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ABSTRACT 

The epicardial adipose tissue (EAT), which surrounds the heart and is 
separated from other tissues only by the thin layers of the pericardium, has 
enjoyed intense research for the past decades. Increased inflammatory activity 
in the EAT in coronary artery disease has, together with associated volumetric 
expansion of the EAT and changes in its radiodensity supported theories that 
the EAT might play a role in the pathogenesis of coronary atherosclerosis or 
mirror its progression better than traditional risk factors. Cardiac computed 
tomography (CT) has been the most frequently used method for in vivo 
imaging of the EAT, but reliance on labor-intense manual or semi-automated 
analyses has limited most studies to small cohorts or incomplete EAT data. 
Lately, new frontiers have been opened by advances in artificial intelligence-
based image analysis. 

Within the framework of the current thesis, a fully automated model has been 
developed and validated in CT images from a total of more than 1,400 
individuals. The model’s performance is equal to that of manual expert 
measurements, with the capability to handle: a) anatomical variation in an 
unselected population b) incomplete images c) high noise levels. 

The relationship between EAT and pre-diabetes was investigated in 1,948 
individuals, and an automated quality-control algorithm was added to find 
unsuccessful analyses (< 1%). In the next paper, EAT data was examined in 
relation to coronary artery calcifications, while in the final paper, its relation 
to vector electrocardiographic signs of abnormal QRS-T angles reflecting 
ventricular de-/repolarization was investigated in 5,571 individuals. 

Results show that large cohorts can be efficiently analyzed with the model. The 
co-variation between EAT data and traditional anthropometric and laboratory 
derived risk factors is substantial and EAT is not superior to these in 
identifying the presence of coronary artery calcifications or abnormal QRS-T 
angles in vector electrocardiography indicative of disease. 

Keywords: Epicardial adipose tissue, artificial intelligence, automatic 
analysis, computed tomography, coronary atherosclerosis, pre-diabetes, vector 
electrocardiography  
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SAMMANFATTNING PÅ SVENSKA 

Det epikardiella fettet (EAT), som omger hjärtat, har varit föremål för intensiv 
forskning de senaste decennierna. Förhöjd inflammatorisk aktivitet i denna 
fettvävnad och ett samband med ökade volymer och förändringar i dess 
röntgentäthet vid kranskärlssjukdom har givit stöd för teorin att EAT kan vara 
av betydelse för sjukdomsutvecklingen eller spegla dess svårighetsgrad bättre 
än traditionella riskfaktorer. Icke-invasiv avbildning med skiktröntgenteknik 
är den metod som använts i störst utsträckning. Hittillsvarande 
bildanalysmetoder har byggt på manuella eller halvautomatiska mätningar, 
vilket begränsat de flesta studier till storleken och analysernas omfattning. 
Nyligen gjorda framsteg inom bildanalys baserad på artificiell intelligens har 
dock öppnat nya möjligheter. Inom ramen för denna avhandling har en helt 
automatisk analysmodell med en träffsäkerhet jämförbar med manuella 
expertmätningar utvecklats, som också klarar av att hantera: a) anatomisk 
variation i befolkningen, b) ofullständiga bilder, c) höga brusnivåer.  

Sambanden mellan EAT och förstadier till åldersdiabetes undersöktes i en 
kohort om 1948 individer, där en algoritm för automatisk kvalitetskontroll 
också byggdes in för att filtrera ut misslyckade analyser (<1%). I nästa 
delarbete undersöktes sambandet mellan EAT och förkalkningar i kranskärlen, 
medan sambandet mellan EAT och tecken på störd de-/repolarisering i 
hjärtmuskeln i form av onormala QRS-T vinklar mätta med vektorkardiografi 
kartlades bland 5571 individer i sista delarbetet.  

Resultaten visar att stora kohorter kan undersökas effektivt med modellen men 
också att EAT samvarierar i betydande grad med kroppsmått och flertalet 
biokemiska riskmarkörer och inte är överlägset dessa traditionella riskfaktorer 
när det kommer till att identifiera åderförkalkning i kranskärlen eller onormala 
vektorkardiografiska QRS-T vinklar tydande på sjukdom. 
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1 INTRODUCTION 

1.1 THE EPICARDIAL ADIPOSE TISSUE (EAT) 
The epicardial adipose tissue (EAT) is a fatty tissue immediately in contact 
with and surrounding the myocardium, enclosed by the two layers of the 
pericardium, which are separated from each other only by a thin layer of fluid1. 
The EAT is considered to be a special type of visceral adipose tissue2, and as 
such, differs from the subcutaneous adipose tissue in several key aspects. It has 
been postulated to function not only as an insulating tissue with regards to the 
coronary arteries, which are embedded in it, but also to provide warmth and 
metabolic support to the myocardium, being a reservoir of both energy and rich 
in brown adipose tissue3–5. The discovery of increased inflammatory activity 
in the EAT in the setting of coronary artery disease has suggested that it also 
has a possible immunological or endocrine function6–8. It is known from 
anatomical, pathological and imaging studies in vivo, that the EAT has a 
composition and characteristics, which are not static, but vary with age2,9, 
hormonal influences10, metabolic status11,12, and the presence of various 
disease conditions, among which coronary atherosclerosis7,13–15 and 
diabetes16,17 have been the most studied. There seems to be a physiological 
increase in the EAT volume (EATV) with age, while the relative amount of 
brown adipose tissue, while obviously varying with the seasonal need for heat 
generation18, seems to decrease with age19. The attenuation of the EAT 
(EATA), or its radiodensity on computed tomography (CT), seems to be 
particularly prone to a certain volatility due to factors of contradictory 
influence. While aging by itself, due to the relative decrease of brown adipose 
tissue, as well as a volumetric expansion, seems to reduce the EATA, 
inflammation and its consequences seem to increase the EATA, at least 
locally20–22. Visceral adiposity, as seen in the metabolic syndrome, or in the 
context of pre-diabetes, seems to be associated with a decreased EATA23,24. 
Anatomically complex, the heart does not have an even distribution of the 
EAT, which is significantly more voluminous around the large coronary artery 
branches, which occupy the coronary grooves separating the atria from the 
ventricles with respect to superficial anatomy. There is also a relative paucity 
of EAT over the left ventricle, in comparison to the underlying muscle mass2,3. 
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Figure 1. Left pane: Schematic drawing of the epicardial adipose tissue (EAT) and its 
relation to the myocardium, coronary arteries, pericardium and paracardial adipose 
tissue. Right pane: A computed tomography image where the pericardium has been 
automatically segmented and the EAT identified (in yellow). The right coronary artery is 
visible as an island of blue within the EAT near the upper left corner of the image. 

1.2 IMAGING MODALITIES AND IMAGING OF 
THE EAT WITH CARDIAC COMPUTED 
TOMOGRAPHY 

There are several possible methods available for imaging of the EAT in vivo, 
among which ultrasound-based measurement of its thickness was the first 
employed in research on a larger scale. This method has the advantage of being 
harmless and readily available in most institutions but suffers from severe 
limitations in that it is highly user- and patient-dependent and delivers only a 
very restricted amount information25. CT soon overtook the position as the 
most frequently used imaging method with all its advantages including high 
spatial resolution and reproducibility, partly owing to the development of 
electrocardiographically gated data acquisition26–28, and the abundance of 
information provided, which apart from the EATV delivers inherent 
information on the EATA. The main limitations are a small, but not negligible 
exposure to x-rays for the individual examined, and at least until recently, a 
relatively higher cost29–31. Magnetic resonance imaging (MRI) has been used 
in parallel with the other techniques, with the advantage of a potentially better 
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qualitative characterization of the EAT, but it has a significantly lower spatial 
resolution than CT, and is not suitable for the quantification of calcifications, 
while also being more time consuming, expensive and less available32,33. 
Finally, positron emission tomography (PET) in combination with CT (PET-
CT) offers a way to directly investigate the metabolism in the tissues. In cardiac 
imaging mainly three tracer substances, or sources of positron emission, have 
been used, 18F-fluorodeoxyglucouse (FDG), 18F-NaF, and 15O-H2O, the former 
being in effect a glucose analogue and therefore a reliable estimator of the 
glucose metabolism, the second a calcium analogue useful for estimating the 
turnover of calcified tissues, while the latter is water marked with the unstable, 
positron-emitting form of oxygen and consequently a direct estimator of blood-
perfusion in tissues imaged. FDG-PET has been used to assess the glucose 
metabolism in the EAT, which, if increased is thought to reflect inflammatory 
activity34,35, while 18F-NaF-PET has been used to study the calcium turnover 
in atherosclerotic plaques36–38, and 15O-H2O-PET has been utilized to measure 
myocardial perfusion and its relation to coronary artery disease39–43. 
Unfortunately, PET is relatively expensive, has a comparatively limited 
availability and suffers from a higher radiation exposure than CT alone due to 
the added irradiation from the positron-induced secondary gamma-radiation 
the tissues are subject to44. 

In practice CT has gradually established itself as the chief imaging method, 
which is also reflected in the multitude of available software applications for 
the semi-automatic quantification of EAT developed over the past two 
decades. A majority of studies on the EAT have been performed on non-
contrast-enhanced, or native, images, which form the necessary basis for 
coronary artery calcium scoring (CACS) according to the method originally 
described by Agatston et al. in 199045. Non-contrast images have the advantage 
of less contraindications or patient-related complications, and consequently 
less drop-outs from any cohort, which in contrast-enhanced imaging is seen for 
various reasons, e.g., allergy to iodine-based contrast agents, or technical 
difficulties in the injection or contrast-timing. Contrast-enhanced images, 
however, have a slightly better definition of the pericardium, which renders it 
easier to track manually, semi-automatically or by any fully automatic model. 
A possible drawback, on the other hand, is related to the varying degree of 
contrast enhancement in the EAT itself, obviously depending to large extent 
on the timing of the image acquisition and the vascularization of the EAT, 
something which can present difficulties46 in the interpretation of results. 
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1.3 DEFINING AND QUANTIFYING THE EAT 
IN COMPUTED TOMOGRAPHY 

An x-ray-based imaging technique, CT is dependent on the transillumination 
of the examined structures and the detection of the x-rays passing through the 
object, or in this case, the thorax of the individual examined. The detection has 
until the advent quite recently of photon-counting detectors been done by 
means of measuring the capacity of the incident x-rays to excite the detector, 
usually of scintillator type, generating a signal of light, which in turn is 
converted by photodiodes to electrical signals dependent on the absorbed 
energy47–49. The attenuation, or loss of energy, as the x-rays pass through the 
body, is measured in Hounsfield units (HU)50,51, and, on the Hounsfield scale, 
by definition, water corresponds to 0 HU, air at room temperature to -1000 
HU, and compact bone typically to >1000 HU. The CT images constitute a 
reconstruction in three dimensions of the attenuation data, which is gathered in 
360 degrees around the imaged object either in incremental steps or, in a spiral 
motion due to a continuous movement of the bed of the scanner in relation to 
the x-ray tube52,53. As a result of the calculations, the image will have a smallest 
unit, a voxel, which is effectively a pixel but with a volume. The cross-
sectional dimension of the voxel in the x-y-plane will depend on the matrix 
and field of view, which define how many pixels will be calculated in a given 
area, while the longitudinal dimension, in the z-plane, will depend on detector 
characteristics such as the number of rows54,55, their geometry, and, if helical 
scanning is used, on the incremental movement of the bed, or its pitch. The 
spatial resolution in any given CT image, which defines the ability to discern 
small structures, will, on the other hand, be dependent on a multitude of 
parameters of both the CT scanner, radiation doses used and the characteristics 
of the organs or body parts which are scanned56,57. In physical theory, the 
wavelength of the radiation used for image generation would set the ultimate 
resolution limit58,59, but the practical limits are very far from this. In 
experimental works with clinically available CT-scanners, a resolution of 
about 0.3 mm or less, down to about 0.2 mm is attainable60–63, especially with 
the newest photon counting detectors64–66, while voxel dimensions in clinical 
practice are usually larger. It is implicit, that any single voxel will have only 
one attenuation value in the reconstructed image, and therefore, adjacent 
voxels can have different values, if small structures are partly included, or a 
border between structures of different radiodensity is imaged across 
neighboring voxels. Adipose tissue is not entirely homogenous in its 
composition due to the presence of brown adipose tissue not uniformly 
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interspersed in the white adipose tissue, the presence of blood vessels, and 
small streaks of denser connective tissue67. Adipose tissue in general has 
empirically been defined as having an attenuation of between -30 and -190 HU, 
which enables the reader to discriminate with reasonable certainty between it 
and other soft tissues68,69. In a compelling majority, though not all studies of 
the EAT, this definition of adipose tissue has been used when classifying and 
quantifying the EAT. 

