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Abstract
Predicting human emotions through facial expression, particularly in relation to
medication field such as clinical trial settings, has garnered scientific interest in recent
years due to significant understanding of the impact of treatment on emotions and
social functioning. This thesis aims to improve performance of a FER model using
large scale of synthetic data. A FER classification neutral network’s performance is
validated to accurately detect Action Units (AUs) in human facial images. To select
the high-quality images among a pool of synthetic data, a Training Data Selection
(TDS) pipeline is utilized, incorporating both no-reference and reference Image
Quality Assessment (IQA) metrics. Furthermore, this thesis contributes through
the development of a semi-automated annotation method, which offers an efficient
approach to leverage an minimal amount of human annotation for labeling of a large
number of images depicting various AUs. The proposed methodology incorporates
seed tracking embedded in image names as a means to annotate the images. By inte-
grating this annotation method with synthetic data generation, it minimizes the need
for labor-intensive manual efforts and enables streamlined synthetic data annotation.
Increasing the number of synthetic images to over 40,000, the model’s classification
performance shows moderate improvement. Namely, the enhanced FER model per-
formance outperforms or show the same result compared to the baseline result for
the majority of the classes. This outcome highlights the efficacy of utilizing the TDS
pipeline using IQA in conjunction with the semi-automated annotation method in
improving the overall performance of the classification model. The model achieves a
range of ROC AUCs that vary between 0.80 and 0.92 over six AUs for cross validation.

These findings shed light on the challenges and limitations associated with using syn-
thetic data for FER models. The findings also emphasize the need for further research
to enhance the accuracy and reliability of synthetic data in this domain and the need
for more accurate annotation of data with minimal interventions of human annotators.

Keywords: Facial Expression Recognition, FACS, Action Units, styleGAN2-ada, syn-
thetic data, Image Quality Assessment, Multi-stage Pre-training, Pipeline Processing,
Semi-automated Human Annotation.
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1
Introduction

The following sections provides a background and context for the research conducted
in this master thesis. Problem statement, research questions, and objectives of
the research are presented in this chapter. The introduction will briefly discuss
the significant concepts in the related studies, some of the research methodology
employed, and the structure of the thesis. The goal of thesis research is to investigate
the potential of automated emotion detection based on facial expressions detection.
The focus also lies on bettering the its applicability in clinical trials based on the
existing related works. Lastly, the introduction section aims to provide a clear and
concise overview of the research conducted in this study, which will set the stage for
the chapters that follow.

1.1 Background
Emotions are vital to human communication and facial expressions are naturally
used as signals to convey emotions and intentions. Consequently, the prediction of
human emotions has gained increased scientific interest in recent decades due to the
growing number of industrial applications and research that suggests a link between
one’s emotions and well-being.

Through continuous research and innovative solutions, the pharmaceutical industry
is constantly evolving and always strives towards advancing its capabilities in ad-
dressing and resolving various health-related issues and challenges. One problem
with medications is that they can have unpleasant flavors or textures that make
them difficult for patients to take. In particular, this relationship is crucial in clinical
settings where the ultimate objective of any treatment is to enhance patient’s health.
Therefore, understanding of emotional responses to a given medication or treatment
is a significant question within the medical sector.

Facial expressions play a significant role in non-verbal communication, which can
be used to identify the emotional state of humans. They account for 55 percents
of non-verbal communication, which is a significant proportion, along with other
non-verbal cues such as body language, tone of voice, and gestures [1]. Studies
suggest a connection between a clinical trial subject’s facial expressions and their
self-reported quality of life. Thus, automated facial expression recognition (FER)
tools hold potential in improving our understanding of how emotions and social
functioning are impacted by treatment. This master’s thesis delves into the domain
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1. Introduction

of automated emotion detection, utilizing publicly available facial expression datasets,
and explores the potential for introducing such methods in clinical trials.

1.2 Related Works
The development of accurate FER tools that can be applied to diverse popula-
tions/etcnicities has been limited by the scarcity of human facial datasets with
comprehensive labeling. In recent years, deep learning (DL) has been widely applied
in the medical field due to its ability to improve healthcare services. Medical and
pharmaceutical researchers have developed DL models for supervised and unsuper-
vised algorithms that can be used in healthcare radiology and clinical trials. Hence,
an exploration of studies employing state-of-the-art techniques can help to gain a
comprehensive outlook on the current research topic.

The following subsections will provide a summary of two research studies that are
closely connected to the present thesis work. These summaries will assist in providing
the underlying motivations for the current master’s thesis project and introduce
fundamental concepts relating to automated FER system using neural network.
However, this section only briefly introduces relevant concepts. Detailed definitions
of these concepts will be provided in Chapter 2.

1.2.1 Image-based Automated Emotion Prediction Research
with Scarce Data

FER for Clinical Trial Self-recordings is a thesis paper authored by [2]. The paper
suggests that there is potential for using a FER neural network in a classification task
by utilizing Action Units (AUs) and a limited dataset [2]. A classification model for
emotion detection was developed to classify facial expressions using the Facial Action
Coding System (FACS). The FACS system separates facial muscle movements into
AUs and mutiple AUs can be aggregated into emotions such as sadness and happiness.

The primary objective of the previous project was to gain a better understanding of
emotional responses to medication or treatment, specifically in the context of clinical
trials for treating conditions such as depression. In such a scenario, a video recording
of the subject will be obtained during which they would articulate their emotional
state, either in a general sense or in relation to a particular topic of interest. These
AUs were aggregated into emotions such as happiness or sadness, which could be
used to evaluate the effectiveness of a treatment. Figure 1.2 displays six AUs that
were of interest in the predecessor project as well as this project. According to Von
Numer, the mentioned AUs can be aggregated into emotions such as sadness and
happiness and these emotions convey state of condition such as depression.

Figure 1.1 shows a subset of frames extracted from the FACS AU-encoded Denver
Intensity of Spontaneous Facial Action Database (DISFA) dataset, which was the
chosen dataset for training and validation of the final model. This set consists of

4



1. Introduction

Figure 1.1: A subsample of frames in the DISFA dataset

Figure 1.2: 6 AUs of interest in Von Numer’s project

a relatively small number of samples, namely 27 subjects, leading to a restricted
distribution of data. All images in this dataset were captured with near-frontal view
and under similar lighting conditions. Additionally, the recordings were made with a
constant dark blue background.

According to the thesis, achieving accurate predictions of FACS encodings is chal-
lenging due to the limited number of subjects and the resulting sparsity of data
distribution. Therefore, successful FACS encoding prediction strategies may require
the use of appropriate pre-training of feature extractors, efficient data augmentation,
and synthetic data generation techniques.

Although the deployment of a multi-layers pre-trained neural network in this study
showed moderate success for the classification task, the author noted that limited
training data, particularly the imbalance of AUs in the DISFA dataset, could have
hindered the model’s performance. In terms of training dataset, the DISFA dataset
included a limited number of images from a small subset of individuals and exhibited
a certain degree of imbalance with regards to the representation of AUs.

Given the challenges highlighted earlier, a promising avenue for future research was
suggested by the author, which involved utilizing Generative Adversarial Networks
(GANs) to generate synthetic face images that could supplement the existing training
data. Furthermore, the author proposed the possibility to expand the work for
automating predictions of six relevant AUs mentioned in the paper.

5



1. Introduction

1.2.2 FER using Deep Neural Networks - A successor project
FER using deep neural networks, [3], is an extended project inspired by the projected
in the previous section, 1.2.1. As a successor, the project aimed to explore the
potential of supplementing the real dataset DISFA with synthetic data generated by
generative models during the training stage. The aims of the successor project was to
enhance the baseline model’s predicting performance by using synthetic data together
with real data. The authors suggest that synthetic data generated by Generative
Adversarial Networks (GANs) such as styleGAN2-ada hold potential to enhance
classification performance for of the existing model in [2].

In order to generate synthetic images that express specific AUs, this study incorpo-
rated a method that involves exploring the latent space of a GAN model, namely
styleGAN2-ADA. The concept of the latent space is denoted as z in styleGAN. It
serves as an initial space that can be sampled from a uniform or normal distribution.
Furthermore, a mapping network is employed in styleGAN to enhance the control
over the latent space z. This network consists of eight fully-connected layers and
is responsible for transforming the original latent space, z, into an intermediate
latent space known as w. The resulting w can be seen as a modified version of z,
represented as z. Manipulation of the involved parameters w and z were done in
order to control the direction of image generation. Specifically, this approach seeks
to generate synthetic images that reflect the desired AU expressions. To streamline
data generation process and facilitate subsequent analysis, the use of pre-trained
models containing images of 256x256 pixels resolution was explored.

K-fold Cross-validation was a method used for validation on both the curated DISFA
dataset and generated synthetic dataset, Eigenfaces. The DISFA dataset is split into
subsets of thirteen folds, with two subjects per validation dataset for each fold. After
each split, the Eigenfaces dataset is appended to the remaining subsets of the DISFA
dataset, and each of these curated sets is used as the training dataset for each fold
training. This results in a total of 15,000 images in the training set for each fold.
This procedure is performed on all folds to train and evaluate the facial expression
recognition system.

The results of this project was closely similar to that of the original model in term of
classification performance. In this paper its acknowledged that the approach pursued
in this study shows promise and has the potential for advancements with additional
time and computational resources.
In light of the project’s findings, the authors recommend several avenues for fur-
ther investigation. Firstly, they suggest exploring the center-cropping technique
for synthetic images, which could potentially enhance the model’s performance.
Additionally, the authors propose engaging experts in the field of annotation for
facial AUs to refine the annotation process. Moreover, they advocate for exploring
alternative methods to navigate the latent space, which can offer opportunities
for enhanced model performance, as well as exploring more in depth the different
validation techniques for quality of a generation model using Image Quality Assess-
ment (IQA). Lastly, the authors highlight the potential of investigating an inductive
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1. Introduction

semi-supervised learning approach, particularly in scenarios where a small labeled
dataset is available alongside a larger unlabeled dataset.

1.3 Problem Definition

Upon reviewing of the aforementioned research studies, it has become clear that
the successor project has shown improvement potential for the original project’s
limitations by using generated synthetic data. The successor project successfully
utilized the classification model from the baseline project to implement two bench-
marks. By comparing the results of these benchmarks, the project gained valuable
insights into the effects of Semi-Automated annotation, Training Data Selection
and Latent Space Exploration. These approaches proved instrumental in addressing
the challenges posed by the thesis and significantly contributed to enhancing the
accuracy of AU predictions. It is worth mentioning that that the limited amount of
data as well as the data imbalance are significant issues that requires solutions, but
that they have been solved in this thesis by focusing on balancing both the quantity
of the data but also the quality of the data. In this regard, the successor project has
introduced potential methods such as using Training Data Selection, annotation in
a more robust way and Latent Space Exploration to tackle the scarcity and data
imbalance, which can potentially be a direct link to why the baseline model was not
able to outperform the successor results.

Additionally, it is noteworthy that while the successor project is a stepping stone
in improving the data scarcity and imbalance, it lacks a comprehensive, structured
pipeline to support and facilitate the data flow. Hence, by incorporating supplemen-
tary constituent elements, it is feasible to create a more cohesive system, which could
potentially boost the performance of the baseline model. Accordingly, a proposed
approach can be, for instance to investigate how the Training Data Selection (TDS)
of the input data influences the performance of the baseline model. A thorough
examination would provide valuable insights into how a comprehensive pipeline can
impact a neural network’s performance positively or negatively. As the predecessor
projects have made moderate progress in implementing the mentioned components,
the current study’s primary contribution is to develop a comprehensive structure of
the pipeline that integrates these components effectively.

1.4 Project Aim

The following figure presents a high-level flowchart of various main work packages in
this initial stage of the project. The blue parallelogram symbols indicate datasets,
and the DISFA dataset will be utilized in the same manner as it was in the original
project by von Numer.
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1. Introduction

Given the various components involved in this project, it is crucial to establish
clear objectives for each stage, as depicted in the flowchart, this way it ensures the
coherence of the project’s end result. Based on the mentioned aims in the previous
section and the presented work packages, the preliminary objectives of this thesis
are articulated below.

• Obtaining a curated dataset using generated synthetic images. The
process involves the selection of appropriate datasets, the training of the se-
lected generative model, and the generation of synthetic data that can be
utilized as input for subsequent stages/objectives of the project. It is important
to note that the chosen datasets in the initial stage should have the potential
to support the other objectives of the project as well.

• Obtaining functional neural network for the classification task of
predicting AUs in the curated dataset. The primary goal here is to use
the curated synthetic dataset of images into the framework of the baseline
model, resulting in a model that effectively captures the complexity of the
feature maps and provides a representations of the presence of each AU.

• Obtaining the performance/evaluation of the classification model.
This objective seeks to address the effectiveness of utilizing classification models
for predicting the AUs using curated dataset of images via a selection methods
such as Image Quality Assessment. The evaluation will be conducted using
the curated dataset from the previous stage of the project as the input and
evaluation metrics as the assessment tool.

• Obtaining an understanding of the influence of Training Data Se-
lection on the performance of the established classification model.
At this initial stage, the aim for this objective is to gain a comprehensive
understanding of the impact of the use of TDS on the performance of the
established classification model. This aims to address, on a high-level, the
effect of modifying the input of the classification model through TDS.
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1. Introduction

The proposed solution is a simple pipeline in the TDS which can sort out the
defects of all the synthetic images to the highest image quality degree. In other
words this pipeline should work as a systematic approach to finding images
that do not correspond to the need and criteria of the type of pictures that are
desired. Instead this pipeline should implement sub-image processes that can
easily detect faults within the images, for example image color, image noise
et cetera, in order to discard of those images with the lowest reported image
quality.

In order to construct the pipeline one needs to set requirements of what these
sub-processes within the pipeline should do. Thus, upon doing systematic
analysis of the images, it is found that the best results are given when one is
provided with a formulation. The list below provides readers with a couple of
requirements:

– Image should contain a complete face - By using landmarks the process
of detecting face can be done very easily. If a face does not appear we
simply discard this image and do not use the defect as an input to the
classification model.

– Images should not contain any facial features that are not proportional or
appear to be unrealistic to the human eye.

– Images should not appear to be in any color other than the original images;
i.e color should only be appear in RGB-standard not grayscaled or any
other spectrum.

One commonly used metric for evaluating synthetic face images is the Fréchet
Inception Distance (FID), which measures the similarity between the distribu-
tion of feature vectors for real and synthetic images. The lower the FID score,
the higher the quality of the generated images [4].

Notice that image alignment was not present in the aforementioned list. Gen-
erated image of a face should not usually appear to be tilted, or in any way
aligned, such that it is not aligned perfectly to the image format. I.e people
should appear to be somewhat aligned in center of image. However, to make
a robust model we will need to focus on implementing a system that is not
affected by the changes in an image, such as the alignment.

The main objective of this thesis is to compare the baseline, which was run
without considering image quality, with the curated dataset of training data
samples from this project. The aim is to assess the effectiveness of the suggested
pipeline implementation by comparing the end results of the two benchmarks
that will be conducted. The first benchmark will involve the baseline bench-
marks reported in the original project, which utilized a dataset of approximately
40,000 images without considering their image quality. The second benchmark
will use the same classification model but with the curated set of training data
selection samples that take into account image quality. To concretize these
goals, three research questions are formulated as follows:

Question 1 – How to effectively evaluate synthetic image quality and opti-
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1. Introduction

mize model performance using Training Data Selection (TDS)?

