
Key Sentence Extraction From CRISPR-Cas9 Articles Us-
ing Sentence Transformers

Master’s thesis in Computer science and engineering

Brage Stranden Lae & Sandra Henningsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023





Master’s thesis 2023

Key Sentence Extraction From CRISPR-Cas9
Articles Using Sentence Transformers

Brage Stranden Lae & Sandra Henningsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023



Key Sentence Extraction From CRISPR-Cas9 Articles Using Sentence Transformers

Brage Stranden Lae & Sandra Henningsson

© Brage Stranden Lae & Sandra Henningsson, 2023.

Supervisor: Mehrdad Farahani, Department of Computer Science and Engineering
Supervisor: Rasool Saghaleyni, Department of Life Sciences
Examiner: Richard Johansson, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv



Key Sentence Extraction From CRISPR-Cas9 Articles Using Sentence Transformers

Brage Stranden Lae & Sandra Henningsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The annotation of CRISPR-related articles and extraction of key content has tra-
ditionally relied on manual efforts. Manual annotation is error-prone and time-
consuming. This thesis presents an alternative approach using transfer learning and
pre-trained models based on the Transformer architecture. Specifically, Sentence
Transformer models are fine-tuned using a CRISPR-related dataset. The dataset
contains articles and key sentences, enabling automatic extraction of keyphrases.
The study explores various modifications to the models and data to enhance perfor-
mance for this task.

The results demonstrate the effectiveness of fine-tuning Sentence Transformer mod-
els for keyphrase extraction, achieving an Average R-precision of 90.4 %. Future
research could focus on alternative approaches or further automation to identify en-
tities and relations within key sentences. Key sentence extraction is complex due
to the varying definitions of key content, content location, and specific use cases.
However, the potential benefits of time savings and improved workflow efficiency
make this approach highly valuable.

Keywords: NLP, Transformers, CRISPR, semantic search, keyphrase extraction.
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1
Introduction

Genetic engineering has long been a subject of fascination and controversy. With
the development of Clustered Regularly-Interspaced Short Palindromic Repeats
(CRISPR) technology, the ability to manipulate the genetic makeup of organisms
has become more precise and efficient than ever before. CRISPR enables scientists
to edit DNA sequences with unprecedented accuracy, opening up new possibilities
for medical research, biotechnology, and agriculture.

CRISPR consists of two major parts: a guide RNA to match a target gene and Cas9,
which stands for CRISPR-associated protein 9. Cas9 is an enzyme that can precisely
cut DNA and therefore allows modification to the genome [1]. Recent advances in
biological research, particularly the development of CRISPR-Cas9 technology, have
revolutionized genetic engineering. CRISPR-Cas9 enables swift and precise manip-
ulation of DNA sequences, making it possible to study the function of specific genes
more efficiently [2]. This technology has significantly impacted medical research,
biotechnology, and agriculture [3]. For instance, it has been used to modify wheat
to reduce its gluten content genetically, making it more suitable for individuals with
coeliac disease [4].

Despite its promise, CRISPR-Cas9 research still faces challenges that must be ad-
dressed for the technology to be used effectively. One issue is the time-consuming
and resource-intensive task of establishing cell lines [5]. A cell line is a culture of cells
originating from a primary cell culture [6]. There is also no established database
containing information about available edited cell lines, resulting in redundant and
expensive work [7]. Additionally, generating cell lines is variable, challenging repro-
ducibility and leading to conflicting results [8]. The problem of reproducibility and
the problem of redundant work could be solved by introducing a database containing
available edited cell lines.

AddCell1 is a site that aims to provide an overview of the current status of CRISPR
edited cell lines. However, it relies heavily on manual annotation by domain experts,
which is costly and time-consuming. Furthermore, to keep up with the pace of
publications in research related to CRISPR technology, it would require a massive
team of manual annotators to maintain and keep the database up to date. Hence,
the primary focus of this thesis is to explore and develop methods to automate and
aid in this undertaking.

1addcell.org

1
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1. Introduction

1.1 Aim
The current workflow of annotators relies on a primitive word frequency search
algorithm, which fetches articles and proposed key sentences from a database of
biomedical research articles. From these propositions, the annotators decide whether
the proposed key sentences and the entire article are relevant. However, the search
algorithm is described as inadequate for discovering correct articles and detecting
the articles’ key content.

Therefore, we address the problem of extracting key sentences from biomedical re-
search articles. The ability to automatically identify the most critical sentences in
such articles can significantly aid in summarization, information retrieval, and other
downstream tasks. To achieve this aim, we propose to use Sentence Transformers, a
recently developed method based on the Transformer architecture. This method has
shown promising results in other natural language processing tasks [9]. We believe
it has the potential to improve key sentence extraction as well.

We investigate the impact of various factors on the performance of key sentence
extraction. Furthermore, we explore the dataset’s quality as a training and eval-
uation benchmark for the task. Additionally, we investigate different methods for
key phrase identification and the influence of fine-tuning from diverse pre-trained
models.

The main questions we aim to answer are:

• How effective are Sentence Transformers for keyphrase extraction in CRISPR-
Cas9 articles?

• Which factors, both in the training pipeline and dataset, influence the perfor-
mance of the developed model?

• How could this model be used in a deployment scenario?

1.2 Limitations
Transformers have shown promising results across a broad range of Natural Language
Processing (NLP) applications. In addition, Sentence Transformers have presented
state-of-the-art results in several information retrieval tasks. However, several limi-
tations to our work need to be acknowledged.

Firstly, our method relies solely on Sentence Transformers and will not explore other
methods for information retrieval, such as statistical methods, named entity retrieval,
or relation detection. Furthermore, while Sentence Transformers have been suitable
for other NLP tasks, other methods might be more ideal for the specific study of
key sentence extraction in CRISPR-Cas9 articles.

Secondly, our approach assumes that critical information in a biomedical research
article can be distilled into a small number of key sentences. Input from domain
experts and our dataset studies show this is true in most cases. However, there

2



1. Introduction

may be instances where the critical information is split between several sentences.
Our approach may not be as practical for identifying important information in these
cases.

Finally, our approach is limited by the quality and size of the dataset. While domain
experts have manually annotated the dataset, it has some flaws due to the nature
of its curation, which will be discussed in Subsection 5.1.1. Additionally, unknown
biases might exist in the dataset, resulting in a model that doesn’t generalize well.
We have only considered articles regarding CRISPR-Cas9 research in our evaluation;
hence, the performance of using the model for retrieving new texts is unknown.
However, using the model for retrieving articles and searching within them is possible
upon deployment.

1.3 Outline
This chapter has introduced the problem, the project’s aim, and the limitations.

• In Chapter 2 the theory is introduced. This concerns definitions and explana-
tions of the information extraction field and an overview of relevant machine
learning models and techniques.

• In Chapter 3, methodology and implementation details are introduced.

• In Chapter 4 results are presented.

• In Chapter 5, the results are discussed, along with a brief conclusion.

3
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2
Theory

This chapter briefly explains biomedical terms regarding the CRISPR-Cas9 tech-
nology and a more thorough account of the technical background. First, a general
introduction to natural language processing is covered in the technical background
before narrowing it down to machine learning and Transformer models.

2.1 Biomedical Background

CRISPR-Cas9 technology contains some terminology that is important to have a
fundamental knowledge of to understand the task better.

Organisms, cells, and genes are some rudimentary concepts in CRISPR-Cas9 re-
search. Organisms consist of several cells, most of which contain the complete set
of DNA for that organism. Organisms are single living entities, ranging from tiny
bacteria to massive whales. They are defined by their ability to carry out the es-
sential functions of life, such as metabolism, reproduction, growth, and response to
stimuli. Whether a plant, animal or any other living entity, each organism is unique
and designed to thrive and survive in its environment. A cell is a fundamental unit
of life and the smallest building block of organisms. DNA, the primary molecule of
heredity, is at the core of living cells. DNA acts as a blueprint that directs the struc-
ture and function of each cell and contains genetic information passed down from
one generation to the next during reproduction. Genes, which are segments of DNA,
play a crucial role in controlling physical development, behavior, and other traits of
individual plants or animals. They are inherited from parents and are responsible
for passing on characteristics that make us who we are [10].

When performing gene editing using CRISPR-Cas9, the three primary operations
are Knockout, Knockin or Knockdown (KO, KI or KD, respectively). KO is the act
of replacing or disrupting parts of a gene to deactivate the function of the gene. By
performing KO, researchers can explore the effects of losing a gene in an organism.
KI replaces a mutated DNA sequence in a gene with the endogenous (original) gene.
KI allows analysis of how the knocked-in gene affects an organism. A third, more
recent technique is the KD operation. KD is similar to KO because it disrupts the
gene’s function. However, KD uses a slightly different technique than KO and only
temporarily erases the role of a gene [11].

5



2. Theory

2.2 Natural Language Processing
The amount of natural language text in the world is constantly increasing. The
increased pace at which texts are released, particularly in the scientific domain,
makes it difficult for researchers to stay updated. Natural Language Processing
(NLP) is a collection of computational techniques to represent and analyze human
language. To automatically analyze texts, a deep understanding of natural language
is required. NLP can be broken down into several fields, where one broad distinc-
tion is between text mining and text generation. Text mining is the extraction of
information, whereas text generation is the generation of texts [12]. Examples of
NLP include online Information Retrieval (IR), aggregation and Question Answering
(QA) [12]. Online IR refers to finding and obtaining relevant information from the
vast amount of digital resources and databases available on the internet. As online
content expands exponentially, efficiently finding and retrieving specific information
has become increasingly vital across diverse domains such as research, education,
business, and daily activities [13]. Data aggregation is the process of summarizing a
large data pool for high-level analysis. The primary objective of QA is to create sys-
tems that can automatically deliver precise answers to questions asked by humans
in their native language (see Section 2.9) [12].

Online IR, aggregation, and QA have mainly been based on algorithms that rely
on the textual representation of web pages. These algorithms are good at fetching
information, splitting text into parts, spellchecking, and word-level analysis. Never-
theless, they are unsuccessful in studying at the sentence or paragraph level. When
it comes to interpreting sentences and extracting meaningful information, the capa-
bilities of these models are limited [12]. The limitation of these approaches is that
they can only process based on information they see in the text and don’t have any
underlying knowledge or background information. Humans don’t have these kinds of
limitations since every word in a text activates semantically related concepts, sensory
experiences, and relevant episodes. This makes it possible for humans to complete
complex NLP tasks such as word sense disambiguation (to know how the context
affects the meaning of a word), textual entailment (to logically determine whether
one sentence can be deduced or inferred from another) and semantic role labeling
(to assign labels to words or phrases in a sentence that indicates their semantic roles
within the sentence, such as agent, goal, or result), quickly and effortlessly. New
techniques, such as those described in this Master’s thesis, attempt to bridge this
cognitive gap. This is done by emulating the processes recognized as part of the
human brain and used for NLP by humans [12].

2.2.1 Challenges of NLP
It is a difficult task to develop a model that understands natural language. The
ambiguity of words and sentences is significant. The word “fly” can, for example,
mean both the insect and the verb “to fly”. The context can also determine the
meaning of a sentence. Additionally, syntax helps to decide how to combine words
into larger meanings. In the sentence “I saw the Golden Gate bridge flying into San
Francisco”, the syntax makes it clear that the person was flying into San Francisco,

6



2. Theory

not that the bridge was flying. An internal representation needs to be built, and the
information needs to be used appropriately. Ambiguity is present in sentences as well.
In the sentences “Jack went to the store. He found the milk in aisle three. He paid
for it and left.”. The word “it” could refer to the store, the milk, the aisle, or three.
The internal representation is the most important part of determining the meaning
of “it”. It leads to the following questions: what is the internal representation,
how could it be used for these ambiguities not to occur, and how can a machine
understand this the same way a human does [12]?

2.2.2 Tokenization and Segmentation
In natural language, it is essential to define what a sentence or word consists of. To
define these units is difficult since many languages and writing systems exist. In
addition, the natural language contains inherent ambiguities, which complicate the
task. Text segmentation is the task of dividing a text into linguistically meaningful
units. Individual characters form the smallest segmentation in a language’s written
system. Then come words, consisting of one or more characters, and sentences
consisting of one or more words [14].

Tokenization is a process that breaks up sequences of characters in a text and is
done by locating word boundaries, representing the end of one word and the start of
another. In computational linguistics, these found words are referred to as tokens. In
languages where word boundaries are not marked in the writing system, tokenization
can be referred to as word segmentation [14]. The difference between segmentation
and tokenization is that segmentation involves splitting the input text. In contrast,
tokenization specifically focuses on assigning labels to words or phrases based on
predefined criteria. These predefined criteria could, for example, be markings of
word boundaries. Tokenization is a form of segmentation, but it uses semantic
criteria or token dictionaries to assign token IDs for downstream processing [14].

Sentence segmentation can be defined as a process that determines more extended
units, which consist of one or more words. In sentence segmentation, sentence
boundaries must be defined between words in different sentences. Most languages
have punctuation as a marker at the end of a sentence. Sentence segmentation
is often called sentence boundary detection or sentence boundary recognition. An
example of a simple sentence segmentation rule is using the period “.” to identify
the end of a sentence. However, a period is often used in acronyms, which illustrates
why segmentation is a challenging task, as simple syntactic rules are rarely sufficient
[14].

The primary tool for processing textual data is a tokenizer. A tokenizer can keep
track of all the tokens and give them unique token IDs. In tokenization, a trade-
off is made between tokenizing into tokens with semantic meaning while having
an appropriate length vocabulary. The tokenizer can use word-based tokenization,
character-based tokenization, and subword-based tokenization [15]. Nayak et al.
(2020) list some examples of these types of tokenization. For example, consider the
sentence:

7



2. Theory

The girl loves playing with her toys

Word-based tokenization:

[The, girl, loves, playing, with, her, toys]

Character-based tokenization:

[T, h, e, g, i, r, l, l, o, v, e, s, p, l, a, y, i, n, g, w, i, t, h, h, e, r, t, o, y, s]

Subword-based tokenization:

[The, girl, love, s, play, ing, with, her, toy, s]

Word-based tokenization requires an extensive vocabulary since every word has its
token. Another drawback is that similar words will have different representations
since they have different tokens. Hence, the words “play” and “playing” will get dif-
ferent tokens despite having similar semantics [16]. Besides, word-based tokenization
could lead to issues with out-of-vocabulary (OOV) words. OOV words are words
that have not been added to the vocabulary and are therefore unknown.

Character-based tokenization, on the other hand, does not require an extensive vo-
cabulary. However, single characters do not carry a lot of information. As a result,
the model has to consider several tokens to interpret the meaning of a word. In
addition, the model has to handle more significant inputs since one word consists of
more characters [17].

Subword-based tokenization can be viewed as a compromise between character-based
tokenization and word-based tokenization. Thus, it can be considered a trade-off
between tokens carrying semantic meaning and an appropriate length vocabulary. It
is a common tokenization strategy in state-of-the-art models [18]. Typical sequences
of characters are left as they are, but longer and uncommon words are split into
subwords. These subwords can be concatenated into whole words at a later stage.
An advantage of subword-based tokenization is that the vocabulary does not have to
be as large as word-based tokenization. Additionally, subword tokenization allows for
larger tokens, which carry more information than the character-based counterpart.
Prefixes and suffixes can be learned, and similar words with different endings can be
considered similar. For instance, the word “genes” might be tokenized as [“gene”,
“##s”], where the two hashtags indicate that “s” is a suffix. The downside is that
the subword tokenization might split words in non-intuitive ways depending on how
the tokenizer is trained [19].

Byte-Pair and WordPiece are the most common algorithms following the subword
tokenization paradigm. The Byte-Pair algorithm first finds every unique word in
a corpus before creating a vocabulary of these words and their respective word
frequencies. Then a base vocabulary consisting of every character in the unique
words is created. From the base vocabulary, temporary tokens are made in each
iteration that consists of neighboring token pairs. The most frequent temporary
token, which the previous count of words determines, is added to the vocabulary.
This process is then repeated, adding one token per iteration until the specified
size of the vocabulary is reached. Byte-Pair ensures that the most common words
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are represented in the vocabulary as one token. Meanwhile, less common words
are divided into two or more subword tokens [20]. On the other hand, WordPiece
starts by initializing a base vocabulary consisting of every character in the training
data. The pair selection is based on whether the pair maximizes the likelihood of
the training data when added to the vocabulary. The idea is that maximization of
the likelihood of the pair, whose probability is higher than all the other pairs, results
in the best training data [19]. WordPiece is explained further in Section 2.6.

2.2.3 Semantic Analysis
Semantic analysis is used to determine the meaning of a text. The meaning of a text,
rather than the correctness of it, is essential because a language processing system
could, for example, be told to do something in response to a text, like moving a
robot arm or retrieving data [12]. Therefore, capturing the semantic meaning of
a text plays a critical role in text-mining research. Traditional methods rely on a
bag-of-words approach, which means the text is represented as a bag, or a multiset,
of its words. However, these models may not accurately model the semantics due to
the ambiguity of natural language [21]. For example, the sentences below are used
to describe the same finding.

“It has recently been shown that Craf is essential for Kras G12-induced NSCLC [21]”

“It has recently become evident that Craf is essential for the onset of Kras-driven
non-small cell lung cancer [21]”

The bag-of-words models do not capture the similar semantic meaning of these
sentences. Another more promising approach is to represent the semantic meaning
in the form of embeddings.

2.2.3.1 Embeddings

A common strategy to help in the semantic analysis is to embed the text, where
embedding is a translation from natural text to a numerical vector. A prevalent
approach is first to tokenize the text, as described in Subsection 2.2.2, and then
embed each word into word-embeddings. In embedding-based approaches, the se-
mantics is represented as high-dimensional vectors. The embeddings are usually
learned from large-text corpora, and words with similar semantic meanings are ex-
pected to have embeddings closer to each other in the vector space. Embeddings
have shown promising results and are increasingly important in text mining research.
Methods to create embeddings often involve machine learning or statistics [21]. The
archetype when explaining embeddings is the example of the words woman, man,
queen, and king. Given a numerical representation of these four words, the goal is to
have representations such that king −man+woman = queen. This example is visu-
alized in Figure 2.1. Embedding natural language is a powerful technique because it
allows mathematical computation on texts. For instance, computing similarity and
semantics becomes easier when performed on embeddings.

