TFχ2) in locating the true TF (here located by TF ξ0

1).
In Figure 4.3.3 ξ0

1 , ξ
2
1 , χ

2 better reveal a criteria when the solutions are close in quality to the
zero noise solution of Section 4.3.1. That is for ER when more than 108 photons are measured
(SNR>218) and for HIO when more than 5 × 1010 photons are measured (SNR>4789). Below
this criteria they respectively show a higher value of ξ2

1 and a noisy solution that departs from
a �zero-noise solution� (this may be con�rmed by seeing all the solutions in Appendix B.1). Al-
though TF ξ0

1 ,
TF ξ2

1 ,
TFχ2 is not a good indicator of this criteria, even when the denominator is

unscaled (see Figure 4.3.3). Note although that the criteria holds here for both the solution and
it's TF, since they display same appearance in support region.
The di�erence in reconstruction quality of ER and HIO at approximately 109 measured photons
(SNR=686), are well represented by ξ0

1 . Data with 109 measured photons is what we understand
from litterature are the order of what can be typical in FCDI experiments [12, 20, 23, 22, 36, 31].
We note here the larger di�erence of ρ1

k against π
F
mρ

1
k in HIO, than for ER. As in CDI (Chapter

3) the HIO iterate is not to be regarded as a solution, apart from ER where the iterate and
solution has better agreement.
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. ER HIO
5× 105 photons (SNR=19).

(a)

. ER HIO
109 photons (SNR=686).

(b)

. ER HIO
1014 photons (SNR=212923).

(c)

Figure 4.3.2: Magnitude of solution (support region displayed) from di�raction and white-�eld
data (log-scale), that have di�erent amount of measured photons with inherent shot-noise, yield-
ing di�erent signal-to-noise ratio.
(a) 5 × 105 measured photons, (b) 109 measured photons, (c) 1014 measured photons. For (a),
(b), (c), from left to right: Di�raction data, white-�eld data, magnitude of ER solution, magni-
tude of HIO solution.
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.

Figure 4.3.3: The error metric results from data with varying amount of measured photons. The
TF error metrics (TF ξ0

1 ,
TF ξ2

1
TFχ2) have steeper slope from that of the solution (ξ0

1 , ξ
2
1 , χ

2).
Because a scaling in measured photons will cancel out in the numerator of the TF error metrics,
but their denominator will have this scaling. Apart from the ESW error metrics where the scaling
in numerator and denominator cancels out. (In the framed graph, are modi�ed TF error metrics
with an denominator of unscaled summed intensity, so that these are independent of scaling by
number of photons, just as the original solution error metrics are.) Also note here that TF ξ0

1

, TF ξ2
1 have high correlation for HIO and TF ξ0

1 ,
TF ξ2

1
TFχ2 have high correlation for ER. The

quality of the zero noise solution and values of ξ0
1 , ξ

2
1 are reached for ER when more than 108

photons are measured (SNR>218) and for HIO when more than 5× 1010 photons are measured
(SNR>4789). For the shot-noise with 1014 measured photons (SNR=212923), the solution and
TF error metric values are very close to those of the zero noise solution in Table 4.1 of Section
4.3.1 (because of equal scaling with 1014 measured photons for TF ξ0

1 ,
TF ξ2

1
TFχ2).
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4.3.2.1 Iteration number

Here we used the di�raction and white-�eld data with three di�erent amounts of shot-noise
for 5 × 105, 109 and 1014 measured photons. The conditions for the iterative algorithms are
the same. However instead of only using 125 iterations (whose solution can be seen in Figure
4.3.2), the range between 1−456 iteration numbers are investigated. The respective error metric
values versus iteration number with the solution after 5 and 456 iterations, are shown in Figure
4.3.4-4.3.6.

The results for data with 5 × 105 measured photons, Figure 4.3.4. For this high amount of
shot-noise the quality of solution is materially destroyed. The error metric values does not vary
substantially, and HIO indicates worse solutions, reproducibility and di�erence of iterate and
solution, than that of the ER algorithm.

The results for data with 109 measured photons, Figure 4.3.5. ER displays good convergence
and quality close to that of a zero-noise solution, indicated by the stable error metric values.
Although HIO deteriorates with increasing iteration number, along with the error metric values
that increase, indicating a diverging solution, reproducibility and increasing di�erence of iterate
and solution.

The results for data with 1014 measured photons, Figure 4.3.6. This amount of measured
photons, makes shot-noise negligible. However we see that again ER is stable at a zero-noise
solution, although χ2 indicates a decreasing di�erence of iterate and solution. For the HIO
algorithm the solution is close to a zero-noise solution, and seems to show a small inclination to
converge to the true solution (O), this we have not veri�ed. However HIO also shows an increasing
reproducibility and di�erence of iterate and solution, which may imply it is a diverging behaviour.

The error metrics values in Figure 4.3.4-4.3.6, shows that ER have close correlation between
TF ξ0

1 ,
TFχ2 and to a lesser extent also with TF ξ2

1 . Apart from HIO which shows good correlation
of TF ξ0

1 ,
TF ξ2

1 . Thus this imply that the calculable error metrics
TF ξ0

1 ,
TFχ2 are good identi�ers

of an estimate to a true solution, for atleast the amount of shot-noise and iteration numbers that
we have tested.
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Figure 4.3.4: Iteration number dependency on solutions from di�raction and white-�eld data
that have only shot-noise inherent for 5 × 105 measured photons. Above are the magnitude of
solution (|πFmρ1

k|) after 5 and 456 iterations. Below are the error metric values versus iteration
number.
The error metric values and solution does not vary much by the iteration number. Although for
this high level of shot-noise the quality of the solution are materially destroyed. The higher value
of HIO error metrics indicates worse solutions, reproducibility and di�erence of iterate (ρ1

k) and
solution (πFmρ

1
k), than that of the ER algorithm.
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Figure 4.3.5: Iteration number dependency on solutions for di�raction and white-�eld data that
have only shot-noise inherent for 109 measured photons. Above are the magnitude of solution
(|πFmρ1