Question 2 – How does integrating TDS pipeline, based on IQA metrics,
impact emotion prediction using synthetic images? Does TDS improve
prediction accuracy?

Question 3 – What is the effectiveness of integrating more synthetic images
in the baseline model for predicting AUs?

1.5 Challenges and Limitations
Every research project has its own set of challenges and limitations that must be
acknowledged and addressed. This section will discuss the challenges and limitations
that are likely to be encountered during the course of this thesis research.

1.5.1 Challenges
To achieve the objectives mentioned in previous section, the following challenges
should be taken into account. Such challenges will be delineated from the project by
setting clear limitations, in order to keep track of the planed timeline. This will also
shed light on how complex such machine learning task can be, especially because
this project involves many different methods combined into one complete pipeline.

• The absence of images of human faces exhibiting negative emotions or those
displaying emotions such as sadness, fear or disgust in the FFHQ dataset may
present a challenge in the generation of images depicting such emotions.

• The prior study [3] has indicated the potential of the Eigen vector solution,
which has resulted in partial reliance on this result for the investigation of
the latent space in this thesis. This approach offers considerable benefits and
insights. However, it also carries the potential risk of time-intensive analyses
and technical difficulties in demonstrating the optimality of the Eigen vector
solution. Therefore, alternative solutions will also be subject to examination in
light of this consideration.

1.5.2 Limitations
In regards to the aforementioned challenges, it is urgent to establish clear and specific
limitations for the scope of this master’s thesis as articulated below. This will
ensure that the project remains within its intended parameters and remains on track
throughout the process.

• The generated synthetic images may possess a diminished quality when com-
pared to their real counterparts, potentially leading to an adverse impact on
the performance of the models. Although various strategies for optimizing the
latent vector will be analyzed, the time constraint will be taken into account.
Thus the goal is achieving reasonably satisfactory, rather than overly realistic,
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1. Introduction

synthetic images. The assessment regarding the quality of the of the synthetic
images will include both objective and subjective evaluations, including visual
inspection.

• Over-fitting can occur as a result of excessive model complexity arising from
an excessive number of parameters in the training process. Nonetheless, the
present project will not focus on this matter and thus will not take actions to
reduce the over-fitting.

• Given that this project builds upon existing elements and models of two pre-
ceding projects, the related works and theory sections will cover fundamental
theories that are essential to the understanding of the project. However, due to
limited time and some elements being irrelevant to the present project, detailed
steps of the previous projects will be omitted.

• Furthermore, since the primary objective with this project is to implement a
comprehensive pipeline and improving the data scarcity and class imbalance,
prioritizing any individual component will not occur. In instances where an
element in the pipeline is deemed to have potential for improving the final
performance but time constraints do not allow for its complete implementation,
it will be either suggested as future work or describe shortly as an alternative.

• The results of the preceding projects have been deemed successful, and therefore,
any enhancements to the baseline model utilizing newly generated synthetic
data in this project should be viewed as a supplementary accomplishment.
Considering the presence of multiple constituents in this project and the
construction of a pipeline being a contribution in itself, if both individual com-
ponents and the entire pipeline do not produce an improvement in performance,
we will not exceed the pre-determined time frame allocated for each phase
exclusively for the purpose of enhancing performance.

1.6 Thesis Outline
This section provides a comprehensive outline of this thesis report. Given the multi-
faceted nature of the topics covered in this study, the thesis outline serves as a guide
to facilitate the reading and comprehension of the intricate subject matter across
different domains.

Firstly, Chapter 2 provides an overview of the FER domain, covering the theory
behind styleGAN2-ADA, Latent Space exploration, Image Quality Assessment, and
Classification models. It also includes a section on the evaluation method, relevant
research, new directions, and challenges.

Chapter 3 presents the methodology of the thesis, starting with the data acquisition
process. It discusses the statistics of the used datasets, preprocessing steps, and the
methodology for feature extraction. It also describes the evaluation of good and poor
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quality pictures, along with the algorithms used.

Note that some of the sections mentioned in Chapters 2 and 3 will explore the
technical details and offer a comprehensive explanation of the algorithms utilized in
this research. These sections may contain a significant amount of technical content,
as they delve into the intricacies of the algorithms. However, this level of detail is
crucial for readers with an interest in the technical aspects of computer science and
related disciplines. By discussing the algorithms and techniques employed, these
sections will provide valuable insights into the underlying mechanisms and processes
employed in generating synthetic facial images using GANs.

Chapter 4 focuses on the results, beginning with the outcomes of the feature extrac-
tion. It then presents the results from different phases in the Test Input Selection
pipeline. A comparison is made between two benchmarks, one using all generated
images and the other using only the synthetic images with the best reported image
quality score. The chapter concludes with the testing of the classification model.

Chapter 5 draws conclusions, discussing potential weaknesses in implementation,
future work, remaining challenges, and recommendations. It also provides an assess-
ment of the performance that can still be improved.
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Theory

The following Chapters 2 provides an overview of the FER domain with a fundamen-
tal understanding of the research, techniques, and challenges involved in FER, as well
as the current state-of-the-art FER methods. Furthermore, techniques to conduct
the pipeline for the entirety of the project is also introduced, i.e ll the processes that
build up the complete pipeline will be introduced.. The insights gained from this
chapter will serve as a foundation for the subsequent analysis and evaluation of the
FER model.

2.1 Overview of FER Domain
FER is a field that involves recognizing human emotions from facial expressions. This
task requires accurate feature extraction and analysis from static images or videos
[5]. FER has many applications in various fields, such as psychology, marketing, and
robotics. Nevertheless, the domain of FER is a complex and rapidly evolving field
that remains a multifaceted domain characterized by constant evolution and inherent
challenges. These challenges can have significant impacts on the development and
progress of the domain. In the following subsection, a comprehensive explanation of
the challenges that the FER domain commonly faces will be presented in detail.

2.1.1 Challenges in FER
One of the significant challenges in this domain is the lack of large datasets [5]
[6]. Data scarcity makes it difficult to train and test FER algorithms effectively.
Additionally, another prominent challenge in FER is the high variability of facial
expressions. People express emotions differently, which makes it difficult to generalize
FER models across different subjects. Moreover, the same person can express the
same emotion differently at different times. Thus, FER models should be robust
enough to account for the high variability of facial expressions.

2.1.2 Techniques used in FER
To overcome the challenges and enhance the performance of FER, researchers employ
different techniques, such as convolutional neural networks (CNNs) and domain
adaptation. CNNs have been widely used in FER research due to their ability to
extract features automatically from images and videos. CNNs can learn a hierarchical
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2. Theory

representation of facial features that can discriminate between different emotions
effectively.

Domain adaptation is another technique used in FER to overcome the problem
of data scarcity. Domain adaptation aims to transfer the knowledge learned from
a source domain to a target domain with different distribution. In FER, domain
adaptation can be used to transfer the knowledge learned from a large dataset to a
small dataset to improve the performance of FER models.

2.2 Facial Action Coding System (FACS) and Ac-
tion Units (AUs)

One gold-standard tool that is widely used in psychology and other fields for research
on emotion and nonverbal behavior is the Facial Action Coding System (FACS).
It is a system for objectively measuring and describing facial expressions. FACS
decomposes facial expressions into individual muscle movements, known as Action
Units (AUs). Developed by psychologist Paul Ekman and his colleagues in the 1970s,
FACS is based on the observation that facial expressions are composed of a set of
discrete muscle movements in the face. These muscle movements can be observed and
measured, allowing researchers to objectively describe and analyze facial expressions
[7].

In behaviour science, the Facial Action Coding System (FACS) has become the
gold-standard used in behavioral science to decode and study facial expressions. It
was originally developed by Ekman and Friesen in the 1970s and has become a widely
used tool to analyze facial expressions and this is by decomposing facial expressions
into muscle movements in the face for analysis . FACS utilizes AUs to further break
down facial movements, whereby a single or combination of AUs represent a facial
expression or emotion, see figure below.

FACS consists of 46 different AUs that correspond to individual movements of the
face, which are objectively measured by trained annotators. In this project, the key
interest is in generating a subset of AUs classified in the original project, including
Inner brow raiser (AU1), Brow lowerer (AU4), Upper lid raiser (AU5), Cheek raiser
and Lid tightener (AU6 and AU7), Lip corner puller (AU12), and Lip corner depressor
(AU15), as shown in Figure 2.1. The subset of AUs is a relatively objective method
to measure facial movements, which is critical for examining facial expressions and
emotions. Figure 2.1 displays a selection of the 46 AUs initially specified by Ekman
and Friesen.

2.3 Generative Adversarial Networks (GANs)
Vanilla GANs, short for "Generative Adversarial Networks," were initially proposed
by Goodfellow et al [8]. Their name "vanilla" simply refers to the basic or funda-
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Figure 2.1: A subset of FACS AUs with descriptive text

mental version of GANs. While Vanilla GANs are commonly associated with image
generation, there are also variations of GANs that can generate diverse forms of data
such as text, video, and audio.

They are a type of generative models that can produce new data instances through
an adversarial process. The basic architecture of the system consists of two models,
a discriminator (D) and a generator (G). This process involves two models, G is a
generative model and D is a discriminative model, that work against each other in a
mini-max game with an objective function that can be formulated as follows.

minGmaxDV (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (2.1)

Both of the models start out as untrained and their output will be improved over the
training process. While not having access to the real training data, G aims to generate
instances that resemble the real training samples and fool D. This makes possible by
G receiving feedback from D on how realistic its synthetic samples are. Meanwhile,
D attempts to correctly classify whether the instances are real or synthetic, given
both real training samples and fake instances produced by G. After an instance is
classified by D, the discriminative model undergoes improvement through reviewing
of actual "real" or "fake" labels. Thus it learns by means of back-propagation in a
manner similar to that of a standard classifier [8].

In the realm of deep learning, loss function is a method used to evaluate how well an
algorithm models a dataset. The measurement yielded with a loss function is the
difference between the predicted output and the actual output. Thus, the objective
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is to minimize the value of the loss function. A decreasing result of a loss function
implies that the model performance is improved. Various types of loss functions can
be employed depended on the type of problem being solved. [9]. GANs employ a
Binary Cross-Entropy (BCE) loss function [8]. In general, BCE loss can formulated
as follows.

L(y, ŷ) = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (2.2)

The training procedure for G is to maximize the probability of D making a mistake
by classifying generated images as the true training data. G captures the data
distribution as a vector of random noise and generates instances that resemble the
target output, i.e., the input data. D learns to distinguish the true training data from
the output of G by estimating the probability that the generated instances come
from the training data or from G. Thus, D is used as a tool to train G. Furthermore,
vanilla GANs do not require class labels [8].

As D improves its ability to distinguish synthetic images from real ones, G must like-
wise advance its ability to generate data instances that more closely resemble those
in the training data, in order to continue deceiving D. Eventually, an equilibrium is
reached in which further iterations do not increase the chances of success for either
G or D, and the network subsequently converges [10]. Upon completion of training,
the discriminative model may be discarded.

In comparison, Markov chains, which are applied to similar problems, represent a
different approach. Markov chains are stochastic models that transition between
states based on probabilistic rules. They are commonly used for modeling sequential
data. In the context of generative models, Markov chains rely on the current state
to determine the probability distribution of the next state. However, Markov chains
often struggle to model sharp distributions accurately.

Thus, GANS offer several advantages. Firstly, GANs demonstrate computational
efficiency since the generative component is updated solely based on the gradients
provided by the discriminative model, eliminating the need for actual training ex-
amples. On the other hand, Markov chains typically require explicit training using
observed data sequences.

Furthermore, GANs exhibit a high level of flexibility. A well-trained generator in
GANs is capable of approximating a wide range of distributions across different
domains. This means that GANs can effectively capture and generate diverse data
patterns. In contrast, Markov chains often struggle to model sharp distributions,
making them less effective in representing complex and intricate data structures
accurately.
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2.4 StyleGAN

The styleGAN network was proposed by researchers at NVIDIA, and is a novel
approach for generating realistic artificial human faces. Its key feature is the adoption
of a progressive growth mechanism, inspired by Progressive GAN [11]. It has sev-
eral major improvements over other GANs, including fidelity, diversity, and feature
control, achieved through a more involved architecture based on the idea of the
Progressively Growing GAN (PGGAN) [12]. PGGAN trains the generator with a
low resolution at 4x4 pixels in each block, gradually increasing the resolution for each
block through nearest-neighbour upsampling until it reaches the desired resolution.
During training, the upsampling is gradually replaced with transposed convolutions,
resulting in a more stable training process and reduced training time. This approach
ensures that higher-resolution transposed convolutions are only used once the model
has enough capability to handle them.

The discriminator in styleGAN has a similar structure but in a reversed fashion.
The z vector is fed through a feedforward network to obtain a learned noise vector
w, making the input vector more directly connected to semantic features in the
output instances. In styleGAN, "v" and "z" are important vectors in the generative
process. The z represents the latent space, a random noise vector that influences the
generator’s output. The v is derived from z using a feedforward network, connecting
the input vector to the semantic features of the generated instances. With v, the
generator controls the style and appearance of the images. It is progressively intro-
duced during transpose convolutions, allowing for multiple versions of v at different
stages. This enables style mixing, blending different styles in the generated images.
Note that the usage of v and z in styleGAN may differ from general GANs, but both
vectors impact the generation process.

This procedure affects the feedforward network producing w in backpropagation
operations [12]. The first layer feeds a constant value into the generator, and w is
gradually fed into the network at different stages of the transpose convolutions. This
enables the creation of multiple versions of the vector w and allows for style mixing
possibility in images [12].

2.4.1 StyleGAN2

StyleGAN2, an improved version of styleGAN, removes residual effects on the
generated images by modifying the instance normalization. It also makes interpolation
among different w vectors smoother, further advancing feature control. styleGAN2
also improves upon the progressive growing by simultaneously training all resolution
blocks from the start, while focusing more on low-resolution blocks in the beginning
and gradually shifting to later blocks as the model improves [13]. This approach
maintains the progressive feature inherited from PGGAN while training all blocks
simultaneously.
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2.4.2 Latent Space in styleGAN2-ADA
StyleGAN2-ADA is a modification of the original styleGAN2 model that incorporates
adaptive discriminators to improve its performance. This model has been shown to
generate highly realistic images, and the quality of the generated images is highly
dependent on the quality of the latent space representation [14].

Latent space is a fundamental concept in generative deep learning models, par-
ticularly in the recent state-of-the-art StyleGAN2-ADA model. Latent space is a
high-dimensional space in which the generative model G learns to represent the
essential features of the data. In the general styleGAN architecture, G selects latent
vectors from an intermediate space called w using eight fully-connected layers and
applies various transformations to encode style, such as normalizing feature maps
and injecting noise. Thereafter, the synthesized images will undergo an inversion
process to map them back into the latent space. The reason for the intermediate
latent space is to enforce disentanglement of the feature mappings and to enable
fine-grained control over image synthesis in styleGAN. In StyleGAN2-ADA, the
latent space is a 512-dimensional vector space that encodes the key features of an
image [14]. This vector is then transformed into a feature map that is fed into the
synthesis network to generate an image.

Visualizations and manipulations of the latent space provide insights into how
different regions correspond to specific visual features in generated images. One can
explore and navigate this space to discover meaningful directions and make targeted
modifications, enhancing interpretability and control of the generative model. This
capability allows for creative exploration and fine-tuning of image synthesis.