Representing words in a numerical format while retaining their contextual mean-
ing is crucial for performing NLP tasks. In this regard, Google introduced two
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Figure 2.1: By translating natural language words into vectors, they can be visual-
ized in a 2D space after dimensional reduction.

architectures that compute continuous vector representations of words from massive
data sets, known as Continuous Bag of Words (CBOW) and Continuous Skip-Gram
Model [22]. CBOW is trained on 6 billion words from Google News. The model
does not depend on the order of the words, which is why it is referred to as a ”Bag of
Words” approach [22]. The Continuous Skip-Gram Model, on the other hand, uses a
log-linear classifier. As a result, this architecture produces more effective semantic
and syntactic relationships between words [22].

Stanford University introduced a model for word embeddings known as GloVe, short
for Global Vectors for Word Representations. This model has demonstrated superior
performance compared to other models in tasks related to word similarity [23].

2.2.3.2 Distance Functions

Words with similar semantic meanings are expected to have embeddings close to
each other in the vector space. Meanwhile, words with different meanings are ex-
pected to have embeddings further apart [21]. Consequently, a distance metric for
vector comparison is needed when interpreting semantic similarity between words or
sentences. Some standard distance functions for calculating the semantic similarity
are Euclidean distance, Manhattan distance, Dot-product, and Cosine distance.

The Euclidean distance between two n-dimensional vectors X = (x1, x2...xn) and
Y = (y1, y2...yn) is defined as

Euclidean Distance = |XY |2 = (x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2

, by [24].

The Manhattan distance calculates the distance between coordinates in a grid-like
path. It calculates the distance between a pair of vectors by summing the absolute
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distance between the components of the two vectors [25]. Consider the n-dimensional
vectors X = (x1, x2...xn) and Y = (y1, y2...yn). The Manhattan distance can be
calculated [25] as:

Manhattan Distance = |x1 − y1| + |x2 − y2| + ... + |xn − yn|.

There is often a trade-off between accuracy and speed when choosing between the
Manhattan distance and Euclidean distance. It is hard to say when the Manhattan
distance will be more accurate, but it is faster since there is no need to square the
differences. Therefore, the Manhattan distance is better to use as the data dimension
increases [25].

The dot-product distance (also known as the scalar product) takes two or more
vectors and multiplies them element-wise, which results in a single scalar value.
The dot product will be positive if the vectors are in the same direction. Conversely,
different directions will result in a negative dot product [26].

Finally, the cosine distance is defined as 1 − cosine_similarity. Hence, there is
an inverse relationship between the cosine distance and the cosine similarity. An
increased distance results in decreased similarity and the other way around [27]. The
cosine distance between the two points (X and Y) is defined as [27]:

Cosine Distance = 1 − cos(θ) = 1 − X · Y

||X|| ||Y ||
.

The distance between the sentence vectors is determined to calculate the semantic
similarity between sentences. Cosine similarity considers the angle between the
vectors in the vector space but not the weight or magnitude of the vectors compared
to Euclidean distance. Cosine similarity is a measure that can be used when the
vectors magnitude is unimportant. A typical example is working with text data [27].

2.3 Artificial Neural Networks
An Artificial Neural Network (ANN) is a computing system inspired by biological
neural networks. ANNs are designed to solve problems regarding, for example, pat-
tern recognition, prediction, optimization, memory, and control [28]. There are mul-
tiple types and designs of ANNs, and the essential ones to this thesis are described
in this section.

2.3.1 Feed Forward Neural Networks
ANNs can be viewed as weighted directed graphs with artificial neurons as nodes
in the graphs, and there are directed edges with weights that are the connections
between neuron inputs and outputs. Feed Forward Neural Networks (FFNNs) are
a group of ANNs defined as simple graphs, i.e., they contain no loops, and the
information flows forward in the network. The simplest form of FFNN is a single
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perceptron. In this case, there is only an input and output layer [28]. The perceptron
is a linear classifier, and the following formula is used to compute the output:

y = σ(
n∑

i=0
wixi + b),

where w = weight, x = input, b = bias and σ is a non-linear activation function
[28].

In supervised learning, the training data consists of input-output pairs. The learning
algorithm in this approach adjusts the model parameters, such as weights and biases,
iteratively. The goal is to enable the model to map inputs to corresponding outputs
accurately. The predicted output is compared against the expected value, and the
difference is measured using a loss function. During training, the loss is decreased to
minimize the difference between the predicted and expected output. For the percep-
tron algorithm, the learning process is straightforward. Weights are reduced when
the predicted output exceeds the desired output. Otherwise, weights are increased
[28]. Perceptrons utilize the gradient descent method to learn the weights. Gradient
descent is an optimization technique that progressively updates the parameters of
an objective function towards its minimum by moving in the opposite direction of
the function’s derivative [29].

In the multi-layer perceptron, neurons are organized into layers with unidirectional
connections between the neurons. There are at least three layers, an input layer,
hidden layer(s), and an output layer [28].

FFNNs are static, meaning they produce a set of output values, not a sequence of
values from input. Furthermore, they are memoryless because their response to an
input is independent of a previous state in the network. This makes FFNNs different
from recurrent neural networks that are dynamic systems [28].

2.3.2 Recurrent Neural Networks
Recurrent Neural Network (RNN), particularly Long Short-Term Memory (LSTM)
models [30] and Gated RNNs [31], formed the base architecture of the state-of-the
art for sequential modelling problems until 2017 [32]–[34]. In comparison to the
FFNN, the graph of RNNs contains loops or cycles [28].

RNNs has to be computed sequentially, where the input of each computation de-
pends on the previous output. Thus, efficient parallelization is not possible. This
forms a computational bottleneck of the RNN architecture for sequential learning
problems. Furthermore, the RNN architecture suffers from the vanishing gradient
problem, where the further away a sequential dependency lies, the harder it is for
the model to capture this relationship. In other words, in the same way that a Con-
volutional Neural Network (CNN) favors spatial proximity, RNNs favors temporal
proximity. The temporal proximity property of RNNs is often a disadvantage in
NLP, as the model will forget the contextual dependency of words that are far apart
from each other. LSTMs partly solves this problem, but not quite.
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2.4 Sequence-to-Sequence Models
Sequence-to-sequence models are designed to transform one sequence to another,
where a sequence of input bits is transformed into an output of output bits [35].
Typically, these models are composed of two major components: an encoder and a
decoder, which used to consist of RNNs [36]. The encoder reads the input sentence,
which is a sequence of vectors x = (x1, ..., xTx) into a vector c [36]. The most
common approach is to use the model in such a way that:

ht = f(xt, ht−1)

and

c = q({h1, ..., hTx}),

where ht ∈ Rn is the hidden state at time t, c is a vector that the encoder has
generated from the sequence of hidden states, and f and q are some non-linear
functions [36].

The decoder, on the other hand, is trained to predict the next word yt′ by having
access to the context vector c and the previously predicted words {y1, ..., yt′−1}. The
decoder defines the probability of the translation y. This is done by decomposing
the joint probability into ordered conditionals [36]:

p(y) =
Ty∏
t=1

p(yt|{y1, ..., yt−1}, c),

where y = (y1, ..., yTY
) [36]. With an RNN, the conditional probabilities can be

defined as:

p(yt|{y1, ..., yt−1}, c) = g(yt−1, st, c),

where g is a non-linear, possibly multi-layered function. It outputs the probability
yt, where st is the hidden state of the RNN [36].

2.4.1 Attention-Based Models
An issue with the encoder-decoder approach is that the neural networks must com-
press all necessary information of a source sentence into a fixed-size vector. Conse-
quently, it is difficult for the model to handle longer sentences [36]. Cho et al. (2014)
showed that the performance of an encoder-decoder model rapidly decreases as the
length of the input sentences increases [37].

An extension to address this issue was introduced by Bahdanau (2014), which learns
to align and translate jointly [36]. The extension mimics cognitive attention by
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deciding parts of the input sequence. In the proposed model, each generated word
in a translation is accompanied by a (soft-) search process. This process identifies
a set of positions in a source sentence that contains the most relevant information.
The context is then used to predict a target word based on the associated context
vectors of these positions and the previous target words generated in the sequence.
This approach differs from the encoder-decoder technique in not trying to encode an
entire input sentence into a fixed-size vector. Instead, the input sentence is encoded
into a sequence of vectors. Then selectively chooses a subset of these vectors while
decoding the translation. Hence, enabling the neural translation model to handle
long sentences better and avoid compression of all information from a source sentence
into a single fixed-size vector [36].

The approach of jointly learning to align and translate significantly improves trans-
lation performance over the encoder-decoder technique. The improvements are par-
ticularly noticeable with longer sentences but can be observed for sentences of any
length [36].

2.5 Transformers
Transformers were presented in 2017 [34], and swiftly became a popular architec-
ture for building NLP models [18], [38], [39]. Unlike RNN-based architectures, the
Transformer represents the input as a set rather than a sequence, allowing for effi-
cient data parallelization. To maintain the temporal property of the data, the input
data needs to be positionally embedded. Furthermore, self-attention is introduced,
which is an attention mechanism that relates different positions of one sequence to
each other, such that a representation of the entire sequence can be computed. The
central building blocks of the Transformer are the encoder and decoder.

2.5.1 Architecture
One challenge in sequential learning is to be able to process and return variable-
length inputs and outputs. To solve this problem, the encoder-decoder architecture
is common [32], [33]. This general architecture is also used by the Transformer,
with six layers of encoder-decoders, where the encoder output in layer i and i − 1
is the input of the decoder in layer i. Each block of encoder and decoder contains
two and three sub-layers, respectively. Each sub-layer has a residual layer and
normalization such that the output of a sub-layer is LayerNorm(x + SubLayer(x)).
LayerNorm is the normalization function of the sub-layer, x is the input of the sub-
layer, and SubLayer is the function of the sub-layer, for instance, a fully connected
FFNN. A visualization of the architecture of one layer in the Transformer is shown
in Figure 2.2, with emphasis on the encoder.

Because the input of the Transformer is modeled as a set, positional embeddings
are added to the input before entering the encoder, which is done to maintain the
temporal information of the input data. An example of input embeddings of natural
language is given in Figure 2.3 in Section 2.6. The encoder block consists of two
sub-layers, one multi-head-attention system, and one FFNN. The encoder processes
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the input sequence x = (x1, ..., xn), outputting a fixed-length vector representation
z = (z1, ..., zn) of the input. The decoder takes this vector representation as input
and generates the output sequence one element at a time, using the encoder’s repre-
sentation and the previously generated output elements as context. In addition to
the two sub-layers of the encoder, the decoder has a masked multi-head attention
layer, which enables the mapping of relevant tokens to the encoder for translation
[40]. The final operation of the decoder is a linear layer and a softmax layer, which
ultimately produces output probabilities.

Figure 2.2: One layer of the encoder-decoder architecture of the Transformer, with
emphasis on the encoder block.

2.5.2 Attention
In natural language, the context of words often plays a significant role in deduc-
ing the semantics of a text. The self-attention layer is a critical component of the
Transformer architecture, which enables the look-up of remaining input words at
different positions to determine the relevance of the currently processed word. This
is done for all words, making a superior encoding possible and gaining a contextual
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understanding of all the input words. The Transformer model contains multi-headed
self-attention mechanisms, which means that for each sequence, separate heads cal-
culate separate attention vectors in parallel. Finally, a weighted sum of these vectors
produces the final attention vector. By implementing several self-attention heads,
the capacity of the model to emphasize context within a sequence improves, com-
pared to only having one attention head [40].

Using self-attention instead of traditional recurrent approaches provides several ad-
vantages. Firstly, the computational complexity is significantly lower, as each layer
provides faster computation, and parallelization is possible to a further extent be-
tween layers. Furthermore, dependencies between sequences with a long temporal
distance are better learned by the self-attention mechanism than by traditional ap-
proaches [34]. Nevertheless, full self-attention is still computationally expensive, as
each token needs to attend to all other tokens in a sequence. Hence, the complexity
increases quadratically with the sequence length [41]. In other words, if the length
of an input sentence is doubled, the computational complexity is quadrupled.

2.6 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained
NLP model, developed by Google and presented in 2018 [18]. Pre-training is a tech-
nique in machine learning for training a model on general concepts without training
for a specific task. Since the introduction of BERT, it has been an instrumental
part in the development of NLP applications, and in just over a year since its publi-
cation, over 150 research articles have been published investigating and refining the
model [42]. As the model’s name implies, the model is based on the Transformer
architecture. Bidirectionality is another important concept of BERT. In essence,
bidirectionality entails that given a word, its meaning can be inferred from the con-
text of the text before and after the word. It is strongly emphasized in the paper
that bidirection is crucial to model complex linguistic structures accurately.

The architecture of BERT follows closely that of the Transformers’ encoder block,
as seen in Figure 2.2. Because Transformers take input as sets instead of sequences,
additional annotation is needed to form the input in an NLP context. The anno-
tation includes position embeddings, segment embeddings, and token embeddings.
The position embeddings tell what order in the text a token is, i.e., they tell the
model what order the words in a sentence have. Similarly, segment embeddings tell
in what order different segments appear. Segments can be thought of as sentences,
and they are separated by the [SEP] token. Finally, token embeddings are the ac-
tual content of the text, which has been divided into reasonable chunks, along with
different labels such as [SEP], [CLS], etc. This separation of tokens is referred to as
tokenization, and often a word and a token refer to the same thing. The input repre-
sentation of the sentence “My dog is cute. He likes playing.” is shown in Figure 2.3.
The [CLS] tag marks the beginning of the sequence, replaces dots with [SEP], and
otherwise, words are mostly kept as they are. For segment embeddings, all words
in the first sentence are marked with an A, and all words in the second sentence
are marked with a B. Finally, position embeddings mark the position of words in
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the sentence. The first word, “my”, is marked with 1, the second word, “dog”, is
marked with 2, etc. The word “playing” is split into two, “play” and “##ing”, as
the WordPiece embedding model does not have the word “playing” in its vocabulary.
A double hashtag (“##”) denotes a word’s suffix.

Figure 2.3: An example of the input representation of BERT [18].

BERT uses WordPiece embeddings with a vocabulary of roughly 30,000 tokens [21].
WordPiece embeddings were initially developed by Google for speech recognition
tasks in Asian languages with complex writing systems, a large inventory of charac-
ters and homonyms, and no or very few spaces between words. These issues make
it necessary to segment the text, which can result in numerous out-of-vocabulary
words in the model. To address the challenge of out-of-vocabulary words, WordPiece
representation was proposed, which learns word units from extensive data without
encountering out-of-vocabulary words [43]. In the WordPiece approach, the first to-
ken is represented by a special token, [CLS], and the final hidden state corresponding
to this token is utilized as the aggregate sequence representation for classification
tasks. To process pairs of sentences as a single sequence, another special token
separates the sentences, [SEP], and an embedding is learned for every token that
indicates whether it belongs to sentence A or B. Finally, the input representation
for each token is constructed by summing the corresponding token-, segment-, and
position-embeddings [43]. An embedding can represent a word, a sequence of words,
or a sentence. Some ways to create sentence embeddings are to take the average of
the word embeddings, by using the output of the [CLS] token, or by using different
pooling functions. Pooling functions are filters through which the information is
processed. It could, for example, be to take the mean or max of all the output
vectors [44].

BERT is developed through two steps: pre-training and fine-tuning. The pre-
training is done in a self-supervised fashion on a vast text dataset, whereas the
fine-tuning is done to specialize the model for specific downstream tasks. The rea-
son for splitting the training into two steps is closely related to the concept of
transfer learning and domain adaptation. When there is not much data available in
the target domain, and there exists data in a source domain that can be generalized
to the target domain, there is a need for high-performing models that are trained
on easily obtained data from a general source domain. This is referred to as transfer
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learning [45]. Hence, one reason why transfer learning is favorable is that it might
yield higher performance. Another reason relates to computational efficiency. The
assumption in NLP is that general semantic understanding is needed for most tasks.
Hence, a lot of computational time is saved by pre-training a general model once on
a large corpus and then fine-tuning it for downstream tasks.

Pre-training is done by two separate training operations done simultaneously. These
are Masked Language Model (MLM) and Next Sentence Prediction (NSP). MLM
and NSP are designed to train in a self-supervised fashion, so a large corpus can
easily be used for pre-training. MLM is used for learning word semantics, and NSP
is for learning sentence semantics. Both tasks’ principles include hiding or masking
words or sentences and having the model predict the hidden word or sentence. In
Listing 2.1, some examples of different tasks, given the text: “The man went to the
store. He bought a gallon of milk.”, are shown. This experiment was conducted on
a BERT model that was only pre-trained and not fine-tuned for any downstream
task. The token [CLS] indicates the start of a text, [SEP] is a separator token
between sentences, and [MASK] displays a hidden word that the model will predict.
Firstly, MLM is demonstrated, where the model predicts what word is hidden by
the [MASK] token:

Listing 2.1: Masked Language Model (MLM) example
1)
[CLS ] the man went to the [MASK] [SEP] he bought a ga l l on o f milk .

p r e d i c t i o n = s t o r e

2)
[CLS ] the man went to the s t o r e [SEP] [MASK] bought a ga l l on o f milk .

p r e d i c t i o n = he

3)
[CLS ] the man went to the [MASK] .

p r e d i c t i o n = door .

The first MLM example in Listing 2.1 illustrates how BERT predicts a word given
the right context of the text. Because from the second sentence, “he bought a gallon
of milk”, the model infers that it was a store the man went to, which is the correct
word. The second example shows the contrary, where BERT needs to figure out
from the previous text who it was that went to the store. It correctly predicts “he”,
given that “the man went to the store”. In the third example, removing the second
sentence removes information, and BERT cannot deduce from the input where the
man is going, so it guesses “door”.

In the first NSP example in Listing 2.2, BERT predicts that it is natural that the
second sentence follows from the first, indicated by the label “isNext”. In the second
sentence, “he bought a gallon of milk” is replaced with “penguins are flightless birds”.
Here, BERT outputs the label “notNext”, meaning it no longer believes the second
sentence follows from the first.
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Listing 2.2: Next Sentence Prediction (NSP) example

1)
[CLS ] the man went to the [MASK] [SEP] he bought a ga l l on o f milk .