To properly assess the quantity of EAT, the first task is to identify its 
anatomical border, the pericardium. On CT, this is a thin membrane with an 
attenuation higher than both the paracardial adipose tissue surrounding it and 
the EAT inside of it, which is usually not visibly identifiable in its entirety. 
With due anatomical knowledge and by extrapolating its visible parts, it can 
be traced with sufficient precision to allow an accurate delineation of the 
pericardial contour. Once this geometric border of the EAT has been defined, 
the voxels within the volume of interest can be classified according to their 
attenuation values. A simple thresholding approach, where any voxels 
corresponding to the attenuation values of adipose tissue are classified as 
voxels belonging to the EAT has been the easiest and most widespread in 
previous research. Some post-processing using mathematical filtering 
models70 to eliminate “holes” or “islands” in the volumes has frequently been 
used, but there is often surprisingly little referencing to the exact ways of 
calculating the EATV in publications. 

1.4 TOWARDS FULLY AUTOMATED EAT 
MEASUREMENTS 

Manual tracing of the pericardium can be very time-consuming if done 
thoroughly and with high precision, especially if an image stack consists of 
many thin slices, which is usually the case in contrast-enhanced CT 
examinations. Semi-automatic tracing of the pericardium has been widely used 
in research to speed up and simplify the delineation of the pericardium71–76. 
The interpolations require varying degree of manual correction, and although 
semi-automatic methods offer some relief77, time constraints still limit the 
analysis of large datasets, unless precision is sacrificed. With the rapid 
evolution in artificial intelligence and specifically in automated image 
interpretation taking place in other fields over the last decade78–82, projects 
aspiring to achieve greater automation have been launched in increasing 
numbers. The first successful attempts83–89 employed multi-atlas-based 
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methods90, where a reference library of shapes and other image characteristics 
is created, and which is later used to present templates for the model, which 
give input in the decision tree. Usually some components of machine-
learning91,92 are incorporated into the models at some stage. An obvious 
advantage of multi-atlas-based segmentation, if the library of reference cases 
is large, is that it reduces very substantial errors, or outliers, in the identification 
of structures, since the limits of the most extreme parameters is defined by the 
reference cases. Among drawbacks are low computational efficiency, and a 
heavy reliance on previously acquired and input data into the library, with little 
plasticity in the decisions made. Towards the end of the previous decade, it 
was increasingly clear, that methods based on convolutional neural networks 
(CNN)93,94 had the potential to be more efficient in terms of performance and 
training. Among advantages of a CNN-based approach we find high 
computational efficiency, with fast or very fast analyses, great versatility in 
applicability, with relatively lower demands on the quality of training data, 
given that successful training can be made even using partial data, and training 
can be enhanced with various mathematical processing techniques. Obviously, 
there is a price to these features, and that is mainly the requirement for large or 
very large datasets to be made available for the training until sufficient 
performance levels have been reached. On the other hand, data which has been 
manually quality checked, can be refed to the model as training data, 
incrementally improving performance. One of the first reports of a CNN-based 
model successfully applied to quantify EAT in a larger dataset was published 
by Commandeur et al. in 201895. The model didn’t however analyze the entire 
EATV, but omitted the most inferior part of the volume, which is also the most 
difficult to delineate, due to the close anatomical relationship with the 
diaphragm and the sub-diaphragmatic organs of the abdomen. Since then, 
several publications have forwarded or tested various models based on similar 
techniques96–98, the most recent99 being tested in a cohort of 3,720 individuals. 

1.5 THE EAT IN RELATION TO CORONARY 
ATHEROSCLEROSIS 

Coronary atherosclerosis is typically hallmarked by the presence of 
calcifications in the arterial wall100–104. These findings have been extensively 
researched and reported. With the advent of intravascular ultrasound and 
optical coherence tomography105–108, as well as modern CT imaging, the 
disease process leading to calcifications has become better characterized in 
vivo, and there is mounting evidence that coronary plaques can have various 
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degree of lipid content and calcification is not always present109–117. 
Historically, an intriguing negative finding has been the absence of description 
of coronary atherosclerotic lesions in segments of the coronary arteries which, 
as part of the normal anatomical variation, have an intramuscular course and 
are not exposed directly to any neighboring EAT118. The discovery of increased 
inflammatory activity in the EAT6 in patients undergoing heart surgery for 
coronary artery stenosis pivoted the field into instant fame and it has been 
hypothesized that the EAT might very well be directly involved in the 
regulation of inflammation and further, in the pathogenesis of 
atherosclerosis119,120. These biochemical findings, as well as the pathological 
findings derived from microscopical studies, were soon followed by various 
attempts to analyze the EAT in vivo in both cross-sectional and longitudinal 
studies focusing on its relationship with either outcome measures, such as the 
incidence of cardiovascular events13,24,99,121–125, or traditional risk 
factors13,126,127 known to have a significant relationship to outcome measures. 
Aside from some contradictory evidence presented by a few small studies128,129, 
the majority of studies seem to have in common, that there are differences in 
EATV or findings in the EAT, which can be linked to either outcome measures 
or risk factors15,130. The spread in results, both with regards to the strength of 
measured associations and the plain EATV values themselves is substantial, 
the latter spanning 78.5-159 ml in some of the key studies (Table 1). 
Gradually, a notion has evolved, that EATV might be counted as a risk factor 
by itself, and it has even been advocated that EATV could contain more precise 
information on the risk of cardiovascular events than other established risk 
factors. An obvious problem in the literature is a lack of standardized 
measurements, with few studies applying similar criteria for the definition of 
EATV, its delimitation, and even fewer studies taking into account, or at least 
clearly stating how incomplete images or noisy images were treated. Attempts 
have been made to try to diversify analyses into including also EATA data and 
it has been suggested that a local increase in EATA around known lesions 
could mirror increased inflammatory activity, findings largely based on studies 
with intravascular ultrasound (IVUS)21,131. IVUS is a very potent method of 
characterizing the morphological features of the coronary arterial wall and has 
high reported sensitivity and specificity for the detection of both soft and 
calcified plaques132–136. Changes in perivascular EATA have been linked to the 
presence of what on CT subsequently has been characterized as high-risk 
plaques22,137,138. Investigations of EATA in a more general way have produced 
more ambiguous results, however, with less immediate implications. In a few 
studies23,24,139,140 a generally decreased EATA was associated with 
cardiovascular events and/or traditional risk factors. Among the latter, 
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disorders of glucose metabolism including the metabolic syndrome and pre-
diabetic states are especially interesting and provide a possible logical bridge 
between EATA and coronary atherosclerosis. 

Table 1. A survey of studies on EAT in relation to coronary atherosclerosis or in the 
general population, which have made important contributions to the state of knowledge or 
technical development in the field. The studies are in chronological order from the top. 
The number of participants is denoted with “n”. NCCT refers to non-contrast-enhanced 
computed tomography, CCT refers to contrast-enhanced computed tomography. 

1.6 THE EAT IN RELATION TO PRE-
DIABETES AND TYPE-2-DIABETES 

As a visceral fat depot, EAT shares some characteristics with the abdominal 
visceral adipose tissue, while it also exhibits some differences, especially with 
regards to its beige characteristics19,67,145, or amount of brown adipose tissue, 
and the immediate contact with the myocardium146,147. It seems, that in a state 
of dietary caloric abundance, EAT expands in parallel with the abdominal 
visceral adipose tissue72,148–152. The question is rather: how are these changes 
related, and is there a difference in the dynamics of changes? Obesity is one of 
the main, if not the key risk factor for the development of type-2-diabetes 
(T2D)153. Gradual changes have been described in the pathogenesis of T2D, 
where states of impaired glucose homeostasis precede the fully developed 
clinical disease154–159. These states of pre-diabetes160–162 have been divided into: 

Authors Year Study population (total n) EATV (ml) Method 

Ding et al.125 2009 MESA (1,119) 82 [weighted average] NCCT, semi-automatic 

Mahabadi et al.73  2013 Heinz-Nixdorf (4,093) 85.9 [IQR 59.5] NCCT, manual 

Britton et al.75  2013 Framingham (3,086) 111 [68-154] NCCT, semi-automatic 

Forouzandeh et al.74  2013 Prospective, symptomatic (760) 127 [66-188] NCCT, semi-automatic 

Kunita et al.76  2014 Screening, risk population (722) 107 [79.9-138.2] NCCT, semi-automatic 

Commandeur et al.141  2019 EISNER etc., multi-center (776) 86.8 [64.2-119.6] NCCT, automatic 

Marwan et al.142  2019 Clinical cases (227) 159 [83-235] NCCT vs. CCT, semi-
automatic 

Mancio et al.143  2020 EPICHEART, aortic stenosis (574) 109.7 [53.8-165.6] NCCT, semi-automatic 

Milanese et al.144 2020 ALTER-BIO (1,344) 90.5 [11.3-442.2] CCT, semi-automatic 

Eisenberg et al.122 2020 EISNER (2,068) 78.5 [55.9-106.0] NCCT, automatic 
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impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and 
combined glucose intolerance (CGI). CGI represents the most advanced pre-
diabetic stage, immediately preceding T2D, where fasting glucose levels are 
elevated and oral glucose tolerance testing is pathological. CGI progresses to 
T2D in a majority of cases162,163, while both IFG, which is thought to represent 
an early stage mainly linked to abnormal hepatic regulation, and IGT, which is 
mainly linked to reduced peripheral insulin sensitivity164,165, can be reverted 
“spontaneously” under favorable conditions166–170. The EATV has been shown 
to be significantly increased in T2D and CGI16,17,171. At the same time, we 
know that the EATV increases with age, and that both these conditions tend to 
occur in an older age group. The amount of contribution to the increase in 
EATV from the metabolic derangements seen in pre-diabetes171–173 and 
T2D23,174–176 is difficult to gauge from existing studies, since most of them 
derive their data from small or heterogenous cohorts (Table 2). In obesity, the 
volumetric expansion of adipose tissue seems to be driven mainly by 
hypertrophy of the lipocytes177,178, which increase their content of lipids. As a 
consequence, EATA shows a very strong inverse correlation with EATV, 
being lower with increasing EATV. The kinetics of changes is not fully 
clarified, and some data suggest, that a relatively larger than expected decrease 
of EATA can be seen in early pre-diabetes179. Whether or not this might 
indicate a propensity of the EAT to accumulate triglycerides and other low-
density lipids in order to compensate for the dysregulated lipid metabolism in 
states of pre-diabetes180–183, remains to be elucidated. From a technical point of 
view, however, the precision in EATA measurements is by default lower than 
for EATV, with a small range, in which measured values are found, and several 
potential interfering factors, among which streak artifacts from calcifications 
in the coronary arteries is of obvious relevance. It is worth mentioning, that 
only minor differences in EATA between groups have been found in cohort 
studies, when measuring at whole-heart level11,122,184,185, and it is realistic to 
retain some skepticism to conclusions made.  
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Table 2. A survey of studies on EAT in pre-diabetes and type-2 diabetes, which have 
investigated important cohorts and/or have made important contributions to the technical 
development in the field. The studies are in inverse chronological order from the top. The 
number of participants is denoted with “n”. 

