
A type-driven approach for
sensitivity checking with branching

Master’s thesis in Computer science and engineering

Daniel Freiermuth

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2023

Master’s thesis 2023

A type-driven approach for
sensitivity checking with branching

Daniel Freiermuth

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

A type-driven approach for sensitivity checking with branching

Daniel Freiermuth

© Daniel Freiermuth, 2023.

Supervisor: Alejandro Russo, Chalmers
Advisor: Marco Gaboardi, DPella
Examiner: David Sands, Chalmers

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv

A type-driven approach for sensitivity checking with branching

Daniel Freiermuth
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Differential Privacy (DP) is a promising approach to allow privacy preserving statistics
over large datasets of sensitive data. It works by adding random noise to the result
of the analytics. Understanding the sensitivity of a query is key to add the right
amount of noise capable of protecting privacy of individuals in the dataset. The
domain-specific language Spar[1] implements a programming language that uses the
type system to automatically track the sensitivity of queries in Haskell. Queries
can be constructed from basic operations in an EDSL. The operations’ impact
on sensitivity need to be well-known and made explicit at type-level. Spar lacks
branching operations. In general branching is a discontinuous operation, so the
sensitivity of the whole branch might not be bounded. Due to this reason, most
languages that track sensitivity do not provide branching as a basic operation. We
introduce a modular and type-driven branching operation that checks for continuity
at compile-time. It is implemented in Template Haskell and thus operates on the
syntax of the condition and bodies of the branches. To demonstrate our approach,
we provide basic examples common in literature. Additionally, we also provide the
implementation of more sophisticated operations such as Mergesort. We develop
requirements under which the use of our branching operator is sound.

Keywords: Computer, science, computer science, thesis, differential privacy, type
system, sensitivity, branching.

v

Acknowledgements
This thesis would not look the same without the constant stream of feedback I got
from my supervisor Alejandro Russo. I also want to thank Marco Gaboardi for
mathematical discussions and my examiner David Sands for his insightful remarks.
Thank you, Elisabeth and Augustín for providing me with tips and ideas and sharing
your perspective on whatever topic I needed help with. Thank you, Erik for your
considerate and patient in-depth feedback. Thank you Beata, my opponent, for
sharing this journey and for the fruitful feedback sessions. Finally, I want to thank
all my family and friends who supported me during this intense time and had an
open ear and heart whenever I needed it. Without you, this thesis would not have
happened.

Daniel Freiermuth, Gothenburg, 2023-08-01

vii

Contents

1 Introduction 1
1.1 Goal . 4
1.2 Approach . 5

2 Background 7
2.1 Differential Privacy (DP) . 7

2.1.1 Making sensitive queries differentially private 8
2.2 Spar-calculus . 8
2.3 Compare and Swap (cswp) . 11
2.4 Haskell technicalities . 11
2.5 Solvers . 13

2.5.1 Adding arithmetic support . 13
2.5.2 Getting all solutions . 14
2.5.3 Reversing the quantification 14

3 Branching on Spar-values 15
3.1 Introducing the branch operator . 17
3.2 Easy examples . 18
3.3 Implementing cswp . 19

4 Branching on refined types 21
4.1 Liberal reversible differences . 21
4.2 Allowing more types in the condition 23
4.3 Breaking liberal reversible differences 25
4.4 Robust reversible differences . 26
4.5 Revisiting cswp . 28

5 Soundness 29
5.1 General proof idea . 29
5.2 Equality classes of same behavior . 31
5.3 Compile-time checks . 31

6 Implementation in GHC 33
6.1 Finding all branchings . 33
6.2 Static analysis . 33
6.3 Emitting run-time code . 35

ix

Contents

7 Advanced examples 37
7.1 Mergesort . 37

7.1.1 Implementation . 37
7.1.2 Correctness . 41
7.1.3 Soundness . 42

8 Related Work 47

9 Conclusion 49
9.1 Comparison to other solutions — Discussion 51

9.1.1 Advantages . 51
9.1.2 Limitations . 51

9.2 Further research . 51

10 Risk analysis and ethical considerations 53

Bibliography 55

A Soundness of cswp revisited I

B Soundness of branch VII
B.1 Requirements . VII
B.2 How these guarantee soundness . VIII

C More details on Mergesort XI
C.1 Closer look at decision function . XI
C.2 Correctness of mergeSort' . XIII
C.3 Soundness of mergeSort . XIV
C.4 Requirements necessary and sufficient for sensitivity XVII

x

1
Introduction

Imagine having large amounts of sensitive data that is interesting for research. Data
like a hospital or a health insurance have. It is desirable to allow researchers to
perform analyses, called queries, on this dataset. The problem is that it might be
possible to regain insights on specific data points, i.e. data subjects. There should
be a way to allow analyses on the data without sacrificing the individuals’ privacy.

Typically, privacy can be preserved by distorting the analysis. Differential Privacy
(DP)[2] is one method for doing so. It works by, first, keeping track of how sensitive
a given analysis is to the impact of individuals. Then calibrated noise is added to the
result of the analysis. The idea is that the noise outweighs an individual’s impact. It
is particularly interesting because, in contrast to other methods, it does not rely on
obscurity of the process.

In order to protect an individual’s privacy, it is important to understand the impact
of an individual to the result. Sensitivity describes how much the output changes,
given a specific change of the input. In our context, this means how much the result
of a query can change given the modification of an individual.

Consider a dataset with 10000 people. In order to query the average weight privacy-
preservingly, it is necessary to understand the sensitivity of this analysis. Given that
people normally weight between 30 and 200 kg, the result will change at most by
0.0017 kg when replacing a person. Adding noise sampled from a normal distribution
with variance σ=0.01 kg greatly blurs an individual’s impact while leaving the result
quite usable. Note that we made this judgement without knowing the data. It is
sufficient to know the sensitivity of the query and then use knowledge of value ranges
in the dataset in order calculate the necessary magnitude of noise. Sensitivity tells
us how the range of possible values is scaled by the query. That means, it is possible
to understand the sensitivity of a query statically without knowing the data.

This leads to the idea of automatically inferring the sensitivity of a query. Different
approaches[3], [4] have been taken creating Domain Specific Languages and calculi
for expressing queries. Those languages track the queries’ sensitivities in the typing
information using linear[3] and dependent[4] types.

A similar approach is Spar[1] which presents an Embedded Domain Specific Language
(EDSL) for expressing queries. It improves on the previous solutions in that it is
implemented in Haskell and tracks the sensitivity of a query constructed in the
Haskell type system without the need of more exotic type features. Queries can be

1

1. Introduction

constructed by combining simple primitive atomic queries. The possible ways of
combination are limited and the sensitivity of the combination is derived from the
sensitivity of the combined queries.

For example, our query from before could look like this.

sum_weight rows = sum $ map (\row -> weight row) rows

Here, the database is passed as rows parameter. weight is the atomic query giving us
access to the weight data, which is summed with the sum operation. After dividing the
result by 10000 (the number of individuals in the dataset), the average is calculated.
This query has sensitivity 1, which means that a change in an individual’s weight
translates into the same change in the result.

Formally, sensitivity means Lipschitz continuity.

Definition 1. A c-Lipschitz continuous function f is characterized by

∀x, y : |f(x)− f(y)| ≤ c · |x− y|

In the context of DP, it is an upper bound on the change of the result of a query if
one individual’s data is added, changed or removed. In the definition of Lipschitz
continuity, f matches the query while x and y express different datasets. We call a
function insensitive if there cannot be a real upper bound of its sensitivity.

Unfortunately, not all operators produce queries which are sensitive. Consider this
function for calculating the average BMI which uses division.1

sum_bmi rows = sum $ map (\row -> weight row / ((height row) ^ 2)) rows

Without knowing more about the physicalities of humans, a change in the weight of
a very small individual with a height near zero results in a big change of its BMI
and thus the result. A change in an individual’s weight may be scaled by any degree
in the result. This query’s sensitivity is not bound and there is no noise magnitude
that will nicely outweigh an individual’s impact.2

This shows why the set of possible combinators in Spar is limited. Division and
multiplication are not supported.

Another operation omnipresent in many algorithms in the form of if-then-else con-
structs is branching. Branching means checking a condition and evaluating one of
two expressions (called branches) depending on whether the condition is fulfilled.

Unfortunately, branching also introduces the possibility to create queries of un-
bounded sensitivity. The following query counts individuals heavier than 100 kg. A
small difference in an individual’s weight may translate into a difference of 1 in the
result. Again, there is no scaling factor that connects the difference in the input

1Given the height h and mass m of a person, its BMI is defined by m
h2

2Added to this, in the current implementation, Spar does keep track of sensitivities, but not
value ranges. Values range knowledge is later combined with the calculated sensitivity to determine
the required noise.

2

1. Introduction

to the change in the result. This query is unbounded and shows why branching is
neither supported.

countHeavy rows =
sum $ map (\row -> if weight row > 100 then 1 else 0) rows

This becomes clear for two similar lists of weights l1=[30, 100, 130] and l2=[30,
100.1, 130]. The distance between the lists of weights is given by norm L1, i.e. the
summed pointwise distances of the elements. The lists are 0.1 apart. After applying
countHeavy, the results are 1 apart: countHeavy l1 = 1, countHeavy l2 = 2.
The distance in the input is scaled by 10. By replacing the element 100.1 by 100.01
in l2, we can increase the scaling factor to 100. Similarly, it is possible to show every
possible scaling factor.

Yet, there are interesting sensitive queries that could be implemented using branching.
Imagine a max function, returning a maximal value in a list. A change in an
individual’s weight will, at most, result in the same change of the result.

max_weight rows = max $ map (\row -> weight row) rows

max [r] = r
max (r:rs) = if r > max rs then r else max rs

In literature, many of the previous work supporting sensitivity calculations (e.g.,
Fuzz [3], DFuzz [4], Solo [5]) do not support sensitive branching natively. Instead, an
additional combinator cswp is provided. With cswp, interesting algorithms that use
branching, can be rewritten without branching but using the cswp operator. cswp
computes the compare-and-swap function

cswp(x, y) =

(x, y) x > y

(y, x) otherwise

With this combinator in place, it is possible to define the max function.

max_weight rows = max $ map (\row -> weight row) rows

max [r] = r
max (r:rs) = let (b,s) = cswp(r, max rs) in b

Sorting is another sensitive operation that needs branching. Slow sorting algorithms
like Bubblesort can be expressed with cswp but faster ones like Mergesort cannot.
This is because, the algorithm cannot be expressed on sorting pairs.

For making queries differentially private straightforwardly, it would be desirable to
allow arbitrary branchings in a framework for sensitive computations. That would
allow direct translations of existing algorithms and alleviates the need of providing
special purpose operators as cswp.

3

1. Introduction

1.1 Goal
The goal of this thesis is to extend the Spar framework by a branching operator that
allows branchings. As seen above, not every branching is sensitive. Compile-time
checks will be performed before accepting a branching. This will remove the need
for providing special-purpose workarounds like cswp. Additionally, it will allow
defining additional queries which cannot be written with cswp like Mergesort (see
Chapter 7.1).

This will be achieved by combining ideas from Chaudhuri et al.[6] with Spar. Chaud-
huri et al. present a calculus for reasoning about sensitivity of imperative programs
that may branch. This calculus considers a branching to be sensitive if two conditions
are fulfilled.

Firstly, both branches must be sensitive on their own. The calculus is applied
recursively to both branches. If for both branches a sensitivity is derived, the first
condition is fulfilled.

Secondly, the branching must be continuous. Continuity as a mathematical concept
was already presented in the notion of Lipschitz-Continuity. In the context of
branching this corresponds to the intuition that the result must not jump when going
from one branch to the other. This means that both branches must be equivalent on
the decision boundary. We say that the branches agree on the decision boundary.
The decision boundary is the set of variable assignments that are arbitrarily close to
other assignments that make the condition flip.

With those two conditions, the branching is sensitive with the larger of the branches’
sensitivity. Let’s understand those condition with some examples.

Consider the following branching. For values of x greater zero, a small change of x
results in a doubling of this change in the result. When transitioning from one branch
to the other, i.e. when x flips sign, the result is zero in both branches. If considering
both branches as function of x, it is easy to see that they are sensitive with sensitivity
2 and 1, respectively. The decision boundary contains the single assignment (x=0).
For all values on the boundary, i.e. for x=0, both branches evaluate to 0. So both
branches are equivalent on the boundary. This function is sensitive with sensitity 2.

if x > 0 then
2 * x

else
x

Here are counter-examples of branchings that are not sensitive. The first example
consists of two sensitive branches, but the branches do not agree on the decision
boundary x=0.

if x > 0 then
-x + 1

else
x

4

1. Introduction

In order to show that its sensitivity is unbounded, consider two inputs x1 = 0 and
x2 = 0.1 resulting in the outputs 0 and 0.9. By moving x2 > 0 closer to zero, the
sensitivity becomes arbitrarily large.

In the second example the condition is altered. The decision boundary is now x=1.
The branches do not agree on this boundary, the branching is not continuous, and
we do not consider it sensitive.

if x > 1 then
2 * x

else
x

Again, consider two inputs x1 = 1 and x2 = 1.1 with results 1 and 2.2. Moving
x2 > 1 closer to one generates arbitrarily sensitivities.

The third example contains shows a branching that is continuous, but the first branch
is insensitive. So the whole branching is insensitive.

if x > 0 then
x * x

else
x

Here, consider two inputs x1 > 0 and x2 = x1 + 1 with results x1 and x2
1. Increasing

x1 increases the distances in the results arbitrarily while the distance in the inputs
stays the same.

Our goal is that the operator to be constructed allows the first example while rejecting
the other three examples at compile-time.

1.2 Approach
The branch operator will be implemented as a GHC plugin that analyses the branching
at compile-time. The analysis will be done along the two conditions presented in the
previous section. As the goal is to extend Spar, its types for tracking sensitivity can
be reused. This will help us reason about the sensitivity of the branches. It remains
to check for agreement of the branches on the decision boundary. Our plugin will
thus analyze the condition, calculate the decision boundary and check whether the
branching is continuous. For calculating the decision boundary an SMT solver is
used.

With our plugin, we will implement the cswp function as a function on top of
Spar instead as a black-box primitive. Additionally, we implement Mergesort as an
algorithm which cannot be described with cswp.

5

1. Introduction

6

2
Background

This section presents the main concept, tools and techniques used in this thesis.
Most of them were already dropped in the introduction. This chapter gives more
context to all of them.

2.1 Differential Privacy (DP)
Differential Privacy is a method for querying sensitive data in a privacy-preserving
way. It was developed by Dwork, McSherry, Nissim, et al.[7], [8].

Differential Privacy is a property of an algorithm or query. If it is fulfilled, an
individual’s impact to the result can hardly be detected. In this paper the formulation
by Kifer and Machanavajjhala[9] will be used.

Definition 2 (Bounded Differential Privacy[9]). A randomized algorithm A satisfies
bounded ε-differential privacy if P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S) for any set S
and any pairs of databases D1, D2 where D1 can be obtained from D2 by changing
the value of exactly one tuple.

Consider a dataset D1 and a change in an individual’s data yielding D2. Let A be a
randomized algorithm. The behavior of A on D1 can be described by P (A(D1) ∈ S)
for every set S. Differential Privacy tells us that an ε-differentially private randomized
algorithm A will hardly change its behavior, i.e. its probabilities. In particular:
P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S) with ε typically being a small positive number.
The parameter ε is often referred to as the privacy parameter and is used to control
the strength of the privacy requirement.

Note that privacy is not binary here. An algorithm is not either privacy-preserving
or leaking insights. It is leaking insights with some probability eε. For large ε the
algorithm probably would not be considered privacy-preserving in another context.

The beauty of DP lies in its properties. DP does not require the algorithm to
be obscure in order to guarantee privacy. The mathematical formulation allows
considering the composition of several queries analysing the resulting privacy.

DP is popular because of various claims that have been made about it: [9]

• It makes no assumptions about how data is generated.

7

2. Background

• It protects an individual’s information (even) if an attacker knows about all
other individuals in the data.

• It is robust to arbitrary background knowledge.

However, those claims are not generally true and were critically analyzed in the same
paper [9].

There are more notions of DP. Besides bounded DP, there is unbounded DP and
formulations with more privacy parameters. The main purpose of this section is to
get an idea in which context branching with sensitivity-checking may be applied.
It is not necessary to understand the different notions and technicalities of DP for
following this thesis.

2.1.1 Making sensitive queries differentially private
After understanding why differentially private algorithms are interesting, the question
arises how to obtain them. It turns out that it is possible to turn sensitive algorithms
into differentially private ones.

Turning sensitive queries into differentially private queries was pioneered by Mc-
Sherry[2]. In this paper sensitivity is referred to as transformation stability. This
approach was further developed by Reed and Pierce[3] and led to the laplace mecha-
nism as formulated in [3]. Lk describes the Laplace distribution with parameter k.
Its probability density function is p(x) = 1

2k
· exp(− |x| /k).

Lemma 1 (Laplace mechanism[3]). Suppose f : db→ R is c-sensitive. Define the
random function q : db → R by q = λb.f(b) + N , where N is a random variable
distributed according to Lc/ε. Then q is ε-differentially private.

This mechanism works straightforwardly. The derived differentially private query q
executes the original sensitive query f and then adds calibrated noise N in order
to blur an individual’s impact. The added noise is scaled according to the privacy
parameters and sensitivity of f such that the noise outweighs (according to the
privacy parameter) an individual’s impact.