k|), after 5 and 456 iterations. Below are error metric values versus iteration number.
For the ER algorithm the error metric values and solution does not vary much by the iteration
number, with the solution staying close to a zero noise solution. The increasing value of HIO
error metrics indicates a diverging solution, with deteriorating reproducibility and increasing
di�erence of iterate (ρ1

k) and solution (πFmρ
1
k). Note for ER the precise correlation of TF ξ0

1 ,
TFχ2. And for HIO we see the good correlation of TF ξ0

1 ,
TF ξ2

1 .
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Figure 4.3.6: Iteration number dependency on solutions from di�raction and white-�eld data
that have only shot-noise inherent for 1014 measured photons. Above we see the magnitude of
solution (|πFmρ1

k|), after 5 and 456 iterations. Below are the error metric values versus iteration
number.
For the ER algorithm, solution and error metric values does not vary much. Although as seen in
χ2 the di�erence between iterate and solution diminishes. Neither do HIO vary much although it
shows an artifact at the upper right corner of the solution for higher iteration numbers, almost as
if it were a slow convergence to the true solution (O). Although HIO by higher iteration numbers,
gradually seems to yield less reproducible solutions, and more di�erence between iterate and
solution. Note for ER the perfect correlation of TF ξ0

1 ,
TFχ2 and to a lesser extent to TF ξ2

1 . And
for HIO we see the good correlation of TF ξ0

1 ,
TF ξ2

1 .
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4.3.3 Incomplete Background Subtraction

Here we performed an extensive simulation of di�raction and white-�eld data with inherent shot-
noise for 109 measured photons, with equal or di�erent proportions of background levels. The
procedure for this may be understood from steps (i-v) in Section 4.2. Background subtracting
0-100% of the background mean (100× 210 ADUs), of the di�raction and white-�eld data.
For the three cases (Section 4.3.3.1-4.3.3.3), we used the same di�raction data range, 0-100%
background subtracted, yielding a SNR interval 1.8 to 339:
In case I (Section 4.3.3.1) we used white-�eld data with the same amount of background as the
di�raction data for it's entire range.
In case II (Section 4.3.3.2) we used a �xed white-�eld data that had 100% background subtracted
and were thresholded, for the entire di�raction data range.
In case III (Section 4.3.3.3) we used a �xed white-�eld data that had 95% of the background
subtracted, for the entire di�raction data range.

In Section 4.3.3.4, additional tests are shortly described.
In addition we performed analogously all tests in this section for data with negligable shot-

noise. Simulating by steps (i-v) of Section 4.2, white-�eld and di�raction data corresponding
to 1011 measured photons. Background subtracting 0-100% of the background mean (104 × 210
ADUs), of the di�raction and white-�eld data. Thus di�raction data range used for the analogous
tests of case I-III had a SNR interval 1.8 to 3365. What are notable is that very much the same
artifacts on solutions are reached as when considering case I-III with shot-noise for 109 measured
photons. So we only included the error metrics results in Section 4.3.3.1-4.3.3.4 to demonstrate
this point. Though the shot-noise for 1011 measured photons (SNR = 6762) is substantially less
than that for 109 measured photons (SNR = 686), and solutions by ER and HIO is very similar
for this lesser shot-noise (see Section 4.3.2). What is more revealing in solutions of particularly
case I, is that the quality of solutions by HIO is more a�ected by adding background noise and
ER being more resilient. Di�erences in error metrics due to shot-noise in this section can be
understood from the shot-noise plot of Figure 4.3.3. It is noted again for all tests in this section
(and the whole chapter) that the solution and TF error metrics di�er, however they display the
same general appearance and artifacts due to noise within the support region.
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4.3.3.1 Case I

Here for the whole SNR range of 0-100% background subtracted in di�raction data, we have used
white-�eld data with an equal amount of background noise. Error metrics are shown in Figure
4.3.7 and two examples of data with solution are shown in Figure 4.3.8. (The entire range of
data and solutions are shown in Appendix B.2.1).
Varying the amount of background noise equally in the di�raction and white-�eld data, give more
or less the same quality of solution. Although the quality becomes better when the background
level becomes smaller, especially for HIO.
When the di�raction and white-�eld data both have background-level, resulted in spurious cross-
shaped features and copies of the object in solution and it's derived TF. Though this artifact is
more prominent in ER for higher background levels, see Figure 4.3.8(a), and only slightly appears
in HIO for small background, see Figure 4.3.8(b). The same artifact arises when a white-�eld
extent support are used, excluding the spurious feature to arise from the rectangular support.
Why this artifact occurs we have not yet found another explanation to. Solutions to ER display
higher reproducibility or similarity (lower ξ2

1 ,
TF ξ2

1), for higher background in di�raction and
white-�eld data, although the prominent spurious cross-shaped artifacts are present.
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Figure 4.3.7: The error metric results, for ER and HIO reconstructions from 0-100% equally
background subtracted di�raction and white-�eld data with a certain amount of shot-noise (case
I, Section 4.3.3.1). (a) Shot-noise for 109 measured photons. (b) Shot-noise for 1011 measured
photons. The steep slope of decreasing ξ2

1 for increasing background level in ER, implies that
the reconstruction becomes more reproducible. Particularly again there is a precise correlation
between TF ξ0

1 ,
TF ξ2

1 for HIO, and TF ξ0
1 ,
TFχ2 for ER, revealing their possible importance in

locating the true TF.
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. ER HIO

(a)

. ER HIO

(b)

Figure 4.3.8: Two examples of case I (Section 4.3.3.1). For each (a) and (b), in the �rst row
from left to right: Di�raction data (log-scale), white-�eld data (log-scale), support region of the
magnitude of solution (|πFmρ1