Label = isNext .

2)
[CLS ] the man went to the [MASK] [SEP] penguins are f l i g h t l e s s b i rd s .

Label = notNext .

In order to pre-train BERT, the paper used the two tasks demonstrated above on
a text corpus containing 3.3 billion words. The corpora consist of general-purpose
language from English Wikipedia1 articles and BooksCorpus [46]. 15% of words
were replaced by the [MASK] token, which was then used for training the model
with the MLM task. Given two sentences in the NSP part, the second sentence
would be replaced by a random sentence with a probability of 50%.

Pre-training BERT is a process that requires immense computational power and
time. Nevertheless, this is a process that only needs to be done once. Furthermore,
when BERT has been pre-trained, it has the foundation to be fine-tuned for a wide
range of downstream tasks. Fine-tuning is not at all as computationally expen-
sive, and it is described in the paper as being easy to do due to the self-attention
mechanism of the Transformer architecture, which allows BERT to model many
downstream tasks. BERT uses a fine-tuning approach for transfer learning, mean-
ing that after pre-training, the entire parameter space of the model is fine-tuned for
the specific task. Fine-tuning should take a few hours for most tasks when training
on a GPU, where the base of fine-tuning is the pre-trained model.

After pre-training BERT, it can be fine-tuned for several downstream tasks. One
main advantage of separating the training into two steps, pre-training, and fine-
tuning, is that the pre-training will train the model at general skills on a large corpus,
such that it has a good foundation for all downstream tasks. Fine-tuning is typically
done on a smaller corpus, where a domain shift is often desired. Figure 2.4 shows
the BERT architecture for one such downstream task, sentence pair classification.
Here, an additional output layer is integrated, so few parameters must be learned
from scratch. In the figure, the bottom layer is a visualization of the input to
BERT, including special tokens [CLS] and [SEP], as well as the tokens. The letter E
represents the input embeddings, and the contextual representation is represented
by T.

2.7 Biomedical Domain Models
By using domain-specific texts for training a language model for the biomedical
domain, it has been shown that the performance of the models increases when used

1https://www.wikipedia.org
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Figure 2.4: BERT architecture for sequence classification tasks.

for inference on biomedical texts [38], [47]–[49]. This section presents the general-
purpose biomedical domain models, BioBERT and PubMedBERT.

2.7.1 BioBERT

BioBERT was developed by Lee et al. in 2019 as a biomedical domain-specific
version of BERT [38]. BioBERT was developed by starting from the initial weights
of BERT before it was pre-trained further from a corpus of texts from PubMed2.
The new pre-training iteration was deemed necessary as biomedical texts have a
different distribution than the general language texts BERT was trained on, in
addition to additional vocabulary. After pre-training, BioBERT was fine-tuned on
three downstream tasks for evaluation, NER, QA and Relation Detection (RD).
NER is the identification of named entities, RD is the task of finding relations
between such entities, and QA is the task of answering natural language questions,
given related text to the query (see Section 2.9). An advantage of using the BERT
architecture for modeling downstream tasks is that the fine-tuning approach requires
minimal architectural adjustments. In the NER task, experiments were completed
on datasets containing four entity classes (diseases, drugs and chemicals, genes and
proteins, and species). In RD, the relations studied were gene-disease and protein-
chemical relations. BioBERT outperformed BERT and presented state-of-the-art
results for many BioRD and BioNER tasks.

2pubmed.ncbi.nlm.nih.gov
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2.7.2 SciBERT
SciBERT is a pre-trained language model based on the BERT architecture [48].
SciBERT is a language model that specializes in the scientific domain, and it is pre-
trained on a corpus of scientific texts. In addition to a corpus difference between
BERT and SciBERT, a new scientific vocabulary is built using the WordPiece to-
kenization method. The resulting vocabulary of SciBERT, having the same size
as the BERT vocabulary, only shares 58% of the same tokens, illustrating a sub-
stantial domain shift between the corpora, as the most frequent words are often
different. The use of an in-domain vocabulary separates the methods of SciBERT
from BioBERT, and ablation studies in SciBERT show that in-domain vocabulary
improves performance. SciBERT was trained on a corpus that is a combination of
papers from the computer science domain and the biomedical domain.

2.7.3 PubMedBERT
PubMedBERT was published in 2021 by Gu et al. [47]. PubMedBERT attempts
to solve the same problem as BioBERT, which is to create a general pre-trained
language model for the biomedical domain. However, it challenges the assumption
that transfer learning is a sound approach to developing biomedical language mod-
els. Transfer learning in this context is to start training from the weights of BERT,
which has been trained on a general domain corpora, towards the specific biomedical
textual domain. BioBERT is an example of a model trained in such a fashion. Trans-
fer learning is generally applicable if there is not much data available in the target
domain and that the domain shift from the general domain to the target domain is
not too large. It is argued in the PubMedBERT paper that in terms of pre-training,
vast corpora of high-quality biomedical texts are available from PubMed. Therefore,
the target domain has a lot of training data available. Furthermore, the domain
shift between the general corpora that models such as BERT has been trained on
and the PubMed corpus is perhaps too large. Gu et al. write: ”In fact, the majority
of general domain text is substantively different from biomedical text, raising the
prospect of negative transfer that actually hinders the target performance”. Finally,
it is emphasized that the vocabulary of PubMedBERT contains words from PubMed,
whereas the vocabulary of BioBERT only consists of the original BERT vocabulary.

PubMedBERT was developed using similar pre-training configurations as BERT,
with MLM and NSP as the main objectives. It is pointed out that the effectiveness
of NSP has been questioned [50]; however, NSP is included for a fair comparison
with other models. An important distinction with the setup of MLM with BERT
is that Whole-Word Masking (WWM) is used. WWM asserts that a token masked
for MLM consists of an entire word, not a subword. This is the standard approach,
as the language model will be encouraged to capture more semantic context. After
pre-training, PubMedBERT was fine-tuned for downstream tasks and evaluated on
a set of biomedical tasks such as NER, RD, and QA. The results were compared
to BERT, RoBERTa [50], and BioBERT, among others. The outcome showed that
PubMedBERT outperformed the other models on most tasks. Ablation studies
display the positive effects pre-training from scratch had on the model performance.
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It is also emphasized that because of pre-training from scratch, the vocabulary of
PubMedBERT is better suited for the biomedical domain than models pre-trained
on general domain data.

2.8 Sentence Transformer Models
This section presents Sentence-BERT (SBERT), a model with a novel siamese archi-
tecture for sentence semantics. Furthermore, S-PubMedBERT is presented, which
is fine-tuned from PubMedBERT using the siamese framework.

2.8.1 Sentence-BERT
BERT and RoBERTa have demonstrated excellent performance on sentence-pair re-
gression tasks, particularly on tasks that require measuring Semantic Textual Simi-
larity (STS) [18], [50]. However, the primary challenge with these models is that they
require a pair of sentences as input, which results in significant computational over-
head. As a result, the computation time required to find the most similar sentence
pair among a set of 10,000 sentences can be prohibitively long, typically around 65
hours. This computational overhead is because BERT has no good inherent semantic
representation of individual sentences. The input of BERT for sentence-pair tasks
consists of two sentences separated by the [SEP] token, which can be seen in Fig-
ure 2.4. Thus, each sentence pair needs to be computed and compared individually.
For 10,000 sentences, that is ∑9999

n=1 n = n · (n − 1)/2 = 49, 995, 000 unique sentence
pairs to be computed. This limitation renders BERT and RoBERTa unsuitable for
tasks that require large-scale clustering [44].

SBERT [44] is a modified version of BERT that incorporates siamese and triplet
networks, which drastically reduces the computation time required for semantic
similarity tasks while maintaining the high accuracy of BERT. A siamese neural
network, also called a twin neural network, consists of two identical sets of neural
networks that work together in learning the representation of two input vectors [51].
The two networks cooperate to produce one output vector from the two input vectors,
which can be interpreted as the semantic similarity between the input vectors. A
triplet network is similar to a siamese network but consists of three input sentences:
an anchor a, a positive sentence p, and a negative sentence n. The triplet objective is
to minimize the distance between a and p and maximize the distance between a and
n [52]. The siamese and triplet networks structure enables SBERT to perform large-
scale semantic similarity comparisons, clustering, and information retrieval through
semantic search. Therefore, SBERT is a more suitable approach for semantic textual
similarity tasks compared to BERT [44].

To fine-tune the pre-trained models, different datasets require different structures.
Therefore, both siamese and triplet networks are used to create semantically mean-
ingful embeddings from each sentence. There are three objective functions: the
classification and the regression objective functions for siamese networks and the
triplet objective function. Figure 2.5 shows the SBERT architecture for siamese
networks. In the figure, two sentences are fed into the siamese network structure.
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Pooling is an operation that uses different techniques, such as taking the mean of
the output vectors, to aggregate several word embeddings into a semantically mean-
ingful sentence embedding. The sentence embeddings are represented as u and v,
which are fed into the objective function.

Figure 2.5: The siamese architecture of SBERT, with either classification or regres-
sion objective function. This example assumes a pre-trained BERT model to be
fine-tuned. The two BERT models have identical weights.

The classification objective function is used for fine-tuning on the Semantic Natural
Language Inference (SNLI)3 dataset. The SNLI dataset contains a set of premise-
hypothesis text pairs, with a label indicating whether the hypothesis is neutral, an
entailment, or a contradiction to the premise. The classification objective function
(o) is defined as:

o = σ(Wt · (u, v, |u − v|))

, where σ represents the softmax function, which is:

σ(z)i = expzi∑K
j=1 expzi

.

Hence, the softmax function output vector has the same shape as the input vector,
and the sum of the elements of the output vector is equal to 1, and each element
of the vector is between 0 and 1. The three vectors that form the softmax function
parameters are the sentence embeddings u and v, and the absolute value of the
element-wise difference between them. These three vectors are also multiplied with
Wt, the trainable weight. Cross-entropy loss is used for optimizing the network.

3https://nlp.stanford.edu/projects/snli/
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The regression objective function calculates the cosine similarity between u and v,
which outputs a float between -1 and 1. Mean Squared Error (MSE) loss is used for
evaluation, where MSE is defined as:

MSE = 1
N

N∑
i=1

(yi − ŷi)2,

where ŷ is the predicted cosine similarity and y is the true label similarity. MSE is
explained in more detail in Subsection 2.10.4.

The triplet objective function minimizes the distance between the anchor a and the
positive p while increasing the distance between a and n. The function is

max(d(sa − sp) − d(sa − sn) + ϵ, 0),

where sx is the sentence embedding of the sentence. In SBERT, experiments are
conducted with ϵ = 1, and the distance metric d is the Euclidean distance.

SBERT improved previous sentence embedding methods, as shown by evaluation on
a range of sentence semantics tasks. Furthermore, SBERT does so computationally
efficiently, with an architecture that can be applied to a range of tasks. Observations
and ablation studies showed that using RoBERTa rather than BERT suggested no
significant difference. Furthermore, among the pooling layer strategies for mapping
a set of word embeddings into a single sentence embedding, the best-performing
approach was using the mean pooling strategy. The mean pooling strategy is to
compute the mean of all output vectors. This strategy was compared to max pooling
and using the special CLS token. Finally, the negative Manhattan distance and
the negative Euclidean distance function were studied as similarity measures, with
similar results.

2.8.2 S-PubMedBert
S-PubMedBERT [9] is a Sentence Transformer model, fine-tuned from PubMed-
BERT on the MS-MARCO4 [53] dataset using the Sentence Transformer framework.
MS-MARCO is a collection of datasets on deep learning in search. The training
approach follows the bi-encoder architecture, with MSE loss (see Subsection 2.10.4),
which seeks to reduce the distance between a query sentence and a positive sam-
ple while increasing the distance between the query and a negative sample. The
MS-MARCO corpus consists of a 1,000,000-question dataset with questions and hu-
man answers, a natural language generation dataset, a passage ranking dataset, a
keyphrase extraction dataset, a crawling dataset, and a conversational search dataset.
S-PubMedBERT maps sentences and paragraphs to a 768-dimensional dense vector
space, and the model can be used for clustering or semantic search. S-PubMedBERT
can be used for information retrieval in the medical/health text-domain. One of the
key findings in the S-PubMedBERT research was that fine-tuning from biomedical

4https://microsoft.github.io/msmarco/
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domain models, rather than the generic domain SBERT, yields better performance
on biomedical sentence similarity tasks [9].

2.9 Text Mining and Extraction Systems
The goal of text mining is to extract relevant information from textual data [54].
Hence, text mining can be viewed as the subset of NLP that concentrates on in-
formation extraction. A significant application of text mining in the biomedical
domain is in instances of information overload [55], [56], which is when the amount
of data exceeds what humans can absorb. Text mining is a broad term and encom-
passes several sub-tasks, for instance, retrieval of relevant documents; also referred
to as text classification, keyphrase extraction, NER, RD and QA. Text classifica-
tion is the task of finding relevant documents in a set of documents, often related
to a query. Keyphrase extraction is similar to text classification, but rather than
searching between documents, it is a search within documents for the main topic(s).

NER is the localization and classification of named entities such as a person, a
place, or an organization in natural language. An example of NER is given in
Listing 2.3. The example is a quote from an article by Yoshida et al. [57]. In
the example, the output is an annotated version of the input, and the entities are
categorized into predefined classes: genes, diseases, and organisms. The output
shows the identification and categorization of a gene named Fbxl8, the diseases
lymphoma and tumor, and the human organism.

Listing 2.3: NER Example
[ Fbxl8 ] gene in [ lymphomas ] disease from [ human ] organism

pa t i e n t s i mp l i c a t i ng [ Fbxl8 ] gene f un c t i on s as a
[ tumor ] disease suppre s so r .

NER forms the foundation of information extraction and RD [58]. The RD task is to
find relations between entities located by NER, given the natural language input. In
Listing 2.3, it is stated that “Fbxl8 functions as a tumor suppressor”, and a relation
found by RD could be ”suppresses” between the entities Fbxl8 and tumor. RD has
traditionally been implemented pipelined, where named entities are extracted first
before relations are derived between these entities. However, recent research shows
that using a shared network for these two tasks may be beneficial [59].

Given a question and a corpus of texts, a QA system produces an answer to the
question. For instance, given the text from Listing 2.3 as a corpus and the question
”What gene functions as a tumor suppressor?”, it would be expected of the model
to output ”Fbxl8”.

2.9.1 Keyphrase Extraction
Keyphrase extraction is the act of extracting the phrases of a document that concerns
the central ideas or main topics of the article [60]. Keyphrases are typically defined
as essential and meaningful terms that capture the essence of the document and can
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be used to summarize its main topics or themes. An efficient keyphrase extraction
model allows for searching for topics in a vast amount of articles and searching for
the main subject within a single article.

The keyphrase extraction process typically includes several steps: text preprocess-
ing, candidate keyphrase generation, keyphrase ranking, and evaluation. First, text
preprocessing is necessary to clean the raw text and transform it into a structured
format where it can more easily be analyzed. Next, candidate keyphrases are found
using some heuristic rule, where these rules are selected to avoid incorrect sen-
tences and narrow down the search space for the ranking method [60]. Finally,
in keyphrase ranking, an algorithm is developed to rank the candidate keyphrases
such that the most likely keyphrases are ranked higher than the candidates that are
unlikely keyphrases.

There exist several methods for keyphrase extraction. These can be categorized into
supervised and unsupervised approaches. Unsupervised methods are popular for
being domain-independent and not requiring annotated training data. On the other
hand, supervised methods typically achieve higher performance than unsupervised
methods when annotated data is available [61].

The keyphrase extraction problem can be viewed as a binary classification problem:
whether a candidate sentence is a keyphrase or not. Traditional supervised methods
include Naïve Bayes and Support Vector Machines [60], [61]. Although deep learn-
ing architectures such as CNN, RNN and LSTM improved upon the traditional
approaches, the current most effective model architecture for keyphrase extraction
is pre-trained Sentence Transformers [62].

Regarding challenges of keyphrase extraction, some corpora factors that affect the
difficulty of keyphrase extraction are document length, structural consistency, topic
change, and topic correlation [60]. The document length affects the difficulty, as
with an increase in document length, there is an increase in candidate keyphrases.
Structural consistency also influences the difficulty. If all documents in the set of all
documents studied have a keyphrase in one particular section, all other sections can
be disregarded. Hence, the search space is narrowed. Regarding scientific papers,
keyphrases will typically appear in the abstract, introduction, or conclusion. Topic
changes are related to the structural consistency of a text; assuming scientific texts
are structured with an abstract and introduction at first and a conclusion at the
end, the keyphrases will often appear at the beginning and end of the text. Finally,
if there is a topic correlation, it is assumed that the keyphrases of a text are related.
This typically holds in scientific articles but not in informal texts.

Finally, another challenge of keyphrase extraction concerns evaluation errors. Eval-
uation error is the term for errors that occur when a system fails to recognize se-
mantically equivalent phrases [60]. Evaluation errors appear when a model correctly
identifies a keyphrase, but upon testing the output, the system fails to recognize that
the proposed keyphrase and the gold keyphrase are semantically equivalent. Hence,
these errors result from a flawed evaluation, not a flawed model. Possible solutions
to evaluation errors are to carry out manual evaluation or to identify all semantically
equivalent phrases and use these to build an automatic evaluation system [60].

26



2. Theory

2.10 Metrics
IR evaluation is a complex task that requires specific metrics. The scores used for
evaluation are often calculated between a candidate (generated translation or pre-
diction) and one or multiple references (correct translations made from, for example,
a translator). These metrics are based on a supervised approach.

2.10.1 Accuracy, Precision, Recall, F1-score
Consider binary classification. Given training data in the form {⟨x1, y1⟩, ..., ⟨xn, yn⟩}
where xi is the vector of predicted labels and yi is a vector of true labels [63].

Actual Positive Actual Negative
Predicted Positive TP FP
Predicted Negative FN TN

Table 2.1: General structure of a confusion matrix.

The counts of TP, TN, FP and FN are presented in a confusion matrix as in Ta-
ble 2.1 [63]. The accuracy is defined as [64]:

Accuracy = TP + TN

TP + TN + FN + FP
,

which is the fraction of all correctly predicted out of all predictions [64]. The preci-
sion, on the other hand, is defined as [63]:

Precision = TP

TP + FP
.