2.4.2.1 Latent Space Exploration with Synthetic CFD

In this project, the model was trained on dataset CFD in order to learn the structural
similarities between images. The model is able to classify the images in a way it learns
the features and structures from the images in a classifier fashion. At a frist galnce,
the generation of synthetic images may appear to be entirely random. However, this
procedure is not completely random since it is inherently a latent process. The term
"latent" refers to its hidden nature and lack of immediate visibility.

The concept of latent space is important because it’s a utility connected to deep
learning. In other words, the latent space explorations is the task of leaning the fea-
tures of data and simplifying data representations or the purpose of finding patterns.

In order to understand latent space one needs to understand why data compres-
sion is one of the processes in the latent space exploration. Data compression is a
common process used in machine learning in order to compress data points into a
more human readable space, for example 2D or 3D space. Data compression, is the
process of encoding information using fewer bits that the original representation.
For example, taking a multiple dimensional like 10D (10 values needed to define a
unique output) and then squishing all into for example lesser dimensions, 2D data
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point. This practice of compressing data is largely used in the field of machine
learning. It involves acquiring crucial details concerning data points, which facilitates
comprehension and manipulation of input and output, as well as various machine
learning models. Article [15] discusses unsupervised compression algorithms applied
to gene expression data and how they extract latent or hidden signals representing
technical and biological sources of variation. Another article [16], presents a method
that allows for efficient compression of data by structuring the latent space in a way
that makes it easier to control the reconstruction process.

Typically, when referring to latent space in spatial terms, it refers a space consisting
of 4D or n-dimensional points. But latent space is usually more complex to imagine.
Thus, a space that is higher than n>3 is nothing we can demonstrate in this paper.
Nonetheless, utilizing techniques such as t-SNE (t-distributed stochastic neighbor
embedding), it is possible to convert the latent space representations from a higher
dimension into a more comprehensive and visualizable form, such as 2D or 3D. The
generator model in this paper takes data points from the latent space as input and
generates a new image. The latent space itself is a abstract representation, but it
hyper sphere represents a large amount of untested ground that can be explored by
generating and traversing the space.

The processing in this paper takes into regard the generation of images but via
a latent vector ‘z’ from a Gaussian distribution, then mapping ‘z’ to the w space
using the mapping network and finally producing the image from the w space using
a synthesis network. This results in tensor of images that have the dimension of
(n_images, 3, image_size, image_size) where the images are the number of images
and ‘image_size’ is the size if the images (256 in this case). The size of the tensor
depends on the number of input of images that the functions takes.

Images are saved as tensor because they can easily be processed and manipulated
using mathematical operations. Tensors are multi-dimensional arrays that can rep-
resent complex data structures, such as the images we are saving. In this case,
dimensions for width, height and colour channels. So by saving images as tensors,
they can be resized, normalized, transformed, and manipulate for various machine
learning tasks without a lot of programming changes or re-works. Another advantage
of saving images as tensor is the amount of space one saves by effectively compressing
and storing into smaller file sizes without losing important information.

Coming back to t-SNE, the reasons of using this reduction technique is that it is a
reduction technique design which enables the preservation of the local structure of the
data. Practically this means that data points that are close together in the original
high-dimensional space will be mapped to nearby points in the lower-dimensional
space, and thus t-SNE is particularly interesting for identifying data points in clusters
or k-groups of similar data points.

To visualise the latent space using t-SNE the data first needs to be encoded into the
latent space using deep learning network. Once you have defined the latent vectors,
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the t-SNE is applied to reduce the dimensionality of the vectors and visualise them
in 2D or 3D space. Therefore, using this technique one can visualise the CFD dataset
and see if there are any apparent patterns and relationships in the data that may have
been hard to test or analyse in the original high-dimensional space. It is crucial to
note that, while t-SNE is an tool that provides insights into the underlying structure,
it is a non-linear technique and may not preserve all of the information from the
previous high-dimensional space. Upon implementing this technique on CFD one
can try to analyse the latent space and explore it before digging in directions and the
process of picking seeds. Below shows how the CFD’s latent vectors are scattered in
a 2D space; see Figure 2.2.

Figure 2.2: t-SNE method for the latent space of the CFD model.

The plot generated shows the t-SNE embeddings for each iteration and the Mean
Squared Error (MSE) between the t-SNE embeddings for each iteration. The plots
visualised are 2D representation of the high-dimensional data. Each point in the
scatter plot represents an instance in the dataset and the colour of the point rep-
resents its class label. By comparing the scatter plots for each iteration, you can
observe how the t-SNE algorithms is grouping the instances of similar classes together.

Through visualization, one can observe clusters, groupings, and separations of the
samples, enabling the identification of similarities or dissimilarities between them.
This process potentially uncovers hidden patterns or structures within the data. By
visually analyzing the results, it is apparent that the first iteration is clustered in
the upper left corner, while the subsequent iterations display very similar feature
distributions. The correlation coefficients between the t-SNE embeddings of each
iteration offer insights into the stability and consistency of the results. Higher corre-
lation coefficients indicate similar mappings, thus reinforcing the reliability of the
visualization, this can be observed in the iterations 2 to 4. Consequently, it is evident
that the latent space is not entirely randomized. By mapping the feature samples
onto the latent space, one can also understand how to navigate it and generate
desired images with corresponding facial features and characteristics.

The MSE heatmap, on the other hand, shows the pairwise mean squared error
between t-SNE embeddings for each iteration. The darker the colour, the higher
the MSE between the embeddings. Heatmaps are used to determine if the t-SNE
algorithm is converging to a stable solution or if encountering stagnation in local
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optima. Hence, a low ME between t-SNE embeddings indicates that the algorithm
is converging to a stable solution. The MSE heatmap is shown in the figure below:

Figure 2.3: MSE heatmap method for the latent space embeddings model.

2.4.2.2 Latent space exploration with interpolation

Interpolation is a mathematical technique used to estimate data points within a set
of known values. In this case interpolation will be done by exploring the latent space
within the border of analysing synthetic images. In the context of exploring the latent
space of generative models, interpolation is used to generate intermediate samples
between two given points in the latent space. It will allow for a more clear picture
and allow one to study the properties of the model’s internal representation. By
using repetitive interpolation, we can observe how the model generates images as we
move along a path in the latent space. The most common way to interpolate between
two images in the latent space is to linearly interpolate their corresponding latent
vectors, which are their numerical representations. Suppose there are two images, A
and B, with corresponding vectors zA and zB. To interpolate between zA and zB, one
can sample a set of intermediate latent vectors zi by linearly interpolating between
zA and zB using the formula:

zi = (1− α) · zA + α · zB (2.3)

where αi is a scalar that controls the degree of interpolation, with αi=0 representing
image A and αi=1 representing image B. The scalar αi controls the degree of interpo-
lation, allowing for the generation of intermediate latent vectors and corresponding
images. By varying the values of αi in a ranges from 0 to 1, one can generate a
sequence of images that smoothly transition from A to B.
Recent state-of-the-art for exploring latent space of generative models often use in-
terpolation as tool for studying the properties of the model’s internal representations.
For example, GANSpace in [17] uses interpolation to explore the semantic attributes
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of generative models. Other examples of interpolation uses Autoencoders to explore
latent space [18]. Autoencoders shows the abilities to embed data manifold into
low-dimensional latent space, making the data construct very usable in learning
methods of representation and space. Additionally, there are more advance ways of
constructing interpolation that can be used to generate more realistic and diverse
images. For example, Riemannian Walk for Incremental Learning [19] which intro-
duces a path-based interpolation method that follows a curved path in the latent
space. This results in more natural-looking transitions between different images.

As previously mentioned, several methods exist for interpolation; however, the
diversity that each new technique brings makes it challenging to obtain a complete
image or overview. Instead, one needs o focus on generating and being able to analyse
more directions, degrees, and seeds in several interpolation in single iterations. An
individual interpolation can be represented as shown in Figure 2.4 (a). However,
when comparing a grid of multiple iterations of interpolations, to single interpolation
makes the choice of latent space method more evident, i.e choosing a grid of multiple
iterations. This facilitates the exploration of the vector space and the identification of
the appropriate vectors indexes (idx) to achieve desired changes. These changes could
include neutral or intense facial expressions, morphing between male and female, or
alterations in various ethnicities along a single vector direction. Refer to the figure
below for clarification, see Figure 2.4.

(a) Single iteration of a interpolation
of two images (morphing).

(b) Multiple iterations of interpolation,
repeating the process of morphing.

Figure 2.4: Side by side comparison of the two different techniques, single iterations
(a) and multiple grid like iterations (b). The grid allows to compare multiple
interpolated images side by side. This allows for quick visual recognition when it
comes to any consistent changes or transitions in the images. Which, may provide
insights into the underlying data distribution or relationships.

Notice that the interpolation has a degree axis depending on the vector number of
choice. The methods of exploring the feature space of a pre-trained GAN model
are done by visualizing what images could be generated depending on the vectors
directions. The vectors represent the directions in the feature space in which changes
in the input vector will produce a specific change in the output image. To be more
specific, the vectors represent the principal components of the weight matrix that
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maps the input vector to the output image. By using the vectors, one can perform
operations such as interpolation between images and thus controlling specific features
of the generated images. The degree of change in the output image is determined by
the magnitude of the change in the input vector along the vector direction.

2.5 Stability Issues of styleGAN2-ADA Training
styleGAN2-ADA can create high-quality synthetic images by using adaptive discrim-
inator augmentation (ADA) to improve the training stability and performance [20].
However, if the training time is too long, the synthetic images may become extreme
or unrealistic. This could be due to overfitting, mode collapse, or insufficient data
augmentation [20][21].

2.5.1 Overfitting and Underfitting
Overfitting is a well-known obstacle in machine learning, which often has to do with a
model’s tendency to learn the noise instead of the salient features. This phenomenon
arises when a model excessively learns the training data, leading to a high level
of accuracy in classifying the training dataset. However, such a model may fail to
generalize well to novel or unseen data, resulting in suboptimal performance and
inaccurate predictions.

The primary cause of overfitting can be two primary reasons, one is the presence of
an excessive number of parameters. The other is an overly complex model, which
leads to the capture of noise or random fluctuations in the training data. In order to
address this issue, several techniques have been proposed, including regularization,
cross-validation, and early stopping. These techniques are often used to prevent
overfitting. The idea behind is to constrain the model’s capacity, ensuring that it
generalizes well to unseen data, and thus improves its overall performance.
In order to solve overfitting techniques such as increasing the number of parameters,
introducing additional features, or adopting more advanced algorithms can help
prevent underfitting. By incorporating these strategies, a model can more effec-
tively capture the underlying patterns in the data, resulting in improved performance.

Low regularization rate and learning rate yields overfit data, high regularization
rate yields partially fit data, and high learning rate yields unfit data [22]. In terms
of machine learning as a domain, the regularization rate and learning rate are key
hyperparameters that influence the performance of a model. In general, a low reg-
ularization rate and learning rate can lead to overfit data. The opposite is true
for the regularization rate, where a higher rate tends to result in partially fit data.
Additionally, high learning rates can cause the model to underfit, resulting in a
failure to accurately capture the underlying patterns in the data.

For a even more detailed explanation, the regularization rate refers to the level of
penalty imposed on the model for complex functions. Here, a lower regularization
rate results in a decreased penalty. This can lead to a higher degree of overfitting, in
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which the model becomes too specific to the training data. Consequently, it results in
poor generalization to new, unseen data. In opposite, a high regularization rate can
result in underfitting, where the model is too generalized and unable to effectively
capture the patterns in the data.

Similarly, the learning rate refers to the step size taken by the model in updating
its parameters during training. A high learning rate can result in the model over-
shooting optimal parameters and failing to converge effectively. This can lead to
poor performance on both the training data and new, unseen data. In contrast,
a low learning rate can result in slower convergence, but can also lead to better
generalization to new data.

2.5.2 Mode collapse and Ending Training
The problem of vanishing gradients is a significant challenge when training GANs.
It causes the network to stop learning and is often accompanied by mode collapse,
which is when G is only capable of producing one type of image. Mode collapse is a
result of G being stuck in generating a single optimal solution. The reason for mode
collapse is due to a weakness in D network, which causes G to produce one type of
image repeatedly. This limits the generator’s ability to spread to other modes and
thus remains at the one it had generated already [23].

The conventional approach for implementing D involves employing the sigmoid
activation function and Binary Cross Entropy (BCE) loss function. However, the task
assigned to D is often deemed less challenging than the task assigned to G. Specifically,
assessing whether a painting is a genuine piece or a replica is generally easier than
generating a replica that closely resembles an original artwork. Consequently, D may
learn rapidly, causing the BCE loss to converge towards either zero or one. This
leads to increasingly small gradients being passed on to G, slowing down learning
and, in the worst case, causing it to stop completely [24].

2.6 Transfer Learning
Transfer learning is a ML technique that use knowledge gained from a previously
learned tasks and aims to enhance the performance of a target task by leveraging
those knowledge acquired from previously learned tasks, capitalizing on the under-
lying similarities between them. The technique is particularly useful in situations
where there is limited labeled data available for the task at hand [25].

Applications of transfer learning spans various domains in ML, including computer
vision, natural language processing, and speech recognition. Among these mentioned
domains, the most common field that utilizes a lot of transfer learning is computer
vision. In essence, pre-trained models can used to improve the performance of other
models. For instance, a pre-trained model trained on a large dataset of images can
be employed as a foundational component to enhance the performance of a novel
model designed for classifying a smaller dataset of images [25].
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2.6.1 Challenges of Transfer Learning
The methods has several benefits, however, it does not come without challenges.
One of the main challenges of transfer learning is that it can be difficult to find a
suitable pre-trained model that is relevant to the task at hand [25]. In addition, the
pre-trained model may not always be transferable to the new task, which can result
in poor performance [25].

Another challenge of transfer learning is that it can be difficult to fine-tune the
pre-trained model to a new task. Fine-tuning would mean that one has to be
involved with adjusting the pre-trained model to better fit the new task. This can
be challenging due to the complex nature of machine learning models [25].

2.6.2 Transfer Learning of GANs
GANs training are known to be difficult. During the training process, G and D
employ and maintain several parameters through forward-propagation. Additionally,
any errors that arise are back-propagated through all the layers of the two models
[26]. As a result, these models are computationally demanding and time-consuming
to train from scratch. Using pre-trained GAN models would be ideal to facilitate the
training process while still obtaining results on smaller training datasets. Moreover,
this also introduces challenges as one needs to find suitable pre-trained model for
their right task.

To address this issue, the research paper by [27] suggests that freezing the lower
layers of the discriminator could assist a pre-trained GANs network in outperforming
previous methods despite its simplicity when retrained on various datasets [27].
Additionally, the authors argue that their baseline model, FreezeD, yielded the
best performance when fine-tuned for both the generator and discriminator [27].
However, the styleGAN2-ADA network has a highly complex architecture, and the
input dataset is typically in tfrecords file format for the network to be able to use it.
Tfrecord format is used for storing a sequence of binary records [28].

2.7 Using Pickle files to maintain and resume
training stages

The use of Pickle files has become a popular approach utilized in training deep neural
networks. By using Pickle files, trained models can be saved and restored with ease,
and the need for re-training from scratch can be eliminated [29]. It serves as the
preservation of trained models, thereby minimizing the need for lengthy retraining.
Pickling is a technique to serialize Python objects such as complex deep learning
models into a binary format that can be stored and reloaded at a later time. This
is especially useful when working with large datasets or computationally expensive
models, where the re-training process can be time-consuming and resource-intensive.
Consequently, this enables training of models to be started and stopped more flexibly,
thus saving time and computational resources. This also provides the additional
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benefit by making trained models portable and shareable across platforms and
users [29]. Furthermore, henceforth, the utilization of pickle files for the purpose of
resuming or conducting training will be denoted as a pre-trained or trained model.

