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Zozk Mohamed

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Increasing volumes of data in digital systems have made the traditional approach of
gathering and storing all the data while analyzing it in bulks at periodic intervals
challenging and costly. One such field is the electric grid market, which has started
modernizing its aging grids into smart grids where Advanced Metering Infrastruc-
tures (AMIs) play a vital role. Within AMIs, old meters are replaced with smart
meters that are able to collect data more often and measure more properties than the
old meters. However, they also produce a higher volume of data. Stream processing
where data is analyzed continuously before being stored, can therefore be of interest
as data can be heavily reduced before storage. The downside of this approach is
that the traceability of data is lost. A technique that can solve this is called stream
provenance which can be used to get the source data that contributed to the out-
put data from a stream processing application. However, stream provenance is an
understudied problem that can decrease performance when used. The purpose of
this thesis is to study stream provenance by developing a streaming application that
makes use of provenance. The application is evaluated by measuring several metrics
to determine how performance is affected. The project is conducted at Goteborg
Energi (GE), one of Sweden’s biggest energy utility companies. The objective is to
develop a prototype extension to GE’s current stream-processing application that
can detect faulty meters and use stream provenance to report them. The develop-
ment processes and evaluation of the application are covered in this report. The
application is developed through a Stream Processing Engine (SPE) called Apache
Flink and a stream provenance framework called Ananke. Two versions are created,
one with provenance and another without. Performance metrics like CPU utilization,
memory consumption, latency, and throughput are measured. The result showed
that provenance decreases throughput by 10.4% and increases memory consumption
by 8.8%, latency by 10.4%, and CPU utilization by 238.1%. Several reasons behind
the result are discussed in the report, along with the implications it can have for an
application. Although there is an added overhead with provenance, it can still be
beneficial for some types of applications. For example, an application where time is
not crucial and good access to resources is possible, like the one developed in this
thesis.

Keywords: Advanced Metering Infrastructure, Ananke, Apache Flink, Goteborg
Energi, Provenance, Stream processing, Stream Processing Engine.
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1

Introduction

This chapter introduces some background information about the thesis’s relevance
and the current problem in the field. The aim is then presented to define the goal
of the project and how it will deal with the problem. Lastly, some limitations are
presented on what the thesis will not cover.

1.1 Background

Sweden’s electrification began in 1893 when electricity was transferred for the first
time from a small hydroelectric station to a mine in Dalarna, at a distance of 15 km
[1]. Since then, electrification has evolved, and today’s society and economy depend
heavily on access to both affordable and reliable electric power. For example, to
operate infrastructure, run health care, and light our world. Due to several reasons,
the climate crisis being one of them, many companies and individuals have chosen to
switch out fossil-based fuels and use products that require electricity instead. This
has led to an escalation in global electricity demand. For example, Sweden’s electric
demand will according to Swedenergy’s latest report increase by 94 percent until
2045, from 170 TWh in 2022 to 330 TWh in 2045 [2]. Today’s power grids are still
based on the same design that we had more than 100 years ago and might not sup-
port future growth in electric demand as they are optimized for centralized power
generation and demand-driven response [3]. However, thanks to the development of
information systems and communication technology, many companies have started
to modernize their aging power systems into smart grids. They offer far more op-
portunities than the previous types of grid did. For example, a smart grid offers
distributed two-way transmission, reliability, sustainability, consumer involvement,
security, and most importantly energy efficiency [4].

One key component that has increased the use of smart grids is Advanced Metering
Infrastructure (AMI). AMI has improved the electricity metering system by replac-
ing old mechanical meters with Smart Meters (SMs). They are placed all over the
grid and can remotely collect more detailed data on electric usage compared to me-
chanical meters. In addition, SMs can help energy utility companies monitor their
grid, avoid overloading components of the grid, provide a faster diagnosis in case
of outages, and accurately bill customers based on their electricity consumption [4].
The current regulation requires only reading every hour, and most meters are lim-
ited to this. However, from January 2025, this will change with a new law that
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puts more requirements on the meters. For example, they will need to register a
reading every 15 minutes and measure more properties than the previous regulation
required [5]. This has forced many energy utility companies to update their current
AMI systems.

Within AMI, a continuous and large volume of data is exchanged between devices,
which can consist of millions of messages daily [6]. The traditional and well-known
way to process data is batch processing, where all data is moved and stored in a
database to later be processed by the application. This method is well-known in the
industry and is often the first option. However, it can be very costly and sometimes
even impossible to only rely on batch processing in AMI as data can be inserted too
fast or be too big. This is something observed in many digital and cyber-physical
systems [6] that leads to the need to move the analyzing part close to the source
before moving and storing the data. This can reduce the volume of data that is
transmitted but also make it possible to react more quickly to critical or unusual
situations.

Many utility providers have started leveraging other data analysis paradigms besides
the traditional batch processing ones to handle such continuous and large amounts
of data. One such paradigm is data streaming which continuously performs queries
on unbounded data without the need to store it in databases. These queries are not
the same as in databases where they are performed at a point in time on bounded
data, instead, they are applied continuously to process information on the fly, updat-
ing their computation and quickly producing results accordingly [6]. Once data is
processed, it is passed off to either an application, data store or another framework.
In some streaming applications, it can be interesting to maintain the associated
source data for further analysis by for example a human supervisor. For example
when data is transformed and analyzed to find faulty data. One technique that can
achieve this is called streaming provenance. It allows output from a stream process-
ing application to be traced back to the source data that contributed to it. This
makes it possible for a data analyst to analyze the data and find the cause of the
output [7].

1.2 Problem statement

Although some research has been carried out on smart grids and AMI, there have
been few empirical investigations into the kinds of applications that can be developed
and the tools that can support them. With the increased volume of data that smart
grids entail, it will no longer be practical for energy utility companies to only rely
on batch processing, as it can be very costly and sometimes even impossible to
do. Instead, other paradigms like stream processing that can reduce unnecessarily
large volumes of raw data into smaller sets of useful information, need to be looked
into. However, compared to batch processing, it is not possible to view all data
at once, as data is ingested and processed continuously. This makes it difficult to
find data’s origin [8]. Writing applications that both reduce data volume and keep
important raw data is left to users and is not trivial. Therefore, provenance could
be a solution. However, according to several research papers, [7]-[10] provenance

2
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has mostly been investigated in the context of databases and is less studied in the
context of stream processing. Problems regarding the implementation of provenance
and the overhead it has to an application that affects it in terms of performance and
memory consumption, need to be looked into.