2.2 Spar-calculus
Spar, first presented in [1], is a Haskell library for facilitating the calculation and
inference of sensitivity. Sensitivity is tracked on the type level. The central type
is Sen. The function f :: Sen 2 Int Int is a function with sensitivity 2 that
converts an Int into an Int. With Spar it is possible to automatically infer this
type.

f :: Sen 2 Int Int
f x = x .+ x

Under the hood this works by tracking how a change in the input translates into
some change in the result of the function. This aligns with the intuition of sensitivity
developed in the introduction chapter. This works by introducing another type

8

2. Background

Dist d a. A value v :: Dist d a denotes a pair of values of type a with distance
at most d. For a type a with distance metric ‖·‖, we identify the type Dist d a with
the mathematical set {(x, y) ∈ a× a | ‖x− y‖ ≤ d}. In the following we will refer to
values of type Dist d a as Spar-values of type a. We think of such a pair (x, y) as
two inputs or outputs of a function in two separate executions. To distinguish those
pairs of executions from other pairs, we will write x ∼ y instead of (x, y) later and
x ∼d y to denote that x and y are d apart.

It is now possible to translate the intuition of sensitive functions translating changes
into our types. Given a pair of two values x ∼d y, we can think of it as obtaining y
by changing x by d. A 1-sensitive function f does translate a change in the input to
at most the same change in the output. So f(x) will be at most d away from f(y).
Writing this with our tuple notation: f(x) ∼d f(y). Sensitivity can be described by
how f affects the distance of a pair when passing the pair through f . A k-sensitive
function g translates a pair x ∼d y into another pair g(x) ∼k·d g(y). This can be
expressed in Spar’ Dist type.

f :: Dist d Int -> Dist (2 * d) Int
f x = x .+ x

This is exactly how the type Sen is derived:

type Sen k t1 t2 = forall d. Dist d t1 -> Dist (k*d) t2

All values are encapsuled in Spar-values. Those values can be combined and processed
in limited ways by applying primitives. Those primitives’ typing information indicates
how they affect the distances. Observing a whole query’s typing information, the
query’s sensitivity can be concluded.

In the following the relevant interactions with Spar-values are presented. Figure 2.1
shows the relevant API.

Spar provides a basic arithmetic framework. Dist-values can be constructed from
integer literals via constant or number. Addition and subtraction of Spar-values
of type Int is provided by (.+),(.-). The underlying constructors of Dist d Int
are hidden, so that the actual values remain obscure. This also effectively prevents
branching on sensitive values.

a = constant 4 :: Dist 0 Int
b = number 3 :: Dist 3 Int
a .+ b :: Dist 3 Int

Two Spar-values can be combined in a tuple via (:*:). Note that resulting type
discards detailed information about the radii of the tuple’s elements. Only the
resulting distance is stored. This corresponds to the L1-norm. Other norms can be
applied at Spar, like L∞, but that requires modifying the type signature of (:*:).
For simplicity, we stick with L1-norm. Note that, by having pattern synonyms, we
can deconstruct pairs.

pair = a :*: b :: Dist 3 (Int, Int)
let a' :*: b' = pair

9

2. Background

data Dist (d :: Nat) a -- abstract
type Sen (k :: Nat) a b = forall n. Dist n a -> Dist (k*n) b.

-- Integers
constant :: Int -> Dist 0 Int
number :: forall n. Int -> Dist n Int
(.+),(.-) :: Dist d1 Int -> Dist d2 Int -> Dist (d1+d2) Int

-- Pairs
pattern (:*:) :: Dist d1 t1 -> Dist d2 t2 -> Dist (d1+d2) (t1,t2)
{-# COMPLETE (:*:) #-}

-- Lists
pattern Nil :: Dist d (Vec 0 a)
pattern (:>) :: Dist d1 a -> Dist d2 (Vec l a)

-> Dist (d1+d2) (Vec (l+1) a).
{-# COMPLETE Nil, (:>) #-}

-- Execution
run :: Sen k a b -> a -> b

Figure 2.1: The relevant Spar-API.

Support for vectors is provided by Nil and (:>). Again only the total distance is
stored and by exporting pattern synonyms, lists can be deconstructed. This makes
vectors similar in a sense that a vector v::Dist d (Vec n t) of fixed length n can
be replaced by the n-tuple p :: Dist d (t,(t, (t, …))).

vec = 3 :> 4 :> Nil :: Dist 3 (Vec 2 Int)
let hd :> tl = vec

By this construction, every type comes with a distance metric associated. This
metric is implicitly described by the types’ constructors.

Finally, a run function for sensitive functions is provided. This function forgets the
type level sensitivity information and executes a query as the last step. Typically, it
will be called by the same trustworthy instance adding the noise that is calibrated
by the type level information. Particularly, it is not aligned with its purpose to use
run to build a query.

With this it is possible to write easy queries which sensitivity are inferred by the
type system. Those then can be run against the data and the appropriate noise can
be added.

10

2. Background

2.3 Compare and Swap (cswp)
While introducing and refining our branch operator, we will use the compare-and-
swap function (cswp) function as a running example. It was already presented in the
introduction.

cswp(x, y) =

(x, y) x > y

(y, x) otherwise

In the literature[3], [4] it serves as a primitive to work around limitations of not
having primitive branching.

With cswp, it is easy to implement derived functions like min and max but also
primitive sorting algorithms like Bubblesort as also done by others([3]). Also the
graph algorithms of Dijkstra and Bellman-Ford as sketched by Chaudhuri, Gulwani,
and Lublinerman[6] can be implemented with cswp.

min a b = let (bigger :*: smaller) = cswp (a :*: b) in smaller
max a b = let (bigger :*: smaller) = cswp (a :*: b) in bigger
relu x = let (bigger :*: smaller) = cswp(x, constant 0) in bigger
abs x = let (bigger :*: smaller) = cswp(x, constant 0 .- x) in bigger

bubbleSort Nil = Nil
bubbleSort list =

let (biggest :> remaining) = bubbleUp list
in (biggest :> bubbleSort remaining)

where
bubbleUp Nil = Nil
bubbleUp (e :> Nil) = (e :> Nil)
bubbleUp (head :> tail) =

let (biggestInTail :> remainingTail) = bubbleUp tail
(biggest :> other) = cswp (biggestInTail :*: head)

in (biggest :> other :> remainingTail)

2.4 Haskell technicalities
SimpleSMT is a library providing an API to interact with SMT solvers. The Z3
solver is supported.

Haskell allows to alter the compilation at several stages using plugins. Figure 2.2
shows the Haskell compilation pipeline with possible plugins. Plugins are defined in
their own Haskell module using the GHC (Glasgow Haskell Compiler) plugins API.

At source stage, plugins have access to the source code where a source plugin can
alter code. No further analysis by the compiler has taken place at this point.

A type checking plugin helps the type checker to infer or unify types. It is called with
expressions and types and can return typing suggestions. This is especially useful

11

2. Background

Haskell pipeline Plugins

Source Code

Lexing and Parsing

AST

Source plugins

Updated AST

Type Checking Type Checking plugins

Template Haskell

Typed AST

Core plugins

Updated Typed AST

Figure 2.2: Overview of Haskell compilation and plugin stages.

12

2. Background

where strong static guarantees are carried in types, yielding complicated calculations
in types which GHC is incapable of or slow at.

Thoralf[10] is a specific type checking plugin, that helps the type checker unify-
ing types. It is mostly a wrapper to an SMT solver. For this, some theories like
arithmetic are built-in. Other custom theories can be provided. The unification
challenge then translates to an SMT challenge, which is given to Z3. As an example
consider the type level natural numbers a,b,c,n1,n2,n3 :: Nat with known con-
straints (n1 + n2) :~: (a + c) and (c + n3) :~: b. With Thoralf it is possible
to deduce the constraint (n1 + (n2 + n3)) :~: (a + b).

Core plugins work on Haskell’s internal Core representation of the program. This
includes type checking already done.

Template Haskell is another way to interfere with Haskell’s compilation. Strictly
speaking, it is not a plugin, but more a macro with Haskell code run at compile time
based on a GHC extension. Such macros can take other Haskell code (well-typed
parts of the AST) as argument and are expected to return Haskell code themselves.
The result is then passed to the type-checker again.

2.5 Solvers
A satisfiability solver (SAT solver) is a tool to solve boolean expressions with variables.
Given a boolean expression, it finds a satisfying assignment for the variables such
that the expression becomes true.

The result of a SAT solver is either the signal SAT with some fulfilling assignment
or UNSAT indicating that it is impossible to satisfy the expression.

2.5.1 Adding arithmetic support
SMT solvers (Satisfiability modulo theories) extend SAT solvers by also allowing
predicates in some so-called theory. In our context, this will be the arithmetic theory
of integers with comparisons, addition and subtraction. Besides boolean variables
directly occurring in the boolean expression, predicates of the theory like x + y > 0
can be used in the boolean expression. With this, a second set of variables occurs:
value variables in the theory (here x and y). This makes predicates as

x < y ∨ x + y = 0 (2.1)

available in formulas.

The logical expression is solved by first treating the predicates as unique variables
and finding a satisfying assignment for those (SAT solving). The expression (2.1)
from before would be translated to p1 ∨ p2 with p1 ≡ x < y and p2 ≡ x + y = 0.
A first satisfying assignment could be p1 =True, p2 =False. Then, the soundness
of predicates is checked given the theory, yielding a possible assignment of value
variables or rejecting the boolean assignment. In our example, the arithmetic theory
would be asked to fulfill x < y while not x + y = 0. As there is a variable assignment

13

2. Background

(x = 0, y = 1) that solves this, this assignment could be yielded. If the found boolean
assignment to p1 and p2 would be rejected, it returns to SAT solving and tries to
find another SAT-assignment.

The Z3 SMT solver is the SMT solver we are using in our development.

2.5.2 Getting all solutions
If not a single fulfilling assignment, but every fulfilling assignment is to be calculated,
an SMT solver can be called iteratively. After every returned SAT, the assignment
is stored and a clause is added to the expression forbidding this exact assignment.
By this, another assignment will be returned by the next call (if there is one).

Continuing our example, a clause would be added to the formula (x < y ∨ x + y =
0)∧(x 6= 0∨y 6= 1). This would probably yield x = 0, y = 2 and for the next iteration
the formula would be updated to (x < y∨x+y = 0)∧(x 6= 0∨y 6= 1)∧(x 6= 0∨y 6= 2).
In our example this process will never terminate as there are infinite assignments
fulfilling the initial formula.

2.5.3 Reversing the quantification
SAT and SMT solvers yield some fulfilling assignment on the variables. Formally,
given some expression p ∈ V → B, that relates a variable assignment v ∈ V to a
boolean b ∈ B, they prove ∃v ∈ V : p(v) or ¬(∃v ∈ V : p(v)). If, however, not a
single assignment fulfilling the expression is of interest, but whether the expression
holds for every assignment, we can pass the negated expression to the solver. Let
p′ = ¬p. Then, the SMT outputs either ∃v ∈ V : p′(v) and p is not always true. Or
the SMT solver outputs ¬(∃v : p′(v))⇔ ∀v : p(v).

Now, we have all the technical pieces together, we will our solution on. A new branch
operator we will introduce in the next chapter. The branch operator will work on top
of the Spar-calculus and use an SMT solver to check branchings at compile-time.

14

3
Branching on Spar-values

Our approach is to extend the existing framework Spar described in [1] with ideas
from [6]. Spar defines a DSL for queries allowing basic operations (no branching)
that infers the sensitivity by type checking. This is done by tracking how functions
alter the distances of two values.

The work in [6] defines a calculus to reason about sensitivity of imperative programs.
Given a boolean b, programs P1, P2 and a branching if b then P1 else P2, the
main insight is that checking two conditions is enough to reason about sensitivity of
the branching. The idea of this paper can be split into two main points that, once
answered successfully, the sensitivity of the branch can be automatically computed.

Firstly, is the sensitivity of the branches P1 and P2 bounded? The paper [6] shows
how sensitivity of an imperative program P can be computed in Lipschitz matrices
that track the sensitivity between variables before and after the execution of P .
Those matrices can be derived syntactically bottom-up by rules stated in [6].

Definition 3 (Lipschitz matrix[6]). Let P a program with n variables x1, . . . , xn, a
Lipschitz matrix J of P is an n × n matrix, each of whose elements is a function
K : N → R≥0. Elements of J are represented either as numeric constants or as
symbolic expressions (for example, N + 5), and the element in the i-th row and j-th
column of J is denoted by J(i, j).

Secondly, is the branching continuous? Continuity is derived syntactically bottom-up
with rules. Both branches need to be continuous on their own. Additionally, the
decision boundary has to be considered. This is the set of variable assignments where
the condition b flips. An overestimating condition for values on the decision boundary
is calculated syntactically. With this, the Z3 SMT solver is employed to reason about
equivalence of “straight-line program fragments”[6, p. 112]. If both branches are

f x = if x >= 0 then
x

else
2x

Figure 3.1: A small sensitive Haskell function.

15

3. Branching on Spar-values

equivalent on the decision boundary, the branching is considered continuous.

Taking both points together, sensitivity of the branching is calculated. The resulting
Lipschitz matrix is defined by the maximum of the derived matrices for the branches
and thus overapproximates the sensitivity.

Now, let us combine the ideas of both papers, namely [1] and [6]. For this, we
replace tracking sensitivity using matrices by tracking distances using types. If we
can require P1 and P2 being of some type Sen k a b and Sen k' a b, we already
calculated their sensitivity. If we can additionally show agreement on the decision
boundary, we can conclude that distances will grow maximally by max k k' in the
branching.

Consider the function in Figure 3.1. The Lipschitz matrices occurring are 1x1-
dimensional since there is only one variable. Let’s go bottom up: The then-branch’s
Lipschitz matrix is J1 = (1) and denotes that the result changes at most as much as
the input. The else-branch’s Lipschitz is J2 = (2) showing that the results depends
on the input two times. To the whole branching the Lipschitz matrix J = (2) is
assigned as the elementwise maximum of both branches’ matrices.

Consider two different inputs ‖x1− x2‖ ≤ d. Three cases can occur:

x1, x2 >= 0 If both inputs are greater or equal than 0, the distance of the outputs
will stay the same. This corresponds to J1.

x1, x2 < 0 If both inputs are smaller than 0, the distance of the outputs doubles.
This corresponds to J2.

x1 < 0 <= x2 , without loss of generality (w.l.o.g.). If one input is greater or
equal and the other is smaller than 0, the distance will still double at most.
This is because both branches agree at the decision boundary. The only value
on the boundary is x = 0 and x = 0 equals 0 = 2x. This corresponds to the
overapproximation J = (2).

We can conclude that evaluating this program for two inputs, their distance will be
doubled at most. That is, the sensitivity of the program in Fig. 3.1 is 2.

if x > 0 then
-x + 1

else
x

Looking back at the examples in Section 1.1, we see that the branches are of sensitivity
1, but do not agree on the decision boundary. So the sensitivity of the branching
cannot be computed. In fact, as we have seen, it is not bounded.

In the remaining chapter, we will introduce a branch operator that checks exactly
those two points. By this, we can reason that the checked branching is sensitive.
Such branchings are a sound extension to Spar. Easy examples like the absolute
value function will be defined as well as the more involved cswp function.

16

3. Branching on Spar-values

f x = $(branch
[| … |]
[| x >= 0 |] -- condition
[| x |] -- then clause
[| 2x |] -- else clause

)
==> evaluates to
f x = if run id x >= 0

then x
else 2x

Figure 3.2: The function from Figure 3.1 for Spar. The argument [|…|] will be
explained later in Section 4.2.

3.1 Introducing the branch operator
Reconsider the function f in Figure 3.1. It does not typecheck for Spar-values. The
problem is that we cannot compare Spar-values in the condition without running
them. Yet, constructing Spar-values based on the result of running other Spar-values
breaks the sensitiviy promise:1

mul :: Sen 1 Int Int
mul x = let x' = run id x in number (x' * x')

This function typechecks. But given two slightly different inputs, the outputs can
change a lot: Consider x̂ ∈ N and x :: Dist 1 Int where we interpret x as two
values x̂ ∼ x̂ + 1. Function call mul x evaluates to x̂2 ∼ x̂2 + 2x̂ + 1. As we can see,
function mul scales the distance of the input by more than 1. This contradicts the
promises given by the types. In fact, the outputs’ distance is proportional to the
inputs’ value and can be arbitrary far away. The function’s sensitivity cannot be
bounded. Using run enables us to convince the type system that mul has sensitivity
1. This is why we cannot use run arbitrarily.

We define a new operator branch, that adds branching to Spar. Figure 3.2 shows
our previous example with our new operator. This operator computes (if possible)
the sensitivity of branches at compile-time. The condition is passed in the second
argument and the branches in the third and fourth argument, respectively. The
operator is a thin wrapper around an if-statement: Finally it is replaced by an
if-statement where the Spar-values are run in the condition. The first argument
([|…|]) is a technical detail; we will deal with it later.

In connection with Spar-values, we want the branch operator to only allow branchings
with bounded sensitivity. As we have seen before, two conditions have to be fulfilled.
Firstly, both branches need to have some sensitivity. This is facilitated by Spar: if the
branches in the resulting if-then-else typecheck, we already obtain their sensitivity.

1Recall that run should only be called at the end by trustworthy actors.

17

3. Branching on Spar-values

Secondly, the branches have to agree at the condition-boundary. This is explicitly
checked by the branch operator. The sensitivity of the resulting if-statement is
bounded by the larger of the two branches’ sensitivities. In section B we will
formalize this reasoning and see that it holds for more general values in the branches
like differences or pairs.

In order to run the analysis at compile-time, we implemented the branch operator
using Template Haskell and work on the syntax of the condition and the branches.
Thus, all arguments have to be surrounded by quasiquotes ([| . . . |]) in order
to turn the content into AST-values. As for now, we assume the branch operator only
taking simple conditions where variables evaluate to integers, and where conditions
involve comparison and logical operators, e.g., x < 0 || x > 10. This simplification
allows us to statically calculate the decision boundary using an external SMT solver.
For all boundary values v temporary Haskell snippets are constructed with the
condition variables set to v. The snippets consist of the code of both branches
and the operator proceeds to compare the results. If all snippets evaluate to True
indicating agreement of both branches on all boundary values, the check is passed
and the operator evaluates to a simple Haskell-if.