1.7 THE EAT IN RELATION TO CARDIAC 
ELECTROPHYSIOLOGICAL CHANGES 

The main consequences of coronary atherosclerosis in terms of morbidity and 
mortality relate to the effects on the myocardium. Myocardial infarction 
represents the most obvious irreversible effect of insufficient blood flow 
through the coronary arteries. The spectrum of manifestations is very broad, 

Authors Year Study population 
(total n) 

Groups n EATV (ml) EATA (HU) Method 

Molnar et al.179 2023 IGT (1,948) T2D 73 146.6 [IQR 63.0] -72 [IQR 7.5] NCCT, automatic 

   CGI 128 134.6 [IQR 65.3] -71 [IQR 6.0]  

   IGT 321 112.2 [IQR 62.8] -71 [IQR 6.0]  

   IFG 414 114.7 [IQR 56.0] -69 [IQR 6.0]  

   NGT 1,012 104.9 [IQR 53.4] -69 [IQR 8.0]  

Lin et al.24  2021 EISNER (2,068) MetS+ 280 114.1 [90.7-147.8] -76.9±4.6 NCCT, automatic 

MetS- 1,788 73.7 [53.7-98.7] -73.4±4.6 

Wang et al.171  2019 Shanghai, cohort 
study (668) 

NFG 468 117.34 [82.67-167.19]  NCCT, manual 

 IFG/IGT 83 173.21 [139.67-219.53]  

 T2D 117 190.64 [138.33-244.82]  

Milanese et al.23  2018 Parma, 
retrospective 
(1,379) 

T2D+ 338 112.87 [IQR 68.07] -80.78±6.06 CCT, semi-
automatic 

  T2D- 1,041 82.62 [IQR 62.17] -78.19±5.27 

Groves et al.176  2014 California (362) T2D+ 92 118.6 [75.6-161.6]  CCT, manual 

   T2D- 270 70.0 [26-114]  

Yang et al.172  2013 Taiwan (562) NGT 357 68.2 [42.7-93.7]  NCCT, manual 

   Pre-T2D 155 86.8 [59.9-113.7]  

   T2D+ 50 91 [66.9-115.1]  

Versteylen173  2012 Utrecht (410) T2D+ 83 98 [57-139]  CCT, manual 

   IFG 118 92 [53-131]   

   NFG 209 75 [41-109]   

Wang et al.174  2009 Taiwan, case-
control study (127) 

T2D+ 49 166.1 [105.5-226.7]  NCCT, manual 

  T2D- 78 123.4 [81.6-165.2]   

T2D=type-2 diabetes, CGI=combined glucose intolerance, IGT=impaired glucose tolerance, IFG=impaired fasting glucose, NGT=normal glucose 
tolerance, MetS=metabolic syndrome, NFG=normal fasting glucose, pre-T2D=pre-diabetes, EATV=epicardial adipose tissue volume, EATA=epicardial 
adipose tissue attenuation, NCCT=non-contrast computed tomography, CCT=contrast computed tomography 
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ranging from the myocardial damage in microvascular disease to the 
transmural infarctions affecting an entire vascular territory, leaving no 
functioning myocardium in the actual area186. Electrocardiography (ECG) was 
the first method capable of visualizing the electrophysiological activity of the 
heart muscle187 and the changes in various diseases afflicting the myocardium 
in a broader sense, including its electroconductive cells. Changes detectable 
with ECG are not exclusive to, but mainly linked to processes affecting the left 
ventricle, since it has the largest muscle mass by far, and contributes to the 
overall electrical activity proportionally. Over the course of the last century, 
the technique of ECG-registration has been refined, and vector 
electrocardiography, or vectorcardiography (VCG), has emerged as one of the 
special applications, with an increased sensitivity for de-/repolarization 
disorders188,189. It is thought that even small changes in the myocardium, be it 
from microvascular disease, the effects of hypertension, or mere aging, can 
affect the QRS-T angles of the left ventricle190–192, which is one of the key 
features which can be calculated from the VCG193. There is some evidence,  
that the presence of abnormal QRS-T angles increases the risk of sudden 
cardiac death193,194, a condition of which ventricular arrhythmias, typically 
ventricular fibrillation, are a leading cause195,196. It is known that coronary 
atherosclerosis is a risk factor for sudden cardiac death197, but with respect to 
the proportion of the risk increase among individuals with abnormal QRS-T 
angles, which can be accounted for by coronary atherosclerosis, the picture is 
less clear. Seemingly, abnormal QRS-T angles are associated with some 
traditional risk factors for cardiovascular disease such as male sex, 
hypertension, and diabetes193,198, but the EAT was not among the parameters 
investigated. There are reports, which indicate that increased amounts of EAT 
are associated with atrial fibrillation199–201, a condition primarily defined by its 
electrophysiological abnormity. Only indirect, circumstantial evidence exists, 
that might link the EAT to QRS-T angle aberrations on VCG. Here, we find 
studies pointing to increased inflammation in the EAT in coronary 
atherosclerosis20,120,146,202, the association between increased EATV and the 
presence of coronary atherosclerosis, either measured as CACS or in the form 
of cardiac events14,15, the association with changes in EATA reported in 
conjunction with the presence of atherosclerotic plaques21,22,203, and finally, the 
association between changes in EATV16,17 and EATA23 in pre-diabetes and 
T2D. To successfully sort out the complexly interrelated risk factors and their 
relative influence, large cohorts with high-quality data need to be studied. 
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2 AIMS OF THE THESIS 

The overarching aim has been to develop a model suitable for fully automated 
EAT analysis in large-scale population studies and, as part of the validation 
and testing procedures, to explore CT image data available from two fairly 
large cohorts. 

The specific aims of the included papers are listed below. 

2.1 PAPER I  
To 

1. Develop a method for precise and reproducible manual 
segmentation of the pericardium. 

2. Use current state-of-the-art techniques, employing multi-atlas-
based automatic segmentations to measure the EATV in a small 
number of test cases. 

3. Evaluate the results as a proof of concept for a) the manual 
generation of ground truth, and b) the feasibility of fully automatic 
segmentation. 

2.2 PAPER II 
To 

1. Use the experiences gained from Paper I to generate training data 
for a new model employing a CNN-based approach for measuring 
EATV and EATA. 

2. Develop the model into a fully automatic one capable of handling: 
a) anatomical variations in the general population, b) images which 
are incompletely representing the heart, c) images with varying 
levels of noise. 

3. Validate the model in a cohort representative of the general 
population of age 50-64. 

4. Relate EAT data to previously published EAT data in the literature. 
5. Relate EAT data to some key anthropometric and laboratory data 

considered to be cardiovascular risk factors. 



David Molnar 

13 

2.3 PAPER III 
To 

1. Test the fully automatic model in a cohort including individuals with 
normal glucose metabolism, pre-diabetes and T2D.  

2. Improve the model by incorporating and validating an automatic 
quality-checking algorithm to find potentially flawed analyses. 

3. Relate EAT data to the various glucose groups represented in the 
material. 

4. Relate the findings to findings previously described in the literature. 

2.4 PAPER IV 
To 

1. Analyze data from the cohort used in paper III with regards to the 
presence of coronary artery calcifications and CACS. 

2. Test the hypothesis, that increased EATV and decreased EATA are 
significantly associated with the presence of coronary artery 
calcifications and to test the independence of the association in 
relation to co-variates among anthropometric and laboratory based 
cardiovascular risk factors. 

3. Explore the importance of various established cardiovascular risk 
factors in relation to EAT data in explaining the presence of 
coronary artery calcifications. 

2.5 PAPER V 
To 

1. Analyze a larger sub-cohort of the SCAPIS-study with regards to 
EAT data and the presence of abnormal QRS-T angles on VCG. 

2. Test the hypothesis, that increased EATV and decreased EATA are 
significantly associated with abnormal QRS-T angles and to test the 
independence of the association in relation to co-variates among 
anthropometric and laboratory based cardiovascular risk factors. 

3. Explore the importance of various established cardiovascular risk 
factors in relation to EAT data in explaining the presence of 
abnormal QRS-T angles. 
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3 METHODOLOGICAL 
CONSIDERATIONS 

3.1 COMPUTED TOMOGRAPHY IMAGES 
Substantial variation can be expected in image quality depending on the CT-
scanner, scan-protocol, and image reconstruction parameters used204–207. Apart 
from these, machine- and setting-specific factors, image quality is known to be 
influenced by radiographer-related issues such as patient-positioning and the 
choice of a proper volume to be scanned as well as patient-related issues such 
as the bodily characteristics of the examined individual, any possible implants 
which could generate artifacts, and cooperation with regards to, e.g., holding 
the breath and not moving during scanning. 

In large-scale population studies enrolling healthy individuals, where the only 
reason for being subjected to a CT examination is scientific, requirements for 
adhering to the lowest possible radiation dose regimen are much tougher 
relative to what is the case in clinically motivated examinations, and 
accordingly, inherent noise levels, as they are inversely proportional to the 
radiation dose, are expected to be substantially increased208. The possibilities 
to re-examine an individual, if image quality is not the desired, is also virtually 
non-existent for the same reasons, and a larger proportion of images can be 
expected to be incomplete with regards to the object or region of interest. From 
a purely technical point of view, there are two reasons for incomplete 
representation of the volume to be imaged: handling errors from the 
radiographer misaligning the “box” which delimits the scan volume, and 
undesired movements including unsuccessful breath holding by the individual 
undergoing the scan. In a study recruiting only healthy individuals, cooperation 
would presumably be high, and most cases of incomplete image material can 
be inferred to be caused by handling errors by the radiographer. In the case of 
the heart, which is by itself a moving organ, further challenges are presented 
to the radiographer by the changes in position and orientation when the 
diaphragm moves with respiration. Moreover, the inferior boundaries of the 
heart can be difficult to define properly on the survey images taken ahead of 
the CT scan. The superior limit of the heart can be quite difficult to decide on, 
unless a clear-cut definition is given a priori, but if one is intent on imaging the 
entire pericardium, the scanning volume must include a substantial part of the 
aorta, usually at least past the level of the bifurcation of the pulmonary truncus. 
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The inclusion of the superior pericardial recesses wrapping around the great 
vessels, is however of negligible importance, when it comes to analysis of the 
EAT, since there is virtually no EAT around the vessels, once one has reached 
the level, where they become tubular. 

Images from the pilot-study of the SCAPIS209, a large population study 
eventually comprising around 30,000 individuals, were accessible from start 
for the present thesis. From the pilot-study both non-contrast-enhanced 
(n=1111) and contrast-enhanced images (n=980) were available for almost all 
the study participants, acquired on the same occasion. The non-contrast-
enhanced images serve primarily the purpose of calcium scoring, while the 
contrast-enhanced images represent a coronary angiogram. It was clear from 
the beginning of the thesis project, from the initial visual evaluation, that noise 
levels were indeed higher than in the typical clinical CT examination, be it with 
or without contrast, and that the variation in noise-levels was quite dramatic 
depending on the anatomical conditions given, with the images of some of the 
individuals suffering from extensive noise-induced artifacts. 