125|) by ER and HIO. In the second row we see a zoomed in part of
768x768 pixels of the bottom left corner of the solution, contrasted to reveal the spurious copy
of the object and crossed-over stripes that appear in magnitude and phase of the solution and
it's derived TF.
(a) 0% background subtracted in di�raction data (SNR = 1.8). And 0% background subtracted
in white-�eld data. Shot-noise for 109 measured photons. ER display the spurious cross shaped
feature with stripes.
(b) 100% background subtracted in di�raction data (SNR = 338.9). And 100% background
subtracted white-�eld data. Shot-noise for 109 measured photons. HIO display to some extent
the spurious feature.
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4.3.3.2 Case II

Here we used di�raction data with 0-100% background subtracted (SNR 1.8 to 338.9). For
reconstructions we used this whole di�raction data range with a �xed white-�eld data that are
100% background subtracted and thresholded. The error metric plot are shown in Figure 4.3.9
and two examples are shown in Figure 4.3.10. (The entire range of data with solutions are shown
in Appendix B.2.2).
This case is particularly interesting because it gives very similar e�ects as the background noise
in CDI (Section 3.2.3). In Figure 4.3.10 we see the same rapidly varying magnitude in the
solutions, that is a very noisy or to say ghost-like appearance. Much similar artifacts that were
seen in reconstruction in CDI from data with background noise (Section 3.2.3). Not surprisingly
this noise artifact must be related to vortices (phase-singularities). These vortices arise in the
reciprocal space of the reconstructed iterate intensity (|ρ1

125|2), when zoomed in to a 64x64 area
they look resembling for ER and HIO respectively to the corresponding ones we have seen in
CDI. These vortices arise here up to a 99% background subtraction.
Also the spurious artifact with stripes in case I, does not arise for any of the solutions of case II.
This artifact seemingly arises when there are no thresholding, or high background levels of both
the di�raction and white-�eld data.
We note the overall steep slope of the error metrics in Figure 4.3.9, although HIO χ2, TFχ2 shows
di�erent behaviour, the HIO iterate deviates from the HIO solution. Although all behaviour of
reconstructions for case I-III are the same with shot-noise for 109, 1014 measured photons, the
error metrics results di�er slightly, again this can be understood from Figure 4.3.3, Section 4.3.2.
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Figure 4.3.9: The error metric results, for ER and HIO reconstructions from 0-100% background
subtracted in di�raction data, and a �xed white-�eld data with 100% background subtracted
and thresholding, (case II, Section 4.3.3.2).
(a) Shot-noise for 109 measured photons. (b) Shot-noise for 1011 measured photons.
Note the good correlation between TF ξ0

1 ,
TF ξ2

1 for HIO. And for ER there is again precise corre-
lation of TF ξ0

1 ,
TFχ2 also with TF ξ2

1 .
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. ER HIO

(a)

. ER HIO

(b)

Figure 4.3.10: Two examples of case II (Section 4.3.3.2). For each (a) and (b), in the �rst row
from left to right: Di�raction data (log-scale), white-�eld data (log-scale), support region of the
magnitude of solution (|πFmρ1

125|) by ER and HIO. In the second row, below the solution, we see
the iterate intensity (|ρ1

125|2) in reciprocal space (log-scaled), zoomed in to a 64x64 pixel area of
the upper left corner.
(a) 0% background subtracted in di�raction data (SNR = 1.8). And 100% background subtracted
and thresholded white-�eld data. Shot-noise for 109 measured photons. Resembling vortices
appear in iterate reciprocal space as for CDI with background present in data (Section 3.2.3).
(b) 100% background subtracted in di�raction data (SNR = 338.9). And 100% background
subtracted and thresholded white-�eld data. Shot-noise for 109 measured photons. For this level
of noise vortices do not seem to show clearly in iterate reciprocal space. Although for less than
99% background subtracted in di�raction data, vortices do gradually appear evidently.
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.

4.3.3.3 Case III

Here we used di�raction data with 0-100% background subtracted (SNR 1.8 to 338.9). For this
whole di�raction data range we used a �xed white-�eld data that are 95% background subtracted.
The error metric plot are shown in Figure 4.3.11, and two examples are shown in Figure 4.3.12.
(The entire range of data with solutions are given in Appendix B.2.3). Again for all solutions in
this chapter, the general appearance and artifacts appear in the solution and it's belonging TF,
within the support region.
For di�raction data with less than 90% background subtracted yielded similar vortices and
reconstructions as in case II. However di�erent to the results in case II, here are a �ne web of
perpendicular stripes that appear over the 2048x2048 array of solution for the entire data range.
When the di�raction data had close to between 90-100% background subtracted, the web of
perpendicular stripes appeared more clearly, as seen in Figure 4.3.12(b). Also for the entire SNR
range in the reciprocal space of the iterate intensity, are stripes aligned to form square features as
seen in Figure 4.3.12(a). Any further explanation of these stripe artifacts we have not concluded,
and is a subject to further investigation.
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Figure 4.3.11: The error metric results, for ER and HIO reconstructions from 0-100% background
subtracted in di�raction data and a �xed white-�eld data with 95% background subtracted. (Case
III, Section 4.3.3.3). (a) Shot-noise for 109 measured photons. (b) Shot-noise for 1011 measured
photons. Note the close correlation between TF ξ0

1 ,
TF ξ2

1 for HIO, and the precise correlation of
TF ξ0

1 ,
TFχ2 for ER.
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. ER HIO

(a)

. ER HIO

(b)

Figure 4.3.12: Two examples of case III (Section 4.3.3.3). For each (a) and (b), in the �rst row
from left to right: Di�raction data (log-scale), white-�eld data (log-scale), support region of the
magnitude of solution (|πFmρ1

125|) by ER and HIO.
(a) 0% background subtracted di�raction data (SNR = 1.8). And 95% background subtracted
white-�eld data. Shot-noise for 109 measured photons. The solution looks much like as in case
II, although here a web of stripes appear across the solution. Below the solution we see the
intensity of the iterate (|ρ1