3.2 Easy examples

With this operator in place, it is now possible to define continuous mathematical
functions that contain branching. We will soon see that also other values than
Spar-values will become useful in the branches. We can see that the relu x has
sensitivity 1 since the first branch has sensitivity 1, the second branch has sensitivity
0 and both branches evaluate to zero at the decision boundary x=0. Similarly, abs
implements the absolute value function, and we can observe that its sensitivity is
1 because both branches have sensitivity 1 and evaluate to zero at the decision
boundary x=0.

relu :: Sen 1 Int Int
relu x = $(branch [| … |]

[|x > 0|] -- condition
[|x|] -- then
[|constant 0|]) -- else

abs :: Sen 1 Int Int
abs x = $(branch [| … |]

[|x > 0|] -- condition
[|x|] -- then
[|constant 0 .- x|]) -- else

18

3. Branching on Spar-values

3.3 Implementing cswp
The next program we want to implement is the cswp (compare and swap) function.

cswp(a, b) =

(a, b) a > b

(b, a) b ≥ a

That is two-value sorting. Cswp takes a tuple and sorts it by placing the smaller
elements as the first component of the tuple. This useful primitive can be used
to implement Bubblesort/Insertionsort (by repeatedly comparing neighbors) and
minimum and maximum functions. The later ones can be used in turn to implement
Dijkstra’s and the Bellman-Ford algorithms. This is why providing cswp as a
primitive with assumed sensitivity 1 alleviates the pain of not allowing branching
in related works ([1], [3]). We will implement cswp as a derived function using our
branch operator. Doing so will allow us to implement the same more advanced
algorithms. It will turn out that implementing cswp is not straight-forward, but we
will need some iterations until we reach a satisfying implementation of cswp. On the
way, we will learn more about the complexity of the branch operator.

cswp1 (x,y) = $(branch [|…|]
[|x > y|] -- condition
[|(x,y)|] -- then
[|(y,x)|]) -- else

This is the direct translation for Spar using the new branch operator. Looking at
the condition (x>y), we conclude the decision boundary {(x, y)|x = y}. Since the
branch operator checks the agreement of both branches for every boundary value,
the underlying SMT solver diverges — recall Section 2. Only a finite boundary can
be fully obtained and checked (see Section 2.5.1 for more details).

We can get around this limitation with a small trick:2x > y is equivalent to x− y > 0
and instead of calculating the difference in the condition, we can substitute it with
variable a = x − y and compare a > 0. The rewritten condition has the finite
boundary {a|a = 0}. See the definition of sswp2 in Fig. 3.3.

As a side effect, we do not have access to x and y inside the branches any longer. This
is because the branch operator needs to analyze and evaluate the branches at compile
time. For doing so, the branch-snippets are taken from its original context and
executed and compared in plain environments (see Chapter 6 for more details). That
means, that the original context is not available including surrounding functions
and bound variables. Variables that take part in the condition (here a) will be
instantiated when checking for all boundary values. But other variables (here x and
y) are undefined in the compile-time environment, cannot be evaluated, and thus the
checking fails if such variables are used. That means, our result must only depend
on variable a denoting the difference.

It turns out, returning the pair (a, 0) or (0, a) otherwise works. These pairs are no
2That is similar how it is possible to define an order in a vector space by a positive cone.

19

3. Branching on Spar-values

sswp2 :: Dist n Int -> Dist n (Int, Int)
sswp2 a = $(branch […]

[| a > 0 |]
[| (a, constant 0) |]
[| (constant 0, a) |])

cswp2 :: Dist n (Int, Int) -> Dist (3 * n) (Int, Int)
cswp2 (x::Dist dx Int :*: y::Dist dy Int) =

let (l :*: r) = sswp2 (x .- y) :: Dist n (Int, Int)
in (l .+ y :*: r .+ y) :: Dist (n + 2*dy) (Int, Int)

Figure 3.3: Implement cswp by shifting by y.

more than (x − y, 0) and (0, x − y). When y is added on both sides, these pairs
become (x, y) and (y, x).

As can be seen by the typing annotation in Figure 3.3, the sensitivity of cswp2 is 3
rather than 1 as indicated by [3]. This comes from the overapproximation that Spar
calculus is doing in tracking distances. When taking the subtraction a, the distances
of x and y add up:

l :*: r = sswp2 (x .- y) :: Dist (dx + dy) Int.

We see in the line above that we subtract y with distance dy from x with distance
dx. The value x .- y then has distance dx + dy and is given to sswp2. Since sswp2
has sensitivity 1, the resulting tuple l :*: r will have the same distance type n =
dx + dy. So, we can say that the distance type of the elements l and r add up to dx
+ dy, that is, dl + dr = dx + dy = n with dl denoting the distance of l and dr the
distance of r.

Finally, y is added to both sides of the tuple, adding y’s distance dy twice. The
resulting distance can be further overestimated to 3n, i.e. dl + dy + dr + dy =
n + 2dy ≤ 3n.

By naively applying ideas from [6] into Spar, we were able to define cswp for Spar,
but with sensitivity 3 compared to sensitivity 1 as indicated by [3].

Rounding up
In this chapter we introduced the branch operator. It enables branching within the
Spar-calculus. With this, it was able to define easy examples and the cswp function.
Yet, it was not possible to infer sensitivity 1 for cswp. In the next Chapter, we will
revisit cswp and define it with sensitivity 1.

20

4
Branching on refined types

As we have seen, cswp2 has sensitivity 3. This is a very coarse and unpleasant
overestimation. Considering what actually happens, the values of a tuple are maybe
swapped, and thus the distances will not change. So the actual sensitivity is 1.

In this chapter we want to understand why this overestimation happens and improve
our definition of cswp. This will be facilitated by specially designed types. Special
care is needed not to break the sensitivity promise when doing so. At the end of this
chapter, we will have constructed a sound cswp with sensitivity 1.

We start by checking why this overestimation occurs. Without loss of generality, let’s
consider (x<y) where x :: Dist dx Int and y :: Dist dy Int. We know that
the result of sswp2 (l :*: r) will be (constant 0, x .- y). After adding back y,
the result is (constant 0 .+ y, x .- y .+ y). The inferred type of the first part
is constant 0 .+ y :: Dist dy Int, i.e. the inferred distance is dy. In contrast
to this, x .- y .+ y :: Dist (dx + dy + dy) Int is typed with the distance (dx
+ dy + dy) because each y is treated independently and distances add up. However,
from the context we know that both ys are exactly the same and thus the distances
should cancel. So, the distance of x .- y .+ y should be effectively dx.

4.1 Liberal reversible differences
This leads to the notion of reversible differences of Spar-values. In the next paragraphs,
we will introduce a deep embedding Diff x y of subtraction that generally behaves
like the flat version x .- y and adds the components’ distances. Additionally, it
will provide the possibility to add back the subtrahend and cancel the connected
distance, effectively yielding the minuend. This technique will help to typecheck x
.- y .+ y with distance dx.

We introduce a new datatype Diff with accompanying functions on top of Spar to
handle reversible differences in Figure 4.1. Diff wraps two Spar values. Intuitively,
Diff x y denotes (x-y) and is fully characterized by the difference. We want to
consider Diff (constant 5) (constant 3) and Diff (constant 12) (constant
10) to be equal since the differences are the same, i.e. 2. To actually evaluate the
difference, evaluateD is provided. The function
diffAddBack :: Diff dx dy -> Dist dy Int -> Diff dx Int allows us to re-
verse a difference and add back the subtrahend: diffAddBack (Diff x y) z = x.

21

4. Branching on refined types

module Branching.ReversibleDiffs where

import NFuzz.API
import GHC.TypeLits

data Diff dx dy = Diff (Dist dx Int) (Dist dy Int)

cloneToNullSum :: Diff dx dy -> Diff dy dy
cloneToNullSum (Diff _ y) = Diff y y

evaluateD :: Diff dx dy -> Dist (dx + dy) Int
evaluateD (Diff x y) = x .- y

diffAddBack :: Diff dx dy -> Dist dy Int -> Dist dx Int
diffAddBack (Diff x y) z = x

data RTuple n dy =forall dx1 dx2. n~(dx1+dx2) =>
RTuple (Diff dx1 dy) (Diff dx2 dy)

Figure 4.1: A simple implementation for reversible differences.

By reversing the difference and adding back the subtrahend, also the distances cancel.
So this function alleviates the problem we observed before. Note, that y and z are
not guaranteed to be the same value. For now, not passing the subtrahend z=y
breaks the purpose of this function. In Section 4.4 we introduce a guarantee of only
the subtrahend being a valid second argument for diffAddBack.

We still want to branch over the difference, so the variable in the condition (variable
a) becomes a reversible difference. For giving runtime semantics to differences, we
need a way to evaluate such values to Ints. This is provided by evaluateD.

We can now rewrite cswp using Diff as seen in Figure 4.2. Instead of passing the
result of the subtraction to sswp3, we pass a richer reversible difference a :: Dist
dx dy.

Intuitively, similarly to sswp2, sswp3 returns either (a,0) or (0,a) which means that
effectively the resulting pairs are (x - y, 0) or (0, x-y). That means that we are
returning a pair with a difference.

Later, we want to add back the subtrahend y to the difference Diff x y. However,
we do not know which side of the resulting pair will contain the difference to
reverse. We solve this by making both sides a reversible difference adhering to
the same subtrahend. So, we convert 0 into y - y. This is done by the primitive
cloneToNullSum.

In sswp2, we have used constant 0. We replace it by a difference that evaluates
to 0 while being compatible with subtrahend y. cloneToNullSum clones an existing

22

4. Branching on refined types

sswp3 :: Diff dx dy -> RTuple (dx + dy) dy
sswp3 a = $(branch [| … |]

[| a > 0 |]
[| RTuple a (cloneToNullSum a) |]
[| RTuple (cloneToNullSum a) a |])

cswp3 :: Dist n (Int, Int) -> Dist n (Int, Int)
cswp3 (x::Dist dx Int, y::Dist dy Int) =

let (RTuple l r) = sswp3 (Diff x y) :: RTuple n dy
in (diffAddBack l y:*: diffAddBack r y) :: Dist n (Int, Int)

Figure 4.2: Implement cswp using our Diff datatype.

difference Diff x y and creates a new one Diff y y based on the subtrahend, such
that the result denotes 0.

Intuitively, the result of sswp3 is now either (x - y, y - y) or (y - y, x - y). Can we
find a type that can carry both tuple values and the relevant type information? The
answer is yes, and that type is RTuple.

We create a special type RTuple for tuples of Diffs with the same subtrahend.
Semantically, RTuple n dy , {(x1−y, x2−y)|x1:: Dist dx1 Int, x2:: Dist dx2 Int,
y:: Dist dy Int, dx1+dx2 = n}. Observe that both possible results from the branches
can be captured by this type: (x − y, y − y) ∈ RTuple n dy and (y − y, x − y) ∈
RTuple n dy.

In Haskell, it is implemented as a pair of two Diffs. In the outer cswp3, the RTuple
is split up and both contained reversible differences are reversed.

We want to keep track of the components’ distances. Looking at the branches
which shuffle the order of the components, the result could be of type (Dist dx dy,
Dist dy dy) or (Dist dy dy, Dist dx dy). So we cannot keep track of the exact
minuends’ distances, but their sum. RTuple is parameterized by two distance
arguments. The first is the sum of the minuends’ distances, the second stores the
subtrahends’ distances. Keeping track of the minuends’ distances is enough to
facilitate the later typechecking.

When reversing the differences in cswp3 now, also the subtrahends’ distances are
reversed, and we obtain a cswp with sensitivity 1 only using the Spar API and our
new operator.

4.2 Allowing more types in the condition
Let’s take a closer look at the condition and reconsider the abs example. The
function branches over x>0, where x is a Spar-value. In the condition, we compare
some variable and integers.

23

4. Branching on refined types

abs x = $(branch [| … |]
[|x > 0|] -- condition
[|x|] -- then
[|constant 0 .- x|]) -- else

Note that the condition does not make sense typewise. Variable x is of type Dist,
while constant 0 is of type Int. This is no problem as the branch operator analyzes
the condition syntactically, derives the boundary condition and gives the boundary-
condition to the SMT solver. Semantically, we can think of Spar-values as annotated
integers, so it makes sense. This intuition is backed by two functions for converting
between Spar-values and integers. The function constant allows embedding an
integer in Spar-values while the composite (run . id) extracts an integer. The
extraction function is needed when substituting the branch operator invocation
with an if-then-else for runtime. The carried integer is extracted so that it can be
compared to the integer in the condition.

if ((run . id) x) > 0 then x
else constant 0 .- x

For constructing the compile-time checks, it is the other way round (see Section 3.1).
The variable x needs to be instantiated with the integers on the decision boundary
(calculated by the SMT solver). So these integers need to be embedded as Spar-values.
This finally explains the purpose of the first argument of the branch operator (as
seen in Figure 4.2). A function that takes integers (those comming from the SMT
solver) and returns values of the condition variable must be passed.

abs x = $(branch [| \i -> constant i |]
[|x > 0|] -- condition
[|x|] -- then
[|constant 0 .- x|]) -- else

Note, how we inserted a function in the first argument. This function, wrapping
Spar’s constant, allows us to do the reverse at compile-time. From an integer, it
allows constructing a Spar-value, that evaluates to the given integer.

Now, let us come back to the cswp example. In the previous section the Diff type
was introduced to store richer structure of differences. It was shown that this richer
structure is enough to be more precise about the subsequent calculations and finally
show a sharper distance reversed differences. In this section, we will deal with the
implications this brings, particularly using the Diff type in the condition.

As for Spar-values, we want to think about the differences as integers. That will allow
us to continue using the SMT solver and write a condition like a > 0, while a is of type
Diff. For this, again, embedding and extraction function are needed. In the previous
section, it was already mentioned that Diff comes with the function evaluateD for
extracting the integer out of a difference. Embedding an integer x works by thinking
of x as x - 0. Then, [| \x-> Diff (constant x) (constant 0) |] embeds x in
a Diff value. Similarly, the branch operator needs a way to translate integers to re-
versible differences in sswp. This is achieved by using [| \i-> Diff (constant i)
(constant 0) |] as the first argument. At run-time, when applied to evaluateD,

24

4. Branching on refined types

1 sswp4 :: Diff da db -> RTuple (da + db) db
2 sswp4 a = $(branch [| … |]
3 [| a > 0 |]
4 [| RTuple (Diff (constant 17)(constant 17)) (cloneToNullSum a)|]
5 [| RTuple (cloneToNullSum a) a |])
6

7 cswp4 :: Dist n (Int, Int) -> Dist n (Int, Int)
8 cswp4 (x::Dist dx Int, y::Dist dy Int) =
9 let (RTuple l r) = sswp4 (Diff x y) :: RTuple n dy

10 in (diffAddBack l y:*: diffAddBack r y) :: Dist n (Int, Int)

Figure 4.3: Broken implementation of cswp using our simple Diff datatype.

the result becomes i-0.

sswp3 :: Diff dx dy -> RTuple (dx + dy) dy
sswp3 a = $(branch [| \i -> createDiff (constant i) (constant 0) |]

[| a > 0 |]
[| RTuple a (cloneToNullSum a) |]
[| RTuple (cloneToNullSum a) a |])

This section showed that we need accompanying functions for conversion between
type of variables occurring in the condition and integers. Since these functions
depend on the type to branch on, they are expected to be provided by the user.

4.3 Breaking liberal reversible differences
In section 4.1, reversible differences were introduced to define cswp with sensitivity
1. Reversible differences are problematic though, they are too liberal. It turns out
they are breaking the sensitivity promise given by the type system.

Consider Figure 4.3. The function is slightly changed: In line 4, instead of a,
Diff (constant 17) (constant 17) is put into the RTuple. The program type-
checks. At compile time when both branches are compared on the boundary value
a = 0 with a=Diff (constant 0) (constant 0) being a difference that evaluates
to zero, they appear equal: Intuitively,

RTuple (Diff (constant 17) (constant 17)) (cloneToNullSum a)
=((17− 17), (0− 0))
=(0, 0)
=((0− 0), (0− 0))
=RTuple (cloneToNullSum a) a

That means, the branch operator does not reject the modified sswp4.

25

4. Branching on refined types

If we consider one execution with x=constant 1 and y=constant 0, cswp4 (x :*: y)
evaluates to (17,0).

cswp4 (constant 1 :*: constant 0)
= let (RTuple l r) = RTuple (Diff 17 17) (Diff 0 0)
in (diffAddBack l y:*: diffAddBack r y)

= (diffAddBack (Diff 17 17) y:*: diffAddBack (Diff 0 0) y)
= (17 :*: 0)

However, if we change x by one to x=constant 0, the output produced is (0,0).
While we changed the input only by distance 1, the output jumped by a distance of
17. Clearly, we have broken our sensitivity promise given by the type-system. But
where did we break it? The error lies in assuming the differences Diff x1 y1 and
Diff x2 y2 to be equal as soon as (x1-y1)=(x2-y2) while both differences behave
differently when applied to diffAddBack _ z. The property that equal values behave
equally is called behavioral equality or extensional equality. We will come back to
this in section 5.