3.2 OPTIMIZED MANUAL MEASUREMENTS 
AND GROUND TRUTH 

The contrast-enhanced CT images are available with thinner “slices”, i.e., a 
voxel size with less extension in the z-axis, and the pericardium is also easier 
to visualize, since it shows a non-negligible contrast enhancement. For these 
reasons, they were chosen for the first paper. Testing and optimization 
experiments soon revealed that manual segmentation, i.e., the “drawing” or 
annotation of the pericardium, was difficult near the extremes, where the 
pericardium is almost tangential to the plane of the image slice. Since the thin 
slices of the contrast-enhanced images enabled segmentation in the three 
orthogonal planes, it was decided, that the segmentation would be performed 
sequentially in the axial (x-y), coronal (x-z), and sagittal (y-z) planes, i.e., three 
times for every individual. Every tenth slice was segmented, which was 
sufficient in order to generate a smooth pericardial contour when interpolated, 
since voxel “thickness” was merely 0.3 mm. We could clearly see that the 
precision in the segmentation, measured as the discrepancy between the 
segmentation volumes in the three planes, was the greatest inferiorly, 
anteriorly, and posteriorly. Superiorly, the differences were less conspicuous 
in absolute volume, given the anatomical shape of the pericardium. It was 
obvious, that some amount of interpolation was necessary, where the 
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pericardial contour was not readily identifiable, and that this interpolation had 
to be made based on anatomical knowledge, neighboring slices or areas, and 
some “educated guessing”, where the principle of the shortest and least 
tortuous course of the pericardium being true was usually observed. When the 
segmentations in the three planes were pooled to one volume, the differences, 
as a lack of overlap, were strikingly typical, and confirmed in essence, that the 
method for interpolation was feasible. In order to generate a ground truth, 
which would take into account the fortes and weaknesses of the segmentations 
in each plane, a mathematical weighting procedure was devised, by which the 
true contour was decided, giving the least weight to the segmentation data from 
the tangential plane. It deserves mentioning, that the amount of manual work 
which this kind of precision demands, is way beyond what would be practically 
achievable in any study of size: each examination was segmented in around 3 
x 40-50 slices, drawing a Bézier curve210 with between around 10 and 50 points 
in each slice. For the sake of reproducibility testing, a second expert  
independently repeated the segmentations according to the exact same 
procedure. All in all, 30 complete sets of segmentations were generated, of 
examinations which had been randomly selected in proportions as to represent 
both sexes equally, while also covering the various strata of BMI found in the 
material. The inter-reader agreement was in line with levels reported in the 
literature, and as expected, the differences were concentrated to the difficult 
areas tangential to the heart. A library of reference images, or of “ground truth” 
of the highest possible quality had been produced, which would now enable us 
to test the hypothesis, that fully automated EAT-analysis is possible in images 
from the SCAPIS with a precision comparable to manual expert analysis. 

3.3 A MULTI-ATLAS-BASED METHOD FOR 
FULLY AUTOMATED EAT ANALYSIS 

Around the time of the initiation of the thesis work, various multi-atlas-based 
strategies were the most successful in terms of accuracy and overall 
performance. Several publications had presented quite impressive 
results83,86,87, either employing intensity-based registration and majority 
voting, or intensity-based registration and prior co-registration of atlases later 
filtered by a “Difference of Gaussians” approach to find the best fit. Decision 
was made on a model largely following the example of Ding et al.86, with the 
main difference in the last step being done by a learned random-forest 
classifier211 instead. An advantage of this technique is an increased versatility 
and generalizability to analysis of, e.g., non-contrast-enhanced images. 
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Demands on high-quality training data are tough with this approach, and with 
the limited amount of training data available, further mathematical processing 
of the training data using rotation invariant features212,213, and a global 
optimization technique with graph cuts214 was employed. 

Specifically, the performance of the model85 with regards to EATV was in-line 
with or slightly superior to earlier methods215 (Dice-coefficient216,217 of 0.91 
for EATV), despite having the disadvantage of rather noisy images. A small 
negative bias218 of < 2% was seen versus manual expert measurements. 
Processor usage and run times are both high with multi-atlas-based models, 
and were probably one of the reasons, why the research field migrated towards 
more efficient methods over the next couple of years, with more efficient use 
of computational resources215,219. In the meantime, it was clear that the 
availability of non-contrast-enhanced cardiac CT images by far outweighs the 
availability of contrast-enhanced images, not only in the SCAPIS-cohort, parts 
of which were at our disposal, but also in international research. Most 
published studies had also used non-contrast-enhanced images, probably for 
this very reason. 

3.4 LESSONS LEARNED AND NEW 
CHALLENGES TO OVERCOME 

It soon became evident that the task of properly measuring the EATV met with 
some tough challenges, the first of which was also the most obvious: human 
anatomy and its unpredictable variations, which would invariably cause 
problems in large datasets. The variations in the shape of the heart itself are 
relatively small, but the variations in the relation of the heart to surrounding 
tissues is immense, with also the need of taking the three-dimensional rotation 
of the heart with respiration into account. A reference dataset of much wider 
coverage of relevant anatomic variants would certainly be needed. 

A second, somewhat more surprising challenge surfaced when manually 
proofreading the automated segmentations and the segmentation masks 
showing the distribution of voxels classified as EAT: there were voxels 
dispersed within the volume of interest, i.e., within the pericardium, not only 
in the expected areas immediately deep to the pericardium and along the 
coronary sulci, but also more centrally, corresponding to the ventricles and 
atria. For obvious anatomical reasons, there can be no EAT in the blood-filled 
cavities of the heart, and it stood clear, that noise was the culprit. The standard 
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approach to quantify the EAT depends on counting all voxels within the 
volume of interest which have the attenuation of adipose tissue (-30 to -190 
HU). The relatively low radiation doses increase the standard deviation of the 
voxel attenuation values calculated in the image reconstruction process, and 
the probability that any voxel belonging to the tissues deep to the EAT would 
be wrongfully classified as EAT, increases correspondingly. Visually, in some 
images, significant amounts of spurious EAT were detectable, while in others 
very little to none. This obviously had to be dealt with in order to obtain a 
model, which would measure the EATV in a reliable way. 

A third, potentially devastating problem was identified, when manually 
scouting through unselected examinations of the SCAPIS-pilot study: in quite 
a number of cases, the heart was not completely represented in the image stack, 
most frequently the superior (in up to 18% of examinations) or inferior (in up 
to 12% of examinations) parts. Typically, only a few slices would be missing, 
but in severe cases, up to an estimated 30% of the heart could be missing. Two 
options seemed reasonable, either to exclude incomplete images from analysis, 
or to devise a method to compensate for the loss of data from the missing parts 
of the heart. The first solution would require an automated screening method 
to find the incomplete image sets, since it would be too laborious to do the 
screening manually, and it would also lead to a substantial loss of data, 
affecting the power of detection of the study. The second solution would 
require, in addition to the automatic screening method, a method to predict the 
correct EATV based on the parts missing… 

3.5 DEEP LEARNING AND CONVOLUTIONAL 
NEURAL NETWORKS FOR FULLLY 
AUTOMATED EAT ANALYSIS 

During the second half of the last decade, an ever-increasing number of 
publications began to emerge, which had utilized various aspects of “deep 
learning”220,221 (DL) to solve segmentation problems in the medical field. In 
short, DL is a special area of “machine learning”222,223 (ML), which in turn is 
an area fitting under the wider umbrella term of “artificial intelligence” (AI). 
By definition, DL employs a neural network with at least three layers, where 
the layering attempts to mimic the functional architecture of the human brain. 
This provides some advantages in terms of plasticity, especially when 
compared to traditional ML, where the pre-processing steps are dependent on 
input from human experts. Convolutional neural networks93 (CNN) in turn, 
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represent a special subcategory of neural networks, which typically perform 
well in classification and image interpretation tasks. They are highly scalable 
and autonomous in feature extraction tasks, which is the first step in the 
identification of objects or regions of interest in images, and previously was 
done to large extent by manual input or, in the case of multi-atlas-based 
techniques, required cumbersome pre-processing steps in the analyses. 
Another key advantage is the possibility to expand a model, not only by adding 
an additional layer into any CNN, but by combining different CNNs into a 
larger network. CNNs require large to very large sets of training data and the 
training steps can be demanding by means of computational power, but they 
are significantly faster in their image analysis once fully trained, enabling a 
much faster processing of large datasets. 

3.6 SOLVING THE CHALLENGES 
A model architecture combining two CNNs was chosen, where the task of 
pericardium segmentation and EAT analysis was assigned to one CNN (“EAT-
Net”), while the task of predicting any missing EAT in cases of incomplete 
images was assigned to a second CNN (“Crop-Net”), which in turn would be 
the second in line in the steps generating the final output of EATV and EATA. 

The segmentations used in the first paper could be used as templates to 
generate whole heart segmentations of the non-contrast-enhanced images from 
the same individuals after some minor adjustments compensating for the slight 
rotational differences due to changes in diaphragm position. These were then 
employed as a first training set, yielding sufficiently qualitative output which 
could be refed as new training data after manual corrections, either as whole 
heart volumes, or as partial volumes. The steps were repeated until the model 
was deemed to be sufficiently saturated with manually redacted training data. 
In addition, data augmentation224, consisting of various mathematical 
processing steps, was performed to modulate the manually segmented or 
corrected images and increase the amounts of available training data. To reach 
a correct estimation of EATV, EAT-net would have to omit any voxels within 
the heart volume, which were incorrectly classified as EAT based on the 
attenuation thresholding. The most robust way to achieve this seemed to be a 
correction based on anatomical features, since any purely mathematical 
filtering applied equally to the whole image would carry the risk of introducing 
its own errors. A separate training dataset consisting of 30 complete 
examinations was created, where areas certainly without any EAT were 
manually segmented, i.e., the ventricles and atria, large parts of the internal 
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aspects of the myocardium, and the lumina of the great vessels, naturally with 
a reasonable margin of safety, to not encroach upon areas of true EAT. This 
would enable the model to exclude most, if not all the voxels incorrectly 
classified as EAT owing to noise-related issues. 

Incomplete images posed challenges of an entirely different kind with regards 
to the generation of training data. A possibility, which seemed tempting, and 
was decided on, was to take large numbers of complete image sets (n=866), 
and artificially crop these at different levels, whereby we would obtain 
incomplete images, which could be fed as training data to the model, with data 
of de facto EATV in each case to match the training against. Based on the 
distribution and severity of cropping present in our material, the limit for 
training was set at maximally 40% of the heart missing, which gave some 
safety margins. 

3.7 VALIDATION AND PERFORMANCE 
Segmentation performance was in line with that of the multi-atlas-based model 
in paper I, with a Dice-coefficient of 0.90, when testing against manual expert 
segmentations in 25 cases. A slight negative bias was present, with the model 
underestimating EATV by < 2%225. 

To evaluate the broader performance of the model, 1,400 automatically 
segmented examinations were visually graded as acceptable or not acceptable. 
For a segmentation to be acceptable, it had to fulfil one of the following 
criteria: a) the segmentation is perfect, with no improvements to be made, b) 
the segmentation has some small errors, which are unlikely to influence the 
measured EATV and lies within the quality range of the 25 cases used to 
calculate the Dice-coefficient. For a segmentation to be deemed not acceptable, 
the following criteria had to be met: a) the segmentation has substantial errors, 
which will likely influence the measured EATV, and b) the segmentation is 
outside of the quality range of the 25 cases used to calculate the Dice-
coefficient. Adhering to these criteria, most segmentations were of sufficient 
quality (99.4%) with only a minimal fraction of the segmentations deemed to 
be unsatisfactory (0.6%, corresponding to 8 cases of 1,400). Half of the failed 
cases showed anatomic variations of major importance: a large hiatal hernia, 
left-sided diaphragmatic paresis, post-surgical esophageal reconstruction, and 
breast implants. In terms of measured EATV, the failed segmentations were 
within two standard deviations of the mean EATV for the 1,400 cases and 
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would presumably be difficult to detect in a large material without a specific 
filtering tool. 