125|2) in reciprocal space (logscaled). What are barely seen here are
vortices as in Figure 4.3.10(a) of Case II, but di�erent here are also the appearance of stripes
that cross-over to square structures.
(b) 100% background subtracted di�raction data (SNR = 338.9). And 95% background sub-
tracted white-�eld data. Shot-noise for 109 measured photons. We see below the solutions, them
being contrasted in the whole 2048x2048 array, which reveals the web of stripes across the solu-
tion. In the reciprocal space of the iterate there are also stripes in crossed-over structures, but
no apparent vortices. 51
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4.3.3.4 Additional Tests

In addition we performed a test with white-�eld data that have 0% background subtracted, and
varying the background subtracted between 0-100% in the di�raction data (SNR between 1.8 to
338.9). In Figure 4.3.13 we see that the error metrics values has a trend to increase. For the
di�raction data with 0% background subtracted (SNR=1.8), and white-�eld data that have 0%
background subtracted, yielded the lowest error metrics and a fairly good reconstruction. As
the percentage of the background subtracted from the di�raction data is increased, increasingly
appearing is an artifact of a web of stripes that were seen in Figure 4.3.12b of case III. This
artifact does not depend on the rectangular support chosen. With the extent of the white-�eld
used as support the corresponding error metric plot and reconstructions, yielded very similar
results.
The spurious object artifact as seen in Figure 4.3.8 of case I, appeared also here for the whole
di�raction data SNR range, more prominent in the solution (πFmρ

1
125) of ER. Seemingly appearing

when there is background noise of both the di�raction and white-�eld data.
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Figure 4.3.13: The error metric results, for ER and HIO reconstructions, from 0-100% background
subtracted in di�raction data and a �xed white-�eld data with 0% background subtracted. (a)
Shot-noise for 109 measured photons. (b) Negligable shot-noise for 1011 measured photons. For
ER ξ2

1 ,
TF ξ2

1 shows a bell-shape that is far below the other metrics, thus gives more reproducibility
for certain tests. Again there is close correlation between TF ξ0

1 ,
TF ξ2

1 for HIO, and the precise
correlation of TF ξ0

1 ,
TFχ2 for ER.

In addition reconstructions were carried out from 10-90% interval of background subtracted
in di�raction data, and a �xed white-�eld data that had 50% background subtracted. The error
metrics are shown in Figure 4.3.14. For this test no vortices were noticed as in case II, though a
minor appearance of the spurious artifact as in case I, Figure 4.3.8. And the web of stripes as in
Figure 4.3.12 of case III did appear when the background mean in the di�raction and white-�eld
data were'nt equal.
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Figure 4.3.14: The error metric results, for ER and HIO reconstruction from 10-90% background
subtracted in di�raction data (SNR 2-17.4) and a �xed white-�eld data with 50% background
subtracted. (a) Shot-noise for 109 measured photons. (b) Negligable shot-noise for 1011 measured
photons. Again TF ξ0

1 ,
TF ξ2

1 show good correlation in HIO, and ER TF ξ0
1 ,

TFχ2 shows good
agreement.

4.4 Conclusions

In using iterative methods to recover lost phase information from a FCDI imaging experiment,
it is imperative to consider the e�ect of noise and the resulting recovered phases before making
quantative statements about the sample. Also to determine acceptable experimental conditions.
For this purpose, we have simulated a wide range of noise from various sources to investigate the
type and severity of artifacts introduced by the presence of noise in the measurement.

We have concluded that the zero noise solution (of Section 4.3.1) deviates to some extent from
the true solution of Figure 4.2.2, for the algorithms and experimental parameters presented.
Some blurred external features and what looks as interference artifacts within the solution, can
be observed. Besides this the general shape and appearance of the true solution is reconstructed
to good detail. Also there are a low value of ξ0

1 ≈ 10−2, which indicates a fair agreement.

Of further interest is whether noise is likely to cause meaningful non-uniqueness of the �nal
solution. For all FCDI noise tests with HIO and more notably for ER, twin image formation
never occurs, and all reconstructions appear in the same position in the array. It is known that
the value of NF ∼ 10, that we have used is to provide reliable convergence [20, 37]. Although
if the data are overwhelmed with noise, it will yield noisy solutions with di�erent artifacts de-
pending on the type of noise. And thus deviate from a zero noise solution.

As expected assuming only shot-noise, simulations with a large number of measured photons
allow a better estimate to a true solution. Here we have covered a very large range, 5×105−1014

measured photons. Though in FCDI the number of photons that can be measured depends on
sample damage, if there is a biological specimen or a metal, stability of the equipment, speci�c
beamline, for example. In current FCDI experiments the number of frames collected in a single
FCDI data set that are correlated, may correspond to more or less on the order of 108 − 1010

measured photons [12, 20, 23, 22, 36, 31]. Here it is implied that to reliably converge to the
unique solution of the zero noise solution in Section 4.3.1, is for ER minimum ∼ 108 measured
photons, and for HIO minimum ∼ 5 × 1010 measured photons. Below which they respectively
tend to deviate in quality and give a more noisy solution. This criteria is also when ξ0

1 , ξ
2
1 will

close in to the value of a zero-noise solution.
At least for moderate shot-noise inherent in data for 109 measured photons, ER reliably con-
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verge to a zero noise solution seemingly for all iteration numbers. The HIO algorithm (for our
parameters) yields a good estimate to the zero-noise solution for low shot-noise or more than
∼ 5× 1010 measured photons with iteration number k = 125, however gives tendency to diverge
by increasing iteration number.