This masters thesis is in collaboration with one of the biggest energy utility compa-
nies in Sweden, namely Géteborg Energi (GE) [11]. They are like many other energy
utility companies switching out their meters for new generation SMs and thus will
have to face the problem with the increased data. GE currently uses stream pro-
cessing for an analysis application that makes forecasts of future meter readings in
the grid. For each meter, it shows the current load together with a forecast that is
based on historical data. However, there are events that the forecasting model used
by the application is not designed to handle. For example, faulty installed meters,
or ongoing maintenance work. Among several, one consequence of these kinds of
events is that the forecasts will have large derivations from the outcome meter read-
ing. In addition, these kinds of events will affect future forecasts by making them
less accurate as they will be based on faulty data received from these events.

1.3 Aim

The thesis aims to use GE’s current analysis platform to study, implement, design,
and evaluate a prototype extension that uses stream processing and provenance
to generate alerts for meters that are suspected to be faulty. The faulty meters
should be identified by detecting large deviations between the outcome reading and
the forecast generated by GE’s current application. The large derivation between
these two can possibly imply a faulty meter. Already known faulty meters are not
of interest and therefore the extension should not generate any trigger for them.
The extension should be able to handle the increased data volume from the new
meters, according to the new requirements to be enforced starting from 2025 [5]. In
addition, it should be possible to activate and deactivate provenance to evaluate how
the extension is affected. The evaluation of the extension should measure several
metrics to help determine its usefulness in terms of performance. In the end, the
thesis aims to help future research in the area by identifying both opportunities and
challenges with using stream processing and provenance in AMI.

1.4 Constraints

For this thesis, meters are considered to be faulty when readings from the meter
deviate significantly from the forecast as this can be due to a faulty installed meter,
illegal modification, or a malfunction. However, there can be other reasons for these
derivations, for example, a bad forecast. In addition, there can be other ways for a
meter to be considered faulty. For example, negative consumption. These are left
out in this thesis.

No method for streaming provenance is developed or implemented in this masters
thesis due to time constraints. Instead, already developed frameworks such as Ge-
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nealog [7] and its successor Ananke [8] are used as they support the current system
that GE uses. Another limitation is that this thesis does not provide a comprehen-
sive review of other non-streaming applications and frameworks that the extension
may interact with. Although AMI is quite broad and may include other utilities
such as gas, water, or district heating, this thesis only focuses on data related to the
electrical grid.

1.5 Thesis outline

The rest of the report is organized as follows:

Chapter 2, Technical Background presents important theoretical background
required to understand the rest of the report. This includes a review of AMI,
streaming provenance, and important concepts within stream processing.

Chapter 3 Problem Definition describes GE’s current streaming applica-
tion that generates forecasts. The problem with this system is explained and
the requirements the new prototype extension should fulfill in order to solve
it. Several questions are also presented that the thesis aims to answer. Lastly,
the performance metric that the evaluation aims to measure is defined.

Chapter 4 Methodology describes the tools used in the project, how the
application works, and how the evaluation is conducted.

Chapter 5 Results describes the result from the evaluation by presenting
box plots, histograms, and tables over the obtained result and discussing their
meaning.

Chapter 6 Discussion contains reflections on the development process, the
challenges faced, the limitations of the project, and how it can be further
developed.

Chapter 7 Conclusion concludes the thesis by summarizing the key findings
and their impact on future research.



2

Technical Background

This chapter describes important elements used in the rest of the thesis. Firstly the
organizing of Advanced Metering Infrastructure is described as well as its pros and
cons. The next section goes through relevant concepts in stream processing and the
last section is about stream provenance and how it works.

2.1 Advanced Metering Infrastructure

As the introduction mentions, one key component of the increased use of smart
grids is Advanced Metering Infrastructures (AMIs). They consist of heterogeneous
network communication-enabled devices that are structured hierarchically [12]. In
this thesis, we assume they are structured as in Figure 2.1, however, the components
can be structured in other ways. The lower layer consists of Smart Meters (SMs) that
measure, collect, and forward data to either an optional intermediate level called
Concentrator Units (CUs) or directly to the utility’s Head-End (HE) [6]. Each SM
can be connected to exactly one CU, whereas each CU can be connected to multiple
SMs. The CUs collect consumption readings from the SMs and forward them to the
utility’s HE, which usually consists of central servers. The HE can be connected to
the SMs directly or through CUs [12].

Highest level Head-end (HE)

v
Intermediate level | Concentrator Unit (CU) ‘

Y

Lowest level Smart Meter (SM) | | Smart Meter (SM) | ‘ Smart Meter (SM) Smart Meter (SM)

Figure 2.1: How different components in an AMI are organized.

A given set of data analysis operations over AMI data can be placed in different
ways over the computational nodes found in such an AMI, for instance centrally at
the HE. Data from SMs is sent to the utilitys HE. The HE has a more computational
capacity than SMs which makes it possible for HE to handle large volumes of data
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and have access to all available data. A disadvantage of this approach is that all data
needs to be moved to the HE. The more data that is moved, the longer it will take
for the HE to process it, which increases the latency. In addition, the HE is bounded
by its processing capacity. Therefore, other approaches can be of interest that let
the meters perform some analysis on their own, as they have limited computation
power and access to their own data. This could include, for example, discarding
incorrect data. The approach can improve performance as it reduces the volume of
data that is transferred in the system [6].

2.2 Stream processing

As stated in the Introduction, stream processing is a technique that continuously
performs queries on unbounded data. This can be an option to handle the large
volume of data that is exchanged in AMI. A stream S consists of a continuous, non-
ending flow of incoming data. We define this data as tuples ¢;. This means that a
stream can be expressed as the following:

S =ty to, ts, ...

Each tuple ¢ within one stream S shares the same schema (ts,ay,as, ...,a,). The
first part of the tuple ts, represents its creation time, whilst the second part of the
tuple aq, as, ...a,, represents n application-related attributes [6]. Figure 2.2 shows
a simplified example of a schema with tuples containing electricity usage readings
from different meters in an AMI.

