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Abstract 

This study aimed to examine the relationship between vegetation indices, NDVI and NDWI, 

and groundwater levels in the county of Kalmar, utilizing correlation and regression analysis. 

Further, by examining related geospatial features the study aimed to interpret the statistical 

outcomes to identify significant temporal and spatial patterns. Data used involved NDVI, 

NDWI, derived from Sentinel 2 level-1C imagery, as well as groundwater measurement. The 

data was presented in time series showing bi-weekly maximum values, extending over different 

ranges between 2015 and 2022. Additionally, data related to land cover, soil type, topographic 

location, distance between groundwater and ground surface have been observed and compared 

between measurement stations to create a framework for interpretation.  

 

While few definite patterns have emerged, results of the study provided notable observations 

from performed analysis. Results showed varying strengths of correlations over the 

measurement stations studied, for both indices in relation to groundwater levels, with strongest 

correlation generally found after three-month time-lag of vegetation indices. NDVI showed 

positive correlation, indicating high NDVI values correlating with low groundwater levels and 

vice versa. NDWI over most stations showed negative correlation, indicating high NDWI 

values indicating high groundwater levels. Also, while soil type and median groundwater depth 

were features that provided notable findings when analyzed separately in relation to found 

correlations, combining several features make patterns less certain. Results of this study show 

variation in correlation being due to variations in local geospatial features. 

 

Future studies should more extensively and separately examine the effect of geospatial features 

related to vegetation and groundwater correlation. The use of different remote sensing data 

sources such as Sentinel 2 level-2A and Radar could present a more informative result. Also, 

addressing more careful data collection, seasonal focus and use of visualization. The addition 

of precipitation data could further be used to provide more detail in explaining the relationship 

between vegetation and groundwater.   
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1. Introduction 

Groundwater is one of the most important natural resources to societies worldwide. It provides 

us with drinking water and the access to adequate groundwater is of utmost importance for a 

society to function (Eveborn, et al. 2017). During recent years, groundwater levels in Sweden 

have varied a lot and longer periods of low groundwater levels, both for large and small 

aquifers, have occurred. The reasons for this can be found both in nature-based processes and 

human activities. With climate change, changing weather patterns are predicted, including 

drought, scarce snowmelt, changing vegetation seasons, and varying precipitation levels, which 

all in their specific way affect groundwater recharge (Lång, et al. 2022). Especially 

precipitation, playing a determining role in groundwater recharge (Eveborn, et al. 2017). 

Adding to this, increased human groundwater usage affects the local groundwater availability. 

Other regional to local variations that affect groundwater recharge are variations in geology, 

topography and vegetation, creating differences between several localities within Sweden as a 

whole (Lång, et al. 2022).  

The county of Kalmar, which consists of twelve municipalities in the southeastern parts of 

Sweden, has been estimated to be an area at risk of increasingly low groundwater levels. The 

reason for this has many potential answers. Kalmar County as part of the southern Baltic Sea 

area is to a larger extent than most other parts of Sweden occupied by agricultural areas which 

tend to be quite demanding on groundwater resources, especially during peak growing season 

(Vattenmyndigheten Södra Östersjön, 2016). Also, lower yearly mean values for effective 

precipitation as well as higher yearly mean evapotranspiration1 have been observed for this 

district in relation to the rest of Sweden (Eveborn, et al. 2017; SGU, 1994). The mapped soil 

depth, presented by Geological Survey of Sweden (SGU) (SGU, 2023, a), indicates that large 

parts of the county of Kalmar have relatively shallow soil depths, which too can affect the 

groundwater recharge reducing the amount of soil water able to be maintained in the soil layer. 

In order to keep up with the changing groundwater conditions continued measurements and 

research is required. The complex character of groundwater and phenomenon surrounding and 

affecting it requires studies to be done at different scales and with methodologies and data from 

 
1 Evapotranspiration – The water which departs to the atmosphere as fumes, post evaporation or transpiration 

from ground, water, or vegetation surfaces (SGU, n.d, c). 
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different scientific backgrounds. An example of this is the growing use of remote sensing2 to 

collect and analyze information about groundwater quality and quantity, as well as conditions 

affecting these. An increase in regional groundwater measurements is available thanks to the 

use of automated loggers provided at most observation wells (Lång, et al. 2022). Combining 

frequent groundwater level measurements with frequent remote sensing data can present some 

insight in local groundwater recharge over a longer time period (Meijerink, et al. 2007).  

1.1 Aim  

The main aim of this study is to examine the relationship between vegetation features and 

groundwater levels, further analyzing groundwater situations within the county of Kalmar.  

This, by using statistical analysis on time series with Sentinel 2 level-1C data, displaying NDVI 

as well as NDWI, and groundwater level measurements. Additionally, using geospatial 

features, trying to explain variations within the statistical outcomes. Geospatial features used 

involves land cover mainly vegetation type, soil type, topography and depth to aquifer. 

1.1.1 Research questions  

● What correlations within time and space exist between groundwater levels and 

vegetation indices, NDVI and NDWI, Sentinel 2 level-1C imagery, in the case of 

Kalmar County?  

● How do studied geospatial features affect the correlation between groundwater levels 

and vegetation indices, NDVI and NDWI, within the county of Kalmar? 

2. Background and key themes 

2.1 Groundwater 

Groundwater is water that exists below the ground surface within pores in the fractures of 

different soil types. Precipitation can infiltrate the ground and percolate3 towards the 

groundwater table which is the upper boundary of the saturated zone. Aquifers are the 

geological features within which the groundwater is contained. Groundwater aquifers can take 

 
2 Remote sensing – The process of measuring physical characteristics of an area from a distance, using its 

reflected and emitted radiation (Mason, 2016). 

3 Percolation – Infiltrated water which makes it way downwards below ground surface, towards the 

groundwater table (SGU, n.d, c). 
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many different shapes and sizes and are often classified as large or small aquifers in Sweden. 

Larger aquifers tend to have less groundwater level variations than the small aquifers where 

groundwater levels tend to fluctuate more. This additionally varies depending on the aquifer’s 

depth below ground surface and its soil type (Bergström, 2001). 

2.1.1 Groundwater and vegetation 

According to Eveborn et al. (2017) precipitation minus evapotranspiration is a main 

determinant for groundwater recharge. Vegetation plays a crucial role in this process through 

both interception and transpiration. Interception occurs when precipitation lands on vegetation 

and evaporates before reaching the ground, while transpiration describes the process where 

vegetation collects water from the ground before releasing it through plant fumes. During 

seasons of healthy vegetation growth, smaller amounts of groundwater can be restored 

compared to when the ground surface is more accessible. The vegetation's ability to create 

evaporation through interception and transpiration further depends on its capacity to collect 

water from the groundwater surface level and its leaf area index4 (LAI). Also, vegetation can 

act as a barrier, slowing down surface runoff and thus potential infiltration. While groundwater 

levels do not typically increase during the growing season, there are exceptions, such as during 

cloudbursts and heavy rainfall that can cause groundwater recharge infiltration and overcome 

interception and transpiration (Eveborn, et al. 2017).  

LAI being a determinant for interception indicates that dense healthy vegetation covering 

surface areas result in low amounts of effective precipitation, i.e the difference between total 

precipitation and total evapotranspiration. This in turn suggests that forested areas generally 

would have higher interception than non-forested areas (Mason, 2016). Research by Johansson 

(1998) has further shown that deforestation can lead to groundwater recharge in areas where 

smaller vegetation patches exist. This is due to the reduced evaporation through interception 

and transpiration resulting from the lack of vegetation. Without this barrier, precipitation can 

reach the ground surface more easily and be absorbed by unsaturated soil (Johansson 1998). 

Building on this, soil water, which is the water contained in the soil above the groundwater 

aquifer, plays a crucial role in vegetation's ability to collect water from the ground surface. In 

Sweden, early summers are typically characterized by low precipitation, making vegetation 

more dependent on soil water during this time. The most soil water is usually found during 

 
4 Leaf area index – The total one-sided leaf area of a vegetation feature per unit ground area (Jones & Vaughan, 

2010) 
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spring, after snowmelt has infiltrated the ground, and during autumn when precipitation 

amounts are generally higher and vegetation's ability to absorb water is lower (Grip et al. 1994). 

2.1.2 Topography, soil type and groundwater 

Three topographic locations related to groundwater are recharge areas, discharge areas and 

intermediate areas. Recharge areas are areas where groundwater flow is predominantly directed 

downwards, in discharge areas it is predominantly directed upwards. Recharged areas are often 

located in topographical highs, at the catchments boundaries. Discharge areas are in 

topographical lows, usually close to surface water bodies or wetlands. Intermediate areas are 

located between recharge and discharge areas and processes can differ depending on seasons 

and weather conditions (Condon & Maxwell, 2015). Watersheds are the boundaries that divide 

the water flow into different directions. Surface watersheds are determined by topography and 

runoff water following the terrain. Ground watersheds cannot be studied from above ground 

(Haraldsson, 2015).  

If the ground surface is saturated, there is an increase in surface runoff due to the grounds 

inability to absorb more water. Surface runoff also occurs during intense precipitation when 

the ground absorption falls behind, and excess water continues its path above ground. During 

such conditions, the ground can only absorb the water when it enters a low and loses its 

momentum (Grip, et al. 1994).  

While topography can affect groundwater recharge, soil type oftentimes is even more 

determinant. The permeability of different soil types affects how much and how quickly 

infiltrated precipitation can reach the groundwater aquifer and restore its surface levels. When 

soil permeability is high the topography is less determinant of the infiltration and travel of 

runoff precipitation than when permeability is low (SGU, 2023, b). Within sand or gravel-based 

soil types, such as glacial sediments, the permeability is generally high, while mixed particles 

such as within moraine the permeability is estimated to a medium rate. Dense soil types with 

fine particles such as clay result in low permeability (Lindström, et al. 2011). While 

permeability determines how quickly and effectively water can move through a porous 

medium, porosity determines how much water can be stored in rocks or soils. Porosity can be 

described as the pore volume in relation to the total volume and pore volume varies depending 

on the particle size within each soil type (Karlsson, et al. 2021).  
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Groundwater aquifers located deep below ground surface tend to see less fluctuation in 

groundwater level variation, while aquifers located just a few meters below ground surface 

(m.b.g.s) tend to have more fluctuation in groundwater levels. Shallow laying groundwater 

aquifers react faster to changes in precipitation and are at higher risk in being drained through 

vegetation transpiration and drought. Aquifer size and soil type are also determinants within 

the above-described pattern (Bergström, 2001). 

 

Above mentioned aspects can create a delay in groundwater recharge. This means that even if 

precipitation has infiltrated the ground surface, there could be a wide range of time passing 

before the soil water reaches the groundwater table (Grip, et al. 1994).  

2.2 Remote sensing and groundwater 

Using remote sensing within groundwater studies can involve qualitative as well as quantitative 

approaches. The wide variety of approaches suitable for a specific study is determined by 

parameters such as data, instruments, temporal and spatial resolution, scale, land cover, climate 

and weather conditions, policies, etcetera. All these parameters are examples of what makes 

remote sensing applicability to groundwater studies extensive but also complex (Meijerink, et 

al. 2007).  