Hence, precision is the fraction of all predicted positives that are true positives [63].
Recall is defined as [63]:

Recall = TP

TP + FN
.

Recall is the fraction of the actual positives that are predicted as being positive [63].
The F1-score is the harmonic mean of precision and recall and is defined as [63]:

F1 = 2
(1/recall + 1/precision)

= 2TP

2TP + FP + FN
.

2.10.2 Average Precision and R-precision
An issue when evaluating information retrieval systems is that the number of correct
outputs might vary between documents. Hence, a static prediction of the same
number of outputs for each article might not reflect the performance of the retrieval
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system to a satisfactory degree. A proposed solution is to use the R-precision metric.
As can be deduced from its name, R-precision is similar to precision in that it
evaluates the true positives divided by the total number of positive predictions. R
is a dynamic variable set based on the number of gold-labeled true positives for
the evaluated article, i.e., a cut-off for the calculation. Let r denote the correct
predictions among the cut-off R. Then, the R-precision is defined as r/R. For
instance, for an article with five annotated key sentences, such that R = 5, and a
retrieval system that correctly ranks two key sentences among the top 5 (r = 2), the
R-precision is 2/5 = 0.40. Accordingly, if a system ranks all keyphrases above the
non-keyphrases, it will achieve a perfect R-precision score [60].

Average R-Precision (ARP) is defined as the arithmetic mean of the R-precision over
n queries [65]:

ARP = 1
n

n∑
i=1

RPi ,

where RPi is the R-precision of article i. As a concrete example, if n = 2, R1 = 3
and r1 = 2 for one article, and R2 = 6 and r2 = 3 for the other article, then the
ARP calculation is:

2
3 + 3

6
2

=
7
6
2

≈ 0.583 .

ARP and R-precision are two of the most cited metrics of retrieval performance [66].

2.10.3 Pearson Correlation
The Pearson Correlation Coefficient measures the correlation between two vectors, a
and b, and outputs a value between −1 and 1. An output of 0 implies no correlation,
and an exact output of −1 or +1 implies a perfect linear relationship. Values close
to −1 entail a negative correlation, i.e., as a increases, b decreases. Furthermore,
values close to +1 imply a positive correlation; as a increases, so does b. Accordingly,
it is a common method for evaluating semantic textual similarity tasks. Given two
zero-mean random variables a and b [67]. The PCC is defined as:

p(a, b) = E(ab)
σaσb

,

where E(ab) is the cross-correlation between a and b and σ2
a = E(a2) and σ2

b = E(b2)
are the variances of a and b respectively [67].

2.10.4 Mean Squared Error
MSE measures the dissimilarity between vector pairs. Given two vectors, x =
{xi|i = 1, 2, ..., N} and y = {yi|i = 1, 2, ..., N}, where N is the number of samples
and xi and yi are values in the i-th sample in x and y [68], MSE is defined as:
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MSE (x, y) = 1
N

N∑
i=1

(xi − yi)2.

The error is the difference between the actual values and the predicted values [68].
This score is often used to measure how much vectors differ, and the goal is to
minimize the MSE [68]. In addition, in the context of machine learning, it is often
utilized as a loss function for regression problems.

2.10.5 T-SNE
T-Distributed Stochastic Neighbor Embedding (T-SNE) is a method for dimension-
ality reduction, which transforms a high-dimensional dataset X = {x1, x2, ..., xn}
into a two or three-dimensional representation Y = {y1, y2, ..., yn}, which can be
visualized in a scatterplot. The reduced representation Y can be described as a map
and the individual data points’ low-dimensional representations yi as map points.
The objective of dimensionality reduction is to retain as much meaningful structure
from the original high-dimensional data as possible in the lower-dimensional map
[69].

T-SNE is a technique used to explore high-dimensional data. T-SNE is able to visu-
alize the similarity of data [69]. It can create two-dimensional maps with hundreds
or thousands of dimensions [70].

Figure 2.6: A T-SNE representation of a model trained to classify images of the
numbers 0 to 9. Reprinted from [71].
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The goal of T-SNE is to take points in high-dimensional space and find a represen-
tation of these points in a lower-dimensional space. The algorithm behind this is
non-linear, and it adapts to the underlying data, which makes it transform the data
in different ways depending on the region of the data. This can be a source of con-
fusion. Besides, the technique doesn’t always produce similar outputs in successive
runs. Additionally, different hyper-parameters can produce different results, which
makes T-SNE plots challenging to interpret. Nevertheless, the T-SNE plots can be
used in simple cases to get an idea of what is going on [70].

2.11 Related Work
Advanced Neural Biomedical Entity Recognition and Normalization (BERN2) was
presented in 2022 [72]. BERN2 is a NER model developed for the biomedical do-
main, with logic to recognize nine different entity classes (gene/protein, disease,
drug/chemical, species, mutation, cell line, cell type, DNA, and RNA). The NER
operation uses Bio-LM as a pre-trained model and fine-tunes for the specific down-
stream tasks [73]. After performing NER, BERN2 uses decision rules to correctly
label those entities that overlap to handle the polysemy problem, and finally, a hy-
brid approach to Named Entity Normalization (NEN) is applied to normalize the
entities and thus handle the synonym problem. The polysemy problem is the issue
of deciding the contextual meaning of a word written similarly. For instance, apple
might refer to the fruit or the company Apple. The synonym problem is, in some
sense, the opposite of the polysemy problem, where one entity might have several
syntactic representations [74].

Due to their self-attention mechanism, where each token attends to all other tokens
in a sequence, computing long sequences with Transformer-based models is inefficient
[41]. Transformer-based models scale quadratically with the input sequence length.
Longformers present a technique for attention that can replace the self-attention
mechanism of Transformers, which makes the longformer scale linearly with sequence
length. This is done by introducing a local window of attention in combination
with global attention. The longformer approach outperforms Transformer-based
approaches on long-document tasks [41].

Augmented SBERT (AugSBERT) is a technique for improving bi-encoders for pair-
wise sentence scoring tasks [75]. AugSBERT combines bi-encoders’ speed with the
performance advantage by utilizing the full self-attention of cross-encoders. First,
the cross-encoder is used to label input pairs, i.e., augment the training data, which
the bi-encoder uses in a later stage. The first dataset, which forms the input to the
cross-encoder, consists of a gold-labeled dataset and a set of unlabeled data. Next,
the cross-encoder is fine-tuned on the gold dataset before it labels the unlabeled
data to produce a silver dataset. Finally, the computationally efficient bi-encoder is
fine-tuned on the silver and gold dataset [75].
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Firstly, the initial dataset is presented, conveying a basic understanding of the struc-
ture and overall relationships of the content of the dataset. Secondly, the curation of
a new dataset is explained, which was made to contain features aligned with the fine-
tuning approach. Thirdly, the development of the key sentence extraction model is
explained, with hardware setup, model architecture and hyperparameters, and the
experimental setup. Finally, the evaluation approach of the model is clarified and
motivated.

Before diving into the method, the definition of a key sentence in the context of this
project is presented. The hypothesis, as proposed by the annotators of the dataset,
is that most articles contain one or multiple sentences that summarize the main
content of the article. This content can be divided into three main categories, a
set of genes, a set of cells, and a set of keywords or key phrases. These keywords
are CRISPR- and KO-related terms such as “CRISPR”, “knockout”, “edit”, “KO”,
“mutat”, “remove”, “edit”, “disrupt” and “silence”. An example of a key sentence is
shown in Figure 3.1.

Figure 3.1: Example of a key sentence. MYH9 is a gene, A549 and Calu-3 are cell
lines, and CRISPR-Cas9 and knockout are key terms.
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3.1 Initial Dataset
The dataset consists of 2,774 manually annotated articles. The most important
content of the dataset is article IDs and the full text of each article, relevant gene
IDs, and cell IDs, along with associated names and synonyms for these genes and
cells. The genes can be either KO, KI, or KD genes, depending on the research
conducted in the article. The difference between KO, KI, and KD was explained
in Section 2.1. As can be seen in Table 3.1, 97% of the articles only mention KO
genes. As a result, the distribution of the various gene types within the dataset
is disproportionate, leading to a scenario where only an insightful examination of
articles containing KO genes could be carried out.

Genes Articles
Knockout 2,699
Knockin 74
Knockdown 1

Table 3.1: The number of articles that mention at least one of the different gene
types.

The gene-cell relationships form the foundation of our problem. They are most
often a one-to-one relationship for each article. However, they do appear in one-to-
many, many-to-one, and many-to-many relationships. Table 3.2 shows the number
of articles by their relationships between KO genes and cells. All annotations are
made on a document level, i.e., no sentence or word within the articles has been
annotated. As a consequence, the relevant knockout cell/gene IDs and cell/gene
names are for the entire article.

Genes per
article

Cells per
article

Number of
articles

Ratio

one one 1,898 70.3 %
one many 309 11.4 %
many one 412 15.3 %
many many 80 3 %
sum 2,699 100 %

Table 3.2: The number of different relationship configurations between genes and
cells for each article.

The fact that each article might have a different number of genes and/or cells asso-
ciated with it introduces a challenge when creating a NLP model. The challenge is
that the model needs to be able to produce variable length output, given an entity
extraction approach. For some articles, the desired output is a simple gene-cell pair.
For others, the desired output might be two different genes and two different cells.
As a successful extraction needs to extract all genes and cells from an article, the
implementation of an entity extraction approach is complicated with variable length
outputs. Therefore, the extraction of key sentences, where a key sentence contains
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all relevant information, was the chosen approach. By finding the key sentences of
an article, identification of the relevant entities becomes an easier task. To extract
key sentences, the chosen approach was to fine-tune a Sentence Transformer model,
which required the curation of a new dataset.

3.2 Dataset Curation
The curation of a new dataset with annotated key sentences was necessary to fine-
tune a model for the task of key sentence extraction in a supervised fashion. The
new dataset was created from the initial dataset, where the initial dataset consists of
2,699 articles, each with annotated genes, cells, and the full text of each article. The
dataset curation consisted of three main steps. The first step concerned sentence
tokenization and proposing key sentences. Secondly, these proposed key sentences
were sent to domain experts for manual annotation. Lastly, some final data cleaning
was necessary to use the data for fine-tuning and evaluation. Figure 3.2 displays an
overview of the steps in creating the new dataset from the initial dataset.

The first step of this process consisted of generating a set of candidate key sentences
from a Sentence Transformer model. These candidate key sentences were used as
hints for domain experts doing manual annotation of the data. Firstly, text cleanup
and tokenization needed to be performed. Some of the articles contained HTML
tags and LaTeX code. The texts were cleaned using the Python library Beautiful
Soup 4 [76] and regular expressions. After cleaning the texts, they were tokenized
into sentences using the Natural Language ToolKit (NLTK)[77]. NLTK is a Python
package for natural language processing. Each text was tokenized using the code:
gen = nl tk . PunktSentenceTokenizer ( ) . span_tokenize ( t ex t )
spans = [ s [1] −1 for s in gen ] .

The method span_tokenize() returns a generator that is used to find spans, which are
indices at which each sentence starts and ends. These indices were later used to split
the sentences, such that each article was formatted as a list of sentences. Sentence
tokenization experiments were also conducted with the NLP framework spaCy [78];
however, without observed significant improvement over NLTK. Therefore, NLTK
was chosen as it is more computationally efficient than the implementation of spaCy.

To generate proposed key sentences for manual annotation, a query sentence with
CRISPR-related terms was embedded by a Sentence Transformer model. The em-
bedding was compared with each sentence in the dataset before returning the top
five sentences for each article. The idea was that the key sentences should be among
these sentences, and it would be more effective for manual annotators to go through
these suggested sentences than the whole article. The query sentence used was

“[gene name] knockout from [cell name]”,

where [gene name] and [cell name] were the gene name(s) and cell name(s) men-
tioned as relevant knockout gene(s) and cell(s) in the specific article. For instance,
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Figure 3.2: Dataset curation for key sentence extraction. The numbers within each
cylinder indicate the total number of articles in the datasets.
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the query sentence from the example key sentence in Figure 3.1 would be “MYH9
knockout from A549 Calu-3”. The embedding was done by BioBERT-NLI 1, a Sen-
tence Transformer model fine-tuned on the SNLI [79] and Multi-Genre Natural Lan-
guage Inference (MultiNLI)[80] datasets from BioBERT. The top five sentences of
each article were selected by returning the sentences with the highest cosine similar-
ity score in relation to the query sentence. In addition to BioBERT-NLI, proposed
key sentence extraction from a general domain Sentence Transformer model, all-
MiniLM-L6-v22, and S-PubMedBERT (see Subsection 2.8.2), were also conducted.
Observations suggested that propositions from S-PubMedBERT and BioBERT-NLI
were the most accurate. As no factual evaluation was available at this stage, and
no clear difference between BioBERT-NLI and S-PubMedBERT were observed, the
proposed sentences by BioBERT-NLI were used. Furthermore, a simple rule-based
algorithm doing a term frequency search over keywords, cell names, and gene names
was also developed. However, observation indicated worse performance than the
Transformer-based approaches.

In addition to the top five sentences of each article, the cosine similarity scores and
the section at which each sentence was found were sent to annotators to speed up
the annotation process. These proposed key sentences were used by the annotators
to select the correct key sentence(s) for each article. Therefore, only a subset of
the sentences of each article was considered upon annotation, and not all true key
sentences were labeled as such. Throughout the annotation process, some articles
were discarded due to inadequacies in the texts, either because the articles were too
short or because the text cleaning was insufficient. Accordingly, 2,500 articles were
annotated.

Upon completion of manual annotation, some more cleaning was necessary, as the
formatting of the texts was slightly altered. The set of key sentences in each article
should be a subset of the set of sentences in the entire article. However, upon investi-
gation of the dataset, some key sentences could not be found in the set of sentences.
By stripping spaces in the comparison, it was possible to extract 2,391 articles in
which all key sentences were found. For the remaining articles, no programmatic
approach was found to uncover the key sentences, so they were dropped.

The final dataset contained 699,277 sentences, of which 4,494 were key sentences.
In other words, there were 6.43‰ key sentences per sentence and an average of
1.88 key sentences per article. There were between 1-5 key sentences per article, as
seen in Table 3.3. There were an average of roughly 292 sentences per article, but
the number ranged from 37 to 786 sentences per article. The data was split into
a fine-tuning dataset and an evaluation dataset, containing 1,913 and 478 articles,
respectively.

3.2.1 Preprocessing
In order to train, validate and test the model on the manually annotated data, some
formatting of the dataset was required. This data consists of sentence pairs with

1https://huggingface.co/gsarti/biobert-nli
2sentence-transformers/all-MiniLM-L6-v2
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Number
of key
sentences

Number of
articles

1 918
2 1,002
3-5 417

Table 3.3: Number of articles with a specific number of key sentences.

a related label that indicates whether they belong in the same class (label 1) or if
they are in contrasting classes (label 0). One sentence in the sentence-pair is always
a pre-defined query, referred to as the query sentence. By introducing the query
sentence, the goal was to have an anchor, similar to the approach in the triplet
objective function of SBERT (see Subsection 2.8.1), where key sentences would be
closer to the query sentence than non-key sentences. The query sentence could be
represented as a natural language sentence or by introducing a fresh token to the
model vocabulary. By using natural language sentences that are semantically similar
to the general structure of key sentences, the assumption was to provide the model
with a head start in training, as the model would early succeed in differentiating
between key sentences and non-key sentences. Another reason for this approach is
that it simplifies the evaluation of regression models because all sentences can be
evaluated against the same query sentence.

A training input to the model has the following format if the sentence is an annotated
key sentence label is 1, and the query sentence is “Gene knockout from cell”, which
is a sentence that is semantically close to the key sentence.

{”Gene knockout from cell”, ”To determine whether MYH9 is necessary for SARS-
CoV-2 infection, we first knockout MYH9 in A549 and Calu-3 cells using CRISPR-
Cas9.”, label: 1}.

Otherwise, if the sentence is a non-key sentence, the training input has the following
format, with label = 0

{”Gene knockout from cell”, ”The regulation of protein synthesis is essential for main-
taining cellular homeostasis, especially during stress responses, and its dysregulation
could underlie the development of human diseases.”, label: 0}.

The studied query sentences can be categorized into two kinds, the introduction
of a fresh token and natural text sentences that are constructed to resemble the
content of key sentences. The fresh token introduction is performed by adding a
new word, written “[QUERY]”, to the vocabulary of the model and either initializing
the weights to a random vector or initializing the weights to zeros. The intention
of the fresh token is that the initial weights of the query sentence are less biased
toward semantics that the model might carry from its pre-training. However, this
semantic understanding might be beneficial, which is why experiments with natural
text queries are also investigated. The natural text queries, developed in cooperation
with domain experts, are:
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1. knock mutat silence disrupt crispr lack cell gene remove edit

2. Gene knockout from cell

3. Gene knockout from cell using CRISPR

Sentence 1 is a list of frequent words found in key sentences by domain experts.

Sentence 2 and 3 follows a structure closer to that of human language. It relies on
the model to infer that the term “gene” should be a specific gene, that the “knockout”
term might be a semantically close word in actual key sentences, and that the term
“cell” should be a specific cell.

3.3 Fine-tuning
The performance of base models is sought to be enhanced through fine-tuning. The
overall goal of fine-tuning is for the model to learn to distinguish between sentence
embeddings such that a distance metric can be applied to differentiate between
sentence classes. The fine-tuning objective is visualized in a 2-dimensional space
in Figure 3.3. Each point in the figure represents a sentence embedding, which in
reality, is a 784-dimensional vector. To effectively identify key sentences, a transfer
learning approach was employed for the model training process. This decision was
prompted by the limited size of the available data and the potential benefits of
leveraging certain general aspects from other models. The most important studied
model domains were general domain sentence semantics and understanding in the
biomedical domain. The architecture of the training is presented in Figure 3.4, which
closely resembles the SBERT regression objective function. The implementation
of the training pipeline is based on the Python framework SentenceTransformers3,
which is based on SBERT [44] (see Subsection 2.8.1).