<ts, Meter ID, Hourly Consumption (kWh)>

<09:00, M1, 23.4>
<09:00, M2, 79.6>
<10:00, M1, 57.1>

Figure 2.2: Examples of tuples containing electricity readings.

Stream processing allows for queries on a continuous flow of incoming data. They
are composed of sources, operators, and sinks. The source component is responsible
for forwarding a stream of source tuples from a variety of sources to one or more
operators. These operators can then manipulate the tuples or produce a new one
with a different schema. Results from operators are eventually delivered to one or
more sinks, which deliver results to end-users or other applications [8].

The stream processing paradigm is implemented through frameworks called Stream
Processing Engines (SPEs). They make it possible to process a continuous flow of
data in parallel and across different nodes [8]. One example of such an application is
Apache Flink [13]. Tt was originally a research project that later became an Apache
project in 2014 and is today used in production by several companies, including GE

6



2. Technical Background

[14]. This SPE and its DataStream API is used throughout the project because GE,
GenealLog [7] and Ananke [8] use it.

2.2.1 Operators

All major SPEs support user-defined operators and provide some standard operators
that can be divided into stateless and stateful types. Figure 2.3 shows an illustration
of all the operators that will be used in this thesis. Stateless operators do not main-
tain a state that develops according to the tuples being processed. Every operator
instance processes one tuple at a time. The standard ones that SPEs provide are:

Map Applies a user-defined function to all tuples in a stream and returns
exactly one tuple for each ingested tuple. The function can select one or more
attributes from the input tuple. Each output tuple will have the same creation
time ts as the input tuple.

FlatMap Another variant of the map operator with the difference that this
returns arbitrarily many tuples for each input tuple, zero or more.

Filter Applies a user-defined filtering condition to all tuples in a stream to
decide whether a certain tuple should be forwarded or discarded.

Union Takes two or more streams that share the same schema and merges
them into one stream.

SPEs also provide stateful operators that depend on multiple input tuples and re-
quire that they be inside a window. The standard ones that SPEs provide are:

Aggregate Takes one or more tuples and combines them (possibly incremen-
tally) through a custom function into one tuple. Use case examples can be the
calculation of max, min, or sum.

Join Combines tuples from two different input streams with possible different
schemas. The pair of tuples satisfying a user-defined condition will produce
one output tuple through a custom function.

A query consists of operators that are connected through a Directed Acyclic Graph
(DAG), where vertices represent operators and edges specify how tuples flow between
them and are eventually delivered [8]. An example of a query that filters a stream
based on MeterID and then removes a field from the tuples is illustrated in Figure
2.4.

2.2.2 Windows

Stateful operators like Aggregate and Join, mentioned in the previous section, re-
quire a mechanism to define non-blocking analysis over unbounded streams. One
such method that is widely adopted is referred to as windowing. A window splits an
unbounded stream into finite chunks and allows computation to be applied to the
contents of the window. There are several types of windows and configurations for
them [8].
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Map FlatMap Filter Union

Y

Stateless Operators

Aggregate Join Source Sink

.

Stateful Operators

Figure 2.3: How operators, sources, and sinks will be illustrated in the thesis.

<09:00, M1, 23.4>

<09:00, M2, 79.6> <09:00, M1, 23.4> <09:00, 23.4>
<10:00, M1, 57.1> <10:00, M1, 57.1> <10:00, 57.1>
; ;“ ;
MeterID == M1 removelLocationID()

Figure 2.4: Example of a query that uses a filter and map operator.



2. Technical Background

A window can either be keyed or non-keyed. A keyed window splits the stream
based on a key, which can be one or more attributes in a tuple. Every tuple in
each window shares a common key. In the electricity reading example, the stream
could be keyed on the attributes MeterID, creating several windows where the tuples
in each of them share the same MeterID, see Figure 2.5. Compared to non-keyed
windows, keyed windows have the advantage of allowing window computations to
be performed in parallel as each window is independent from the rest [15].

<09:32, M1, 23.4>
<09:26, M2, 79.6>
<10:35, M1, 57.1>

<09:32, M1, 23.4>
<10:35, M1, 57.1>

Datastream —— >

<09:26, M2, 79.6>

Figure 2.5: Keyed windows.

All windows need to be closed. A closed window indicates that no more tuples
will be added and that results can be emitted. There are different ways to close a
window, based on whether such a window is either count- or time-based. Count-
based windows measure progress by the number of tuples. A window is marked
complete when a certain number of tuples have been assigned to it. Time-based
windows, on the other hand, progress by the timestamp ts contained in each tuple
t. Windows are marked complete once their end time has been exceeded [15].

A window is created as soon as the first tuple arrives that should belong to the
window. There are different window assigners that assign tuples to windows. This
thesis uses two different ones, Tumbling Window and Sliding Window.

Tumbling windows

Tumbling window divides the stream into windows that are fixed size, non-overlapping,
and contiguous time intervals. Each tuple can belong to at most one window. Time-
based tumbling windows have a start- and end-time and also a fixed Windows Size
(WS) [15]. For example, if WS is set to one hour and the start time is 09: 00, this will
give the following windows: 09:00-09:59, 10:00-10:59, etc. As shown in Figure
2.6 tumbling windows do not overlap.

Sliding windows

Sliding windows are very similar to tumbling windows as they both have a WS.
However, sliding windows also have an additional parameter called Window Advance
(WA), which determines how frequently a window is started. Windows can therefore
be overlapped, which can lead to tuples belonging to multiple windows [15]. Figure
2.7 shows an example of a time-based sliding window where WS is set to 2 hours and
WA is set to 1 hour. This means that a new window will be started every hour with
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\ 4

Time

<09:00, M1, 23.4>
<09:00, M2, 79.6>

<10:00, M1, 57.1>

Figure 2.6: Tumbling windows.

the size of 2 hours. Notice that tuple <10:00, M1, 79.6> belongs to both window
W1 and W2.

\ 4

Time

<09:00, M1, 23.4>
<10:00, M1, 79.6>

<10:00, M1, 79.6>

Figure 2.7: Sliding windows.