2.8 Training data Selection
Training Data Selection is a machine learning technique used to choose a set or
subset of representative inputs for evaluating the performance of a model. The
process involves selecting training data that meets specific requirements, such as
selecting synthetic images that exhibit the highest image quality based on Image
Quality Assessment metrics. The goal of the training data selection is to identify that
subset or subsets of inputs that are diverse enough to thoroughly test the model’s
capabilities and expose any weaknesses or limitations. The inputs should have high
coverage of any specified requirements, and the requirements need to be specific
enough to reflect the processes within the Training Data Selection. Considering
that, on might think, what should then be interrelated and tested in the TDS process.

In deep learning methods such as Training Data Selection in this thesis and especially
GANs, are usually evaluated on generated images. The point is to reduce the overall
overfitting and increase generalization since training selection is quite complex in
many ways. Even though it is challenging, one can, through a set of training selection
metrics for deep learning systems, make training selection practical.

The problem with testing in deep learning networks, for example DNN, is that it
is very costly to validate the correctness of a model’s predictions. Which largely
affects the efficiency of the model testing and also affects the whole process of
development. To relieve this problem of labeling test inputs to check correctness,
the authors propose a novel test input prioritization approach. Thus, it facilitates
improving the efficiency of model’s testing and consequently selecting images that
are the most relevant to the requirements described in previous chapter, Chapter
1. Similar approach is used in the domain of Quality Assurance and Assurance
where testers first want to prioritize tests that are more bug-revealing and cover
crucial parts of code instead of having tests that would not cover new areas (code
coverage) or that do not cover any new specific requirements. Other articles, [30],
discuss diverse test input generators (TIGs) that have been proposed to produce
artificial inputs that expose issues of deep learning systems by triggering misbehaviors.

Regarding the present thesis pipeline, the research focus will shift from the per-
spective of Quality Assurance and Testing. Instead, the pipeline shall concentrate
predominantly on the implementation of metrics. These metrics will enable the
quantification of image quality and are related to feature extraction analysis and
other relevant metric analyses. Prior to the presentation of the proposed pipeline, a
systematic exploration of the literature in this field is conducted. Note that at the
initial phase of this exploration systematic search was done for research that involved
generating training data selections, methods like IQA were systematically reviewed.
In the initial phase, the identified papers were skimmed down to extract relevant
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information. However, searching for papers with similar approach as the proposed
TDS Pipeline in this thesis did not yield any results. Therefore, the proposed pipeline
below is a novel method based on the conventional TDS methods used in deep learn-
ing. It is a hybrid solution that incorporates selection methods in computer science
such as algorithms, via Image Quality Assessment (IQA) metrics to convey how the
selection of synthetic images is chosen.

In other words, the proposed pipeline suggests that by implementing IQA as an
indicator of good and bad quality, one can filter out the good quality synthetic
images by analyzing the IQA quality number metric. This approach ensures that
images that closely reflect the original CFD dataset’s characteristics will be selected
as input for the last layer output in the pipeline. Figure 2.5 is a visual representation
of the proposed pipeline.

Figure 2.5: The pipeline consist of 3 phases where each steps includes a careful
analysis of the data it holds within that phase. Phase 1 includes selection of datasets
to consider. Phase 2 includes pre-processing images with OpenCV library. Phase
3 performs IQA analysis on the synthetic sets and compares them to their original
datasets.

Figure 2.5 displays the pipeline proposed in this project and comprises four distinct
phases, each of which include a careful examination of the data involved within
that particular phase. In the first phase, various methods of dataset selection are
evaluated (evaluation of distribution and evalution of how each datsets fits into
data related requirements). The second phase involves preprocessing of the images
utilizing the OpenCV library. In the third phase, IQA analysis is performed on each
of the synthetic set, and the results are compared with its corresponding original
dataset.
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2.9 Data Pipeline
Test image quality assessment can be incorporated as a step in the Training Data
Selection (TDS) pipeline by using objective metrics to quantify the quality of gen-
erated images. These metrics can be used to rank the generated images based on
their perceived quality, and the highest-ranking images can be selected for further
processing or testing.

In this thesis, the approach involves integrating image quality assessment into the
TDS pipeline. It utilizes Image Quality Assessment (IQA) techniques to compare
and measure the perceived quality of the generated images against the reference
images.

2.9.1 Image Quality Assessment (IQA)
Image Quality Assessment (IQA) is a process of evaluating the visual quality of im-
ages. Typically this is measured by analysing the degree of distortion or degradation
that occurs in image capture, compression, transmission, resizing or rendering. IQA
is an important area in the research of computer vision and image processing. It
is a applicable process in a wide range of fields such as photography, multimedia,
medical imaging and surveillance.

IQA has also been a topic of significant research interest in the field of computer vision
and image processing. As imaging technology continues to advance, the demand for
high-quality images has increased. Super resolution has been part of the imaging
processing as well as other techniques. However, IQA has become a essential tool in
the comparison of different datasets and allows for a objective analysis. Tools like this
offer the performance of various image processing algorithms, such as compression,
denoising, and super-resolution.

There are several approaches to IQA but the most common ones are Full-Reference
(FR) IQA and No-Reference (NR) and Reduced-reference (RR) IQA [31]. A Full-
reference IQA compares the quality of the distorted image with the quality of the
original image (reference image) using a metric such as mean squared error (MSE),
peak signal-to-noise ratio (PSNR), or structural similarity (SSIM). The Full-reference
IQA is a technique that is widely used and an example of this is the Siamese
network-based IQA. It is a state-of-the-art technique and conveys image quality
comparison [32]. Siamese networks are a type of neural network architecture that
can learn similarity between two inputs [33]. In this particular case, the two inputs
are two images that are being compared. Additionally, the neural network archi-
tecture allows for a faster comparison of two images since it learns the to compare
them using a loss function. The loss function measures the difference between the
predicted similarity score and the true similarity score. The network then adjusts
its parameters to minimize the loss. By minimizing the loss, the network learns
to output the similarity scores that are the closes or closer to the true similarity scores.
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In term of popularity, Full-Reference is the most popular approaches in the common
techniques of IQA. However, NR-IQA has gained increased attention in recent years.
No-Reference IQA can evaluate image without a reference image. NR-IQA does
assess images against the equivalent synthetic or the generated image. It assesses
images based on statistical or perceptual models of quality such as blind image
quality assessment (BIQA) or natural scene statistics (NSS). NR-IQA is often more
complex than FR-IQA but is also more often the most practical choice in real-world
scenarios where a reference image may not be available, as in many cases of GAN
related image generations.

Recent works include novel model that addresses the NR-IQA task but by lever-
aging a hybrid approach that combines a transformer-based feature extractor with
a multi-layer perceptron [34]. Other works include the use of GAN to predict the
primary content of a distorted image and then measures different degradations
simultaneously with a multi-stream convolutional neural network (CNN) for NR-IQA
[35]. The proposed solution is called Active Interference of GAN for No-Reference
Image Quality Assessment. It approaches the NR-IQA in a hybrid approach where
it combines GAN with active interference to predict primary content of a distorted
image.

Lastly, the Reduced-Reference (RR) IQA is an approach that is gaining popularity
as well. RR-IQA is neither FR or NR-IQA. It’s a compromise between them and
uses partial information from the reference image to estimate image quality. The
techniques rely on the characteristic information about the pixels, coefficients of
certain transformation and/or other predominant features of the original image.
There is recent work which concentrates on creating new ways of assessing videos
and image in RR-fashion. In [36] the authors propose a novel deep learning-based
method. It presents a classification of RR methods and discusses their advantages
and limitations. It emphasizes in the need if objective methods of quality assessment
as subjective assessment is time-consuming and expensive and usually not applicable
in real-time scenarios.

2.9.2 Evaluation of the IQA techniques
All of these techniques have been used in great extent to assess images in multiple
of ways and using both very popular model such as the Siamese model but there
are uses with novel models that require more customization. In order to define
the Image Quality Assessment best suited for the current model in this paper one
needs to consider the relationships between the input images that have been used
to training the model (both the CFD and the FFHQ) and what their equivalent if
there are any equivalent, in the synthetic images pool. As stated before there are
different techniques depending on image relationship in two of the pools. However,
considering that the generated pool has little to nothing to do with the original
dataset one needs to rethink and approach the comparison in a different way. If a
synthetic dataset is generated using a pre-trained model, then it can be considered a
Reduce-Reference (RR) IQA problem. The reference images for the RR-IQA task
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are the original images that the pre-trained model was trained on, and the disorted
images as the generated images that were created using the same pre-trained model.

To assess the visual quality of the generated images, the RR-IQA algorithm will use
partial information from the reference images (original set of pictures) to estimate the
image quality. This can be achieved by extracting features from both the reference
images and the distorted (generated) images. Lastly compare them to measure the
degree of distortion or degradation. The feature extraction from the reference images
will provide some context for the type of images that the pre-trained model was
designed to generate. Therefore, the RR-IQA algorithm can evaluate how well the
pre-trained model is able to generate images that are similar to the original images
it was trained on.

It is important to consider that the effectiveness of the RR-IQA approach is dependent
on the pre-trained model’s ability to generate high-quality images. If the model fails
to generate high-quality images, the RR-IQA algorithm may struggle to accurately
assess their visual quality. Furthermore, if there are significant differences between
the generated and reference images, the RR-IQA algorithm may face challenges in
accurately evaluating their visual quality. While RR-IQA provides a more reliable
method to test quality differences in feature-extraction-based solutions, it does have
limitations that can restrict the assessment process.

The NR-IQA approach provides a more suitable method to assess the quality of gen-
erated images. It evaluates the statistical and perceptual properties of the generated
images, comparing them to reference images. The algorithm considers features like
blur, noise, contrast, and sharpness to determine image quality. One advantage of this
approach is that it doesn’t require reference images. Additionally, since the original
data is consistent in terms of environment and settings, with only variations in
objects, the task of finding similarities focuses on a specific region of pixels. However,
the NR-IQA approach has limitations as it relies on statistical or perceptual models
of image quality, which may not precisely reflect human perception of image quality.

Moreover, the generated images are very similar in terms of the generated image’s
background (environment) but also the properties they possess (ethnicity, ages and
expressions). Here, the choice between the RR-IQA and NR-IQA has made it simple
to choose. From now on and forward in this paper, there will be more discussion on
the appropriate techniques using the NR-IQA approach.

2.9.3 Fréchet Inception Distance (FID)
Another way of processing and analysing different dataset, in order for a full objective
comparison is with the Fréchet Inception Distance (FID) score. The Inception score
is one of the first GAN-evaluation methods to become widely adopted [37]. It is
based on the Inception-v3 model that is trained on the ImageNet dataset [38].

To calculate the Inception score, two probability distributions are calculated: p(y|x)
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and p(y). The first distribution measures the fidelity of the generated images to real
images in the dataset, by calculating the probability of a certain class given a certain
input. The second distribution measures the diversity of the generated images, by
calculating the probability of each class being represented in the generated images.
A high Inception score is achieved by a generator that produces high-quality images
that are diverse and well-distributed across different classes [37].

In other words, the purpose of the Inception score is to give a high score to a generator
that manages to both create high quality (high fidelity in the literature) and high
diversity images. High fidelity is measured by calculating p(y|x), i.e. how probable a
certain class is given a certain input. Given x, we want to have as high probability
for y as possible.

The main objective is to achieve a precise distribution, aiming for a high certainty
level of 100% for a majority of the images. This implies that the generated images
should be accurate and correctly classified. Furthermore, we calculate p(y) to assess
the diversity of the images and ensure that the generator produces a variety of image
types, rather than just one. The goal is to evaluate the evenness of class distribution
among the generated images [39]. Here we want a distribution that is as flat as
possible, since we want to have a diverse output. Our ideal here is thus a uniform
distribution. The Inception Score is then given by comparing these two probability
distributions using the Kullback–Leibler divergence.

Using the Inception score [40] poses several challenges. First, it compares synthetic
images exclusively and does not include real images in the evaluation, focusing solely
on probabilities derived from the Inception classifier. Second, its applicability is
limited to the ImageNet dataset and struggles when assessing generated images from
different domains. Lastly, the score can give a perfect diversity rating even with just
one instance of each class, as it measures probability rather than absolute numbers.
However, it tends to produce better scores with larger sample sizes, indicating a bias
towards large datasets [40].

The FID has proved to be a good way of measuring both fidelity and diversity, but
it still has drawbacks. One is that, just like the Inception score, the embeddings it
uses are trained on ImageNet. This makes it quite dependent on the pictures the
Inception model is trained on. Another, is that we expect humans, and not feature
extractors, to be looking at the generated images in their final use-case. So it is quite
hard to get around the fact that humans still need to be involved in the evaluation
process if we want the best possible benchmark. Therefore, there is still a need for
frameworks that use human annotators. One such framework is HYPE (Human
Eye Perceptual Evaluation), which relies on crowdsourcing human evaluators from
platforms such as Mechanical Turk [41].

Comparing the performance of different generative adversarial network (GAN) mod-
els can be challenging due to the absence of an explicit objective function. While
human annotation has been commonly employed to assess visual quality, it introduces
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potential variability and bias. In [39], the use of automated processes like Amazon
Mechanical Turk (MTurk) for human annotation is explored. However, this approach
still faces challenges, as assessment outcomes can vary based on task setup and
annotator feedback. Incorporating feedback can lead to a more critical evaluation,
highlighting flaws in generated images. To address these limitations, automatic
methods like the Inception model and Fréchet Inception Distance (FID) are used
for more objective and automated evaluation of generated images in the context of
GANs [42]. Note that in this project the NPYViewer tool [43], is used in order to
error check and validate the annotation process. For more details read section A.3 in
the Appendix.

To measure the quality of the generated images some definitions need to be made.
The idea is that there is some real data distribution (2.4) and a generating model
data distribution (2.5).

pr(.)→ real world data (2.4)

pg(.)→ generating model data (2.5)

Ideally, one wants to know if the two distribution of real data and generated data
are equal following the domain of partial differential equations and finite elements
methods, such that:

pr(.) = pg(.) iff
∫

pr(x)f(x)dx =
∫

pg(x)f(x)dx (2.6)

Here, you multiply the distributions by some test functions f(x), then compute the
integral. Now similarly in real life scenario, if the two integrals are equal for all of
the f(x) that are spanning the feature space, then pr(.) = pg(.) will be equal as well.
Here f(x) is/are the basis function that span the feature space.

f(x)→ basis spanning the function space in which pr(.) & pg(.) live (2.7)

For example, one type of basis functions are polynomials. However, one needs to
limit themselves since you cannot compute for all polynomials, so let’s say that one
looks for polynomials of zero and 1. That gives you the first and second moment of
the distribution. One is the expected value and the other one is the second moment.

f(x)→ polynomials, first & second moments, Gaussian (2.8)

Here we are looking at f(x) and f(x)2. One results in the first moment and the other
one give the second moment. Additionally the only distribution that one knows
the entire properties, by knowing only the mean and the variance, is a Gaussian
distribution. There by the equation above states that one needs to work with the
Gaussian distribution.