Additional background noise has shown to invoke di�erent artifacts and e�ects on the recon-
struction, depending on the balance of the background in the di�raction and white-�eld data.
The overall results of these background noise tests was very similar both when there was signif-
icant shot-noise with 109 measured photons, and when it was more negligible for 1011 measured
photons. We infer from our results when shot-noise and di�erent proportions of background are
both present in white-�eld and di�raction data, the e�ects on the solution are approximately
additive. Although higher amount of shot-noise may yield other results.
In case I, when the background level, for the range 0 − 100%, were equal in the di�raction and
white-�eld data. ER being more resilient yields solutions which are materially the same. Also
solutions of HIO are materially the same but with increasingly noiser solutions, for increasing
background level in di�raction and white-�eld data. Appearing is a spurious object artifact and
stripes in the solution, in ER for higher background level in data, in HIO to a more negligable
extent when the data are close to 100% background subtracted.
In case II, with white-�eld data that has been perfectly background subtracted and thresholded,
but the di�raction data has insu�cient background subtraction will cause vortices, seen in the
reciprocal space of the resulting iterate intensity (|ρ125|2). Yielding a less de�ned and noisier real-
space magnitude, this artifact appear here for this case with only 1% deviation in background
from the di�raction and white-�eld data, and appear gradually when increasing the deviation.
Here when the di�raction data are 100% background subtracted but not thresholded, there is a
minor negligible deviation in quality.
In case III, for a white-�eld that has 95% background subtracted and di�raction data that has
less background subtracted, a similar e�ect occurs as in case II. However apart from rapidly vary-
ing magnitude due to vortices, a web of stripes appears in the solutions. In contrast to when the
di�raction data are 100% background subtracted, and the white-�eld data are 95% background
subtracted, which gave rise to a web of stripes in the solution (but no apparent rapid changing
magnitude due to vortices).

Hence cases I-III implies that even for small background levels remaining in di�raction and
white-�eld data, will result in deviations and artifacts. These artifacts may be mistaken for
actual physical features, so care should be taken to perform a good background subtraction.
That means also to gather enough accurate statistical measurements of di�raction and white-
�eld data, so that they have equal inherent shot-noise and background. In addition to gather
accurate statistics of the background data used for background subtraction.

We have not investigated here any possible scenarios of beam scatter from optics or air. It
is plausible that as in Chapter 3, the e�ect of a uniform distribution of say air scatter would
be similar to solutions from di�raction and white-�eld data that are not thresholded. Which
has already been shown here to have minor e�ects. Nevertheless care should be taken to avoid
sources of alien scatter. For example a circular distribution of beam scatter from the order sort-
ing aperture has been shown in Reference [21], which are not expected to have a straightforward
impact on the reconstruction.

The error metric values ξ0
1 , ξ

2
1 , χ

2, TF ξ0
1 ,
TF ξ2

1 ,
TFχ2 respectively comparing complex entities

has been examined for all tests in this chapter. Analogous error metrics comparing the respec-
tive magnitude and phase entities, has also been evaluated for each noise test in this chapter
(for those interested, they are included in Appendix B.2.4). The error metrics comparing the
magnitude entities is basically identical to the corresponding ones comparing complex entities,
so that either one may be used. It is noted in the analogous error metrics comparing phase en-
tities, that TF ξ0

1 ,
TF ξ2

1 ,
TFχ2 has the same behaviour as the error metrics comparing magnitude

and complex entity. Although ξ0
1 , ξ

2
1 , χ

2 comparing phase entities is similar to those comparing
magnitude or complex entities, however has a closer agreement. It is not obvious here that the
calculable ξ2

1 or χ2 is best to use for any type or level of noise in the data, though a combination
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of them may allow a safer identi�cation of a good estimate to the generally unknown true ESW.
For all noise levels tested in this Chapter, for ER TF ξ0

1 and TFχ2 overlaps almost perfectly and
in some tests also with TF ξ2

1 . For HIO TF ξ0
1
TF ξ2

1 are in most tests closely correlated. This
implies that the calculable TFχ2, TF ξ2

1 should allow a safe identi�cation of a good estimate to
the generally unknown true solution. For example reconstructions by ER having a low TFχ2,
would imply a low TF ξ0

1 , and thus indicate that a good estimate to the true transmission function
has been reconstructed.

There may be several strategies to enchance the solutions �delity, and which may a�ect the
results presented here. A combination of ER and HIO is anticipated to increase the solutions
�delity, as was the case for CDI in Reference [1]. Modi�cations to the algorithms as a complex
constraint [36], may increase the reconstruction reliability substantially, and may yield more ro-
bustness against noise.
The results in this chapter, may depend to some extent on the kind of sample chosen. We chose
a single gold object with thickness 150 nm and width ∼ 5000 nm. That is a very thin object
with no interior features, and with fairly sharp edges, yielding alot of high angle scatter.
Nevertheless the results reached in this chapter, gives an indication on what e�ects di�erent
sources of noisy data may have on the reconstruction, for any version of FCDI.
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Chapter 5

Retrospect and Further

Investigation

The motivation for this thesis were to reproduce the results by Williams et al [1, 2, 3] and show
that the method works for CDI. Then extend it to the technique of FCDI, to explore the e�ects
of relevant sources of noise. For both CDI and FCDI respectively in Chapter 3, 4 we have tested
analogously the algorithms error reduction and hybrid input-output, covering large ranges of
noise from di�erent relevant sources, and have shown the resulting degration and artifacts. Also
the behaviour of respective versions of error metrics measuring reproducibility and �delity of
the solutions, along with the conventionally used chi-square (χ2), has been calculated for each
test, showing their correlation. It has been revealed for both CDI and FCDI that error metrics
may be used to �nd a solution of good �delity to a true solution. Perhaps there are other error
metrics that may be used to identify a good solution.
Although the ranges of noise level from various sources examined may be out of reach for what
may be relevant in actual data treatment, it is still quali�ed to examine this range to see how
the algorithms deteriorate with large levels of a certain noise source present. It's important to
map out these kinds of behaviours, to provide information, for example when shot-noise may be
of non-negligible concern, or which algorithms works best.
In particular similar noise simulations may be entitled to perform for other versions or improve-
ments of CDI or FCDI techniques and phase-retrieval algorithms. Since the results obtained in
this report may not be the same for other versions of CDI and FCDI.
The noise artifacts and features introduced in FCDI showed similarities and also di�erences to
CDI. Due to apparent di�erences in methodology, modi�ed algorithms and the comparison means
of a di�raction and white-�eld data. An apparent similarity was the noisy solutions obtained by a
low amount of measured photons, and the appearance of vortices in the presence of background.
Further investigation may be entitled for evaluating the e�ects on equal or di�erent background
in di�raction and white-�eld data. For example de�nition of the vortices, and explanation of the
spurious object cross stripes and web of stripes artifacts revealed in Section 4.3.3.