4.4 Robust reversible differences
The underlying problem is that we want to keep track of connected values that are
passed around separatedly: The difference Diff x y is connected to its subtrahend
y which can be used to reverse it. However, the difference is passed through the
branching while the subtrahend will be added back later.1 We will introduce a type-
level certificate that guarantees that the result of the branching is still connected to
the subtrahend. This is achieved by introducing an existential type:

data Diff dx dy c = Diff (Dist dx Int) (Dist dy Int)
data Subtrahend dy c = Sub (Dist dy Int)
data ReversibleDiff = forall c. RDiff (Diff dx dy c, Subtrahend dy c)

Observe that we have extended the type Diff with an extra type-level phantom
variable c. We added the type Subtrahend to capture subtrahends also with a
phantom variable c. Finally, type ReversibleDiff connects both with an existential
type. Each built ReversibleDiff will have a different existential type.

Figure 4.4 shows the full implementation of our extension to Spar. A pair of a differ-
ence and its corresponding subtrahend is obtained by destructing a ReversibleDiff.
This introduces the existential type c. Type c is neither linked to any value, nor
does it appear in the type of ReversibleDiff. Given some difference of type
Diff da db c1 and subtrahend of type Subtrahend db c2. Types c1 and c2 can
only be unified (and thus used to reverse the difference), if the second argument of
the difference matches the subtrahend. It is impossible to unify c with anything other
than values stemming from the very same difference. Note that access to the type
constructors Diff and Sub is restricted. Reversible differences are only available as
RDiff-value by calling createRDiff. By this, diffAddBack :: Diff dx dy c ->

1The whole purpose of introducing the difference is to eliminate unbound variables in the
branching.

26

4. Branching on refined types

1 module Branching.ReversibleDiffs (
2 --plain Diffs
3 Diff()
4 , evaluateD
5 , createDiff
6 , cloneToNullSum
7 -- RDiffs
8 , ReversibleDiff(RDiff)
9 , createRDiff

10 , Subtrahend()
11 , diffAddBack
12 -- Tuple
13 , RTuple(..)
14) where
15

16 import NFuzz.API
17 import GHC.TypeLits
18

19 -- plain Diffs
20 data Diff dx dy c = Diff (Dist dx Int) (Dist dy Int)
21

22 createDiff :: Dist dx Int -> Dist dy Int -> Diff dx dy ()
23 createDiff = Diff
24

25 cloneToNullSum :: Diff dx dy c -> Diff dy dy c
26 cloneToNullSum (Diff _ y) = Diff y y
27

28 evaluateD :: Diff dx dy c -> Dist (dx+dy) Int
29 evaluateD (Diff x y) = x .- y
30

31 -- reversible Diffs
32 data ReversibleDiff dx d =
33 forall dy c. d~(dx+dy) => RDiff (Diff dx dy c, Subtrahend dy c)
34

35 newtype Subtrahend dy c = Sub (Dist dy Int)
36

37 createRDiff :: Dist dx Int -> Dist dy Int ->
38 ReversibleDiff dx (dx+dy)
39 createRDiff x y = RDiff (Diff x y, Sub y)
40

41 diffAddBack :: Diff dx dy c -> Subtrahend dy c -> Dist dx Int
42 diffAddBack (Diff x _) (Sub _) = x
43

44 data RTuple n dy c =
45 forall dx1 dx2. n~(dx1+dx2) =>
46 RTuple (Diff dx1 dy c) (Diff dx2 dy c)

Figure 4.4: An implementation of reversible differences with certifications.
27

4. Branching on refined types

sswp5 :: Diff dx dy c -> RTuple (dx + dy) dy c
sswp5 a = $(branch [| \i -> createDiff (constant i) (constant 0) |]

[| a > 0 |]
[| RTuple a (cloneToNullSum a) |]
[| RTuple (cloneToNullSum a) a |])

cswp5 :: Dist n (Int, Int) -> Dist n (Int, Int)
cswp5 (x::Dist dx Int, y::Dist dy Int) =

let
RDiff (diff::Diff dx dy c) cy = createRDiff x y
RTuple l r = sswp5 diff :: RTuple n dy c

in (diffAddBack l cy:*: diffAddBack r cy) :: Dist n (Int, Int)

Figure 4.5: Implement cswp using certified differences.

Sub dy c -> Dist dx Int can only be applied to differences which agree on the
subtrahend in b. Note that the code in Fig. 4.5 works purely on top of Spar, i.e. all
guarantees given by Spar persist, particularly that the inferred distance of the result
of diffAddBack is correct. Finally, a function createDiff :: Dist dx Int ->
Dist dy Int -> Diff dx dy () for creating reversible differences directly from
two values is provided. Note that the resulting differences actually cannot be reversed,
since it is impossible to construct a subtrahend with the right certificate ().

This function is useful for creating reversible differences on the decision boundary for
compile-time checking. It will be used in the first argument of the branch operator
and therefore for instantiating condition variables to values on the decision boundary
when comparing both branches.

4.5 Revisiting cswp
Figure 4.5 shows the adapted implementation of cswp. The difference is now con-
structed using the function createRDiff and destructing the result. The certified
difference (diff) is passed through the branching, keeping the certificate and yielding
a pair of certified differences. The certified subtrahend (cy) is added back to the
resulting pair of differences, which are certified to match the subtrahend.

Note that it is impossible to imitate our previous modification (returning Diff 0 0).
We cannot create a new difference which adheres to the same certificate. This was
the last step towards defining cswp with sensitivity 1 as a derived function using the
branch operator.

28

5
Soundness

In the previous sections, we have created types for tracking reversible differences.
It turned out that when designed without caution, they allow breaking sensitivity
promises. In this chapter, we will show why our final revision does not break the
sensitivity promises. In particular, we will show that our final implementation of
cswp is sound.

For this, let’s consider an input p :: Dist n (Int, Int) to cswp. This describes
two executions with two values p1 ∼n p2 with p1 = (x1, y1), p2 = (x2, y2). Looking
at the types, we can introduce the subdistances x1 ∼dx x2 and y1 ∼dy y2 with
n = dx + dy.

Let’s track those values and distances through the program. We consider two different
cases. First, the easy case is when both inputs are processed by the same branch. If
x1 > y1 ∧ x2 > y2 or x1 ≤ y1 ∧ x2 ≤ y2, we could replace the branching by just the
code of the respective branch without changing the values. Only RTuples remain
which do not break the Spar calculus. Thus, we can inherit the wished guarantee
from the result being typed with Dist n (Int, Int).

Second, consider, without loss of generality, x1 > y1 but x2 ≤ y2. I.e. the results of
both executions are based on different branches.

5.1 General proof idea
Let’s consider a hypothetical third execution of cswp at point p3 = (x3, y3) which
lies exactly on the decision boundary (i.e. x3 = y3) and exactly between p1 and p2.
We can find p3 by a sweep from p1 to p2 with side-condition x = y.

In our context, a sweep from some point a to point b is the direct connection between
those two points: {a + θ · (b− a)|θ ∈ [0, 1]}. It can be thought as smoothly moving
from a to b by linear combinations of those points. The parameter θ describes how
far we already traveled with θ = 0 being at the start and θ = 1 having reached the
goal.

{(x, y) = p1 + θ · (p2 − p1)|θ ∈ [0, 1], x = y}

Let’s search for θ3 such that p3 = p1 + θ3 · (p2 − p1). We are looking for p3 = (x3, y3)

29

5. Soundness

with x3 = y3 (side-condition) and x3 = x1 + θ3 · (x2 − x1) and y3 = y1 + θ3 · (y2 − y1)
(sweep-construction). So for p3 it must hold x1 + θ3 · (x2 − x1) = y1 + θ3 · (y2 − y1).
We get

θ3 = x1 − y1

y2 − y1 − x2 + x1
=

>0︷ ︸︸ ︷
x1 − y1

y2 − x2︸ ︷︷ ︸
≥0

+ x1 − y1.︸ ︷︷ ︸
>0

Since the denominator is non-zero, we conclude that this is the only possible θ3.
Further, θ3 > 0 since the nominator and denominator are strictly positive and θ3 ≤ 1
since the nominator is smaller than or equals the denominator.1

We introduce the distances m1, m2 with p1 ∼m1 p3 ∼m2 p2. It holds n = m1 + m2.

m1 + m2 = |p1 − p3|+ |p3 − p2|
= |p1 − (p1 + θ3(p2 − p1))|+ |p1 + θ3(p2 − p1)− p2|
= |θ3(p2 − p1)|+ |p1 + θ3(p2 − p1)− p2|
= |θ3(p2 − p1)|+ |(θ3 − 1)(p2 − p1)|
= θ3|(p2 − p1)|+ (1− θ3)|(p2 − p1)|
= |(p2 − p1)| = n

Recall how cswp works: It takes a tuple, unpacks it, calculates the differences
and gives this to sswp. There we branch over the difference and return a tuple
of differences. Finally, the tuple is unpacked, the differences reversed, and the
resulting minuends are put in a tuple and returned. For the sake of our analysis,
we need to introduce some more notation. Let’s think of the branches as two func-
tions b1, b2 :: Diff dx dy c -> RTuple (dx + dy) dy c. Assume functions
pre :: Dist n (Int, Int) -> Diff dx dy c and
post :: RTuple (dx + dy) dy c -> Dist n (Int, Int) that contain all the pro-
cessing around the branching. So pre does tuple-unpacking and creating the difference.
post does RTuple-unpacking, difference reversing and tupling. The semantics of
cswp now are expressible as cswp5 = post . sswp5 . pre.

We can now create functions
f1 = post . b1 . pre :: Dist n (Int, Int) -> Dist n (Int, Int) and
f2 = post . b2 . pre :: Dist n (Int, Int) -> Dist n (Int, Int). They
do not include branching but operate completely on the safe part of the Spar API.
Let f1, f2 be the mathematical counterpart. The checked types tell us that both
functions have sensitivity 1. So we can apply them to p1 ∼m1 p3 and the distance
stays the same: f1(p1) ∼m1 f1(p3). The same holds for f2 and p3 ∼m2 p2. Remember,
that we check that both branches have the same value at the decision boundary. I.e.
we check that f1(p3) = f2(p3).

1In general, we are dealing with two intersecting closed sets. First, the sweep between p1 and
p2. Second, the set S = {(x, y) | x ≤ y}. Now, p1 6∈ S but p2 ∈ S. It is possible to construct a
converging sequence in the sweep and S that converges towards the boundary. We set p3 as the
convergence point.

30

5. Soundness

Now we have all the pieces to make our analysis run!

cswp p1 ,f1(p1) (5.1)
∼m1f1(p3) (5.2)

=f2(p3) (5.3)
∼m2f2(p2) (5.4)
,cswp p2 (5.5)

Our argument works by using the compile-time check in line (5.3) for arguing that
the value does not change, when going to the other branch. From this we follow
|cswp p1 − cswp p2| ≤ m1 + m2 = n.

5.2 Equality classes of same behavior
When checking at compile-time whether (5.3) holds for p3, there is a problem. For
every p1, p2 there is exactly one p3, and we do not know the precise p1, p2 at compile-
time. So we do not know which p3 to check. The best hope is to check all possible
p3. But those are infinitely many (and not even all in Z2).

Remember, this is why we introduced the difference. We observed that the condition
x− y > 0 only depends on the difference of the two values. This leads to equality
classes of Diff-values with the same difference.

Ev = {(x, y) | x− y = v}

Now all values in a specific class Ev are processed by the same branch. And either all
values of Ev lay on the boundary or none. Here, E0 with difference 0 is the equality
class on the boundary.

Looking at the implementation, we see that the branches cannot inspect inside a
difference or construct new ones, but put it in one or the other side of a tuple. They
cannot inspect a difference because they are lacking the right certified Subtrahend
for doing so. The branches will behave the same for all elements of an equality class.
That means, it is enough to check equality of both branches at one value for each
equality class. We choose to check p3 = (0, 0). This handwavy explanation is made
more precise and formal in Appendix A.

5.3 Compile-time checks
Now we want to see how the actual checks at compile time work. At compile-time,
we construct a snippet of code that assesses this equality:

v1 = createDiff (constant 0) (constant 0)
print $ (b1 v1) == (b2 v1)

Here, the definition of v1 is hard-coded for our example with p3 = (0, 0).

31

5. Soundness

In general, the condition boundary could be different. If the condition was (x-y>1),
we need to check E1 = {(x, y)|x − y = 1}. We would choose p3 = (1, 0) and the
snippet would become

v1 = createDiff (constant 1) (constant 0)
print $ (b1 v1) == (b2 v1)

If the condition was (x− y > 1 ∨ x− y < 3), the condition can flip when x− y > 1
flips or when x − y < 3 flips. So it has two boundaries. We need to check that
both branches are the same for both boundaries, so two checks are performed. The
boundaries are the equality classes E1 and E3. We create two snippets

v1 = createDiff (constant 1) (constant 0)
print $ (b1 v1) == (b2 v1)

and

v1 = createDiff (constant 3) (constant 0)
print $ (b1 v1) == (b2 v1)

Both snippets must result in True in order to accept the branching.

We can see a repeating pattern. The analysis of the condition yields equality classes
which constitute the boundary. For every class, we construct a snippet with one
representative of the class instantiated and perform equality check. For equality
class Ev we chose to use v, 0 as the representative. In order to automate this at
compile-time, we need a way to construct some value in an equality class Ev. We use
the function \v-> createDiff (constant v) (constant 0) for this. For every
equality class Ev it creates a representative. Since the types we branch over vary
(for the easy examples, it was Dist n Int; here it is Diff dx dy c), this function
cannot be hard-coded but is part of the branching interface.

This finally explains the first argument to the branch operator
[| \i-> createDiff (constant i) (constant 0) |]. A function is expected for
creating representatives on the decision boundary. It will be used in the checking
snippets.

Rounding up
We have seen how cswp p1 ∼n cswp p2 and that cswp is sensitive with sensitivity 1.
This works by taking a third point p3 between p1 and p2 on the boundary. This
point is part of an equality class E0 whose elements all behave the same with respect
to the branching. We statically check that the branches agree for (0, 0) ∈ E0 and
conclude that they also agree for p3. Sensitivity of the branches is used for reasoning
that the distance of the inputs is not increased.

In Appendix A, we will argue the same but introduce extensional equality in order
to make the reasoning more crisp but also more complicated. In Appendix B, we
will argue that this line of reasoning can be generalized. Four requirements are
synthesized that, if met, guarantee soundness of branching.

32

6
Implementation in GHC

This chapter shows the details of the branch operator’s current implementation. Our
solution is written as a GHC plugin. It performs the aforementioned analysis and
checks at compile time and injects a plain if-then-else in the final code. Currently,
the plugin is written as a Template Haskell(TH) function which gets passed the
arguments (condition, branches) as syntactic elements.

In the future, this may change to an implementation as source-plugin. This would
allow having a prettier syntax.

The steps our plugin performs are:

1. Finding all branchings

2. Performing static analysis

3. Emiting code for runtime

In the following, those will be described in detail. This shows challenges faced during
implementation and fills gaps in the description of the implementation given so far.

6.1 Finding all branchings
In this step, the branchings to be checked need to be identified. Using TH, this is
straightforward, since the branch operator is explicitly called at every such branching.
The branch operator is a function that runs at compile time. So our implementation
behind the branch operator is directly called, and we do not need to implement a
search for relevant branchings.

Note that plain Haskell branching (using if-then-else) does not work on Spar-values,
so there is no danger of missing and not checking a relevant branching.

6.2 Static analysis
This is the most involved stage. Several substeps have to be performed:

1. Parsing the condition

2. Deriving the boundary condition

33

6. Implementation in GHC

3. Calculating boundary values by searching values satisfying the boundary
condition.

4. Call both branches on all boundary values and assert agreement

Parsing the condition The condition expression is expected to be written in plain
Haskell. As the expression is available to the plugin as syntactic value, it is first parsed
recursively to a Condition value. Currently the comparators >=, >, == and logic
combinators not, &&, || are supported. Additionally, plain integers and bound
variables are supported. Parsing is implemented in module SparBranching.hs.

The grammar of parseable conditions is

Condition :: = BoolE

BoolE :: = BoolE && BoolE | BoolE || BoolE | not BoolE | CMP

CMP :: = IntE==IntE | IntE>=IntE | IntE>IntE

IntE :: = Var STRING | Lit INTEGER | IntE+IntE | IntE-IntE

Deriving the boundary condition We transform the branch condition into
another condition, the boundary condition. The boundary condition encodes when
the branch condition flips. The transformation is implemented in the function
boundary. It is stated in mathematical notation. As it works on the syntax,
generating an expression from another expression, we use different font styles to
distinguish variables (like e) from syntactic elements (like == or &&).

boundary(e1==e2) = e1==e2
boundary(e1>e2) = e1==e2

boundary(e1>=e2) = e1==e2
boundary(not e) = boundary(e)

boundary(e1&&e2) = e1&&boundary(e2) || e2&&boundary(e1) || boundary(e1)&&boundary(e2)
boundary(e1||e2) = (not e1)&&boundary(e2) || (not e2)&&boundary(e1) ||

boundary(e1)&&boundary(e2)

It works recursively on the syntax. The first cases are straightforward: A comparison
flips when both sides are equal. A negated expression flips, when the original
expression flips. For the conjunctions, let’s consider the example expression a >
0 || b == 0. This condition flips if b 6= 0 and a becomes positive or if a ≤ 0
and b becomes zero. In general, a conjunction flips if one side flips (recursively
calculated by boundary) and the conjunction is not already determined by the
other side. For the special case when both sides are identical, we need to include
boundary(e1)&&boundary(e2).

Calculating the boundary values We employ an SMT solver for finding all
boundary assignments. For this, we use the SimpleSMT package (see Section 2.4).
First, we register all variables and the boundary condition in the solver. Then, we
obtain satisfying value assignments, i.e. values on the boundary, one by one (see
Section 2.5.2).