The missing EATV in incomplete image sets could be predicted with a 
maximal error margin of around 6% when Crop-Net was tested in 55 cases, 
where manual whole heart segmentations not used in the training of Crop-Net 
were available, and various degrees of cropping, i.e., missing slices were 
simulated. Excellent linear correlation between predicted and true missing 
EATV was seen (R of around 0.955). 

3.8 IMPROVING THE MODEL BEYOND PLAIN 
MEASUREMENTS 

From the validation work on a broader, unselected material it became evident 
that possibly failed segmentations need to be identified in order to either be 
removed from the studied material or corrected manually and re-analyzed. In 
large cohorts, it is simply not feasible to rely on manual quality-checking, 
which requires all the images to be reviewed and a decision to be taken in every 
single case whether imperfections and errors sighted are severe enough to 
warrant correction. The requirement for an automated procedure, which forms 
an integrated part of the analytic model, was established. The manual 
reviewing of the 1,400 cases, and experiences gained in the training steps of 
the model pointed to some common traits among failed segmentations, among 
which the most conspicuous was a tendency to include parts of neighboring 
structures, nearly always in the form of tongues or spikes. After some 
theoretical considerations, according to which the shape of the heart requires a 
certain degree of sphericity, and some experimentation with image processing 
thresholds, a method was devised, which in effect detects and measures 
deviations from the normal shape of the heart. The cut-off in volume difference 
was chosen based on the findings in the 1,400 cases probed, in a way that no 
truly failed segmentation would be missed, and the number of false positives 
would still remain manageable179. When later applying the model to another 
cohort of more than 5,500 individuals, 166 analyses were singled out as 
potentially failed. Among these, less than 25% showed differences in EATV 
of more than 10% upon manual correction. 
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3.9 STATISTICAL ANALYSES 
Generally, unless requirements for normal distribution were met on testing 
with the Kolmogorov-Smirnov method226,227, or assumed, non-parametric 
statistical tests were used. A p-value of 0.05 was considered significant, unless 
specifically stated otherwise. 

In papers I and II the Dice-coefficient, error estimates and other descriptive 
statistics referring to comparisons between EAT estimates by the model(s) and 
manual expert measurements were presented with their mean values, in Bland-
Altman plots, and linear regression plots with the Pearson correlation 
calculated when adequate. In paper II a random forest classifier211,228 was used 
to assess the relative importance of numerous co-variates to EATV and EATA 
and the explained variance in EATV and EATA. 

In paper III the cohort was subdivided into groups according to the severity of 
disorders in glucose metabolism for most of the analyses performed. 
Descriptive data was presented with its median and interquartile ranges. 
Pairwise testing for differences between groups was performed with the 
Pearson Chi-square test229 and the Kruskal-Wallis independent samples test230 
for categorical and continuous variables respectively. Correlations between 
changes in EATV and EATA over groups was performed with Kendall’s Tau 
test231. Uni- and multivariable linear regression analyses (ANOVA) were 
performed to test for associations between EATV, EATA, various co-variates 
and insulin resistance and the various glucose groups. 

In paper IV the cohort was divided by sex and, for the majority of analyses also 
by the presence of coronary artery calcifications (CACS > 0). Descriptive data 
were presented with their median and interquartile values. Uni- and 
multivariable logistic regression analyses were performed for variables 
showing significant differences between CACS groups with EATV as the 
dependent for the binary outcome of CACS = 0 or > 0, while linear regression 
was performed in the group with CACS > 0. Gradient boosting model232 
analysis was performed to quantify the relative importance of predictors for 
the binary outcome of CACS = 0 or > 0. A Receiver Operator Characteristic 
(ROC)233–235 analysis was done for the same binary outcome with calculation 
of the area under the curve (AUC) for the variables included in the regression 
analyses. The Matthews correlation coefficient236–240 was calculated for 
prediction of CACS > 0 based on continuous variables. 
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In paper V a similar approach was taken as in paper IV, with sex-stratified 
analyses and the data split according to the presence or absence of abnormal 
QRS-T angles. The same statistical analyses were performed, although with 
some slight differences in variables analyzed. 

Statistical analyses in paper I were performed in MATLAB241, in papers II-III 
largely in SPSS242 and to some extent in R243,244. All statistical analyses in paper 
IV and V were performed in R, using either proprietary coding or existing 
packages. 

3.10 ETHICAL CONSIDERATIONS 
The studies were ethically approved by the Regional Ethical Review Board in 
Umeå (#2010-228-31M), the Regional Ethical Review Board in Göteborg 
(#560-13), and the Regional Ethical Review Board in Uppsala (#2021-04030). 
Procedures were carried out in accordance with the principles of the Helsinki 
Declaration (World Medical Association, 2008), among which the following 
are especially important for the research done within the framework of this 
thesis:  

that the privacy and confidentiality of personal information of research 
subjects (section B.11) is protected, and the impact of the study on their 
physical, mental or social integrity (B.23) is minimized, 

that the importance of the objective outweighs the inherent risks and burdens 
to the research subjects (B.21), 

that the research subjects must be adequately informed about the aims, 
methods, benefits and risks etc. of the study, that they may withdraw their 
consent to participate at any time without reprisal (B.24), and that consent 
should be in writing. 

The process of obtaining ethical permits for the underlying studies (SCAPIS 
and IGT-Microbiota), from which data has been used has been rigorous. 
Several of the investigations carry potential risks not only to the personal 
integrity of the study participants in a wider sense but also to their personal 
health, since exposure to x-ray irradiation is an integral part of the study 
protocols. Specifically, the CT-protocols were defined so, that radiation doses 
would be kept at a minimum, while still allowing for the gathering of necessary 
information. In addition, re-scanning of study participants due to suboptimal 
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image quality should be almost completely evaded, with exceptions only in 
very flagrant cases of image acquisition failures. 

The five studies included in the thesis are all based on data collected in the 
SCAPIS and IGT-Microbiota studies, and no further data collection or contact 
with the study participants has taken place. All data has been handled in 
pseudonymized form. Only the chief researcher of the group had access to the 
code-key, by which it would have been possible to decipher the 
pseudonymization. The potential to identify any of the participants based on 
their data should be exceedingly low, especially given the large number of 
participants, and the random selection process from census data. However, the 
potential for identification based on CT images is not zero. Therefore, very 
strict handling of the data was applied, with local storage only of unencrypted 
images, encryption of images prior to any transferring between co-workers 
during the development of the model, and limited use of images in both 
published and unpublished reports. 

In any study recruiting previously healthy individuals, the finding of signs of 
undiagnosed disease could be challenging. In the design of the underlying 
studies, much attention was focused on the proper management of any 
unexpected findings suggestive of disease in accordance with best medical 
practice. 
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4 RESULTS AND THEIR DISCUSSION 

4.1 PAPER I 
Two experts prepared the ground truth segmentations of the pericardium in 30 
whole-heart contrast enhanced CT image sets independently of one another. 
The inter-reader agreement was excellent, with a Pearson correlation 
coefficient of > 0.99 and a Bland-Altman bias of -4.7% (mean EATV of 103.34 
vs. 108.44 ml). The Dice-coefficient, which is a reliable measure of the 
geometric overlap of two structures, in this case segmentations, was 0.90 
between the two expert readers when looking at total EATV, while it was 0.98 
when looking at the total volume within the pericardium. The discrepancy 
between the two Dice-coefficients is simply explained by the fact, that all the 
variation between the two readers will be found peripherally, while almost all 
the EAT is also located peripherally in the segmented volume. Naturally, the 
relative impact of variations in segmentation on the much smaller EATV will 
be greater than for the total intrapericardial volume. The relation between the 
numbers gives an idea of the needed precision in segmentations of the 
pericardium, also hinting to its theoretical upper limit, since even minute 
differences geometrically in how the pericardium is traced by the experts will 
translate to significant differences in EATV. 

The multi-atlas-based model developed showed an agreement with the manual 
expert measurements (expert 1) which was superior to the agreement between 
the two experts. A Dice-coefficient of 0.91 and 0.97 for EATV and total 
intrapericardial volume respectively was calculated. This by itself places the 
performance among the very best reported in the literature, and with respect to 
the inter-reader agreement, seems to be near the upper theoretical limit of what 
is feasible to reach. A minuscule Bland-Altman bias of +0.78 ml was found 
between the EATV of the model and expert segmentations. The mean EATV 
measured by the model was 109 ml, which is reasonably close to later 
measurements in paper II, and also harmonizes well with reported values in the 
literature. Of course, the small number of individuals included in this study 
limits the scope of conclusions that can be drawn, especially with regards to 
the validity of the results in images from a broad, unselected population, where 
anatomical variation could interfere with performance. 
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4.2 PAPER II 
The manual whole-heart segmentations (29 out of 30) used in the first study 
were successfully co-registered with the corresponding non-contrast-enhanced 
CT images, requiring only minimal manual intervention to create an initial 
training dataset. Incrementally, the model was refed with manually reviewed 
and/or corrected segmentations ranging from single slices to whole heart 
volumes, until saturation was reached with a training set of 308 individual CT 
examinations in total. 

A mean Dice-coefficient of 0.90 for EATV was reached when testing against 
ground truth, which consisted of a new set of 25 manual expert segmentations 
of the pericardium in the whole heart volume not previously used in the 
training steps, all prepared by one expert. Mean EATV was 106.7 ml with a 
small negative Bland-Altman bias (-1.76 ml, or about -1.6%) present. The 
relative error in the automated EATV measurements was less than 12% in all 
cases, with a mean of 4.7%. The technical performance with respect to 
segmentation precision was in other words almost identical to the results 
obtained in the first paper, despite the fact, that the models are fundamentally 
different in their segmentation approach, and non-contrast images were used 
instead of contrast-enhanced images. 

Noise-induced effects on the thresholding-based classification of voxels as 
EAT or non-EAT were obvious on visual examination, ranging from stray 
voxels within the heart chambers to rather significant confluences of areas 
incorrectly marked as EAT. After training the model on recognition of the heart 
chambers and parts of the myocardium, these noise induced effects on the 
classification of EAT were, if not eliminated entirely, reduced significantly, 
with a more than 11% improvement in the relative error of the EATV 
estimation (from 5.31% to 4.7%). 

Unfortunately, many of the CT examinations in the SCAPIS material are 
incompletely representing the heart, with parts of usually the most superior or 
inferior parts missing. To remove these would require substantial manual 
work, and at least reduce the number of examinations available, if we assume 
that the problem is randomly distributed among study participants. Our 
approach of training a second CNN-based model to predict the correct EATV 
in afflicted cases proved to be useful – correct predictions could be made 
within an error margin of 6% for examinations, where up to 40% of the heart 
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was missing. In the most relevant range with up to 10% of the heart missing, a 
relative error of less than 1% was achieved. 

As part of a broader validation, a thorough visual examination of each slice in 
1,400 CT examinations was performed, and 99.4% of the whole heart 
segmentations were found to be of acceptable quality, or in line with the 
performance metrics accounted for in the 25 benchmark cases. A mere 0.6% 
of the reviewed cases represented failed segmentations, where significant 
errors were present, deemed to probably influence the measured EATV. 
Curiously, all of them had an EATV within two standard deviations of the 
mean EATV in the 1,400 cases, which was 113 ml (range: 22-320 ml). Our 
EATV lies in the mid-tier of reported values in the literature, however, there is 
considerable variation among previous reports, accounted for by the many 
various methods, from manual, over semi-automated to fully automated, in 
some cases even with varying thresholds for EAT classification. 