 

At its core, remote sensing applicability to groundwater studies is defined by the different ways 

in which earth surface features react to different wavelengths on the electromagnetic spectrum 

(Meijerink, et al. 2007). As an example, healthy vegetation reflects a high level of incident 

light in the near-infrared part of the spectrum, while it absorbs much and reflects little of the 

incident light in the red part of the spectrum (Jones & Vaughan 2010). With the use of electro-

optical sensors, which register the sunlight’s reflectance from earth surface objects, spectral 

properties can be examined. Additional sensors commonly used today in remote sensing are 

Radar and Lidar sensors using microwaves and laser respectively to collect information about 

earth’s surface (Olsson, et al. 2018). Whether it is reflecting or absorbing, different 

wavelengths within the bands of the electromagnetic spectrum react differently to different 

earth features making it possible to collect information about the feature based on its spectral 

properties (Meijerink, et al. 2007).  
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Figure 1, The electromagnetic spectrum, x-axis displays wavelengths stretching from shorter to longer and y-axis showing percentage of 

atmospheric transmission, i.e., percentage of radiation passing through Earth’s atmosphere (Campbell, et al. 2022).   

Different sections of the electromagnetic spectrum can further be targeted for different 

utilizations. The visible part of the spectrum in combination with the near infrared lights as 

well as short wave infrared lights can be used to interpret different kinds of land cover. 

Vegetation, water sources and urban areas, just to name a few, all have potential implications 

on the water balance5 at a local scale. Moving up on the spectrum, into the microwave section, 

Radar systems use microwaves, also referred to as radio waves, to collect information on for 

example ground shifts and movements, soil moisture and vegetation, and lineament mapping.  

 

In addition to this, elevation models can be created through height values in laser point clouds 

data, often collected from airborne LIDAR-scanners. Elevation models tell the user about 

runoff flow patterns as well as depressions where water can be collected. Using remote sensing 

in groundwater studies is preferably done using different datasets with different characteristics 

over different dates. As an example, multispectral imagery can be supplemented with 

topographic, geologic, hydrologic data in order to create a more extensive interpretation and 

analysis (Meijerink, et al. 2007).  

 

Today there are several commercial as well as open-source data available for a wide range of 

users. There are several electro-optical satellites that provide multispectral imagery at different 

scales with different temporal and spatial resolutions (Holden, 2017). Some examples of 

satellite programs capturing multispectral imagery are Sentinel 2, Landsat 7 and 8, and Terra 

equipped with the MODIS instrument (ESA, n.d, a; Meijerink, et al. 2007). Examples of 

 
5 Water balance – The water balance for a period describes how the inflow of water to an area relates to the 

outflow and storage in the area (SMHI, 2022) 
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satellite missions collecting radar data are Sentinel 1 and SMAP (Adams, et al. 2022; 

Entekhabi, et al. 2010). Lastly an example of a satellite using a K-Band Ranging System 

measuring variation in earth's gravitation, the GRACE mission. Specifics on these missions, 

which data is available open source, as well as websites where data can be accessed are 

displayed in table 1.  

 

Table 1, Remote sensing missions with groundwater applicability, addressing their responsible agency, spatial and temporal resolution, 

what instrument or scanner is used collecting data, what sections of the electromagnetic spectrum (bands) are targeted, and whether they 

are active or not. 

2.3 Vegetation indices 

2.3.1 NDVI 

Vegetation indices use the characteristics of certain wavelengths in relation to vegetation 

features on earth's surface creating a new variable. By using two spectral bands, it's possible to 

calculate the normalized difference between different spectral bands based on their reflective 

properties (Jones & Vaughan 2010). Also, the use of ratioed images, while not removing them 

completely, can mitigate atmospheric effects6 on surface reflectance. The atmospheric effect 

can alter the spectral characteristics of observed images (Lillesand, et al. 2015). 

 

One of the most common indices used for vegetation studies is the Normalized Difference 

Vegetation Index (NDVI) which uses the Near InfraRed (NIR) band and the Red band (Rouse, 

et al. 1973), see equation 1. In this case, thanks to the reflective properties of chlorophyll, the 

contrast between the low reflectance of the red band and the high reflectance of NIR can help 

 
6 Atmospheric effect – scattering and absorption of electromagnetic radiation by gas and particles within the 

atmosphere (Lillesand, et al. 2015). 

Mission Agency Spatial resolution Temporal resolution Instrument/Scanner Bands Status

Sentinel-2
European Space Agency 

(ESA)
10, 20 and 60m

10 days single satellite, 

5 days combined

MultiSpectral Instrument 

(MSI)
13 Spectral Bands Active

Landsat 7
United States Geological 

Survey & NASA
30, 15, and 100m 16 days

Enhanced Thematic 

Mapper Plus (ETM+)
8 Spectral Bands Active

Landsat 8
United States Geological 

Survey & NASA
30, 15, and 100m 16 days

Operational Land Imager 

(OLI)
11 Spectral Bands Active

Terra NASA 250, 500, 1000m 1-2 days

Moderate Resolution 

Imaging 

Spectroradiometer

36 Spectral Bands Active

Sentinel-1
European Space Agency 

(ESA)
5m to 400km 1-3 days 

C-band Synthetic 

Aperture Radar
C-Band Active

SMAP NASA 3, 9 and 36km  2-3 days
L-Band Radiometer & L-

Band Radar
L-band Active

GRACE
NASA & German space 

agencies (DLR)
ca 100km  - 

Several instruments, i.e K-

Band Ranging System 

(KBR)

K-band Active
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the user identify pixels of dense healthy vegetation (Jones & Vaughan 2010). NDVI ranges 

from -1 to 1. In general terms high values indicate dense healthy vegetation while a zero or 

negative value indicates no vegetation at all. Adding to this, NDVI as a more accessible 

alternative gives a good estimate of the LAI (Jones & Vaughan 2010). 

𝑁𝐷𝑉𝐼 =  (𝑁𝑖𝑟 −  𝑅𝑒𝑑)/(𝑁𝑖𝑟 +  𝑅𝑒𝑑)  

2.3.2 NDWI 

Normalized Difference Water Index (NDWI), also known as Normalized Difference Moisture 

Index (NDMI), provides indication of vegetation and soil moisture. It has several iterations and 

usages depending on the band wavelengths used. Originally Gao (1996) presented a formula 

using the central wavelengths of 860 nm and 1240 nm, to study vegetation water content 

through remote sensing data.  

𝑁𝐷𝑊𝐼 =  (𝜌860 𝑛𝑚 −  𝜌1240 𝑛𝑚)/(𝜌860 𝑛𝑚 +  𝜌1240 𝑛𝑚) 

 

Later, Chen et al. (2005) would modify the original formula and present an alternative available 

originally for Landsat data. The difference between the two is using the central wavelength 

1640 nm of one of the SWIR bands. This band is also available through the Sentinel-2 mission.  

𝑁𝐷𝑊𝐼 =  (𝑁𝐼𝑅 −  𝑆𝑊𝐼𝑅)/(𝑁𝐼𝑅 +  𝑆𝑊𝐼𝑅) 

 

According to Jones & Vaughan (2010), the latter NDWI formula shows less saturation than the 

original formula presented by Gao (1996). NDWI can be viewed as a complement to NDVI 

(Gao, 1996). It ranges from -1 to 1 (Jones & Vaughan 2010). High values indicate high 

presence of moisture while low values indicate drought. More specifically -1 to 0 indicate 

different degrees of dry- or wetness for no to low canopy cover. 0 to 0.4 can indicate high or 

low water stress for average canopy cover. 0.4 to 0.8 covers indication of water stress for mid-

high canopy cover to very high canopy cover, no water stress. 0.8 to 1 indicates full canopy 

cover no water stress (EOS Data Analysis, n.d, a). 

 

Lastly, a third iteration of NDWI is presented by McFeeters (1996) using the green band as 

well as the NIR band in order to identify surface water bodies. The chosen band combination 

aims to exclude influences from vegetation and soil, opposite to the previous two.  

 𝑁𝐷𝑊𝐼 =  (𝐺𝑟𝑒𝑒𝑛 −  𝑁𝐼𝑅)/(𝐺𝑟𝑒𝑒𝑛 +  𝑁𝐼𝑅) 

Eq. 1 

Eq. 2 

Eq. 3 

Eq. 4 
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2.4 Statistical analysis 

Applying remote sensing measurements in relation to groundwater measurements within 

statistical analysis can help researchers examine groundwater and earth features relationships. 

Examples of this found in previous research are presented in section 2.5, specifically regarding 

vegetation index and groundwater levels examined through correlation and regression analysis. 

2.4.1 Spearman's correlation coefficient 

Correlation coefficient is a statistical measure that describes the potential association between 

variables. There are several different ways to calculate and analyze the correlation coefficient. 

The method used for this study, Spearman's correlation coefficient (rs), is similar to the more 

common Pearson's correlation coefficient (r) which calculates r based on the linear relationship 

of the input data variables. However, rs is based on ranks estimated from the values of the input 

data variables, applied to a linear relationship. Spearman's method allows for non-linear data, 

such as seasonally dependent time series data, to be used when calculating the correlation 

coefficient, keeping the calculation relatively simple while not neglecting the non-linear 

variations of the data set (Schober, et al. 2018). Output rs shows a value between -1 to 1 where 

0 shows no correlation, 1 shows perfect positive correlation, and -1 shows perfect negative 

correlation. Positive correlation indicates similarly ranked values correlating and negative 

indicates the opposite, high rank values correlating with low rank values (Körner & Wahlgren, 

2015). 

 

It is important to disclose that a strong correlation value, whether negative or positive, doesn't 

necessarily mean that variable A triggers variable B, and their relationship is causal. Rather the 

case might be that both variables have the same separate factor to trigger causation, or the 

relationship between the two simply being a coincidence. Due to this, correlation coefficients 

can be supplemented with further analysis, such as regression analysis looking closer at the 

variance of used variables (Schober, et al. 2018). 

2.4.2 Regression analysis 

Regression analysis is a statistical method widely used within several scientific branches. The 

purpose of regression analysis is to further examine and analyze the relationship between a 

response and one or more predictor variables. The analysis creates a model based on the 

response variable and whether this can be predicted based on the values of the predictor 
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variables. Regression analysis can also be used to test your input predictor variables and further 

validate input data by estimating error values as well as other statistical measures. In this case 

measure of interest is Coefficient of Determination (R²). R² describes to what extent the 

independent variables can explain the variance in the dependent variable and it stretches from 

zero to one. Here, 1 would indicate that the independent variable would explain 100% of the 

dependent variable variability. 0 would indicate that the independent variable would explain 

0% of the dependent variable variability (Kuhn & Johnson, 2013). There are several different 

models to use when performing a regression analysis. Which model to use depends on several 

different aspects surrounding your subject and data. For this study, similar to Song, et al. (2021) 

(see section 2.5), a univariate linear regression analysis was used.   