34

6. Implementation in GHC

Compare branches In this step, we evaluate both branches for every boundary
value assignment and assert agreement. Let $(branch lit c b1 b2) be a branching
to be checked and [v1 = w1; . . . ; vn = wn] a variable assignment on the condition
boundary. Again, we mix variables containing syntactical objects with direct code.
To distinguish this, we use different font styles for plain code and variables. The
variables contain syntactical pieces that are copied at the respective location. We
construct a temporary Haskell snippet, that will be evaluated.

let fromInt = lit

v1 = fromInt w1
...

vn = fromInt wn

 variables in the condition

resultB1 = b1← code for then-branch
resultB2 = b2← code for else-branch

in resultB1 eqO resultB2

First, we insert the embedding of integers into the condition variables types. Then
we build a local context by assigning the variables present in the condition. Finally,
both branches are inserted and their result compared using the eqO function. We
expect the branches to only depend on condition variables, so they are closed in this
temporary string.

Let’s look at this easy example to make this more explicit.

abs x = $(branch [| \i -> constant i |]
[|x > 0|] -- condition
[|x|] -- then
[|constant 0 .- x|]) -- else

The boundary condition is x = 0 with the single fulfilling value x = 0. Thus, we will
create one snippet for this value. The only variable occuring in the condition is x.
This is the generated snippet:

let fromInt = \i -> constant i
x = fromInt~0
resultB1 = x
resultB2 = constant 0 .- x

in resultB1 eqO resultB2

This string construction and evaluation is done for every boundary value assignment.
If both branches agree on all values assignments, the analysis stage of the plugin is
passed.

6.3 Emitting run-time code
Let again $(branch lit c b1 b2) be a branching. Then this translates to

35

6. Implementation in GHC

if c' then
b1

else
b2.

Notice, that we use c' instead of c. The problem is that c is syntactically comparing
condition variables to integers. In the easy examples condition variables are Spar-
values, for cswp the variables are of type Diff. Comparing these or other non-integer
types to integers does not work. The branch operator expects an instance of the
typeclass ToInt t with corresponding function toInt::t -> Int to be implemented
for types used in the condition variables.

Condition c' is then obtained by syntactically injecting a call to toInt in front of
every variable in the condition c. After checking it, the branch operator turns the
abs function into

abs x = if (toInt x) > 0 then
x

else
constant 0 .- x

RoundingUp
This chapter showed the current implementation details of our branch operator. We
focused on presenting the challenges and our current solution to them.

Using TH is not the only way the branch operator could be implemented. TH was
chosen because it makes Step 1 easy and has good support for syntactic analyses
and modifications of code and is sufficiently well-documented. The plugin API of
GHC is not stable yet and changes even within minor versions, so the up-to-date
documentation and existence of introductions was a big advantage of TH.

In the future, the branch operator might be implemented as a Code Plugin. This
allows a more flexible, and thus prettier, syntax, but makes Step 1 possibly harder.
We expect the challenges of Steps 2 and 3 to be mostly independent of the concrete
plugin technology.

36

7
Advanced examples

In this chapter, we will look at more examples. As described in Section 2.3, earlier
frameworks for sensitive functions, namely Fuzz[3], have chosen to provide cswp as
a primitive and derive more elaborate functions from it. Now that we have cswp
in place, we can pick the same fruits. Cswp makes it easy to implement derived
functions like min and max but also primitive sorting algorithms like Bubblesort. In
the following we want to look beyond what can be derived with cswp and implement
Mergesort.

7.1 Mergesort
We implement Mergesort using our branch operator. MergeSort is a sorting algorithm
that works by splitting up the list to be sorted, recursively sorting both parts and
merging them again. While merging, the heads of the sorted parts have to be
compared iteratively and the smaller (w.l.o.g.) element is removed from its part and
appended at the result. This is repeated until one of the parts is empty and the
remaining other part is appended.

The difficult step when dealing with Spar-values here is merging: it involves comparing
Spar-values and removing an element from one of the parts. The Spar-API does
not provide comparison of Spar-values and changing the remaining parts brings the
danger of leaking information if their lengths can be observed. To solve this problem
we will introduce specifically crafted data types. For those, we establish invariants
that hold during the process, finally yielding the correct result.

7.1.1 Implementation
We implement Mergesort in two steps: First, the main sorting procedure splits the
input vector in two parts, recursively calls Mergesort on those parts and merges the
sorted results of the recursive calls. It takes a decision function as an argument that
is called while merging for deciding which tip to move from its sorted part to the final
result. This decision function encodes basically a comparison. The main procedure
does not use the branch operator, it just needs to apply the decision function.

Secondly, we implement a decision function encoding the normal smaller-or-equal on
natural numbers. This function needs to branch.

37

7. Advanced examples

By splitting up Mergesort like this, we ease the reasoning: We will establish properties
on the main procedure which do not depend on branching. Then, we will use these
properties to reason about the decision function.

We start top-bottom with the main sorting procedure.

Main Sorting Procedure

data ListPair d l = forall l1 l2. (l~(l1+l2)) =>
ListPair (Dist d (Vec l1 Int, Vec l2 Int))

mergeSort' :: Dist d (Vec l Int) -> DecFun -> Dist d (Vec l Int)
mergeSort' v f | lengthV v < 2 = v
mergeSort' v f = mergeSort'' $ splitV v

where
mergeSort'' :: ListPair d l -> Dist d (Vec l Int)
mergeSort'' (ListPair (v1 :*: v2)) =
merge (mergeSort' v1 f) (mergeSort' v2 f) f

splitV :: Dist d (Vec l Int) -> ListPair d l
splitV v = headTail (div (lengthV v) 2) (Nil::Dist 0 (Vec 0 Int)) v

headTail :: Int -> Dist d1 (Vec l1 Int) -> Dist d2 (Vec l2 Int)
-> ListPair (d1+d2) (l1+l2)

headTail n acc is | n == 0 = ListPair $ reverseV acc :*: is
headTail n acc (i :> is) = headTail (n - 1) (i :> acc) is

Abstract sorting The datatype ListPair stores a pair of lists and only keeps
track of the sums of distances and lengths. mergeSort' is the main sorting procedure.
Given a list and a decision function (we will discuss the type in the paragraph The
Decision Function on page 41), it splits the list, sorts both parts and merges those.
The functions splitV and headTail are helper functions for splitting a list.

Merging Next, we consider merging. Merging is facilitated by the datatype
PartialMerge.

38

7. Advanced examples

data PartialMerge d l =
forall d1 d2 l1 l2 l3 d3. (d~(d1+d2+d3), l~(l1+l2+l3))
=> PartialMerge (Dist d1 (Vec l1 Int))

(Dist d2 (Vec l2 Int))
(Dist d3 (Vec l3 Int))

startPartialMerge :: Dist d1 (Vec l1 Int)
-> Dist d2 (Vec l2 Int) -> PartialMerge (d1 + d2) (l1 + l2)

startPartialMerge = PartialMerge (Nil::Dist 0 (Vec 0 Int))

isMerged :: PartialMerge d l -> Bool
isMerged (PartialMerge _ Nil Nil) = True
isMerged PartialMerge {} = False

getResult :: PartialMerge d l -> Dist d (Vec l Int)
getResult (PartialMerge resultAcc Nil Nil) = reverseV resultAcc

It encodes three lists and only keeps track of the summed lengths and distances.
The first list stores the accumulated result that is already merged. The second and
third list store the remaining parts that still need to be merged. Merging starts by
constructing a PartialMerge with empty first list and storing the lists to be merged
in the latter lists. Then this PartialMerge is iteratively progressed, i.e. one element
of one of the latter lists is moved into the result accumulator.

progressFromLeft :: PartialMerge d l -> PartialMerge d l
progressFromLeft (PartialMerge resultAcc (l:>ls) rs) =

PartialMerge (l :> resultAcc) ls rs

progressFromRight :: PartialMerge d l -> PartialMerge d l
progressFromRight (PartialMerge resultAcc ls (r:>rs)) =

PartialMerge (r :> resultAcc) ls rs

progressWithComparison :: PartialMerge d l -> DecFun -> PartialMerge d l

There are three functions for progressing. progressFromLeft and progressFromRight
move an element from the respective side to the result accumulator. The interesting
progression is progressWithComparison. Given a PartialMerge and a decision
function (the comparison), it uses the decision function to decide which part’s tip
should be moved to the accumulated result.

With this, merging becomes creating an initial PartialMerge and progressing it
until both remaining parts are empty and return the result. Note that the inputs to
merge are assumed to be already sorted with respect to the same decision function.

39

7. Advanced examples

merge :: Dist d1 (Vec l1 Int) -> Dist d2 (Vec l2 Int)
-> DecFun -> Dist (d1 + d2) (Vec (l1 + l2) Int)

merge v1 v2 f = merge' (startPartialMerge v1 v2)
where

merge' pm | isMerged pm = getResult pm
merge' pm = merge' (progressWithComparison pm f)

Making progress with a decision function In the previous paragraph, we
have seen that merge progresses the PartialMerge iteratively with the help of a
decision function. Such a function is given the difference1 between the two tips of
the remaining parts, i.e. the candidates for moving over to the result, and expected
to choose one candidate.

For instance, if the sorted lists are [x1, x2, . . .] and [y1, y2, . . .] with x1 > y1, the
difference x1− y1 is given to the decision function. Let’s say the decision encodes
the smaller-than relation, then it gets a positive number as input and indicates to go
left.

The following types constitute the interface between the main sorting procedure and
the decision function.

type DecFun = forall c. CDist c -> MergeDec c
data CDist c = forall d. CDist (Dist d Int)
data MergeDec c = L (CDist c) | R (CDist c)

The CDist wraps a Spar-value containing the difference between the candidates.
The decision function then returns either L or R. Note that a decision (L or R)
carries a certified value as payload. Given that the CDist constructor is abstract
and the DecFun type requires the certificate types c to match, the payload will be
the difference the decision was based on. For the further processing of the decision,
only the constructors are significant, the payload is important for the compile-time
checks and will be discussed later.

An example decision function could look like this:

df c@(CDist diff) = if run id diff > 0 then L c else R c

Note, that this runs the Spar-value diff and this considered is unsafe. We will
iterate this decision function in the next section.

1The difference between the candidates is enough to determine which side to progress with.
Taking the difference is an idea shared with the cswp example.

40

7. Advanced examples

progressWithComparison :: PartialMerge d l -> DecFun -> PartialMerge d l
progressWithComparison pm@(PartialMerge _ (l:>ls) Nil) f =

progressFromLeft pm
progressWithComparison pm@(PartialMerge _ Nil (r:>rs)) f =

progressFromRight pm
progressWithComparison pm@(PartialMerge _ (l:>ls) (r:>rs)) decFun =

case decFun $ CDist (l .- r) of
L _ -> progressFromLeft pm
R _ -> progressFromRight pm

A PartialMerge can be progressed with a decision function. If one of the two parts
is empty, there is nothing to decide. It is clear that an element of the other part has
to be moved over. If both remaining parts have elements left, the decision function
is called on the difference of the candidates. Then, the PartialMerge is progressed
according to the decision.

With this, we have seen all the parts of our Mergesort implementation for Spar-values.
On the outermost layer, we split a list, sort it recursively and merge the two sorted
parts. Merging creates a PartialMerge with empty result accumulator that is filled
step by step. This is done by iteratively progressing the PartialMerge with the
help of the decision function.

The decision function

We employ a decision function that implements greater-than on natural numbers.
branchCDist, goL and goR are exported wrappers for the constructors CDist, L and
R, respectively. In order to branch on the difference, a Spar-value, our branch operator
is used. If the difference is greater than zero, the function decides to proceed with
the left part, otherwise with the right one. Finally, mergeSort is implemented by
using this decision function in combination with the abstract main sorting procedure.

df :: DecFun
df diff = $(branch [| \i -> (branchCDist . constant) i |]

[| diff > 0|]
[| goL diff |]
[| goR diff |]

)
mergeSort :: Dist d (Vec l Int) -> Dist d (Vec l Int)
mergeSort v = mergeSort' v df

7.1.2 Correctness
The implementation aligns with the standard definition of Mergesort. The input is
split, recursively sorted and merged. Merging works by iteratively comparing the
tips of the two remaining parts and moving the bigger element over. In our case,
finding the bigger element is outsourced in the decision function. This function is
easy to analyse and implements the well-known order on natural numbers.

41

7. Advanced examples

7.1.3 Soundness
In this section, we argue that our implementation and branching do not break the
sensitivity promise. This does not depend on the particular implementation of the
decision function, but is solely guaranteed by the compile-time checks of the branch
operator.

The abstract main sorting procedure does not need to branch and is written on top
of Spar. The only code where we branch and may break the sensitivity promise is
the decision function. Branching is done using our branch operator and specifically
crafted types. We will argue that the use of the branch operator in combination with
these types cannot break the sensitivity either.

The central datatype for merging is PartialMerge. For all the instances occurring
during merging, some invariants hold.

• Two lists of remaining elements are sorted with respect to the decision
function. merge is hidden and only called by mergeSort. By induction on the
input length, it can be concluded that recursively sorting works and merging is
only started on sorted inputs. So invariant holds for the initial PartialMerge.
While progressing, elements are only taken from the remaining parts, never
added or moved around. The sorting is not altered.

• All elements in the result accumulator are greater or equal than the
elements in the remaining lists. This is true for the initial PartialMerge.
The two tips are largest elements in the respective remaining parts. In every
progression step, the bigger one of the two tips is moved to the result accumu-
lator. So the element moved over is bigger or equal than every element in the
part it comes from. It is also bigger or equal than the other tip and thus all the
elements in the other part. Moving this element over keeps the invariant valid.

• The result accumulator is sorted inversely. This is true for the initial
PartialMerge. Each progression, the element moved over comes from a
remaining part. With the previous invariant, this implies that this element is
smaller or equal than all the elements in the result accumulator. Moving that
element to the tip of the result accumulator keeps its inverse sorting intact.

The dangerous situation in which sensitivity might be broken is when the branching
or the decision function return a different constructor (L or R) for a small change in
the input. The return value could be matched on and result in completely different
later computations.2

Different constructors only possible for equal tips.

Using our branch operator branching requires both branches to be considered equal
at the decision boundary. That is where the payload of the decision comes into play.
Equality on MergeDec is defined by

2If the constructor stays the same, a pattern matching on it would match the same case and the
only difference visible is the sensitive payload. This cannot break the sensitivity promise.

42

7. Advanced examples

instance BranchResult (MergeDec c1) (MergeDec c2) where
eq (L diff1) (R diff2) = toInt diff1 == 0 && toInt diff2 == 0
eq (R diff1) (L diff2) = toInt diff1 == 0 && toInt diff2 == 0
eq _ _ = True

So either both branches use the same constructor (not breaking the sensitivity
promise). Or the branches use different constructors, but then the payload must
equal zero. We link the payload of the result to the difference passed to the decision
function. By this, the branch operator enforces that the branches can only use
different constructors, if, when the condition flips, the difference is zero, i.e. both
tips are equal.

Linking the value in the result payload to the difference passed works similar to the
cswp example. The value to branch on is wrapped in a type with limited accessibility.
Here, only the numerical value can be extracted. Particularly the constructor is
hidden, preventing the branches to construct instances of this type. Yet, the result
type MergeDec requires such an instance as payload. The only instances available are
the ones passed to the decision function. In order to prevent reuse of instances, the
passed differences and result values are annotated by a type variable c (certificate).
The type of decision function requires that the function works for all certificates,
effectively enforcing that the payload of the result was the value passed as input.

Merging yields a series of equal PartialMerges.

First, we need to introduce, what equality on PartialMerge means.

Definition 4. Two PartialMerge instances are considered equal if their result
accumulators equal and their remaining parts contain the same elements. I.e. the
remaining parts of an instance are thought of as a single bag and then the bags of
both instances must equal.

Given a PartialMerge with equal tips of the remaining parts, this allows ex-
actly considering the results of both possible progressions equal. For fully merged
PartialMerge instances, equality implies equality of the merge results.

We will now show that progressing PartialMerges preserves equality and thus by
induction equal PartialMerges result in equal merge results. Let’s consider the
function progressWithComparison with two equal inputs pm1 and pm2. By being
equal, it is clear that the smallest elements of their remaining parts equal. As we have
seen in the invariants, the remaining parts are sorted, so it is clear that a smallest
element is at a tip. We can think of the decision function as a comparison (see
Appendix C for a more involved discussion) and for each PartialMerge, it points to
a smallest element of the remaining parts. Moving this smallest element over, which
must be equal for both pm1 and pm2, also keeps the results equal.

This observation can be iterated (induction over the count of element in the remaining
parts) until the remaining parts are empty. Then the accumulated result and thus
the merge result equal. I.e. progressing equal PartialMerges yield equal final merge
results.

43

7. Advanced examples

In particular, given a PartialMerge with two equal tips, the progressed PartialMerge
instances will equal, no matter which constructor was returned by the decision func-
tion. Progressing those equal PartialMerges further will result in equal merge
results. Equal instances of MergeDec behave equally, even if constructed differently.

Sensitivity preserved

In the following paragraph we use the fact that equal MergeDec instances result in
equal merge results for arguing that merge is sensitive.

Consider two pairs of parts to be merged (p11, p12) ∼m (p21, p22) with p11 ∼m1 p21.
We think of two executions merge p11 p12 and merge p21 p22. Similarly to our
reasoning for cswp, we now consider a smooth transition from one pair into the other
and observe what happens at the decision boundaries. Without loss of generality,
we only consider p11 morphing into p21. We define px1 = p11 + θ · (p21− p11) and
observe merge px1 p12. Particularly, we observe the results (i.e. L or R) of the
decision function calls. The merging process consists of calculating differences di

between the tips, calling the decision function which responds with ri::MergeDec
and progressing.

If there is no change in those results ri, progressWithComparison progresses with
the same side and there is no change in behavior of the function. Note that we are
only interested in the constructor returned by the decision function here, as this is
what the constitutes the behavior. The remaining steps and functions are fully on
top of Spar and the sensitivity promise is not broken.