Substantial co-variation was seen with anthropometrics for EATV in a gradient 
boosted model analysis using random forest classifiers. Waist circumference 
and weight was found to have the highest importance, accounting for over 40 
and 30% respectively of the increase in mean squared error, while the entire 
statistical model could explain just above 40% of the variance in EATV. 

EATA was found to be strongly correlated to EATV, with the latter accounting 
for around 75% of the increase in total mean squared error in the statistical 
model, explaining over 55% of the variance. If we assume that an expansion 
in EATV is mainly mediated by an accumulation of lipid content in the 
adipocytes of the EAT, the findings of lower EATA is entirely logical, 
reflecting the lower radiodensity of lipids compared to the other components 
of the EAT. 

4.3 PAPER III 
The model developed in paper II was used on images from 1,948 individuals 
from the IGT-microbiota study, representing a population sample enriched for 
individuals with various degrees of glucose disorders. The same image-
acquisition parameters as for the SCAPIS images used for the training of the 
model had been used, which obviated the need for re-training of the model. An 
automatic quality checking algorithm of the segmentations was tested and 
validated in 400 of the examinations, which were manually reviewed to test 
the reliability and find a reasonable cut-off. In the entire cohort comprising 
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1,948 CT examinations 28 were singled out as potentially failed by the model, 
out of which 13 cases of true failures were identified (or about 0.7%) requiring 
manual corrections. The types of segmentation errors encountered in failed 
cases reflected the findings among the 1,400 cases in paper II. 

The cohort was subdivided according to classes of glucose disorder into normal 
glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose 
tolerance (IGT), combined glucose intolerance (CGI) and type-2 diabetes 
(T2D) with stratified analyses across the groups. The median EATV was 
clearly increased in the T2D group compared to the NGT group (146.6 vs. 
104.9 ml). EATA showed a strong negative linear correlation to EATV in the 
entire cohort, with lower values seen with increased EATV. The differences in 
EATA over the glucose groups were however small (-72 HU and -69 HU 
respectively in the T2D and NGT groups). EATV was highly correlated 
(R=0.739) to abdominal visceral adipose tissue area (VATA) in the NGT 
group, measured according to the method described by Kullberg et al.245 as the 
adipose tissue quantity in a CT slice over the mid-abdomen. VATA is 
considered a reliable measure of abdominal obesity and was included in a 
stepwise multivariable logistic regression analysis over the glucose groups 
together with other co-variates and confounders such as age, sex, smoking and 
anthropometrics. It was clear that no independent effect of EATV or EATA 
remained after introduction of VATA into the statistical model, and that the 
co-variation with the other variables was marked. 

The results obtained confirm findings in previous reports that there is indeed a 
tendency to increased EATV with increasing derangement of the glucose 
metabolism, while there seems to be a reduction of EATA at least in T2D 
compared to NGT. Most studies are relatively small, and very few studies have 
reported on pre-diabetes. In pre-diabetes, contrary to what was seen for EATV, 
the reduction in EATA was independent of BMI and waist-circumference, but 
not VATA. This might suggest that EATA could be a more sensitive parameter 
than EATV for early pathological changes in glucose homeostasis. Although 
there is reasonable doubt to the precision in EATA estimates, the relevance of 
the findings should neither be overstated nor understated, especially not since 
global EATA measurements in this case reflect the effects of a systemic 
metabolic disease. 
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4.4 PAPER IV 
The cohort investigated in paper III was further explored with focus on the 
presence of coronary artery calcifications, or a CACS > 0. Valid CACS data 
were available for 1,945 individuals. Since the cohort was enriched for pre-
diabetes and T2D, statistical analyses were, when applicable, proportionally 
weighted to compensate for effects on single variables in regression analysis. 

We were not able to find any association between EATV, EATA or CACS > 
0 in any of the statistical analyses, when adjusting for anthropometrics and co-
variates. Age and sex were the most significant co-variates, with the largest 
relative importance. These results support the trend in the literature, where a 
significant and independent association has been found in several studies 
between increased EATV, as well as locally decreased EATA around the 
coronary arteries, and major adverse cardiovascular events, while no 
convincing evidence is available to support an independent association 
between EATV and coronary artery calcifications, when adjusting for relevant 
co-variates. For detailed results, the reader is referred to the manuscript due to 
potential copyright issues upon future publishing. 

4.5 PAPER V 
A sub-cohort of the SCAPIS including 5,571 individuals with valid CT and 
VCG-data was investigated with regards to a possible association between 
QRS-T angle abnormalities and EATV or EATA. Individuals with known 
previous heart disease, e.g., myocardial infarction, were excluded to reduce 
any confounding effects by previous myocardial damage. No differences in 
final statistical results were seen, when these patients were later included in the 
analyses as a sensitivity test. 

EATV and EATA was automatically analyzed with the final model used in 
papers III and IV, and the automatic quality checking step flagged a total of 
166 whole-heart segmentations as potentially failed. Every one of these was 
manually reviewed and, if needed corrected in its entirety, then re-analyzed. 
Less than 25% of the segmentations showed more than 10% difference in 
EATV after manual correction, which corresponds to about 0.7% of all the 
automatic analyses (5,571). Surprisingly small differences were seen overall, 
with a median difference in corrected versus uncorrected EATV of around 5%. 
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There were considerable disparities between men and women with regards to 
the presence of abnormal QRS-T angles, and all analyses were performed 
separately in the two groups. Despite this, no significant association was 
detected between abnormal QRS-T angles and EATV or EATA. The reader is 
again kindly referred to the manuscript for a detailed description of the results. 
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5 GENERAL DISCUSSION 

5.1 THE MODEL AND ITS PERFORMANCE 
There is a trend towards fully automated segmentations in this area of research, 
which has been cemented lately, with several technically successful models, 
among which the one presented by Commandeur et al.95,122,123,141 stands out in 
that it has been tested in larger cohorts. There is much to be commended, but 
there are also shortcomings, most prominently a deliberate omission of the 
most inferior part of the heart volume, which introduces an uncertainty to the 
validity of their results. It can be argued that only a minor part of the EAT is 
excluded, but it is not known how large this part is, and if it de facto varies 
between individuals based on anatomical configuration of the heart. Recently, 
West et al.99 proposed a technically fairly similar model, which was tested in 
both 3,720 cases from the ORFAN cohort, 1,558 cases from the SCOT-
HEART cohort and a third, smaller cohort of 253 cases post cardiac surgery. 
From a technical point of view, it seemed to perform well, although the Lin 
Concordance Correlation Coefficient245 was used instead of the more 
established Dice-coefficient for evaluation of segmentation accuracy, which 
makes a direct comparison between the models difficult. The preparation of 
ground truth, as well as the anatomical limits of segmentation are not described 
in detail, but it seems from images of automatic segmentations, that an 
approach similar to the one used by Commandeur et al. might have been 
chosen, omitting the most inferior parts of the heart. The median EATV 
reported by West et al. is higher than in most studies and shows substantial 
differences between the tested cohorts (ranging from 121 to 169 ml) despite 
similar BMI, which raises some questions about the robustness of the model. 
In our largest cohort, we obtained a median EATV of 108 ml from 5,571 
automatic analyses, from which 37 were manually corrected after being 
reviewed among the segmentations singled out by the model’s quality 
checking feature. This estimate of mean EATV is closer to the weighted 
average of 99 ml reported in a selection of important studies, mainly based on 
semi-automatic analyses225. There is generally very limited to no information 
on the failure rate of published automatic models, which clouds the assessment 
of their applicability in an unsupervised manner in large cohorts, where 
anatomic variation is expected. 

A problem which we encountered and recognized early in our work, was the 
problem of noise-related misclassification of voxels on thresholding and 
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calculation of the EATV. This issue has not been sufficiently, if at all, 
addressed in publications purporting to have solved the task of automatic 
measurements of EATV and EATA. We find it difficult to believe, that noise-
related artifacts would be exclusive to our material, even though we have 
higher noise levels than many studies due to our strict protocols for limiting 
radiation exposure. In our material, when estimating the effects on the relative 
error in EATV calculation, noise suppression improved the accuracy to an 
extent which is hardly negligible. The more than 11% average improvement in 
relative error (translating to an improvement of about 0.5% in estimated 
EATV) might be equally distributed in a material, but if not, could affect 
results significantly in cases severely affected. Upon visual evaluation of 1,400 
examinations, we found that widely varying effects of noise were present, 
without any clear tendency to be more common in individuals with large hearts 
or much adipose tissue either subcutaneously or intrathoracically. Instead, the 
impression is, that the effects of noise are randomly distributed, which makes 
the problem more unpredictable in terms of potential effects on results. 

Incomplete image sets, with parts of the heart missing, could introduce grave 
errors in automatic analyses, unless detected either by manual screening, 
corrected or removed manually, or corrected automatically in an integrated 
step of the EATV estimation. There is little to find in the literature on the 
problem of incompletely imaged organs with relevance to this research field. 
However, it is plausible that other research groups would also have had to deal 
with the problem, where parts of the heart are missing due to misplaced 
scanning volumes or patient movement. In our material, cropping, or omission 
of the most peripheral parts of the heart volume, was seen most frequently 
superiorly and inferiorly, with less than 10% of the slices missing, but extreme 
cases coming close to around 30% of slices missing. The CNN-based model 
for prediction of the correct EATV in incomplete cases showed a mean relative 
error in EATV of less than 1% if up to 10% of slices were missing, and in the 
most extreme cases a mean relative error of just slightly above 5%. 

Automatically identifying failed segmentations, which seems to be a unique 
feature of our model, is very important when applying the model to large 
datasets, since manual proofreading can be exceedingly time-consuming. The 
true failure rate of the overall model in segmenting the pericardium has been 
constantly around 0.6-0.7% of segmented cases, when tested first in 1,400, 
then in 1,948 and 5,571 CT examinations. All failed segmentations were 
correctly flagged by the automatic quality checking step, while the total 
number of flagged cases were kept at a manageable level of around 3-4% of 
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cases, i.e., in a series of 30,000 cases, around 1,000-1,200 would have to be 
manually reviewed, and out of these, about 200 would have to be manually 
corrected in some way to be of acceptable quality. 

In summary, the model developed by our group shows a technical 
performance, measured as the Dice-coefficient, or geometric overlap between 
automatic and manual expert segmentations, in line with or superior to 
competing models, while it also presents a practical solution to the suppression 
of noise-induced misclassification of EAT, a highly accurate prediction of 
correct EATV in cases of incomplete, or cropped images and a very sensitive 
and reasonably specific quality checking step, which ensures that no failed 
segmentations/analyses are let through. Repeated manual reviewing has 
confirmed the robustness and capabilities of these built-in extra functions, 
which greatly enhance the model’s versatility. 

Doubts as to whether fully automated measurements of EATV are reliable are 
always relevant but have not been extensively discussed in the literature. 
Manual segmentation of the pericardial contour has long been regarded as the 
reference method, with all its drawbacks, not only in terms of high workload 
and inter-reader discrepancies, but also the variance in intra-reader precision, 
especially in large series of analyses. We know from the literature that an inter-
reader agreement corresponding to a Dice-coefficient of around 0.9 can be 
expected at best86,246–248, which was also confirmed in our own work (in paper 
I). The reason for not reaching higher is likely to be found in the inherently 
complex task of delineating the pericardium properly, since it is not always 
visible in every slice, meandering through adipose tissue and at times 
bordering soft tissues with very similar radiodensity. One definite advantage 
of an automated segmentation method should be its uniformity in performing 
the given task, with a predictable error rate, which is independent of any 
changes in outer circumstances. During the manual reviewing process in the 
validation of the model, an intriguing, and somewhat surprising finding was, 
that the model´s segmentation performance was not systematically visibly 
worse in cases of exceedingly noisy images, where manual segmentation 
would have met with greater problems. The robustness of the model, which 
uses various features by which to identify the pericardium correctly, and the 
training of which has included large quantities of images as well as their 
augmented derivatives, seems to surpass that of a manual expert, at least when 
it comes to purely image technical parameters. Naturally, when it comes to 
anatomical variations and their recognition, beyond what is to be expected 
from the training material used in the development of the model, a less 
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impressive performance is to be expected. The effects of this were also seen in 
the identification of the failed segmentations, when the majority of these 
represented rare or unexpected anatomical variants. Altogether, we believe it 
is correct to state that the model presented is a superior alternative to manual 
measurements and has remedied the shortcomings of previously published 
automatic models for EAT analysis. 

