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Abstract
With the continued growth of deep learning models in terms of size and computational
requirements, the need for efficient models for deployment on resource-constrained
devices becomes crucial. Structured pruning has emerged as a proven method
to speed up models and reduce computational requirements. Structured pruning
involves removing filters, channels, or groups of operations from a network, effectively
modifying its architecture. Since the optimal hyperparameters of a model are
tightly coupled to its architecture, it is unclear how pruning affects the choice of
hyperparameters. To answer this question, we investigate the impact of deep neural
network pruning on the hyperparameter performance space.

In this work, we perform a series of experiments on popular classification models,
ResNet-56, MobileNetV2, and ResNet-50, using CIFAR-10 and ImageNet datasets.
We examine the effect of uniform and non-uniform structured magnitude pruning on
the learning rate and weight decay. Specifically, we explore how pruning affects their
relationship and the risk associated with not tuning these hyperparameters after
pruning. The experiments reveal that pruning does not have a significant impact on
the learning rate and weight decay, suggesting that extensive hyperparameter tuning
after pruning may not be crucial for optimal performance.

Overall, this study provides insights into the complex dynamics between pruning,
model performance, and optimal hyperparameters. The findings give guidance
for optimising and fine-tuning pruned models and contribute to advancing model
compression and hyperparameter tuning, highlighting the interplay between model
architecture and hyperparameters.

Keywords: Compression, Deep Learning, DNN, Hyperparameters, Optimization,
Pruning, Hyperparameter Optimisation, Hyperparameter Tuning
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Chapter 1

Introduction

In the past couple of years, rapid advancements in the field of deep learning have led
to the development of a variety of applications across multiple fields, such as computer
vision (Dosovitskiy et al., 2021; K. He et al., 2015b), natural language processing
(Brown et al., 2020; Devlin et al., 2019), and generative modelling (Child, 2021;
OpenAI, 2023). Despite these promising advancements, there is a cost to pay: the
increasing network size. Deep neural networks (DNNs) are becoming deeper and wider,
requiring more parameters and computational resources for training and evaluation.
The increasing network size poses significant challenges as larger models with more
parameters require more computational resources resulting in increased inference
latency, memory footprint, and energy consumption. Consequently, deploying them
on resource-constrained devices becomes challenging (Fan et al., 2021).

To address these challenges, the field of deep neural network compression has emerged.
Research in this field aims to reduce the size and computational requirements of deep
learning models while minimising the impact on model performance. One approach
to model compression is deep neural network pruning. This technique involves
removing unnecessary weights or structures from a model, resulting in improved
efficiency without significant performance compromise.

Pruning has become an integral part of deploying DNNs on resource-constrained
devices, such as edge devices, embedded systems, and smartphones. By adopting
the right pruning strategies given the constraints of each individual hardware, it is
possible to significantly reduce a network’s size and latency without considerably
affecting its performance (Choudhary et al., 2020; Liu et al., 2019; Sui et al., 2023).

Pruning is a versatile technique applicable at different stages of the training process,
including during, after, and even before training, as shown in Figure 1.1. Thus,
pruning is tightly coupled to the act of training. A key element in training DNNs
is the choice of hyperparameters. In today’s context, where modern models often
require significant training time ranging from days to months, efficient and effective
methods for identifying the optimal set of hyperparameters are more important than
ever. Despite extensive research in this area, setting hyperparameters is still heavily
based on intuition, requiring years of experience to acquire (L. N. Smith, 2018).
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1. Introduction

Figure 1.1: Overview of neural network pruning pipelines in the literature. The pipelines can
roughly be divided into two phases: structure learning, where the network’s structure, including
its weights, is learned or randomly set as in (b); and weight optimisation, where the lost accuracy
after pruning is regained. Rewinding (d) involves resetting, for example, hyperparameters or model
weights to their state at epoch t. The highlighted pipeline (c) indicates the approach used in this
work. Adopted from (Y. Wang et al., 2019).

Structured pruning, where entire filters, channels or groups of operations are re-
moved, effectively changes the architecture of the network and allows for reduced
network size and improved latency on hardware (Sui et al., 2023). Since the optimal
hyperparameters of a model are tightly coupled to its architecture, it is unclear how
pruning affects the choice of hyperparameters. Thus, in this study, we investigate the
impact of structured pruning on the hyperparameter performance space of a model,
aiding the development of effective and efficient pruning techniques by addressing the
challenge of hyperparameter optimisation. To achieve this, we focus on two primary
research questions:

Q1 What are the effects of structured pruning on the hyperparameter performance
space of a model?

Q2 What is the performance risk when not tuning hyperparameters after pruning?

By addressing these research questions, we aim to explore the complex interplay
between structured pruning, hyperparameters, and model performance. In this
empirical study, we utilise state-of-the-art classification models on popular benchmark
datasets in computer vision, the CIFAR-10 and ImageNet datasets.

To our best knowledge, we are the first to investigate the impact of structured pruning
on the optimal hyperparameters of a model. This study contributes to a deeper
understanding of the relationship between hyperparameters and model performance
of DNNs. This knowledge can help in answering the practical question of whether
time-consuming hyperparameter optimisation after pruning is necessary or if the
initial optimal hyperparameters of the unpruned model are sufficient.
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Chapter 2

Theory

The purpose of this chapter is to establish the theoretical foundations for the subse-
quent study on the impact of deep neural network pruning on the hyperparameter
performance space of a model. This chapter does not aim to provide a comprehensive
review of relevant topics but rather contextualises them within the framework of
this study. In addition to the theoretical concepts, we review existing literature and
related work and highlight the relevance of the proposed work within the current
research landscape and practical applications. To this end, we look at the following
areas:

2.1 Deep Learning In this section, we introduce the fundamental concepts of
deep learning, focusing on its application in computer vision utilising convolu-
tional neural networks (CNNs). Two CNN architectures are relevant to this
study: ResNets and MobileNets. Additionally, this section discusses the cur-
rent limitations and challenges when deploying DNNs on resource-constrained
devices, emphasising the need for efficient and lightweight models.

2.2 Neural Network Pruning This section provides an overview of deep neural
network pruning. We discuss various pruning techniques and explore how they
address the challenges of deep learning raised in the previous section. We
present a classification of pruning based on its structure (unstructured vs
structured), strength (pruning ratio), and method (uniform vs non-uniform),
and discuss how pruning fits into the training pipeline of a model.

2.3 Hyperparameters in Deep Learning In this section, we delve into
the role of hyperparameters in deep learning and their impact on both the
training process and model performance. We emphasise the importance of
hyperparameter optimisation, which plays a vital role in achieving optimal
results, and discuss related work. Moreover, we introduce the concept of the
hyperparameter performance space, which is of fundamental importance to
this study.

3



2. Theory

2.1 Deep learning
Deep learning is a subfield of machine learning which involves the training of DNNs
to learn from data. A DNN typically consists of interconnected nodes organised in
layers, with each layer represented by learnable parameters. These parameters, such
as weights and biases, are utilised to compute the layer’s output. The input layer
takes raw data, while the output layer generates the final predictions.

In contrast to traditional neural networks (NNs), DNNs can have numerous hidden
layers between the input and output layers, hence the term deep. This architecture
allows DNNs to learn features at multiple levels of abstraction, enabling them to
capture complex patterns and relationships in data. As a result, deep learning has
achieved notable success in a wide range of domains that are considered challenging
for classical machine learning techniques. Depending on the task and domain, a
range of different deep learning architectures and types have evolved, ranging from
simple feed-forward neural networks to more complex types like the transformer or
convolutional neural networks.

The transformer architecture, for instance, revolutionised natural language processing
(NLP) tasks by effectively capturing contextual relationships using self-attention
mechanisms (Vaswani et al., 2017). Today, models such as the generative pre-trained
transformer (GPT) dominate the field, achieving state-of-the-art performance in a
wide range of NLP tasks (OpenAI, 2023).

In this study, our focus is on convolutional neural networks. While transformers
were originally introduced in the field of NLP, CNNs have played a pivotal role
in revolutionising the field of computer vision and have demonstrated remarkable
success in image and video processing applications (K. He et al., 2015b; A. Howard
et al., 2019; Tan & Le, 2020).

2.1.1 Convolutional neural networks

Figure 2.1: An example of a convolutional opera-
tion with a 3× 3 convolutional filter with stride 1.

Convolutional neural networks are one
class of deep learning architectures specif-
ically designed to process data with a
matrix-like structure, such as images.
Unlike traditional neural networks that
treat input data as a flat structure,
CNNs take advantage of the underlying
spatial relationships. The main building
blocks in a CNN are convolutional and
pooling layers, allowing for the extrac-
tion of local patterns while maintaining shift and distortion invariance (Lecun et al.,
1989).

A convolutional layer consists of multiple filters, each of which is learned during
training to capture local patterns and features such as edges, textures, and shapes
from the input. These filters, also known as kernels, are small matrices of learnable
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2. Theory

parameters and perform convolutional operations on the input. A convolutional
operation is the sum of element-wise multiplications between the kernel and a small
region of the input, as illustrated in Figure 2.1. The stride describes the step size at
which the filter moves across the input. Although these filters are typically small
in spatial dimensions, they are applied to the entire depth of the input (O’Shea &
Nash, 2015).

Figure 2.2: An example of a Max Pooling opera-
tion (stride = 1) performed on a feature map.

To lower the spatial size of the feature
maps generated by the convolutional
layer and to introduce invariance to small
changes in the input, a pooling layer is
often added after the convolutional layer.
The pooling layer reduces the number of
parameters and the computational com-
plexity of the model by subsampling the
feature map, see Figure 2.2. Common
pooling operations include Max, Aver-
age, or Min Pooling, where a small region of the input is subsampled by its local
maximum, average, or minimum, respectively. These operations serve the purpose
of summarising important features locally, making the model more robust to small
variations like shifts and other distortions (O’Shea & Nash, 2015).

While CNNs have been the dominant models in computer vision for several decades
and have achieved remarkable success in various tasks, modern models like Vision
Transformers have shown themselves to be a viable alternative. For example, Dosovit-
skiy et al. (2021) apply transformers to computer vision tasks and achieve promising
results in image classification. However, CNNs still hold several advantages, such as
their widely studied interpretability (Olah et al., 2017) and their ability to leverage
transfer learning from pre-trained models (Shin et al., 2016). Moreover, CNNs benefit
from a well-established research community, extensive toolkits and frameworks, and
a vast collection of available pre-trained models, making them a practical and reliable
choice for many computer vision applications.

In this work, we focus on the application of CNNs to the task of image classification.
Image classification, also referred to as image recognition, often serves as a standard
benchmark for CNNs as it is a fundamental task in computer vision (Lin et al., 2015;
Russakovsky et al., 2015). Given an input image, a deep learning classification model
usually outputs confidence scores for the individual classes, with the highest score
being the predicted class of the input image.

In the following, we look at two CNN architecture families relevant to this study:
residual and mobile networks. Our aim is to provide the reader with a concise
overview of their design and architectural components. This lays the foundation for
understanding how pruning techniques can be effectively applied to these models.

Residual networks

One family of CNNs that has become increasingly popular in recent years are residual
networks (ResNets) (K. He et al., 2015b). ResNets address the problem of vanishing
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2. Theory

gradients, a common issue in deep learning. Vanishing gradients refer to the problem
where the gradients in backpropagation become too small to effectively update earlier
layers in the network, leading to slow convergence and poor performance (K. He
et al., 2015b).

Figure 2.3: Illustration of a residual block for
ResNet-56 (left) and ResNet-50 (right). The skip
connection adds the input to the output of the
stacked convolutional layers. Adapted from (K.
He et al., 2015b).

The ResNet architecture consists of
stacked residual blocks, where each block
includes a skip connection (K. He et al.,
2015b). The residual block is composed
of two or more convolutional layers, with
each layer typically followed by a batch
normalisation layer and a ReLU acti-
vation function, see Figure 2.3. The
skip connection connects the input of
the block to its output, allowing the in-
formation to bypass the convolutional
layers. By doing so, the skip connection
ensures that the information from earlier
layers can directly influence the output
of later layers, preventing the gradients
from vanishing and allowing deeper fea-
ture learning (K. He et al., 2015b).

The application of ResNets has shown remarkable performance on a wide range
of computer vision tasks. In 2015, ResNet was the winning architecture of the
ImageNet and Microsoft COCO Visual Recognition Challenges (Lin et al., 2015;
Russakovsky et al., 2015) for the tasks of ImageNet detection and localisation, and
COCO detection and segmentation. In addition to their excellent performance,
ResNets can be easily scaled up or down to meet the requirements of different tasks,
making them highly adaptable to different applications (K. He et al., 2015b).

Two residual networks relevant to this study are ResNet-50 and ResNet-56, see Table
2.1. ResNet-50 is a 50-layer residual network with over 25 million parameters, taking
images of size 224× 224× 3 as input. ResNet-56, a 56-layer network, takes input
images of size 32× 32× 3 and comprises about 0.85 million parameters (K. He et al.,
2015b).
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2. Theory

ResNet-50 ResNet-56
7× 7, 64, stride 2

3× 3 Max Pooling, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

[
3× 3, 16
3× 3, 16

]
× 9

[
3× 3, 32
3× 3, 32

]
× 9

[
3× 3, 64
3× 3, 64

]
× 9

Global Average Pooling
fully-connected layer

Table 2.1: Architecture of ResNet-50 and ResNet-56. If not other indicated convolutional layers
have stride 1 and are described by a× a, b with a, b ∈ N, where a× a is the size and b the number
of kernels. Blocks of convolutional layers describe residual blocks, see Figure 2.3. Adapted from
(K. He et al., 2015b).

Mobile networks

While ResNets are large networks designed for high-performance tasks on powerful
hardware, they might not be optimal for deployment on devices with limited compu-
tational resources. MobileNets are a type of lightweight CNN designed for computer
vision tasks on mobile and embedded devices (A. G. Howard et al., 2017). MobileNets
have achieved excellent results on a wide range of image classification tasks while
being significantly smaller and computationally more efficient than traditional deep
CNNs (A. G. Howard et al., 2017). The MobileNet architecture was first introduced
by A. G. Howard et al. (2017) (MobileNetV1) and has since become popular in the
computer vision community, with variants such as MobileNetV2 (Sandler et al., 2019)
and MobileNetV3 (A. Howard et al., 2019).

MobileNetV1 utilises depthwise separable convolutions that decompose a standard
convolution into a depthwise convolution and a pointwise convolution, reducing the
computational cost by 8 to 9 times (A. G. Howard et al., 2017). In contrast to
classical convolutional layers where the filter is applied to the whole depth of the
input, depthwise convolutional layers apply a single filter to each input channel.
Pointwise convolutions are 1×1 convolutional layers that are applied to the output of

7



2. Theory

the depthwise convolution (A. G. Howard et al., 2017). Figure 2.4 shows a comparison
of the classical convolutional operation with the depthwise separable convolutional
operation. Compared to ResNet-50, MobileNetV1 is a rather small network with 4.2
million parameters, comprising only 13 stacked depthwise separable convolutional
layers, totalling 28 layers when counting depthwise and pointwise convolutions as
separate layers (A. G. Howard et al., 2017).

Figure 2.4: Comparison of classical convolution (top) with depthwise separable convolution (bottom).
Adapted from (A. G. Howard et al., 2017).

Figure 2.5: Illustration of a residual block for
MobileNetV2. Inverted residual blocks transform
the input of shape h×w× k to shape h

s ×
w
s × k′,

where s is the stride of the depthwise convolutional
layer. Adapted from (Sandler et al., 2019).

One variant relevant to this study is Mo-
bileNetV2. Compared to MobileNetV1,
MobileNetV2 achieves 1.4% better accu-
racy on the ImageNet dataset, a common
dataset in computer vision for bench-
marking (Russakovsky et al., 2015). Mo-
bileNetV2 replaces the depthwise sepa-
rable convolutional block of the original
MobileNetV1 architecture with inverted
residual blocks, resulting in a deeper ar-
chitecture with 53 layers (Sandler et al.,
2019). These blocks are the main build-
ing structure of MobileNetV2 and are
shown in Figure 2.5. Inverted resid-
ual blocks wrap a depthwise convolu-
tional layer in 1× 1 convolutional layers.
The first 1 × 1 convolutional layer ex-
pands the input along its depth, increas-
ing the number of channels; the second
1× 1 convolution projects the depthwise
convolutional output back to the lower-
dimensional space of the input. Due to the combination of compression and expansion
of the input, inverted residual blocks are often referred to as bottleneck blocks (Sandler
et al., 2019).
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2. Theory

MobileNetV2 was originally proposed for an input shape of 224× 224× 3. However,
in this study, we modify the architecture of MobileNetV2 for smaller images with
dimensions of 32× 32× 3. To make MobileNetV2 compatible with low-resolution
inputs, it is common to disable some downsampling layers by replacing stride 2 with
stride 1 in certain layers as described by Ayi and El-Sharkawy (2020). Table 2.2
displays the architecture of the original MobileNetV2 and highlights the changes for
the adapted version. For the purpose of this study, we refer to this modified version
of MobileNetV2 as ‘MobileNetV2’ when the input shape is clear from the context.