Consider a change of a decision rk of a decision function call around a specific θ′,
yielding values on the decision boundary in the branch. Let dk denote the difference
the decision rk was based on. As shown in earlier paragraphs, dk must be zero due to
compile-time checks. So at progression k while merging, two equal tips are compared.
We have seen that the result of a progression stays equal, when different constructors
are used but the tips equal and, that the change in the intermediate decision does
not change the merge result. So the merge result around θ′ is stable.

Sensitivity can now be concluded piecewise. We start with with θ = 0 to θ = θ1, the
last θ before a decision function result changes, and define px11 = p11+θ1(p21−p11)
and px11 ∼n1 p11. merge p11 p12 ∼n1 merge px1_1 p12 since we did not branch.
Progressing θ minimally past θ1, so that some decision function result changed (θ2,
px12), we have seen that the merge result stays the same: merge p11 p12 ∼n1
merge px1_1 p12 = merge px1_2 p12. Let θ3 be the second occasion (if any) that
the decision function result changes. Between θ2 and θ3 with p11 + θ3 · (p22− p12) =
px13 ∼n2 px12, we can again use the argument, that merging effectively does not
branch, and thus the sensitivity cannot be broken.

44

7. Advanced examples

Taking these two sections together, we can reason that

merge p11 p12 (7.1)
∼n1 merge px1_1 p12 (7.2)
= merge px1_2 p12 (7.3)
∼n2 merge px1_3 p12. (7.4)

I.e. merge is sensitive on these two sections with respect to the first parameter.
This construction can be iterated. A section without branching does not break the
sensitivity promise and crossing the decision boundary does not change the result.
Finally, it can be shown that merge p11 p12 ∼m1 merge p21 p12.

Analogously, p12 can be morphed into p22 while sensitivity is preserved. In the end,
we have morphed (p11, p12) into (p21, p22) and observed that merge’s sensitivity
is bounded by 1 during the whole process. Sensitivity of Mergesort follows by typing.

Quirks

There are some small details in our construction we have not yet considered while
being important for not breaking sensitivity.

Given PartialMerge instances with equal tips of the remaining parts, we have seen
that the decision function’s result does not matter for the final merge result. However,
it changes the shape of the remaining parts. PartialMerge is abstract, so that the
lengths of the remaining parts cannot be observed outside progressWithComparison.
Additionally, the amount of comparisons needed changes depending on the actual
decisions. In order not to break sensitivity, we made sure that the amount of
progressions needed does not depend on the amount of comparisons needed. In that
way, again, no difference is observable from merge.

Another thing that changes depending on the actual decision is the actual tips
compared and thus the differences given to the decision function. By making the
decision function a pure function that is passed to progressWithComparison, it can
observe the different values but cannot leak this information.

merge needs to be called on sorted lists. It is thus not exported but only accessible
from mergeSort.

Rounding up
In this section, we have seen derived applications of the branch operator with the
cswp function as intermediate step. One of the examples is the slow Bubblesort. We
have implemented MergeSort as a faster sorting algorithm. Its speedup originates
from making use of the knowledge whether cswp would need to flip the values or not.
This is sensitive information and not available using the Spar-API or cswp. Hence
for implementing Mergesort, we could not reuse cswp. Instead, we have defined
Mergesort as an abstract sorting algorithm depending on a decision function.

45

7. Advanced examples

46

8
Related Work

Frameworks for Differential Privacy In 2009 McSherry[2] presented an abstract
framework for implementing DP. This gives analysts a set of predefined queries (with
sensitivities annotated) to run against the database and which they can freely
combine. From there, combining Differential Privacy with programming languages
techniques has been an active field of research. Barthe, Gaboardi, Hsu, et al.[11]
provide an overview about the different approaches. In 2021, DPella Lobo-Vesga,
Russo, and Gaboardi[12] implemented a DP framework in Haskell. An additional
innovation which came with DPella is that accuracies of queries can be estimated
statically (without running them).

DP Frameworks for sensitivity In 2010 Reed and Pierce[3] presented Fuzz,
a more relaxed calculus for DP. Queries can freely be defined from small building
blocks with known sensitivity. A strong type system based on linear types is used to
keep track of a query’s sensitivity. It works by annotating how sensitive the output
is with respect to the input. Further, a monad is provided to define executions and
combinations of such queries.

Building on Fuzz, later works Near, Darais, Abuah, et al.[13] and Winograd-Cort,
Haeberlen, Roth, et al.[14] followed in the tradition of using linear types.

Gaboardi, Haeberlen, Hsu, et al.[4] presented with dFuzz an implementation of Fuzz
based on dependent types.

Abuah, Darais, and Near[5] presented the framework Solo for defining sensitive
queries and running them in Haskell. This is a huge improvement as this means that
this framework can be implemented in mainstream programming languages with a
decent type system. Looking at the published sources, this framework is partially
implemented and works by attaching sensitivities to globally defined data sources
instead of functions.

Lobo-Vesga[1], [15] recently presented Spar, another framework for defining sensitive
queries and tracking the sensitivities in Haskell’s type system. Again, this is achieved
by moving the type annotations from functions to values. Here, sensitivity is
interpreted as an upper bound on how a function scales the distance between two
inputs. As we also have seen in this work, this can be combined with polymorphism
to express sensitivity.

47

8. Related Work

Other sensitivity analyses The work by Chaudhuri, Gulwani, and Lubliner-
man[6] proposes a calculus to reason about robustness, i.e. sensitivity, of imperative
programs. Syntactic rules are given for keeping track of dependencies of inputs of
code snippets to outputs. Those are stored in Lipschitz matrices. Although they are
not dealing with Differential Privacy directly, their insights on sensitivity are very
interesting. Of particular interest to us is that they allow branching in their calculus.
The derivation rules allow nested branchings but do not add the insight of taking a
branch to the nested context.

Barthe, Eilers, Georgiou, et al. develop in [16] a calculus to reason about relational
properties of imperative programs. This calculus constructs an expression in trace
logic bottom up, so it results in a single global expression to be checked by a SAT
solver. This implies, that context can be taken into account when considering nested
branching. As sensitivity can be expressed as a relational property, we could get
inspiration from this calculus. Constructing one global expression allows taking
nesting of conditionals into account whereas our current approach only allows to
reason on local scale and ignoring context knowledge. Using a solver for checking
sensitivity comes with the cost that all values must be expressible for the SMT solver
and the extra effort of arguing the equivalence of Haskell computations and SMT
reasoning. This is an idea that could be explored in the future.

Jha and Raskhodnikova follow in [17] a different path and estimate Lipschitz con-
tinuity by black-box testing. This is connected to Differential Privacy fruitfully as
this skips all the hassle of limiting expressiveness in order to track sensitivity.

Branching and examples DP frameworks (Fuzz[3], dFuzz[4], Solo[5]) do not
provide arbitrary sensitive branching. In cases where branching is of interest, the
introduction of the special operation cswp with hardcoded sensitivity was enough
to implement those. Algorithms which needed more expressive branching are not
impossible to implement.

The calculi for reasoning about sensitivity presented in [6] and [16] allow branching.
Chaudhuri, Gulwani, and Lublinerman in [6] hints explicitly for Mergesort to be a
feasible algorithm for their analysis.

Both works consist of deriving formulas fed to and checked by external SMT solvers.
In contrast to this, our branch operator works (mostly) in pure Haskell. This brings
limitations in reasoning (no inifinite decision boundary, no context knowledge) and
flexibility in values (arbitrary Haskell values allowed in branches).

48

9
Conclusion

In the context of Differential Privacy, understanding the sensitivity of a query is
essential. Spar is a DSL embedded in Haskell for writing such queries that translates
the problem of understanding a query’s sensitivity into a type-checking problem
such that type inference becomes bounding the sensitivity. This DSL is of limited
expressiveness, in particular no branching is possible.

What we did We have defined a branch operator for Spar in Template Haskell
that allows branchings and injects compile-time checks to ensure that the branchings
do not break sensitivity.

The branch operator analyses a branching condition, computes the decision boundary
and asserts that both branches agree on this boundary. This is done by creating
temporary Haskell snippets that are run at compile-time.

From there, we were able to reproduce sensitive algorithms that traditionally need
branching without introducing a special purpose extra primitive cswp. Namely
minimum, maximum and the absolute value function as well BubbleSort.

Additionally, we implemented MergeSort as a sensitive algorithm that heavily relies
on branching but cannot be expressed with cswp.

Common patterns in cswp and mergesort In this thesis two examples were
implemented: cswp and MergeSort. Both required specifically crafted types to
support the reasoning of soundness. Specifically, both types used the introduction of
a type level certificate.

For cswp, it was necessary to only allow differences Diff x y to be reversed with
the right subtrahend Sub y.

For MergeSort, we needed to make sure that the payload of the decision matches the
input.

Introducing certificates together with polymorphism over certificates and limited
APIs can be thought of as a general pattern for controlling the possible interaction
with type instances in different scopes. Specifically, speaking of cswp again, the
certificate becomes a way to restrict access to the difference’s components within
the branch and to make sure that the result matches the right subtrahend rather

49

9. Conclusion

than a way to make sure that the right value is added mathematically. In fact, the
subtrahend provided to reverse is not used.

How hard to apply? How useful? The final branch operator is rather flexible
and allowed us to implement different branching algorithms. Employing the branch
operator requires the developer to reason about equality on the types used as variables
in the condition as well as about equality on the resulting types. For Spar-values,
this is straightforward but becomes more involved for Robust Reversible Differences
(used for cswp) and Merge Decisions (used for Mergesort). This has to be done
once per type and can be used in different branchings on the same types. Hence,
branchings on types that were used in this thesis (besides Spar-values) can reuse
the reasoning presented and are thus easy to use. Unfortunately, the need for finite
decision boundaries quickly makes it necessary to branch on specifically created
types.

Was this worth the effort? This work researched one approach to allow general
branching with sensitivity checking. Such branching is necessary for interesting and
fast general differentially private algorithms. We have found fundamental difficulties
and explored our approach for solving them.

For checking the agreement on the decision boundary, we decided to analyse the
condition syntactically, use an SMT solver to enumerate the boundary and create
temporary Haskell snippets for checking equality.

Enumerating the boundary only works for finite boundaries. Branching on differences
was used to circumvent infinite boundaries. This made it necessary to introduce
specific types, establish equality classes of same behavior on them.

One result the introduction of a typelevel certificate for controlling interaction with
values in different parts of the code. This was facilitated by the introduction of type
level certificates.

What alternatives would have been there? The SMT solver can be applied
at different levels. We used it “only” for understanding the decision boundary.

Going one step further, I could also be used for checking agreement on the boundary.
For doing so, the branches’ semantics need to be translated into something the SMT
solver can reason about. As a result, one formula would be constructed for each
branching and fed to the SMT solver. If it is considered true, that would imply
sensitivity.

It is also possible to use the SMT solver to reason about the sensitivity of function
directly. Sensitivity can be expressed as a relational property. Doing so and following
[16], a global formula could be constructed that is sufficient for sensitivity of a
function. This formula could then be checked by an SMT solver. This makes it
necessary to translate all Haskell semantics to the SMT solver.

50

9. Conclusion

9.1 Comparison to other solutions — Discussion

9.1.1 Advantages
Our approach is the path of the least divergence from Haskell. The branch operator
is just a module that can be loaded and provides compile-time checking for branching.
It works as a GHC plugin.

This implies that Haskell can be used freely in the branches. Particularly, the flexible
types and integration allows using recursion.

9.1.2 Limitations
As we have seen, the approach of checking agreement on every value on the boundary
requires a finite boundary.

Often, the possible values a variable can carry is limited if the context is taken into
account. For example if a branching occurs in a branch of an outer branching. Taking
this context knowledge into account, it is sometimes possible to reason sensitivity of
branching in this particular context, that might not be sensitive in another context.
Our operator does not take this context into account and will thus discard such
branchings.

As the branches are evaluated at compile-time, the variables occurring need to
be instanstiated. But as the branches are taken out of context and compared at
compile-time, variables that do not occur in the condition are undefined and cannot
be used in the branches.

Introducing specifically crafted types is sometimes necessary and comes with the
extra work of reasoning about the extensionality of equality on these types.

As a limitation of our current implementation, only installed functions can be used
inside the branches. Particularly, neither functions in the same module nor functions
from other modules of the same package can be used. This is not a limitation of our
approach, but the current implementation.

9.2 Further research
In this work, we were exploring sensitive branching with the combination of the Spar
framework. This focuses on tracking sensitivities by tracking distances of values.
This is too weak to describe k-Means to be sensitive. We either need probability
semantics or interleaving with executing queries for this. Future research could
expand Spar with probability semantics and make k-Means feasible by this.

As mentioned above, taking ideas from [16] (expressing sensitivity as relational
property and constructing a global expression in trace logic that is checked by an
SMT solver) and combining it with a framework for sensitive computations is another
line of research.

51

9. Conclusion

Finally, our branch operator’s implementation does not depend on Spar but is a
general operator for continuity checking of branchings. The Spar framework was
used to develop the operator and to tell the story of this thesis. But the operator
can be used beyond this context. It could be useful in combination in other contexts
or framework where sensitivity or robustness is an important property. Or even in
context that do only care about continuity.

52

10
Risk analysis and ethical

considerations

This work’s results are meant to be used in connection with large amount of sensitive
data. We will asses the risks that arise in the context of applying the results.

The main risks in connection with this thesis lay in exposing insights about individuals
or giving a misleading or wrong sense of privacy.

Privacy as understood in Differential Privacy and in this thesis is a likelihood of
revealing insights. In particular, when employing differentially private methods, by
design, no sharp boundary between “protected” and “leaked” data can be drawn,
but is a continuum. This particularity needs to be understood and communicated
properly before applying Differential Privacy methods.

Besides this possibility of gaining little insights by design, insights about individuals
can be leaked when our method is not implemented properly. Great effort has thus
been taken in order to reduce the likelihood of such an incident to the minimum.
This is supported by the use of Haskell and it’s strong type system. This thesis’s
topic arises in the context of exploring how sensitivities of queries can be inferred on
the type level in order to minimize the possibilities of wrongly applying Differential
Privacy.

Similarly, there could be theoretical flaw in the methods presented. This risk could
be reduced by employing a proof assistant.

Finally, this work is based on Differential Privacy, a involved method for handling
private data. If not employed properly, more insights can be gained than designed.
In particular, Differential Privacy comes with the concept of a privacy budget that
has to be taken track of.

When considering our results from an ethical perspective, these risks have be consid-
ered. Yet, Differential Privacy was invented due to the need of a trade-off between
providing interesting insights and protecting individuals’ data. We believe that
Differential Privacy is the best suited method for this as for now while it has to be
kept in mind that no analyses are possible without giving out small insights at the
same time.

53

10. Risk analysis and ethical considerations

54

Bibliography

[1] E. L. Vesga, “Language-Based Differential Privacy with Accuracy Estimations
and Sensitivity Analyses,” Chalmers University of Technology, 2023, isbn:
9789179058111. [Online]. Available: https://research.chalmers.se/en/
publication/534817 (visited on 08/01/2023).

[2] F. McSherry, “Privacy Integrated Queries,” p. 12, 2009.
[3] J. Reed and B. C. Pierce, “Distance Makes the Types Grow Stronger,” p. 14,

2010.
[4] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce, “Linear

Dependent Types for Differential Privacy,” p. 14, 2013.
[5] C. Abuah, D. Darais, and J. P. Near. “Solo: A Lightweight Static Analysis

for Differential Privacy.” arXiv: 2105.01632 [cs]. (Oct. 13, 2021), [Online].
Available: http://arxiv.org/abs/2105.01632 (visited on 07/21/2022),
preprint.

[6] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity and Robustness of
Programs,” presented at the Cummunications of the ACM, Research Highlights,
Aug. 1, 2012, pp. 107–115. [Online]. Available: https://www.microsoft.
com/en-us/research/publication/continuity-robustness-programs/
(visited on 07/21/2022).

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to
Sensitivity in Private Data Analysis,” in Theory of Cryptography, S. Halevi and
T. Rabin, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2006, pp. 265–284, isbn: 978-3-540-32732-5. doi: 10.1007/11681878_
14.

[8] C. Dwork, “Differential Privacy,” in Automata, Languages and Programming,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., ser. Lecture Notes
in Computer Science, Berlin, Heidelberg: Springer, 2006, pp. 1–12, isbn: 978-3-
540-35908-1. doi: 10.1007/11787006_1.

[9] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proceedings
of the 2011 International Conference on Management of Data - SIGMOD
’11, Athens, Greece: ACM Press, 2011, p. 193, isbn: 978-1-4503-0661-4. doi:
10.1145/1989323.1989345. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1989323.1989345 (visited on 09/29/2022).

[10] D. Otwani and R. A. Eisenberg, “The Thoralf plugin: For your fancy type
needs,” ACM SIGPLAN Notices, vol. 53, no. 7, pp. 106–118, Sep. 17, 2018,
issn: 0362-1340. doi: 10.1145/3299711.3242754. [Online]. Available: https:
//doi.org/10.1145/3299711.3242754 (visited on 04/26/2023).

55

https://research.chalmers.se/en/publication/534817
https://research.chalmers.se/en/publication/534817
https://arxiv.org/abs/2105.01632
http://arxiv.org/abs/2105.01632
https://www.microsoft.com/en-us/research/publication/continuity-robustness-programs/
https://www.microsoft.com/en-us/research/publication/continuity-robustness-programs/
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11787006_1
https://doi.org/10.1145/1989323.1989345
http://portal.acm.org/citation.cfm?doid=1989323.1989345
http://portal.acm.org/citation.cfm?doid=1989323.1989345
https://doi.org/10.1145/3299711.3242754
https://doi.org/10.1145/3299711.3242754
https://doi.org/10.1145/3299711.3242754

Bibliography

[11] G. Barthe, M. Gaboardi, J. Hsu, and B. Pierce, “Programming language
techniques for differential privacy,” ACM SIGLOG News, vol. 3, no. 1, pp. 34–
53, Feb. 17, 2016, issn: 2372-3491. doi: 10.1145/2893582.2893591. [Online].
Available: https://dl.acm.org/doi/10.1145/2893582.2893591 (visited on
04/03/2023).