2.2.3 Watermark

A watermark in stream processing is a fundamental mechanism that helps the system
keep track of time and deal with incoming tuples that are not in order (out of
sequence). This is common in stream processing as the application is often run
in parallel and distributed across several nodes. A watermark is a timestamp Wi,
that tells the system about progress in time based on timestamps from incoming
tuples. It is used when tuples arrive out of sequence to determine whether they will
contribute to windows or operators. Watermark makes this possible by defining the
lowest allowed time that an incoming tuple can have, which means that all tuples
t with a timestamp t;, that fulfill ¢,;, > W, will be accepted while any tuple that

fulfills ¢;; < Wy, will be discarded [8].

Figure 2.8 shows two different cases of a watermark strategy that increases the
watermark in ascending order to guarantee strict order. In the first case, all tuples
are received in order, which means that for all incoming tuples, ts > W, will
hold. The first tuple that arrives sets the watermark to 09:26. The next tuple in
the stream has a timestamp 09:32 which is greater than the watermark and will
therefore be accepted. In this case, the watermark is also updated to 09:32. The
second case shows tuples arriving non-sequentially. The second tuple that arrives

10
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updates the watermark to 10:35 which will discard the third tuple with timestamp
09:32 as it is lower than the watermark. However, it is possible to add a maximum
allowed latency to the watermark to handle streams that are out of order. The SPE
will then place tuples in a buffer until the watermark has passed its timestamp.

Stream in order

»
»

Time

1
]
1
<09:26, M2, 79.6> |1 <@9:32, M1, 23.4> <10:35, M1, 57.1>
1
1

Wooe:26 Wooe:32

Stream non-sequential

Time ! »

1
<e9:32>«< 23,4> ’

1
]
Wooe:26 Wio:35

1
1
1

<@9:26, M2, 79.6> |1 <10:35, M1, 57.1> !
1 1
1

Figure 2.8: Illustration of two cases with a watermark strategy that guarantees strict
order

2.3 Streaming provenance

Provenance in databases has been studied for several decades; however, there has
been little research about provenance in stream processing as it is relatively new.
There are several challenges with using provenance in a streaming application. For
example, data is unbounded, making it impossible to have access to all data at once
and thus have a global view like databases.

As mentioned in the introduction, stream provenance makes it possible to track
back output in a stream to its source, as well as all the intermediate results from
the source to the output. This can be realized by attaching annotations to the sink
tuples that collect metadata about their origin and the production process [10]. One
approach that both Geneal.og [7] and Ananke [8] use is to replace operators with
modified ones that create and propagate annotations while producing regular data
tuples. Geneal.og maintains a DAG called contribution graph for all sink tuples. It
connects all source tuples that contributed to a sink tuple [7]. The graph for the
query in Figure 2.4 is illustrated in Figure 2.9. The output can be easily verified by
retracing the red arrows.
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Figure 2.9: A query with provenance enabled.
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Problem Definition

This chapter describes Goteborg Energi’s current streaming application that gener-
ates forecasts. The problem with this system is explained and the requirements the
new application should fulfill in order to solve it. Several questions are presented
that the thesis aims to answer and lastly, some performance metrics of interest are
defined that the evaluation should measure.

3.1 System overview

Goteborg Energi (GE) currently uses stream processing in a software that makes
forecasts of future meter readings in their grid. For each meter, several forecasts are
made based on historical data. The software makes it possible for an expert to view
both the forecast and the outcome load. The application is used to balance the load
on their grid by offering financial incentives to customers (often big companies) that
temporarily lower their consumption during peak hours.

Figure 3.1 shows an overview of GE’s forecast software and its different compo-
nents. They use an internal Meter Data Management System (MDMS) to collect
all readings from the meters in the grid. This data, together with weather forecasts
from the Swedish Meteorological and Hydrological Institute (SMHI), is forwarded
to Apache Kafka. That is a distributed publish-subscribe data streaming platform
that can publish, subscribe to, store, and process streams of records in real-time. In
GE’s software, it is used to store the data and forward it to Apache Flink, which is
the Stream Processing Engine (SPE) that GE uses [16]. It is used to calculate the
electricity forecast, summarize the electricity consumption, and forward the result
to be stored in a database for a limited time. One Flink module sums the electric-
ity consumption readings and writes the result back to both Kafka and a database
management system called InfluxDB. This is done so that other Flink modules can
access the result. The data in Kafka is unsorted whereas the data in Influx is sorted
based on time. The forecast Flink module uses the previous summation from the
other Flink module to calculate the load forecast for each meter in the grid and, like
the other one, stores the result in both Kafka and InfluxDB. Information about max-
imum allowed power consumption and grid status is stored in a database from the
Network Information System (NIS). The data is visualized in a data visualization
tool.
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Figure 3.1: System architecture over GE’s forecast system.
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3.2 Forecast module

As presented in the previous section, GE uses a stream processing application that
is run in real-time to generate forecasts and saves them temporarily in Kafka and
InfluxDB, see Figure 3.1. For each hour the forecast module generates forecasts one
week ahead of time, for each meter and hour in the week. This means that the
forecast module will each hour generate 168 forecasts for each meter. To clarify this,
an example is illustrated in Figure 3.2. If the current time and date are 9:00 01/05,
then the forecast application will make its first forecast for 09:00 07/05 and set the
prediction horizon to 168, stating that 168 hours before 09:00 07/05 it predicted the
load. For the next hour, 10:00 01/05, all predictions will be made, and it will have
168 predictions.

Forecasts for Meter|D M1

-l Y

09:00 01/05

10:00 01/05 09:00 07/05

<10:00 01/05, M1, 168, load> <09:00 07/05, M1, 168, load>

<10:00 01/05, M1, 1, load>

Figure 3.2: Example of how GE’s forecast application generates forecasts.

3.3 System problem

In GE’s system, the live data can sometimes have major deviations from the forecast,
requiring careful handling by a human supervisor. Predictions made closer to the
outcome time are more accurate than predictions made far ahead of time. Therefore
only forecasts with a prediction horizon of 1 are of interest as the other forecasts will
naturally have more deviation from the outcome reading. In some cases, deviation
is expected, for example, when scheduled maintenance on the grid is performed or
when a large production facility is started or stopped. In other cases, they are not,
such as when there is an unexpected fault or maintenance work that has not been
announced or scheduled. This will affect future forecasts by making them unreliable
as they will be based on incorrect data.