5.2 POSSIBLE SHORTCOMINGS AND 
PITFALLS 

Automated image analysis, irrespective of the precise technical parameters of 
the model used, is always dependent on the quality of the data with which the 
model is fed and trained92,94,249,250. The adage “rubbish in – rubbish out” 
couldn’t be more correct with regards to the problems facing all developers or 
researchers in the field. One fundamental question is whether to use manual 
training data from as many experts as possible, or on the contrary, as few as 
possible. The former solution carries the advantage of averaging out possible 
systematic errors made by individuals, while the second has the advantage of 
presenting a more homogenous set of training data with less of idiosyncratic 
variation due to individual interpretation of anatomical landmarks and their 
like. In our case, training data has been produced solely by one expert. In the 
extreme case, this could be a catastrophic mistake, in the other extreme a 
blessing, since training data can be assumed to be highly consistent, which is 
undoubtedly a prerequisite for successful training of any model. 

Segmenting the pericardium involves more of educated guessing, than many 
other segmentation tasks in medical image analysis, where anatomical 
boundaries are less obscure1. As we could see in our own inter-reader analysis 
of 30 whole-heart pericardial segmentations, which were performed in the 
three orthogonal planes, there were not only differences quantifiable as the 
geometrical overlap expressed in the Dice-coefficient, but also a systematic 
bias, expressed in the Bland-Altman function. The latter could and should be 
interpreted as a result of the reader-specific differences in the educated 
guessing as to where the pericardium is located, when not fully or clearly 
visible85. Instructions as to how to draw or segment the pericardial contour 
were very specific and could hardly have left room for any personal 
interpretation. Moreover, since the pericardium is exceedingly thin over most 
of its course, the placement of the Bézier curve should have been quite self-
explanatory when the location of the pericardium was certain. 
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We believe that our choice of limiting the preparation of training data to one 
expert has reduced ambiguity in the training steps and might have contributed 
to the excellent results with regards to the accuracy and versatility of the model. 
At this point, one could object, that testing was also done against manual 
segmentations performed by the same expert. That might be a relevant issue, 
but if we accept that no expert is “better” than any other at finding the true 
course of the pericardium, this is of less importance if overall performance of 
the model is improved. The thorough and systematic visual examination of 
segmentations in paper II should compensate amply for any potential doubt 
regarding the practical usefulness, since the 1,400 cases included provide a 
broad anatomical variation. Also, a third expert, not previously participating in 
the segmentations visually examined the quality of the segmentations 
performed by the expert preparing the testing data, to make sure that the 
identification of the pericardial contour was anatomically correct. 

The fact that the testing samples were small in both paper I and paper II, 
consisting of only 25 whole-heart segmentations in the latter, could be held 
against our claims and our results. A larger number of manual segmentations 
to test against could have yielded different results, but we believe that the 
anatomical variation among the 25 cases represents an adequate level, and that 
a substantial increase in the number, say to 50 or 100 cases, would have carried 
a disproportionate extra workload, with a possible narrowing of the confidence 
intervals of the Dice-coefficient and the error estimates. The fact that the visual 
evaluation of the 1,400 automated segmentations showed, that only 0.6% of 
them were of worse quality than the test cases, speaks against any large effects 
on the calculated performance metrics by a hypothetical increase in the number 
of test cases. The manual corrections of 166 cases of potentially failed 
segmentations by the model in paper V also gives credit to the accuracy data 
presented in paper II. Both the frequency of true failures (0.7%) and the relative 
error in the estimated EATV of the model (median of around 5%) versus the 
manually expert segmented EATV were comparable. 

5.3 METHODOLOGICAL IMPORTANCE OF 
OUR RESEARCH 

Exact and correct measurements of EATV and EATA are a prerequisite to 
further explore possible associations with known risk factors or the disease 
processes themselves. A high level of accuracy can be obtained by manual 
segmentations and the supervised thresholding and subsequent calculation of 
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EATV and EATA from CT images. The workload is however extensive, and 
the accuracy reader specific, making direct comparisons between different 
studies with various readers harder than for automated methods. Numerous 
models have aimed at an accuracy similar to that of manual measurements 
while reducing the time for analysis77,215,251. The semi-automatic models have 
partly solved the problem, but reader-specific accuracy remains an issue. The 
automatic models proposed have, to varying degrees, reached at least an 
accuracy comparable to manual measurements but left other questions 
unanswered83,86,95,96. Multiple challenges have been identified over the course 
of development of our own model, to which we have proposed specific 
solutions: the problem of incompletely imaged hearts, the problem of noise-
induced effects on EAT-classification, and the problem of identifying the 
unavoidable failed segmentations produced at a low, but certain rate. All in all, 
the model represents an analytical tool with extended capabilities, which 
should be well suited for the investigation of EAT in large scale population 
studies. It is not yet proven that the model can be adapted to any kind of CT 
images, but its development history and design suggests, that this might be the 
case at a fairly low cost. If proven to be adaptable, the model, or any further 
developed version of it could be used in a wider community, enabling direct 
comparison on the same conditions between data from different studies. 
However, this needs to be specifically investigated, preferably in a multi-center 
study, where the model could be compared not only to other models, but also 
to manual expert measurements on images obtained from CT machines from 
various vendors, which typically have differences in their proprietary image 
reconstruction algorithms252–254, resulting in, at least visually, varying image 
characteristics. 

5.4 EATV AND EATA DATA IN THE 
LITERATURE 

Numerous studies have reported EATV from CT images over the years, but 
striking discrepancies are seen upon a closer look, even though the investigated 
cohorts have reasonably similar anthropometric characteristics. There are of 
course considerable methodological differences between studies representing 
work done over the past fifteen years. Initially only manual segmentation of 
the pericardium was available, then various semi-automatic methods were 
used, until lately, when some fully automated analytical software solutions 
have emerged. The main issue with manual methods is their cost of labor, 
which in large studies actualizes the need for multiple persons performing the 
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segmentations. Both inter- and intra-reader variability increases the uncertainty 
of the results, although it could be argued, that these are mitigated if large 
enough numbers of images are analyzed. 

Significant differences exist in the literature with respect to the parts of the 
heart, which are included in EAT analyses, in the most extreme being limited 
around the coronary arteries255,256, in others limited to partial volumes257,258 or 
almost complete volumes99,141,259. Even among methods which strive to 
measure the entire EATV, the variation in obtained results is considerable, with 
the results reported in methodologically important works ranging from 8673 to 
159 ml142 in median or mean EATV. In the latter work Marwan et al. 
investigated the effects of contrast enhancement, the x-ray tube voltage used, 
as well as various thresholds for EAT classification, and could verify that all 
parameters significantly influenced EATV estimates. To successfully sort out 
the causes for EATV discrepancies in various studies, it should be kept in 
mind, that the tube voltage used in some instances is less than the usual 120 
kV, which seems to have become the unofficial standard260, and also, that the 
thresholding limits for EAT classification vary somewhat across studies. In the 
case of Mahabadi et al.73, part of the explanation to why their median value is 
as low as 86 ml might be revealed by the fact that they used a narrower interval 
of -45 to -195 HU, which could, if the results of Marwan et al.142 are to be 
trusted as generalizable, account for a difference of somewhere between 18 
and 34 ml, compared to if they had used -30 HU as the cut-off. In other words, 
even when trying to compensate for differences in technical parameters, the 
picture remains unclear, as to where the truth lies. In a small, but strikingly 
original work, Hindsø et al.261 investigated the EATV post-mortem in 
eviscerated hearts with CT and found mean values corresponding to 65-73 ml 
for women and men respectively. They used the standard 120 kV tube voltage, 
and it can be argued that there was very little room for misclassification of 
tissues in their case, given that the pericardium had been properly anatomically 
dissected. What makes the use of their values difficult as a reference is the fact, 
that the organs had been drained for blood and that some of the volume of the 
EAT could have been lost in this process as well as due to other changes post-
mortem. However, their study sets a kind of lower limit to what can be 
expected when running the analyses in vivo, if the EAT is properly segmented 
and separated from the surrounding, paracardial adipose tissues. 

Estimation of the EATA is even more sensitive to the various influencing 
factors. Tube voltage affects noise levels to begin with, with lower voltages 
showing more noise, and consequently more noise-induced misclassification 
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of voxels as EAT would be expected. Secondly, HU-levels of any given voxel 
are directly proportional to the tube voltage48,262–264, making unadjusted 
comparisons over different studies difficult, unless the same voltage has been 
used throughout. In some methodologically important works accounting for 
the EATA at whole-heart level, reported mean or median values cover a range 
from -73.424 to -80.823 HU, the former being the mean in individuals with no 
signs of metabolic syndrome, the latter being the median in individuals with 
T2D. In the first study Lin et al. showed an absolute difference of only 3.5 HU 
(-73.4 vs. -76.9 HU) between the groups compared, while at the same time the 
difference in EATV was 40.4 ml (73.7 vs. 114.1 ml). The second study by 
Milanese et al. had an even smaller absolute difference in EATA of only 2.6 
HU (-78.19 vs. -80.78 HU), while EATV differed 30.3 ml (82.62 vs. 112.87 
ml). It is obvious, when reviewing these numbers, that the interval which the 
mean or median EATA measured at whole-heart level is spanning, is narrower 
than for EATV. This might reduce the validity of results, generally speaking, 
since even minute errors in the estimation of EATA could have profound 
effects on the small differences.  However, the findings in various cohorts seem 
to be remarkably coherent, when pointing to a trend of decreasing EATA in 
the setting of either pre-diabetes or T2D, or coronary artery disease, conditions 
which are both associated with increases in EATV. When zooming in on the 
smaller volumes of EAT immediately in contact with or surrounding diseased 
segments of the coronary arteries, the absolute differences of peri-coronary 
attenuation values reported are small, 1.1 HU in a study by Goeller et al. 
comprising 293 individuals with varying degrees of coronary artery disease265. 
In a study on 134 patients receiving biological anti-inflammatory therapy, peri-
coronary EATA was found to decrease more conspicuously, from -71 to -76 
HU266. Even larger absolute differences in peri-coronary EATA were found in 
a study by Kwiecinski et al.267 around high-risk plaques on CT which also 
demonstrated 18F-NaF uptake on PET, having median values of -73 HU versus 
-86 HU for plaques without these features. In effect, these reports point to 
greater pathophysiological relevance of the EATA at a local level, with 
measured differences likely increasing with the specificity of the findings.  