2.5 Previous research  

There are several examples of previous studies where remote sensing data has been applied to 

groundwater studies. More specifically, there are several studies where vegetation indices are 

used to analyze groundwater phenomenon and occurrences. Bhanja, et al. (2019) used NDVI 

derived from MODIS satellite data, in order to study correlation with in-situ groundwater level 

measurements for large areas of India. The aim of the study was to use vegetation index data 

as an estimator for groundwater levels. They did this by collecting widely available MODIS 

data, precipitation measures and ground-based groundwater observations from the year 2005 

to 2013, which then was applied to a machine learning process in order to create a prediction 

model describing potential groundwater levels. The groundwater observations were measured 

four times a year, once for early monsoon, once for late monsoon, once for pre-monsoon, once 

for mid-monsoon. Hence, they captured measurements occurring during extremely humid to 

semi-arid climates. The results show high spatial variability in correlation between 

groundwater levels and NDVI, acknowledging the wide variation of land use and land cover 

of the study area. Further, strong correlation values, r > 0.6 with a statistical significance of p 

< 0.01 according to Bhanja, et al. (2019), are shown from naturally vegetated areas, such as 

forests, in central India, as well as from the shrublands of western India. However weak to 

moderate correlation values shown in (r = 0 to 0.6) were found in most parts of southern and 

northern India and in the case of agricultural areas, which they argue are due to human impact. 

Further, the results vary over the seasons with highest positive correlation during early and late 

monsoon and low to moderate negative correlation during monsoon. Looking at precipitation 
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and NDVI, what Bhanja, et al. (2019) argues to be low to moderate correlation (0 < r < 0.7) 

was found. 

 

Zhu, et al. (2015) also used in situ groundwater depth measurements and remote sensing data 

in order to examine the correlation between groundwater levels and vegetation health through 

NDVI. The study area in this case was six subareas in the Xiliao River Plain located within 

Inner Mongolia in northern China, an arid to semi-arid area on a regional scale. The main land 

cover within the study area varies between forests, grasslands and cultivated land. Data used 

for the study also involved precipitation data, and the time span for which all data covered was 

1981-2010, with values extracted on a monthly basis. Due to the time span of 1981-2010, both 

the Advanced Very High-Resolution Radiometer (AVHRR) on National Oceanic and 

Atmospheric Administration satellites (NOAA) as well as MODIS was used for NDVI data 

collection. Further, both were analyzed separately due to potential calibration differences. The 

NOAA NDVI data from 1981-2000 and MODIS NDVI data from 2001-2010. Results show 

strong correlation (r > -0.6, similar to Bhanja, et al. (2019)) between max NDVI and 

groundwater depth for two of the six subareas, during dry periods between 2001-2010. One 

subarea showed moderate correlation r = -0.54, and the three sub areas remaining showed low 

correlation with values between r = -0.33 to -0.22. For the same period, the first two sub areas 

showed low correlation between precipitation and NDVI. Zhu, et al. (2015) argues that this 

strengthens the relation between NDVI and groundwater depth for these two areas. Strongest 

correlation between precipitation and NDVI for the years 2001-2010 shows values of r = 0.7 

and r = 0.6. For the same areas, during the same time span, correlation between NDVI and 

groundwater levels show weak correlation. This further suggests vegetation being less 

dependent on groundwater than precipitation. Zhu, et al. (2015) argues that precipitation is a 

determinant for natural vegetation in the study area. 

 

Song, et al. (2021) has performed a similar study as Zhu, et al. (2015) in the sense that the 

phenomenon of interest is groundwater level in relation to vegetation. This study also derives 

from China with the study area of Tarim Basin and Qaidam Basin, two arid areas in the west 

of China. Song, et al. (2015) used MODIS satellite data in order to capture NDVI from the year 

2000 to 2016 and combined it with groundwater depth measurements in order to examine their 

correlation. In addition to this, Song, et al. (2015) use regression analysis to further explore the 

relationship between groundwater and vegetation cover. Different time spans were applied for 

different subareas of the total study area. While the results show what Song, et al. (2015) argues 
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to be a strong correlation r = -0.505 in the Kongque River Catchment, over the time span 2000-

2004, the regression analysis shows a different indication. The coefficient of determination 

only showed a value of 0.255. This in turn would indicate that the chance of the response 

variables (in this case groundwater levels) variation being due to the independent variables (in 

this case NDVI) variation is only about 25 %.  

 

Conclusions from above-described studies include the method of using vegetation indices to 

examine the relationship of surface cover, specifically vegetation, and groundwater surface 

depth. This, through time series data and statistical analysis in the form of correlation 

coefficients and regression analysis. Adding to this, there is value in supplementing correlation 

analysis with regression analysis, further aiming at validating your data and further exploring 

the relation between variables used.  

 

The above-described studies have all taken place at a regional scale, while also considering 

differences in different subareas of the regions. Capturing the relationship between vegetation 

indices and groundwater depth at this scale could be argued to require a dense network of 

measurement stations for in-situ groundwater observations. Studying vegetation indices and 

groundwater depth correlation at a more local scale could potentially present a more distinct 

result. The remote sensing data used is also of relatively low spatial resolution due to the 

regional scale of the study areas. Looking at a local scale would require high resolution remote 

sensing data in order to properly display the vegetation indices. The time aspect arguably also 

plays a part in the results of the studies above. The input data used ranges from a monthly to a 

quarterly basis. Having more frequent measures within the input data could present a more 

revealing result. 

 

The above studies took place within different climates, mainly occurring within arid to semi-

arid regions while also acknowledging correlation between NDVI and groundwater levels 

during monsoon, creating a very humid climate. Arguing that vegetation more heavily relies 

on groundwater within arid to semiarid areas, due to lack of precipitation, applying this type of 

study to more humid climates over a longer time span might give varying results to the ones 

found in arid or semi-arid study areas, further exploring the potential impact of precipitation. 
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3. Study area 

This study has examined 57 sub-

samples of the larger study area of 

Kalmar county. The sub-samples 

were derived from 57 of SGU’s 

groundwater measurement stations 

within Kalmar county. Additionally, 

out of the 57 sub-samples, ten focus 

samples have been further examined. 

The study area of Kalmar county as 

well as the sub- and focus samples are 

displayed in figure 2.  

3.1 Groundwater 

Kalmar county as part of the southern 

Baltic Sea area has varying 

prerequisites when looking at 

groundwater. As an example, 

different soil types and depths, 

topography, land cover and usages play vital roles in the county's groundwater situation. While 

there are occurrences of good groundwater resources supplying water of high quality, the 

groundwater recharge is one of the lowest in Sweden (Vattenmyndigheten Södra Östersjön, 

2022).  

3.2 Climate 

Historically, the county of Kalmar has seen lower yearly mean precipitation than the rest of 

Sweden, with less than 200 mm precipitation yearly between 1961-1990. To compare, areas on 

similar longitudes but on the west coast of Sweden experience among the highest yearly mean 

precipitation in Sweden for the same time span. Building on this, the county also historically 

shows longer vegetation seasons ranging from 210-220 to 250-260 days per year, in different 

areas of the county, from the year 1961-2013 (ibid.). The county of Kalmar also saw higher 

mean evapotranspiration than most of Sweden, as well as lower mean runoff for 1961-1990 

(SGU, 1994).  

Figure 2, The 57 total sub-samples within Kalmar County used for this study. 

Ten of 57 are further marked as focus samples, target for additional analysis. 
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3.3 Land cover 

Looking at land cover, generally the vegetation cover consists of crop land and a mix of 

coniferous and deciduous forests. The county has populated areas of different densities, varying 

from sparse populated areas in the countryside to dense urban areas within the twelve 

municipalities that constitute the county.  

3.4 Geology  

While the most occurring soil type is moraine there are also other soil types of different 

permeability present, as displayed in figure 3. Looking at soil depth in figure 4, this becomes 

relevant in groundwater recharge. Large parts of Kalmar County have relatively shallow soil 

depths, reducing the amount of water that can be stored in the soil.  

 

The above-mentioned aspects are what make the county of Kalmar an area of interest when 

studying groundwater. Each aspect further has implications for groundwater conditions and 

recharge. Kalmar county as part of the southern Baltic Sea area has been recognized by Swedish 

water authorities as one of the more critical areas in Sweden, when discussing groundwater. 
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Figure 3, Soil type map over the county of Kalmar. Additionally, the 57 sub-samples (including ten focus samples) are visualized above their 

respective soil type. 
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Figure 4, Soil depth map over the county of Kalmar. Additionally, the 57 sub-samples (including ten focus samples) are visualized above their 

respective soil type. 
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4. Data 

4.1 Remote sensing data 

For this study, Sentinel-2 Level-1C data has been used for the time period of 2015-06-23 to 

2022-12-31. The Sentinel-2 satellites, Sentinel-2A and -2B were launched in 2015 and 2017 

respectively and use multispectral instruments to collect reflected sunlight over thirteen 

spectral bands. Part of the Sentinel-2 mission is to contribute to land monitoring and climate 

change studies (ESA, n.d, a). The Sentinel-2 data was extracted from Google Earth Engine 

(GEE). GEE provides an effective way of extracting larger sets of data, rather than collecting 

image by image from open-source databases. The image collection used, “Harmonized 

Sentinel-2 MSI: Multispectral Instrument, Level-1C” contains images from 2015-06-23 to the 

present, with a temporal resolution of five days around the equator and two to three days around 

the latitude of Sweden, using images from both satellites involved in the European Space 

Agency (ESA) Sentinel-2 mission (Harrie, 2020). The spatial resolution varies between the 

thirteen spectral bands available, but for the bands used in this study the spatial resolution is 

10x10 or 20x20 meters (ESA, n.d, a).  

4.2 Groundwater data 

The county specific groundwater data originates from SGU. The data collection came as an 

CSV.file containing measurements from all observation wells within the county of Kalmar, 

spanning over a variation of time periods and with varying temporal resolution. More 

specifically the data used for this study involves groundwater levels in m.b.g.s, the name of 

each measurement station, the time period during which data has been collected and the 

coordinates for each site. Further, the data collected also covers attributes such as aquifer type, 

soil type, whether it's an open or closed aquifer and its topographic location. 

4.3 Additional data 

Within the subject of groundwater studies, key features to analyze are related to vegetation and 

other land cover types, soil type and depth as well as topography. Additional data used for 

comparison and further analysis regarding these features that affect correlation between 

groundwater levels and vegetation indices, NDVI and NDWI, are presented as follows. Land 

cover data from Nationella marktäckedata developed by Swedish Environmental Protection 

Agency (Naturvårdsverket, 2018) was used in order to display different land cover extent in 
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each focus area. Each focus sample with respective land cover can be found in figure 23, within 

the results. Additionally, elevation data provided by Lantmäteriet (Lantmäteriet, n.d) was used 

in order to capture topography and surface flow models, created by Scalgo (Scalgo, n.d). Lastly, 

data over mapped groundwater aquifers provided by SGU (2022) have been used. 