There has been previous work on adjusting the phase-retrieval algorithms, to alleviate the e�ects
of shot-noise on the resulting solution in CDI [18, 38]. In the work of Dilanian et al [18], they
considered statistical information about measurement errors, where they included a distribution
of measurement errors into the reconstruction process using a statistically based modulus con-
straint. This diminished the e�ect of shot-noise and high quality reconstructions was obtained,
both in simulation and experiment. It may be plausible that a similar approach can be used to
reduce the e�ects of shot-noise in FCDI.
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Appendix A

All Reconstructions from Chapter 3

Noise-Added Simulation for

Coherent Di�ractive Imaging

This appendix contains all simulated di�raction data and the respective reconstructed iterates as
described in Chapter 3. For each of the three categories of noise in Appendices A.1-A.3, the �rst
�gure shows the entire range of the simulated di�raction data with di�erent SNR. And in the
following �gures the respective best (out of �ve) iterates after 500 iterations by ER and HIO is
shown. The iterate are for ER and HIO respectively displayed in a three picture row respectively,
from left to right: logarithm of the reciprocal-space squared magnitude, the reciprocal phase,
and the corresponding real-space magnitude (region inside support shown), of the iterate.

A.1 Photon Number

The results of Section 3.2.1 is shown here.
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A.1. Photon Number

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

(a) SNR = 299 (b) SNR = 416 (c) SNR = 625

(d) SNR = 860 (e) SNR = 1191 (f) SNR = 1846

(g) SNR = 2581 (h) SNR = 5692 (i) SNR = 8018

(j) SNR = 17835 (k) SNR = 25172

Figure A.1.1: All simulated di�raction data of the analysis of Section 3.2.1, obtained by the
steps (i-iv) in Section 3.1 for di�erent number of measured photons and corresponding SNR. The
number of photons in each pattern are: (a) 9 × 104, (b) 2 × 105, (c) 5 × 105, (d) 1 × 106, (e)
2× 106, (f) 5× 106, (g) 1× 107, (h) 5× 107, (i) 1× 108, (j) 5× 108, (k) 1× 109. The di�raction
data are shown in a logarithmic scale. Note that each image display similar brightness since
each image is normalised to its own highest value. But they di�er by orders of magnitude since
di�erent photon number yields di�erent scaling in real and reciprocal space.
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Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.2: 9× 104 photons.

ER

HIO

.

Figure A.1.3: 2× 105 photons.
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Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.4: 5× 105 photons.

ER

HIO

.

Figure A.1.5: 106 photons.
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Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.6: 2× 106 photons.

ER

HIO

.

Figure A.1.7: 5× 106 photons.
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Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.8: 107 photons.

ER

HIO

.

Figure A.1.9: 5× 107 photons.
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A.1. Photon Number

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.10: 108 photons.

ER

HIO

.

Figure A.1.11: 5× 108 photons.
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A.1. Photon Number

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.1.12: 109 photons.
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A.2. Alien Scatterers

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

A.2 Alien Scatterers

The results of Section 3.2.2 is shown here.

(a) SNR = 3.53 (b) SNR = 24.75 (c) SNR = 137

(d) SNR = 228 (e) SNR = 258

Figure A.2.1: All simulated di�raction data for the analysis of Section 3.2.2. From di�raction
data with shot-noise for 9 × 104 photons with additional shot-noise due to di�erent amount
of alien scatter and corresponding SNR, obtained by the steps (i-iv) of Section 3.1. The alien
scattering noise is speci�ed by the alien photon mean of a Poisson distribution from which it is
drawn for each pixel. The mean are for these images: (a) 0.5, (b) 0.05, (c) 0.005, (d) 0.0013, (e)
0.0005. The di�raction data are shown in a logarithmic scale.
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A.2. Alien Scatterers

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.2.2: Poisson mean 0.5

ER

HIO

.

Figure A.2.3: Poisson mean 0.05
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A.2. Alien Scatterers

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.2.4: Poisson mean 0.005

ER

HIO

.

Figure A.2.5: Poisson mean 0.0013
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A.2. Alien Scatterers

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.2.6: Poisson mean 0.0005
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A.3. Incomplete Background Subtraction

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

A.3 Incomplete Background Subtraction

The results of Section 3.2.3 is shown here.

(a) SNR = 0.442 (b) SNR = 0.491 (c) SNR = 0.631

(d) SNR = 0.882 (e) SNR = 1.468 (f) SNR = 4.357

(g) SNR = 8.524 (h) SNR = 24.49 (i) SNR = 35.92

Figure A.3.1: All simulated di�raction data in the analysis of Section 3.2.3, obtained by the steps
(i-v) in Section 3.1. For data with shot-noise inherent for 9×104 measured photons, the inherent
measured background noise are included by drawing a number in each pixel from a Gaussian
distribution with mean 1000 ADUs and standard deviation 27. The amount of background
subtracted: (a) 0%, (b) 10%, (c) 30%, (d) 50%, (e) 70%, (f) 90%, (g) 95%, (h) 99%, (i) 100%.
The di�raction data are shown in a logarithmic scale.
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A.3. Incomplete Background Subtraction

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.3.2: 0% background subtracted

ER

HIO

.

Figure A.3.3: 10% background subtracted
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Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.3.4: 30% background subtracted

ER

HIO

.

Figure A.3.5: 50% background subtracted
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A.3. Incomplete Background Subtraction

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.3.6: 70% background subtracted

ER

HIO

Figure A.3.7: 90% background subtracted
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A.3. Incomplete Background Subtraction

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.3.8: 95% background subtracted

ER

HIO

.