Differentiating between key sentences and non-key sentences could be solved as a
binary classification task. However, annotators have expressed a desire to receive
information about the model confidence in each prediction. Accordingly, the problem
has been modeled as a regression task, where outputs are floats in a range between
0 and 1. Outputs close to 1 indicate high similarity between the input sentence
pair, and outputs close to 0 indicate dissimilar input sentences. Despite outputting
a floating point number, the problem is still a question of classification, whether
a sentence is a key sentence or not. Classification can easily be performed after
regression by comparing the regression scores and ranking the pairwise similarity
between an anchor and the sentences of an article. The top n sentences in an article
can be labeled as key sentences. Otherwise, a cut-off threshold can be set, where
scores above the threshold are labeled as key sentences. In most articles, a single
key sentence contains most of the necessary information; if correct, it is sufficient
to return one key sentence per article. However, it might be discovered at a later
point that it is more beneficial to return several sentences for an article. Regardless,
by treating the problem as a regression task, the model will be more flexible upon
deployment, as it will be easy to change how many sentences to return.

3https://www.sbert.net/
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Figure 3.3: A 2-dimensional visualization of the fine-tuning objective. The goal is
to cluster the orange class such that the distance to the anchor (green) is lower than
the distance to the blue class (dA < dB).

Figure 3.4: The fine-tuning architecture. The Anchor is the same for each fine-
tuning experiment, and Sentence is the list of all sentences in the dataset.

The first step in fine-tuning is to split the fine-tuning dataset into a training- and
validation set. The training set is used to update the weights of the Transformer
model, whereas the validation set is used for the evaluation of model performance
throughout the training. The training data consists of 75% of the fine-tuning data,
and the validation data consists of 25%. Hence, including the test data, the total
split is 60%, 20%, and 20% for train, validation, and test, respectively.

A word embedding model was downloaded as the initial checkpoint before applying
a pooling layer to the word embedding model to form a Sentence Transformer. Some
informal experiments were conducted on different pooling strategies, which used the
special [CLS] token to represent the sentence, max-pooling, or mean-pooling. The
implementation of max-pooling returns the maximum element in each dimension
over all tokens, and the implementation of mean-pooling takes the element-wise
mean of each token. These experiments showed, similarly to what was concluded
by Reimers and Gurevych in the paper on SBERT [44], that mean-pooling slightly
outperforms other approaches. Consequently, the formal approaches presented in
Chapter 4 only use the mean-pooling strategy.

After sentence embeddings are calculated, both embeddings are fed into the loss func-
tion in order to optimize the weights of the network. One of the chosen loss functions
was contrastive loss. Contrastive loss was introduced by Hadsell et al. (2006), which
serves as an approach to differentiate distances between high-dimensional vectors of
samples belonging to the same class, and samples from different classes [81]. The
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experiments conducted with the loss function consist of image classification tasks
using a siamese network architecture. Despite originally being used for computer
vision tasks, it has recently gained a reputation in NLP, with promising results in
pairwise sentence scoring, regression, and ranking [82]. The loss function presented
by Hadsell et al. is:

L(W ) =
P∑

i=1
(1 − Y )LS(Di

W ) + Y LD(Di
W ).

P is the number of training pairs, Y is the label, which is either 0 or 1, and Di
W

is the distance function between the input vectors. LS and LD are defined as the
partial loss functions of similar and dissimilar vectors, respectively.

The implementation in this project defines DW as Di
W (ui, vi) = 1 − cos_sim(ui, vi),

i.e., the cosine distance between the embeddings of the query sentence and the
sentence sample. Furthermore, LS(DW ) = 0.5(DW )2 is the partial loss function for
similar vectors and LD(DW ) = 0.5(max(0, m − DW ))2 for dissimilar vectors, where
m is the margin. Due to the margin, dissimilar vector pairs only contribute to the
loss if they are sufficiently dissimilar. If DW > m, then LD(DW ) = 0; hence, m
can be thought of as a threshold, where if the distance between dissimilar vectors
exceeds the threshold, loss is not applied. m was set to 0.5 as the threshold in all
experiments in this project. Figure 3.5 illustrates the effect of the margin parameter
of the loss function. The anchor is pairwise compared to all other vectors. In this
project, the anchor will correspond to the query sentence, dissimilar vectors are
non-key sentences, and similar vectors are key sentences.

Figure 3.5: The effect of the margin on the contrastive loss function. The effect of
the loss function is depicted as purple arrows. No loss is applied to dissimilar vector
pairs outside the radius m.

A final remark on the contrastive loss function is that the implementation vectorizes
the input of each batch. The computation is not done sequentially for each input
pair. Furthermore, the loss is returned as the average of the losses in each sample
for each batch, not the sum.
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The cosine similarity loss function was also used in the experiments for comparison
with contrastive loss. The principle is similar to contrastive loss, where similar
sentences should be pulled closer to each other in the vector space, and dissimilar
sentences be pushed further apart. Cosine similarity loss takes two sentences and a
floating point label as input. In essence, the cosine similarity loss calculates the MSE
between the cosine similarity of the input sentences and the label. As previously
mentioned, in this project, one sentence is always the anchor, and the other is either
a non-key sentence or a key sentence. The model computes the cosine similarity
between the input sentences, and the loss function minimizes the following:

||label − cos_sim(u, v)||2,

where the label can be between 1 and 0. u and v are the embeddings of the in-
put sentences. The predicted cosine similarities are compared against the labels of
floating point numbers, and the loss is minimized. For well-predicted data points,
the losses are suppressed so that the loss focuses on data points that are harder to
classify [83].

The main motivation for evaluation during training is to save the weights of the
model at the time in training when the model has the best results on the validation
task. By saving the model that performs best on the validation data, the expectation
is that this model checkpoint also will perform best on the test data and further down
the line upon deployment. Overfitting would result in a performance that is greater
for the training data but worse for the test data. In other words, the model would
be bad at generalizing to other data than the training data. Additionally, evaluat-
ing during training aids in model development. The BinaryClassificationEvaluator
class of the SentenceTransformer framework is used for evaluation throughout train-
ing on the validation dataset. This evaluator requires labels to be either 0 or 1 and
calculates accuracy, precision, recall, F1 score, and average precision. To evaluate
the similarity, the model weights are frozen before they are used to embed sentence
pairs. Then, the pairwise Manhattan distance, Euclidean distance, dot product,
and cosine similarity are calculated between each sentence embedding pair. To de-
cide whether a model checkpoint should be saved, the maximum average precision
of the four distance metrics is compared to a potential previous maximum. If the
previous best checkpoint has a best average precision of 0.7, and the new evaluation
iteration returns 0.5, 0.6, 0.75, and 0.4 in average precision using Manhattan dis-
tance, Euclidean distance, cosine similarity, and dot product, respectively, the new
model weights will be saved, as max(0.5, 0.6, 0.75, 0.4) = 0.75 > 0.7. As displayed
in Figure A.1 in Appendix A, all distance metrics produce similar scores.

The fine-tuning process employed contrastive learning, which is geared towards effi-
cient representation learning. The core idea behind contrastive learning is to bring
together semantically similar sentences within the vector space while pushing apart
dissimilar sentences [84].
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3.4 Evaluation
An overview of the evaluation on the test data is displayed in Figure 3.6. Here,
the query is only embedded once. The query is equal to the anchor on which the
model was fine-tuned. All sentences of the test dataset are embedded before a
pairwise comparison between the query and the sentence embeddings is performed.
To compute MSE and PCC, the vector of all cosine similarities is compared to the
vector of all labels in the test dataset. Computing ARP is a bit more complicated.
Each article has R labels that equal 1, i.e. each article has R annotated key sentences.
Therefore, after sorting the cosine similarities in each article and returning the top
R similarities, the predictions are compared to the true key sentences such that r/R
can be computed.

Figure 3.6: Evaluation of the fine-tuned model on the test dataset.

Information retrieval evaluation can be done in several ways. The correlation be-
tween the predicted similarities and the labeled similarities between sentences in-
dicates how well the model follows the labels. For measuring how precise the pre-
dictions are in relation to the labels, MSE can also be used. However, ranking the
sentences within each article and comparing the top n sentences with the labeled
key sentences provides more direct insight into the precision of the model. After
all, the most important property of the model is its ability to reliably identify key
sentences.

Considering there is a varying amount of labeled key sentences for each article, and
the true number of key sentences in each article is unknown, the chosen evaluation
for classification is the average R-precision metric, where the top R sentences are
compared to the gold-labeled key sentences. The motivation for this metric is that
it is uncertain how many key sentence predictions are wanted, and a perfect ranking,
with all key sentences ranked above all non-key sentences, would result in a perfect
ARP score of exactly 1. A related metric is the Precision@K score, which defines
a static cut-off K for the entire system instead of the dynamic cut-off R. Given
a low amount of key sentences for each article, most articles have one or two key
sentences. The presumption is that ARP carries more information than Precision@K.
Furthermore, by defining a static cut-off, for instance, K = 1, only the first sentence
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in each article will be evaluated, with the result that many key sentences will not
be evaluated.

The evaluation can also be treated as a regression- and correlation assessment,
mainly to provide insight into the model’s confidence in its predictions. This is
because the cosine similarity scores output by the model can be interpreted as an in-
dication of how confidently the model separates between key sentences and non-key
sentences. Besides, the cosine similarity metric is used by the annotators to decide
whether the sentence is a key sentence or not. The evaluation of the regression-
and correlation task is done by passing two vectors, the cosine similarity scores and
the labels, into the MSE and PCC. The golden labels are still binary, either 0 for
dissimilar or 1 for similar.

The definition of the query is done in two separate ways depending on if the model
has been fine-tuned or not. For the fine-tuned models, the models have been trained
against a query sentence, which represents an anchor. The model has been trained
to interpret the semantic meaning of this query as similar to the meaning of a key
sentence. Hence, this query is embedded by the model, and its similarity is com-
puted by a distance metric against sentence embeddings in the test dataset, where
high similarities are expected when comparing the query sentence with a key sen-
tence, and low similarities are expected between the query sentence and non-key
sentences. For the models that have not been fine-tuned, the query sentence com-
parison approach is not as appropriate since these models have not been trained to
interpret the semantic meaning of this query similar to the meaning of a key sen-
tence. Instead, the element-wise arithmetic mean of the key sentences in the training
dataset is used, and this average key sentence embedding is pairwise compared to
all sentences in the test dataset to produce cosine similarity scores. The fact that
the average key sentence embedding works better than a query sentence can also be
interpreted as an indication that fine-tuning is necessary, as the pre-trained model
does not grasp the semantic relations that are desired.

The relation of key sentences versus non-key sentences in the dataset makes accu-
racy an insufficient metric for evaluation. As the dataset only contains 6.43‰ key
sentences, a model that only predicts non-key sentences would obtain an accuracy
of 99.36%. Furthermore, the ability of the model to predict non-key sentences is
not very interesting. Consequently, accuracy as a metric does not provide valuable
information about the task.

Models can be visualized using T-SNE to show whether the embeddings of key
sentences are pushed away from the embeddings of other sentences. Throughout
the process of dimension reduction, some information is lost, and T-SNE is valuable
more as a tool for getting insight into the dynamics of a model rather than a precise
metric. The location of a point in the T-SNE plot carries no information in itself,
but the position of points in relation to each other roughly reflects the relations in
the true vector space.
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3.5 Experiments
The experiments are conducted to evaluate the performance of the models and the
training process. As presented in Section 3.3, binary evaluation with contrastive loss
and cosine similarity loss are generally used in the experiments. A batch size of 32 is
used, and the model is evaluated on the validation data every 1,000 steps, or every
32,000 training samples, which results in a total of 14 evaluations when training on
the full train dataset, which takes 13,069 steps. The AdamW [85] optimizer is used
with a weight decay of 0.01, and a triangular scheduler is used for the learning rate,
with a linear increase in the first 100 training steps, which equates to 3,200 training
samples, up to a learning rate of 2 · 10−5, before linearly decreasing throughout the
rest of the training. All training was performed over a single epoch.

3.5.1 Setup
All model training was conducted on an NVIDIA A40, where fine-tuning the base-
sized model with approximately 110 million parameters took approximately one hour
on the full dataset, consisting of roughly 410,000 sentence pairs. Evaluation on 478
articles took roughly 3 minutes.

3.5.2 Query Sentence
The specific formulation of the query sentence, frequently referred to as the anchor,
is studied in the first experiment. The question is whether the initial semantic un-
derstanding of the query sentence might affect the performance of the model, even
after fine-tuning. Therefore, three different natural language sentences were formu-
lated, along with the introduction of a fresh token. The intention of introducing a
fresh token was to try to analyze how a random query sentence, with no predefined
semantic meaning to the model, would affect the outcome. Two initializations of
the fresh token were investigated, zeroing out the vector and initializing to a ran-
dom vector. All experiments were conducted five times, and other than the query
sentence, all parameters were equal. The training was done from a checkpoint of
S-PubMedBERT.

3.5.3 Models
Five different base models were compared against each other to evaluate the vo-
cabulary of the models and which base model had the most accurate performance
for key sentence extraction. These models were also used as checkpoints, and their
performance was compared after fine-tuning.

Different models have different vocabularies, hence, different word encodings, which
eventually affect the sentence embeddings. One possible factor that might influ-
ence the performance of the models is the vocabulary of the models. The BERT-
based models use WordPiece embeddings, and in “Domain-Specific Language Model
Pre-training for Biomedical Natural Language Processing”, it is argued that an ad-
vantage of domain-specific pre-training is obtaining an in-domain vocabulary [47].
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Additionally, it is shown in ablation studies that in-domain vocabularies significantly
improve performance for several biomedical downstream tasks [47]. Hence, the vo-
cabulary of relevant models is evaluated against the genes and cells in the training
dataset.

The two main abilities that are desired from these checkpoints are proficiency in the
biomedical domain and sentence semantics. Experiments with S-PubMedBERT4

and PubMedBERT5 are conducted to explore the value of pre-training on sentence
semantics versus no specific pre-training on sentences. Furthermore BERT6, Pub-
MedBERT, BioBERT7 and SciBERT8 are compared to provide insight into the effect
of biomedical understanding of the models on the key sentence task. All models are
base sized and uncased, except BioBERT, as no uncased version was found.

3.5.4 Loss Functions
The margin parameter of the contrastive loss function was studied to analyze how ad-
justing this parameter affects the model’s performance. As previously mentioned, all
experiments were run five times. As the margin increased, the partial loss of dissim-
ilar sentences became more similar to the cosine similarity loss, which is also used in
one experiment. After running experiments with different loss functions, the cosine
similarity output of the two best-performing models from the experiments, trained
with a margin of 0.5 and cosine similarity loss, was explored. It should be noted
that as the margin approaches 1, the contrastive loss becomes similar to the cosine
similarity loss. The cosine similarity loss is defined as L = ||label−cos_sim(u, v)||2.
If m = 1, the partial loss functions of contrastive loss, LS, and LD (see Section 3.3),
becomes equal, and the contrastive loss function is L = 0.5(cos_sim(u, v))2. The
motivation for studying the cosine similarity output was to provide insight into the
cosine similarity metric and what precision and recall can be expected for different
cosine similarity thresholds. Particularly, this study might be beneficial if the model
is deployed in a document retrieval setting, where a possible approach is to input
unseen texts to the model and return documents that contain sentences with a co-
sine similarity score above a certain threshold. In this setting, a trade-off between
precision and recall needs to be made because one does not want to return too many
documents that are not related to the CRISPR-domain while detecting as many
documents as possible that are actually related to the CRISPR-domain.

4https://huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO
5https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
6https://huggingface.co/bert-base-uncased
7https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
8https://huggingface.co/allenai/scibert_scivocab_uncased
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4
Results

The first experiment presented in this chapter thoroughly evaluates the test dataset,
presenting the predictions of a fine-tuned model on the test dataset compared to a
manual annotation of the model predictions. A review of the model’s confidence in
relation to its correctness is also presented. In terms of fine-tuning, an investigation
of the effects of using different query sentences and fine-tuning from various model
checkpoints is given. The model checkpoints are compared before and after fine-
tuning, and their vocabulary is evaluated on gene and cell names in the dataset.

The training is a stochastic process. Hence results are presented as an average of
five runs, along with Confidence Interval (CI) with a confidence level of 95% to show
the variance between different runs. Averaging several runs yields more conclusive
results of the effect of varying training setups. A CI of 95% is the same as ± two
standard deviations, where the standard deviation of a population is defined as:

σ =

√√√√ 1
N

N∑
i=1

(xi − x̄)2,

where N is the population size, x is the vector of samples, and x̄ is the population
mean.

4.1 KS-PubMedBERT
As there is a varying amount of annotated key sentences for each document, the
evaluation metrics are ARP, along with MSE and PCC. The test dataset consists of
a total of 141,693 sentences, where 886 are labeled as key sentences (positives). In
terms of labeling, which was explained in Section 3.1, only a subset of the actual key
sentences has been labeled as such. In other words, an unknown number of sentences
in both the test and train datasets have not been labeled as key sentences that are
semantically equivalent to a key sentence. The most studied model, which was
developed using a list of general keywords (”knock mutat silence disrupt crispr lack
cell gene remove edit”) as a query from S-PubMedBERT, achieves an ARP of 0.81 on
the test data. This model will be referred to as KS-PubMedBERT. However, upon a
manual review by domain experts of the test dataset compared to the predicted key
sentences of the model, the true performance of the model is higher than indicated
by the evaluations on the test data.
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The test dataset consists of 478 articles, each with a varying amount of key sentences.
Denoting the number of key sentences article i contains as Ni, the model is asked to
predict Ni key sentences for each article. In this setup, KS-PubMedBERT correctly
predicts 709/886 key sentences, and 177 predictions are labeled as wrong. However,
a manual examination of the 177 predictions labeled as being wrong concluded that
115 were semantically equivalent to a key sentence, 11 were inconclusive, and 51
were definitely false positives. In percentages, 65% of the predictions labeled as
wrong are actually correct, 6% were inconclusive, and 29% were still wrong. Hence,
by appending the 115 true predictions to the old test data and running a new
evaluation, KS-PubMedBERT obtains an ARP of

90.4%

after the manual evaluation. Examples from the manual annotation are shown in
Table 4.1.