Operator expansion
factor # channels × n stride

3× 3 Conv layer - 32 1 2
Bottleneck 1 16 1 1
Bottleneck 6 24 2 2
Bottleneck 6 32 3 2
Bottleneck 6 64 4 2
Bottleneck 6 96 3 1
Bottleneck 6 160 3 2
Bottleneck 6 320 1 1

1× 1 Conv layer - 1280 1 1
Global Average Pooling - - 1 -
Fully-connected layer - - - -

Table 2.2: Architecture of MobileNetV2. Each line describes a sequence of n identical operations. In
each sequence, the first layer has stride s and all subsequent layers use stride 1. See Figure 2.5 for a
description of the bottleneck blocks. For the modified MobileNetV2 with input size 32×32×3 some
downsample layers (marked in bold) are disabled, i.e. stride 2 is replaced with stride 1. Adapted
from (Ayi & El-Sharkawy, 2020; Sandler et al., 2019)

2.1.2 Challenges of deploying large models
Deep learning has revolutionised the field of machine learning by enabling the
development of highly accurate models for a wide range of applications. However,
their effectiveness comes at a cost. DNNs become increasingly larger and more
resource-intensive, presenting significant challenges (Fan et al., 2021).

Modern DNNs can have hundreds of millions or even billions of parameters (Sevilla
et al., 2022). For instance, the transformer-based language model GPT-3 developed
by OpenAI, contains roughly 175 billion parameters. Similarly, recent success in
computer vision is tightly coupled with making models deeper and wider; modern
CNNs can have tens to hundreds of millions of parameters (Sevilla et al., 2022).

These growing complexities and sizes of deep learning models present significant
challenges in terms of computation operations (FLOPs), memory footprint, execution
time (latency), and energy consumption. As a result, it becomes difficult or even
infeasible to store and deploy these models on resource-constrained devices such as
edge devices or embedded systems (Neill, 2020). For real-world applications such
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as self-driving cars, robotics, and healthcare where real-time performance is crucial,
especially the growing model size and the resulting increased inference time become
bottlenecks.

Figure 2.6: Conceptual illustration of some NN
Compression techniques. Pruning (top) involves
removing redundant and unnecessary connections
or structures from the network. Quantisation
(middle) is the process of reducing the precision
of network parameters by representing them with
lower bit representations, while weight sharing
(bottom) involves reusing the same weight value
across connections or within structures in a neural
network (Neill, 2020). In the bottom illustra-
tion, different line styles indicate different weights,
whereas the same line style indicates the same
weights.

Efforts have been made to develop ef-
ficient and lightweight models, such as
MobileNet (A. G. Howard et al., 2017).
Although MobileNet reduces parameters
and computational complexity, its execu-
tion of depth-wise separable convolutions
requires significant memory access, re-
sulting in high energy consumption and
reduced efficiency (Sui et al., 2023).

To overcome these challenges, alterna-
tive approaches have been proposed, in-
cluding neural network compression tech-
niques like quantisation, weight sharing,
and pruning (cf. Figure 2.6). By tai-
loring the compression strategies to the
constraints of each individual hardware,
it is possible to substantially reduce the
inference latency, memory footprint and
energy consumption without affecting
the network’s performance considerably.
It is particularly useful to have struc-
tured and robust pruning methods for
scaling the computational requirements
of a model during development since
manually redesigning the model can be
too tedious or even infeasible (Cheng et
al., 2020; Choudhary et al., 2020; Gale
et al., 2019). In this study, our focus is
on neural network pruning. It is clear that pruning techniques will continue to play
an important role, even as the performance of embedded hardware increases, with an
ever-increasing need to deploy bigger and better models while keeping the latency,
energy and memory demands within permissible budgets.

2.2 Neural network pruning
Complex tasks often require deep and complex networks with hundreds of millions or
even billions of parameters. However, early studies have shown that many of those
parameters are redundant and do not contribute much to the model’s predictions
(Hassibi et al., 1993; Lecun et al., 1989). As a result, it is possible to reduce the size
and complexity of the model while maintaining the model’s performance, leading
to reduced inference time, memory requirements, and perhaps even lower power
consumption (Anwar et al., 2015; Gale et al., 2019; Sui et al., 2023). Figure 2.6
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illustrates the fundamental concept behind pruning: Pruning is a technique to
compress a DNN and involves the systematic identification and removal of redundant
or unimportant weights, neurons, or entire structures from a neural network with
little or no performance compromise.

Definition Let W ∈ Rd, d ∈ N, describe the parameter matrix of a neural network.
Given a mask, M ∈ {0, 1}d, pruning of the network can formally be described
as the element-wise product of W and M , W ⊙M ∈ Rd. In this context, M
is called the pruning mask and W ⊙M denotes the parameter matrix of the
pruned network.

While the basic idea of pruning is simple - removing unnecessary weights or struc-
tures from a neural network - the pruning process can be complex and non-trivial.
The selection of weights or structures to remove can significantly impact the final
performance of the pruned network. Thus, many different approaches to pruning
have been proposed, each with its own strengths and weaknesses.

Approaches to pruning range from simple methods, such as random pruning or
magnitude pruning (Han et al., 2015; H. Li et al., 2017), to more complex methods
that require a deeper understanding of the underlying principles of neural networks
(Hassibi et al., 1993; Lecun et al., 1989; Molchanov et al., 2017). In the following, we
introduce classifications of pruning techniques, based on their structure (unstructured
vs structured), method (uniform vs non-uniform), and training pipeline (Figure 1.1).
Furthermore, we discuss some of the most-relevant pruning techniques and methods.

2.2.1 Pruning structure
Over the past few years, various methods for neural network pruning have been
proposed. These approaches can be divided into two main groups: unstructured
(Guo et al., 2016; Han et al., 2015; Hassibi et al., 1993; Lecun et al., 1989; Zhu &
Gupta, 2017) and structured pruning (Y. He et al., 2018; H. Li et al., 2017; Liu et al.,
2017), see Figure 2.7. Unstructured pruning (also called weight pruning) involves
removing individual weights from the network, while structured pruning involves
removing entire structures, such as neurons from fully connected layers, or filters or
channels from convolutional layers.

Unstructured pruning

Lecun et al. (1989) and Hassibi et al. (1993) pioneered unstructured pruning and
select redundant and unimportant weights based on their impact on the loss function.
These early methods, called Optimal Brain Damage (Lecun et al., 1989) and Optimal
Brain Surgeon (Hassibi et al., 1993), estimate weight importance by making a local
Taylor approximation of the loss function and using the second-order derivative of
each parameter. The main drawback of these methods is that the Hessian matrix
needed for the Taylor approximation of the loss is relatively expensive to compute as
it has a complexity of O(n2), where n ∈ N is the number of weights in a NN (Liang
et al., 2021; Neill, 2020). Because of this, other works have focused on using simpler
methods for selecting unimportant weights. For example, Molchanov et al. (2017)
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rely only on the first-order Taylor expansions to approximate the impact of different
weights on the loss.

Figure 2.7: Comparison of unstructured (top)
and structured (bottom) pruning of convolutional
layers. White cubes indicate removed (pruned)
weights from the filter/kernel. Adapted from (Sui
et al., 2023).

One of the simplest weight-pruning
strategies is magnitude pruning (Han
et al., 2015). In magnitude pruning, it
is assumed that weights Wi, i ∈ Nn of
small magnitude ∥Wi∥1,2 have a small
impact on the performance of a model
and thus can be removed. Indeed, under
the constraint of L1 or L2 regularisation
for example, a penalty term is added to
the loss, favouring small weight values.
Thus, weights that do not contribute sig-
nificantly to the model output are ex-
pected to shrink during training. Despite
their simplicity, magnitude-based prun-
ing strategies are widely used in modern
works and have shown excellent perfor-
mance (Gale et al., 2019; Guo et al.,
2016; Renda et al., 2020; Zhu & Gupta,
2017). For example, Han et al. (2015) reduced the number of connections in the
CNN architectures AlexNet and VGGNet on ImageNet by 9x to 13x without any
loss in accuracy.

Although unstructured pruning allows for a high level of flexibility and achieves a
high sparsity ratio, it may not necessarily result in a more efficient network during
inference due to its irregular sparsity. This is because removing individual weights
or connections can cause irregular and fragmented networks that are challenging
to implement efficiently in hardware, as most hardware is not optimised for sparse
matrix multiplications without dedicated libraries (Y. Li et al., 2022; Liu et al.,
2019).

Structured pruning

In recent years, structured pruning methods have gained popularity among researchers
and practitioners as they effectively speed up models while addressing the challenges
of unstructured pruning on resource-constrained devices. By removing entire filters
or other structures, the resulting network can be implemented as a dense network,
utilising well-defined matrix multiplications of standard libraries. Structured pruning
not only reduces the number of parameters but also effectively reduces the dimensions
of feature maps, resulting in a model with reduced storage and memory requirements.

In CNNs, typical structured pruning methods involve removing filters or channels
of convolutional layers. Figure 2.8 shows the relationship between channel and
filter pruning. Pruning a filter in a convolutional layer is equivalent to pruning the
corresponding channel in the subsequent layer (Ma et al., 2020): Let ni, i ∈ N0 be the
number of input channels for the i-th convolutional layer. Further, let Fi,k, k ∈ N0
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denote the k-th filter of convolutional layer i. Then, each filter of layer i has depth
ni. As shown in Figure 2.8, pruning filter Fi,k, k ∈ N0 results in the removal of the
k-th feature map. Subsequently, removal of the k-th channel for all filters in layer
i + 1, Fi+1,j∀j ∈ N0.

Figure 2.8: Relation between filter and channel pruning in convolutional layers. Blue colour
indicates removed/redundant filters or channels. Pruning a filter in layer i is equivalent to pruning
the corresponding channels in layer i + 1. Adapted from (H. Li et al., 2017; Ma et al., 2020).

Furthermore, Figure 2.8 demonstrates an important concept specific to structured
pruning: dependency groups. Figure 2.8 illustrates that when structures (e.g.,
channels or filters) in layer i are pruned, it has a cascading effect on other layers.
Consequently, the layers influenced by the pruning of structures in layer i are referred
to as its dependency group. In simpler terms, pruning a structure in layer i not
only impacts that specific layer but also has consequences for other layers in the
neural network. The notion of dependency groups helps identify which layers are
interconnected and affected by the removal of structures, enabling informed decisions
about the pruning process and minimising potential negative effects on the network’s
performance.

One widely-used approach to structured pruning is the structured counterpart to
unstructured magnitude pruning. In structured magnitude pruning, the importance
of entire filters is captured according to their kernel weights. For example, H.
Li et al. (2017) prune filters with the lowest L1-norm, ∥Fi,j∥1, and successfully
reduce floating-point operations (FLOPs) by 30% on widely-used CNN architectures
while maintaining performance. However, recent research has highlighted a concern
within the field of pruning. H. Wang et al. (2023) mention “the confusion state
network pruning” (p. 1) and criticise the lack of a fair comparison setup in the
pruning literature. For example, they re-investigate the effectiveness of L1-norm
magnitude pruning and demonstrate comparable or even better performance than
more sophisticated pruning techniques by simply modifying the pruning pipeline.

2.2.2 Pruning ratio
One hyperparameter that can have a significant impact on the effectiveness and
efficiency of the pruning process, is the pruning ratio (more generally known as
the compression ratio). Across the literature, a number of different definitions of
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pruning ratio can be found (Blalock et al., 2020). For example in (Liu et al., 2019)
the pruning ratio “stands for total percentage of channels that are pruned in the
whole network” (p. 6), whereas in (Blalock et al., 2020) “compression ratio is defined
as the original size divided by the new size” (p. 8). Additionally, there seems to be
no common ground in the choice of pruning ratios for benchmarking, with different
works applying different compression ratios (Blalock et al., 2020; Liu et al., 2019;
H. Wang et al., 2023).

In this work, we define the pruning ratio in terms of FLOPs. FLOPs describe the
number of floating point operations required for a single forward pass. Roughly
speaking, ignoring hardware, the higher the FLOPs the slower the model and vice-
versa. In the context of pruning, the reduction in FLOPs is a proxy for the reduction
of latency, memory usage, and power consumption (Blalock et al., 2020). We define
the pruning ratio as the ratio of the total number of FLOPs of the pruned model
Fpruned to the total number of FLOPs of the original network Foriginal,

Pruning ratio = Fpruned

Foriginal

.

To illustrate, consider a pruning ratio of 0.6. This ratio implies that the model is
pruned to 60% of its FLOPs, meaning the resulting compressed model retains 60%
of the original FLOPs.

The optimal pruning ratio depends on several factors, such as the underlying pruning
method, especially the pruning structure, and the model architecture. For an optimal
pruning ratio, the trade-off between a reduction in performance and high compression
of the network must be considered, as lower pruning ratios can lead to more significant
performance degradation.

2.2.3 Uniform vs non-uniform pruning
During pruning, weights or structures can either be removed on a per-layer (uniform)
or a global (non-uniform) level. In uniform pruning, also known as local pruning,
the same ratio of, for example, FLOPs or weights is removed in each layer according
to the predefined pruning ratio. Non-uniform pruning, sometimes referred to as
global pruning, applies the pruning ratio to the whole network and all layers are
pruned at once. In non-uniform pruning the layer-level pruning ratio is automatically
determined by the pruning algorithm. Figure 2.9 shows a conceptual comparison of
uniform and non-uniform pruning.

Uniform layer-wise pruning usually underperforms non-uniform pruning methods
(Blalock et al., 2020). This is because different layers may have different levels
of importance, and pruning them uniformly can remove important information.
Uniform pruning can be considered a baseline each non-uniform pruning strategy
should achieve because each pruning mask achieved through uniform pruning can
also be achieved through non-uniform pruning.
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2.2.4 Pruning pipeline

Figure 2.9: Difference between uniform (local) and
non-uniform (global) pruning, filter pruning as an
example. x is predefined, while a, b, and c are
determined by the pruning algorithm. Adapted
from (Liu et al., 2019).

The standard approach to NN pruning
involves the three-step pipeline of train-
ing, pruning, and fine-tuning (iterative
or one-shot), see Figure 1.1. This three-
step pruning pipeline is as follows: first,
train the network to the desired level of
accuracy; second, prune the network by
setting some of the weights to zero based
on a predetermined criterion; and third,
fine-tune the pruned network to regain
the lost accuracy (Han et al., 2015; H. Li
et al., 2017).

However, recent studies have questioned
the effectiveness of this pipeline. For
structured pruning, Crowley et al. (2019)
and Liu et al. (2019) have been able
to show that compact models obtained
through pruning but retrained from
scratch can achieve at least comparable performance compared to fine-tuning the
pruned models. In this context, retraining from scratch means training the pruned
model as a dense model with randomly initialised weights. Liu et al. (2019) compared
a number of structured pruning algorithms, including magnitude pruning, and found
that “fine-tuning a pruned model only gives comparable or worse performance than
training that model with randomly initialized weights” (p. 1).

Moreover, H. Wang et al. (2023) argue that whether or not retraining from scratch is
comparable to fine-tuning a pruned model highly depends on the chosen comparison
setup. While “both the pruned architecture and its associated weights are believed
to be essential for obtaining the final efficient model” (H. Wang et al. (2023), p. 1),
these studies suggest that retraining from scratch may be a viable alternative to
fine-tuning in certain scenarios.

In the case of unstructured pruning, Frankle and Carbin (2019) argue

“dense, randomly-initialized, feed-forward networks contain subnetworks
(winning tickets) that—when trained in isolation reach test accuracy
comparable to the original network in a similar number of iterations”
(p. 1).

This is called the lottery ticket hypothesis. One key aspect when training the sub-
network from scratch is the initialisation of network parameters: Instead of randomly
initialising the network, its parameters are reset to their value earlier in the training
cycle, see Figure 1.1. The lottery ticket hypothesis has received a lot of attention
within the pruning research community as it provides a rationale for pruning without
the need for a fully trained model (Lee et al., 2019; Tanaka et al., 2020; C. Wang
et al., 2020; Y. Wang et al., 2019). This hypothesis challenges the prevailing belief
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that fully-trained over-parameterised networks are necessary for achieving optimal
performance (Arora et al., 2018; Chang et al., 2020), and raises the question about
how to identify important weights prior to training.