5. Method 

The study aimed at exploring potential correlation between vegetation indices and groundwater 

level measurements for 57 sub-samples derived from measurement stations in the county of 

Kalmar. To each measurement station a one-kilometer buffer was applied, creating a sub-

sample area of 3,14 km2.  

 

The time series format used for the three main variables, NDVI, NDWI and groundwater levels, 

was chosen to examine the progression of each variable over time. Applying analysis of time 

series data over a set period demands certain qualities of the sample data. For this study, 

biweekly maximum values for targeted indices over a seven-and-a-half-year period have been 

used. This further demanded high temporal resolution data, which was targeted through the 

Sentinel-2 image collection, with five days between each image at the equator and two to three 

around Sweden’s longitude, using both satellites (ESA, n.d, a; Harrie, 2020). However, the 

temporal resolution was not the only aspect deciding data availability. Image quality can vary 

depending on cloud cover and other weather conditions. Some images are rendered useless due 

to high cloud cover. To work around this, while not a perfect solution due to the modification 

of actual values, interpolation was used to enable collection of time series data. Interpolation 

is the process of creating estimated values based on adjacent data. Images containing empty 

pixels, as a result of the cloud mask removing values from the pixels visualizing clouds, can 

further be filled with data from measurements correlated to the incomplete image (Harrie, 

2020).  

 

Found correlation between vegetation indices and groundwater measurements was further 

examined in relation to geospatial features vegetation, land cover, soil type, topographic 

location, and median groundwater table depth as an indicator for depth of aquifer. This further 

examination was applied to ten focus samples. 
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5.1 Collecting and processing 

remote sensing data 

For this study, Sentinel-2 level-1C data 

was extracted and processed in Google 

Earth Engine: Code Editor. Code Editor 

is an integrated development 

environment that uses JavaScript for 

geospatial data processing (Google Earth 

Engine, 2021). The workflow used is 

presented in figure 5. The original 

JavaScript used was created by Ujval 

Gandhi (2021). 

 

The script merges a filtered original 

image collection containing Sentinel-2 

level-1C images, with an empty 

collection. This merged image collection 

is then targeted for interpolation. Before 

that some presets were applied which 

targeted images within the original 

image collection. First a function that creates new separate bands for NDVI (Eq.1) and NDWI 

(Eq.3) as well as applying these to each image within the original images collection. Then a 

function that defines the cloud mask used. The cloud mask utilizes a separate cloud mask band 

(QA60) that was provided by the original image collection. The cloud mask band in question 

is in turn based on spectral values of specifically the blue band, band B10 and one of the SWIR 

bands which all three can be used to identify dense clouds and cirrus (ESA, n.d, b). 

Additionally, filters used within this script targeted images based on a specific time frame 

(2015-06-23 to 2022-12-31), the sub-samples area, certain cloud cover percentage (30%), as 

well as the pre-defined cloud mask. Lastly reducers were defined, these extract a single pixel 

value from all the pixel values found within each 3,14 km2 sample, based on a certain criterion. 

Reducers for max, min, mean, and median values were added, however the study only used the 

max values. The reducers extracted values from the final interpolated images. 

 

Figure 5, Workflow describing data remote sensing data processing and 

collection. The process was performed using JavaScript and each square 

within the workflow describes a section of the script. 
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The interpolation required knowing the time of acquisition of each image, this in a millisecond 

timestamp format. Used interpolation method further acquired pixel values from the first 

adequate image both before and after the time of acquisition of the image with the missing 

pixels. If for example the before image would be closer adjacent in time to the timestamp of 

the original image than the after image is, the before image would have greater influence on 

the fill than the after image. This was achieved through a time ratio formula (Eq.5), where t = 

interpolation timestamp, t1 = before image timestamp, t2 = after image timestamp.  

𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜 =  (𝑡 –  𝑡1) / (𝑡2 –  𝑡1)  (Harrie, 2020) 

The complete interpolation formula used (Eq.6) describes a linear interpolation, where y = 

interpolated image, y1 = before image, y2 = after image. 

𝑦 =  𝑦1 +  (𝑦2 − 𝑦1) ∗ ((𝑡 –  𝑡1) / (𝑡2 –  𝑡1)) (Harrie, 2020) 

Further, in this case the interpolation was restricted to 30 days before and after with the aim of 

maintaining seasonal relevance of the data, while still being able to find images that pass the 

filters set.  

 

The last step of the time series processing involved smoothing. Smoothing was used to compute 

local averages to the data in order to reduce some of the noise that might occur within digitized 

data. In this case, the Savitzky-Golay filter was used, which performs moving window 

averaging over the time series data, with a three-point window. Using moving window 

averaging allows for the variation in a time series to be taken into consideration instead of using 

a constant averaging (Press, et al. 2007).  

5.2 Spearman's correlation coefficient and linear regression analysis 

In the case of this study, positive correlation indicates a high or low vegetation index value 

correlating with a low or high groundwater level. This is explained by the groundwater levels 

being presented as meters below ground, hence a high groundwater measurement value 

represents a lower actual groundwater level than a low groundwater measurement value does. 

Negative correlation indicates that a high vegetation index value correlates with a low 

groundwater measurement value, hence a high groundwater level. It could also indicate that a 

low vegetation index value correlates with a high groundwater measurement value, hence a 

low groundwater surface level.  

 

Eq. 5 

Eq. 6 
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5.2.1 Calculating Spearman’s correlation coefficient  

Spearman's Correlation 

Coefficient (rs) was calculated for 

each separate indices in relation to 

groundwater levels for each 

measurement station, as part of a 

larger Python script. This script 

used the output CSV-files from the 

above-described JavaScript, 

containing time series with each 

index for each measurement 

station. It also used the site-

specific groundwater data, 

separated to a CSV-file per 

measurement station. The script 

mainly used the pandas and 

NumPy plugins. 

Before reaching calculation of rs the input CSV-files needed further processing. First step 

involved changing the CSV format of each file to XLSX, the panda’s plugin being more 

compatible with XLSX-files. Then values collected within each file were applied to a common 

timeline stretching over each day between 2015-01-01 to 2022-12-31. This was part of 

preparation for calculating the biweekly max values of each variable. Calculating biweekly 

max values helped narrow the data set down, making it more comprehensive as well as aligning 

the values of each variable at common dates, which was a necessity for calculating rs. Using a 

biweekly basis also ensured that potential seasonal variations are maintained within the data 

set. Adding to this, the temporal resolution of Sentinel 2 data is as mentioned two to three days 

around Sweden’s latitude, when using imagery from both satellites. A weekly basis would risk 

being dependent on single images while a biweekly basis ensures at least two often three 

images per two weeks stretch, depending on cloud cover.  

Post calculating biweekly max values for each variable related to each measurement station, rs 

was calculated. The process of groundwater recharge is known to be delayed, as described in 

section 2.1. In order to account for the delay each index's time series was displaced within three 

Figure 6, Workflow describing process of calculating groundwater and 

index correlation through Python scripts 
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months before the groundwater levels timeline. Several time spans for time-lag were tested, 

ranging up to 6 months with a monthly difference for each try. Before three-month time-lag 

there was an increase in correlation strength over most measurement stations and their 

respective variables. After three months there was a decrease, hence the three-month time-lag 

output was most appropriate for further analysis.  

 

From here ten focus samples were chosen for further analysis. The selection process was based 

on correlation values, aiming to select stations with a variation of correlation strength, as well 

as different time spans, geographical location and other geospatial features. 

5.2.2 Performing linear regression analysis 

The univariate linear regression analysis was performed in Excel, targeting each focus sample 

and their respective bi-weekly max variable values, structure in time series. Within a scatter 

plot, groundwater levels were placed as the dependent variable at the Y-axis and index values 

were placed as the independent variable at the X-axis. The full extent of the time series was 

used when performing the analysis. Output R2-values were collected for each focus area. It is 

important to note that the statistical analysis, both correlation and regression analysis, only 

utilized data at dates that were common to both NDVI/NDWI and groundwater level 

measurements. 

5.3 Comparison of time series and found correlations to geographical features 

As the found correlations between groundwater levels and NDVI, NDWI varied a lot between 

stations (see results section), it was further explored which factors, such as vegetation, land 

cover, soil type, topography and groundwater level depth have an impact on the strength and 

significance of found correlations. The goal was also to determine whether the statistical 

outcomes follow specific spatial patterns that can be related to geographical features. The 

performed comparison involved ten focus samples. 
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Table 2, Focus samples with respective geospatial features considered. 

5.3.1 Vegetation index maps 

NDVI and NDWI images were collected for March, July and December for each year within 

the time series to examine where time series index values were derived from. Vegetation 

indices images were based on Sentinel 2 level 1C data extracted from GEE and visualized in 

QGIS before visual interpretation. Months were chosen to capture seasonal variety. Due to the 

number of images collected to provide each stations time series, this was not repeated for each 

stations respective images. 

5.3.2 Land cover maps 

Land cover data was mapped to create a geospatial context for each focus area. This aimed to 

provide an indication of the extent of certain land covers to see how well the collected index 

maximum values represent the overall study area. Nationella marktäckesdata, from 

Naturvårdsverket, was used. Certain forest land cover classes were merged during visualization 

in QGIS to make the maps more comprehensive. These cover classes described variations 

within coniferous and deciduous forests but were merged to create single deciduous and 

coniferous forest classes respectively. 

5.3.3 Map exploring topography 

One sub-sample (Forshult 67) was chosen for closer study to examine the effect if above 

surface topography on vegetation health as measured by NDVI from April to September 2021. 

The area was chosen based on its shallow groundwater levels and the above surface topography 

ranging from around 40 to 55 meters above sea level, directly above the aquifer. NDVI images 

were collected April, May, June, July, August and September 2021 in order to examine the 

effect of topography on vegetation health when groundwater levels are low, and potential 

dependence of groundwater higher.  

Station Soil type Topografic location Levels observed (m.b.g.s) Time span

Dörby 38 Sand Intermediate area 4.14 - 5.7 4/18/2019  - 12/22/2022

Emmaboda 21 Gravel or coarser Intermediate area 1.3 - 2.25 5/2/2019 - 12/22/2022

Fliseryd 1 Gravel or coarser Discharge area 1.32 - 2.41 5/2/2019 - 12/22/2022

Forshult 67 Sand Intermediate area 0.83 - 1.7 10/29/2020 - 12/22/2022

Läckeby 1 Moraine Recharge area 4.35 - 6.24 5/16/2019 - 9/17/2020

Påskallavik 2 Gravel or coarser Recharge area 0.86 - 2.19 5/16/2019 -12/22/2022

Rälla 36 Sand Intermediate area 11.89 - 14.18 1/1/2015 - 12/22/2022*

Trekanten 63 Sand Intermediate area 0.99 - 1.94 10/29/2020 - 12/22/2022

Vimmerby 55 Sand Recharge area 4.44 - 4.94 1/1/2015 - 11/10/2022

Vimmerby 104 Moraine Recharge area 7.06-8.09 1/1/2015 - 12/22/2022*
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5.4. Using averaged correlation strength 

In order to further examine potential patterns found within the statistical outcome, averaged 

correlation strength between index and groundwater levels were compared to soil type, 

topographic location and median groundwater depth. In excel, soil type and topographic 

location were used as classes examining how the strength of correlation over all focus samples, 

for each index in relation to groundwater levels, was divided over different soil types and 

topographic locations. The classes were gravel or coarser, sand and moraine regarding soil type 

and intermediate, recharge and discharge areas regarding topographic location. These are the 

classes used in the collected data from SGU. The median groundwater depth was calculated 

and used as responsive variable in relation to averaged correlation strength between index and 

groundwater levels as dependent variable, to explore their linear regression.  