Next, we take the images (real or fake) and probed them through the neural network
that is pre-trained (in this instance the Inception Model based on Fréchet). It results
in two codes, for the images.

x→ coding layer of an Inception Model (2.9)
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Second step is to look at the statistics of those images. In other words, you now
first featureize the images using the Inception model, you compute the mean of the
generated images and compute the variance of the generated images. Then same
goes for real images, you compute the mean of the real images and the variance of
the real images. Lastly you compute the distance (Euclidean Distance) between
the two Gaussians. This is how you compute the Fréchet Distance, between two
Gaussians:

d2((mg, Cg, mg, Cr)) = ∥mg −mr∥2
2 + Tr(Cg + Cr)− 2(CgCr)1/2 (2.10)

The FID scores are reported in Chapter 4 of this paper. The chapter includes results
from both the baseline comparison of real and fake images, as well as the evaluation
of different unique batches. The setup of the training selection will be described in
more detail following Chapter 4. Moreover, FID algorithm is included in the Chapter
3 as it is a relevant metric with valuable insight when it comes to discussing the
differences between the real and generated images.

2.9.4 Support Vector Regression (SVR)
In most linear regression models, the objective is to maximize the sum of squared
errors, as demonstrated by Ordinary Least Squares (OLS) [44]. OLS is utilized
to identify the best-fit line that minimizes the sum of squared errors between the
predicted and actual values. However, Support Vector Regression (SVR) follows a
distinct approach for regression problems.

SVR is a popular regression model that surpasses linear regression in its ability
to handle non-i.i.d. data and non-linear relationships. It enables the construction
of non-linear models and the definition of acceptable error levels by minimizing
coefficients and maximizing the margin. By identifying a hyperplane within a high-
dimensional feature space, SVR can separate data into two classes and minimize the
disparity between predicted and actual quality scores [45]. This approach ensures
robust performance even when dealing with noisy and complex data.

The SVR algorithm transforms input features into a higher-dimensional space using
a kernel function, which facilitates the definition of a hyperplane. The radial basis
function (RBF) and polynomial kernel are commonly employed in SVR for Image
Quality Assessment (IQA) [46][47]. The SVR model predicts the quality score of a
new image based on its feature vector and the defined hyperplane.

SVR demonstrates inherent flexibility, allowing for a range of predicted values within
a specified error range. In the context of Image Quality Assessment (IQA), SVR
serves as a regression analysis algorithm that predicts continuous variables based on
input data, such as generated images. Trained on these images, particularly their
feature maps, SVR aims to predict the feature maps of unseen data. It finds applica-
tions in image quality assessment by training models to predict quality perception
features associated with visual quality. SVR has been employed in various IQA
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schemes, including assessments for image retargeting and blurred images, enabling
the prediction and comparison of quality between generated and original images.

The final implementation of SVR occurs on the selected set of test and training
data. In other words, the subsets of test and training data that have been evaluated
and reported as the highest quality in the preceding non-reference image quality
assessment (NR-IQA) step serve as the input for SVR in the final stage of the pipeline.

In terms of restrictions, one can additionally change the restrictions of SVR to output
only images that are within certain score. The specific SVR implementation will use
BRSIQUE as the evaluation score. Results from the run is reported in the Chapter
4. Lastly, the idea is to split the SVR prediction training into two phases. The first
phase focuses on training on the original data of the CFD. However, one should not
solely train on all the data. Focus lies on validating the images, so it is essential to
train on partial original dataset and validation on the rest of the original dataset. In
this way prediction of image quality can be validated and supervised based on the
validation score output.

Next, the last phase of the SVR is to analyse the synthetic dataset and validate
whether the metric outputs any logical score in terms of IQA score. This approach
is like the Fréchet Inception Distance algorithm which similarly looks to validate
the synthetic datasets and its image quality scores based on the original data scores.
Below, are the steps that will define the work process of implementing SVR. The
calculation of image quality prediction using SVR involves several steps:

1. Feature extraction: Extract relevant features from the image that are thought
to be correlated with human quality perception. Examples of such features
include colour histograms, texture features, and structural information.

2. Training: Train an SVR model using a set of training images and corresponding
human quality ratings. The SVR model learns to map the feature vectors to
the corresponding quality ratings.

3. Testing: For each test image, extract the same set of features and use the SVR
model to predict its quality rating.

4. Evaluation: Compare the predicted quality rating with the actual quality rating
assigned by human observers using a metric such as mean squared error (MSE)
or Pearson correlation coefficient.

2.10 Evaluation Metrics
The evaluation of model performance is a critical component in determining the
suitability of a machine learning model for real-world decision-making and prediction
tasks.

2.10.1 Receiver operating characteristic curve (ROC)
A Receiver Operating Characteristic (ROC) curve serves as a graphical representation
that illustrates a binary classifier system’s classification ability as the discrimination
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threshold is varied. The construction of the ROC curve consists of plotting the true
positive rate (TPR) against the false positive rate (FPR) at diverse threshold settings.
TPR corresponds to the proportion of actual positive cases accurately identified as
positive by the classifier. Conversely, FPR referred to as the probability of false alarm,
denotes the proportion of actual negative cases miss-classified as positive by the model

The ROC is a widely recognized and employed metric for evaluating the performance
of binary classification models. By plotting the True Positive rate against the False
Positive rate across a range of classification thresholds, the ROC curve provides
a visual representation of the inherent trade-off between a model’s sensitivity and
specificity [48]. This trade-off is observed by adjusting the decision boundary of the
model, in order to generate binary predictions denoted as "Yes" or "No" for each
instance. A decision boundary of a model is determined by setting thresholds of the
model’s outputs such as probabilities. By adjusting the threshold, variations of how
much conservative the model will be are allows, thereby influencing both the False
Positive and True Positive rates. Thus, the ROC curve serves as an evaluation tool
for the performance of a model across a wide range of decision boundaries. This offers
insights into its capacity to correctly identify positive instances while minimizing
false classifications [48].

2.10.2 Area Under the ROC Curve (AUC)
The Area Under the ROC Curve (AUC) is an commonly used metric for evaluating
the performance of a binary classification model, serving as a measurement of the
distinguishability degree between the two classes [48]. As a summary metric, it
captures the overall performance of a classifier by quantifying the model’s ability
to discriminate between positive and negative samples, where the area under the
curve always presents a value between 0 and 1. A higher ROC AUC value that
is closer to 1 indicates better model performance in terms of separating positive
and negative samples. In contrast, a random classifier is expected to yield an AUC
value of 0.5. Therefore, the higher the AUC is, the better the classifier’s ability to
distinguish between positive and negative instances. Maximizing AUC is desirable
since it corresponds to the highest True Positive rate and lowest False Positive rate,
achieved at some threshold [48].

2.11 K-fold Cross-Validation
K-fold cross-validation (KCV) is a technique used to evaluate the performance of
machine learning models on a dataset, according to sources [49] and [50]. The
process involves dividing the dataset into k equally sized subsets or folds and training
the model k times, each time using a different fold as the validation set, while
the remaining k-1 folds are used as the training set. This procedure is repeated k
times, with each of the k subsamples used exactly once as the validation set. To
evaluate the model’s performance, the results of the k training runs are averaged. It
is important to note that the partitioning into k equal sized subsamples is randomized.
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The choice of k depends on the size of the dataset and the desired level of accuracy.
A higher value of k provides a more accurate estimate of the model’s performance,
but it also increases computational costs. Conversely, a lower value of k reduces com-
putation costs but may result in a less accurate estimate of the model’s performance.

Studies on k-fold cross-validation in machine learning environments are limited, how-
ever, some research has shown that KCV can be used to evaluate the performance
of machine learning models on datasets, as discussed in a study by [51]. The study
explores the relationship between the choice of k in KCV and its impact on the size of
the dataset. The author suggests that the optimal value of k decreases as the dataset
size increases. Specifically, for small datasets, k=10 is commonly used, while for
larger datasets, k=5 or k=3 can be used without sacrificing too much accuracy. The
study found that a value of k=10 provided a good balance between computational
cost and accuracy.

In another study by [52], the authors demonstrate that the choice of k in KCV
can significantly impact the accuracy of performance estimates, and there is no
one-size-fits-all approach. They suggest that the optimal value of k depends on the
relative size of the training and test sets. For larger datasets, smaller values of k can
be used to reduce the computational cost of cross-validation.

Finally, [53] provides recommendations for choosing the value of k in k-fold cross-
validation. They suggest using k=5 or k=10 for small to medium-sized datasets and
smaller values of k for larger datasets.
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Methods

The methods section provides a detailed account of the techniques and procedures
used in the research project. It includes a description of the study design, data
collection and analysis methods, and any other relevant experimental techniques
employed in the investigation. The aim of this section is to provide a comprehensive
explanation of the methods used to collect and analyze data, ensuring that the
reader has a clear understanding of the research process. In this master thesis, the
methods section will be presented with a focus on the data collection process, data
preprocessing techniques, and the machine learning models used to analyze the data.

3.1 Outline for the Thesis’s Roadmap and Pro-
cesses

This section includes some explanation on how the each of the process in the method-
ology looks like and it provides the user with a full overview of each of the steps
take in this project. It will serves as a pin pointer in later chapters to easily redirect
readers to specific areas and not introduce misunderstandings. For example, from
data acquisition and dataset research to final output of the Training Data Selection
(TDS) for the classification for this project to looks like. The roadmap in Appendix
A.1, includes the following presented steps.

1. Data Acquisition: Selection of datasets to be used.
2. Distribution Analysis: Performing static analysis on gender, age, and male/female

subjects within the main dataset (Chicago Faces Dataset - CFD).
3. Pre-processing: Face detection and cropping.
4. Curation: Manual annotation of the original CFD dataset.
5. GAN Model Training: Training a GAN model for generating synthetic images

based on the original dataset.
6. Latent Space Exploration: Exploring the process of image generation using

latent space.
7. Seed List Generation: Creating a list of seed values by leveraging the knowledge

acquired through exploration of the latent space for the purpose of generation.
8. Synthetic Image Generation: Generating approximately 100,000 synthetic

images based on the seed list and using combinations of index and degree.
9. TDS Pipeline: Utilizing the newly generated images in the TDS pipeline.

10. Classification Model Input: Using the output of the TDS pipeline (approxi-
mately 40,000 images) as input for the classification model.
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11. Classification Model Training: Training the classification model on original
images and validating it on a curated set of synthetic images.

12. Benchmark Results: Comparing the results of two benchmarks: preliminary
results (DISFA + randomly chosen synthetic images without IQA-based selec-
tion) and the benchmark with synthetic images selected using the TDS pipeline.

In regard to the exploration realm, this research aims to make two key contributions
regarding Development of Image Quality Assessment pipeline and a Semi-Automatic
Annotation System that is integrated with synthetic data generation process. Upon
generating the synthetic data using CFD, the name Synthetic CFD or SCFD is given
the resulting dataset.

One aspect of this thesis research focuses on conducting experiments using Image
Quality Assessment (IQA) techniques with different evaluation metrics and models.
This approach aims to curate a dataset of the highest quality images, thereby mini-
mizing the impact of lower quality data on model performance. By leveraging IQA
techniques, one can identify and select images that exhibit the best image quality.
Which ensures the reliability and accuracy of the synthetic dataset.

Knowing this, the IQA methods selected were chosen to such degree that they
needed guarantee an accurate analysis of the synthetic images generated by the GAN
model. Continuing on, a second goal was to do further analysis with IQA in order to
differentiate the CFD and SCFD. Finally understanding to what degree they were
dissimilar. Running indicated that a significant proportion of synthetic images gener-
ated from original SCFD exhibited minimal deviations from the original CFD dataset.

Given these findings, there is no need to prioritize one requirement over the other,
as the generation process offers the advantage of producing larger datasets while
maintaining promising image quality. Motivated by this finding, a deliberate decision
was made to selectively choose only 180 out of the available 512 images in each batch
of data. This deliberate selection aimed to build upon the insights gained from the
aforementioned metric analysis.

3.2 Data Request Process and Outcomes
The process of requesting data involves multiple stages to facilitate the accuracy
and relevance of the acquired datasets. Firstly, it is necessary to establish the data
requirements. Data requirements have the purpose of guiding a team of developers,
companies et cetera to established a firm ground of the involvement of data within a
certain project. In other words, data requirement is need in order companies to track
of how closely they are in acquiring data but within the requirement specification
space. In this thesis, the requirements are there in order to guide this project forward
and focus on attaining relevant data and understanding if that acquired data really
is relevant to the project.

The second stage involves collating the data, which may necessitate accessing data
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from a range of sources. Then, validating and cleaning the data, and preparing it
for analysis. It is also crucial for the people that handle the data to ensure that the
data is secure and meets any applicable regulatory requirements.

The third stage involves analyzing the data and preparing it for use. It may also
which be necessary to involve generating reports, visualizations, or other tools to
help to understand whether that data is qualified and follows the requirements.

3.2.1 The Denver Intensity of Spontaneous Facial Action
Database (DISFA)

The Denver Intensity of Spontaneous Facial Action Database (DISFA) is a publicly
available dataset of spontaneous facial expressions, which was developed at the
University of Colorado [54]. At time the original project was carried out, DISFA
consisted of 26 subjects (comprising both males and females, with a range of ages and
ethnicities) and contained 300 images per subject, resulting in a total of 7,800 images.

The videos capture facial expressions in a neutral state, as well as spontaneous
expressions of six commonly occurring facial AUs, i.e. AU1, AU2, AU4, AU6, AU12,
and AU15. The DISFA dataset is intended for researchers to study facial expression
recognition, analysis and synthesis, as well as the physiological and psychological
mechanisms underlying facial expressions. It has been widely used in the field of
computer vision, facial expression recognition and affective computing, as well as in
various applications in psychology, neuroscience, and social sciences [Disfa][54]. The
author of the original project, von Numer, granted access to the DISFA dataset used
in the present study.

3.2.2 The Chicago Faces Database (CFD)
The Chicago Face Dataset (CFD) is a collection of over 3,000 high-resolution images
of human faces. They as well have been annotated with a range of attributes, includ-
ing race, gender, age, and facial expression. The dataset was developed by researchers
Debbie S. Ma, Joshua Correll, and Bernd Wittenbrink at the University of Chicago.
The CFD is a popular dataset in academic research on face perception, social psy-
chology, and computer vision. The CFD provides high-resolution, standardized
photographs of male and female faces of varying ethnicity between the ages of sev-
enteen and sixty-five. Extensive norming data are available for each individual model.

To access the CFD, interested parties must submit a request form on the dataset’s
official website at [55], providing information about their research project and in-
tended use of the dataset. Upon approval, users can download the dataset, which is
provided as a set of image files that also come with annotation files. The CFD is
intended for scientific research use only and is free for academic use, but users must
sign an agreement outlining the terms and conditions of use. These terms include
restrictions on redistribution, commercial use, and modification of the data. It also
mentions requirement to acknowledge the source of the dataset in any resulting
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publications or presentations.

At the outset of the project, the CFD was identified as an appropriate dataset
for use in this thesis research and access was granted. However, due to a lack of
necessary information such as specific AUs present in the images, the provided
annotations were not utilized in the research. Additionally, the CFD is a small
dataset, containing approximately 1,200 images. Thus, making it more suitable
for generating additional synthetic data. Through this process, the annotations
become meaningless since the newly generated data’s facial expressions depend on
the parameters of the styleGAN2-ADA rather than the original annotations in the
CFD. Consequently, annotation of this new data needs to be done.

3.3 Data Requirements
In the context of emotion prediction with limited access to datasets, striking a
balance between data quality and label quality poses a common challenge. Data
quality refers to the characteristics and properties of the dataset that contribute to
its usefulness and reliability. In this project, data quality encompasses two main
aspects: density and relevance.