Given the system in Section 3.1 we want to develop a prototype extension that is
able to automate the classification and correlation of major divergence points with
unknown faults to help data analysts detect meters that can be faulty. The extension
should be able to detect large deviations between the forecast and the outcome load
as this can be due to a faulty meter. However, it can be challenging to distinguish
between a bad forecast and a faulty meter. If the deviation is due to a known fault,
the extension should make the forecast module use past, and correct data instead.
The extension can from the NIS find if there are any reported faults on the meter.
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If there is no known fault reported, the extension should generate an alert for the
meter that it is suspected to be faulty and make the forecast use old error-free data
instead.

Sometimes it can be interesting to know the raw data that contributed to the alert.
For example, if one reading from a meter is very high but the others are close to
the forecast, that does not have to imply that the meter is faulty, just that one
reading was very high. Streaming provenance can help recognize these kinds of
problems. However, previous studies have shown that it requires more memory and
causes latency compared to not using it [17]. Therefore, it is of interest to integrate
and evaluate how streaming provenance can affect such an extension and if the
advantages outweigh the weaknesses of using it.

3.4 Research questions
Based on the described problem and aim given in Section 1.3, the following questions
are expected to be answered at the end of the work:

o How does provenance affect a stream processing application in terms of per-
formance?

e Are the semantics provided by modern SPEs enough to inspect alerts and
reports?

3.5 Performance metrics

In order to be able to determine how much provenance affects the application in
terms of performance, several metrics of interest were chosen. They were the follow-
ing:

CPU The average percentage of the total CPU time the application utilizes
across all available processors.

Latency The average delay from a contributing source tuple arriving to a sink
tuple being produced.

Memory The average amount of RAM the Stream Processing Engines (SPE)
utilizes.

Throughput The average number of source tuples a query ingests per unit
of time.

3.6 Ethical considerations

This master’s thesis required detailed access to customers’ electricity consumption,
which, if not handled properly, could reveal sensitive information about the cus-
tomer’s life, such as when they sleep, wake up, go to bed, and so on. Sensitive
information needs to be handled carefully to not leak outside of GE. Therefore, the
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prototype extension takes this into consideration and makes it impossible for exter-
nal parties to access this information by avoiding using frameworks and APIs with
known vulnerabilities.
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Methodology

This chapter describes the design of the application and the technical implementa-
tion of it. In addition, the chapter also explains how provenance is implemented in
the application and how the evaluation is performed.

4.1 Design

The prototype extension is connected to Goteborg Energi’s (GE’s) current system
through their current database management system, InfluxDB because it is already
in use. The extension is marked in pink in Figure 4.1.

SMHI
Weather information
] )
Electricity consumption T T
[
MDMS Electricity summation

Electricity summation
Weather information

Electricity consumption Forecast

_— |

Electricity summation

Prototype Extension @

Forecast

Electricity summation
Forecast

Electricity summa

Forecast

tion

Max capacity

Max capacity

Figure 4.1: Placement of the prototype extension in GE’s current system.

Two separate CSV files are downloaded from InfluxDB. One file contained the fore-
cast data and the other one contained the electricity summation. These files are
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both formatted and sorted before the prototype application can read the data. The
reason behind this is to reduce the waiting time in the extension and ingest data as
they would in a real-life setting.

4.2 Implementation

4.2.1 Sort function

The downloaded files from InfluxDB are sorted by two additional small Flink ap-
plications. They both extract the values of interest from the files and create a list
of tuples. These tuples are then sorted in two different ways. The electricity sum-
mation is sorted by registered time in increasing order. The forecast data is sorted
based on t;; — t,,, where #; is the time the forecast is for and ¢, is the prediction
horizon. By sorting the tuples in this order, the application receives tuples in a real-
istic order, as presented in Section 3.2. After the list has been sorted, it is saved in
two separate files that the Flink application reads from through its source operators.

4.2.2 The application

The prototype extension in Figure 4.1 is implemented as a streaming application
through a query. The query automatically calculates a maximum value of how
much the meter reading can differ from the forecast. This limit value is calculated
based on historical forecasts and updated regularly. A trigger is generated when a
meter reading is exceeding the limit value as this can indicate a faulty meter.

p—

Forecast PredictionHorizon == 1

CalculateLimit()

DiffFromLoad()

Load

o g 4

CompareDiffWithLoad() Tuple != NULL Sink

Figure 4.2: The query that the prototype extension used

Figure 4.2 shows the finalized query that is used in the project. The load and fore-
cast source produce tuples that share the same schema <t,;, MeterID, Prediction
Horizon, Load>. The forecast stream is filtered based on PredictionHorizon ==
1 to detect a sudden change. This can be changed to include more tuples with-
out modifying other parts of the query or functions. Tuples are combined into one
stream with a union operator. The stream is then split up based on timestamp
t;s and MeterID into tumbling windows of size 1 hour. The streams then enter an
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aggregation operator called DiffFromLoad() which performs two tasks. Firstly, it
filters out incomplete pairs of tuples where either the load or forecast is missing. Sec-
ondly, it calculates the mean of the difference between forecast and load in percent.
Exactly one new tuple with the schema <t;;, MeterID, DiffValue, IsLimit> is
produced for each correctly grouped tuple. The IsLimit field is set to false by the
aggregation function because the produced tuples do not contain limit values. The
stream is duplicated into two, one that is directly inserted into a union operator
and the other one is split up based on MeterID into a sliding window of size 7 days
and window advance 1 day, before entering the next aggregation operator. This
aggregation operator is called CalculateLimit () and calculates a new limit value
each day based on data from the previous 7 days. The tuples have the same schema
as the previous aggregate operator but with the difference that IsLimit field is set
to true. CalculateLimit () uses the same algorithm to calculate limit values as box
plot outliers [18]. A simplified version of the algorithm is presented in Listing 4.1.
The algorithm calculates a maximum difference between forecast and registered load
based on previous forecast data. The duplicated stream with all differences and the
other with limit values are then combined into one stream by the union operator and
grouped based on MeterID. This stream is then inserted into tumbling windows of
size 1 day before entering an aggregation operator called CompareDiffWithLoad()
that compares all tuples with their corresponding limit tuple and generates a sink
tuple with a trigger when dif f > limat is fulfilled. The IsLimit field in the tuples
is used to differentiate between limit values and tuples containing derivations. The
aggregation operator produces empty tuples when there are no triggers because an
aggregation operator always has to return a tuple. The empty tuples are removed
by a filter operator that is placed before the sink.