Figure A.3.9: 99% background subtracted
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A.3. Incomplete Background Subtraction

Appendix A. All Reconstructions from Chapter 3 Noise-Added Simulation for Coherent

Di�ractive Imaging

ER

HIO

.

Figure A.3.10: 100% background subtracted
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Appendix B

Reconstructions from Chapter 4

Noise-Added Simulation for Fresnel

Coherent Di�ractive Imaging

This appendix contains all simulated di�raction data (white-�eld data omitted) and the respec-
tive reconstructed solutions, for Section 4.3.2 (Photon number), and Section 4.3.3 (Incomplete
background subtraction; Case I-III).
In Appendix B.1 (Photon number), the �rst �gure shows the entire range of di�raction data with
di�erent amount of measured photons (with equal amount of measured photons in the white-�eld
data, not shown). In the following �gures the respective solution (πFmρ

1
125) by ER and HIO are

shown, and it's derived transmission function.
In Appendix B.2 (Incomplete background subtraction), the �rst �gure shows the entire range of
di�raction data with shot-noise for 109 measured photons and 0-100% background subtracted
(used in cases I-III). In the following Appendices B.2.1-B.2.3 (Case I-III) the solutions from
the di�raction and white-�eld data (with shot-noise for 109 measured photons), stated with
how much background was subtracted respectively. The abbreviations DPD (di�raction pattern
data), and WFD (white-�eld data) are used.

For all solutions in this appendix, four entities of the solution are shown (support region) for
ER and HIO respectively: top row; magnitude of solution (left), phase of solution (right): bottom
row; magnitude of the solution's transmission function, phase of the solution's transmission
function.

Furthermore in Appendix B.2.4, we see the error metrics ξ0
1 , ξ

2
1 , χ

2,TF ξ0
1 ,
TF ξ2

1 ,
TFχ2 for all

tests of Chapter 4, but comparing magnitude and phase entities rather than the complex ones as
in Chapter 4. For the error metrics of Section 4.3.3 only the one's of shot-noise for 109 measured
photons are shown.

B.1 Photon Number

The results of Section 4.3.2 is shown here.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

(a) SNR = 19, 5× 105

photons.
(b) SNR = 24, 106

photons.
(c) SNR = 50, 5× 106

photons.

(d) SNR = 218, 108

photons.
(e) SNR = 686, 109

photons.
(f) SNR = 1525,
5× 109 photons.

(g) SNR = 2152, 1010

photons.
(h) SNR = 4789,
5× 1010 photons.

(i) SNR = 6762, 1011

photons.

(j) SNR = 21315, 1012

photons.
(k) SNR = 212923,
1014 photons.

Figure B.1.1: All simulated di�raction data in the analysis of Section 4.3.2, obtained by the
steps (i-iv) in Section 4.2, for di�erent number of measured photons and corresponding SNR.
The white-�eld data has the same amount of measured photons with inherent shot-noise, not
included here. The di�raction data are shown in a logarithmic scale. Note that each image
display similar brightness since each image is normalised to its own highest value. But they
di�er by orders of magnitude since di�erent photon number yields di�erent scaling in real and
reciprocal space.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.2: SNR = 19, 5× 105 photons.

. ER HIO

Figure B.1.3: SNR = 24, 106 photons.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.4: SNR = 50, 5× 106 photons.

. ER HIO

Figure B.1.5: SNR = 218, 108 photons.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.6: SNR = 686, 109 photons.

. ER HIO

Figure B.1.7: SNR = 1525, 5 × 109 photons.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.8: SNR = 2152, 1010 photons.

. ER HIO

Figure B.1.9: SNR = 4789, 5× 1010 photons.
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B.1. Photon Number

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.10: SNR = 6762, 1011 photons.

. ER HIO

Figure B.1.11: SNR = 21315, 1012 photons.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.1.12: SNR = 212923, 1014 photons.

B.2 Incomplete Background Subtraction

The results of Section 4.3.3 is shown here.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

(a) SNR = 1.8; 0%
mean background
subtracted

(b) SNR = 2; 10%
mean background
subtracted

(c) SNR = 2.5; 30%
mean background
subtracted

(d) SNR = 3.5; 50%
mean background
subtracted

(e) SNR = 5.9; 70%
mean background
subtracted

(f) SNR = 17.4; 90%
mean background
subtracted

(g) SNR = 33.9; 95%
mean background
subtracted

(h) SNR = 139.3; 99%
mean background
subtracted

(i) SNR = 338.9; 100%
mean background
subtracted

Figure B.2.1: All simulated di�raction data used in Section 4.3.3 with shot-noise for 109 measured
photons, and di�erent amount of background subtracted, obtained by steps (i-v) of Section 4.2.
These SNR range of the di�raction data were used for all tests with di�erent comparison means
to background subtracted white-�eld data, that has equal amount of shot-noise.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

B.2.1 Case (I)

. ER HIO

Figure B.2.2: Background subtracted: 0% in DPD (SNR = 1.8), 0% in WFD.

. ER HIO

Figure B.2.3: Background subtracted: 10% in DPD (SNR = 2), 10% in WFD.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.2.4: Background subtracted: 30% in DPD (SNR = 2.5), 30% in WFD.

. ER HIO

Figure B.2.5: Background subtracted: 50% in DPD (SNR = 3.5), 50% in WFD.
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B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.2.6: Background subtracted: 70% in DPD (SNR = 5.9), 70% in WFD.

. ER HIO

Figure B.2.7: Background subtracted: 90% in DPD (SNR = 17.4), 90% in WFD.
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. ER HIO

Figure B.2.8: Background subtracted: 95% in DPD (SNR = 33.9), 95% in WFD.

. ER HIO

Figure B.2.9: Background subtracted: 99% in DPD (SNR = 139.3), 99% in WFD.
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. ER HIO

Figure B.2.10: Background subtracted: 100% in DPD (SNR=338.9), 100% in WFD.