In certain situations, accurate labels hold more significance than high-resolution
data. Consider the example of emotion prediction, where having labels that precisely
reflect the expressed emotions is crucial, even if the overall data quality is low. On
the other hand, there are cases where high-resolution data takes precedence over
accurate labels. For instance, when training a model to recognize emotions from
facial expressions, it becomes more important to have high-resolution images rather
than precise labels.

Thus, it is a common challenge to balance data quality and label quality in FER
domain, specially when access to datasets is limited. To tackle this issue, it may
not be possible to optimize both data quality and label quality. Therefore, one of
them may need to be prioritized over the other. The choice of which to prioritize
will depend on the specific problem and the available resources.

In situations where access to datasets is limited, combining datasets with different
strengths can help create a more robust emotion prediction pipeline. By using a
diverse range of datasets, it may be possible to address biases and achieve a more
accurate and generalizable model. However, combining datasets may also introduce
new challenges, such as ensuring compatibility between the datasets and addressing
differences in labelling conventions.

Overall, the choice between prioritizing data quality or label quality and the use of
combined datasets will depend on the specific problem at hand and the available
resources. The following are the requirements to be considered when tackling this
problem.
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1. Should data quality or label quality be prioritized when dataset access is limited
and one cannot simultaneously optimize for both?

2. Can datasets with different strengths be combined to create a robust emotion
prediction pipeline?

It is worth noting that datasets characterized by both high-quality labels and high-
resolution data are uncommon in practice.

3.3.1 Data Quality Definition
In this thesis, the term "high data distribution quality" is used to describe a dataset
that has a high density and spans relevant dimensions. The relevance of the di-
mensions is domain-specific, and in the context of emotion prediction for clinical
self-recordings, a dataset is considered to span relevant dimensions if it meets two
requirements. Having large and varying dataset with different subjects is crucial to
avoid bias and any discrimination that might occur towards certain groups; studies
such as [56] and [57] provide deeper look int the biases present in facial expres-
sion recognition algorithms. They show that there is a cross-cultural difference in
facial behaviour. Thus, having the two different dataset not only provides a large-
scale dataset all in all but also a larger diversity of subjects and thus facial expressions.

The first (1) requirement is that the dataset must have a large demographic dis-
tribution, meaning that it should include subjects of different ages, genders, and
ethnicities. It is also beneficial for the dataset to include common feature variations
of the human face, such as beards, and make-up. The second (2) requirement is that
the dataset should represent the human emotion range in a naturalistic fashion. This
means that the emotion expression should occur spontaneously without too much
involvement from an instructor. Unfortunately, many datasets are lab-recorded with
varying elicitation methods, which can affect how natural the emotion expression
is. Elicitation methods range from watching funny, sad, or scary video clips to
performing expressions on demand. Overall, a high-quality dataset for emotion
prediction in clinical self-recordings should have a high density and span relevant
dimensions, including a large demographic distribution and naturalistic emotion
expression.

3.3.2 Requirements
For this thesis project, a total of four datasets were requested and described in Table
3.1 below. However, only three of these datasets finally used since the fourth had
restricted access. Among the accessed datasets, the DISFA dataset [58] was found
to be the most suitable as it is FACS encoded, as well as the FFHQ and the CFD.
These dataset are selected for deeper analysis due to its close resemblance to the
trial self-recording setting in several ways. Such are, recordings and images taken
are being fairly frontal and the elicitation not being instructed. Additionally, both
CFD and DISFA are both unique were each subject either is instructed to express 5
different expression, and DISFA dataset subject has four minutes of video material at
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20 frames per second. Both the datasets have the required demographic distribution,
with subjects from diverse ethnicities, ages, and genders, although white young adults
are in majority. For further details on the DISFA dataset, please refer to the Table
A.1. For any background information regrading the DISFA dataset and previous
project refer to the Chapter 1 and section 1.2.1. The dataset contains description of
relevance between 1 and 5 for the 4 different datasets, their dataset size and how
they have been accessed, as shown in Table 3.1.

Database Num. of Images Relevance (1-5) Form of granted access
CFD 1,217 5 (critical relevance) Via communication with authors

FFHQ ∼ 70,000 2 (low relevance) Via public source
DISFA 7,800 4 (high relevance) Via communication with authors

FEEDTUM 399 NaN Via communication with authors

Table 3.1: The datasets considered in this project.

The table above shows fields Database and Relevance. Here the scale of relevance
depends on the facial images within each dataset. The highest relevance, Critical),
was given to CFD since the outline for this thesis project is based on the usage of
CFD within the model processes. FFHQ does not have the same relevance as it lacks
expression that are required for this thesis. However it still needs to be incorporated
in order to understand what the outcome of the results of the cross-validation and AU
prediction model is. The third database, DISFA, is also needed in order to perform
the process of AU prediction and cross-validation. The dataset is essential for this
project as it enables comparison of results between von Numer’s project and the cur-
rent one. It is crucial for conducting fare comparisons and evaluating outcomes from
both perspectives, making it a relevant component for analysis. Lastly, FEEDTUM
[59] or Facial Expressions and Emotion Database is a collection of facial images
that captures various individuals displaying the six primary emotions identified by
Eckman & Friesen. The expressions range from Happiness, disgust, anger, fear,
sadness, and surprise, all the way to neutral expression. The database was created as
part of a project conducted at the Technical University Munich to facilitate research
on the impacts of different facial expressions.

Image acquisition involved using a Sony XC-999P camera with an 8mm COSMICAR
1:1.4 television lens. Images were captured at a resolution of 640x480 pixels, with
a color depth of 24 bits and a frame rate of 25 frames per second, using a BTTV
878 frame grabber card. Subsequently, the images were converted into 8-bit JPEG-
compressed format with a reduced size of 320x240 pixels due to storage limitations.

The database comprises data obtained from 18 unique individuals, each performing
the six target emotions three times, resulting in a total of 399 image sequences. The
images are organized into subdirectories based on the type of emotion, and metadata
is provided to indicate the start, apex, and hold frames of each sequence.

Access to the database is granted through a password-protected ZIP archive and
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a collection of MPEG compressed videos, which can be requested by contacting
some of the researchers and completing a designated form attached to the email.
Given these factors, it was ultimately determined that the utilization of FEEDTUM
was unnecessary, as it was deemed to be a smaller-scale dataset in comparison
to the already limited dataset of CFD. Moreover, challenges were encountered in
comprehending the usage of FEEDTUM, as it relied on multiple file formats to
generate images in a class-controllable manner.

3.4 Descriptive Statistics, Distribution Analysis
and Data Visualization

3.4.1 CFD
The CFD dataset has been used along with an annotation CSV file, which contains
general information such as age and ethnicities. While there are general emotion
predictions included in the annotations, this study will not rely on them as they are
based on predictions.

The subjects are divided into categories based on their etnicity (in CFD, CFD-MR
and CFD-INDIA), and the ranging of age is between 16-65 years of age. Certain sub-
jects are recorded with various facial expressions, while the most other subjects have
only neutral facial expression. In CFD, the distribution of ethnicities was analyzed
and the results are depicted in Figure 3.1. The total number of subjects in CFD
is 827. The dataset consists of self-identified Asian, African-American, Caucasian,
Latin and Indian descent who were recruited within the United States. All subjects
are presented with neutral facial expressions, while a subset of the dataset is also
inclusive of subjects with varying facial expressions. The dataset includes norming
data for all neutral expression images, which were rated based on subjective rating
norms derived from a sample of raters within the United States.

Due to the copyright policy entails with the acquisition of CFD, the content of the
official dataset cannot be displayed in this thesis report, as the terms of use suggests
that the content of CFD cannot be re-distributed. It is only allowed to be used for
non-commercial research purpose only. To ensure that the thesis does not violate
the copyright and thus acting on a copyright infringement, the thesis will not show
any images related to the CFD original dataset, only the regenerated images. Thus,
this report will only include images for already generated CFD subjects and will not
display original CFD images. Figure 3.4 demonstrates that the ethnicities follow a
roughly normal distribution. The groups of African-American and Caucasian descent
are the most frequent, comprising 24 percents and 22 percents of the total number
of subjects, respectively. Subsequently, individuals of Indian origin represent the
third most frequent ethnic group with a proportion of 17 percent. Among the total
number of subjects in the dataset, individuals of Asian and Latino and Mixed Race
descent represent less common ethnicities, comprising of 13 percents, 13 percent and
11 percent respectively. Figure 3.2 displays the distributions of the genders in the
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Figure 3.1: The ethnic distribution within CFD is illustrated in this figure, including
African American, Asian, Caucasian, Latin, and Indian.

CFD, CFD-MR and the CFD-INDIA.

Finally, Figure 3.3 shows the gender distribution in CFD. Although there appears to
be a modest difference in quantity between the two genders, it is negligible. Therefore,
it is can be concluded that the gender distribution is quite equal for both gender,
indicating that CFD does not have bias in this category.

Visual assessment reveals significant variations in the activation and intensity of
specific AUs during facial expressions across different ethnicities. In the CFD dataset,
a prominent trend emerges where certain ethnic groups exhibit higher AU intensities
during expressive emotions, while other groups tend to utilize a lower number of
AUs. Consequently, the intensity of AUs observed in the facial expressions of the
latter groups is comparatively less pronounced.

Figure 3.5 displays a bar plot with a trend line for the frequency distribution of
different ages in CFD. The x-axis represents different age values, while the y-axis
shows the frequencies of each age value. The blue bars represent the frequency of
each age value, while the red trend line represents the interpolated line between the
tops of each bar.
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(a) CFD’s synthetic images. (b) CFD-MR’s synthetic images.

(c) CFD-INDIA’s synthetic images.

Figure 3.2: All of the figures, (a), (b) and (c) display individual distribution if the
genders.

Figure 3.5: Distribution of different ages in original CFD.

Additionally, descriptive analysis of the age category in CFD was conducted and
a range of statistical measures was derived and is presented in the following bullet
points.

45



3. Methods

Figure 3.3: Distribution of genders in the complete dataset of CFD.

• Mean = 34.58

• Median = 34.5

• Range = 40

• Standard Deviation = 11.11

• Outliers = 0

The age distribution in the CFD dataset reveals several insights. The mean age of
the subjects is 34.58 years old, which indicates the average age of the participants.
The median age is determined to be 34.5 years old, representing the central value
of the dataset. Thus the distribution in the CFD exhibits a slight left skewness,
suggesting a prevalence of younger individuals within the dataset. Additionally, the
age range spans 40 years, with the minimum age recorded at 16 and the maximum
age at 56. The magnitude of this range, measuring 40 years, is accompanied by a
standard deviation of approximately 11 years. Notably, the distribution displays a
flatter tail, indicating a relatively lower representation of middle-aged and elderly
individuals compared to young adults in the dataset.

Based on the provided data, zero outliers are observed in the age distribution. Out-
liers refer to data points that deviate significantly from the rest of the dataset in the
current considering category, which is age. It is worth noting that outliers can have
a notable impact on the mean, but the median remains unaffected by their presence.
Thus, it is crucial to identify and handle outliers appropriately, although in this case,
their absence implies a relatively homogeneous dataset.
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Figure 3.4: The ethnic distribution within CFD is illustrated in this figure. It
comprises images of individuals with varying ethnicities, including African American,
Asian, Caucasian, Latin, Indian descent and Mixed Race.

3.4.2 FFHQ compared to CFD
As per previous sections, relevance of the dimensions is domain-specific, and in the
context of emotion prediction for clinical self-recordings as has been described in [2].
Consequently, the selection of a dataset is deemed to encompass pertinent dimensions
if it satisfies two stipulations outlined in the aforementioned Section 3.3.

The first requirement is that the dataset must have a large demographic distribution,
meaning that it should include subjects of different ages, genders, and ethnicities. It
is also beneficial for the dataset to include common feature variations of the human
face, such as glasses, beards, and make-up.

The second requirement is that the dataset should represent the human emotion
range in a naturalistic fashion. This means that the emotion expression should occur
spontaneously without too much involvement from an instructor. Unfortunately,
many datasets are lab-recorded with varying elicitation methods, which can affect
how natural the emotion expression is. Elicitation methods range from watching
funny, sad, or scary video clips to performing expressions on demand.

Overall, a high-quality dataset for emotion prediction in clinical self-recordings should
have a high density and span relevant dimensions, including a large demographic
distribution and naturalistic emotion expression. Flickr-Faces-HQ (FFHQ) is a
large-scale face dataset that contains 70,000 high-quality images of human faces,
with resolution up to 1024x1024 pixels. The images that were collected from Flickr
are diverse in terms of age, gender, and ethnicity. Additionally, the dataset was
created by Nvidia and is often used for training generative models such as GANs
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and VAEs (Variational Autoencoders).

In contrast, CFD is a comprehensive collection of high-resolution facial images that,
although cannot be classified as a large-scale dataset, still offers considerable diversity
as well as three sub-datasets, which comprises 827 subjects.

The difference between the datasets is that CFD offers ethnic diversity, including
Asian, African, Latino, Indian and Caucasian subjects. All subjects have diverse
range of facial expressions, including neutral, angry, fearful, but also a subset of
subjects with happy expression with either open or closed mouth. One of th subsets
is the CFD-MR, which includes the mentioned expressions and features but with
individuals who self-reported multiracial descent. Further, CFD-INDIA includes
subjects with Indian descent.

The main differences in the dataset’s appearances are the varieties in lighting and
the environmental factors. FFHQ, while producing high-quality synthetic images
has many downsides. The focus of the environment causes the synthetic images
to focus on the surrounding not just the faces in the images; whereas the CFD’s
original dataset was obtained in an adequately illuminated studio environment, and
every subject is standing in the centre of the frame without any head tilting. The
background for all subjects in CFD are uniform with a white adequately illuminated
background.

Furthermore, the differences in lighting and environmental factors is what separates
the dataset from each other. To some extent that can affect the performance of
the GAN model trained on them. It is still important to note that even then GAN
models are capable of generating images that are consistent with the distribution of
the training data. Ultimately, there is no clear consensus on which datasets actually
will be more suitable for styleGANs training. Nevertheless, Figure 3.6 demonstrate
that the surroundings of FFHQ’s synthetic images are blurry and highly distorted
whereas each synthetic image in CFD offers little to no variation in the background.
To conclude, CFD is the dataset that fulfils both of the two requirements. However,

(a) CFD’s synthetic images. (b) FFHQ’s synthetic images.

Figure 3.6: Figure (a) has a not so varying background for each of the images and
multiple different backgrounds for the FFHQ’s synthetic images (b).

to make the diversity even more apparent that textual based here is a visualization to
show what the diversity of the CFD contra the FFHQ, as shown in Figure 3.6. Figure
3.7 should only give a sense of how the distributions of gender, age, expressions is in
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Figure 3.7: The variations in the two datasets FFHQ (to the left with 70,000
images) and CFD (to the right with 1,127 images).

each of the datasets and it should also give the impressions in a more understanding
way. The y-axis conveys the AUs this thesis focuses on and the x-axis are the features
that are the most interesting. Note that this is not an exact features diversity of
all the image within each set only an simplified way of showing the diversity as is
perceived by analysing both original datasets.

3.5 Dataset Construction and Preprocessing
In order for machine learning models to perform well, it is essential to ensure a
thorough understanding of the general objective: developing models that can achieve
high performance on novel data. Therefore, the chosen data sets in this project
should meet such criterias for validity and generalizability. It is essential for the
training data in this research to reflect the distribution of the typically expected
demography in clinical trials. With this in mind one can find the right dataset that
allows to fulfill certain criterias as stated in Section 3.3.1.