[12] E. Lobo-Vesga, A. Russo, and M. Gaboardi, “A Programming Language for
Data Privacy with Accuracy Estimations,” ACM Transactions on Program-
ming Languages and Systems, vol. 43, no. 2, 2021, issn: 0164-0925. doi:
10.1145/3452096. [Online]. Available: https://research.chalmers.se/en/
publication/525255 (visited on 07/21/2022).

[13] J. P. Near, D. Darais, C. Abuah, et al. “Duet: An Expressive Higher-order
Language and Linear Type System for Statically Enforcing Differential Privacy.”
arXiv: 1909.02481 [cs]. (Sep. 5, 2019), [Online]. Available: http://arxiv.
org/abs/1909.02481 (visited on 01/19/2023), preprint.

[14] D. Winograd-Cort, A. Haeberlen, A. Roth, and B. C. Pierce, “A framework for
adaptive differential privacy,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, 10:1–10:29, ICFP Aug. 29, 2017. doi: 10.1145/3110254. [Online].
Available: https://doi.org/10.1145/3110254 (visited on 01/19/2023).

[15] E. Lobo-Vesga, “Let’s not Make a Fuzz about it,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion), May 2021, pp. 114–116. doi: 10.1109/ICSE-
Companion52605.2021.00051.

[16] G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács, and M. Maffei, “Verifying
Relational Properties using Trace Logic,” in 2019 Formal Methods in Computer
Aided Design (FMCAD), Oct. 2019, pp. 170–178. doi: 10.23919/FMCAD.2019.
8894277.

[17] M. Jha and S. Raskhodnikova, “Testing and Reconstruction of Lipschitz
Functions with Applications to Data Privacy,” SIAM Journal on Comput-
ing, vol. 42, no. 2, pp. 700–731, Jan. 2013, issn: 0097-5397, 1095-7111. doi:
10.1137/110840741. [Online]. Available: http://epubs.siam.org/doi/10.
1137/110840741 (visited on 01/19/2023).

56

https://doi.org/10.1145/2893582.2893591
https://dl.acm.org/doi/10.1145/2893582.2893591
https://doi.org/10.1145/3452096
https://research.chalmers.se/en/publication/525255
https://research.chalmers.se/en/publication/525255
https://arxiv.org/abs/1909.02481
http://arxiv.org/abs/1909.02481
http://arxiv.org/abs/1909.02481
https://doi.org/10.1145/3110254
https://doi.org/10.1145/3110254
https://doi.org/10.1109/ICSE-Companion52605.2021.00051
https://doi.org/10.1109/ICSE-Companion52605.2021.00051
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.1137/110840741
http://epubs.siam.org/doi/10.1137/110840741
http://epubs.siam.org/doi/10.1137/110840741

A
Soundness of cswp revisited

In the Section 5, we have argued that the definition of cswp is sound. I.e. the use of
the branching operator does not break sensitivity. This was based on looking at the
program code and convincing oneself about specific behavior. Since it is easy to miss
details, this section introduces several intermediate steps in the reasoning.

The general approach is the same. Decision boundaries lead to equality classes. For
every equality class, we perform a check on a single representative of the class and
argue that the branches agree.

In Chapter 5 we then argued by looking at the code that all representatives of an
equality class behave similarly in the branches and post-processing. This is not
obviously true. We will introduce concepts and intermediate lemmas helping us to
reason about how it is enough to check one representative, i.e. that all element of an
equality class behave the same.

Making “same behavior” crisp. After we have checked that the branches are
equal for at least one value in all the equality classes which constitute the decision
boundary, we want to formalize and exploit that all values in an equality class behave
identically.

We will introduce a notion of extensional equality1 for Diffs that will help us to do
this step. Two Diffs are considered equal if they represent the same difference:

eqI d1 d2 = evaluateD d1 == evaluateD d2

Lemma 2. eqI is extensional in the notion that every function processing equal Diffs
and yielding the same type, evaluates to equal results. Given d1:: Diff dx1 dy1 c1,
d2:: Diff dx2 dy2 c2

d1 =eqI d2⇒ ∀r(f :: (∀dx, dy, c : Diff dx dy c -> r)) : f d1 = f d2

This property matches the intuition that differences cannot be tampered inside the
branches. Note that the result type r does not depend on dx, dy or c. Later, we
will use this lemma with r instantiated to Bool.

1Extensional or behavioral equality means that equality is defined by external properties, in
particular their behavior. In our case, the two differences (12-7) and (5-0) are constructed differently,
but behave exactly identical and considered equal.

I

A. Soundness of cswp revisited

Proof. Let (d1 :: Diff dx1 dy1 c1), (d2 :: Diff dx2 dy2 c2) with d1 =eqI d2 and (f ::
(∀dx, dy, c : Diff dx dy c -> r)) be a function. We will investigate every possibility
how f can process its input and will see that d1 and d2 will behave equally. f can
only interact using the public API of Diff.

• f cannot destruct Diff because the constructor is not exported.

• If f doesn’t process its argument at all, it will behave equally, independent of
its input.

• f could call toInt. From the context, we know that toInt d1 == toInt d2.

• f could call cloneToNullSum. The result is a difference that evaluates to zero.
So toInt (cloneToNullSum d1) == toInt (cloneToNullSum d2) and we
can use this proof recursively.

• f could call evaluateD. From the context, we know that run id (evaluateD
d1) = toInt d1 == toInt d2 = run id (evaluateD d1). So also the re-
sults after calling evaluateD will be considered equal.

• f could try to call diffAddBack. This is the most interesting case since the
result would leak the first argument, resulting in non-equal behavior. But f
need another argument of type Subtrahend dy c in order to call diffAddBack.
Values of this type can only be obtained through createRDiff and RDiffs.
This means type parameter c cannot be controlled.2 So the argument cannot
be created inside of f since type parameters c have to match while f being
polymorphic in c. The extra argument neither can be passed polymorphicly
from the outside since the resulting type d is non-polymorphic. So f has no
chance to match the type c and thus cannot call diffAddBack.3

That brings us one step further. Let’s reconsider our proof from Chapter 5 and
include the detour about the checked values.

cswp p1 =(post . b1 . pre) p1 (A.1)
∼m1(post . b1 . pre) p3 (A.2)

=(post . b1 . pre) (0, 0) (A.3)
=(post . b2 . pre) (0, 0) (A.4)
=(post . b2 . pre) p3 (A.5)

∼m2(post . b2 . pre) p2 (A.6)
=cswp p2 (A.7)

Now (A.4) is almost what we check at compile-time. And we would like to use
extensionality (Lemma 6) twice, at (A.3) and (A.5). Unfortunately, this does not

2It could be constructed by unsafe undefined, but diffAddBack will fail on runtime in this
case.

3Note that, if f would also have been polymorphic in the output-type, we could have called
diffAddBack and our requirement would not hold.

II

A. Soundness of cswp revisited

work out with the typing. Applying the lemma here would instantiate function f in
the lemma to f = post . b1 . pre which has type Dist n (Int, Int) -> Dist
n (Int, Int). So f would be polymorphic in its return type in the distances, which
is not allowed in the lemma.

Detour with Extensional equality on RTuples Instead, we have to take the
detour over another extensional equality on the result values.

eqO (RTuple d11 d12) (RTuple d21 d22) =
evaluateD d11 == evaluateD d21 && evaluateD d21 == evaluateD d22

Lemma 3. eqO is extensional in the notion that every function processing equal
RTuples of the same type, evaluates to equal results. Given rt1, rt2:: RTuple n dy c

rt1 =eqO rt2⇒ ∀r(f :: RTuple n dy c -> r) : f rt1 = f rt2.

Note that there is no polymorphism in the distances and certificates this time.

Proof. Let rt1 = RTuple d11 d12, rt2 = RTuple d21 d22 be two RTuples n dy
c with rt1 =eqO rt2 and f :: RTuple n dy c -> r a function. RTuple just wraps
two Diffs which are accessible via the constructor. Equality on RTuples is inherited
from equality on the inner Diffs. So d11 =eqI d21 and d21 =eqI d22. We can reason
in the same way as before that the behavior of f must be the same for rt1 and rt2.
The only exception is the reasoning for diffAddBack where we have argued that f
must be flexible in c.

This time, parameter c is fixed and thus diffAddBack could be called by f. We will
argue, that the result of such a call must be the same. First, we will argue that all
inner Diffs adhere to the same subtrahend. Then, we will see that also the minuends
must be pairwise equal.

rt1, rt2 and their inner diffs are bound to the same fixed type parameter c, called
certificate. We do a case distinction on how the inner Diffs were constructed. Values
of this type can only be obtained by createRDiff, creatDiff or cloneToNullSum.

If a difference were created using createDiff, c must equal (). For calling
diffAddBack, an extra parameter of type Subtrahend dy c is needed. Values
of this type can only be obtained by creatRDiff. Since c is not linked to any
payload, it cannot be unified with other types than the same c from the same tuple.
So there cannot exist a value of type Subtrahend dy () to call diffAddBack with
and the results will be functions that cannot be processed further. So same behavior
for all Diffs and thus both RTuples.

If differences were obtained from destructing RDiffs, every difference gets its own
certificate c that cannot be unified with any other difference. This means, all such
differences have the same minuend and subtrahend.

If differences were obtained using cloneToNullSum, the subtrahend and the certificate
c are kept intact, while the minuend is replaced. This means, all such differences
have the same subtrahend.

III

A. Soundness of cswp revisited

So all inner differences have the same subtrahend. Additionally, we know that
d11 =eqI d21 and d21 =eqI d22, so they are representing the same differences.
Knowing that their subtrahends match, we can conclude that also their minuends
match.

Now, we have all the pieces to reason that also calling diffAddBack will result in
the same behavior: It returns the minuend, which we have shown to be equal.

Rounding up The last definitions necessary are

g1 :: forall dx dy c => Diff dx dy c -> Bool
g1 diff = (b1 diff) eqO (b1 $ pre p3)
g2 :: forall dx dy c => Diff dx dy c -> Bool
g2 diff = (b2 diff) eqO (b2 $ pre p3)

We conclude

True
-- computation
= g1 (pre p3)
-- by extensionality of eqI
= g1 (pre (constant 0 :*: constant 0))
-- by definition
= (b1 $ pre (constant 0 :*: constant 0)) eqO (b1 $ pre p3)

I.e.
b1 (pre (0,0)) =eqO b1 (pre p3)

and similarly
b2 (pre (0,0)) =eqO b2 (pre p3).

Time to harvest:

b1 (pre p3) (A.8)
=eqO b1 (pre (0,0)) (A.9)
=eqO b2 (pre (0,0)) (A.10)
=eqO b2 (pre p3) (A.11)

Equality (A.10) now is what is checked at compile time. The other equalities were
derived just before from the extensionality of eqI. Our final derivation now becomes

cswp p1 =(post . b1 . pre) p1 (A.12)
∼m1(post . b1 . pre) p3 (A.13)

=(post . b2 . pre) p3 (A.14)
∼m2(post . b2 . pre) p2 (A.15)

=cswp p2 (A.16)

where (A.14) is by extensionality of eqO. With this, we are finally done: We have
shown that cswp p1 ∼n cswp p2 and that cswp is sensitive with sensitivity 1!

IV

A. Soundness of cswp revisited

In the appendix B, we will argue that this line of reasoning can be generalized, and
four requirements are synthesized that, if met, guarantee soundness of branching.

V

A. Soundness of cswp revisited

VI

B
Soundness of branch

In the Section 5, we have argued that branching in our cswp implementation does
not break sensitivity. In Appendix A, we have revisited this proof and added fine-
grained steps of reasoning where we just looked at the code before. In the following
paragraphs, we will take a step back and generalize our arguing to other branchings
over sensitive values. This will be along the same lines as Chapter A, and we focus
on the generalization. For greater detail of explanation and development of the idea,
the reader is referred to section 5. Requirements for the guarantees to hold generally
are investigated.

The branch operator allows arbitrary Haskell expressions that are closed given the
condition variables. Yet, the operator needs some structure on the types of the
variables in the condition and the type of the branch results.

B.1 Requirements
The variables need to map to Ints: Firstly, when evaluating the condition at run
time, numeric values have to computed from the variables. For this, we introduce a
typeclass ToInt.

class ToInt tv where
toInt :: tv -> Int

The branch operator expects an instance of this typeclass to be available for the
type of variables. Secondly, for asserting agreement at a specific boundary value,
variables have to be instantiated from Ints. The first parameter of branch thus is
expected to contain an appropriate function.

The results of the branches need to be comparable in order to assert agreement. For
this, we introduce a typeclass BranchResult.

class BranchResult t1 t2 where
eqO :: t1 -> t2 -> Bool

The branch operator expects instances of this class to be available for the results.1

1Note that, we are allowing some polymorphism in the result. This is because the branch results
are polymorphic (in our cases in the distance and certificates). For the later formal reasoning, we
need eqO to be defined for different type variables. When evaluated on the computer, both type

VII

B. Soundness of branch

In which cases will the use of branch guarantee sensitive branching? Four conditions
have to hold.

eqO is an equality relation. This means, it has to be reflexive, transitive and
symmetric.

eqO implies same behavior. This is described by the concept of extensional equal-
ity eqO :: t -> t -> Bool. Given two branch results r1, r2 :: t, when they
are considered equal, every function should behave equally on them:

r1 =eqO r2 ⇒ ∀p (f :: t→ p) : f r1 = f r2

Note, that this property only is valid for comparisons of same type.

toInt induces equalityclasses of same behavior on condition variables.
toInt :: t -> Int naturally induces an equality measure:

eqI :: t1 -> t2 -> Bool
eqI v1 v2 = (toInt v1) == (toInt v2)

Condition variables can be polymorphic. Let tv :: * -> * be the constructor
for condition variables with instances ToInt (tv t),∀t :: * available.

Now, same behavior is again formalized using the concept of extensional equality.
This time, we add some relaxations and allow fine-grained polymorphism. Given
two values v1 ∈ tv t1, v2 ∈ tv t2, when they evaluate to the same number, every
family of functions should behave equally on them.

v1 =eqI v2 ⇒ ∀p (f ::∀c.tv cp) : f v1 = f v2

toInt and fromInt reverse each other modulo equality.

∀v : fromInt (toInt v) =eqI v

B.2 How these guarantee soundness
Finally, we can reason on an abstract level that the usage of the branch operator
given those requirements is sound and does not break the Spar-calculus.

Given a program employing a branching.

main :: Dist dIn tIn -> Dist (l*dIn) tOut
main = post . b . pre

pre :: Dist dIn tIn -> ti dIn tIn
post :: tr dIn tIn -> Dist (l*dIn) tOut

b :: ti dIn tIn -> tr dIn tIn
b b_inp = $(branch fromInt c b_1 b_2)

variables will be the same.

VIII

B. Soundness of branch

Here fromInt, c, b1, b2 are meta-variables. In the real code, they will be replaced by
quasiquotes. For this reasoning, we will assume that the semantics of those variables
are available via functions

fromInt :: Int -> tv dEval tEval
c :: ti d t -> Bool
b_1, b_2 :: ti d t -> tr d t

Note the difference between types tv of condition variables and ti branch inputs.
We can think of ti being a vector of tvs.

The idea is that every branch usage involving Spar-values includes some preprocessing
transforming the Spar-values into some other type ti. The variables occurring in
the condition may be of the same type ti or some related type tv when ti is
deconstructed in the function definition. The branches then transform the values of
type ti into values of type tr. Finally, the result is transformed back to Spar-values.

Given p1 ∼dIn p2, we can distinguish two cases:

c (pre p1) = c (pre p2). In that case, applying p1 or p2 to the branching will
result in the same branch being executed. Since the branches are not breaking
the Spar-calculus, we get sensitivity of main for free.

c (pre p1) 6= c (pre p2). This means, for one value, one branch is executed, and
for the other, the other branch. For this proof, we think of a continuation of
Spar-values and our function for the real numbers. Let p3 be a value between
p1 and p2 on the decision boundary such, that p1 ∼m1 p3, p3 ∼m2 p2 and
dIn = m1 + m2. Let p3' = fromInt (toInt p3) From the last requirement,
we know: p3′ =eqI p3. Define

g1 :: t -> Bool
g1 inp = (b1 $ pre inp) eqO (b1 $ pre p3)
g2 :: t -> Bool
g2 inp = (b2 $ pre inp) eqO (b2 $ pre p3)

Using extensional equality of eqI, we can conclude

True
= g1 p3 -- computation
= g1 p3' -- extensionality of eqI
= (b1 $ pre p3') eqO (b1 $ pre p3) -- definition

This means b1 (pre p3) =eqO b1 (pre p3′), similarly b2 (pre p3′) =eqO b2 (pre p3)
and further

b1 (pre p3) (B.1)
=eqO b1 (pre p3') (B.2)
=eqO b2 (pre p3') (B.3)
=eqO b2 (pre p3). (B.4)

The first and last equality were derived before. Equality (B.3) is checked at
compile-time.

IX

B. Soundness of branch

We can now conclude

main p1 (B.5)
=(post . b . pre) p1 (B.6)
=(post . b1 . pre) p1 (B.7)

∼m1∗l(post . b1 . pre) p3 (B.8)
=(post . b2 . pre) p3 (B.9)

∼m2∗l(post . b2 . pre) p2 (B.10)
=(post . b . pre) p2 (B.11)
=main p2 (B.12)

Equality (B.9) is derived from extensional equality of eqO and the previous paragraph.