Y. Wang et al. (2019) have investigated the effect of pre-training on pruning in an
empirical study. They found that winning tickets can be directly derived from a
random-initialised over-parameterised dense network with little or no retraining,
demonstrating the possibility of pruning at initialisation as displayed in Figure 1.1.
The cost of pruning can be reduced by pruning DNNs at initialisation rather than
after training. Consequently, this approach presents an attractive alternative to
the prevailing and often computationally expensive iterative three-step pruning
pipeline. As such, researchers propose pruning at initialisation and aim to further
investigate the effectiveness, efficiency, and generalisability of this approach across
various network architectures and datasets (Cai et al., 2022; Lee et al., 2019; C. Wang
et al., 2020; Y. Wang et al., 2019).

Although pruning approaches differ in how they apply pruning to a model, they share
a commonality: pruning is closely tied to the training of a model. A crucial factor in
training and optimising DNNs is the choice of model hyperparameters as they affect
a model’s convergence, generalisability, and overall performance. Properly tuning
these hyperparameters is essential to achieve optimal training results and maintain
the performance of the pruned model. Therefore, the process of pruning and training
a model are linked, with both relying on careful selections of one another for optimal
performance and efficiency.

2.3 Hyperparameters in deep learning
Model hyperparameters play a crucial role in deep learning, as they are tightly coupled
to the performance of a model during inference and its behaviour during training.
Hyperparameters are set before the training process and, unlike model parameters,
cannot be automatically learned. Carefully tuning these hyperparameters can
significantly improve the performance and robustness of the model (Yu & Zhu, 2020).
For example, optimiser-related hyperparameters such as learning rate, momentum,
and weight decay influence the speed of convergence and the model’s generalisation
ability (L. N. Smith, 2018).

However, finding optimal hyperparameters is a challenging and time-consuming
task, often requiring years of expertise and long trial-and-error iterations when done
manually. Despite the success of deep learning, this process still heavily relies on
intuition rather than well-established scientific approaches (L. N. Smith, 2018). The
question of how to find the optimal hyperparameters and model architecture in an
effective and time-efficient way remains an active area of research with ongoing efforts
to improve the overall understanding of neural networks.

In this section, we provide a brief overview of some of the most important hyper-
parameters, explain their effects on model performance, and explore techniques for
optimising them (Bergstra & Bengio, 2012; Jones et al., 1998; L. Li et al., 2018;
Mockus, 1975). Additionally, we discuss related work within the hyperparameter
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literature, such as studies on the sensitivity of hyperparameters (Novello et al., 2022;
Taylor et al., 2021), along with studies on the complex interplay of DL hyperparam-
eters and the impact of architectural changes on them (L. N. Smith, 2018, 2022;
S. L. Smith et al., 2018; Yang et al., 2022).

2.3.1 Classification of neural network hyperparameters
We classify deep learning hyperparameters into three types based on their relationship
to a model’s training, architecture, or optimiser. The following hyperparameter
classification is unique to this work, and other works may differ as there is no
commonly used hyperparameter categorisation. Table 2.3 provides a brief overview
and description of some of the most common training and optimiser hyperparameters.

Hyperparameter Typical Range or
Values

Description

Batch Size {2n, n ∈ N≥5} Number of samples in each iteration
Epochs [5, 1000] Number of training cycles
Learning Rate γ [10−7, 0.5] Step size of gradient descent optimiser
LR Decay [0, 1] Reduction of γ
LR Decay Step [1, max(epochs)] Epoch at which LR decay is applied (dur-

ing training, LR decay can be applied
several times)

Weight Decay λ [10−7, 0.5] Regularises the model by adding penalty
term to the loss

Momentum µ [0, 0.99] Acceleration factor for gradient descent
optimiser

Table 2.3: Description of relevant hyperparameters in this work including typical range or values.
Adapted from (Taylor et al., 2021).

Training hyperparameters

Training Hyperparameters, such as the batch size or the number of epochs, control
the training process of a model. These hyperparameters are tightly coupled with the
speed of training and overfitting of a model. A larger batch size can lead to faster
convergence and better utilisation of hardware resources, but it may also result in
overfitting or poor generalisation to unseen data (L. N. Smith, 2018). The number
of epochs describes the number of times the model iterates over the entire training
dataset. A larger number of epochs can lead to better utilisation of hardware but
may also result in overfitting or longer training times. Overfitting occurs when the
model learns to fit the training data too well, resulting in poor generalisation to new,
unseen data (L. N. Smith, 2018).

Architecture hyperparameters

Architecture hyperparameters include parameters related to the model’s architecture
and weights, for example, the number (depth) or size (width) of layers and their
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initialisation. Weight initialisation methods are important in deep learning because
they help ensure that the NN can learn effectively during training. Poorly initialised
weights can cause the network to take a long time to converge, or not converge at
all. Some popular methods include Xavier (also called Glorot initialisation) (Glorot
& Bengio, 2010) and He (also called Kaiming) (K. He et al., 2015a) initialisation.
These methods take into account the size of the network, the activation functions
used, and other factors to help choose the best initial values for the model weights.

Optimiser hyperparameters

In addition to the batch size, number of epochs, and weight initialisation method,
optimiser hyperparameters play a crucial role in model training. Stochastic gradient
descent (SGD) and its variants, such as Adam (Kingma & Ba, 2017) and Adagrad
(Duchi et al., 2011), are commonly used optimizers in deep learning and control
how the model’s parameters are updated during training. These optimisers have
hyperparameters such as the learning rate and momentum that control the update
rule for the model’s parameters.

The learning rate (LR) is considered one of the most important hyperparameters in
deep learning and determines the step size taken in each parameter update (Bengio
et al., 2013). As shown in Equation 2.1, this hyperparameter can have a significant
impact on training speed and convergence. For instance, a higher learning rate
may result in faster convergence, but could also cause the model to overshoot the
optimal solution and diverge, while a lower learning rate may converge more slowly
but with better accuracy. The LR is tightly coupled with the learning rate scheduler
which dynamically adjusting the LR during training. In our experiments, a simple
step-wise learning rate schedule is applied. The step-wise LR scheduler decreases
the LR at predetermined steps during the training process. Typically, the learning
rate decreases towards the end of the training proceeds to fine-tune the model’s
parameters and to prevent overshooting the optimal solution (Bengio et al., 2013).

Weight decay is a common regularisation technique used in deep learning to prevent
overfitting. Weight decay adds a penalty term to the loss function and encourages
the model to learn smaller weight values. This penalty term effectively shrinks the
weights towards zero during training, reducing their magnitude and making the
model less prone to overfitting (Bengio et al., 2013).

When using SGD with momentum as an optimiser, Equation 2.1 shows the weight
update after each batch (Paszke et al., 2019). Let γ describe the learning rate, λ
the weight decay, and µ momentum which controls the effect of past gradients on
the weight update. Let W be the model parameters (weight and biases) we aim to
optimise and L the loss of the neural network on the training dataset, then

V ← µV +∇W L(W ) + λW

w ← W − γV,
(2.1)

where V ← ∇W L(W ) + λW at step 0.

Equation 2.1 displays the complex interplay of DNN hyperparameters in training a
model. Notably, L. N. Smith (2018) investigate the behaviours of four deep learning
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hyperparameters - learning rate γ, weight decay λ, batch size β, and momentum µ
- and provide recommendations for setting them. These four hyperparameters are
widely recognised as being highly relevant to the training of a model (L. N. Smith,
2018). Previous works such as L. N. Smith (2022) and S. L. Smith et al. (2018) have
been able to show an empirical relationship underlining their complex interplay:

γ · λ
β · (1− µ) ≃ 10−6, (2.2)

in the case of SGD as an optimiser.

2.3.2 Hyperparameter optimisation
Hyperparameter optimisation (HPO) refers to the process of finding the optimal hy-
perparameters of a model for a given dataset and task. The optimal hyperparameters
are those that maximise the model’s performance, such as its accuracy, or minimise
its generalisation error or loss (Yu & Zhu, 2020). Early studies have demonstrated
that optimal hyperparameters vary across different datasets and tasks, highlighting
the importance of efficient and effective HPO techniques (Kohavi & John, 1995).

Various techniques and toolkits have been introduced to automate the hyperparam-
eter tuning process. These techniques range from simple grid and random search
algorithms (Bergstra & Bengio, 2012) to more sophisticated methods like Hyper-
band (L. Li et al., 2018), which terminates unpromising runs early, and Bayesian
optimisation (Jones et al., 1998; Mockus, 1975), which utilises a probabilistic model
to approximate the hyperparameter performance space of the network.

Despite these advancements, HPO is still considered a ‘black art’ due to the complex
relationship between hyperparameters and model performance (L. N. Smith, 2018).
Moreover, the need for effective and efficient HPO has become more critical than ever
given that complex DNNs on large datasets can take days, weeks, or even months to
train (OpenAI et al., 2019). Thus, the study of hyperparameters continues to be
an important area of research, with ongoing efforts to improve the understanding
of hyperparameters and their relationship with a model’s performance in order to
develop more efficient and effective techniques for optimising complex deep learning
models.

Tuning architecture hyperparameters: Neural architecture search

Traditionally, HPO focuses on optimising training and optimiser hyperparameters
while keeping the neural architecture fixed. On the other hand, neural architecture
search (NAS) automatically searches for the optimal neural architecture, including
decisions like the number of layers, nodes per layer, and connections between layers.
Historically, HPO and NAS were treated as separate problems, with each addressing
their own tasks independently, using specialised techniques and frameworks. However,
recent advancements highlight the potential benefits of integrating HPO and NAS
into an unified framework. Jointly optimising hyperparameters and architectures
enables better performance and more efficient exploration of the search space (Elsken
et al., 2019; Shala et al., 2023).
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“The NAS literature at the moment underexplores the impact of hyperpa-
rameters on the performance of an architecture. In fact, it is commonly
known that the same architecture would perform differently if the training
pipeline is altered, for example by changing the learning rate, the number
of epochs, or the degree of regularization” (Shala et al. (2023), p. 9)

Although we do not conduct NAS in our study, the process of structured pruning,
where the pruned model is retrained after compression, can be considered a form
of NAS. In this scenario, pruning identifies the optimal sub-network structure by
eliminating structures, such as entire neurons or filters from the network, thereby
altering the width of individual network layers and consequently modifying the
overall architecture while adhering to the original unpruned network architecture.

2.3.3 Importance of hyperparameters and their optimisation
In classical machine learning (ML), default hyperparameters often provide reasonable
performance across a wide range of tasks and datasets. For instance, Weerts et al.
(2020) demonstrate that their computed default values for two classical ML algo-
rithms, Random Forest and support vector machines (SVM), often yield comparable
performance to tuning hyperparameters. They provide an empirical study using 59
datasets to investigate the performance loss when a hyperparameter is not tuned
and set to its default value, investigating whether it is important to tune a hyper-
parameter. Both works quantify the risk of not tuning a specific hyperparameter,
called tuning risk in (Weerts et al., 2020) or tunability in (Probst et al., 2018).

Although these studies in classical ML have demonstrated that default values often
yield satisfactory performance, these findings may not be applicable to deep learning
models and tasks. In deep learning, the underlying tasks are typically more complex
compared to those where classical ML algorithms excel. Consequently, complex
models with numerous parameters are required to tackle the increased complexity of
the task and dataset. Given this increased complexity it is non-trivial to generalise
optimal hyperparameters across diverse datasets, model architectures, and tasks in
deep learning (Yang & Hu, 2022).

However, recent research has shown promising results in transferring optimal hyperpa-
rameters between tasks under restricted settings where only a few conditions change.
For example, Yang et al. (2022) demonstrate that with Maximal Update Parameteri-
sation introduced in (Yang & Hu, 2022) (i) specific deep learning hyperparameters
remain stable even as model size changes, and (ii) these hyperparameters can be
tuned using a simpler sub-model achieved through scaling the model’s width. This
technique, referred to as µTransfer, offers the potential for stable hyperparameters
across controlled changes to the model architecture.

The approach in Yang et al. (2022) is limited to a few model hyperparameters. For
example, hyperparameters related to regularisation, such as weight decay, cannot
be easily transferred using their approach. Furthermore, their experiments vary a
particular hyperparameter while keeping all other hyperparameters constant, thus
overlooking potential interactions between hyperparameters.
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Furthermore, Park et al. (2019) studied the effect of network width scaling on the
optimal hyperparameters for SGD. Scaling the width of a model can be seen as
uniformly pruning (or extending) a model. For example, in CNNs, width scaling a
model refers to uniformly, with respect to the original model size, adding or removing
layers from convolutional layers. Park et al. (2019) showed a proportional relation
between the learning rate and batch size and network width, in the absence of batch
normalisation.

We contribute to the existing research by addressing the behaviour of hyperparameters
under changes caused by pruning. Specifically, we focus on interactions between
learning rate and weight decay, as they are known for their strong relationship, see
Equation 2.2.

Importance of hyperparameters

Usually, not all hyperparameters are of equal importance to the performance of a
model. Meaning, that by tuning just a few hyperparameters, model performance
can be significantly improved. As a result, there are a few studies on the ranking of
hyperparameters.

For example, Novello et al. (2022) combine hyperparameter optimisation with a sensi-
tivity analysis of hyperparameters. In general, sensitivity analysis involves capturing
the effect of inputs on a function’s output. Their approach employs a statistical
dependence measure to quantify hyperparameter contributions to model performance,
resulting in a more interpretable HPO process that concentrates on the most relevant
hyperparameters. Furthermore, Taylor et al. (2021) employ sensitivity analysis to
assess the relationship between model architecture, hyperparameter convergence,
and input data statistics. They show that the influence of a hyperparameter is
closely tied to the architecture, with shallower models more strongly influenced by
training hyperparameters, such as the number of epochs, and deeper models being
more strongly influenced by optimiser hyperparameters. In this context, Taylor et al.
(2021) define the influence of a hyperparameters “in terms of contribution to model
accuracy” (p.1).

2.3.4 Hyperparameter performance space
In this section, we formally introduce the concept of the hyperparameter performance
space. In our experimental setup, we focus on two specific model hyperparameters:
learning rate and weight decay. Both of these hyperparameters are continuous in
nature. For the sake of simplicity and clarity, we concentrate on the two-dimensional
scenario, where only two continuous hyperparameters can be adjusted. The following
definition of the hyperparameter performance space can be easily adapted to any
number of continuous hyperparameters.

Definition For k ∈ N, let Xk describe the space of possible values of the k-th
hyperparameter of a neural network. Further, let the i-th and j-th hyperpa-
rameters of the model be flexible, with i, j ∈ N, and all other hyperparameters
are kept fixed. We define f : Xi × Xj → R, where f(x, x′) describes the
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performance of the model on a held-out validation set after training with the
hyperparameters x ∈ Xi, x′ ∈ Xj. Then, {(x, x′, f(x, x′)) | (x, x′) ∈ Xi × Xj}
describes the hyperparameter performance space of the model with respect to
the i-th and j-th hyperparameter.

In our experiments, we approximate the relationship between hyperparameters
and performance under pruning by sampling from the joint space of Xi × Xj and
training the model with the given hyperparameter initialisation. To gain a deeper
understanding of this space, we use a number of tools and methods. These include
visual analysis and interpretation techniques, as well as quantified measures. By
employing these approaches, we can effectively compare the performance landscape
across various pruning strengths and methods, gain insight into the impact of pruning
on this relationship, and assess the risk of HPO after pruning.
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Chapter 3

Methodology

As discussed in Section 2.3, hyperparameters and their interaction with changes
in the architecture, dataset, or task have been widely studied in the deep learning
literature. Numerous studies have investigated the importance of selecting appropriate
hyperparameters to achieve optimal model performance. The architecture of a model
is one factor that significantly affects the selection of hyperparameters (cf. Section
2.3). Different architectures may require different hyperparameter settings to attain
the best results. To our best knowledge, the impact of pruning, which alters the
architecture of a model in a structured way, on the optimal hyperparameters has
received limited attention in the literature.

In this chapter, we discuss our methodology and experimental setup for investigating
the impact of deep neural network pruning on the hyperparameter performance space
of a model. The experimental design is structured as follows: Given a dataset-model
combination with optimal hyperparameters (Section 3.1), we first span a bigger
region of the hyperparameter performance space around the vicinity of the optimal
hyperparameter set (Section 3.3) in order to approximate the performance surface
we introduced in Section 2.3. Next, we prune the models to various degrees (Section
3.2) utilising widely-used structured pruning methods: uniform and non-uniform
magnitude pruning. Then, the hyperparameter performance space of the compressed
model is captured by retraining this model from scratch, following pipeline (d) in
Figure 1.1. By observing the shift in the performance landscape between the original
model and pruned model, we aim to identify how hyperparameters change under
pruning and how aggressively models can be pruned before the hyperparameters
need to be reconsidered for optimal performance.