The first dataset DISFA has subjects that were captured by two cameras, positioned
on the right and left sides of the subject. However, only the video data from the
right camera was utilized for the study, while the left camera data was excluded
to enhance data efficiency since it was almost identical to the right camera data.
Additionally, the study found that horizontal flip augmentation, as discussed later
in this chapter, which mirrors the target, compensates for the omission of the left
camera sequence. The dataset was constructed by carrying out face localization
and cropping, selecting successful crops (i.e capturing a face without cropping out
section of the subjects face out of the image), sampling labels, binarizing labels, and
subselecting frames.

The CFD or the Chicago Faces Dataset if a small-scale dataset and does not involve
video in order to capture images. Instead individuals are posing in five different
expressions and every image has the same kind of lighting.The CFD dataset un-
dergoes pre-modification, particularly with regards to the synthetic images, before
proceeding to the subsequent stages of the pipeline. This pre-processing phase
involves operations such as cropping, face detection algorithms, and more.
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Based on this analysis regarding dataset requirements, it was determined that FFHQ
offered limited advantages in comparison to CFD. Moreover, CFD has to some extent
encompassed all the strengths of FFHQ. Therefore, this research will be conducted
exclusively using the real datasets DISFA and CFD. Henceforth, FFHQ, as a dataset
option, has been eliminated.

3.6 Feature Extraction and Face Cropping
The first phase, Phase 1, of the pipeline and in the case of first processing the
original dataset of CFD in the beginning was to first convert the images and data
(each image that passes through the pipeline). The first phase of the pipeline is to
firstly filter out images using the OpenCV [60] library in Python. Face-cropping
is done by excluding irrelevant information in the frame such as background of
unnecessary clothing, this way one can control the exposure to a minimal variation
in both background but other surrounding features. The cropping is done by reading
each image; determining where the centre of the each individual image is (since not
all have the same height, width of the face etc).

Algorithm 1 Face Alignment and Cropping for Multiple Images
Requires images ≥ 0
Face and detector loaded
DLib’s detector
Path DLib’s predictor
load images from folder
Detect faces in the image using DLib’s frontal face detector
while images ̸= 0 do Iterate over each detected face and align it

Determine the facial landmarks for the face using DLib’s shape predictor
Extract the coordinates of the left and right eye landmarks;
Extract the coordinates of the left and right corners of the mouth;
Calculate the center of the mouth;
Calculate the angle between the line connecting the eyes and the center of the

mouth;
Rotate the image by the calculated angle;
Calculate the bounding box of the face using the facial landmarks;
Calculate the center of the bounding box and the distance from the center to the

edge of the box;
Scale up the distance from the center to the edge by a factor to zoom in on the

face;
Calculate the new dimensions of the bounding box using the scaled distance;
Crop the image using the new bounding box dimensions;

return Return aligned image

To determine the exact centre of an image one can use the dlib’s facial landmark
predictor. For every image and for every face it first aligns the image, then deter-
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mines the facial landmarks for the face, extract left and right eye landmarks. It
then extracts the mouth landmarks. Secondly, it calculates the angle between the
eyes and the mouth, calculates the box of the face and then calculate the centre
of the bounding box and the distance from centre to the edge of the box. Last
step is to scale up the distance from centre to the edge by a factor to zoom in
on the face. It then calculates the new dimensions of the bounding box using the
scaled distance and then crops back the image to the size requested. Following this
logic, here are the guides to a pseudo-code that follows the exact same steps but
in a more general natural language that is easier to interpret, as shown in Algorithm 1.

The face extraction is used as the initial detector in order to assure that faces
appear in pictures or if they are just random images with poor symmetric and/or
wrongly cropped images. Dlib library is a popular open-source library that provides
various machine learning algorithms and tools for developing applications related to
computer vision, image processing, and machine learning. It includes functionalities
for facial recognition, object detection, and facial landmark detection. OpenCV is a
widely-used open-source computer vision library that offers a comprehensive set of
functions and algorithms for image and video processing tasks. It provides numerous
pre-trained models, including a face detector, which is commonly employed for
detecting faces in images or video frames. The pseudocode describes a process that
utilizes Dlib’s face detection and facial landmark detection capabilities in conjunction
with image manipulation techniques.

The face extraction process serves as the initial detector, ensuring that only images
containing faces are captured. This is crucial for filtering out random images that
lack proper symmetry or are incorrectly cropped. Figure 3.8 provides an illustration
of the types of images that would be excluded. By analyzing the presence of key
facial features, such as the eyes and mouth, and assessing the symmetry of facial
landmarks, the face extraction process effectively identifies and filters out images
that do not meet the criteria for inclusion.

Figure 3.8: This figure displays the subset of images from the original CFD dataset
that were not subjected to precise cropping during the initial processing stage.

Note that the figure above is the process done on the original dataset. Here both
the cropping and the face detection was implemented. However, the same processing
is not run of the synthetic images since the images are already resized to the desired
shape, one solely needs to run the face detection algorithm on the synthetic dataset.
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3.7 StyleGAN2-ADA Training on customised dataset
of CFD and Pickle File Generations

The utilization of the generative model styleGAN2-ADA’s potential was examined
in a predecessor project, where the FFHQ dataset was utilized as the input data
source. This decision was motivated by several factors, including the ease of the
process, as the dataset had already been pre-trained on the model by NVIDIA. Addi-
tionally, various pre-trained models of different resolutions are also readily available
for download. Thus, using the pre-trained model generated using the FFHQ dataset
was chosen in order to facilitate the experimental process and to streamline data
collection for subsequent analysis. However, no training was involved in that process.

In this current project, the lastly cropped version of CFD was utilized as a customised
dataset for training styleGAN2-ADA. This process required a total training time of
35 hours and 45 minutes. To avoid potential loss of training progress due to cutoff
run-times, pickle files were frequently generated. Specifically, after every 10 ticks, a
pre-trained model was generated to log the current training progress.

In the context of this customised training process, there was considerable flexibility
in determining the optimal stopping point for model training. Nevertheless, it is
crucial to identify the appropriate time to terminate the training process. In this
project, the primary criterion utilized for determining the optimal stopping point was
visual assessment, where the training process was halted upon achieving a level of
image quality that appeared visually realistic with a reasonable resolution. Thus, the
training process was deliberately terminated at a point where the generated images
were deemed to be of sufficient quality for the intended purpose of the project.

3.8 AU Subselection
As per [61], certain AUs are associated with one or more of the prototypical ex-
pressions discussed in section 2.1. Therefore, to guide the sub-selection of AUs for
pipeline modeling, the prototypic expression framework is considered relevant, even
though the actual prototypical expressions have less importance in actual prediction.

A subset of the total 12 AUs has been chosen for analysis based on their presumed
association with emotions expected to be present during a clinical trial self-recording.
The study hypothesizes that emotions such as happiness, sadness, and anger hold
relevance in the trial setting, whereas emotions such as surprise and disgust are of
lesser relevance.

This hypothesis is grounded in the belief that happiness may stem from internal
emotional processes, while surprise is more likely to arise from external events
unrelated to the subject’s well-being. However, it is important to note that this
hypothesis has not yet been substantiated. Table 3.2 provides an overview of the six
chosen AUs for modeling purposes and their corresponding prototypical expressions.
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Expression Action Unit Number Action Unit Name
Sadness AU1 Inner Brow Raiser

AU15 Lip Corner Depressor
Happiness AU6 Cheek Raiser and Lid Compressor

AU12 Lip Corner Puller
Anger AU4 Brow Lowerer

AU5 Upper Lid Raiser

Table 3.2: AUs Corresponding to Specific Facial Expressions

3.9 The Selection Pipeline
In computer science, a pipeline refers to a sequence of processes applied to an input,
such as code or artifacts, for continuous testing purposes. Typically, a pipeline
consists of multiple stages, each performing a specific task on the input data, with
the output of each stage becoming the input for the next. Similarly, the pipeline used
in this work simulates a TDS pipeline, aiming to test images on various pre-processing
techniques. Pre-processes encompass both quality-related processes and necessary
steps to ensure that the synthetic images processed through the pipeline are both
naturalistic and proportional. Idea of the pre-processes is that they include both
processes that convey numbers of quality but also some necessary steps to insure that
the synthetic images that are prompted through the pipeline are indeed naturalistic
images and proportional at the same time.

A commonly used classification pipeline consists of three main steps: preprocessing,
feature extraction, and classification. Pre-processing involves transforming the raw
image data into a format that can be used by the feature extraction algorithm.
Feature extraction involves identifying relevant features in the image that can be
used to classify or detect objects. Classification involves using a model to assign
labels to the input image based on the extracted features.

Additionally, the pipeline may take into account temporal or spatial information,
depending on the application. Real-world applications would integrate these steps
into a series of processes that can be run automatically and at scale, without human
intervention between pre-processing, feature extraction, and classification.

• Phase 1
– Process of facial detection
– Process of face cropping

• Phase 2
– First-Stage

∗ Process of measuring first-stage NR-IQA
– Second-stage

∗ Process of measuring second-stage IQA using FID
– Third-stage

∗ Process of measuring referenced IQA using deep learning (BRISQUE
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via SVR)
• Phase 3

– Selection of synthetic batches of images that preformed best in regards to
quality score

Considering the aforementioned phases, each score in every phase can be validated
through various methods, commencing with Phase 1. In this initial phase, a verifi-
cation process is initiated, involving human intervention, to ensure the accuracy of
the cropping stage results.

Proceeding to Phase 2, there exist three distinct processes, each with the objective
of assessing image quality in different manners: reference-based image quality as-
sessment and non-reference image quality assessment (NR-IQA). In the first process
of Phase 2, NR-IQA is executed, followed by a subsequent validation process that
utilizes the FID score to gauge the level of similarity between the two datasets. This
validation step aims to analyze the coherence and consistency of the results obtained
from both implementations.

Furthermore, the subsequent steps entail the utilization of various metrics to yield
final outcomes. At this juncture, it becomes feasible to draw conclusions regarding
the similarity of the two datasets when using the original datasets as reference
points. This analysis enables the determination of whether the generated images
possess comparable resolution and quality to the original images. Ultimately, after
the execution of SVR, the final selection of test and train data is performed. The
implementation of algorithms to select the highest ranked synthetic images is guided
by five metrics (RMSE, PSNR, ISSM, SSIM, SAM and QIO). This process is executed
in a batch script fashion, and its outcome serves as the ultimate output of the entire
pipeline for integration into the classification model.

3.9.1 Selection of IQA metrics
Phase 2 involves the calculation of metrics for two datasets: the original dataset
images and the dataset consisting of synthetic images. In the first phase, the met-
rics used are those employed in No-reference Image Quality Assessment (NR-IQA),
namely Root Mean Squared Error (RMSE), Image Spatial Spectral Mutual Infor-
mation (ISSM), and Spectral Angle Mapper (SAM). It is important to note that
calculating these metrics may be irrelevant if the synthetic images lack real distor-
tions. To address this, human annotation was conducted to confirm the presence
of the necessary distortions and noise for the relevance of IQA metrics. Analysis
reveals the presence of various distortions and significant levels of noise. In previous
research, [62][63], on NR-IQA algorithms informed the selection of these metrics,
indicating that all of them, including RMSE, ISSM, and SAM, can serve as objective
quality metrics for image quality assessment.
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Algorithm 2 Fréchet Inception Distance
Requires images ≥ 0
Face and detector loaded
Import necessary libraries
function load images from dirs(dirs)

images← []
for dir ∈ dirs do

for file ∈ dir do
image← load image from file
images.append(image)

end for
end for
return numpy.array(images)

end function
real dirs← [list of directories containing real images]
synthetic dirs← [list of directories containing synthetic images]
real images← load images from dirs(real dirs)
synthetic images← load images from dirs(synthetic dirs)
while images ̸= 0 do

function CalculateFID(R, S, batch size, resize images, image size)
M←InceptionV3Model()
if resize images is True then

for r, s in (R, S) do
r← ResizeImage(r, image size)
s← ResizeImage(s, image size)

end for
end if
for r, s in (R, S) do

r← PreprocessImage(r)
s← PreprocessImage(s)

end for
Ar ← ComputeActivations(R, M, batch size)
As ← ComputeActivations(S, M, batch size)
mr ← ComputeMean(Ar)
ms ← ComputeMean(As)
Cr ← ComputeCovariance(Ar, mr)
Cs ← ComputeCovariance(As, ms)
FID ← ComputeFID(mr, Cr, ms, Cs)
return FID

end function

FID score← CalculateFID(real images, synthetic images, batch size, True, image size)

real plot images← SelectFirstTen(real images)
synthetic plot images← SelectFirstTen(synthetic images)
Plot ScatterPlot

The code implemented in this phase incorporates several functions, such as calcu-
late_rmse, calculate_sam calculate_issm. These functions accept lists of original
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and distorted images and compute the corresponding scores for each image quality
metric. The calculated scores are stored in lists (rmse_scores), (issm_scores) and
(sam_scores,) and returned as numpy arrays. The results obtained will be presented
in Chapter 4.

However, not all of them are suitable for no-reference image quality assessment
(NR-IQA), which aims to predict the quality of an image without using any pristine,
reference images. In Phase 2’s , second stage process includes calculating the
FID scores. This includes both the baseline as well as the training data selection
(more specifically 7 (included with neutral class) unique selection of classes and their
corresponding number of data). The algorithm that follows the FID logic is shown
below in Algorithm 2 and shows the distance between two Gaussian (distributions).

Algorithm 2 demonstrates the customized implementation of the Fréchet Inception
Distance. Note that r stands for the real data and s stands for synthetic data. The
results from the FID calculation on the synthetic dataset CFD and on the original
datset CFD are reported in the upcomming Chapter 4.

The third stage of Phase 2 involves the calculation of metrics for two datasets:
the original dataset images and the dataset comprising synthetic images. However,
in this stage, the scores are determined using a referenced approach via SVR which
in order implements feature image quality prediction assessment. The scoring is
based on the image quality metric called BRISQUE, which is employed to predict
the quality of unseen data (i.e., synthetic images) by training on the training data
(i.e., original images). The implementation of this assessment focuses on 8 main
steps, which are succinctly summarized in an algorithm provided in the Appendix,
as shown in Algorithm 4.

3.10 Annotation of synthetic data
Obtaining high-quality data is crucial to achieve superior performance in ML, and data
annotation is considered the fundamental basis for achieving this goal. Professional
annotation can greatly enhance the quality of the input but requires a significant
investment. The baseline model solely uses a model’s prediction to annotate the
presence of AUs in the generated synthetic data. This prediction is subsequently
employed as annotation method applied to the synthetic dataset Eigenfaces in the
previous project. The outcome in term of performance was nearly identical to that
of the baseline result. However, sevaral potential reasons for the outcomes were
anticipated in the report but they do not involve this particular aspect of the method.

However, human annotation can still be excessively costly and somewhat unreliable,
especially when performed unprofessionally and on a small scale such as the performed
method in the previous predecessor project. Therefore, there is a interest in investi-
gating a new approach to semi-automate the annotation of synthetic data based on
the selected seeds. During this development process, the NPYViewer tool discussed
in Section A.3 was employed to read the generated annotations stored in NumPy files.

56



3. Methods

To ensure high control when generating images, seed annotation was performed
through the manual review of over 30,000 images, corresponding to 30,000 seeds.
From this review, a set of 658 potential seeds was identified. These selected seeds,
along with 150 chosen indexes and degrees, were then utilized to generate images
depicting specific AUs of interest. Additionally, 144 seeds representing neutral ex-
pressions in the generated dataset were also chosen.