Equivalent annotation a CRISPR/Cas9 gene editing technology was em-
ployed to generate COPA deficient THP-1 cell
lines.

prediction Taking advantage of this proposed functional dis-
tinction, we deleted COPG1 and COPG2 iso-
forms individually in THP-1 WT cells using the
CRISPR/Cas9 approach.

Inconclusive annotation To elucidate the role of USP3 in embryonic stem
cells, we generated single-cell-derived USP3 knock-
out clones in a human embryonic carcinoma cell
line (NCCIT).

prediction FOXD1 was knocked out in the 786-O cell line and
known targets were analyzed.

Wrong annotation In this study, we performed a loss-of-function
study of USP3 in ESCs utilizing the CRISPR/-
Cas9 system.

prediction CRISPR/Cas9-mediated knockout cells were gen-
erated by the Synthego Corporation (Cambridge,
MA, USA).

Table 4.1: Examples of predictions by KS-PubMedBERT compared to the true
annotation.

Further analysis of the KS-PubMedBERT model confidence in predictions has been
done by calculating the cosine similarity between the query string embedding and
the predictions. Higher cosine similarities are interpreted as higher confidence in the
prediction. Results of the confidence analysis are presented in Table 4.2, where the
cosine similarity in different subsets of the test data are shown. The subsets are the
true predictions, and the false predictions are further categorized into three subsets
based on the outcome of the manual annotation. All similarities are presented as an
average of all the sentences in the subset compared to the query. The average cosine
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similarity is highest for the true predictions and lowest for the predictions labeled
as false by the test dataset and the manual annotation.

Subset Manual Annotation Total Predictions Avg Cosine Similarity
True – 709 0.883

False

correct 115 0.845
inconclusive 11 0.705

wrong 51 0.663

Table 4.2: The KS-PubMedBERT model average cosine similarity for different out-
comes in the test data.

The sentences are embedded into a 784-dimensional space, i.e., each sentence is
represented as a vector of length 784. By using the statistical T-SNE method,
this can be reduced to a 2-dimensional space for visualization. This dimensional
reduction will not keep all information. However, it might provide some insight
into the semantic understanding of the model. In Figure 4.1, the plots compare the
representation of sentences, key sentences, and the query sentence before and after
fine-tuning. 2500 sentences are randomly sampled from the test set, along with all
the key sentences from the test data.

(a) Before fine-tuning. (b) After fine-tuning.

Figure 4.1: Semantic understanding of key sentence versus non-key sentence. The
query embedding is the embedding of the string ”knock mutat silence disrupt crispr
lack cell gene remove edit”.

4.2 Effect of Query Sentence
This section presents the results of altering the query sentence. The natural text
queries, developed in cooperation with domain experts, are as follows:

1. knock mutat silence disrupt crispr lack cell gene remove edit

2. Gene knockout from cell

3. Gene knockout from cell using CRISPR
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Apart from these natural text queries, two new queries are used. These queries are
both utilizing a fresh token, ”[QUERY]”, which is added to the model vocabulary
before training. The embedding of the token is initialized to zeros or a randomly
generated vector.

Table 4.3 displays the results of fine-tuning S-PubMedBERT from different queries.
It should be noted that the query labeled Generic 1 is the same training setup as
used for training KS-PubMedBERT. All query experiments obtain similar results.

Query ARP 95% CI MSE PCC
Generic 1 0.800 ± 0.014 0.186 0.721
Generic 2 0.797 ± 0.013 0.167 0.704
Generic 3 0.808 ± 0.004 0.186 0.721
Fresh 0 0.805 ± 0.008 0.188 0.691
Fresh 1 0.797 ± 0.005 0.199 0.704

Table 4.3: Results from selecting different query sentences in the contrastive learning
approach. Generic sentences are explained in the list above, Fresh 0 is a fresh token
initialized to zeros, and Fresh 1 is a fresh token initialized to a randomly generated
vector.

4.3 Vocabulary

The training dataset contains 1,913 articles. Each article contains an annotation
of the related KO gene(s) and cell(s). Counting all these genes, cells, and their
respective synonyms, a total of 11,618 terms are investigated. A few examples of
tokenization using PubMedBERT and BERT, both uncased, are shown in Table 4.4.
Here, 10 terms are randomly sampled from the total term set. In all 10 examples,
BERT tokenizes the terms into at least as many tokens as PubMedBERT. A check-
mark means that the vocabulary of the model contains the word, and the word was
successfully tokenized.

A more comprehensive review of tokenization can be seen in Table 4.5, where Pub-
MedBERT outperforms other models, having 906/11, 618 = 7.8% of terms in its
vocabulary. The average length in the table displays the average number of tokens
the terms are broken into by the models.
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Term PubMedBERT BERT
Kop [’ko’, ’##p’] [’ko’, ’##p’]
LC3 ✓ [’lc’, ’##3’]
USP30 [’usp’, ’##30’] [’us’, ’##p’, ’##30’]
PSD4 [’psd’, ’##4’] [’ps’, ’##d’, ’##4’]
p300 HAT [’p300’, ’hat’] [’p’, ’##30’, ’##0’, ’hat’]
MET-1 [’met’, ’-’, ’1’] [’met’, ’-’, ’1’]
HiPS201B7 [’hips’, ’##201’, ’##b7’] [’hips’, ’##20’, ’##1’, ’##b’, ’##7’]
KM12-L4A [’km’, ’##12’, ’-’, ’l4’, ’##a’] [’km’, ’##12’, ’-’, ’l’, ’##4’, ’##a’]
HuH7 ✓ [’huh’, ’##7’]
AD-38 [’ad’, ’-’, ’38’] [’ad’, ’-’, ’38’]

Table 4.4: Review of the tokenization between BERT and PubMedBERT.

PubMedBERT SCIBERT BERT BioBERT
Terms in vocab 906 486 306 135
Avg length 2.80 3.18 3.58 4.04

Table 4.5: The number of gene and cell terms from the dataset in the vocabulary of
some relevant pre-trained models.

4.4 Models
When fine-tuning the Transformer model for identifying key sentences, the training
is conducted from a checkpoint that is a pre-trained model. Table 4.6 shows how
the aforementioned models perform without any fine-tuning. As the models have no
fine-tuning on specific query sentences, evaluation is done by calculating the cosine
similarity between the sentences in the test dataset and the average key sentence
embeddings from the training dataset. That is, the average key sentence embedding
replaces the query sentence.

Model ARP MSE PCC
S-PubMedBERT 0.480 0.843 0.180
PubMedBERT 0.550 0.956 0.086

BERT 0.349 0.864 0.078
SciBERT 0.566 0.730 0.099
BioBERT 0.377 0.863 0.067

Table 4.6: Base model performance without fine-tuning.

The comparison between fine-tuning from S-PubMedBERT, PubMedBERT, BERT,
BioBERT, and SciBERT are shown in Table 4.7. In these experiments, all models
are evaluated and fine-tuned using Generic Query 1, which is ”knock mutat silence
disrupt crispr lack cell gene remove edit”.
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Model ARP 95% CI MSE PCC
S-PubMedBERT 0.800 ± 0.014 0.186 0.721
PubMedBERT 0.804 ± 0.004 0.183 0.676

BERT 0.767 ± 0.004 0.194 0.614
SciBERT 0.795 ± 0.005 0.196 0.598
BioBERT 0.771 ± 0.007 0.198 0.639

Table 4.7: Mean of 5 training iterations with S-PubMedBERT, PubMedBERT,
BERT, SciBERT, and BioBERT as checkpoints.

4.5 Loss Function
A higher margin hyperparameter of the contrastive loss function encourages the
model to output lower scores for dissimilar sentences but does not affect the loss
applied to similar sentences. In previous experiments, contrastive loss with a margin
of 0.5 has been used. In Table 4.8, results of margins of 0.1, 0.3, 0.5, 0.7, and 0.9
are presented, along with the results of using cosine similarity as the loss function.
ARP results are barely affected by the loss function. However, MSE and PCC are
affected. The largest difference can be seen in MSE, where contrastive loss with
margin 0.1 has 0.698 in MSE, whereas cosine similarity loss has 0.003 MSE. This is
probably because of the data distribution with many more negative samples than
positives. Hence, encouraging cosine similarity outputs close to 0 will yield low MSE.
The PCC is also affected, but not to the same degree as MSE.

Loss Function Margin ARP 95% CI MSE PCC
Contrastive Loss 0.1 0.792 ± 0.012 0.698 0.433
Contrastive Loss 0.3 0.800 ± 0.007 0.359 0.639
Contrastive Loss 0.5 0.800 ± 0.014 0.186 0.721
Contrastive Loss 0.7 0.800 ± 0.007 0.052 0.718
Contrastive Loss 0.9 0.803 ± 0.007 0.005 0.740

Cosine Similarity Loss – 0.802 ± 0.007 0.003 0.764

Table 4.8: Mean of 5 training iterations with different loss function configurations.

Figure 4.2 displays histograms of KS-PubMedBERT and the best-performing model
trained with cosine similarity. Both had an ARP of 0.81 on the test dataset. How-
ever, as indicated by the different MSE results in Table 4.8, the output cosine
similarities are contrasting. Most notably, the contrastive loss with a margin of 0.5
appears to not encourage the model to produce any similarity scores lower than
roughly 0.35 in Figure 4.2a. Training with the cosine loss function seems to produce
more evenly distributed cosine similarities, as seen in Figure 4.2b. Notice that the
y-axis has a logarithmic scale.

Figure 4.3 also presents the difference between cosine similarities with the two dif-
ferent loss functions. Here, positives are the frequency of total positives found
above a certain cosine similarity threshold with respect to the total number of
positives in the test dataset. The positives indicates how many key sentences the

50



4. Results

(a) Contrastive Loss (b) Cosine Similarity Loss

Figure 4.2: Number of sentences in intervals of cosine similarity. Each bar represents
an interval of 0.01 cosine similarity. The blue colors represent the positive labels
(TP and FN), and the red represents the negative labels (FP and TN).

model retrieves in comparison to the total number of key sentences in the dataset,
given a threshold. The prevalence metric indicates how many positives are found
in relation to the total number of sentences found. Prevalence is calculated as
(TP + FN)/(TP + FN + FP + TN) and serves as an indication as to how certain
one can be that a sentence above a certain threshold is, in fact, a key sentence. For
instance, in Figure 4.3b at a cosine similarity threshold of 0.9, all sentences with
a cosine similarity of above 0.9 are evaluated. Roughly 20% of positive sentences
are found out of the total 886 positives the test dataset contains. The prevalence
is about 90%, meaning that from all the sentences with a higher cosine similarity
than 0.9, 90% of them are labeled as key sentences in the test dataset. Hence, both
a high prevalence and positives score is desired. Both Figure 4.3b and Figure 4.3a
seem to indicate comparable performance, where the model trained with contrastive
loss function is truncated with respect to the cosine similarity in comparison to the
model with cosine similarity loss.

(a) Contrastive Loss (b) Cosine Similarity Loss

Figure 4.3: The prevalence and frequency of positives found above the cosine simi-
larity threshold.
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5
Discussion and Conclusion

In this chapter, we discuss the results obtained, in addition to an account of possible
future work. Finally, we conclude this project with a summary.

5.1 Discussion
The objectives of this project were to fine-tune a Sentence Transformer model for the
task of keyphrase extraction and to explore different training setups that affect the
performance of the models. In the subsequent sections, we will discuss the selected
approaches, the datasets used, the evaluation process, and the outcomes.

5.1.1 Data and Evaluation
The initial CRISPR-related dataset was labeled on the document level and not the
sentence level. For each article, the relevant cells and genes are annotated, but the
annotation is per article and not for each sentence. The consequence was that an
approach using NER and RD became more complicated to execute. While extraction
of named entities and relations is possible to explore, this project chose to instead
explore the approach of key sentence extraction. Nevertheless, NER and RD could
be used to extract named entities and relations from the key sentences in a later
stage.

As presented in Section 4.1, there was an issue with evaluation errors, where the
model predicted key sentences that were not annotated as such. The evaluation
error problem, which was introduced in Subsection 2.9.1, is quite prevalent. From
the false positive predictions, there was an evaluation error of 65 − 71%, where the
uncertainty comes from the 11 sentences that were annotated as inconclusive. Since
the test dataset and the training dataset has been built in a similar fashion, there is
reason to believe that a significant amount of actual key sentences are not labeled in
the training dataset as well. The training dataset flaw might contribute to worsening
the outcome. A possible solution is to manually annotate the entire dataset, but
this would probably be too expensive. Another interesting outcome of the manual
annotation was that from the 177 sentences, 11 were inconclusive. Hence, deciding
whether a sentence is a key sentence is a hard task, even for experts, and is a matter
of subjective interpretation. The evaluation errors also indicate one of many reasons
why information retrieval systems are hard to evaluate accurately. Furthermore,
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analysis of the output cosine similarity scores indicates the usefulness of cosine
similarity as an expression of the model confidence. Higher cosine similarity seems
to increase the likelihood that the predicted sentence is, in fact, a key sentence. From
the original 177 sentences that were evaluated as wrong by the evaluation system,
115 turned out to be correct, and the average cosine similarity of these sentences
is 0.845. For the 51 sentences that were still wrong after manual annotation, the
average cosine similarity is only 0.663.

The structural consistency of key sentences was not studied, and there might exist
simple heuristics or a possibility to increase the performance by applying a hybrid
approach with statistics. For instance, key sentences could appear more frequently
in the abstract or the conclusion section than in other sections. If this is the case, en-
couraging key sentence predictions in these sections could be beneficial. Nonetheless,
no obvious structural consistency was found.

5.1.2 Discussion of Methods
The discussion regarding the chosen method will cover four different subjects. Firstly,
our approach is compared against an alternative approach without a query to re-
trieve relevant sentences. Secondly, the problem of retrieving relevant sentences is
discussed. Thirdly, there is a discussion about the difficulty of defining key sen-
tences. Lastly, scenarios where key content is found in multiple sentences, as well
as the flexibility of the query approach, will be covered.

By introducing a query, also referred to as an anchor, the hope was to achieve faster
convergence. The idea was that providing a more static point in the vector space,
an anchor, which would repel or attract sentences, would facilitate the model during
fine-tuning. An alternative approach would have been to train key sentences to be
semantically equal and non-key sentences in relation to key sentences to be semanti-
cally unrelated. Then, the average key sentence embedding could be used to retrieve
the relevant sentences. This approach was briefly and informally explored during the
early stages of implementation, but the query approach seemingly provided higher
performance. Therefore, this project only presents results with an approach with
a query sentence. Another advantage of the query sentence is that it provides an
easy method to evaluate by computing the similarity score between a query and the
input sentence.

Without a query, the average key sentence embedding from the training dataset
could be used to retrieve relevant sentences. In this case, the training task differs
from the retrieval task. The model is not trained against the average key sentence
embedding, but the average key sentence embedding is used to retrieve key sentences.
This could be one argument for why a query approach resulted in higher performance.
A possible development of the current model could be to use the average key sentence
embedding as an anchor/query and to train with this embedding as an anchor instead
of the embeddings of general sentences or randomized embeddings. On the other
hand, it is possible that this would still not affect the results. The reason for this is
that the query itself seems to have an insignificant effect on the result.
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Another drawback of our approach, if it were to be used in other domains, is that
it is possibly difficult to define key sentences in other domains. It is possible that
the information differs a lot between key sentences. Sometimes general information
could be found between the key sentences, but in some domains, there could be few
or no common denominators. Then, it could be hard to annotate a dataset for key
sentence extraction. On the other hand, any embedding can be used as a query, and
it can be randomized without significantly affecting the result.

Lastly, in some cases, key content could be found in multiple sentences such that a
single sentence is not enough to gain the full information. The assumption of a key
sentence containing all relevant information might not always hold. In our approach,
incomplete key sentences that are missing some key content can be predicted in the
lack of a complete key sentence. The reason is that sentences closest to the query are
predicted as key sentences. When using the query approach for sentence retrieval,
the number of predicted sentences can be adjusted for the specific use case. If many
sentences are needed, it is easy to predict more key sentences. In this way, the
query and similarity approach has high flexibility, and the approach is adjustable
for different scenarios. Furthermore, outputting cosine similarity scores provides
information when no sentence in the text is semantically close to the query sentence.
Finally, another related issue with the sentence approach is that some sentence
tokenizer needs to be applied to the text before feeding the text to the model. A
suboptimal sentence tokenizer might impair the performance of the key sentence
retrieval system.

5.1.3 Result Analysis
The objective of this section is to discuss the research questions formulated in Sec-
tion 1.1 in relation to the results obtained. These questions can be summarized
as whether Sentence Transformers are effective for key sentence extraction, which
factors influence the performance of the models, and how the models can be used
in a deployment scenario. Firstly, the impact of formulating different queries on the
performance of the model is covered. Secondly, there is a comparison between dif-
ferent base models and how their vocabulary influences performance. Thirdly, there
is a discussion about evaluation errors and challenges in the task of key content
extraction. Fourthly, the impact of the loss function is analyzed. The discussion of
results is wrapped up with an observation on the usefulness of different metrics and
a commentary on possible uses for the model upon deployment.

The results showed that it was an effective approach to fine-tuning a Sentence Trans-
former model for the task of key sentence extraction. The ARP of KS-PubMedBERT
of 90.4% makes the model likely to predict a key sentence. Altering the query sen-
tence did not seem to significantly alter the performance of the model. However,
results suggest that selecting the correct base model before fine-tuning is necessary.
Finally, the loss function did not alter the outcome in terms of ARP. However, it
did affect the MSE and PCC scores.

By evaluating different queries, the goal was to investigate whether the initial se-
mantics of the anchor mattered for the semantic understanding of key sentences
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after fine-tuning. All the queries, both those mentioning biomedical terms and fresh
tokens, resulted in an ARP of around 80%. Hence, the query itself does not sig-
nificantly affect the result. As the query embedding relates to the model’s initial
understanding of a key sentence, it is possible that a smaller training dataset would
cause the query to have a larger impact on the result. However, no clear trend was
found upon comparing the evaluation throughout the training of fresh tokens and
natural language queries. An example of evaluation can be seen in Appendix A. One
conclusion to draw from the fact that the starting point seems to be unimportant
is that the training of the model is quite robust. Regardless of the initial state, the
model often appears to learn the most important semantics necessary to classify key
sentences.