The experiments in our work are designed in a hierarchical order, from simple to more
complex. Our experiments vary in terms of dataset size (CIFAR-10 and ImageNet),
model architecture and complexity (ResNet and MobileNet), and pruning method
(uniform and non-uniform magnitude pruning), allowing for a comprehensive study
of the effect of structured magnitude pruning under different conditions.
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3.1 Datasets, model architectures, and training
setup

In our experiments, we follow recommendations given by Blalock et al. (2020)
and utilise two popular image recognition datasets in our experiments: CIFAR-
10 (Krizhevsky, Hinton, et al., 2009) and the image classification dataset from the
large-scale visual recognition challenge 2012-2017 (ImageNet) (Russakovsky et al.,
2015); as well as three widely used CNN architectures for image classification: ResNet-
56, ResNet-50 (K. He et al., 2015b), and MobileNetV2 (Sandler et al., 2019), see
Section 2.1.1.

3.1.1 Datasets
Both datasets, CIFAR-10 and ImageNet, are popular benchmarks in computer vision
and have been widely adopted in the pruning and deep learning communities (Blalock
et al., 2020). Figure 3.1 shows a random selection of training images in the CIFAR-10
and ImageNet datasets. CIFAR-10 is a smaller and simpler dataset compared to
ImageNet, with low-resolution images and a limited number of classes, see Table 3.1.
Therefore, it provides a faster and less computationally expensive way to evaluate
the impact of different pruning techniques and hyperparameters on the performance
of a model. On the other hand, ImageNet is a much larger and more complex dataset
with higher-resolution images and a larger number of classes. In comparison to
CIFAR-10, ImageNet provides a more challenging and realistic classification task,
closer to real-world scenarios (Russakovsky et al., 2015).

Dataset Input shape Training
Images

Validation
Images Classes

CIFAR-10 32× 32× 3 50, 000 10, 000 10
ImageNet 224× 224× 3 1, 281, 167 50, 000 1000

Table 3.1: Comparison of CIFAR-10 and ImageNet datasets. The table displays the image
dimensions as used in this work.

CIFAR-10 CIFAR-10 consists of 60, 000 32 × 32 colour images in 10 classes.
The dataset is split into 50, 000 training and 10, 000 validation images, with a
balanced distribution of classes in both sets. CIFAR-10 has been widely used
to evaluate the performance of various DL models and pruning methods due to
its limited size and simplicity (Blalock et al., 2020; Krizhevsky, Hinton, et al.,
2009).

ImageNet ImageNet provides a diverse set of images representing various objects,
animals, and scenes in 1000 different categories, thus introducing more diversity
compared to CIFAR-10. The dataset comprises over 1.2 million training images
and 50, 000 validation images, with a balanced distribution of images across
the classes. The balanced distribution of images across the 1000 classes ensures
that no single class dominates the dataset, making it a fair evaluation of the
performance (Russakovsky et al., 2015).
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(a) CIFAR-10 (b) ImageNet

Figure 3.1: Randomly selected training images of the CIFAR-10 and ImageNet datasets. For
CIFAR-10 the images are resized to dimensions 32× 32.

Utilising both the CIFAR-10 and ImageNet datasets allows us to conduct a compre-
hensive analysis. This approach takes into account that the optimal hyperparameters
depend not only on the architecture of a model but also on the specific task and
dataset, as discussed in Section 2.3. Evaluating the impact of pruning across varying
complexity, size, and image resolution increases the robustness of our results.

For example, if we obtain consistent results across both datasets, we can assume that
the observed effects are more likely to hold in other similar datasets or real-world
applications. Therefore, utilising two different datasets increases the validity and
reliability of our findings. Conversely, inconsistencies between the datasets can also
provide insights into the limitations and specific characteristics of the impact of
pruning on a model’s hyperparameter landscape.

Our experimental setup involves two distinct data subsets: the training and validation
datasets. Given a hyperparameter configuration, the training dataset is used by
the optimiser to train the model. Once the training is completed, we evaluate
the model’s performance on the validation dataset. The performance of the model
on the validation set, along with the corresponding hyperparameter configuration,
constitutes a single point in the hyperparameter performance space.

Data preprocessing

Data preprocessing, particularly data augmentation, is crucial for deep learning as it
increases the number of training examples and introduces variety. Data augmentation
involves altering the training data, which makes it more challenging for the model to
memorise the data and encourages the learning of general patterns. By training on
augmented data, the model becomes more robust and capable of handling variations
in real-world data, often leading to improved performance and generalisation.
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Our data augmentation pipeline for CIFAR-10 follows widely-adopted practices (K.
He et al., 2015b): To prepare the training set, a zero-padding of 4 pixels is added to
each side of the image. Next, a 32× 32 crop is randomly sampled from the padded
image or its horizontal flip, and finally, the image is normalised by subtracting
the mean and dividing it by the standard deviation of the training dataset. This
normalisation step ensures that the pixel values have a zero mean and a standard
deviation of one, which is a common practice in image processing for deep learning.
For the validation set, we only apply normalisation to the single view of the original
32× 32 image. For both, the training and validation subsets, the normalisation is
based on the training datasets’ mean and standard deviation.

For training on ImageNet, we preprocess the images by randomly sampling a 224×224
crop from the resized 256× 256 colour image, followed by normalisation of the single
view or its horizontal flip, adopting common practices (K. He et al., 2015b). For
validation, images are only centre-cropped to size 224× 224 and normalised. Similar
to the normalisation process used for the CIFAR-10 dataset, normalisation of the
ImageNet training and validation set involves subtracting the mean (of the training
dataset) and dividing by the standard deviation of the training dataset.

With this adaptation of the original MobileNetV2 architecture we follow the from
Ayi and El-Sharkawy (2020) as used for their basemodel.

3.1.2 Model architectures
All three architectures we utilise in our experiments, namely ResNet-56, ResNet-
50 (K. He et al., 2015b), and MobileNetV2 (Ayi & El-Sharkawy, 2020; Sandler
et al., 2019), are commonly used in the DNN pruning literature (Blalock et al., 2020;
Liu et al., 2019). Specifically, we utilise an adapted version of MobileNetV2 for
32× 32× 3 images as described in Section 2.1.1 and ResNet-56 on the CIFAR-10
dataset, as well as ResNet-50 on the ImageNet dataset. These architectures were
chosen based on their proven track record of success in previous literature and their
ability to handle the complexity of the datasets used in this study. Additionally,
we intentionally included a wide range of model complexities to encompass a broad
spectrum of architectural designs and capabilities. Table 3.2 summarises the key
characteristics of the architectures.

Architecture Input shape Parameters (M) FLOPs
ResNet-56 32× 32× 3 0.85 2.5× 108

MobileNetV2 32× 32× 3 2.2 6.1× 108

ResNet-50 224× 224× 3 25.6 8.2× 109

Table 3.2: Comparison of MobileNetV2, ResNet-56, and ResNet-50. The number of FLOPs are
measured using “Embedl Model Optimization SDK” (2023).

The purpose of using multiple model architectures in our experiments is to get a better
understanding of the factors influencing model performance and their interactions
under pruning. ResNets are widely recognised for their ability to effectively train
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very deep neural networks using residual connections. In contrast, MobileNetV2 is
characterised by its computational efficiency, making it suitable for deployment on
resource-constrained devices. By using both ResNets and MobileNetV2, we gain
valuable insights into the transferability and generalisability of our results across
varying model depths and architectural designs.

For example, if we observe that pruning has a consistent impact on the performance
landscape across various model architectures, it suggests that the effect of pruning
may be less dependent on the architecture. Instead, its effect could be more influenced
by the characteristics of the task and the pruning method employed.

3.1.3 Training setup and model hyperparameters
In our experiments, we utilise the Python deep learning library PyTorch for training
and evaluation of models (Paszke et al., 2019). Model implementations and training
recipes are adapted from various sources:

• Idelbayev (2018): Implementation of ResNet-56 and training recipe for the
experiments on CIFAR-10

• Chen (2018): Implementation of MobileNetV2

• maintainers and contributors (2016): Implementation of ResNet-50 and training
recipe for the experiments on ImageNet

On CIFAR-10, we use the same training and initialisation setup for ResNet-56 and
MobileNetV2, shown in Table 3.3. In particular, we follow descriptions from K. He et
al. (2015b) closely and train both models with SGD as an optimiser with momentum
set to 0.9. We initialise the model parameters via He initialisation before training
and before retraining from scratch after pruning. ResNet-56 and MobileNetV2 are
trained with a batch size of 128 using a single NVIDIA T4 or A40 GPU, respectively.
Both models are trained for 180 epochs, with a step-wise learning rate schedule
dividing the learning rate by 10 after 50% and 75% of the training epochs (after 90
and 135 epochs). This training setup follows widely-adopted practices for training
MobileNetV2 and ResNet-56 on the CIFAR-10 dataset.

Hyperparameter Value for CIFAR-10 Value for ImageNet
Weight Initialiser He Initialisation He Initialisation
Optimiser SGD SGD
LR Schedule step-wise step-wise
LR Decay 0.1 0.1
LR Decay Steps 90, 135 30, 60
Momentum 0.9 0.9
Batch Size 128 256
Epochs 180 90

Table 3.3: Training setup and model hyperparameters for ResNet-56 and MobileNetV2 on CIFAR-10
and for ResNet-50 on ImageNet. See Table 2.3 for descriptions of the hyperparameters.
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For training ResNet-50 on ImageNet we adopt the simple training recipe outlined in
the Python library Torchvision (maintainers & contributors, 2016), see Table 3.3.
Similar to the training of ResNet-56 and MobileNetV2 on CIFAR-10, ResNet-50’s
optimiser for training is SGD with momentum set to 0.9 and its weights are initialised
using He initialisation. ResNet-50 is trained with a mini-batch size of 256 utilising a
single NVIDIA V100 GPU. Training is terminated after 90 epochs and the learning
rate is divided by 10 every 30 epochs.

Performance metrics

To understand the relationship between learning rate, weight decay, and the pruning
ratio, we train a model for varying values of learning rate, weight decay, and pruning
ratio and measure final performance on held-out validation data.

Top-1 accuracy For evaluating a model’s performance on the validation set we
use the top-1 accuracy as a metric: Let ŷ be the predicted values of the samples
in the validation dataset with true values y, then the top-1 accuracy is defined
as

top-1 acc(y, ŷ) = 100
nsamples

nsamples−1∑
i=0

1{yi}(ŷi), (3.1)

where nsamples ∈ N is the number of samples in the validation set and 1 is the

indicator function; for example, given a set A it is 1A(x) =

0 if x ∈ A,

1 if x /∈ A.
.

All of our datasets have a balanced distribution of classes in the validation
subset. Hence, the top-1 accuracy poses a fair evaluation of the performance
of the model.

Top-5 accuracy In the case of experiments on ImageNet we additionally report
the top-5 accuracy:

top-5 acc(y, ŷ) = 100
nsamples

nsamples−1∑
i=0

5∑
j=1

1{yi}(ŷi,j), (3.2)

where ŷi,1, . . . , ŷi,5 indicate the top-5 predicted classes of the i-th sample in
the validation set. The top-5 accuracy is a common method for benchmarking
models on ImageNet because this dataset contains a large number of classes
(1000 different classes) with many being visually similar.

While the top-1 accuracy measures whether the model’s top predicted class matches
the ground truth label, considering only the most confident prediction. The top-5
accuracy considers whether the correct label is in the model’s top-5 predictions. Due
to the complexity of ImageNet, there can be cases where the model’s prediction
is still considered reasonable even if the top prediction is incorrect. For example,
if the ground truth label is‘greater swiss mountain dog,’ but the model predicts
‘bernese mountain dog’ as the top class, it’s still a reasonably accurate prediction
(Russakovsky et al., 2015), see Figure 3.1b. Thus, by reporting both top-1 and top-5
accuracy for ImageNet experiments, we get a more comprehensive understanding of
the model’s performance on this dataset.
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We do not report the top-5 accuracy for models on the CIFAR-10 dataset. This
dataset is relatively simple with 10 distinct classes (Krizhevsky, Hinton, et al., 2009).
Because of this, reporting only the top-1 accuracy is considered sufficient in research
and practice as the additional information provided by the top-5 accuracy is less
meaningful given the small number of classes in this dataset.

3.2 Pruning method
As discussed in Section 2.2, there exists a wide range of pruning techniques and
methods to choose from. The goal of this study is to gain a better understanding of the
relationship between pruning and model performance in general, rather than focusing
on achieving state-of-the-art results. Hence, we select well-established techniques for
pruning and utilise uniform (local) and non-uniform (global) structured magnitude
pruning, according to the L1-norm of the weights of the filters, ∥Fi,j∥, i, j ∈ N0,
given the notation introduced in Section 2.2. For pruning, we employ the “Embedl
Model Optimization SDK” (2023).

The non-public availability of the Embedl Model Optimisation SDK may raise
concerns regarding the reproducibility of results. Since the SDK is not accessible
to the wider research community, it restricts the ability to replicate and verify
the findings of our study. However, our experiments rely on widely-adopted and
well-known pruning techniques that can be easily implemented using alternative
open-source libraries or frameworks. In the following, we provide a description of
the pruning methodology employed in our study, referring to relevant literature to
ensure transparency and facilitate reproducibility to the best extent possible.

Magnitude pruning is a simple yet widely-used and effective technique for compressing
a model. It has proven to be a staple in the pruning literature and is often considered
a baseline for many modern and more complex pruning methods, as we discussed
in Section 2.2.1. Its simplicity makes it easy to implement and interpret, while
its effectiveness in both structured and unstructured pruning scenarios has been
well-documented, see Section 2.2.1. By selecting this widely-used technique, we aim
to gain valuable insights into the general relationship between pruning and model
performance.

In the remainder of this sections, we provide a detailed explanation and rationale of
how we prune. Specifically, we follow the classification introduced in Section 2.2 and
discuss the structure (unstructured vs structured), method (uniform vs non-uniform),
and training pipeline of our pruning method. Further, we present the specific pruning
ratios employed in our experiments. The choice of pruning ratio plays a significant
role in determining the strength of pruning, which, in turn, has a crucial impact on
the final performance and architecture of the model (cf. Section 2.2.2).
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3.2.1 Pruning structure
In our experiments, we focus on structured pruning methods due to their widespread
interest in both research and practice. In contrast to unstructured pruning, structured
pruning results in a dense network, allowing for better hardware utilisation and
improved inference speed (cf. Section 2.2.1).

As shown in Figure 2.8, filter and channel pruning can be used interchangeably:
Pruning an input channel of a layer is the same as pruning the corresponding filter
of the previous layer and vice-versa. Thus, in the context of this work, we don’t
differentiate between filter and channel pruning for convolutional layers. Instead, the
removal of filters or channels is collectively referred to as structured pruning.

3.2.2 Pruning ratio
As discussed in Section 2.2.2, the pruning ratio is one of the most important hy-
perparameters when pruning a model. We expect different pruning strengths (as
determined by the pruning ratio) to have different effects on the hyperparameter
performance space of a model. This is because a higher pruning ratio produces a
pruned model closer to the original model compared to a smaller pruning ratio.

For experiments on CIFAR-10 we perform uniform and non-uniform magnitude
pruning using two different pruning ratios for each model. Namely, for ResNet-56
on CIFAR-10 we utilise pruning ratios of 0.6 and 0.2, meaning that 60% or 20% of
the model’s FLOPs remain after pruning. For MobileNetV2 on CIFAR-10 we apply
pruning with a strength of 0.6 and 0.4. These choices allow us to capture the effects
of moderate and more aggressive pruning on the models.

We chose these pruning ratios for the following reasons: First, a pruning ratio higher
than 60% would likely have a limited impact on the model. Pruning ratios of 60%
and above might result in minimal changes to the model’s structure or performance.
By selecting 60% as the higher pruning ratio, we can assess the effects of moderate
pruning while still expecting noticeable differences compared to the unpruned model.
Second, the lower pruning ratio of 20% for ResNet-56 and 40% for MobileNetV2
leaves a reasonable number of channels intact. Thus, the pruning ratios 60% and
20% (ResNet-56) and 60% and 40% (MobileNetV2) provide a reasonable range of
pruning strengths to evaluate.