Finally, we have shown that |main p1− main p2| ≤ l ∗ (m1 + m2) = l ∗ dIn.

We can see that the requirements and branching as an operation are not linked to the
Spar framework at all. We expect this operator to be useful for checking continuity
in other contexts as well with the same requirements and adapted reasoning.

X

C
More details on Mergesort

C.1 Closer look at decision function
The decision function is used while merging to determine which of the two tips to
move next. The following types facilitate the process:

type DecFun = forall c. CDist c -> MergeDec c
data CDist c = forall d. CDist (Dist d Int)
data MergeDec c = L (CDist c) | R (CDist c)

From these types, the behavior of the decision function is very limited. In the
following paragraphs, we will establish useful properties. Those will be handy to
prove correctness of our implementation, and we will see that they are also necessary
for sensitivity.

Property 1. The decision function is deterministic and constant for the whole
sorting process.

By being a pure function, it must behave deterministically. Constance follows from
the usage of the function in mergeSort' and merge. This is necessary for arguing
that a specific next step matches the ongoing process.

Given a decision function cmp, we define a ≺ b iff the following evaluates to True:

case (cmp (CDist $ (number a) .- (number b)), cmp (CDist $ (number 0))) of
(L _, L _) = True
(R _, R _) = True
_ = False

a is called smaller than b, iff a ≺ b and we define a l b⇔ a ≺ b ∧ b ≺ a. Before we
show that ≺ in fact is a preorder, we establish some other properties.

Property 2. ≺ is translation-invariant.

The only parameter the decision function can base its result on, is of type CDist.
Since CDist only carries a Spar-value instanced to the difference between the elements,
≺ cannot behave differently for translated values. Thus ∀c ∈ Z if a ≺ b then also
a− c ≺ b− c.

Property 3. The behavior can only change at similar values.

XI

C. More details on Mergesort

More precisely: if a ≺ b, but a + 1 6≺ b, then b = a ∨ b = a + 1.

Proof. Given a function cmp :: DecFun that is not breaking the Spar calculus. Let
a, b :: Int with a ≺ b and a + 1 6≺ b. We use cmp to define a sensitive function

f :: Dist d (Int, Int) -> Dist d Int
f (v1 :*: v2) = case cmp (v1 .- v2) of

L diff -> diff
R diff -> constant 0 .- diff

and define va::Dist 1 Int with semantics a ∼1 a + 1 and vb::Dist 0 Int with
semantics b ∼0 b. It holds va :*: vb :: Dist 1 (Int, Int) with semantics
(a, b) ∼1 (a + 1, b). By definition of ≺ and the way we picked a and b, we can reason
that f (va :*: vb) has semantics (a− b) ∼ (b− (a + 1)). The distance between
those values is d′ = |2(a− b) + 1|. Because cmp is not breaking sensitivity, we already
know that d′ ≤ 1 and thus b = a ∨ b = a + 1 must hold.

We will use the following generalization several times:

Lemma 4 (Midpoint.). Given a ≺ b and a 6≺ c, there is τ ∈ [0, 1] with a = b+τ(c−b)
and τ(c− b) ∈ Z.

Similarly, given a ≺ b and c 6≺ b, there is θ ∈ [0, 1] with b = a + τ(c − a) and
τ(c− a) ∈ Z.

Proof. Note that b 6= c. Define τ ′ = 1
|c−b| . Let k ∈ [1, . . . , |c− b|] be the minimal

with a 6≺ b + k ∗ τ ′(c− b). Now a ≺ b + (k − 1) ∗ τ ′(c− b) and a 6≺ b + k ∗ τ ′(c− b).
With the Property 3, we conclude a = b + (k − 1)τ ′(c− b) ∨ a = b + kτ ′(c− b). We
set τ = (k − 1)τ ′ or τ = kτ ′ such that a = b + τ(c− b) holds.

The second part uses exactly the same steps.

Property 4. ≺ is a preorder.

Proof. (≺ is preorder.) 1. (≺ is reflexive). This holds by definition.

2. (≺ is transitive). Consider a, b, c with a ≺ b and b ≺ c, but a 6≺ c. We will
show that this is impossible. Note that a 6= b, b 6= c (choice of a, b, c) and a 6= c
(reflexivity). With lemma 4, we define τ, θ with a = b + τ(c− b) and c = b + θ(a− b).
Plugging the first in the second yields c = b + θ((b + τ(c− b))− b) = b + θτ(c− b).
We can conclude that either b = c or θ = τ = 1 implying c = a. Both contradict
a, b, c being inequal. Hence this cannot occur.

We show additional lemmas we need later for showing correctness.

Lemma 5.

(∃a, b : a ≺ b ∧ a < b)⇒ ∀c, d : c ≤ d⇒ c ≺ d

and

(∃a, b : a ≺ b ∧ a > b)⇒ ∀c, d : c ≥ d⇒ c ≺ d.

XII

C. More details on Mergesort

Proof. Let w.l.o.g. a < b (other direction analogue). We will show that a ≺ a + 1.
Assume a 6≺ a + 1, we have a ≺ b and a 6≺ a + 1. With Lemma 4 there is θ with
a = a + 1 + θ(b − a − 1). Thus 1 = θ(1 + a − b). Since we know that a < b and
1 ≥ θ ≥ 0, we can conclude a = b. But this contradicts the assumption.

Now we can show that ∀c, d : c ≤ d→ c ≺ d. Because a ≺ a + 1, we can reason by
translation-invariance and transitivity that c ≺ d.

Lemma 6. Totality implies ≤→≺ or ≥→≺.

Proof. Given a, b with a ≺ b, but a 6= b (exists due to totality). Let w.l.o.g. a < b.
The result follows from Lemma 5.

Lemma 7. Totality and anti-symmetry implies ≺≡≤ or ≺≡≥.

Proof. Consider again arbitrary a, b with a ≺ b, but a 6= b (exists due to totality).
Let w.l.o.g. a ≤ b.

Now, we’ll show that ∀c, d : c ≺ d→ c ≤ d. Given c ≺ d. If d ≤ c, we can conclude
with Lemma 6 that d ≺ c, with anti-symmetry c = d and thus c ≤ d.

Phew, now we can think of the decision as a comparison.

C.2 Correctness of mergeSort'

With those properties we can show that the invariants on PartialMerge hold and
merging and sorting work as expected.

As a reminder, the invariants are

• that the two lists of remaining elements are sorted ascending wrt. ≺

• that the partial result is sorted inversely

• all elements in the partial result are smaller or equal than the remaining lists.

Reconsider the definition of merge (the only function handling PartialMerges) and
the following definitions of helper functions:

XIII

C. More details on Mergesort

merge :: Dist d1 (Vec l1 Int) -> Dist d2 (Vec l2 Int)
-> DecFun -> Dist (d1 + d2) (Vec (l1 + l2) Int)

merge v1 v2 f = merge' (startPartialMerge v1 v2)
where

merge' pm | isMerged pm = getResult pm
merge' pm = merge' (progressWithComparison pm f)

progressWithComparison :: PartialMerge d l -> DecFun -> PartialMerge d l
progressWithComparison pm@(PartialMerge _ (l:>ls) Nil) f =

progressFromLeft pm
progressWithComparison pm@(PartialMerge _ Nil (r:>rs)) f =

progressFromRight pm
progressWithComparison pm@(PartialMerge _ (l:>ls) (r:>rs)) decFun =

case decFun $ CDist (l .- r) of
L _ -> progressFromLeft pm
R _ -> progressFromRight pm

Merging starts by creating the initial PartialMerge with empty partial result and the
inputs as parts still to be processed. Those parts are sorted by assumed requirement
to merge and we have already seen that the inputs will indeed be sorted (called in
mergeSort''). progressWithComparison then processes PartialMerges adhering
to the invariants: If exactly one of the lists with remaining elements is empty, the
other remaining elements are moved to the result list one by one. Because the
remaining lists’ elements are greater or equal to the partial result, the sorting in the
partial result is preserved. The other invariants can be directly taken over. If both
lists to be merged have remaining elements, the decision function is considered. Since
we know that the decision function encodes a comparison and that the partial result
and remaining parts are sorted with respect to this comparison, we can conclude
that also in this case, the invariants are preserved: The new result tip is a smallest
one of the two parts’ tips, so smaller or equal than all the remaining elements, but
larger or equal to every element of the partial result. So moving this element over to
the partial result preserves the invariants.

Here we assume the induced order to be total. If this doesn’t hold, it does not make
sense to use it for sorting, and we do not care about the correctness of the result. In
a later paragraph (Section C.4), we will show that this cannot break sensitivity.

C.3 Soundness of mergeSort

The final definition of mergeSort is

XIV

C. More details on Mergesort

df :: DecFun
df diff = $(branch [| \i -> (branchCDist . constant) i |]

[| diff > 0|]
[| goL diff |]
[| goR diff |]

)
mergeSort :: Dist d (Vec l Int) -> Dist d (Vec l Int)
mergeSort v = mergeSort' v df
instance BranchResult (MergeDec c1) (MergeDec c2) where
eq (L diff1) (R diff2) = toInt diff1 == 0 && toInt diff2 == 0
eq (R diff1) (L diff2) = toInt diff1 == 0 && toInt diff2 == 0
eq _ _ = True

We will now show that our usage of the branch operator is sound by showing that the
general requirements developed in Appendix B are met. For doing so, we establish
another extensional equality on PartialMerge.

Remember, the order ≺ induces an equality l by a l b :⇔ a ≺ b ∧ b ≺ a.

We define equality on PartialMerge and show extensionality of it. Two PartialMerges
are considered to be equal iff their partial results equal wrt. l and the elements
contained in their remaining parts equal (again wrt. l). This is, we do not care in
which remaining part elements are stored, but the multi-sets of both parts must equal.
Since PartialMerge is not publicly visible, it is enough to reason about the actual
usages; they are only processed in progressFromLeft and progressFromRight.1

Lemma 8. merge' turns equal PartialMerges as input into equal lists as result.

Proof. Let’s call the inputs pmi1 and pmi2. The proof works by induction on the
number of elements in the remaining lists.

• Let’s first consider the case, that pmi1 has no remaining elements. This implies
the same for pmi2, because it is equal to pmi1. So the result of merge' for
both inputs will be their respective heads, which are known to be equal and
sorted wrt. ≺.

Assuming (and verifying) that our comparison function is anti-symmetric, we
can even conclude that the result is sorted wrt. to ≥ or ≤, depending on the
fixed comparison function. So l≡= and the resulting vectors must be equal.

• Let’s now consider that there are some elements left.

A new PartialMerge will be constructed by progressWithComparison and
passed to merge' recursively. We will show that also the newly constructed
PartialMerges equal one another and use induction to conclude that the
resulting lists will be equal.

Consider progressWithComparison and two equal inputs pmi1, pmi2. In all
the cases a smallest element of the remaining elements is appended to the

1If PartialMerge would be visible from outside, equality on it would not be extensional.

XV

C. More details on Mergesort

head. Since the smallest elements in the remaining elements of pmi1 and pmi2
must equal, also the elements taken over to the result will equal. The same
holds for the remaining elements: Probably not the same smallest element was
moved, but since we only consider the remaining elements as a multi-set, the
resulting PartialMerges are equal. So progressWithComparison translates
equal inputs into equal results.

So the PartialMerges used in the recursive call are equal and by induction
thus the results.

We have seen that merge' transforms equal PartialMerges into equal sensitive lists.
merge called on equal input lists calls merge' with equal PartialMerges. Equality
on sensitive lists is extensional, and we conclude, that equality on PartialMerge
also is extensional.

Now, it can be shown that we meet all the necessary requirements for the use of
branching as defined in Section B:

eqO is equality relation. Because eqO is based on another equality relation, the
necessary properties are inherited

eqO is extensional. Consider equal MergeDec c values. Note that this value is
certified. The only way to produce equal MergeDec c values according to
the same certificate is by using goL or goR on the exact same CDist. This
implies that the payload of MergeDec c comes from the same pair. With this
in mind, equal MergeDec c must agree on the payload, but not necessarily on
the direction to go. Looking at the definition of progressWithComparison, we
can conclude that equal MergeDec result in equal PartialMerge. eqO inherits
PartialMerge’s equality’s extensionality.

Equality by toInt is extensional The type of the branching variable is CDist
and as we have seen, it just wraps a Spar-value. This value is accessible via
toInt. So if for two CDist-values cd1, cd2 toInt cd1 == toInt cd2 holds,
the values of cd1, cd2 are already equal in every possible way.

toInt and fromInt reverse Looking at the definition, it is easy to verify that both
function reverse each other.

Hence our usage of the branch operator is sound and Mergesort is sensitive.

Note that we require an encapsulated decision function for several reasons. First,
in order for the invariants to hold, we have to assume a constant decision function.
Second and most interestingly, note that the trace of comparisons can also change a
lot for slightly changed inputs. By requiring a pure capsuled decision function, we
prevent any leakage of information from the comparisons. At least in safe Haskell.

XVI

C. More details on Mergesort

C.4 Requirements necessary and sufficient for sen-
sitivity

Our reasoning for sensitivity made use of the requirements we developed for the
branch operator and thus solely deal with equalities. For this, we established many
invariants and properties. In this section, we will take a step back and show that
many of these requirements are not only useful for sufficiently reasoning sensitivity,
but are also necessary. A few ways that the decision function or merging procedure
could misbehave are examined with respect to the implications on sensitivity and
correctness.

The other tip is stored at the appropriate part tip. If progressFromLeft
or progressFromRight would put the remaining tip on top of the wrong list,
we would not only break correctness of Mergesort, but also sensitivity. Con-
sider the list [1, 4, 5, 1, 2, 3] and the progressing functions putting the other can-
didate always on the wrong tip. The decision function favors the first part’s
head in case of equality. This will split the list into [1, 4, 5] and [1, 2, 3] to be
sorted. The miss-behaving merging is no problem for sorting these parts yield-
ing the same lists again. The trace of the PartialMerges show the merging
process: ([], ([1, 4, 5], [1, 2, 3])) ([1], ([1, 4, 5], [2, 3])) ([1, 1], ([2, 4, 5], [3]))
([2, 1, 1], ([3, 4, 5], [])) ([5, 4, 3, 2, 1, 1], ([], [])). The miss-behaving merge still sorts
this list as expected.

Let’s consider another list with distance 1 to the previous list [2, 4, 5, 1, 2, 3]. Again,
we will trace the occurring merge: ([], ([2, 4, 5], [1, 2, 3])) ([1], ([4, 5], [2, 2, 3]))
([2, 1], ([5], [4, 2, 3])) ([4, 2, 1], ([5, 2, 3], [])) ([3, 2, 5, 4, 2, 1], ([], [])). This list does
not look correctly sorted. And it has distance 9 to the previous result.

That is, two inputs with distance 1 result in two results with distance 9. With a
miss-behaving merge, mergesorting is not 1-sensitive any longer. That is why it is
important that the merge is well-behaved.

In the course of showing correctness, we assumed the decision function to be total
and anti-symmetric. We’ll now see that a non-total or non-anti-symmetric decision
function doesn’t change behavior, i.e. it always returns the same, fixed constructor.
So there is no relevant branching, and it cannot break sensitivity.

Decision function is not total. We will show: ∀c, d : c ≺ d ⇒ c = d. So let
c ≺ d and w.l.o.g. c ≤ d. This implies n ≺ n + d− c (translation-invariance). There
are a < b with a 6≺ b and b 6≺ a (non-totality).

Consider a′ = a + 1. If a ≺ a′, then by translation-invariance and transitivity also
a ≺ b is true, which contradicts the assumption a 6≺ b. Thus a 6≺ a′.

Now we have a ≺ a + d− c and a 6≺ a + 1. So there is τ with a = a + d− c + τ(a +
d− c− a− 1). We reason that τ = (1− τ)(c− d), so c ≥ d and thus c = d.

That means, the decision function actually identifies equality and divergent branching

XVII

C. More details on Mergesort

if the values are equal does not break sensitivity.

Total decision function is not anti-symmetric. We’ll show that ∀a, b : a ≺
b ∧ b ≺ a. Given w.l.o.g. c < d but c ≺ d ∧ d ≺ c (not anti-symmetric). We know
that a ≤ b ∨ b ≤ a and can conclude with Lemma 5(a ≺ b ∧ a < b ⇒≤→≺) that
a ≺ b ∧ b ≺ a.

That means, the decision function returns the same constant constructor.

XVIII

	Introduction
	Goal
	Approach

	Background
	Differential Privacy (DP)
	Making sensitive queries differentially private

	Spar-calculus
	Compare and Swap (cswp)
	Haskell technicalities
	Solvers
	Adding arithmetic support
	Getting all solutions
	Reversing the quantification

	Branching on Spar-values
	Introducing the branch operator
	Easy examples
	Implementing cswp

	Branching on refined types
	Liberal reversible differences
	Allowing more types in the condition
	Breaking liberal reversible differences
	Robust reversible differences
	Revisiting cswp

	Soundness
	General proof idea
	Equality classes of same behavior
	Compile-time checks

	Implementation in GHC
	Finding all branchings
	Static analysis
	Emitting run-time code

	Advanced examples
	Mergesort
	Implementation
	Correctness
	Soundness

	Related Work
	Conclusion
	Comparison to other solutions — Discussion
	Advantages
	Limitations

	Further research

	Risk analysis and ethical considerations
	Bibliography
	Soundness of cswp revisited
	Soundness of branch
	Requirements
	How these guarantee soundness

	More details on Mergesort
	Closer look at decision function
	Correctness of mergeSort'
	Soundness of mergeSort
	Requirements necessary and sufficient for sensitivity