6. Results 

6.1 Correlation and regression outcomes 

Results from Spearman's correlation coefficient show varying rs-values between the two 

vegetation indices and groundwater levels, for all the 57 sub-samples. Results from correlation 

analysis without the time-lag is displayed in table 3. 

  NDVI NDWI   NDVI NDWI 

 Station rs rs   Station rs rs 

1 Äleklinta 17 0,478 -0,569 30 Påskallavik 1 0,062 0,080 

2 Björnhult 68 -0,060 0,070 31 Påskallavik 2 0,181 0,088 

3 Blomstermåla 1 -0,027 0,227 32 Rälla 36 -0,345 0,313 

4 Böda 7 -0,193 0,329 33 Silverdalen 57 0,209 -0,407 

5 Böda 9 -0,117 0,387 34 Sjöstorp 32 -0,017 0,077 

6 Böda 34 0,122 -0,092 35 Sjöstorp 33 -0,004 0,079 

7 Böda 35 -0,248 0,062 36 Storebro 61 0,336 -0,465 

8 Dörby 38 0,212 -0,217 37 Trekanten 63 0,627 -0,003 

9 Dörby 39 -0,199 0,066 38 Vermagasinet 60 0,174 -0,263 

10 Emmaboda 1 0,392 -0,152 39 Vimmerby 101 0,395 -0,137 

11 Emmaboda 3 0,418 -0,291 40 Vimmerby 102 0,460 -0,241 

12 Emmaboda 21 0,485 0,028 41 Vimmerby 103 0,536 -0,302 

13 Fliseryd 1 0,306 -0,367 42 Vimmerby 104 0,244 -0,110 

14 Forshult 67 0,382 -0,310 43 Vimmerby 105 0,541 -0,345 

15 Gamleby 62 0,532 -0,146 44 Vimmerby 106 0,550 -0,295 

16 Gosjökulla 64 0,055 -0,139 45 Vimmerby 12 -0,142 0,175 

17 Högrum 19 -0,007 -0,033 46 Vimmerby 13 0,152 -0,061 
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18 Hultsfred 65 -0,016 -0,074 47 Vimmerby 14 0,006 0,177 

19 Jernforsen 59 0,139 -0,212 48 Vimmerby 15 0,190 -0,080 

20 Kleva 21 0,609 -0,424 49 Vimmerby 18 0,144 -0,001 

21 Köpingsvik 31 -0,058 0,146 50 Vimmerby 41 0,425 -0,028 

22 Läckeby 1 -0,195 -0,380 51 Vimmerby 42 0,382 -0,034 

23 Långrälla -0,407 0,225 52 Vimmerby 51 -0,172 0,453 

24 Laxemar 1 0,497 -0,486 53 Vimmerby 52 0,077 -0,068 

25 Laxemar 2 0,475 -0,461 54 Vimmerby 53 0,162 -0,117 

26 Laxemar 3 0,495 -0,452 55 Vimmerby 54 -0,273 0,501 

27 Mörlunda 58 -0,009 -0,180 56 Vimmerby 55 0,476 -0,177 

28 Nybro 1 0,475 -0,381 57 Vimmerby Hamra 66 0,222 -0,282 

29 Nybro 2 0,475 -0,340     
 

Table 3, Results from Spearman’s correlation for the 57 sub-samples, without time-lag 

The strength of the rs-values increased over most measurement stations, when using a time-lag 

of three months for the vegetation indices. Results from correlation analysis with the three-

month time-lag is displayed in table 4. Remaining results presented regard data with three-

month time-lag. 

  NDVI NDWI 

 Station rs p-value rs p-value 

1 Äleklinta 17 0,459 0,000 0,200 0,057 

2 Björnhult 68 0,667 0,000 -0,442 0,001 

3 Blomstermåla 1 0,443 0,000 -0,291 0,005 

4 Böda 7 0,522 0,000 -0,184 0,015 

5 Böda 9 0,441 0,000 -0,107 0,158 

6 Böda 34 0,688 0,000 -0,451 0,000 

7 Böda 35 0,583 0,000 -0,338 0,001 

8 Dörby 38 0,706 0,000 -0,297 0,003 

9 Dörby 39 0,681 0,000 -0,393 0,000 

10 Emmaboda 1 0,461 0,000 -0,567 0,000 

11 Emmaboda 3 0,352 0,001 -0,569 0,000 

12 Emmaboda 21 0,424 0,000 -0,528 0,000 

13 Fliseryd 1 0,555 0,000 -0,554 0,000 

14 Forshult 67 0,696 0,000 -0,656 0,000 

15 Gamleby 62 0,233 0,090 -0,669 0,000 

16 Gosjökulla 64 0,672 0,000 -0,519 0,000 

17 Högrum 19 0,445 0,000 -0,355 0,000 

18 Hultsfred 65 0,671 0,000 -0,515 0,000 

19 Jernforsen 59 0,525 0,000 -0,419 0,002 

20 Kleva 21 0,266 0,004 -0,532 0,000 

21 Köpingsvik 31 0,520 0,000 0,004 0,966 

22 Läckeby 1 0,778 0,000 -0,306 0,069 



31 

 

23 Långrälla 0,689 0,004 -0,421 0,118 

24 Laxemar 1 0,207 0,133 -0,533 0,000 

25 Laxemar 2 0,259 0,061 -0,585 0,000 

26 Laxemar 3 0,230 0,097 -0,589 0,000 

27 Mörlunda 58 0,632 0,000 -0,485 0,000 

28 Nybro 1 0,276 0,040 -0,470 0,000 

29 Nybro 2 0,150 0,271 -0,510 0,000 

30 Påskallavik 1 0,626 0,000 -0,638 0,000 

31 Påskallavik 2 0,664 0,000 -0,633 0,000 

32 Rälla 36 0,292 0,001 0,119 0,175 

33 Silverdalen 57 0,339 0,013 -0,611 0,000 

34 Sjöstorp 32 0,700 0,000 -0,525 0,000 

35 Sjöstorp 33 0,702 0,000 -0,527 0,000 

36 Storebro 61 0,337 0,014 -0,473 0,000 

37 Trekanten 63 0,386 0,003 -0,187 0,167 

38 Vermagasinet 60 0,559 0,000 -0,559 0,000 

39 Vimmerby 101 0,258 0,129 -0,276 0,104 

40 Vimmerby 102 0,268 0,009 -0,390 0,000 

41 Vimmerby 103 0,299 0,004 -0,420 0,000 

42 Vimmerby 104 0,146 0,171 0,082 0,440 

43 Vimmerby 105 0,117 0,263 -0,327 0,001 

44 Vimmerby 106 0,118 0,262 -0,412 0,000 

45 Vimmerby 12 0,510 0,000 -0,322 0,001 

46 Vimmerby 13 0,552 0,000 -0,420 0,000 

47 Vimmerby 14 0,507 0,000 -0,423 0,000 

48 Vimmerby 15 0,593 0,000 -0,432 0,000 

49 Vimmerby 18 0,423 0,000 -0,355 0,000 

50 Vimmerby 41 0,607 0,000 -0,474 0,000 

51 Vimmerby 42 0,645 0,000 -0,498 0,000 

52 Vimmerby 51 0,353 0,117 0,149 0,520 

53 Vimmerby 52 0,141 0,542 0,353 0,116 

54 Vimmerby 53 0,592 0,000 -0,515 0,000 

55 Vimmerby 54 0,179 0,437 -0,082 0,724 

56 Vimmerby 55 0,492 0,000 -0,545 0,000 

57 Vimmerby Hamra 66 0,316 0,024 -0,506 0,000 

 

Table 4, Results from Spearman’s correlation for the 57 sub-samples, with three-month time-lag. 

Using the progression of five of the total ten focus samples respective NDVI rs-values, it is 

noticeable that not all peak at the same time-lag (see figure 7). Emmaboda 21 and Vimmerby 

55 peak only after one-month time-lag, while Rälla 36 peak post five-month time-lag. 

Påskallavik 2 and Dörby 38 peak post three-month time-lag and hence display the more 
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common pattern over the largest amounts of the original 57 measurement stations. Looking at 

the NDWI and groundwater level rs-values (figure 8), Rälla 36 peak post four-month time-lag 

and Dörby 38 post one-month time-lag. Emmaboda 21, Vimmerby 55 and Påskallavik 2 all 

peak post three-month time-lag.  

 

 

Figure 7, Examples of NDVI and groundwater correlation coefficients post one to six months time-lag at five of the ten focus samples. 

 

  

Figure 8, Examples of NDWI and groundwater correlation coefficients post one to six months time-lag at five of the ten  focus samples. 
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Whether strong or weak, the rs-values are 

always positive for NDVI and 

groundwater levels indicating that 

periods of higher NDVI values are 

followed by lower groundwater levels. 

The positive correlation values are due to 

groundwater measurements presented as 

m.b.g.s, hence higher values show lower 

groundwater levels. 16 measurement 

stations displayed in table 5, showed 

strong correlation (rs >= 0.6) between 

NDVI and groundwater levels, with p-

values below 0.05 which indicates 

statistical significance. Most 

measurement stations show negative rs 

between NDWI and groundwater levels. 

Negative correlation indicates that 

periods of high vegetation moisture are 

often followed by increasing 

groundwater levels. The negative 

correlation values are due to higher 

groundwater levels being presented by 

lower values because of its unit. Five measurement stations, displayed in table 6, show strong 

correlation between NDWI and groundwater levels (rs <= -0.6) with p-values below 0.05, 

indicating statistical significance.  

 

The spatial distribution of rs-values over the 57 original measurement station are displayed in 

figure 9 and 10. Further, the spatial distribution of 16 measurement station showing rs >= 0.6 

between NDVI and groundwater levels, is displayed in figure 11. The spatial distribution of 

the five measurement stations showing rs <= -0.6 between NDWI and groundwater levels are 

displayed in figure 12. 

Table 6, The five measurement stations showing rs <= -0.6 between 

NDWI and groundwater levels as well as their respective p-value. 