B.2.2 Case (II)

. ER HIO

Figure B.2.11: Background subtracted: 0% in DPD (SNR = 1.8), 100% in WFD.
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. ER HIO

Figure B.2.12: Background subtracted: 10% in DPD (SNR = 2), 100% in WFD.

. ER HIO

Figure B.2.13: Background subtracted: 30% in DPD (SNR = 2.5), 100% in WFD.
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. ER HIO

Figure B.2.14: Background subtracted: 50% in DPD (SNR = 3.5), 100% in WFD.

. ER HIO

Figure B.2.15: Background subtracted: 70% in DPD (SNR = 5.9), 100% in WFD.

91



B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.2.16: Background subtracted: 90% in DPD (SNR = 17.4), 100% in WFD.

. ER HIO

Figure B.2.17: Background subtracted: 95% in DPD (SNR = 33.9), 100% in WFD.
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. ER HIO

Figure B.2.18: Background subtracted: 99% in DPD (SNR = 139.3), 100% in WFD.

. ER HIO

Figure B.2.19: Background subtracted: 100% in DPD (SNR = 338.9), 100% in WFD.
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B.2.3 Case (III)

. ER HIO

Figure B.2.20: Background subtracted: 0% in DPD (SNR = 1.8), 95% in WFD.

. ER HIO

Figure B.2.21: Background subtracted: 10% in DPD (SNR = 2), 95% in WFD.
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. ER HIO

Figure B.2.22: Background subtracted: 30% in DPD (SNR = 2.5), 95% in WFD.

. ER HIO

Figure B.2.23: Background subtracted: 50% in DPD (SNR = 3.5), 95% in WFD.
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. ER HIO

Figure B.2.24: Background subtracted: 70% in DPD (SNR = 5.9), 95% in WFD.

. ER HIO

Figure B.2.25: Background subtracted: 90% in DPD (SNR = 17.4), 95% in WFD.
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. ER HIO

Figure B.2.26: Background subtracted: 95% in DPD (SNR = 33.9), 95% in WFD.

. ER HIO

Figure B.2.27: Background subtracted: 99% in DPD (SNR = 139.3), 95% in WFD.

97



B.2. Incomplete Background Subtraction

Appendix B. Reconstructions from Chapter 4 Noise-Added Simulation for Fresnel Coherent

Di�ractive Imaging

. ER HIO

Figure B.2.28: Background subtracted: 100% in DPD (SNR = 338.9), 95% in WFD.

.
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B.2.4 Error Metrics of Chapter 4, Comparing Magnitude And Phase
Entities

Here we show the error metrics of Chapter 4, that compare magnitude and phase entities rather
than the complex entity that was shown in Chapter 4.

The magnitude entities error metrics below, is almost identical to the error metrics comparing
the complex entities.
Regarding the Phase entities error metrics, TF ξ0

1 ,
TF ξ2

1 ,
TFχ2 are similar to the error metrics

comparing magnitude or complex entities. Also characteristic for ξ0
1 , ξ

2
1 , χ

2 comparing phase
entities is that they show closer agreement than when comparing the complex or magnitude
entities. The ξ0

1 for ER and HIO overlaps (and sometimes with ξ2
1 , χ

2), when either or both are
not visible in the graphs.

B.2.4.1 Photon number
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Figure B.2.29: Error metrics of Section 4.3.2 (Photon number). Entities compared; (a) Magni-
tude. (b) Phase, for ER TF ξ0

1 overlaps with TFχ2. And ξ0
1 for ER and HIO overlaps, also with

HIO ξ2
1 .

B.2.4.2 Iteration number
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Figure B.2.30: Error metrics of Section 4.3.2.1 (Iteration number), case 5×105 photons. Entities
compared; (a) Magnitude. (b) Phase.
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Figure B.2.31: Error metrics of Section 4.3.2.1 (Iteration number), case 109 photons. Entities
compared; (a) Magnitude. (b) Phase.
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Figure B.2.32: Error metrics of Section 4.3.2.1 (Iteration number), case 1014 photons. Entities
compared. (a) Magnitude, (b) Phase.
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B.2.4.3 Incomplete Background Subtraction
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Figure B.2.33: Error metrics of Section 4.3.3.1 (Case I). Entities compared; (a) Magnitude. (b)
Phase.
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Figure B.2.34: Error metrics of Section 4.3.3.2 (Case II). Entities compared; (a) Magnitude. (b)
Phase.
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Figure B.2.35: Error metrics of Section 4.3.3.3 (Case III). Entities compared; (a) Magnitude. (b)
Phase.

B.2.4.4 Additional tests

10
−5

10
0

 

 

ξ01ER

ξ21ER

χ2ER

ξ01HIO

ξ21HIO

χ2HIO

10
0

10
1

10
2

10
310

-10

10
-8

10
-6

10
-4

10
-2

Signal-to-noise ratio

C
h
i-
sq
u
ar
e
or

m
ea
n
sq
u
ar
e
d
ev
ia
ti
on

 

 

TF ξ01ER
TF ξ21ER
TFχ2ER
TF ξ01HIO
TF ξ21HIO
TFχ2HIO

(a)

10
−4

 

 

ξ01ER

ξ21ER

χ2ER

ξ01HIO

ξ21HIO

χ2HIO

10
0

10
1

10
2

10
3

10
-6

10
-4

Signal-to-noise ratio

C
h
i-
sq
u
ar
e
or

m
ea
n
sq
u
ar
e
d
ev
ia
ti
on

 

 

TF ξ01ER
TF ξ21ER
TFχ2ER
TF ξ01HIO
TF ξ21HIO
TFχ2HIO

(b)

Figure B.2.36: Error metrics of Section 4.3.3.4 (Additional tests; 0% background subtracted
white-�eld data, 0-100% background subtracted di�raction data). Entities compared. (a) Mag-
nitude. (b) Phase.
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Figure B.2.37: Error metrics of Section 4.3.3.4 (Additional tests; 50% background subtracted
white-�eld data, 0-100% background subtracted di�raction data). Entities compared; (a) Mag-
nitude. (b) Phase.
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