For ResNet-50 we choose only a single pruning ratio of 0.4 because training on the
ImageNet dataset takes substantially more time compared to training on CIFAR-10.
While training ResNet-56 on CIFAR-10 takes at most two hours with our setup
allowing for relatively fast comparison, the training of ResNet-50 on ImageNet
takes roughly 2 days due to the increased complexity of the ImageNet dataset
(higher resolution and size) and model (increased number of parameters and FLOPs)
compared to the other models and dataset (cf. Table 3.1 and Table 3.2). Further, a
pruning ratio of 40% ensures reasonable performance while still removing a significant
part of the network.
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3.2.3 Uniform vs non-uniform pruning
In our experiments, we explore the impact of the pruning method on the hyperpa-
rameter performance space by applying both uniform and non-uniform structured
pruning. Specifically, for experiments conducted on CIFAR-10, we employ uniform
and non-uniform structured magnitude pruning with the same pruning ratio. This
allows us to compare the effects of both methods on the hyperparameter performance
space.

However, for experiments conducted on ImageNet, we solely focus on non-uniform
structured magnitude pruning. This decision is driven by two factors: Firstly, training
networks on ImageNet is extremely demanding in terms of time and resources. To
optimise resources, we prioritise non-uniform pruning for the ImageNet experiments.
Secondly, in practical scenarios, non-uniform pruning methods are more commonly
employed as they offer greater flexibility. Consequently, studying the impact of non-
uniform pruning becomes more significant and relevant to real-world applications.

While non-uniform pruning is more interesting from a practical point of view as it
allows for more flexibility, the comparison of the effect of non-uniform and uniform
pruning can lead to meaningful conclusions. For example, if we find the effect of
pruning to be independent of the pruning method (uniform or non-uniform), many
works investigating the effect of model width scaling on the hyperparameter space
can potentially be transferred to the more general non-uniform pruning case.

3.2.4 Pruning pipeline
In our experimental setup, we deviate from the conventional three-step approach
of training, pruning, and fine-tuning. Instead, we opt to retrain the pruned model
from scratch, as shown in Figure 1.1. By choosing to retrain the pruned model
from scratch, we introduce a distinct approach to evaluating the effect of structured
pruning on a model.

We have chosen this pipeline for several reasons: As discussed in Section 2.2.4, there
is no standard in the literature, and other pruning pipelines may introduce additional
hyperparameters. For instance, in the traditional three-step approach the length of
the fine-tuning step or, in the rewinding approach the epoch t at which weights or
other hyperparameters are rewound to are introduced as additional hyperparameters
(cf. Figure 1.1). These hyperparameters can make the experimental setup more
complex and difficult to compare. Recent research has brought these issues to
attention, highlighting the lack of a generalised experimental setup (H. Wang et al.,
2023). The simple and straightforward approach of retraining from scratch does
not introduce any additional hyperparameters. This reduces the complexity and
potential sources of error and makes the experimental setup more streamlined and
easier to reproduce. Furthermore, retraining the pruned model from scratch allows
for a fresh optimisation process. It ensures that the pruned model is trained with
a refined weight initialisation, considering the reduced model complexity resulting
from pruning.
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3.2.5 Pruning ResNets and MobileNets
Pruning Residual and Mobile networks is not straightforward due to their skip
connections, requiring the input of a connected block to have the same number
of channels (depth) as its output, as illustrated in Figure 2.3 and Figure 2.5. For
pruning skip connections, pruning is conducted only within blocks, following L1-norm
magnitude pruning (H. Li et al., 2017). Furthermore, all fully-connected layers and
the first convolutional layer in ResNets are spared, as is common practice (Gale
et al., 2019; H. Wang et al., 2023; H. Wang et al., 2021; Zhu & Gupta, 2017).

3.3 Hyperparameter performance space
In our study, we focus on the impact of pruning on two hyperparameters, learning rate
and weight decay. The learning rate is one of the most important hyperparameters
when training DNNs as discussed in Section 2.3. Further, there is a complex
relationship between the strength of regularisation as imposed through weight decay
and the learning rate of a model. We aim to capture this relationship and how it
might be affected by pruning by investigating the impact of pruning on the learning
rate and weight decay in conjunction.

In our experiments, we approximate the relation between learning rate, weight decay,
and performance of a model by spanning a grid around the vicinity of the prior.
In this context, the prior describes the pre-defined or well-known hyperparameter
settings of learning rate and weight decay for the given model and task as reported
in research or well-known libraries. Table 3.4 shows the prior values of learning rate
and weight decay for ResNet-56 and MobileNetV2 on CIFAR-10 and ResNet-50 on
ImageNet as used in our experiments. Prior values for ResNet-56 and ResNet-50
have been reported in the original work (K. He et al., 2015b).

Architecture Prior
Learning Rate

Prior
Weight Decay

Baseline
Top-1 Acc

Baseline
Top-5 Acc

ResNet-56 10−1.0 10−4.0 93.340 -
MobileNetV2 10−1.0 10−4.0 94.730 -
ResNet-50 10−1.0 10−4.0 75.448 92.608

Table 3.4: Prior learning rate and weight decay and baseline accuracies for ResNet-56 and Mo-
bileNetV2 on CIFAR-10 and ResNet-50 on ImageNet.

For training the modified version of MobileNetV2 on CIFAR-10 a number of different
hyperparameter configurations and training recipes have been reported. For example,
kuangliu (2017) train MobileNetV2 on CIFAR-10 with a learning rate of 10−1.0 and
a weight decay of 5× 10−4.0, following a similar training recipe to our work. They
achieve a top-1 accuracy of 94.43%, slightly lower than our baseline accuracy of
94.73% as shown in Table 3.4. Further, Chen (2018) and Ayi and El-Sharkawy (2020)
report top-1 accuracies of 94.71% and 94.3% on CIFAR-10, respectively. In both
works different training recipes and hyperparameter settings are used. We chose
the prior learning rate of 10−1.0 and weight decay of 10−4.0 for MobileNetV2 for two

32



3. Methodology

reasons: First, we are not interested in a single point but rather the overall shape and
second, all reported weight decay learning rate configurations for MobileNetV2 are
within the vicinity of our chosen prior and, thus, will be captured in our experiments.

Note, we do not perform hyperparameter optimisation to gain optimal initial (prior)
values of learning rate and weight decay. This is because, HPO can be computationally
expensive and time-consuming, as most common approaches to HPO require training
and evaluating the given model multiple times. Further, for our selected models there
is already extensive research and practical experience available regarding suitable
hyperparameter settings for the CIFAR-10 and ImageNet datasets (K. He et al.,
2015b; maintainers & contributors, 2016; Sandler et al., 2019). By using previously
reported hyperparameter settings, we allow our study to be comparable to other
works in the area of pruning and NN compression. In many works on pruning,
researchers aim to compare their results with existing literature to demonstrate the
effectiveness of their proposed methods. By using the same or similar hyperparameter
settings as previous studies, our experiments can be directly compared to those
works, ensuring a fair and meaningful evaluation of our approach.

In the deep learning literature, it is common practice to evaluate and train models
multiple times on the same hyperparameters to account for the inherent randomness
and variability in the training process. For example, the initial random initialisation
of weights can lead to different starting points in the optimisation landscape, resulting
in different convergence paths and final performance. However, in our experiments,
we only train and evaluate a model on the given weight decay and learning rate grid
once. This choice is on the one hand side attributed to the time constraints of this
work. On the other hand side, we are not interested in the average performance
of the model on a single point of the grid but rather in the overall shape of the
performance landscape. Small variations will have a neglecting effect on the overall
shape of this space.

For the grid, we log-scale learning rate and weight decay. This is to provide a smoother
and more balanced exploration of the hyperparameter space as the increments between
values are more evenly distributed on a log-scale for learning rate and weight decay.
For experiments on CIFAR-10 we span an initial grid of 9× 9 around the prior with
a step size of 0.2 (log-scale) and on ImageNet we span a smaller grid of 3× 3 with a
step size of 0.4 (log-scale). Depending on the results on the initial grid, we extend
the grid to capture most of the optimal hyperparameter area which we define below.

As mentioned, we are interested in the area of optimal hyperparameters. We define
this area with respect to a model’s top-1 accuracy as a performance measure. Let
Θ describe the set of weight decay and learning rate combinations for the given
model in our experiments. Then it is Θ ⊆ Λ × Γ, where Λ describes the space of
possible weight decay values and Γ describes the space of possible learning rate values.
Following the notations introduced in Section 2.3.2, we define f : Λ× Γ→ [0, 100],
where f(λ, γ) describes the top-1 accuracy of the model on a held-out validation set
after training. The region of interest (ROI) given a threshold x ∈ R is defined as

x-ROI := {(λ, γ) | (λ, γ) ∈ Θ, f(λ, γ) ≥ f(θ∗)− x} ⊆ Θ, (3.3)
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where θ∗ ∈ Θ describes the hyperparameter configuration that maximises the perfor-
mance of the model, θ∗ = argmax

θ∈Θ
f(θ). For example, 0.5-ROI is the set of the weight

decay and learning rate combinations for which the model’s performance is within
the top 0.5% given its best-achieved top-1 accuracy f(θ∗). We note, for x ≤ y it is
x-ROI ⊆ y-ROI.

3.3.1 Approach to Q1: Effects of pruning
To gain valuable insights from the collected data in regard to the first research
question1, we analyse the data using various methods. We only discuss top-1 accuracy
as a performance measure in this section; all concepts can be easily transferred to
top-5 accuracy.

Visual analysis

First, we perform a visual analysis of the hyperparameter performance space under
the different pruning conditions. Through visualisations we are able to determine
the optimal hyperparameter areas and get an intuition for how they might change
under pruning.

For visually interpreting the data, we utilise the graphing-library Plotly (Inc., 2015).
Specifically, we are dealing with 3-dimensional data (weight decay, learning rate,
top-1 accuracy) and use contour and scatter plots for visualisation.

In both the scatter and the contour plots, the 3-dimensional data is represented in a
2-dimensional format on the (weight decay, learning rate)-plane. For scatter plots,
the colour of data points describes the top-1 accuracy, whereas in contour plots the
top-1 accuracy is depicted using contour lines and colour gradients, allowing for a
smoother visualisation. The contour lines in the contour plot represent the surface
of the hyperparameter performance space by connecting hyperparameter settings
for which the model achieves similar performance. Further, the distance between
individual contour lines describes the gradient of the underlying surface: when the
lines are close together, the gradient’s magnitude is high, whereas when the lines are
farther apart, the gradient’s magnitude is lower. This is because the difference in
performance between two lines is always the same (Inc., 2015).

The scatter plot provides a realistic representation of the data, displaying individual
data points. On the other hand, the contour plot presents a smooth visualisation
of the surface by interpolating between data points. Despite the interpolation, the
contour plot still provides a close approximation of the optimal hyperparameter area
to the actual experimental data. This is mainly due to two reasons: (i) our chosen
step size is relatively small, ensuring a fine-grained representation, and (ii) we will
find that the landscape appears to be relatively smooth with minimal irregularities
and outliers, as observed in the scatter plot.

1What are the effects of structured pruning on the hyperparameter performance space of a
model?
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Quantitative analysis

In addition to visually interpreting the data, we quantify the effects of pruning on
the optimal hyperparameter area of a model. Specifically, we consider the 0.5-ROI
and 1.0-ROI with respect to the model’s top-1 accuracy. Given a hyperparameter
configuration, the performance of the model with this configuration is subject to
small variations due to randomness in the training and initialisation process. Thus,
the x-ROI describes a random sample of the underlying distribution of optimal
hyperparameters. Thus, instead of investigating the absolute changes of x-ROI under
pruning, we are interested in how the overall shape of this region changes.

Given the visual analysis, we will find that for both samples, 0.5-ROI and 1.0-ROI,
a Gaussian model is appropriate. More specifically, we utilise confidence regions to
model the data.

Intuitively, the confidence region can be described as follows: Given a confidence level
α and a population parameter of interest (for example, the population mean) then in
100(1− α)% of samples the 100(1− α)% confidence region captures the true value
of the population parameter (Neyman, 1937). In the case of a bivariate Gaussian
distribution, the confidence region describes the contour line of the probability density
function of the underlying Gaussian distribution and is centred at the sample’s mean.
In this case, the confidence region is called the confidence ellipse as its shape is elliptic.
For example, given a confidence level of 0.05, the 95% confidence ellipse describes
the region in which 95% of samples drawn from the underlying Gaussian distribution
fall. Consequently, the confidence ellipse represents the standard deviations and is
also called the standard deviation ellipse (SDE) (B. Wang et al., 2015).

SDE multiplier confidence level
1 0.6065
2 0.1353
3 0.0111
4 0.0003

Table 3.5: Confidence levels of the scaled standard
deviation ellipse (SDE). Adapted from (B. Wang
et al., 2015).

Table 3.5 shows the confidence level
given the SDE multiplier. For exam-
ple, the 86.47% confidence ellipse corre-
sponds to the contour line of the proba-
bility density function of the underlying
Gaussian distribution at 2 multiples of
the SDEs.

We quantify the confidence ellipse of
0.5-ROI and 1.0-ROI at confidence level
α = 0.1353 using measurements such as
its length, width, and mean. The result-
ing ellipses describe the region in which
86.47% of optimal hyperparameter configurations fall given the assumptions above.

3.3.2 Approach to Q2: Performance risk
From the analyses of the first research question, we gain a good intuition for the
second research question2. We quantify the performance risk following a similar
approach to Probst et al. (2018) and Weerts et al. (2020).

2Q2: What is the performance risk when not tuning hyperparameters after pruning?
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First, we introduce the following notations given a model and a dataset (adapted
from (Probst et al., 2018; Weerts et al., 2020)). Adapting the notation introduced
in Section 2.3, let f(λ, γ) ∈ R describe the performance of the model with the
hyperparameter configuration (λ, γ) ∈ Θ.

Naturally, the performance risk of a hyperparameter configuration θ ∈ Θ is defined
as the performance difference to the optimal performance,

dθ := f(θ∗)− f(θ). (3.4)

The performance risk quantifies the risk of not tuning hyperparameters. The set
{dθ | θ ∈ Θ} describes an empirical distribution of performance differences over
hyperparameter configurations.

We describe this empirical distribution using its mean dmean and standard deviation
dstd,

dmean = 1
|Θ|

∑
θ∈Θ

dθ, dstd =

√√√√∑
θ∈Θ(dθ − dmean)2

|Θ| . (3.5)

Just like for the tuning risk introduced in (Weerts et al., 2020), we acknowledge that
our assessment of the performance risk relies on the assumption that all units of risk
hold equal significance. This assumption may be unrealistic in practice. For example,
a performance risk of 0.01 might be considered more severe if the initial optimal
performance is only 0.02, compared to the case where the optimal performance is
0.85. In the former scenario, the number of miss-classified instances is doubled if we
consider the top-1 accuracy as performance measure.

To address this concern, we introduce the relative performance risk, defined as follows:

dR
θ := f(θ∗)− f(θ)

f(θ∗) . (3.6)

The resulting empirical distribution of the relative performance differences over
hyperparameter configurations is described using its mean dR

mean and its standard
deviation dR

std as in Equation 3.5.

In our analysis, we are not interested in the risk of the entirety of the hyperparameter
performance space. Instead, we are specifically concerned with the performance
risk of optimal hyperparameter configurations of the unpruned model. To achieve
this, we define our region of interest (Θ) as the 0.5-ROI, which encompasses all
hyperparameter configurations that achieve optimal performance within the top
0.5% in terms of top-1 accuarcy on the unpruned model. In this case, not tuning
hyperparameters after pruning refers to training the pruned model with the optimal
hyperparameter configuration from the unpruned model, (λ, γ) ∈ 0.5-ROI.

There are several reasons behind our choice of x = 0.5 as a threshold for the
optimal hyperparameters. Firstly, we assume that the initial hyperparameters of the
basemodel have already been carefully tuned. If this is not the case, the performance
risk of not tuning hyperparameters after pruning would likely be comparable to
the general performance risk of not tuning hyperparameters at all, regardless of
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the pruning process. By setting x = 0.5, we align with practical scenarios where a
well-performing basemodel already exists, and the focus is on compressing the model
to accommodate resource-constrained devices or deployment environments. In such
cases, it is reasonable to assume that the basemodel has undergone hyperparameter
tuning to achieve satisfactory performance.

Secondly, based on our initial visual analysis, we determined that the 0.5-ROI region
covers a sufficiently large portion of the hyperparameter space on the basemodel.
This region includes a substantial number of hyperparameter configurations that
achieve performance within the top 0.5%, allowing for a comprehensive assessment
of the performance risk.

Lastly, while the threshold x = 0.5 is a somewhat arbitrary choice, it provides a fair
evaluation of the performance risk under the assumption that any proficient hyper-
parameter optimiser can successfully identify the best hyperparameter configurations
within the top 0.5% for the basemodel.