Listing 4.1: Algorithm to calculate limit value in CalculateLimit().

list = sort(list)

gl = median(list (0, list.size/2)

g3 = median(list(list.size/2, list.size)
iqr = q3-q1

return g3+ (1.5%iqr)

The two ingested data streams, load, and forecast, used two different watermark
strategies. The load stream uses a watermark strategy that assumes the data is
ingested in increasing order. The watermark W updates when a new tuple ¢ arrives.
The watermark updates to the maximum timestamp from either the incoming tu-
ple or the previous watermark, W, = max(t;s, W,,_1). The watermark strategy for
the forecast stream assumes the data is ingested in the order they are produced as
described in Section 4.2.1. The watermark strategy updates the watermark when
a new tuple is ingested with PredictionHorizon set to 1. The watermark is up-
dated to the maximum timestamp from either the incoming tuple or the previous
watermark, W,, = max(t;s, W,_1).
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4.2.3 Implementation of provenance through Ananke

A copy of the query in Figure 4.2 is created, which is modified to use provenance.
This project uses Ananke [8] to add provenance to the query. There are two ver-
sions of Ananke: ANK-1, which supports user-defined operators, and ANK-N which
supports native operators, as presented in Section 2.2.1. In this thesis, ANK-N is
chosen because it offers transparent implementation by encapsulation of operators.

Transparent implementation does not require the code to inherit provenance-specific
code. Instead, encapsulation can be used to encapsulate each Flink operator with
the appropriate framework decorators. To make this more clear, the corresponding
code of the example given in Figure 2.4 is presented in Listing 4.2 and also how
it looks with ANK-N in Listing 4.3. However, according to the researchers behind
Ananke, ANK-N will increase the data serialization overhead and, as a result, also
lower performance [8]. Despite this, encapsulation is chosen as it allows faster im-
plementation of provenance in the query because few changes need to be made to
an already working query.

Listing 4.2: An example of a simple query.

sourceStream
.filter ( MeterID == )
.map ( new removeLocationID() )

Listing 4.3: How provenance has been implemented to the example query presented
in Listing 4.2 through encapsulation using ANK-N

ANK.source ( sourceStream )
.filter ( ANK.filter ( MeterID == ) )
.map ( ANK.map ( new removelLocationID() ) )

4.3 Evaluation setup

The evaluation aims to evaluate the application that is developed in the project.
The evaluation compares the application with provenance enabled and disabled to
find out how much provenance affects it.

4.3.1 Dataset

The data that is used to evaluate the extension is from real meters and stored in a
database. The data is downloaded and sorted as described in Section 4.2.1, before
being entered into the query. This makes sure that both variants are tested on the
same data which makes a fair comparison and reproducibility possible. Six months
of historical data from GE’s 10 smart meters is used. The sizes of the two ingested
streams’ load and forecast differ significantly and are presented in Table 4.1.
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Table 4.1: The size of the two ingested streams which are six months of historical
data.

Stream Size Number of tuples

Load 143 963 bytes 3 282
Forecast 29 megabytes 592 402

4.3.2 Setup

The evaluation is performed on a remote server that is provided by GE. The server
is accessed through Secure Shell (SSH). The server used 16 gigabytes of RAM and
two CPUs called Intel Xeon CPU E5-2695 v2 2.40GHz. It runs an operating system
called Red Hat Enterprise Linux Server 7.9.

100 iterations of tests are made on both versions of the query, the one with and the
other without provenance. In order to do this and to measure the metrics described
in Section 3.5 a modified version of the run.sh script from the Ananke [8] and
Genealog [7] projects is used. The run.sh script automatically starts and stops
each version of the query and performs a specified number of iterations of tests. In
addition, it measures the metrics of interest and writes them into a file together
with the sink tuples from the query.

The run.sh script collected data about CPU and memory consumption by sending
HTTP requests to Flink. The latency of the tuples is calculated by letting tuple
classes extend the BaseTuple class that holds a variable called stimulus which
contains the time the tuple is ingested. This is then compared to the time when
the corresponding sink tuple is produced. The throughput metric is measured by
counting the number of lines read per second by the source.
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Evaluation

This chapter presents and discusses the result of the evaluation of the two variants

of the application. Each measured metric has a corresponding box plot, histogram,
and table.

Figure 5.1 - 5.4 shows the generated plots for each measured metric. In each figure,
the above graph is a box plot and the graph below is a histogram that shows the
frequency of the values.

5.1 CPU

The box plot in Figure 5.1 shows that the CPU utilization is significantly higher
when provenance is enabled. The histogram shows that the utilization is very high
or close to the one where provenance is not used. Table 5.1 contains the exact values
for the box plot.

Table 5.1: Summary of CPU utilization (%) in the tests.

Median @, Q3 Min Max

No provenance 7.62 5.97 1224 095 38.61
Provenance 25.73 7.21 39.27 0.98 43.29

The result showed that the provenance variant increased CPU utilization by 238.11%.
This is much more overhead than any previous research had found [8], [17], [19].
There can be several reasons for this. One could be that the query’s ingested data
set is smaller than other similar researchers like Taube et al. [17]. They used a data
set that is 1000 times larger than the one used in this thesis and had CPU utilization
for both variants that on average is over 90%. A reason for the high CPU utilization
could be the large data set that is used as the Stream Processing Engine (SPE) had
a high volume of data to work with during evaluation. This could therefore leave
less space for the two variants to have differences. Because this thesis used a much
smaller data set, the CPU utilization never reached full capacity. The maximum
CPU utilization in this thesis is 43%, which left more space for the two variants to
have a difference.
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Figure 5.1: Box plot and histogram over CPU utilization during the application
evaluation.

5.2 Latency

The box plot in Figure 5.2 shows that both variants took a similar amount of time to
produce a sink tuple after an ingested source tuple. However, the histogram shows
that the latency for the provenance one is slightly higher.