The assumption when analyzing the vocabulary of different models was that having
more gene- and cell terms in the vocabulary would benefit the models, as they might
take advantage of a higher quality word vocabulary in understanding sentences. One
weakness of this particular study is that it only considers genes and cells, which form
a subset of all the words in the entire dataset. Over 11,000 unique gene- and cell
names were found in the training dataset, which is quite large when taking into
consideration that the entire vocabulary of the models is roughly 30,000 words. The
best-suited model was PubMedBERT with 7.8% of the studied terms in-vocabulary.
S-PubMedBERT has the same vocabulary as PubMedBERT. SciBERT, BioBERT,
and BERT showed a significantly worse vocabulary than PubMedBERT. When com-
paring the models before fine-tuning, there seems to be some relation between the
vocabulary and the performance on the sentence semantics task. SciBERT, the
model with second best vocabulary, did best with an ARP of 0.566, followed by
PubMedBERT and S-PubMedBERT with an ARP of 0.550 and 0.480, respectively.
BioBERT and BERT, which had the worst vocabulary performance, also had the
worst ARP. S-PubMedBERT did, however, outperform the other models as mea-
sured by the PCC. After fine-tuning, the differences between the performance of the
models narrowed. However, BERT and BioBERT were roughly 3 percentage points
worse than the other models in ARP.

Without fine-tuning, the base models performed with an ARP around 35-55 %, and
after fine-tuning, the ARP was around 80%. Utilizing the average key sentence
embedding to retrieve relevant sentences implies that all key sentences are semanti-
cally similar and differ from other sentences without fine-tuning. It is possible that
the key sentences don’t always differ much from other sentences. As seen in Fig-
ure 4.1 before fine-tuning, the average key sentence embedding could lead to many
sentences being misclassified as key sentences and the other way around. Some sen-
tences can mention similar terms as key sentences without being considered as key
sentences. This can lead to the average key sentence embedding being closer to a
non-key sentence than a key sentence in the vector space, which leads to a wrongly
predicted sentence. A key sentence can also be misclassified as a non-key sentence
if the embedding has a larger distance to the average key sentence embedding than
a non-key sentence. To conclude, using base models and the average key sentence
embedding leads to worse performance than fine-tuning and using a query to retrieve
key sentences.
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The T-SNE visualization showed the comparison between the pre-trained model S-
PubMedBERT and the fine-tuned version KS-PubMedBERT. The plot reveals two
quite distinctive clusters after fine-tuning, which represent key sentences and non-key
sentences for the most part. This visualization suggests that training is successful
in differentiating between key sentences and sentences. However, there are a few
non-key sentences that seem to belong to the cluster of key sentences. A few key
sentences belong to the cluster of non-key sentences. This could be an explanation
for the score of the model. It is interesting that almost all sentences that belong to
the ”wrong” cluster are at the edge of the cluster. The reason behind this could be
that these sentences are similar to key sentences but don’t fulfill the criteria to be
a key sentence or that they are key sentences but seem more similar to a non-key
sentence. According to the analysis of evaluation errors, a substantial part of the
issue is likely that many sentences that, in fact, are key sentences are not labeled as
such.

The base models must understand the semantic meaning of the key sentences to re-
alize how they differ from other sentences. In the CRISPR-related domain, it is pos-
sible that the models don’t fully understand the semantic meaning of the CRISPR-
related texts without fine-tuning. This can be strengthened by S-PubMedBERT
and PubMedBERT, which are biomedical-domain models, performing better than
BERT, which is a general domain model. S-PubMedBERT and PubMedBERT,
since trained on biomedical domain texts, should be able to more accurately rep-
resent the semantic meaning of the key sentences than BERT is able to do. The
result confirms this, where the biomedical domain models have higher performance
in the task than BERT. Comparing S-PubMedBERT and PubMedBERT, it seems
like general semantic sentence training does not transfer to the particular task of
identifying key sentences as defined in this project.

The results showed that KS-PubMedBERT had issues with evaluation errors, which
were introduced in Subsection 2.9.1. For KS-PubMedBERT, there were 115 key sen-
tences not annotated as such out of the total of 177 wrong key sentence predictions.
Therefore, it seems reasonable that most training configurations could obtain ARP
close to 0.9 after manual annotation. Besides, there is not a clear-cut distinction be-
tween key sentences and non-key sentences. For some key content, several sentences
are needed to cover all the relevant content. Genes/cells, knockout, and CRISPR-
related terms could be mentioned in two or more sentences. This scenario is not
covered by our model since the model only searches for occurrences of these terms
in one sentence. If no such sentence exists, the model can predict a sentence that
mentions parts of the information, and such an incomplete sentence could therefore
be predicted.

In the loss function analysis, the main objective was to evaluate how different mar-
gins affected the ARP. As expected, the MSE decreased as the margin increased,
as this encouraged the model to output cosine similarity scores close to 0 more
frequently. This reduces the MSE because the dataset is unbalanced with a high
number of non-key sentences. As the margin increased, the PCC also improved. The
results, however, show that the ARP was not affected by altering the loss function.
Further studies were conducted to analyze the frequency of key sentences and non-
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key sentences in different ranges of cosine similarity. When comparing a model that
has been trained with contrastive loss with a margin of 0.5 and a model trained with
cosine similarity loss, there were no clear differences in their ability to differentiate
between key sentences and non-key sentences. Therefore, it is a subjective judgment
of which types of cosine similarity scores one wants to use. If the cosine similarity
loss is interpreted as a probability that the queried sentence is a key sentence, it
might be more intuitive with cosine similarity loss, as the output utilizes the entire
range between 0 and 1. On the other hand, it might be illogical that many key sen-
tences are predicted with a cosine similarity score close to 0. Nevertheless, in either
case, the cosine similarities seem to indicate to a satisfactory degree the likelihood
that the sentence is a key sentence. In other words, as the cosine similarity increases,
so does the likelihood that the sentence is a key sentence.

The metrics presented throughout the results, ARP, MSE, and PCC, are used for
different reasons. The motivation was that ARP would indicate how well the model
performs on the actual task of key sentence extraction, whereas MSE provides an
indication as to how well the cosine similarity output follows the labels. PCC is a
covariance metric, which, similarly to MSE, measures how the cosine scores follow
the labels. Following the analysis done in Section 4.5, MSE and PCC does not seem
to be very useful, as a big part of their score is modeling how well the model predicts
outputs close to 0 for non-key sentences. This property is irrelevant for key sentence
extraction, as illustrated by the outcome of training with a contrastive loss with a
margin of 0.1. Here, the ARP was 0.792 ± 0.012, hence, not substantially worse
than other margins. However, the MSE and PCC scores were poor, with an MSE
of 0.698 and PCC of 0.433.

In terms of deployment, the most natural application of the model, which has been
studied in this thesis, is key sentence extraction given a research article related to the
CRISPR-Cas9 domain. However, another possible application is to use the model
for document retrieval. The simplest form of document retrieval could state that if
an article contains a key sentence, it is likely that the entire article is related to the
CRISPR domain. For instance, according to the analysis presented in Figure 4.3a,
applying the model with a cut-off frequency of 0.8 in cosine similarity, roughly 75%
of actual key sentences will be identified, and roughly 75% of the predicted sentences
will be true positives. This example assumes that the model performs similarly on
the test dataset as on queried documents.

5.1.4 Future Work
Our approach was to fine-tune pre-trained models using a siamese network architec-
ture for key sentence extraction. A weakness in this approach was that the curated
dataset did not have all key sentences labeled. Therefore, a possible future research
area in improving the Sentence Transformer model is to investigate methods to im-
prove upon the training given an incomplete dataset. One possible approach to
achieve this is to take inspiration from the Augmented SBERT [75] method. Here,
the human-annotated but incomplete golden dataset is passed to a cross-encoder,
which is used to predict labels that form a silver dataset. Both the gold and silver
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datasets are used as training samples for a bi-encoder. There are some differences be-
tween this approach and the issues at hand in this project. For instance, it assumes
that a well-performing cross-encoder already exists. Nevertheless, taking inspiration
from this method seems promising, especially as the manual annotation presented in
Section 4.1 indicates that the frequency of annotated key sentences in the training
dataset is too low to correctly reflect reality.

To automate the annotation process further, NER could be used in the sentences
extracted by our model to automatically detect genes and cells in the key sentences,
which would reduce the amount of manual work further. Particularly, the BERN2
[72] model has shown promising results in biomedical NER tasks. Another approach
for finding key sentences could be to apply BERN2 in parallel with a Sentence
Transformer, such that both entities and sentence semantics are considered in the
sentence extraction. Another unsolved problem is to study the differences between
articles regarding KO, KI, and KD genes. As presented in Section 3.1, the current
dataset is unbalanced with a majority of KO genes. Nevertheless, an interesting
task is to identify whether an article is about KO, KI, or KD.

One assumption that was formulated at the beginning of this project was that each
article contains at least one sentence that contains all the key content of a CRISPR-
related article. Each such sentence has been referred to as a key sentence, but this
assumption might not hold for all texts. Additionally, there might exist better ways
to extract key content than by looking at individual sentences. The self-attention
mechanism of the Transformer, which scales quadratically, makes it unsuited to
process large sequences of texts. This was an important factor as to why it was
decided to split the text into sentences. A possible solution to the key sentence
assumption is to investigate the application of a Longformer [41] architecture to this
task. By doing so, entire articles could be processed at a time with a reasonable
performance.

Finally, another possible area to explore is to further analyze patterns in the text
structure, i.e. if it is sufficient to only look at the abstract, introduction, or conclu-
sion to find key sentences. If that is the case, the problem of key content extraction
could be made simpler, and it would save time and work to not have to go through
the full articles.

5.2 Conclusion
We developed a computationally efficient Transformers-based model for key sentence
extraction of CRISPR-Cas9 research articles with siamese network architecture. By
formulating the task as a regression problem and utilizing a query sentence as an
anchor in the training, the model outputs useful cosine similarity scores, in addition
to the ability to easily be used for classification.

We show, with a thorough analysis of the model, that it improves upon fine-tuning.
Average R-Precision of 90.4% is achieved on the key sentence extraction task.

The extraction of key content poses a multifaceted challenge, often necessitating
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diverse methods tailored to specific use cases. However, the investment of time and
effort in developing a model for automated key content extraction is justified by the
significant benefits it offers in terms of saving time and facilitation of work.

60



Bibliography

[1] M. Redman, A. King, C. Watson, and D. King, “What is crispr/cas9?” Archives
of Disease in Childhood - Education and Practice, vol. 101, no. 4, pp. 213–215,
2016, issn: 1743-0585. doi: 10.1136/archdischild-2016-310459. eprint:
https://ep.bmj.com/content/101/4/213.full.pdf. [Online]. Available:
https://ep.bmj.com/content/101/4/213.

[2] P. D. Hsu, E. S. Lander, and F. Zhang, “Development and applications of
crispr-cas9 for genome engineering,” Cell, vol. 157, no. 6, pp. 1262–1278, 2014,
issn: 0092-8674. doi: https://doi.org/10.1016/j.cell.2014.05.010.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0092867414006047.

[3] M. Adli, “The crispr tool kit for genome editing and beyond,” Nature Com-
munications, vol. 9, no. 1, p. 1911, May 2018, issn: 2041-1723. doi: 10.1038/
s41467- 018- 04252- 2. [Online]. Available: https://doi.org/10.1038/
s41467-018-04252-2.

[4] S. Sánchez-León, J. Gil-Humanes, C. V. Ozuna, et al., “Low-gluten, nontrans-
genic wheat engineered with crispr/cas9,” Plant biotechnology journal, vol. 16,
no. 4, pp. 902–910, 2018. doi: https://doi.org/10.1111/pbi.12837.

[5] C. A. Lino, J. C. Harper, J. P. Carney, and J. A. Timlin, “Delivering crispr:
A review of the challenges and approaches,” Drug Delivery, vol. 25, no. 1,
pp. 1234–1257, 2018, PMID: 29801422. doi: 10.1080/10717544.2018.1474964.
eprint: https://doi.org/10.1080/10717544.2018.1474964. [Online]. Avail-
able: https://doi.org/10.1080/10717544.2018.1474964.

[6] S. Sarntivijai, Y. Lin, Z. Xiang, et al., “Clo: The cell line ontology,” Journal
of biomedical semantics, vol. 5, no. 1, pp. 1–10, 2014.

[7] N. Perera, M. Dehmer, and F. Emmert-Streib, “Named entity recognition and
relation detection for biomedical information extraction,” Frontiers in Cell
and Developmental Biology, vol. 8, 2020, issn: 2296-634X. doi: 10 . 3389 /
fcell.2020.00673. [Online]. Available: https://www.frontiersin.org/
articles/10.3389/fcell.2020.00673.

[8] C. B. Gurumurthy, A. R. O’Brien, R. M. Quadros, et al., “Reproducibility
of crispr-cas9 methods for generation of conditional mouse alleles: A multi-
center evaluation,” Genome Biology, vol. 20, no. 1, p. 171, Aug. 2019, issn:
1474-760X. doi: 10.1186/s13059-019-1776-2. [Online]. Available: https:
//doi.org/10.1186/s13059-019-1776-2.

61

https://doi.org/10.1136/archdischild-2016-310459
https://ep.bmj.com/content/101/4/213.full.pdf
https://ep.bmj.com/content/101/4/213
https://doi.org/https://doi.org/10.1016/j.cell.2014.05.010
https://www.sciencedirect.com/science/article/pii/S0092867414006047
https://www.sciencedirect.com/science/article/pii/S0092867414006047
https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/https://doi.org/10.1111/pbi.12837
https://doi.org/10.1080/10717544.2018.1474964
https://doi.org/10.1080/10717544.2018.1474964
https://doi.org/10.1080/10717544.2018.1474964
https://doi.org/10.3389/fcell.2020.00673
https://doi.org/10.3389/fcell.2020.00673
https://www.frontiersin.org/articles/10.3389/fcell.2020.00673
https://www.frontiersin.org/articles/10.3389/fcell.2020.00673
https://doi.org/10.1186/s13059-019-1776-2
https://doi.org/10.1186/s13059-019-1776-2
https://doi.org/10.1186/s13059-019-1776-2


Bibliography

[9] P. DEKA, A. JUREK-LOUGHREY, and P. DEEPAK, “Improved methods to
aid unsupervised evidence-based fact checking for online health news,” Journal
of Data Intelligence, vol. 3, no. 4, pp. 474–504, 2022.

[10] E. Szathmáry, F. Jordán, and C. Pál, “Can genes explain biological complex-
ity?” Science, vol. 292, no. 5520, pp. 1315–1316, 2001. doi: 10.1126/science.
1060852. eprint: https://www.science.org/doi/pdf/10.1126/science.
1060852. [Online]. Available: https://www.science.org/doi/abs/10.1126/
science.1060852.

[11] J. P. Manis, “Knock out, knock in, knock down genetically manipulated mice
and the nobel prize,” New England Journal of Medicine, vol. 357, no. 24,
pp. 2426–2429, 2007, PMID: 18077807. doi: 10.1056/NEJMp0707712. eprint:
https://doi.org/10.1056/NEJMp0707712. [Online]. Available: https://
doi.org/10.1056/NEJMp0707712.

[12] K. R. Chowdhary, “Natural language processing,” in Fundamentals of Arti-
ficial Intelligence. New Delhi: Springer India, 2020, pp. 603–649, isbn: 978-
81-322-3972-7. doi: 10.1007/978-81-322-3972-7_19. [Online]. Available:
https://doi.org/10.1007/978-81-322-3972-7_19.

[13] V. Suseela, “The use of online information search/retrieval services in univer-
sity of hyderabad,” Nov. 2014.

[14] D. D. Palmer, “Tokenisation and sentence,” Handbook of natural language
processing, p. 11, 2000.

[15] A. Nayak, H. Timmapathini, K. Ponnalagu, and V. Gopalan Venkoparao, “Do-
main adaptation challenges of BERT in tokenization and sub-word represen-
tations of out-of-vocabulary words,” in Proceedings of the First Workshop on
Insights from Negative Results in NLP, Online: Association for Computational
Linguistics, Nov. 2020, pp. 1–5. doi: 10.18653/v1/2020.insights-1.1. [On-
line]. Available: https://aclanthology.org/2020.insights-1.1.

[16] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
Transformer-xl: Attentive language models beyond a fixed-length context, 2019.
arXiv: 1901.02860 [cs.LG].

[17] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate reviews
and discovering sentiment,” arXiv preprint arXiv:1704.01444, 2017.

[18] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,” CoRR, vol. abs/1810.04805,
2018.

[19] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2012, pp. 5149–
5152.

[20] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Berlin,
Germany: Association for Computational Linguistics, Aug. 2016, pp. 1715–
1725. doi: 10.18653/v1/P16-1162. [Online]. Available: https://aclanthology.
org/P16-1162.

62

https://doi.org/10.1126/science.1060852
https://doi.org/10.1126/science.1060852
https://www.science.org/doi/pdf/10.1126/science.1060852
https://www.science.org/doi/pdf/10.1126/science.1060852
https://www.science.org/doi/abs/10.1126/science.1060852
https://www.science.org/doi/abs/10.1126/science.1060852
https://doi.org/10.1056/NEJMp0707712
https://doi.org/10.1056/NEJMp0707712
https://doi.org/10.1056/NEJMp0707712
https://doi.org/10.1056/NEJMp0707712
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.18653/v1/2020.insights-1.1
https://aclanthology.org/2020.insights-1.1
https://arxiv.org/abs/1901.02860
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162


Bibliography

[21] Q. Chen, Y. Peng, and Z. Lu, “Biosentvec: Creating sentence embeddings
for biomedical texts,” in 2019 IEEE International Conference on Healthcare
Informatics (ICHI), 2019, pp. 1–5. doi: 10.1109/ICHI.2019.8904728.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[23] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 1532–1543.

[24] A. S. Thakur and N. Sahayam, “Speech recognition using euclidean distance,”
International Journal of Emerging Technology and Advanced Engineering, vol. 3,
no. 3, pp. 587–590, 2013.

[25] D. Sinwar and R. Kaushik, “Study of euclidean and manhattan distance met-
rics using simple k-means clustering,” Int. J. Res. Appl. Sci. Eng. Technol,
vol. 2, no. 5, pp. 270–274, 2014.