In addition to numerically describing the performance risk and relative performance
risk, we employ box plots to visually analyse the empirical distributions dθ and dR

θ .
The box plots provide a concise summary of the data distribution by displaying key
statistical measures such as the median, quartiles, and potential outliers. This visual
analysis allows us to gain insights into the variation and distribution of the risk
across various pruning ratios, methods (uniform and non-uniform), and models. For
implementation and visualisation of the box plots we employ the graphing library
Plotly (Inc., 2015).
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Chapter 4

Results

In this chapter, we present our experimental results and discuss implications and
findings. Unless otherwise indicated, we consider as performance metric the top-1 ac-
curacy on a held-out validation dataset. We analyse and quantify the hyperparameter
performance space to answer our initial research questions:

Q1 What are the effects of structured pruning on the hyperparameter performance
space of a model?

Q2 What is the performance risk when not tuning hyperparameters after pruning?

As described in Chapter 3, ResNet-56 and MobileNetV2 are evaluated on the CIFAR-
10 dataset and ResNet-50 on the ImageNet dataset. For all architectures, we
approximate the hyperparameter performance space by spanning a grid around the
prior values for learning rate and weight decay (cf. Table 3.4).

4.1 Effects of pruning on the hyperparameter per-
formance space

The experimental results of MobileNetV2 and ResNet-56 on CIFAR-10 are presented
in Figure 4.1 and Figure 4.2, respectively. For ResNet-50 on ImageNet, the effect of
pruning on the performance landscape with respect to the top-1 and top-5 accuracy
is displayed in Figure 4.3. These figures depict scatter and contour plots showcasing
the relationship between weight decay, learning rate, and model performance across
various pruning ratios and methods (uniform and non-uniform).

Rather than displaying the specific location of the single best hyperparameter config-
uration, our approach involves approximating the shape of the optimal configurations
using confidence ellipses. This decision is driven by our focus on capturing the overall
shape of the optimal hyperparameters rather than isolating the single best setting.

The figures display the 86.47% confidence ellipses fitted to the 0.5-ROI and 1.0-ROI
of the respective pruned or unpruned model. In accordance with Section 3.3.1, the
confidence ellipses depict the contour line at 2 standard deviations from the mean
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4. Results

of the probability density function of the bivariate Gaussian fit to the 0.5-ROI and
1.0-ROI, respectively.

4.1.1 Visual analysis
Overall, the shape of the performance landscape appears to be quite consistent
across all pruning strengths, pruning methods (uniform and non-uniform), datasets
(CIFAR-10 and ImageNet), and model architectures (ResNet-56, MobileNetV2, and
ResNet-50). In all plots an optimal band spanning from the top left (larger learning
rate, smaller weight decay) to the bottom right (smaller learning rate, larger weight
decay) is clearly evident. In this context, the overall shape is not solely defined
by the absolute colour representation, meaning the absolute top-1 accuracy values.
Instead, we refer to the variations and patterns observed in the data.

MobileNetV2 on CIFAR-10

For the unpruned MobileNetV2 on CIFAR-10 the visual analysis reveals that the
optimal span of weight decay and learning rate values clearly extends from the bottom
right to the top left. The best area appears closer to the bottom right, characterised
by small learning rate values and larger weight decay values, as depicted by the
contour line corresponding to a top-1 accuracy of 95%.

The baseline model achieves a best top-1 accuracy of 95.32%. For both uniform and
non-uniform magnitude pruning on MobileNetV2 only a small reduction in perfor-
mance compared to the basemodel is observed. Further, for both the uniform and
non-uniform pruning method the optimal area and overall shape of the performance
landscape remain consistent.

The best-observed top-1 accuracy of the 60% uniform magnitude-pruned model is
95.14%. For the 40% uniform magnitude-pruned architecture it is 94.94%. When
considering non-uniform magnitude pruning, the 60% and 40% pruned models achieve
a best top-1 accuracy of 95.18% and 94.48%, respectively. For the 40% non-uniform
pruned model, it is worth noting that the optimal band at larger learning rate values
is not as clearly defined. However, it remains distinctly evident for smaller learning
rate values, as observed in the plots for the other pruning methods of MobileNetV2.

Across all pruning ratios and pruning methods (uniform and non-uniform) the optimal
hyperparameter area remains in the bottom right, characterised by small learning
rate and larger weight decay values. Despite a slight decrease in accuracy after
pruning, the overall shape and optimal area remain consistent. This observation is
clearly evident when considering the confidence ellipses fitted to 0.5-ROI, displayed
as black ellipses in Figure 4.1.

However, considering the white ellipses corresponding to the 1.0-ROI, there is a
small shift visible. For the basemodel and the uniformly pruned architectures these
ellipses stretch across nearly the full optimal diagonal, indicating that hyperparameter
configuration achieving optimal performance (within the top 1%) are widely spread.
Yet, for non-uniform pruning this is not the case. For the non-uniform magnitude-
pruned architecture the 1.0-ROI ellipses are of smaller size and are centred at the
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bottom right, indicating that the optimal hyperparameter configurations are not as
widely spread.

While there is a difference in the shape of the 1.0-ROI confidence ellipse between the
uniform and non-uniform pruned architectures, we point out that we do not capture
the entirety of the optimal hyperparameter configurations in the data, potentially
affecting the shape of the confidence ellipses. With that said, it is important to
interpret the confidence ellipses as a representation of the available data and the
observed trends, but they may not capture every possible optimal configuration.
Future studies with a larger and more comprehensive dataset could provide further
insights into the shape and distribution of the optimal (weight decayand learning
rate) configurations after pruning.

ResNet-56 on CIFAR-10

For ResNet-56 on CIFAR-10 similar observations can be made compared to Mo-
bileNetV2 on the same dataset. While the optimal band spanning from the bottom
right to the top left is visible across all pruning ratios and methods (uniform and
non-uniform), it is not as clearly defined as for MobileNetV2. However, the shape of
the performance landscape remains consistent across different pruning methods for
ResNet-56, just as it was the case for MobileNetV2. We conclude that the overall
shape of the performance landscape remains consistent across different pruning
methods and strengths but not across different architecture families.

The unpruned ResNet-56 achieves a best top-1 accuracy of 94.05%. However, there is
a noticeable drop in performance after pruning. The uniformly pruned model achieves
a top-1 accuracy of up to 93.52% and 91.08% for pruning ratios of 60% and 20%,
respectively. Similarly, the 60% and 20% non-uniform pruned architectures achieve
top-1 accuracies of 93.55% and 90.98%, respectively. As for the results observed
on MobileNetV2, the drop in performance is comparable between the uniform and
non-uniform magnitude pruning methods.

Further, the location of the optimal hyperparameters remains consistent across
different pruning ratios and methods, as shown in Figure 4.2. This observation is
supported by the 86.47% confidence ellipses fitted to the 0.5-ROI and 1.0-ROI as
their position and shape remain mostly consistent. This indicates that there is no
significant shift in the optimal hyperparameters after pruning.

However, there is one notable outlier: the 20% non-uniform magnitude-pruned
ResNet-56. Unlike the observed trend in the non-uniform pruned MobileNetV2,
where the 1.0-ROI confidence ellipses were smaller compared to the basemodel and
uniform pruned architectures, we observe the inverse effect for the 20% non-uniform
pruned ResNet-56. In this case, both the 1.0-ROI and 0.5-ROI confidence ellipses
become larger and stretch across the entirety of the optimal hyperparameter region,
as depicted in Figure 4.2.

The inconsistency of the observed trend regarding the impact of pruning on the
hyperparameter performance space and on the optimal hyperparameters suggests
that its effects can vary depending on the specific architecture and pruning method
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used. Different architectures have unique characteristics and behaviours, and the
pruning algorithms may interact with these characteristics in different ways.

ResNet-50 on ImageNet

Figure 4.4: The weight decay and learning rate
grid for ResNet-50 experiments on ImageNet. The
darker coloured 3× 3 grid shows the initial grid
around the prior which we extended. Annotations
show the top-1 accuracy of the unpruned ResNet-
50 trained with the specific hyperparameters.

Figure 4.4 illustrates the grid used for
training and evaluating ResNet-50 on the
ImageNet dataset. Similar to the exper-
imental results on CIFAR-10, the opti-
mal hyperparameters span from smaller
learning rate values with larger weight
decay values to larger learning rate val-
ues with smaller weight decay values.
This optimal band is also observed for
the top-5 accuracy as performance met-
ric. More generally, the performance
landscape for the top-1 and top-5 accu-
racy as performance metrics are very sim-
ilar for both the unpruned and pruned
models.

The unpruned ResNet-50 achieves a max-
imum top-1 accuracy of 75.83%, accom-
panied by a top-5 accuracy of 92.84%.
Notably, this top-5 accuracy also rep-
resents the best performance achieved
across all weight decay and learning rate
configurations for ResNet-50. For the non-uniform magnitude-pruned model, the best
top-1 accuracy obtained is 70.81%, showcasing a significant decrease in performance.
Similarly, the best top-5 accuracy achieved is 89.73% with the same hyperparameter
configuration. These results demonstrate the trade-off between model size reduction
through pruning and the resulting performance decline.

The confidence ellipses visualised in Figure 4.3 show a similar shape. The visualisation
of the 40% non-uniform magnitude pruned ResNet-50 architecture exclusively displays
the 1.0-ROI ellipse. This choice is attributed to the fact that fewer than five
hyperparameter configurations achieve a top-1 accuracy within the top 0.5%. We
require a minimum of five data points for fitting the confidence ellipse to the specific
ROI since this minimum number guarantees an unique solution.

Once again, similar to the experiments on CIFAR-10, there is no significant shift in
the optimal hyperparameters after pruning. In the case of the unpruned model, the
optimal hyperparameters are scattered across the optimal band, forming a larger,
centrally located cluster. This wide dispersion is visually represented by the longer
lengths of the 0.5-ROI and 1.0-ROI ellipses. Likewise, for the pruned model, the
optimal regions are spread diagonally, as illustrated in Figure 4.3 and as indicated
by the length of the 1.0-ROI ellipse.
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Relationship between weight decay and learning rate

Our experimental results clearly demonstrate that a larger learning rate necessitates
a smaller weight decay, and conversely, a smaller learning rate requires a larger
weight decay for optimal performance. This empirical evidence supports the weight
decay and learning rate relationship as previously presented by L. N. Smith (2018).
Our findings align with the theoretical understanding that learning rate and weight
decay tend to have inverse effects on the weight update of a model (with SGD) as
demonstrated in Equation 2.1.

4.1.2 Interpretation of confidence ellipses
Through the visual analysis of contour and scatter plots, accompanied by the
visualisation of confidence ellipses, we have gained an initial understanding that
there is no significant shift in the optimal hyperparameters. This suggests that the
impact of pruning on the hyperparameter performance space with respect to the
weight decay and learning rate is insignificant. However, to further support this
initial hypothesis and gain a deeper understanding, we will now provide a detailed
analysis of the confidence ellipses, as they effectively model the area encompassing
the optimal hyperparameters.

Table 4.1 displays the length, width, and centre of the confidence ellipses fitted to
the 1.0-ROI and 0.5-ROI for the pruned and unpruned architectures of ResNet-56,
MobileNetV2, and ResNet-50. In this analysis, the length represents the longest
diameter of the ellipse, while the width represents its shortest diameter. Our primary
focus is to compare the confidence ellipses of the pruned models with the respective
unpruned model, aiming to determine whether there is a noticeable shift in the
hyperparameter space after pruning.

MobileNetV2 on CIFAR-10 The numerical representation of the 1.0-ROI and
0.5-ROI confidence ellipses for MobileNetV2 support our visual interpretations.
The difference of the 1.0-ROI confidence ellipses between the uniform and
non-uniform magnitude-pruned models is clearly evident as determined by the
different lengths of the ellipses. However, both 1.0-ROI and 0.5-ROI ellipses
show similar centres across all pruning methods, indicating that, on average,
there is no significant shift of the optimal hyperparameters after pruning.

ResNet-56 on CIFAR-10 Across all pruning ratios, including the unpruned
model, the centre of the ellipses fitted to the 1.0-ROI or 0.5-ROI remain
consistent. There is a negligible maximum difference of (0.2, 0.3) for the
1.0-ROI and (0.3, 0.3) for the 0.5-ROI in the (weight decay, learning rate)
domain. This supports the initial observation, that there is no significant shift
of the optimal hyperparameters.

Further, the width and length of all ellipses fitted to 1.0-ROI demonstrate
consistency, with a slight fluctuation of up to +/- 0.07 for the width and up to
+/- 0.76 for the length, relative to the ellipse of the basemodel. In terms of the
0.5-ROI, the width and length of the ellipses display more variation, without a
clear discernible trend.
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1.0-ROI 0.5-ROI
length width centre length width centre

MobileNetV2 on CIFAR-10
Basemodel 3.32 0.56 (−3.0,−1.8) 1.91 0.51 (−2.7,−2.1)
60% Uniform 3.37 0.57 (−3.0,−1.8) 1.75 0.45 (−2.7,−2.1)
40% Uniform 3.55 0.54 (−2.9,−1.9) 1.55 0.50 (−2.6,−2.1)
60% Non-uniform 1.46 0.66 (−2.5,−2.2) 1.13 0.43 (−2.3,−2.3)
40% Non-uniform 1.86 0.59 (−2.6,−2.2) 1.78 0.54 (−2.5,−2.2)
ResNet-56 on CIFAR-10
Basemodel 2.93 0.73 (−3.1,−1.5) 2.58 0.52 (−3.0,−1.5)
60% Uniform 2.69 0.66 (−3.0,−1.6) 1.71 0.29 (−2.8,−1.7)
20% Uniform 2.60 0.79 (−3.1,−1.5) 2.34 0.4 (−3.1,−1.6)
60% Non-uniform 3.12 0.78 (−3.2,−1.4) 2.43 0.52 (−3.0,−1.6)
20% Non-uniform 3.74 0.66 (−3.3,−1.2) 4.76 0.58 (−3.3,−1.2)
ResNet-50 on ImageNet
Basemodel 2.69 0.58 (−3.8,−1.4) 1.69 0.57 (−3.8,−1.3)
40% Non-uniform 2.53 0.55 (−4.3,−0.9) − − −

Table 4.1: Width, height, and centre of confidence ellipses fitted to the 1.0-ROI and 0.5-ROI of
ResNet-56, MobileNetV2, and ResNet-50. Specifically, ellipses are fit to x-ROI if and only if x-ROI
contains at least 5 elements. The centre is denoted in the (weight decay, learning rate) domain.
Further, the width denotes the shorter side of the ellipse and the length the longer side. All ellipses
are fitted in the log-scale. See also Figure 4.1, Figure 4.2, and Figure 4.3 for visualisations of the
confidence ellipses. x% Uniform or x% Non-uniform denotes uniform or non-uniform magnitude
pruning with a pruning ratio of x%.

ResNet-50 on ImageNet For ResNet-50, the analysis is somewhat constrained
due to the limited number of data points. However, it is noteworthy that the
observations derived from the experiments on CIFAR-10 are applicable to the
ResNet-50 architecture as well. Specifically, the centre of the confidence ellipses
for ResNet-50 remain consistent after pruning, with a maximum difference
to the basemodel’s confidence ellipses of 0.3 observed in both the weight
decay and learning rate dimensions. Furthermore, similar to the findings for
MobileNetV2 and ResNet-56, the width and length of the ellipses for ResNet-50
show negligible variations.

The analysis of the confidence ellipses aligns with our findings from the visual
analysis. We found no significant evidence that pruning has a substantial impact
on the hyperparameter performance space in the form of, for example, a clear
shift or alteration of the optimal hyperparameters. However, our analysis does
reveal variations in the optimal hyperparameters as indicated, for example, by the
fluctuating length of the confidence ellipses. In the next section, we will delve deeper
into understanding how these fluctuations affect the final accuracy and evaluate the
potential risk of not tuning hyperparameters after pruning.
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4.2 Performance risk of not tuning hyperparame-
ters after pruning

The mean and standard deviation of both the performance risk and relative perfor-
mance risk are presented in Table 4.2. We refer to Section 3.3.2 for definitions and
underlying methodology. The mean and standard deviation provide insights into the
average and variability of the risk across different model architectures and pruning
methods. In general, a higher absolute performance risk indicates a larger deviation
from the optimal performance, highlighting the potential loss in performance when
hyperparameters are not tuned after pruning.

dmean dstd dR
mean dR

std

MobileNetV2 on CIFAR-10
Basemodel 0.219 0.128 0.002 0.001
60% Uniform 0.373 0.266 0.004 0.003
40% Uniform 0.413 0.284 0.004 0.003
60% Non-uniform 0.591 0.391 0.006 0.004
40% Non-uniform 0.568 0.281 0.006 0.003
ResNet-56 on CIFAR-10
Basemodel 0.271 0.137 0.003 0.001
60% Uniform 0.622 0.428 0.007 0.005
20% Uniform 0.623 0.325 0.007 0.004
60% Non-uniform 0.436 0.256 0.005 0.003
20% Non-uniform 0.890 0.258 0.010 0.003
ResNet-50 on ImageNet
Basemodel 0.293 0.142 0.004 0.002
40% Non-uniform 0.864 0.467 0.012 0.007

Table 4.2: Mean and standard deviation of the performance risk (dmean, dstd) and relative perfor-
mance risk (dR

mean, dR
std) when not tuning hyperparameters after pruning.