Table 5.2: Summary of latency (seconds) in the tests.
Median @, Q3 Min Max

No provenance 3.25 3.02 349 241 5.73
Provenance 3.61 3.45 388  3.07 4.4

Table 5.2 shows that the latency is increased by 10.4% which is similar to other
research [8], [17], [19]. This number is acceptable for the type of application that
is developed as it does not require fast deliveries of triggers. However, for other
types of applications like airbag systems in cars, this number can be considered too
high. The latency in the tests could have been higher if the ingested data was larger
because the query uses several stateful operators with large window sizes that buffer
a lot of data.
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Figure 5.2: Box plot and histogram over latency during the application evaluation.

5.3 Memory

The memory consumption is shown in Figure 5.3. The box plot shows that the
non-provenance variant consumes less memory than the provenance one because the
third quartile (Q3) is larger. However, the median in both are pretty close to each
other.

Table 5.3: Summary of memory consumption (megabytes) in the test.

Median Q) Qs Min Max
No provenance 230.97 227.21 24098 221.88 325.1
Provenance 251.24 233.34 307.16 22243 346.1

Table 5.3 shows that the memory consumption is increased by 8.78% when prove-
nance is enabled which is in line with other research [8], [17], [19]. This is still a big
increase for the type of streaming application that is developed as the number of
smart meters can easily be increased. This thesis used data from 10 smart meters,
but in real life, an Advanced Metering Infrastructure (AMI) can consist of thousands
or millions of smart meters [20]. This can therefore require more memory storage
when provenance is enabled.

It was expected for the application to consume more memory than it did because the
query uses large window sizes and buffers the tuples in the aggregation functions.
This could in turn make Ananke store more provenance data. There are several
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Figure 5.3: Box plot and histogram over memory consumption during the application
evaluation.

reasons why the memory consumption is not more for the one with provenance.
One could be the first filter function in the query that heavily reduces the data
volumes and does not produce much provenance data.

5.4 Throughput

Figure 5.4 shows that the throughput of tuples for both variants is pretty close to
each other. Table 5.4 shows that the throughput of tuples decreased by 10.4% when
provenance is used. This is similar to other research [8], [17], [19]. The first and last
measured values in each test are ignored because they deviate significantly from the
rest of the measured values due to warm-up and cool-down mechanics in the SPE.

Table 5.4: Summary of throughput (tuples per seconds) in the test.

Median Qs Min Max
No provenance 118 300 105 134 129 487 59 487 185 714
Provenance 106 603 93 452 117 437 59 694 152 998
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Discussion

This chapter contains a discussion on the development process, faced challenges,
limitations of the project, some similar projects, and lastly how it can be further
developed.

6.1 Development process

6.1.1 Apache Flink

There were several challenges and problems when developing the two variants of the
application. One challenge with developing a streaming application with Apache
Flink is the new concepts, like variables being used to contain both static values
and streams. For example, usually when an application is created that finds the
max value, a variable is defined that contains the current max value when iterating
through the data. However, a stream processing application requires a stateful
operator like aggregate that keeps a state of the current highest value in the stream.

Another challenge is the limited information about Flink and how to use it. This
made the development processes challenging and took more time than originally
planned. There are not enough web pages or research papers with information
about it. The only major source with information is Flink’s official web page and
the API documentation, which is not always sufficient. Additionally, Flink is regu-
larly updated with new versions which can sometimes differ significantly from other
versions. This can make the documentation obsolete fast and Stack Overflow posts
irrelevant.

6.1.2 Data ingestion

In one version of the application, data is ingested from Kafka. A major problem
with this approach is that there is no control over the data in Kafka. The data
is constantly changing as new values are added by the meters. This should have
affected the evaluation of the application and made an unfair comparison as different
tests could be run with different data. Besides this, there are also problems with
duplicated and unsorted data. Because data are unsorted, this approach required the
application to buffer large amounts of forecast data and wait before the watermark
is passed. Therefore data is ingested from Influx instead.
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6.1.3 Ananke

The transparent version of Ananke is used to implement provenance to the query.
There is a trade-off using this version as the research paper [8] showed that per-
formance decreased compared to the non-transparent version. However, the im-
plementation is very easy and fast, which in many cases reduces development and
maintenance costs, but it can also be costly in the long run as more resources are
consumed by it.

Adding provenance to the query is difficult as there is no complete documentation
on how to implement Ananke into an already working query. For example, it is
not obvious which changes need to be made to an already working query. Instead,
several examples in the repository are used to figure out how to implement it. An-
other challenge with Ananke is that not all operators were supported. This delayed
the development phase as the query needed to be rewritten several times because it
used unsupported operators. In addition, it also forced the application to use less
efficient solutions. For example, originally in one version of the query the last aggre-
gation operator (CompareDiffWithLoad()) and filter operator in Figure 4.2 was a
RichFlatMap operator. That operator kept the limit value as a state and updated
it every time a new limit tuple arrived. The other tuples were then compared to the
current limit state and triggers were sent out whenever a value exceeded the limit,
just like the current aggregation operator CompareDiffWithLoad (). This approach
was more efficient as no tuples needed to be buffered in a window. However, because
Ananke did not support RichFlatMap, other solutions needed to be used. Another
alternative could have been to use ANK-1, which supports user-defined operators.
This should make it possible to use the solution with RichFlatMap and in the end
have a more efficient query. However, due to time constraints, this option is not
possible to implement. This is left for future research to implement and evaluate.

6.2 Limitations

The result obtained from this project has some limitations that should be taken into
account. They will be listed in the following sections.

6.2.1 The data

The data that is used in the evaluation had a fixed size as it is downloaded from
InfluxDB. This meant that all data is available at once which can be considered
a limitation because this is not the case in real life. Instead, in this case, data is
ingested by the smart meters every hour or at other intervals in the future. However
external delays like data availability should be eliminated to evaluate and make fair
comparisons. Otherwise, there is a risk of test cases taking unnecessarily long time
and making the result heavily dependent on the rate of the ingested data.

Another limitation can be the ingested data set used in this thesis, which can be
considered small compared to other similar studies. A different or more clear result
could have been obtained if the data set was larger. Another problem with this is
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that several outliers were introduced in the result, see box plots in Figures 5.1 - 5.4.
They need to be considered when interpreting the result.