[26] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,” SIAM
Journal on Scientific Computing, vol. 26, no. 6, pp. 1955–1988, 2005. doi: 10.
1137/030601818. eprint: https://doi.org/10.1137/030601818. [Online].
Available: https://doi.org/10.1137/030601818.

[27] H. Liao and Z. Xu, “Approaches to manage hesitant fuzzy linguistic informa-
tion based on the cosine distance and similarity measures for hfltss and their
application in qualitative decision making,” Expert Systems with Applications,
vol. 42, no. 12, pp. 5328–5336, 2015.

[28] A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: A tutorial,”
Computer, vol. 29, no. 3, pp. 31–44, 1996. doi: 10.1109/2.485891.

[29] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016. arXiv: 1609.04747. [Online]. Available: http://
arxiv.org/abs/1609.04747.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[31] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555,
2014. arXiv: 1412.3555. [Online]. Available: http://arxiv.org/abs/1412.
3555.

[32] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for
statistical machine translation,” CoRR, vol. abs/1406.1078, 2014. arXiv: 1406.
1078. [Online]. Available: http://arxiv.org/abs/1406.1078.

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in Neural Information Processing Systems, Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds.,
vol. 27, Curran Associates, Inc., 2014. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-
Paper.pdf.

[34] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Ad-
vances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, et al., Eds., vol. 30, Curran Associates, Inc., 2017. [Online]. Avail-

63

https://doi.org/10.1109/ICHI.2019.8904728
https://doi.org/10.1137/030601818
https://doi.org/10.1137/030601818
https://doi.org/10.1137/030601818
https://doi.org/10.1137/030601818
https://doi.org/10.1109/2.485891
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf


Bibliography

able: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[35] G. Neubig, “Neural machine translation and sequence-to-sequence models:
A tutorial,” CoRR, vol. abs/1703.01619, 2017. arXiv: 1703.01619. [Online].
Available: http://arxiv.org/abs/1703.01619.

[36] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[37] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[38] J. Lee, W. Yoon, S. Kim, et al., “BioBERT: a pre-trained biomedical language
representation model for biomedical text mining,” Bioinformatics, vol. 36,
no. 4, pp. 1234–1240, Sep. 2019, issn: 1367-4803. doi: 10.1093/bioinformatics/
btz682. eprint: https://academic.oup.com/bioinformatics/article-
pdf/36/4/1234/32527770/btz682.pdf. [Online]. Available: https://doi.
org/10.1093/bioinformatics/btz682.

[39] A. Radford, K. Narasimhan, T. Salimans, and i. Sutskever, “Improving lan-
guage understanding by generative pre-training,” Technical Report, OpenAI,
2018.

[40] S. Singh and A. Mahmood, “The nlp cookbook: Modern recipes for transformer
based deep learning architectures,” IEEE Access, vol. 9, pp. 68 675–68 702,
2021. doi: 10.1109/ACCESS.2021.3077350.

[41] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document
transformer,” arXiv preprint arXiv:2004.05150, 2020.

[42] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in BERTology: What
we know about how BERT works,” Transactions of the Association for Com-
putational Linguistics, vol. 8, pp. 842–866, 2020. doi: 10.1162/tacl_a_00349.
[Online]. Available: https://aclanthology.org/2020.tacl-1.54.

[43] Y. Wu, M. Schuster, Z. Chen, et al., Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation, 2016. arXiv:
1609.08144 [cs.CL].

[44] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” CoRR, vol. abs/1908.10084, 2019. arXiv: 1908.10084. [On-
line]. Available: http://arxiv.org/abs/1908.10084.

[45] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big Data, vol. 3, no. 1, p. 9, May 2016.

[46] Y. Zhu, R. Kiros, R. Zemel, et al., “Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Dec. 2015.

[47] Y. Gu, R. Tinn, H. Cheng, et al., “Domain-specific language model pretraining
for biomedical natural language processing,” ACM Trans. Comput. Healthcare,
vol. 3, no. 1, Oct. 2021, issn: 2691-1957. doi: 10.1145/3458754. [Online].
Available: https://doi.org/10.1145/3458754.

[48] I. Beltagy, K. Lo, and A. Cohan, Scibert: A pretrained language model for
scientific text, 2019. arXiv: 1903.10676 [cs.CL].

64

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1703.01619
http://arxiv.org/abs/1703.01619
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/32527770/btz682.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/32527770/btz682.pdf
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1109/ACCESS.2021.3077350
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://arxiv.org/abs/1903.10676


Bibliography

[49] Y. Peng, S. Yan, and Z. Lu, “Transfer learning in biomedical natural lan-
guage processing: An evaluation of BERT and elmo on ten benchmarking
datasets,” CoRR, vol. abs/1906.05474, 2019. arXiv: 1906 . 05474. [Online].
Available: http://arxiv.org/abs/1906.05474.

[50] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized BERT pre-
training approach,” CoRR, vol. abs/1907.11692, 2019. arXiv: 1907 . 11692.
[Online]. Available: http://arxiv.org/abs/1907.11692.

[51] D. Chicco, “Siamese neural networks: An overview,” in Artificial Neural Net-
works, H. Cartwright, Ed. New York, NY: Springer US, 2021, pp. 73–94, isbn:
978-1-0716-0826-5. doi: 10.1007/978-1-0716-0826-5_3. [Online]. Available:
https://doi.org/10.1007/978-1-0716-0826-5_3.

[52] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2015.

[53] T. Nguyen, M. Rosenberg, X. Song, et al., “Ms marco: A human generated
machine reading comprehension dataset,” choice, vol. 2640, p. 660, 2016.

[54] M. Peji Bach,. Krsti, S. Seljan, and L. Turulja, “Text mining for big data
analysis in financial sector: A literature review,” Sustainability, vol. 11, no. 5,
p. 1277, Feb. 2019, issn: 2071-1050. doi: 10 . 3390 / su11051277. [Online].
Available: http://dx.doi.org/10.3390/su11051277.

[55] L. L. Wang and K. Lo, “Text mining approaches for dealing with the rapidly
expanding literature on COVID-19,” Briefings in Bioinformatics, vol. 22, no. 2,
pp. 781–799, Dec. 2020, issn: 1477-4054. doi: 10.1093/bib/bbaa296. eprint:
https://academic.oup.com/bib/article- pdf/22/2/781/36654452/
bbaa296.pdf. [Online]. Available: https://doi.org/10.1093/bib/bbaa296.

[56] A. M. Cohen and W. R. Hersh, “A survey of current work in biomedical
text mining,” Briefings in Bioinformatics, vol. 6, no. 1, pp. 57–71, Mar. 2005,
issn: 1467-5463. doi: 10.1093/bib/6.1.57. eprint: https://academic.
oup.com/bib/article-pdf/6/1/57/814809/57.pdf. [Online]. Available:
https://doi.org/10.1093/bib/6.1.57.

[57] A. Yoshida, J. Choi, H. R. Jin, et al., “Fbxl8 suppresses lymphoma growth and
hematopoietic transformation through degradation of cyclin D3,” Oncogene,
vol. 40, no. 2, pp. 292–306, Jan. 2021.

[58] V. Yadav and S. Bethard, “A survey on recent advances in named entity
recognition from deep learning models,” CoRR, vol. abs/1910.11470, 2019.

[59] Z. Li and L. Fu, “A relation-aware span-level transformer network for joint
entity and relation extraction,” in 2022 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2022, pp. 1–8.

[60] K. S. Hasan and V. Ng, “Automatic keyphrase extraction: A survey of the state
of the art,” in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2014, pp. 1262–1273.

[61] E. Papagiannopoulou and G. Tsoumakas, “A review of keyphrase extraction,”
WIREs Data Mining and Knowledge Discovery, vol. 10, no. 2, e1339, 2020.
doi: https : / / doi . org / 10 . 1002 / widm . 1339. eprint: https : / / wires .
onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1339. [Online]. Avail-

65

https://arxiv.org/abs/1906.05474
http://arxiv.org/abs/1906.05474
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.3390/su11051277
http://dx.doi.org/10.3390/su11051277
https://doi.org/10.1093/bib/bbaa296
https://academic.oup.com/bib/article-pdf/22/2/781/36654452/bbaa296.pdf
https://academic.oup.com/bib/article-pdf/22/2/781/36654452/bbaa296.pdf
https://doi.org/10.1093/bib/bbaa296
https://doi.org/10.1093/bib/6.1.57
https://academic.oup.com/bib/article-pdf/6/1/57/814809/57.pdf
https://academic.oup.com/bib/article-pdf/6/1/57/814809/57.pdf
https://doi.org/10.1093/bib/6.1.57
https://doi.org/https://doi.org/10.1002/widm.1339
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1339
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1339


Bibliography

able: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.
1339.

[62] R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan, and
K. Kotecha, “A deep learning model based on bert and sentence transformer
for semantic keyphrase extraction on big social data,” IEEE Access, vol. 9,
pp. 165 252–165 261, 2021. doi: 10.1109/ACCESS.2021.3133651.

[63] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, Thresholding classifiers to
maximize f1 score, 2014. arXiv: 1402.1892 [stat.ML].

[64] B. Gambino, “Reflections on accuracy,” Journal of Gambling Studies, vol. 22,
no. 4, pp. 393–404, 2006.

[65] S. M. Beitzel, E. C. Jensen, and O. Frieder, “Average r-precision,” in Ency-
clopedia of Database Systems, L. LIU and M. T. ÖZSU, Eds. Boston, MA:
Springer US, 2009, pp. 195–195, isbn: 978-0-387-39940-9. doi: 10.1007/978-
0-387-39940-9_491. [Online]. Available: https://doi.org/10.1007/978-
0-387-39940-9_491.

[66] J. A. Aslam, E. Yilmaz, and V. Pavlu, “A geometric interpretation of r-
precision and its correlation with average precision,” in Proceedings of the
28th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, ser. SIGIR ’05, Salvador, Brazil: Associa-
tion for Computing Machinery, 2005, pp. 573–574, isbn: 1595930345. doi:
10.1145/1076034.1076134. [Online]. Available: https://doi.org/10.1145/
1076034.1076134.

[67] I. Cohen, Y. Huang, J. Chen, et al., “Pearson correlation coefficient,” Noise
reduction in speech processing, pp. 1–4, 2009.

[68] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look
at signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1,
pp. 98–117, 2009. doi: 10.1109/MSP.2008.930649.

[69] L. van der Maaten and G. Hinton, “Viualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, pp. 2579–2605, Nov. 2008.

[70] M. Wattenberg, F. Viégas, and I. Johnson, “How to use t-sne effectively,”
Distill, vol. 1, no. 10, e2, 2016.

[71] W. Commons, File:t-sne embedding of mnist.png — wikimedia commons, the
free media repository, [Online; accessed 24-May-2023], 2022. [Online]. Avail-
able: %5Curl%7Bhttps://commons.wikimedia.org/w/index.php?title=
File:T-SNE_Embedding_of_MNIST.png&oldid=660516828%7D.

[72] M. Sung, M. Jeong, Y. Choi, D. Kim, J. Lee, and J. Kang, “BERN2: an
advanced neural biomedical named entity recognition and normalization tool,”
Bioinformatics, vol. 38, no. 20, pp. 4837–4839, Sep. 2022, issn: 1367-4803.
doi: 10.1093/bioinformatics/btac598. eprint: https://academic.oup.
com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btac598.

[73] P. Lewis, M. Ott, J. Du, and V. Stoyanov, “Pretrained language models for
biomedical and clinical tasks: Understanding and extending the state-of-the-
art,” pp. 146–157, Nov. 2020. doi: 10.18653/v1/2020.clinicalnlp-1.17.
[Online]. Available: https://aclanthology.org/2020.clinicalnlp-1.17.

66

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1339
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1339
https://doi.org/10.1109/ACCESS.2021.3133651
https://arxiv.org/abs/1402.1892
https://doi.org/10.1007/978-0-387-39940-9_491
https://doi.org/10.1007/978-0-387-39940-9_491
https://doi.org/10.1007/978-0-387-39940-9_491
https://doi.org/10.1007/978-0-387-39940-9_491
https://doi.org/10.1145/1076034.1076134
https://doi.org/10.1145/1076034.1076134
https://doi.org/10.1145/1076034.1076134
https://doi.org/10.1109/MSP.2008.930649
%5Curl%7Bhttps://commons.wikimedia.org/w/index.php?title=File:T-SNE_Embedding_of_MNIST.png&oldid=660516828%7D
%5Curl%7Bhttps://commons.wikimedia.org/w/index.php?title=File:T-SNE_Embedding_of_MNIST.png&oldid=660516828%7D
https://doi.org/10.1093/bioinformatics/btac598
https://academic.oup.com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf
https://academic.oup.com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf
https://doi.org/10.1093/bioinformatics/btac598
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://aclanthology.org/2020.clinicalnlp-1.17


Bibliography

[74] S.-S. Lee and H.-S. Yong, “Component based approach to handle synonym and
polysemy in folksonomy,” in 7th IEEE International Conference on Computer
and Information Technology (CIT 2007), 2007, pp. 200–205. doi: 10.1109/
CIT.2007.9.

[75] N. Thakur, N. Reimers, J. Daxenberger, and I. Gurevych, “Augmented SBERT:
data augmentation method for improving bi-encoders for pairwise sentence
scoring tasks,” CoRR, vol. abs/2010.08240, 2020. arXiv: 2010.08240. [On-
line]. Available: https://arxiv.org/abs/2010.08240.

[76] L. Richardson, Beautiful soup documentation, 2007.
[77] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:

analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.
[78] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing,”
To appear, 2017.

[79] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated
corpus for learning natural language inference,” CoRR, vol. abs/1508.05326,
2015. arXiv: 1508.05326. [Online]. Available: http://arxiv.org/abs/1508.
05326.

[80] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus
for sentence understanding through inference,” in Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Or-
leans, Louisiana: Association for Computational Linguistics, 2018, pp. 1112–
1122. [Online]. Available: http://aclweb.org/anthology/N18-1101.

[81] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning
an invariant mapping,” in 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 1735–1742.
doi: 10.1109/CVPR.2006.100.

[82] A. Chernyavskiy, D. Ilvovsky, P. Kalinin, and P. Nakov, “Batch-softmax con-
trastive loss for pairwise sentence scoring tasks,” CoRR, vol. abs/2110.15725,
2021. arXiv: 2110.15725. [Online]. Available: https://arxiv.org/abs/2110.
15725.

[83] C. Yang, F. Rottensteiner, and C. Heipke, “Investigations on skip-connections
with an additional cosine similarity loss for land cover classification,” ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. V-3-2020, pp. 339–346, Aug. 2020. doi: 10.5194/isprs-annals-V-3-
2020-339-2020.

[84] M. T. R. Laskar, J. X. Huang, and E. Hoque, “Contextualized embeddings
based transformer encoder for sentence similarity modeling in answer selection
task,” English, in Proceedings of the Twelfth Language Resources and Evalua-
tion Conference, Marseille, France: European Language Resources Association,
May 2020, pp. 5505–5514, isbn: 979-10-95546-34-4. [Online]. Available: https:
//aclanthology.org/2020.lrec-1.676.

[85] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,”
CoRR, vol. abs/1711.05101, 2017. arXiv: 1711 . 05101. [Online]. Available:
http://arxiv.org/abs/1711.05101.

67

https://doi.org/10.1109/CIT.2007.9
https://doi.org/10.1109/CIT.2007.9
https://arxiv.org/abs/2010.08240
https://arxiv.org/abs/2010.08240
https://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://aclweb.org/anthology/N18-1101
https://doi.org/10.1109/CVPR.2006.100
https://arxiv.org/abs/2110.15725
https://arxiv.org/abs/2110.15725
https://arxiv.org/abs/2110.15725
https://doi.org/10.5194/isprs-annals-V-3-2020-339-2020
https://doi.org/10.5194/isprs-annals-V-3-2020-339-2020
https://aclanthology.org/2020.lrec-1.676
https://aclanthology.org/2020.lrec-1.676
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101


Bibliography

68



A
Appendix 1

A.1 Evaluation Plots
This section presents a brief review of the evaluation during training. The experi-
ment is explained in Section 4.2. A total of 25 models were trained in this experiment
and Figure A.1 displays the outcome of evaluation throughout training on two of
these models. Each evaluation step in the figures represents 32,000 training samples.
These figures represent the main findings in evaluation, which is that most models
have an AP of around 72% in the first evaluation step, and 80% after the final eval-
uation step. This seemingly holds regardless of whether the model has been trained
with a fresh token or an embedding of a natural language sentence. These figures
also display another general finding upon evaluation, that the choice of similarity
function matters little for the outcome.

(a) Fresh randomly initialized query vec-
tor.

(b) Natural language query "Gene knock-
out from cell", embedded.

Figure A.1: Evaluation on validation data throughout training as explained in Sec-
tion 4.2.

I


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Aim
	Limitations
	Outline

	Theory
	Biomedical Background
	Natural Language Processing
	Challenges of NLP
	Tokenization and Segmentation
	Semantic Analysis
	Embeddings
	Distance Functions


	Artificial Neural Networks
	Feed Forward Neural Networks
	Recurrent Neural Networks

	Sequence-to-Sequence Models
	Attention-Based Models

	Transformers
	Architecture
	Attention

	BERT
	Biomedical Domain Models
	BioBERT
	SciBERT
	PubMedBERT

	Sentence Transformer Models
	Sentence-BERT
	S-PubMedBert

	Text Mining and Extraction Systems
	Keyphrase Extraction

	Metrics
	Accuracy, Precision, Recall, F1-score
	Average Precision and R-precision
	Pearson Correlation
	Mean Squared Error
	T-SNE

	Related Work

	Methods
	Initial Dataset
	Dataset Curation
	Preprocessing

	Fine-tuning
	Evaluation
	Experiments
	Setup
	Query Sentence
	Models
	Loss Functions


	Results
	KS-PubMedBERT
	Effect of Query Sentence
	Vocabulary
	Models
	Loss Function

	Discussion and Conclusion
	Discussion
	Data and Evaluation
	Discussion of Methods
	Result Analysis
	Future Work

	Conclusion

	Bibliography
	Appendix 1
	Evaluation Plots