 

Table 5, The 16 measurement stations showing rs >= 0.6 between 

NDVI and groundwater levels as well as their respective p-value. 
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Figure 9, The spatial distribution of rs-results for all 57 measurement stations, displaying NDVI and Groundwater level correlation. The 

legend describes NDVI and groundwater level rs-values. 
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Figure 10, The spatial distribution of rs-results for all 57 measurement stations, displaying NDVI and Groundwater level correlation. The 

legend describes NDWI and groundwater level rs-values. 
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Figure 11, The spatial distribution of the 16 of 57 measurement stations showing rs >= 0.6 between NDVI and groundwater levels. The 

legend describes NDVI and groundwater level rs-values. 

 

Figure 12, The spatial distribution of the 5 of 57 measurement stations showing rs <= -0.6 between NDWI and groundwater levels. The 

legend describes NDWI and groundwater level rs-values. 
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As presented in section 5.3, ten focus samples were extracted from the original 57 measurement 

stations for further analysis. The overall strongest rs for these focus samples are found between 

NDVI and groundwater levels which show an average rs of 0.514 for the ten focus samples. 

NDWI and groundwater levels for the ten focus samples show an average rs of 0.391. All 

averaged values presented in the result section will be positive whether the correlation is 

positive or not. This is to represent the strength of correlation, averaging positive and negative 

values combined can lead to false indication of correlation strength. Calculating the average rs 

over the original 57 measurement stations the same pattern is found, NDVI provide strongest 

average rs (0.455), followed by NDWI (0.424).  

 

 

Table 7, Spearman’s correlation coefficient results for each focus area, with related p-value. 

 

The results from the Spearman's correlation as well as 

linear regression analysis are presented in table 7 and 8. 

Presented R2-values indicate that there is a low to 

moderate percent chance that variations in dependent 

variable groundwater levels are a result of variation in 

independent variable NDVI and NDWI. The exception 

being R2 for NDVI at Läckeby 1. At this station a 

relatively strong linear relationship was seen for said 

vegetation index. This indicates that the chance of 

groundwater levels being affected by healthy vegetation 

cover at Läckeby 1 is relatively strong. Examples of 

regressions found are seen in figures 13 and 14, as well as to figures 35 to 42 presented in the 

appendix. 

Station rs p-value rs p-value

Dörby 38 0,706 0,000 -0,297 0,003

Emmaboda 21 0,424 0,000 -0,528 0,000

Fliseryd 1 0,555 0,000 -0,554 0,000

Forshult 67 0,696 0,000 -0,656 0,000

Läckeby 1 0,778 0,000 -0,306 0,069

Påskallavik 2 0,664 0,000 -0,633 0,000

Rälla 36 0,292 0,001 0,119 0,175

Trekanten 63 0,386 0,003 -0,187 0,167

Vimmerby 55 0,492 0,000 -0,545 0,000

Vimmerby 104 0,146 0,171 0,082 0,440

NDVI NDWI

Table 8, regression analysis results for each 

focus sample and respective R2-values.  

NDVI NDWI

Station R
2

R
2

Dörby 38 0,473 0,132

Emmaboda 21 0,17 0,233

Fliseryd 1 0,257 0,271

Forshult 67 0,401 0,31

Läckeby 1 0,563 0,143

Påskallavik 2 0,448 0,367

Rälla 36 0,069 0,002

Trekanten 63 0,131 0,016

Vimmerby 55 0,174 0,358

Vimmerby 104 0,002 0,004
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Looking closer at Läckeby 1, while based on few measurements compared to the rest of the 

measurement stations, this station had the strongest linear relationship between groundwater 

levels and NDVI (0.563). The same linear strength does not apply for NDWI (0.143) however. 

Strongest linear relationship between groundwater levels and NDWI was found at Påskallavik 

2. Påskallavik 2 also showed relatively strong, in relation to all focus samples, linear 

relationship between groundwater levels and NDVI.  

 

Figure 13, Läckeby 1 regression analysis. R2-values between Groundwater level and NDVI show 0.563 and NDWI 0.143. 

 

Figure 14, Påskallavik 2 regression analysis. R2-values between Groundwater level and NDVI show 0.448 and NDWI 0.367. 

6.2 Interpretation of time series 

For observation, comparison and further interpretation, time series of NDVI, NDWI and 

groundwater levels in m.b.g.s have been assembled into shared graphs for each station within 

the ten focus samples (see figures 17 to 20 and 24, and figures 30 to 34 in the appendix).  
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Figure 15, Time series of NDVI, NDWI and groundwater level for Dörby 38 

 

 

Figure 16, Time series of NDVI, NDWI and groundwater level for Dörby 38, where groundwater level values are shifted by a period of 

three months relative to the measurements of NDVI, NDWI. The upper x-axis refers to groundwater levels. 

 

For most stations, the general pattern of the index values within their respective graph show 

that NDVI has started to increase around the month of March and is further maintained during 

the summer before declining around September and remaining low during fall and winter. 

NDWI time series shows an opposite pattern to NDVI with values starting to incline after 
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September when NDVI values decrease. The decline of NDWI values proceeds around 

February and March. 

 

Looking at figure 17, 18 and 19, Dörby 38 presents an example where evident periods of high 

NDVI values are followed by low groundwater levels. The same general pattern is found at 

Vimmerby 55 but over a longer time span. Rälla 36, however, presents less evident alignment 

between periods of high NDVI values being followed by low groundwater level measurements.  

 

 

Figure 17, Dörby 38 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 

 

Figure 18, Vimmerby 55 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements related to the 

upper time span. 
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Figure 19, Rälla 36 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements related 

to the upper time span. 

Looking at figure 17 to 20, there are smaller peaks in NDWI during the summer months. These 

peaks, in relation to the overall lower NDWI values during summer season, indicate 

occurrences of intense precipitation and insufficient evapotranspiration resulting in higher 

vegetation moisture. An example of this is around June 2020 at Emmaboda 21. Also, seen at 

Dörby 38 a peak in NDWI around April and May 2020 is followed by a slight increase in 

groundwater level. This is one example of where slight groundwater recharge can be spotted 

during spring and summer months. However, this does not apply for all peaks in NDWI during 

summer seasons and doesn’t occur at each station.  

 

 

Figure 20, Emmaboda 21 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 
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6.3 Further interpretation of geospatial features and found correlations  

6.3.1 Land cover  

Each index value within the time series displays the maximum pixel value found within each 

sub-sample image on a two-week basis. Hence the index values displayed, deriving only from 

a single pixel, represent the sub-sample area to different extents depending on similarities 

between the maximum value pixel and remaining pixels within the sub-sample. This in turn is 

based on the land cover within the sub-sample as well as the season during which the image is 

taken. 

 

High NDVI max values, such as those around 0.8, were found within pixels displaying 

coniferous and deciduous forest as well as healthy crops. When tapering off towards fall and 

winter, the NDVI max values remain relatively high, around 0.6. During this time max NDVI 

value pixels have been derived from patches of coniferous forests which maintain relatively 

high NDVI year-round. Examples of how the extent of different samples are represented by 

their index max value can be found in figure 21. During July 2021 at Dörby 38 NDVI values 

were more similar over a large land cover extent, involving forest as well as healthy crops. 

This, in comparison to March and December when fewer pixels align with the max NDVI 

values found within dense sections of coniferous forests. Påskallavik 2 shows an example of 

an area where the max NDVI values found align with remaining vegetation cover to a lesser 

extent even in July. Here, max NDVI values are found within pixels displaying mixed 

coniferous and deciduous forests. Pixels showing high NDVI values above 0.6 during March 

and December are very few but exist and hence disregards remaining vegetation cover to an 

extent (see figure 21).  
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Figure 21, NDVI maps over Dörby 38 and Påskallavik 2, presented to examine from what vegetation cover NDVI maxvalues have been 

derived. These examples show how different max values represent the full extent of the sub-samples to different extents. 

The high NDWI max values displayed in the time series can be explained by pixels with dense 

coniferous forests, maintaining high canopy cover during fall and winter, while also 

experiencing no water stress. Lower NDWI max values, found during the summer season are 

displayed by pixels with forest cover indicating low to no water stress. Max NDWI values 

during summer months can also be found at crop areas, indicating these being newly irrigated 

or not yet harvested, in comparison to other crop fields showing lower NDWI values. Of note 

is that while high vegetation shows low water stress during the summer season, lower 

vegetation might still suffer from moisture depletion (see figure 22).  
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Figure 22, NDWI maps over Dörby 38 and Påskallavik 2, presented to examine from what vegetation cover NDWI max values have been 

derived. These examples show how different max values represent the full extent of the sub-samples to different extents. 

Figure 23 shows that the land cover of the focus samples consists of a mix of forests, crop 

fields, populated areas, surface water bodies, which are all present to different degrees. Dörby 

38, Forshult 67, Läckeby 1, and Påskallavik 2 being focus samples that show strong rs between 

NDVI and groundwater levels, differ in vegetation cover. The land cover of Påskallavik 2 and 

Forshult 67 mainly consist of coniferous forest of different density, Dörby 38 consist mainly 

of crop fields surrounding a section of coniferous forests, and Läckeby 1 while showing 

strongest rs as well as R² between groundwater levels and NDVI mainly consists of a populated 

area and crop fields with just a smaller section of coniferous forests and sections of deciduous 

trees present within the area.  
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Figure 23, Land cover maps for each focus sample based on Nationella Marktäckesdata (Naturvårdsverket, 2018). Each area is outlined by 

the red buffer, and the red center represents the measurement station. 
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Strong rs between NDWI and groundwater levels are found within Forshult 67 and Påskallavik 

2. Emmaboda 21, Fliseryd 1 and Vimmerby 55 show moderate rs being above 0.5. R² for the 

respective samples extend from 0.233-0.367. All these samples have the presence of surface 

water within the focus area. More specifically Emmaboda 21, Forshult 67 and Vimmerby 55 

have larger water bodies near their measurement station. While Påskallvik 2 and Fliseryd 1 

don’t, both have larger surface flows percent within their area. However, Vimmerby 104 while 

having presence of several surface water bodies within the area, show both weak rs and R² 

between NDWI and groundwater levels.  

 

 

Figure 24, Vimmerby 104 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level 

measurements related to the upper time span. 

6.3.2 Soil type and median groundwater levels 

Looking at soil type in relation to 

correlation values, results are 

presented in figure 25. Strongest 

averaged rs-values for NDVI and 

NDWI separately were found for 

aquifers within gravel or coarser 

soil type. Sand is placed thereafter 

and lastly moraine, which could 

indicate that soil type plays a large 

part in the correlation output.  

 

Figure 25, Averaged correlation coefficients in relation to soil type. The Gravel 

or Coarser soil type class show strongest average rs-values. Then sand and 

lastly moraine. 
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Figure 26, Linear relationship between correlation coefficient as dependent variable in relation to median groundwater depth as response 

variable. Stronger linear relationship was found between NDWI correlation with groundwater and median groundwater depth. 