It is worth pointing out that the evaluation uses all available data from Goéteborg
Energi’s (GE’s) database. However, due to unknown reasons, a large portion is
missing. The files from InfluxDB had significantly less data than would be expected
from 6 months’ worth. In addition, many load tuples did not have matching forecasts
and vice versa. The solution could have been to use data from more smart meters
or generate synthetic data to fill out the missing ones.

6.2.2 Optimization

The query and the aggregation functions used in the project were created firsthand
to fulfill the goal, namely to generate triggers for suspected faulty meters. The
application is therefore not optimized in terms of time complexity and performance
due to time constraints. This can be considered a limitation as the application could
performed better if it had been optimized. The Ariadne [10] project showed that
optimized query reduces overhead for large window sizes and has less computation
time and latency.

Another limitation could be that the thesis uses the transparent version (ANK-n) of
Ananke, which according to the researchers behind it consumes more resources than
the non-transparent version (ANK-1) [8]. Therefore the provenance variant of the
application could have performed better and had less overhead if the non-transparent
version is used.

6.2.3 Other frameworks

This project used Ananke [8] to implement provenance to a query made in Flink.
The main reason behind this is that GE already had a system that used Flink and
support from the authors of Ananke is possible. However, there are several other
popular Stream Processing Engines (SPEs), like Apache Spark and Apache Storm
[21] that could be of interest to study. Other frameworks that offer provenance to a
streaming application like Ariadne [10] could also be of interest. Other results could
have been obtained if these SPEs and frameworks were used.

6.3 Related work

While provenance can explain why a given outcome is produced, it does not help
to determine why an expected outcome is missing which can make it difficult to
validate and debug streaming queries. Therefore tools that can help understand why
an expected outcome in a stream is missing, are of interest. The framework Erebus
[22] solves this by allowing users to define boolean expectation predicates on the
results of a query, verifying at run-time if such expectations hold, and also providing
explanations when expected and observed outcomes diverge (missing answers). The
framework is built on top of Apache Flink and can be used with provenance tools

like Ananke [8], GeneaLog [7] and Ariadne [10].
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Several research studies have been conducted on the security aspect of Advanced
Metering Infrastructure (AMI) that uses stream processing to create an intrusion
detection system [6], [23]-[25]. There has also been research made on data analysis
on smart grids through Apache Spark [26].

6.4 Future work

As presented in the introduction stream applications and stream provenance are still
fairly new and not as well established as batch processing. This thesis work shows
some challenges and opportunities with developing and using stream provenance in a
real-life setting, in this case in an AMI. In addition, the performance loss with using
provenance for the application is studied. These findings can be used by developers
and researchers as guidelines when developing stream-based applications that use
provenance. The study can also be used to further develop Ananke and make it
more efficient and easier to use.

This thesis did not cover the security aspect of provenance. This is particularly
interesting when the application is distributed across several nodes on a public
network as it can be targeted for attacks. An example of a question of interest
can be, "Does the use of provenance in a distributed data stream application have
any security vulnerabilities?"

Apart from the question presented in Section 3.4 there are other questions of interest
that could not be covered in this thesis due to time restrictions. One is regarding
the accuracy of triggers: how many of the generated triggers are due to a faulty
meter, and how many are false? Another question is regarding experts’ use of the
application: how can the developed application leverage experts knowledge to steer
classification and correlation?

The aggregation operator CalculateLimit () in Figure 4.2 currently uses the algo-
rithm described in Listing 4.1 to calculate the limit values. In order to calculate
more efficient limit values, machine learning models could be used to make classifi-
cation of the data. This is out of scope for this thesis, but it is suggested for future
research to implement this.

Due to time restrictions, it is not possible to make the application use data from
the Network Information System (NIS), see Figure 3.1. Therefore even if a smart
meter is reported to be faulty the application still generates triggers for it and the
forecast application uses faulty data for future forecasts which makes the forecast
less accurate. It is suggested that future developers make the application use data
from the NIS to avoid these kinds of problems.

The result showed that the CPU utilization is significantly higher when provenance
is enabled. This result is different from other research. Several factors could yield
this result, one of which involved the amount of ingested data. The same is true for
memory consumption, as the values were more spread and no concrete conclusions
could be drawn from the result. It can therefore be interesting to know how much
these metrics change when the size of the ingested data set and the number of tests
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is varied.

Lastly, in the previous section, several limitations were presented. These limitations
should also be addressed in future research.
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Conclusion

The increased volume of data that Advanced Metering Infrastructure (AMI) entails
can be solved by using stream processing. The lost data traceability in stream pro-
cessing can be solved by using provenance. However, provenance is understudied in
the context of stream processing and how performance is affected by it. Goteborg
Energi (GE) currently uses stream processing to make forecasts of future meter read-
ings in their grid. However, sometimes this forecast differs significantly compared
to the actual outcome reading and this can be due to faulty meters.

This thesis has successfully developed a stream-based application in Apache Flink
which makes use of a framework called Ananke [8] that offers provenance to find
sink tuples’ origin. The application can read data from smart meters in an AMI
to automatically calculate reasonable limit values based on the ingested data and
generate alerts when meter readings exceed the limit value. Flink allows the appli-
cation to be distributed across several nodes to handle the increased data volume
from AMI. The application can be used with provenances and without, to compare
the pros and cons of using it.

The result achieved from evaluating the application is similar to other research,
except for the increased CPU utilization, which is significantly higher than other
has shown. There can be several reasons for this increased value. The likely one
is that other studies used a bigger data set which caused a high degree of CPU
utilization when provenance is both enabled and disabled. This leaves less gap for
differences. Therefore it is suggested that future research varies the volume of the
ingested data set and observes how the different metrics change.

For future work, it is recommended to also eliminate factors that caused some uncer-
tainty in the project’s results. Namely, to use a bigger data set, try the application
in a real-life setting, let experts evaluate its usefulness, study the generated triggers,
try to optimize the application, and connect it to GE’s Network Information Sys-
tem (NIS) to make the application ignore already reported faulty meters. Before
provenance can be used in a public application, the security aspect of it needs to be
studied and possible vulnerabilities with using it need to be looked into. Apart from
this, other Stream Processing Engines (SPEs) and stream provenance frameworks
are also suggested to be used and compared.
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