In addition to the numerical representations of the risk using its mean and standard
deviation, Figure 4.5 presents box plots showcasing the distribution of the performance
risk and relative performance risk, respectively. These visualisations provide insights
into the locality, spread, and skewness of the risk across different architectures and
pruning methods.

Overall, the risk increases with pruning. In Figure 4.5, the darker coloured box plots
describe the risk on the basemodel. Given that we only consider the 0.5-ROI, the
absolute performance risk on the unpruned model is at most 0.5% since 0.5-ROI
describes the set of hyperparameter configuration achieving a top-1 accuracy within
the top 0.5%. Across all pruning methods and model architectures the absolute
performance risk increases after pruning as indicated by the higher median and mean
compared to the risk on the unpruned model.
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Figure 4.5: Absolute and relative performance risk given 0.5-ROI of the basemodel (unpruned) for
the pruned and unpruned MobileNetV2, ResNet-56, and ResNet-50 architectures, respectively. The
performance risk is measured given the best achieved top-1 accuracy of the respective architecture
(cf. Section 3.3). Darker coloured box plots indicate the risk of the basemodel with respect to the
best top-1 accuracy for that model.

This observation indicates that the optimal hyperparameters of the pruned model
differ from those of the unpruned model. If this wouldn’t be the case we would expect
the risk to remain relatively stable and comparable to the risk of the basemodel.
This observation aligns with the slight fluctuation of the performance landscape
discussed in Section 4.1.

Examining the absolute performance risk, we observe a trend for MobileNetV2. For
MobileNetV2 uniform magnitude-pruned models exhibit lower mean performance
risks (dmean) of 0.373 and 0.413 compared to non-uniform pruned models with mean
performance risks of 0.591 and 0.568, as displayed in Table 4.2. Similarly, when
considering the centre of the data displayed in Figure 4.5, both non-uniform pruned
architectures have a higher median compared to the uniform magnitude-pruned
MobileNetV2.

However, for ResNet-56 this observation of a trend does not hold. For the ResNet-56
architecture, the 20% non-uniform magnitude-pruned configuration exhibits the
highest average performance risk, as indicated by a mean performance risk of 0.89.
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This means that there is a drop in performance of 0.89 on average when training
the pruned architecture with the optimal hyperparameters from the 0.5-ROI region
of the basemodel. Further, the 60% non-uniform magnitude-pruned architecture
exhibits the lowest average performance risk for ResNet-56 of 0.436. Thus, for the
non-uniform pruned architectures of ResNet-56 we observe both the highest and
lowest average performance risk. Similarly, the median displayed in the box plots for
ResNet-56 does not seem to follow a specific pattern or trend (cf. Figure 4.5).

Intuitively, one would expect a consistently higher risk for one pruning method
(uniform or non-uniform) as this would indicate a relation between performance risk
and pruning method. While for MobileNetV2 non-uniform pruning shows a greater
performance risk on average compared to uniform pruning, this observation does not
hold for ResNet-56, where there is no clear difference in performance risk between
uniform and non-uniform pruning methods.

Similarly, across pruning ratios (60% and 40% for MobileNet or 60% and 20% for
ResNet-56) there is not one pruning ratio consistently achieving higher risk compared
to the other one. Intuitively, one would expect an increasing risk with a lower pruning
ratio if there is a correlation between performance risk and pruning ratio.

In addition to the absolute performance risk, the relative performance risk allows
for comparing the risk across different models and datasets. The dispersion of the
relative performance risk, as denoted by the standard deviation dR

std, ranges from
0.003 to 0.007 for the pruned models. Similarly, the mean values of the relative
performance risk range from 0.004 for the non-uniform pruned MobileNetV2 to 0.012
for the 40% non-uniform pruned ResNet-50. The narrow range of values indicates a
consistent dispersion of risk across the evaluated scenarios.

Based on the analysis of the performance risk distribution visualised in Figure 4.5,
we observe that the risk remains within a range of 2× the risk of the basemodel
for most optimal hyperparameter configurations. Specifically, for MobileNetV2 and
ResNet-56, the relative performance risk of the basemodel is approximately 0.005, and
for the majority of pruning techniques, about 75% of the configurations on 0.5-ROI
exhibit a relative performance risk of 0.01 or below. This is indicated by the upper
border of the box on the box plots, which represents the third quartile. Similarly,
for ResNet-50, more than 50% of the optimal hyperparameter configurations of
the basemodel remain within a range of 2× the relative performance risk of the
basemodel. These observations highlight that the performance risk, while slightly
increasing after pruning, generally remains within acceptable bounds for the majority
of hyperparameter configurations.

The observation that the performance risk remains within an acceptable range after
pruning has practical implications for the deployment of pruned models. Specifically,
our findings suggest that the pruned models can maintain satisfactory performance
levels without the need for extensive hyperparameter adjustments.

In summary, although the performance risk increases after pruning, it generally
remains within acceptable bounds for the majority of hyperparameter configurations.
This lack of a significant increase of risk after pruning can be attributed to the
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absence of a notable shift or trend in the performance landscape after pruning, as
discussed in Section 4.1. Additionally, we observed no clear pattern or shift in risk
across different pruning ratios or methods, suggesting that the relationship between
performance risk and pruning is not strictly defined.
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Conclusions

In this thesis, we examined the impact of uniform and non-uniform structured magni-
tude pruning on the hyperparameter performance space of a model. In an empirical
study using widely-adopted benchmark datasets and image classification models in
computer vision, we addressed two open questions in the research community:

Q1 What are the effects of structured pruning on the hyperparameter performance
space of a model?

Q2 What is the performance risk when not tuning hyperparameters after pruning?

Q1: Effects of pruning For the first question, we approximated the performance
landscape by spanning a grid of hyperparameter configurations around an initial prior
configuration. Through visual and statistical analysis, we compared the resulting
performance landscapes of both the unpruned and pruned models to evaluate the
impact of pruning on the model’s hyperparameters. Surprisingly, we did not observe
a significant impact of pruning on the performance landscape of a model. This
observation was consistent across all tested pruning methods, as evidenced by the
similar shape observed in the performance landscapes. This indicates that the
performance landscape remains relatively stable across different structured pruning
methods. Moreover, we observed no clear trend or pattern regarding a shift or change
in the optimal hyperparameters when employing different methods (uniform and
non-uniform) or pruning strengths.

Q2: Performance risk For the second question, we quantified the potential loss in
performance associated with not tuning hyperparameters after pruning. Our analysis
revealed that there is no significant relation between the pruning ratio or method
(uniform or non-uniform) and the performance risk when hyperparameters are not
tuned after pruning. However, while our data validated an increased performance risk
after pruning, showing an instability of the optimal hyperparameters, this increased
risk remains within acceptable bounds for most configurations.

Based on the combined findings from our two research questions, we derive practical
recommendations. Our results suggest that the amount of hyperparameter tuning,
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specifically for the learning rate and weight decay, can be minimised after pruning.
This is due to two key observations: Firstly, we found that the performance risk,
which measures the potential decrease in performance after pruning, remains within
an acceptable range for the majority of hyperparameter configurations. Secondly,
our analysis of the performance landscape revealed that pruning does not have a
substantial impact on the overall shape and structure of the landscape. This implies
that the optimal hyperparameter configuration of the basemodel can serve as a
reasonable starting point for the pruned model.

Contribution Our research contributes to the current state of the literature by
improving our understanding of hyperparameters in the context of pruning. Moreover,
our results can serve as practical guidelines for practitioners in the field interested
in maximising their model’s performance after pruning. Further, our work provides
empirical evidence supporting the previously presented relationship between weight
decay and learning rate, as described by S. L. Smith et al. (2018). Across all
model architectures and datasets, our experiments clearly demonstrate the inverse
relationship between the optimal learning rate and weight decay values in the form of
an optimal band spanning across the landscape. Furthermore, our study aligns with
the existing literature on hyperparameter transferability across network width scaling
(Park et al., 2019; Yang et al., 2022). The consistent stability of the performance
landscape under pruning, as demonstrated by our results, can inform the development
of hyperparameter optimisation techniques.

Our results raise interesting new questions relating to the factors that do affect the
weight decay and learning rate relation and, conversely, the hyperparameters that
are affected by pruning.

5.1 Limitations and future work
Our study has some limitations that could be addressed in future research: Firstly, the
study focuses solely on convolutional neural networks for image classification tasks. To
provide a broader understanding of the impact of pruning on different types of models,
it would be valuable to extend our work to other domains, such as language models
in NLP. Secondly, we only explore magnitude-based pruning methods. Considering
the variety of pruning techniques available, further research could investigate the
effects of other pruning methods and techniques on the hyperparameter performance
space.

In this context, the chosen pruning setup, particularly the specific pruning pipeline of
retraining from scratch after pruning, poses a limitation of this work. As visualised in
Figure 1.1, a number of different pruning pipelines are available, each with their own
characteristics and potential impacts on the optimal hyperparameters. Exploring
different pruning setups and evaluating their influence on hyperparameters would
provide deeper insights into the impact of pruning on the hyperparameters of a
model.
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Lastly, our study focuses primarily on the learning rate and weight decay as hy-
perparameters. However, a model’s performance is influenced by a wide range of
hyperparameters, including the number of epochs, batch size, and the learning rate
scheduler, among others. Future work could assess the impact of pruning on this
wider range of hyperparameters to gain a better understanding of their interactions
and the implications for model performance.

5.2 Ethical consideration
“Computer vision is already being put to questionable use and as re-
searchers we have a responsibility to at least consider the harm our work
might be doing and think of ways to mitigate it” (Redmon and Farhadi
(2018), p. 4)

Compression of deep learning models for deployment on resource-constrained devices
enables the use of machine learning in many areas that were previously not feasible.
However, as with any technology, there is also the risk of misusing this opportunity.
We outline ethical considerations in deep learning compression and computer vision
as our study aims to contribute to these fields.

One potential misuse of compressed deep learning models is for malicious purposes,
such as unauthorised surveillance, invasions of privacy, or cyber-attacks. For example,
a compressed deep learning model running on a small camera could be used to identify
and track individuals without their knowledge or consent, leading to privacy violations.
To mitigate these risks, it is important to develop and implement ethical guidelines
and regulations for the deployment of deep learning models in edge devices.

Pruning of deep learning models often results in a slight reduction in model accuracy
and performance. This can be particularly concerning in applications where accuracy
is critical, such as in the medical field or security-related applications. For example,
a low-accuracy model can lead to significant harm by a misdiagnosis of a medical
condition. Therefore, it is crucial to carefully evaluate the trade-off between model
accuracy and compression in these applications. By getting a better understanding
of the influence of pruning on the hyperparameter space of a model, we help to
mitigate this issue as model hyperparameters are tightly coupled to the performance
of a model.

53



Bibliography

Anwar, S., Hwang, K., & Sung, W. (2015). Structured Pruning of Deep Convolutional
Neural Networks [arXiv:1512.08571 [cs, stat]]. https://doi.org/10.48550/
arXiv.1512.08571

Arora, S., Cohen, N., & Hazan, E. (2018). On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization [arXiv:1802.06509 [cs]]. https:
//doi.org/10.48550/arXiv.1802.06509

Ayi, M., & El-Sharkawy, M. (2020). RMNv2: Reduced Mobilenet V2 for CIFAR10.
2020 10th Annual Computing and Communication Workshop and Conference
(CCWC), 0287–0292. https://doi.org/10.1109/CCWC47524.2020.9031131

Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation [arXiv:1308.3432
[cs]]. https://doi.org/10.48550/arXiv.1308.3432

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research, 13 (2).

Blalock, D., Ortiz, J. J. G., Frankle, J., & Guttag, J. (2020). What is the State of
Neural Network Pruning? [arXiv:2003.03033 [cs, stat]]. https://doi.org/10.
48550/arXiv.2003.03033

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot Learners
[arXiv:2005.14165 [cs]]. https://doi.org/10.48550/arXiv.2005.14165

Cai, Y., Hua, W., Chen, H., Suh, G. E., De Sa, C., & Zhang, Z. (2022). Structured
Pruning is All You Need for Pruning CNNs at Initialization [arXiv:2203.02549
[cs]]. https://doi.org/10.48550/arXiv.2203.02549

Chang, X., Li, Y., Oymak, S., & Thrampoulidis, C. (2020). Provable Benefits
of Overparameterization in Model Compression: From Double Descent to
Pruning Neural Networks [arXiv:2012.08749 [cs, stat]]. https://doi.org/10.
48550/arXiv.2012.08749

Chen, H. (2018). A pytorch implement of mobileNet v2 on cifar10. Retrieved May
28, 2023, from https://github.com/chenhang98/mobileNet-v2_cifar10

Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2020). A Survey of Model Compression
and Acceleration for Deep Neural Networks [arXiv:1710.09282 [cs]]. https:
//doi.org/10.48550/arXiv.1710.09282

54

https://doi.org/10.48550/arXiv.1512.08571
https://doi.org/10.48550/arXiv.1512.08571
https://doi.org/10.48550/arXiv.1802.06509
https://doi.org/10.48550/arXiv.1802.06509
https://doi.org/10.1109/CCWC47524.2020.9031131
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.48550/arXiv.2003.03033
https://doi.org/10.48550/arXiv.2003.03033
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2203.02549
https://doi.org/10.48550/arXiv.2012.08749
https://doi.org/10.48550/arXiv.2012.08749
https://github.com/chenhang98/mobileNet-v2_cifar10
https://doi.org/10.48550/arXiv.1710.09282
https://doi.org/10.48550/arXiv.1710.09282


Bibliography

Child, R. (2021). Very Deep VAEs Generalize Autoregressive Models and Can
Outperform Them on Images [arXiv:2011.10650 [cs]]. https://doi.org/10.
48550/arXiv.2011.10650

Choudhary, T., Mishra, V., Goswami, A., & Sarangapani, J. (2020). A comprehensive
survey on model compression and acceleration. Artificial Intelligence Review,
53 (7), 5113–5155. https://doi.org/10.1007/s10462-020-09816-7

Crowley, E. J., Turner, J., Storkey, A., & O’Boyle, M. (2019). A Closer Look at
Structured Pruning for Neural Network Compression [arXiv:1810.04622 [cs,
stat]]. https://doi.org/10.48550/arXiv.1810.04622

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding [arXiv:1810.04805
[cs]]. https://doi.org/10.48550/arXiv.1810.04805

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N.
(2021). An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale [arXiv:2010.11929 [cs]]. https://doi.org/10.48550/arXiv.2010.11929

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research,
12 (61), 2121–2159. Retrieved April 29, 2023, from http://jmlr.org/papers/
v12/duchi11a.html

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural Architecture Search: A Survey
[arXiv:1808.05377 [cs, stat]]. https://doi.org/10.48550/arXiv.1808.05377

Embedl Model Optimization SDK (Version 2023.4.0+torch). (2023). Embedl AB.
https://www.embedl.com/

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., & Joulin, A.
(2021). Training with Quantization Noise for Extreme Model Compression
[arXiv:2004.07320 [cs, stat]]. https://doi.org/10.48550/arXiv.2004.07320

Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks [arXiv:1803.03635 [cs]]. https://doi.org/10.48550/
arXiv.1803.03635

Gale, T., Elsen, E., & Hooker, S. (2019). The State of Sparsity in Deep Neural
Networks [arXiv:1902.09574 [cs, stat]]. https://doi.org/10.48550/arXiv.1902.
09574

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks [ISSN: 1938-7228]. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 249–256.
Retrieved May 1, 2023, from https://proceedings.mlr.press/v9/glorot10a.html

Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic Network Surgery for Efficient DNNs
[arXiv:1608.04493 [cs]]. https://doi.org/10.48550/arXiv.1608.04493