 

Comparing the median depth value 

for groundwater levels at each 

focus sample with the rs-values for 

NDVI and NDWI, displayed in 

figure 26, reveals that no strong 

linear relationship between NDVI 

and groundwater level correlation 

coefficients and groundwater level 

median can be found. This 

indicates that in the case of these 

focus samples, median groundwater level depth did not play a vital part in the output correlation 

coefficient between NDVI and groundwater levels. Looking at NDWI, a much stronger linear 

relationship between correlation coefficient and groundwater median level is seen. This 

indicates that correlation between NDWI and groundwater levels are more dependent on 

median groundwater levels than NDVI. 

 

Table 9, Correlation coefficient in relation to median groundwater depth for 

each focus area. 
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6.3.3 Topographic location 

Figure 27 shows averaged rs-

values for each separate indices 

grouped based on topographic 

location. The discharge area 

class only contains rs-values 

from one measurement station, 

Fliseryd 1, which show relatively 

strong correlation between 

NDWI and groundwater levels.  

The difference between rs-values within the three topographic locations is larger in the case of 

NDWI correlating with groundwater. There is a pattern of stronger averaged rs-values deriving 

from recharge areas rather than intermediate areas. However, the strength of both is relatively 

similar.  

 

Figure 28, NDVI over summer months at Forshult 67. The map aimed at examining NDVI variation as a result of above surface topography, 

during season when groundwater dependence seemingly increase. 

Results from topographic and NDVI maps of Forshult 67, aiming at examining variations in 

vegetation health due to above surface topography, during seasons where potential 

Figure 27, Correlation coefficients in relation to soil depth. The discharge areas 

class show strongest average rs-values. Then recharge and lastly intermediate. 
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groundwater dependence is higher, show no evident results related to groundwater uptake. 

While a lower laying section above the measurement station shows consistently high NDVI 

within the images from May and forth, this is likely due to the surface waterflow passing 

through that specific section, rather than the topographical low. Other variations are likely 

linked to vegetation types rather than topography looking at the crops displayed above the 

southern section of the aquifer showing as well as sections of deciduous forests showing high 

NDVI. These being vegetation types showing high NDVI during summer months. 

7. Discussion 

7.1 Comparison of rs based on visual interpretation and statistical analysis.  

Presented result show that 16 of the original 57 measurements stations show rs >= 0.6 between 

NDVI and groundwater levels, indicating strong correlation. In the case of NDWI and 

groundwater level, five of the original 57 measurements stations show rs <= -0.6. These rs-

values follow the statistical threshold of strong correlation found in Bhanja, et al. (2019) and 

Zhu, et al. (2015), i.e., rs >= 0.6 and rs <= -0.6. However, when visually interpreting the time 

series found for example in figure 20, displaying sub-sample Emmaboda 21, strong correlation 

between vegetation indices and groundwater levels seems evident with extremes displayed for 

each variable following each other. This, even though the statistical rs-values, 0.424 and -0.528 

for NDVI and NDWI correlation with groundwater levels respectively, indicate moderate 

statistical correlation according to Bhanja, et al. (2019) and Zhu, et al. (2015). Combining 

statistical thresholds with visual interpretation could provide the user with revealing results 

otherwise potentially missed using only one of the two interpretation approaches.  

 

Applying a lower threshold for strong correlation, rs >= -0.5 and rs <= -0.5, also supported by 

Song, et al. (2015) would in the case of this study result in 27 measurement stations showing 

strong correlation between NDVI and groundwater levels and 22 measurement stations 

showing strong correlation between NDWI and groundwater levels. Stretching the threshold 

even further down to +-0.4, would involve 35 measurement stations in the case of NDVI and 

groundwater levels and 35 measurement stations in the case of NDWI and groundwater levels. 

However, this suggestively requires additional interpretation of each time series that respective 

correlation is based on. 
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7.2 Variation over time and geospatial features 

The positive correlation between NDVI and groundwater levels indicates that higher NDVI 

values, representing healthy dense vegetation, are followed by lower groundwater levels, 

aligning with the concept that healthy vegetation acts as a barrier to effective precipitation and 

groundwater recharge (Eveborn, et al. 2017). This pattern is further observed in the negative 

correlation values between NDWI and groundwater levels, aligning with the notion that the 

largest extents of groundwater recharge take place during winter and spring when vegetation 

health is reduced, and potential for effective precipitation increased (Grip et al. 1994).  

 

The regression analysis results also demonstrate the same pattern, with higher NDVI values 

corresponding to lower groundwater levels and vice versa, along with opposite patterns for 

NDWI and groundwater levels. However, variations in groundwater levels for similar index 

values result in relatively weak R2-values and suggest potential influence from geospatial 

features examined in this study. 

 

Further, the strongest correlation between vegetation indices and groundwater levels generally 

occurred after a three-month time-lag. While most stations displayed this pattern, there were 

exceptions. Emmaboda 21 exhibited the strongest correlation after one month for NDVI, while 

Rälla 36 showed it after five months. For NDWI, Påskallavik 2 showed peak correlation after 

three months, while Dörby 38 displayed it after one month. However, the peaks in NDWI 

correlation did not always align with the same time-lag as NDVI correlation for the same 

stations. The delay in groundwater recharge, which the time-lag of vegetation indices aimed at 

capturing, is influenced by the time it takes for groundwater recharge to occur, indicating the 

importance of groundwater aquifer depth and soil type permeability. However, since NDVI rs-

values and the NDWI rs-values for shared stations don’t always peak at the same time-lag 

vegetation index variations found at different stations to some degree also affect the correlation. 

While a broader seasonal variation within the vegetation indices might seem evident, the more 

detailed variation in vegetation index values causes enough effect to potentially affect the 

temporal relation between index and groundwater levels. 

7.2.1 Discussing geospatial features 

As mentioned in the previous section, variation in correlation values is attributable to variations 

in geospatial features. These will be discussed further below. 
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In cases where there is weak correlation between vegetation indices and groundwater levels, it 

appears that groundwater measurements play a more significant role than the values of the 

indices themselves. On a general basis, the seasonal variation in vegetation indices is more 

consistent across the focus samples compared to the groundwater levels. For instance, while 

the vegetation indices exhibit seasonal highs and lows, the groundwater levels at Rälla 36 

(figure 19) do not follow the same pattern as those at Dörby 38 (figure 17) and Vimmerby 55 

(figure 18). This discrepancy could conceivably be attributed to the deep location of the 

groundwater table at Rälla 36, which ranges from approximately 12 to 14 meters below the 

ground surface. The greater distance that infiltrated water needs to travel to reach the 

groundwater table seemingly results in less alignment with above-surface patterns such as 

seasonal vegetation health and moisture represented by NDVI and NDWI. 

 

Building on this, while high permeability can diminish the influence of topography, the 

variations in groundwater level measurements are influenced by a combination of geological 

and topographical characteristics, rather than single factors alone (SGU, 2023, b). The results 

of the soil type comparison in section 6.3 indicate that soil types with higher permeability and 

quicker response times may exhibit stronger correlation to the vegetation indices, likely due to 

responsive groundwater levels, following the suggestion in previous paragraph.  

 

Another example where the potential influence of groundwater table depth and soil type can 

be seen and discussed is found around late summer the year 2021. For most stations the 

groundwater levels are restored a few months earlier this year indicating an increase in 

precipitation at this time 2021. Involving Emmaboda 21 (figure 20) it is noticeable that 

groundwater recharge occurs around September compared to October previous years. The 

groundwater table depth ranges from around 1.4 to 2.25 m.b.g.s at Emmaboda 21. At Dörby 

38, the groundwater table ranges from around 4.25 to 5.75 m.b.g.s. Here, the groundwater level 

drastically increases around October 2021 compared to around November and December 

previous years. Of note is the one-month difference between the two stations the year 2021, 

indicating that Emmaboda 21 with shallower groundwater table depth saw recharge sooner 

than Dörby 38 the year of 2021. However, Emmaboda 21 is located within the soil type sand, 

and Dörby 38 within gravel or coarser, which could initially suggest faster recharge at Dörby 

38 due to the higher permeability of said soil type. This further supports the notion that single 

factors alone don’t affect groundwater recharge, rather it is a question of combinations (SGU, 

2023, b).   
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It is important to consider vegetation type as well, as different types of vegetation can produce 

similar vegetation index values. For example, forests and crops have both been found to 

produce high NDVI values at certain stages. However, there is an uncertainty introduced by 

the maximum values parameter, as it does not encompass the full range of vegetation types and 

their correlation to groundwater levels. This means that not all values within the time series 

can be definitively associated with a particular vegetation type. Hence the role of particular 

vegetation types remains relatively unknown within this study, while they likely play a part in 

the varying index values on a detailed level.  

 

The weak correlation observed at Vimmerby 104 (figure 24) between both NDVI and NDWI 

and groundwater levels can potentially be attributed to various geospatial features. As 

illustrated in Figure 25 in section 6.3, the seasonal variation observed at other measurement 

stations is absent in the groundwater measurements at Vimmerby 104. This could be attributed 

to a combination of factors, including the deep groundwater table and the moraine soil type, 

which both require more time for infiltrated water to reach and replenish groundwater levels 

(Bergström, 2001; Lindström, et al., 2011). Also, the extensive vegetation cover at this 

location, which is relatively accurately represented by the maximum vegetation pixel values, 

can also affect groundwater recharge (Eveborn, et al., 2017). The year-round cover of a 

coniferous forest acts as a barrier, potentially reducing groundwater recharge and resulting in 

less seasonal variation in groundwater levels, while the vegetation index values remain 

variable.  

 

Lastly, looking at topographic location, the upward flow of discharge areas, typically found in 

low-lying topographical regions (Condon & Maxwell, 2015), may support the correlation 

between NDWI and shallow aquifers, such as the one at Fliseryd 1. This is potentially due to 

the close proximity between above-surface and below-surface moisture. When examining the 

averaged NDVI and NDWI rs-values within intermediate and recharge areas, both show a 

relatively similar strength, indicating limited confidence in any determining role of these 

topographic locations regarding the correlation between vegetation indices and groundwater 

levels. The increased difference between NDWI and groundwater levels rs-values within the 

three topographic locations potentially indicates that the topographic location plays a more 

significant role in NDWI correlating with groundwater levels than in the case of NDVI. 
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7.2.2 Discussing combinations in geospatial features 

 

Table 10, Focus samples, respective geospatial features considered and correlation coefficients. 

Reviewing table 10, it is difficult to establish evident combinations of geospatial features 

within the focus samples, that provide similar correlation values. While results from analyzing 

variables separately have shown patterns which conceivably align with key themes within the 

subject, combining these make patterns less confident. For example, Forshult 67 and Trekanten 

63 are both measurement stations mapped within the soil type sand, both are located within an 

intermediate area, both show similar groundwater levels observed, and data has been collected 

over the same time span. Still, Trekanten 63 shows weak correlations for both indices and 

groundwater levels while Forshult 67 shows strong correlation for both indices and 

groundwater levels. Påskallavik 2 and Dörby 38 however, located within different soil types, 

topographic locations, time spans, levels observed and, time spans used both show strong 

correlation in terms of NDVI correlation to groundwater levels.  Different combinations of 

geospatial features such as soil type, topographic location, aquifer depth, etcetera seemingly 

can provide similar correlations as seen in figure 29. 