5.5 EATV AND EATA DATA IN A 
PHYSIOLOGICAL AND 
PATHOPHYSIOLOGICAL CONTEXT 

Changes in EAT can be both physiological and a sign of pathological processes 
taking place, in some instances a harbinger of later adverse events. Although 
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longitudinal studies on the natural history of EAT, and therefore the 
physiological changes over time, are scarce, there is some evidence suggesting 
that EATV increases with age9. Conversely, EATA, which is strongly 
inversely correlated to EATV, is expected to decrease with age. The latter 
process is likely further augmented by the fact that the relative amount of 
brown adipose tissue generally decreases with age19, although there is 
substantial variation. Some seasonal variability in brown adipose tissue 
activity, and consequently EATA has been shown18, but this seems more 
relevant in a younger age group than the target of most studies involving EATV 
and EATA. We could not, for instance find any statistically significant 
differences in EATA between individuals examined during the winter season 
compared to the summer in paper III. Age shows a co-linearity with EATV in 
most studies where age is included as a variable, but the amount of contribution 
from normal ageing is not easily clarified, since most disease processes also 
advance with age. The question of sex and its importance in the investigation 
of EAT is both highly relevant and more multi-faceted, than what is apparent 
at first. The obvious differences in body size, present also in the internal 
organs, including the heart, has a direct effect on the measured EATV, where 
men with no known heart disease in our largest cohort studied had clearly 
higher EATV (124.1 vs. 94.4 ml). Unsurprisingly, EATA was correspondingly 
lower in men (-70 vs. -69 HU). However, regardless of the purely 
anthropometric differences, there are differences possibly mediated by sex 
hormones. It is a well-known fact that men are prone to cardiovascular disease 
development at an earlier age, whereas women seem to be protected until 
menopause268,269. There are few studies reliably accounting for menopausal 
status among women, something which could complicate the interpretation of 
data, unless the age span of the cohort clearly makes this detail irrelevant. 

No large-scale studies with more than five to ten thousand participants have 
investigated the EAT in relation to coronary atherosclerosis, while there are  
some in the interval of one to five thousand participants73,75,99,122,125,144,270,271, 
and plenty of smaller studies. Noteworthy methodological differences often 
make direct comparison difficult, but from some systematic reviews, it seems 
to be beyond doubt that an increase in EATV is associated with an increased 
risk of various cardiovascular adverse events, even when adjusting for age and 
other relevant co-variates14,15. The picture is more ambiguous, when it comes 
to linking EAT to coronary artery calcifications, with most studies, including 
our own finding little support for any independent association. So, why is this 
discrepancy interesting at all? If we look at how the EAT was first 
“discovered” as a potential area of interest in research oriented towards 
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cardiovascular disease, we find that an increased inflammatory response was 
demonstrated in the EAT6. At a local level, immediately next to the coronary 
vessels, it seems logical to assume, that the supporting tissues, i.e., the EAT, 
would participate in any pathophysiological processes evolving. Imaging 
techniques available in vivo, with the possible exception of intravascular 
ultrasound (IVUS)107 and optical coherence tomography, have a resolution 
limit, which unfortunately doesn´t really allow any selective gathering of truly 
local information. Although formidable technical advances have been achieved 
in the field of CT272, the resolution remains practically at 0.3-0.5 mm, limited 
by hardware-specific noise60,204 and unavoidable artifacts introduced in the 
process of image reconstruction252. Changes in the attenuation of the EAT in 
the vicinity of the coronary arteries, the periarterial or pericoronary EAT, have 
been extensively investigated21,22,35,150,203,265–267,273–278, and some promising 
results with regards to a possible connection with the pathophysiological 
processes governing the build-up of atherosclerotic plaques have been 
shown279,280, although some questions remain in relation to the influence of 
anatomy281, sex282, contrast administration46, as well as changes in the 
pericoronary EATV283. In light of these findings, one would instinctively have 
wanted to demonstrate an association, independent of general anthropometric 
or laboratory-based risk factors, between the appearance of calcifications in 
the vessel walls and changes in the EATV. Coronary artery calcifications 
represent not only an important sign of atherosclerotic involvement284,285, but 
also a very easily detectable one on CT, with few potential confounding factors 
present anatomically in the volume of interest. This might be the reason why 
coronary artery calcium scoring, as described by Agatston et al.45, has been so 
universally adopted in clinical use. Due to the distinct difference in attenuation, 
calcified tissue is easily spotted as well as segmented, be it manually, semi-
automatically, or fully automatically286–288. One would perhaps incline towards 
the assumption that the absence of calcifications, or a CACS of zero, would 
mean that the individual is free from atherosclerotic disease. However, as 
shown previously, this is not necessarily the case111,117, and the processes 
governing calcification seem to be more complex than being directly related to 
the appearance of atherosclerotic plaques289–292.  If we assume that the pooling 
of relevant studies performed in the systematic reviews14,15 addressing the 
relationship between EAT and atherosclerosis is correct, and the underlying 
studies are indeed credible, we may conclude that EATV, and EATA, at least 
locally, are probably more specific markers of early atherosclerosis than the 
CACS, and some classical cardiovascular risk factors. A possible clue to why 
this might be the case is revealed in the studies of EAT in pre-diabetes and 
T2D. It is well established, that the EATV expands as the glucose metabolism 
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is increasingly impaired17,171–176,255. We could confirm these findings in our 
work (paper III), but the changes were not independent of VATA. Diabetes is 
one of the prime risk factors for the development of atherosclerosis293–296, both 
at micro- and macro-level, and the changes are often preceded by metabolic 
changes by years, if not decades. Consequently, it is not too ostentatious to 
raise the question whether the EAT, might not just very well be a good gauge 
of early metabolic changes, which influence the course of coronary 
atherosclerosis. In early pre-diabetes, our findings of a generally lower EATA 
potentially points to a difference in dynamics in the processes responsible for 
the EAT expansion seen in diabetes. An early accumulation of lipids, later 
followed by inflammatory and fibrotic changes in the EAT, which could 
influence the atherosclerotic processes, would be a tempting hypothesis to test 
in a larger, preferably prospective study. At the same time, coronary 
calcifications detectable by CT might be late symptoms of atherosclerotic 
disease, or more like the evidence found at a crime scene, but not the 
perpetrator or motive itself, which somewhat limits the prospects of finding 
reliable answers with only radiological methods. It should at this point be 
stressed, that, although our model is not at present capable of differential 
measurements over anatomical territories and local effects on EATV or EATA 
are likely to be overlooked, any further development allowing for local 
measurements would probably still have insufficient spatial resolution to 
elucidate the precise mechanisms of the proven discrepancies between CAC 
and EAT findings. 

Likewise, when investigating the possible association between EATV, EATA 
and abnormal QRS-T angles on vector electrocardiography, we were not able 
to discern any statistically significant relationship. Ernault et al. has 
comprehensively reviewed the literature on the possible pathophysiological 
importance of the EAT for the development of arrhythmias297 and the strongest 
case in the literature seems to be a connection to atrial fibrillation. In a meta-
analysis by Wong et al. EATV was found to exhibit stronger association to 
atrial fibrillation than general or abdominal adiposity298, and in a small, but 
methodologically robust study, Al Chekakie et al. found that EATV was 
associated with atrial fibrillation among 273 individuals after adjustment for 
traditional risk factors including age, sex, BMI, hypertension and diabetes299. 
The causes remain less clear200,297,300 and largely hypothetical, while even less 
is known about the potential effects of the EAT on the electrophysiological 
processes in the ventricles. Among the suggested causative mechanisms301–303, 
fatty tissue infiltration into the myocardium as well as secretion of 
inflammatory substances could provide clues to the observations, that 
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abnormal QRS-T angles seem to be a marker of the risk for sudden cardiac 
death193,194. If we accept the proposed connections between the EAT and 
arrhythmogenesis as plausible, it is necessary to raise the question why an 
association between EATV and atrial fibrillation is so well documented, while 
the association between EATV and ventricular arrhythmias is so scarcely 
documented. A possible explanation lies in the much larger mass and volume 
of the left ventricle, as compared to the atria, which would absorb much larger 
amounts of endocrine or mechanical influence from the surrounding EAT than 
the atria. In our material, although representing a very large cohort in relation 
to previous works on QRS-T angle abnormities and EAT, the participants were 
free from known cardiac disease and represented an age group of 50-64 years, 
where at least for the female participants, a relatively low prevalence of 
atherosclerotic changes would be expected. Of course, the absence of a 
demonstrable connection between EATV and EATA at whole-heart level, as 
measured by our model, doesn’t exclude the possibility of local effects 
mediated by processes in the border-zone between the EAT and the 
myocardium, which are immediately contiguous. 
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6 CONCLUSIONS 

A model capable of fully automated analysis of EATV and EATA in CT 
images has been developed and tested in two cohorts, together comprising 
more than 7,500 individuals. An accuracy in EATV estimation equal to manual 
expert measurements is possible for both contrast enhanced and non-contrast 
enhanced CT images, and can be expected in large series of analyses, with a 
segmentation failure rate of consistently around 0.6-0.7%. Any failed 
segmentations can be found automatically by a built-in quality assessment step.  

Noise-related effects on the attenuation values of the smallest image elements, 
the individual voxels, can be considerable and influence their classification as 
EAT or non-EAT. The effects of noise are expected to be more prominent in 
images acquired with low radiation doses but seem to be randomly distributed 
with regards to anthropometric data. Anatomically based noise-suppression, 
which is an integrated feature of the developed model, significantly reduces 
the error in EATV estimates due to wrongly classified EAT. 

In all large series of cases, incompletely imaged organs are to be expected at 
some rate. The model has been trained to recognize if any part of the heart is 
missing, and in these cases to predict the correct EATV with very high 
accuracy. This feature reduces the need to manually quality-check images used 
in a study and reduces the need to discard data. 

From our experimental data it is clear, that EATV varies in a relatively wide 
range in the population in the age-span of 50-64 years, with men having 
significantly higher EATV compared to women. In a population enriched for 
pre-diabetes and T2D, EATV is significantly increased in the groups of 
advanced pre-diabetes and T2D, while EATA is significantly reduced. A 
strong inverse correlation exists between EATV and EATA, where lower 
EATA is seen in individuals with high EATV. There is substantial co-variation 
of EATV and EATA with VATA, age, anthropometric data, and many 
laboratory parameters, findings which generally correlate well with previously 
reported data in the literature. 

In specific analyses of EAT and its possible association with coronary artery 
calcifications or QRS-T angle abnormalities in images from the two cohorts at 
our disposal, no independent association could be verified. These findings 
don’t exclude potential links at a local level, adjacent to the coronary arteries 
or the myocardium, since the model only accounts for EATV and EATA at 
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whole-heart level. Also, the findings might be valid only in the examined age 
group, with potentially different outcomes in a much older population, where 
the prevalence of coronary atherosclerosis would be higher and sex-differences 
in both EAT characteristics and disease burden can be expected to be less 
pronounced. 
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7 FUTURE PERSPECTIVES 

The model will be used more widely in research within the framework of the 
SCAPIS study. CT images from the entire cohort of around 30,000 individuals 
are ultimately set to be analyzed with regards to EAT data. Among possible 
further feature developments for the model, a capability to identify the 
periarterial EAT and to gather data on it specifically, is high on the wish-list. 
Results and material from parallel research focused on the coronary arteries 
and their morphology could be used for training or integrated into the model, 
unless a de novo approach is chosen. 

Irrespective of any further addition of features, if the model can be successfully 
adapted to other cohorts with different image characteristics, possibly after 
some re-training, its versatility will be increased, allowing it to be used in a 
wider scientific community and, if applied in large enough populations, to 
more reliably answer some of the remaining questions pertaining to the EAT. 

If results from further studies on the EAT allow and warrant it, a future 
integration into clinical applications, if not of the model itself, then of the 
techniques employed, is on the horizon of possibilities. Given that cardiac CT 
diagnostics is a fast-growing field with expanding clinical potential, any 
method, which improves image-based risk-stratification beyond calcium 
scoring or present plaque-analysis models, could become an important tool 
with great impact on the management of preventive measures at population 
level.
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