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both Weights and
Connections for Efficient Neural Networks [arXiv:1506.02626 [cs]]. https :
//doi.org/10.48550/arXiv.1506.02626

Hassibi, B., G.Stork, D., & Wolff, G. (1993). Optimal Brain Surgeon and general
network pruning, 293–299 vol.1. https://doi.org/10.1109/ICNN.1993.298572

55

https://doi.org/10.48550/arXiv.2011.10650
https://doi.org/10.48550/arXiv.2011.10650
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.48550/arXiv.1810.04622
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2010.11929
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.48550/arXiv.1808.05377
https://www.embedl.com/
https://doi.org/10.48550/arXiv.2004.07320
https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/10.48550/arXiv.1902.09574
https://doi.org/10.48550/arXiv.1902.09574
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.48550/arXiv.1608.04493
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.1109/ICNN.1993.298572


Bibliography

He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification [arXiv:1502.01852 [cs]].
https://doi.org/10.48550/arXiv.1502.01852

He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Deep Residual Learning for Image
Recognition [arXiv:1512.03385 [cs]]. https://doi.org/10.48550/arXiv.1512.
03385

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft Filter Pruning for
Accelerating Deep Convolutional Neural Networks [arXiv:1808.06866 [cs]].
https://doi.org/10.48550/arXiv.1808.06866

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for
MobileNetV3 [arXiv:1905.02244 [cs]]. https://doi.org/10.48550/arXiv.1905.
02244

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications [arXiv:1704.04861 [cs]]. https:
//doi.org/10.48550/arXiv.1704.04861

Idelbayev, Y. (2018). Proper ResNet Implementation for CIFAR10/CIFAR100 in
PyTorch. Retrieved May 6, 2023, from https ://github.com/akamaster/
pytorch_resnet_cifar10

Inc., P. T. (2015). Collaborative data science. https://plot.ly
Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization

of Expensive Black-Box Functions. Journal of Global Optimization, 13 (4),
455–492. https://doi.org/10.1023/A:1008306431147

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization
[arXiv:1412.6980 [cs]]. https://doi.org/10.48550/arXiv.1412.6980

Kohavi, R., & John, G. H. (1995). Automatic Parameter Selection by Minimizing
Estimated Error. In A. Prieditis & S. Russell (Eds.), Machine Learning
Proceedings 1995 (pp. 304–312). Morgan Kaufmann. https://doi.org/10.1016/
B978-1-55860-377-6.50045-1

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images.

kuangliu. (2017). Train CIFAR10 with PyTorch. Retrieved May 28, 2023, from
https://github.com/kuangliu/pytorch-cifar

Lecun, Y., Denker, J., & Solla, S. (1989). Optimal Brain Damage. 2, 598–605.
Lee, N., Ajanthan, T., & Torr, P. H. S. (2019). SNIP: Single-shot Network Pruning

based on Connection Sensitivity [arXiv:1810.02340 [cs]]. https://doi.org/10.
48550/arXiv.1810.02340

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2017). Pruning Filters
for Efficient ConvNets [arXiv:1608.08710 [cs]]. https://doi.org/10.48550/
arXiv.1608.08710

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hy-
perband: A Novel Bandit-Based Approach to Hyperparameter Optimization
[arXiv:1603.06560 [cs, stat]]. https://doi.org/10.48550/arXiv.1603.06560

Li, Y., Zhao, P., Yuan, G., Lin, X., Wang, Y., & Chen, X. (2022). Pruning-as-Search:
Efficient Neural Architecture Search via Channel Pruning and Structural

56

https://doi.org/10.48550/arXiv.1502.01852
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1808.06866
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.48550/arXiv.1905.02244
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://plot.ly
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/B978-1-55860-377-6.50045-1
https://doi.org/10.1016/B978-1-55860-377-6.50045-1
https://github.com/kuangliu/pytorch-cifar
https://doi.org/10.48550/arXiv.1810.02340
https://doi.org/10.48550/arXiv.1810.02340
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.48550/arXiv.1603.06560


Bibliography

Reparameterization [arXiv:2206.01198 [cs]]. https://doi.org/10.48550/arXiv.
2206.01198

Liang, T., Glossner, J., Wang, L., Shi, S., & Zhang, X. (2021). Pruning and Quan-
tization for Deep Neural Network Acceleration: A Survey [arXiv:2101.09671
[cs]]. https://doi.org/10.48550/arXiv.2101.09671

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C. L., & Dollár, P. (2015). Microsoft COCO: Common
Objects in Context [arXiv:1405.0312 [cs]]. https://doi.org/10.48550/arXiv.
1405.0312

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning Efficient
Convolutional Networks through Network Slimming [arXiv:1708.06519 [cs]].
https://doi.org/10.48550/arXiv.1708.06519

Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2019). Rethinking the Value
of Network Pruning [arXiv:1810.05270 [cs, stat]]. https://doi.org/10.48550/
arXiv.1810.05270

Ma, X., Lin, S., Ye, S., He, Z., Zhang, L., Yuan, G., Tan, S. H., Li, Z., Fan, D.,
Qian, X., Lin, X., Ma, K., & Wang, Y. (2020). Non-Structured DNN Weight
Pruning – Is It Beneficial in Any Platform? [arXiv:1907.02124 [cs, stat]].
https://doi.org/10.48550/arXiv.1907.02124

maintainers, T., & contributors. (2016). Torchvision: Pytorch’s computer vision
library. GitHub. Retrieved May 6, 2023, from https://github.com/pytorch/
vision

Mockus, J. (1975). On the Bayes Methods for Seeking the Extremal Point. IFAC
Proceedings Volumes, 8 (1, Part 1), 428–431. https://doi.org/10.1016/S1474-
6670(17)67769-3

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning Convolu-
tional Neural Networks for Resource Efficient Inference [arXiv:1611.06440 [cs,
stat]]. https://doi.org/10.48550/arXiv.1611.06440

Neill, J. O. (2020). An Overview of Neural Network Compression [arXiv:2006.03669
[cs, stat]]. https://doi.org/10.48550/arXiv.2006.03669

Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability. Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences, 236 (767),
333–380. https://doi.org/10.1098/rsta.1937.0005

Novello, P., Poëtte, G., Lugato, D., & Congedo, P. M. (2022). Goal-Oriented Sensi-
tivity Analysis of Hyperparameters in Deep Learning [arXiv:2207.06216 [cs,
stat]]. https://doi.org/10.48550/arXiv.2207.06216

Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature Visualization. Distill,
2 (11), e7. https://doi.org/10.23915/distill.00007

OpenAI. (2023). GPT-4 Technical Report [arXiv:2303.08774 [cs]]. https://doi.org/10.
48550/arXiv.2303.08774

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C.,
Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson,
C., Pachocki, J., Petrov, M., Pinto, H. P. d. O., Raiman, J., Salimans, T.,
. . . Zhang, S. (2019). Dota 2 with Large Scale Deep Reinforcement Learning
[arXiv:1912.06680 [cs, stat]]. https://doi.org/10.48550/arXiv.1912.06680

57

https://doi.org/10.48550/arXiv.2206.01198
https://doi.org/10.48550/arXiv.2206.01198
https://doi.org/10.48550/arXiv.2101.09671
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1708.06519
https://doi.org/10.48550/arXiv.1810.05270
https://doi.org/10.48550/arXiv.1810.05270
https://doi.org/10.48550/arXiv.1907.02124
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://doi.org/10.1016/S1474-6670(17)67769-3
https://doi.org/10.1016/S1474-6670(17)67769-3
https://doi.org/10.48550/arXiv.1611.06440
https://doi.org/10.48550/arXiv.2006.03669
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.48550/arXiv.2207.06216
https://doi.org/10.23915/distill.00007
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.1912.06680


Bibliography

O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks
[arXiv:1511.08458 [cs]]. https://doi.org/10.48550/arXiv.1511.08458

Park, D. S., Sohl-Dickstein, J., Le, Q. V., & Smith, S. L. (2019). The Effect of Network
Width on Stochastic Gradient Descent and Generalization: An Empirical Study
[arXiv:1905.03776 [cs, stat]]. https://doi.org/10.48550/arXiv.1905.03776

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala,
S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning
Library [arXiv:1912.01703 [cs, stat]]. https://doi.org/10.48550/arXiv.1912.
01703

Probst, P., Bischl, B., & Boulesteix, A.-L. (2018). Tunability: Importance of Hy-
perparameters of Machine Learning Algorithms [arXiv:1802.09596 [stat]].
https://doi.org/10.48550/arXiv.1802.09596

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement [arXiv:1804.02767
[cs]]. https://doi.org/10.48550/arXiv.1804.02767

Renda, A., Frankle, J., & Carbin, M. (2020). Comparing Rewinding and Fine-tuning
in Neural Network Pruning [arXiv:2003.02389 [cs, stat]]. https://doi.org/10.
48550/arXiv.2003.02389

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge [arXiv:1409.0575 [cs]].
https://doi.org/10.48550/arXiv.1409.0575

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2019). Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks [arXiv:1801.04381 [cs]].
https://doi.org/10.48550/arXiv.1801.04381

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022).
Compute Trends Across Three Eras of Machine Learning [arXiv:2202.05924
[cs]]. https://doi.org/10.48550/arXiv.2202.05924

Shala, G., Elsken, T., Hutter, F., & Grabocka, J. (2023). Transfer NAS with Meta-
learned Bayesian Surrogates. Retrieved May 20, 2023, from https://openreview.
net/forum?id=paGvsrl4Ntr

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., &
Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning [Conference Name: IEEE Transactions on Medical Imaging]. IEEE
Transactions on Medical Imaging, 35 (5), 1285–1298. https://doi.org/10.1109/
TMI.2016.2528162

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part
1 – learning rate, batch size, momentum, and weight decay [arXiv:1803.09820
[cs, stat]]. https://doi.org/10.48550/arXiv.1803.09820

Smith, L. N. (2022). General Cyclical Training of Neural Networks [arXiv:2202.08835
[cs, stat]]. https://doi.org/10.48550/arXiv.2202.08835

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2018). Don’t Decay the
Learning Rate, Increase the Batch Size [arXiv:1711.00489 [cs, stat]]. https:
//doi.org/10.48550/arXiv.1711.00489

58

https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1905.03776
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1802.09596
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2003.02389
https://doi.org/10.48550/arXiv.2003.02389
https://doi.org/10.48550/arXiv.1409.0575
https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.48550/arXiv.2202.05924
https://openreview.net/forum?id=paGvsrl4Ntr
https://openreview.net/forum?id=paGvsrl4Ntr
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.48550/arXiv.1803.09820
https://doi.org/10.48550/arXiv.2202.08835
https://doi.org/10.48550/arXiv.1711.00489
https://doi.org/10.48550/arXiv.1711.00489


Bibliography

Sui, X., Lv, Q., Zhi, L., Zhu, B., Yang, Y., Zhang, Y., & Tan, Z. (2023). A Hardware-
Friendly High-Precision CNN Pruning Method and Its FPGA Implementation
[Number: 2 Publisher: Multidisciplinary Digital Publishing Institute]. Sensors,
23 (2), 824. https://doi.org/10.3390/s23020824

Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks [arXiv:1905.11946 [cs, stat]]. https://doi.org/10.48550/
arXiv.1905.11946

Tanaka, H., Kunin, D., Yamins, D. L. K., & Ganguli, S. (2020). Pruning neural net-
works without any data by iteratively conserving synaptic flow [arXiv:2006.05467
[cond-mat, q-bio, stat]]. https://doi.org/10.48550/arXiv.2006.05467

Taylor, R., Ojha, V., Martino, I., & Nicosia, G. (2021). Sensitivity Analysis for Deep
Learning: Ranking Hyper-parameter Influence [ISSN: 2375-0197]. 2021 IEEE
33rd International Conference on Tools with Artificial Intelligence (ICTAI),
512–516. https://doi.org/10.1109/ICTAI52525.2021.00083

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention Is All You Need [arXiv:1706.03762 [cs]].
https://doi.org/10.48550/arXiv.1706.03762

Wang, B., Shi, W., & Miao, Z. (2015). Confidence Analysis of Standard Deviational
Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS
ONE, 10 (3), e0118537. https://doi.org/10.1371/journal.pone.0118537

Wang, C., Zhang, G., & Grosse, R. (2020). Picking Winning Tickets Before Training
by Preserving Gradient Flow [arXiv:2002.07376 [cs, stat]]. https://doi.org/10.
48550/arXiv.2002.07376

Wang, H., Qin, C., Bai, Y., & Fu, Y. (2023). Why is the State of Neural Network
Pruning so Confusing? On the Fairness, Comparison Setup, and Trainability
in Network Pruning [arXiv:2301.05219 [cs]]. https://doi.org/10.48550/arXiv.
2301.05219

Wang, H., Qin, C., Zhang, Y., & Fu, Y. (2021). Neural Pruning via Growing
Regularization [arXiv:2012.09243 [cs]]. https://doi.org/10.48550/arXiv.2012.
09243

Wang, Y., Zhang, X., Xie, L., Zhou, J., Su, H., Zhang, B., & Hu, X. (2019). Pruning
from Scratch [arXiv:1909.12579 [cs]]. https://doi.org/10.48550/arXiv.1909.
12579

Weerts, H. J. P., Mueller, A. C., & Vanschoren, J. (2020). Importance of Tuning
Hyperparameters of Machine Learning Algorithms [arXiv:2007.07588 [cs, stat]].
https://doi.org/10.48550/arXiv.2007.07588

Yang, G., & Hu, E. J. (2022). Feature Learning in Infinite-Width Neural Networks
[arXiv:2011.14522 [cond-mat]]. https://doi.org/10.48550/arXiv.2011.14522

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki,
J., Chen, W., & Gao, J. (2022). Tensor Programs V: Tuning Large Neural
Networks via Zero-Shot Hyperparameter Transfer [arXiv:2203.03466 [cond-
mat]]. https://doi.org/10.48550/arXiv.2203.03466

Yu, T., & Zhu, H. (2020). Hyper-Parameter Optimization: A Review of Algorithms
and Applications [arXiv:2003.05689 [cs, stat]]. https://doi.org/10.48550/
arXiv.2003.05689

59

https://doi.org/10.3390/s23020824
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.2006.05467
https://doi.org/10.1109/ICTAI52525.2021.00083
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1371/journal.pone.0118537
https://doi.org/10.48550/arXiv.2002.07376
https://doi.org/10.48550/arXiv.2002.07376
https://doi.org/10.48550/arXiv.2301.05219
https://doi.org/10.48550/arXiv.2301.05219
https://doi.org/10.48550/arXiv.2012.09243
https://doi.org/10.48550/arXiv.2012.09243
https://doi.org/10.48550/arXiv.1909.12579
https://doi.org/10.48550/arXiv.1909.12579
https://doi.org/10.48550/arXiv.2007.07588
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2003.05689
https://doi.org/10.48550/arXiv.2003.05689


Bibliography

Zhu, M., & Gupta, S. (2017). To prune, or not to prune: Exploring the efficacy of
pruning for model compression [arXiv:1710.01878 [cs, stat]]. https://doi.org/
10.48550/arXiv.1710.01878

60

https://doi.org/10.48550/arXiv.1710.01878
https://doi.org/10.48550/arXiv.1710.01878

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Theory
	Deep learning
	Convolutional neural networks
	Residual networks
	Mobile networks

	Challenges of deploying large models

	Neural network pruning
	Pruning structure
	Unstructured pruning
	Structured pruning

	Pruning ratio
	Uniform vs non-uniform pruning
	Pruning pipeline

	Hyperparameters in deep learning
	Classification of neural network hyperparameters
	Training hyperparameters
	Architecture hyperparameters
	Optimiser hyperparameters

	Hyperparameter optimisation
	Tuning architecture hyperparameters: Neural architecture search

	Importance of hyperparameters and their optimisation
	Hyperparameter performance space


	Methodology
	Datasets, model architectures, and training setup
	Datasets
	Data preprocessing

	Model architectures
	Training setup and model hyperparameters
	Performance metrics


	Pruning method
	Pruning structure
	Pruning ratio
	Uniform vs non-uniform pruning
	Pruning pipeline
	Pruning ResNets and MobileNets

	Hyperparameter performance space
	Approach to Q1: Effects of pruning
	Visual analysis
	Quantitative analysis

	Approach to Q2: Performance risk


	Results
	Effects of pruning on the hyperparameter performance space
	Visual analysis
	MobileNetV2 on CIFAR-10
	ResNet-56 on CIFAR-10
	ResNet-50 on ImageNet

	Interpretation of confidence ellipses

	Performance risk of not tuning hyperparameters after pruning

	Conclusions
	Limitations and future work
	Ethical consideration

	Bibliography