 

Station Soil type Topografic location Levels observed (m.b.g.s) Time span NDVI rs NDWI rs

Dörby 38 Sand Intermediate area 4.14 - 5.7 4/18/2019  - 12/22/2022 0,706 -0,297

Emmaboda 21 Gravel or coarser Intermediate area 1.3 - 2.25 5/2/2019 - 12/22/2022 0,424 -0,528

Fliseryd 1 Gravel or coarser Discharge area 1.32 - 2.41 5/2/2019 - 12/22/2022 0,555 -0,554

Forshult 67 Sand Intermediate area 0.83 - 1.7 10/29/2020 - 12/22/2022 0,696 -0,656

Läckeby 1 Moraine Recharge area 4.35 - 6.24 5/16/2019 - 9/17/2020 0,778 -0,306

Påskallavik 2 Gravel or coarser Recharge area 0.86 - 2.19 5/16/2019 -12/22/2022 0,664 -0,633

Rälla 36 Sand Intermediate area 11.89 - 14.18 1/1/2015 - 12/22/2022* 0,292 0,119

Trekanten 63 Sand Intermediate area 0.99 - 1.94 10/29/2020 - 12/22/2022 0,386 -0,187

Vimmerby 55 Sand Recharge area 4.44 - 4.94 1/1/2015 - 11/10/2022 0,492 -0,545

Vimmerby 104 Moraine Recharge area 7.06-8.09 1/1/2015 - 12/22/2022* 0,146 0,082
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Figure 29, Comparison of Dörby 38 and Påskallavik 2 time series, displaying similar index and groundwater patterns while possessing 

different geospatial features 

Further it is difficult to establish any evident spatial distribution pattern that would indicate any 

regional differences found amongst the 16 stations showing rs >= 0.6 between NDVI and 

groundwater levels as well as the five stations rs <= -0.6 between NDWI and groundwater 

levels (see figure 11 and 12). If also counting measurement stations that show rs-values >= 0.5 

and rs-values <= -0.5, or even rs-values above or below +-0.4, large parts of the extent for the 

57 measurements stations used within Kalmar County would be covered. Instead, the 

geospatial variation makes it mark on a local scale. 

7.2.3 Missing precipitation data 

While geospatial features analyzed in this study has implications on NDVI and NDWI 

correlating with groundwater levels, a more obvious common trigger is likely precipitation 

based on effective precipitation being the main driver for groundwater recharge (Eveborn et al. 

2017). Adding precipitation data as an additional variable to this type of study could present 

more informative results which explores precipitation as a potential trigger for both vegetation 

health and moisture as well as groundwater level variation. Zhu, et al. (2015) found a strong 

correlation between precipitation and NDVI during periods of low NDVI and groundwater 

correlation. 
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7.3 Methodology and input parameters 

7.3.1 Single value parameter, gaps and outliers 

The maximum value parameter was chosen aiming at ensuring reliable remote sensing data. 

When extracting Sentinel 2 level-1C data over a larger time span there is a risk of images being 

unusable due to high cloud cover. While the issue of cloud cover was mitigated through 

interpolation, the high cloud presence in a humid climate such as that of the county of Kalmar 

can affect the results of the interpolation negatively, making it a limited option. Hence, using 

a single value parameter such as the maximum value aimed at ensuring one realistic index 

value, even in the risk of other pixels being faulty. An alternative approach would further have 

been to use averaged index values. This in order to properly represent the full extent of each 

study area. However, this requires much more carful data collection, assuring that each image 

has no cloud cover and displays proper values. This is very time consuming and limits data 

availability in humid climates such as Sweden’s. In order to be time-sufficient, the data 

collection process was automated through JavaScript used in GEE.  

 

Building on this, gaps in the index time series, as seen at Påskallavik 2 (figure 30, in appendix) 

between November 2020 and January 2021 for example, indicate that no data adequate data 

could be collected during this time. This, likely due to extensive cloud cover. Similar gaps 

occur at multiple measurement stations, indicating widespread cloud cover over Kalmar 

County. Gaps in groundwater time series are likely due to inactive loggers. 

 

Another source of potential error in the time series data is the presence of certain peaks in the 

index values. After the gap of the Påskallavik 2 time series, the reappearing index values start 

just above 0.9. This is likely a faulty index value, creating outliers which have been observed 

in several of the samples time series. Outliers within the collected data potentially is the result 

faults within the collection of data form Google Earth Engine, a risk present when working 

with large amounts of digitalized data and automated scripts. It could also be a question of 

remaining atmospheric effects, present within Top-of-atmosphere images.  

 

While the ratioed images can mitigate the atmospheric effects (Lillesand, et al. 2015), optimal 

images with Bottom-of-atmosphere perspective would have been used. Such are found within 

the Sentinel 2 level-2A image collection. However, this collection does go as far back in time 

as Sentinel 2 level-1C, starting off around 2018 instead of 2015 (ESA, n.d, a). 
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Another alternative approach that removes problems of cloud cover is using radar data. Radar 

waves are not affected by clouds and haze and can therefore collect data not depending on 

proper weather conditions. However, using radar-data in this context requires more complex 

preprocessing. Utilizing radar data can be due to this aspect requiring more time and resources 

(Meijerink, et al. 2007). 

7.3.2 Biweekly basis 

Looking at the biweekly basis parameter, this was chosen with the aim of ensuring frequent 

measurements for further analysis. Results produced from more measurements rather than 

less, conceivably present a more realistic result. The two-week basis was deemed appropriate 

based on the relatively short time spans occurring within several time serie. While a lower 

frequency of measurement, e.g., monthly basis, are easier to manage and potentially reduces 

the need for data modification, it affects the results the shorter time spans found in this study.  

7.3.3 Selection of focus samples 

Selection of focus samples was based on their statistical outcomes as well as time spans cover. 

However, the geospatial features should have been more attention within this selection making 

sure that features occurred more similarly over the focus samples, possibly providing a better 

result. Also, the ten focus samples were chosen since ten was perceived as a manageable 

amount. However, choosing an number of focus samples that, when divided by three, result in 

an integer would potentially make comparisons over the three soil type and topographic classes 

more even.  

7.3.4 Addressing chosen variables 

The amount and characteristics of the related geospatial features analyzed within this study, 

while affecting groundwater conditions in their respective way, are arguably too complex to be 

properly evaluated within a study of this extent. Conceivably they would be more accurately 

analyzed if studied more extensively and exclusively in relation to vegetation index and 

groundwater correlation. As an example, geological features such as soil type and topographic 

location possess attributes best described though physics, which have not been addressed in 

this study. Instead, these features have been analyzed on a very general basis. Also, the impact 

of specific vegetation types would be interesting to explore further to establish patterns found 

for specific vegetation type extents. Hence, this study could have benefitted from more evident 
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delimitation and being divided into two or more separate studies. One that focus on the effect 

of geological feature and one the focus more on the effect of different vegetation types. 

 

Further, while NDVI has established itself within groundwater studies, as found in previous 

research, NDWI is not as extensively used. Gao (1996) described NDWI as more of a 

supplement to NDVI in analyzing vegetation conditions and it was added to the study aiming 

at seeing how it compared to NDVI in relation to groundwater relations. At the end of this 

study, however, the number of variables used arguably have been too many to properly 

consider. Results regarding both indices in relation to groundwater could potentially be more 

informative if studied separately. 

7.3.5 Regression and seasonal variety  

Separating the variables used and examining them within different seasonal contexts could 

provide findings of interest. For example, only using NDVI values during spring when they 

increase, and groundwater levels decrease within a linear regression analysis could conceivably 

present a higher R2-value than looking over the full extent of the time series. However, this 

was realized at a too late stage of the study.  

 

Using linear regression for seasonally varying time series data is not optimal, while very 

accessible. Alternatives were attempted, for example a bagged tree regression, however the 

results of this were difficult to apply to the study. With more time and experience a better 

regression analysis could have been performed. 

 7.3.6 More use of imagery  

Lastly, it is beneficial that when using automated scripts within Google Earth Engine, involving 

many images, one should look more closely at individual images. This will help in the 

understanding of connections between vegetation index values and specific vegetation types. 

Further, using this knowledge to get a deeper understanding of variations within the time series 

as well as correlation to groundwater.  

  



58 

 

8. Conclusions  

Sixteen of the original 57 measurement stations within the county of Kalmar showed rs-values 

>= 0,6 between NDVI and groundwater levels. 27 of 57 showed rs-values >= 0,5 between 

NDVI and groundwater levels. Five of the original 57 measurement stations showed rs-values 

<= -0,6 between NDWI and groundwater levels. 22 of 57 showed rs-values <= -0,5 between 

NDWI. Time series interpretation within this study has helped provide better indication of 

correlation than only statistical correlation thresholds. 

 

Delay in groundwater recharge displayed by time-lag of vegetation indices was affected by 

local variations of index values and not only geological characteristics, showing peak 

correlation after varying monthly durations. Three-month time-lag showed strongest 

correlation over most sub-samples between the vegetation indices and groundwater levels. 

 

Separate variable analysis showed: 

• Median groundwater level, as a measure for aquifer depth below ground surface, 

showed R2 = 0.6352 in relation to NDWI correlation found at each focus area. 

• Highest averaged correlation was found within gavel or coarser soil types, then sand 

and lastly moraine, aligning which the high to low permeability found at each soil type 

class. 

• While able connect most index values to broader vegetation type classes, the effect of 

these on the correlation to groundwater levels remain unsure.  

• Results related to topographic location showed low confidence.  

 

Combining variables, while related to each other, makes patterns less certain, suggesting that 

future studies should focus on each features effect on NDVI and NDWI correlations separately. 

Preferably, this is done with remote sensing data with preprocessed radiometric correction, 

such as Sentinel 2 level-2A. Alternatively using Radar to work around problems caused by 

cloud cover. Also, with more careful data collection, seasonal focus and use of visualization.  

 

Additional precipitation data to NDVI and NDWI correlations, as well as related geospatial 

features could conceivably provide more accurate relations. That being said, the amount of 

variables used in this study have been argued to reduce the quality of results. 
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10. Appendix 

 

Figure 30, Påskallvik 2 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 

 

Figure 31, Fliseryd 1 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 
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Figure 32, Forshult 67 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 

 

Figure 33, Läckeby 1 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 
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Figure 34, Trekanten 63 time serie, displaying NDVI and NDWI values related to the lower time span and groundwater level measurements 

related to the upper time span. 

 

 

Figure 35, Dörby 38 regression analysis. 

 

Figure 36, Emmaboda 21 regression analysis. 
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Figure 37, Fliseryd 1 regression analysis. 

 

Figure 38, Forshult 67 regression analysis. 

 

Figure 39, Rälla 36 regression analysis. 
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Figure 40, Trekanten 63 regression analysis. 

 

Figure 41, Vimmerby 55 regression analysis. 

 

Figure 42, Vimmerby 104 regression analysis. 

 