The inclusion of seeds in the annotation process allows for precise control and
exploration of the latent space, enabling targeted generation of images with specific
characteristics or expressions of interest.

3.10.1 Limitations with single AU-based Seed Selection
The initial method investigated in this study focused on the selection of seeds where
each seed’s synthetic image represents a single AU. Additionally, the approach
involved monitoring the presence of six specific AUs within the annotated seeds.
Consequently, if the generated image of a particular seed depicted a specific AU,
the seed would be annotated in the corresponding AU list during the manual seed
selection process.

However, this approach has certain limitations. One major concern is the lack of an
association method between the seed lists and the corresponding images, making it
challenging to annotate images based solely on the seed information. This challenge
stems from inadequate planning during the image review and seed list generation
process. Moreover, facial expressions typically involve the simultaneous activation
of multiple AUs, as observed in the original CFD dataset. Consequently, synthetic
images generated from CFD often depict combinations of AUs within a single image.
Selecting images that exclusively represent a single AU per image becomes excep-
tionally difficult in such cases. Additionally, the manual process of seed selection
had to be constrained due to its reliance on human intervention, which inherently
consumes a significant amount of time.

Considering these difficulties and the fact that real-life subjects often display several
AUs, the chosen solution is to focus on single images depicting combinations of AUs.
This decision aligns with real-life scenarios and allows for a more comprehensive
analysis of facial expressions. By capturing the interplay between different AUs in a
single image, the solution aims to obtain a realistic and representative dataset for
this research.

3.10.2 Semi-automated Annotation for Synthetic Data
Given the limitations encountered in the previous approach, which hindered the
implementation of annotation on scale, additional advancements were pursued to
align the initial approach with the objective of human annotation. This approach is
characterized as semi-automated, as it involves manual annotation for seed selection,
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while the generation of multiple images for each chosen seed is performed automati-
cally without requiring further human intervention at the individual image level.

As a result of this development process, an algorithm was devised to automatically
apply annotations to multiple images of varying degrees that are associated with the
same seed during the generation stage. The semi-automated approach encompasses
a systematic procedure for seed identification, referred to as seed-ID, which leverages
the inclusion of seeds within the image names as prefixes. For instance, an image
follows the format "seed-ID_numerical order.jpg" to ensure uniqueness and prevent
overwriting. To illustrate, consider the image named "9_000001.jpg" depicted in
Figure 3.9. In this example, "9" represents the seed styleGAN2-ADA utilized for
image generation, while "000001" denotes the numerical order assigned to maintain
distinct image names.

Figure 3.9: This figure portrays an illustration of the Semi-automated AU Annota-
tion approach for the generation of synthetic data.

Furthermore, the approach incorporates seed-tracking lists that are established based
on the presence of specific AUs within the images during the manual seed selection
process. Binary annotation is employed, where each image is annotated with a marker
of either 1 or 0, indicating the presence or absence of a particular AU, respectively.
Additionally, the approach involves monitoring the occurrence of the six AUs within
each image, enabling comprehensive tracking of their presence or absence and thus
enables a balanced distribution of the AUs of interest throughout the generated
synthetic dataset SCFD.

The method involves mapping prefixes to corresponding AU. The algorithm retrieves
each image’s name and checks if the prefix exists in the associated AU-based seed-
tracking lists. If the prefix is found in a certain AU lists, the current image will be
annotated as having that AU in the annotation file using a number one. If a seed-ID
is not found in a certain AU list, that current seed does not display that specific AU
during the manual reviewing and seed annotation process mentioned above. There-
fore, that seed has not been put into that certain AU list. In cases where a seed-ID
is not associated with any AU list, it signifies that the seed does not possess any
of the desired AUs and these seeds were categorized and placed in the neutral seed list.
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This method is employed servers as a mechanism to facilitate an annotation approach
that minimizes the reliance on labor-intensive manual efforts. By leveraging the
seed-ID prefix embedded within each image name, this method enables streamlined
data labeling. One significant advantage of integrating this annotation method with
synthetic data generation is its potential to significantly increase the number of
annotated synthetic images, while still requiring a relatively moderate number of
initial seed annotations. Consequently, this capability allows for the generation of a
substantially large synthetic dataset, which is well-suited for training and evaluating
models, thereby facilitating the development and assessment of robust models.

3.10.3 Methods of evaluation model performance with Cross-
Validation

This section presents the implementation of k-fold cross-validation and its procedure.
The purpose of KCV in this study is to evaluate the performance of the DISFA,
CFD, and FFHQ datasets. It involves dividing the dataset into k subsets or folds of
approximately equal size, training the model k times, and assessing its performance
on each fold using metrics such as ROC and ROC AUC.

In the first predecessor project, the cross-validation techniques was applied to combine
various folds of the DISFA dataset with the entire curated version of the Eigenfaces
dataset. In the current study, a similar methodology is adopted; however, there is a
deviation in the dataset selection. Unlike the previous project, which incorporated
the Eigenfaces dataset, the curated SCFD dataset is utilized as the synthetic data
source in this research.

As shown in Figure 3.10, the video frames of twenty-six participants in the DISFA
dataset are divided into subsets of thirteen folds, with two subjects per validation
dataset for each fold. The first fold contains only the first two subjects as validation
sets, while in the second fold, video frames from the next two subjects are used
(i.e., subject 3 and 4). This process is repeated for each fold until reaching the last
two subjects in DISFA for fold 13. After each split, the curated SCFD dataset is
appended at the end of the remaining subsets of DISFA, and each of these curated
sets is used as a training dataset for each fold training. Thus, the total number of
images in the training set in each fold is

40, 029 + (26− 2) · 300 = 47, 229

number of images.

The implementation of k-fold cross-validation is demonstrated through the ’split_DISFA()’
function. Firstly, the labels are loaded from a file, and then ’k’ splits of the dataset
are generated. For each split, the labels are loaded using the ’load_labels()’ function,
and the image file names are sorted to align with the label order using ’custom_sort()’.
Subsequently, the data is divided into training and validation sets, and converted into
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Figure 3.10: Illustration for 13-fold Cross-validation of curated DISFA and curated
SCFD.

TensorFlow tensors using ’im_file_to_tensor()’. The function employs the ’yield’
statement to generate a generator that produces the ’(train, val)’ datasets for each
fold.

The advantage of k-fold cross-validation lies in its ability to provide a more robust
estimation of the model’s performance compared to evaluating it on a single random
subset of the data. By training and evaluating the model on multiple subsets of the
data, k-fold cross-validation offers a more reliable assessment that is less sensitive
to the specific subset used for evaluation. Moreover, k-fold cross-validation aids
in detecting overfitting, a situation where the model performs well on the training
data but poorly on unseen data. By assessing the model on multiple folds of the
data, k-fold cross-validation helps identify potential overfitting by measuring its
performance on the validation data.

3.11 FER Pipeline Model
The subsequent sub-sections provide an account of the implementation of diverse
FER models. This section will describe the methods that have been used in the
predecessor project. Thus the summary will include the relevant methods used in
the previous project [2].

The presented section provides a summary of the implementation details of FER
models. These models were developed using Keras with the TensorFlow 2 backend
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and share common design choices. Color data with three channels is utilized, and
the Adam optimizer algorithm is employed for training. Gradient clipping with a
clipnorm value of 0.1 is used to address training instability, and early stopping based
on the validation AUC metric is implemented.

The architecture of the models includes feature extractors augmented with two dense
layers (of dimension 128) using Rectified Linear Unit (ReLU) activation and L1 regu-
larization (with coefficient 1 ·10−4).The final layer consists of six output neurons with
sigmoid activation, representing different AU-classes. Binary cross-entropy (BCE)
loss is employed for multilabel prediction, with each AU class treated independently.
The loss function is calculated by summing the binary cross-entropy terms for all
classes.

Finally, the choice of utilizing sigmoid activation and BCE enables comparisons
between each output neuron’s activation and its own probability distribution. This
approach facilitates accurate representation of AU presence or absence.

3.11.1 Benchmark Model
The benchmark model utilizes an EfficientNet CNN feature extractor with an input
tensor of size 224 x 224 x 3 and ImageNet-pretrained weights. The Keras EfficientNet
B0 network with ImageNet weights is employed, and the model has approximately
4 million trainable parameters. The learning rate is set to 1 · 10−6, and the batch
size is 32. Training is conducted for 10 epochs, and the hyperparameter choices are
determined through a brief grid search.

3.11.2 Model Enhancements and Training Approaches
To improve the model’s performance, several enhancements and training approaches
were implemented.

• Class Imbalance Addressing: A re-weighting approach was used to handle
class imbalance. AU class weights were adjusted based on their occurrence,
calculated using a formula considering positive and negative instances. The
weights were applied in a customized weighted binary crossentropy loss function.

• Subject-level Baselining: False positives and neutral states mistaken as dif-
ferent emotions were corrected using subject-level baselining. Two approaches
were employed: baseline subtraction subtracted the average model prediction
of neutral frames, while siamese network baseline used pre-trained models and
concatenated their outputs with neutral frames as baselines.

• Advanced Models and Pre-training: To overcome identity bias and limited
data challenges, two pre-training methods were used. Supervised multi-stage
pre-training involved pre-training VGG Face and EfficientNet B0 CNN back-
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bones on RAF DB and AffectNet, followed by finetuning on the DISFA set.
BYOL pre-training trained an EfficientNet B0 backbone using augmented views
of the same image or pairs of images from the same emotion class.

• Cross Validation Ensemble Construction: Robust ensemble models were
built by training multiple models using cross-validation. Each model was
trained on a different group of training subjects, capturing various aspects of
DISFA. The ensemble consisted of 13 models pre-trained on AffectNet combined
through majority voting.

These enhancements and training approaches aimed to improve the model’s per-
formance by addressing the following: class imbalance, correcting false positives,
utilizing pre-trained models, and constructing an ensemble model trained on different
subsets of the dataset.
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Results

This chapter provides an overview of the outcomes of the study. The result chapter
will highlight the most significant discoveries and provide an interpretation of the
results. Additionally, this chapter will include a discussion of the limitations and
implications of the results. The result chapter will be structured and presented in a
manner that supports the research questions and objectives and it also serves as a
basis for future research in the field.

4.1 Process of Face Localization and Cropping

The process of identifying the face region in an image, known as face localization, is
an important step in facial analysis tasks. Once the face region is recognised, it can
be cropped and separated from the background, a technique known as face cropping.
The purpose of face cropping is to remove irrelevant image information and to focus
solely on the face region, making it easier to analyze and extract facial features that
may be of interest. This also allows to minimise the background inclusion and the
noise it introduces. The accuracy of face localization and cropping greatly affects
the performance of subsequent facial analysis tasks, such as expression recognition
and age estimation. Therefore, it is crucial to ensure that the face localization and
cropping methods used are robust and reliable.

The face cropping pre-processing stage involves the use of both a landmark detector
and OpenCV’s HaarCascade for face localization. This ensures accurate detection
of both symmetric and asymmetric faces. By using HaarCascade, it enables the
detection of faces that cannot be identified solely based on landmarks. This approach
allows for the detection of both symmetrical and asymmetrical faces, as some amount
of asymmetry can be present in synthetic images to develop a more robust model.
Here is the HaarCascade implementation that was implement as a process in the
pipeline; see the algorithm below:
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Algorithm 3 Face Detection for Multiple Images
Require: images ≥ 0
Ensure: Import necessary libraries
Require: image_directories: List of directories containing image files
Ensure: aligned_images: Numpy array of loaded and aligned images

procedure LoadAndAlignImages(image_directories)
aligned_images← []
Load the real and synthetic images
while images ̸= 0 do

for subfolder in image_directories do
Set up the path for the current subfolder.
Create a new subfolder in the new folder with the same name as the

current subfolder.
for image in subfolder do

Read in the image.
Detect faces with facial landmarks in the image.
if any faces are detected then

Save the image to the corresponding new subfolder in the new
folder

end if
if no faces were detected in any of the images in the current

subfolder then
Remove the new subfolder created for the current subfolder from

the new folder
end if

end for
end for

end while
return aligned_images

4.2 Preliminary Baseline Results without TSD
and Semi-automatic Human Annotation

In the interest of ensuring a fair comparison of results using synthetic images, it is
necessary to have a sufficiently large dataset. Therefore, in ths work the aim is to
generate synthetic images that are at equivalent to the size of the original dataset to
evaluate if there is a noticeable boost in performance attributed to the synthetic im-
ages. However, it is imperative to ensure an adequate number of images exist in both
datasets to avoid overfitting and underfitting issues during k-fold cross-validation.
The precise number of images necessary for this purpose depends on the complexity
of the problem and the model employed. Given the moderate complexity of the
baseline model and the absence of any requirement for the number of synthetic data
to match that of the real data, an arbitrary quantity of synthetic data consisting of
43,280 images was generated in the SCFD.
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The baseline model was trained using DISFA, SCFD and ROC AUC as evaluation
method to obtain the baseline result. The results of the baseline model trained on
43,280 synthetic images in SCFD are presented in Figure 4.1, alongside the results
from previous studies for comparison. The ROC curves for individual AUs indicate
that certain AUs pose greater challenges for accurate classification compared to oth-
ers. Specifically, AU1 (Inner Brow Raiser) exhibited low ROC values in comparison
to the other AUs, indicating its difficulty in achieving highly accurate classification.
Although the results indicate a moderate performance compared to previous studies
that used Eigenfaces or only DISFA, the ROC values of various AUs remain the
same or slightly worsen.

Figure 4.1: Receiver Operating Characteristic (ROC) baseline result of 43,280
synthetic images in the initial version of SCFD

Figure 4.2 illustrates the validation ROC AUC for each AU, averaged across all
cross-validation folds. The results indicate that the baseline model already demon-
strates good overall performance, even without the inclusion of the IQA pipeline.
However, there is a noticeable disparity in performance between AU1 and AU12.
This discrepancy suggests that the image quality of the class with poorer performance
may be inferior to those with better performance.

These findings suggest that the increased number of synthetic images in SCFD,
along with the present quality of the images, contribute to a good performance.
However, the noticeable discrepancy between performances of the two classes AU1
and AU12 prompts an inquiry into the quality of the synthetic images employed.
Additionally, the selection and annotation of seeds, indexes, and degrees may have
been inadequate in certain aspects. Hence, there is a need to delve deeper into a
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Figure 4.2: ROC AUC per AU baseline result using 43,280 synthetic images in
SCFD.

more thorough examination of pipeline techniques such as Training Data Selection
(TDS) to investigate the potential for enhancing the baseline result and potentially
even improving the outcome of the classification model in this study.

4.3 The results from the Pipeline Phases

This section will discuss the results from each of the phases in the TDS pipeline. It
will touch on the comparison between the original dataset and the synthetic dataset
both in their structural differences and other image quality aspect. Moreover, each
results is interpreted and will be analysed from a perspective of which subsets of
classes (and accordingly the images) results in best quality. The last phase of the
pipeline will have a clear outline in terms of what data needs to be the output of the
pipeline, see Section 3.9 for more clarity.

4.4 Results from Pipeline

This section consists of the results from the pipeline, from Phase 1 (computing the
NR-IQA) through Phase 3 (implementation of Support Vector Regression Image
Quality Prediction). Detailed information regarding the setup of these phases is
provided in Section 3.9.
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4.5 Results from Phase 2

4.5.1 First-Stage Results - NR-IQA
The results from the first-stage NR-IQA was conducted by processing the original
images and the synthetic images on a local resource on Chalmers University of
Technology called Bayes. It includes both GPU an CPU computation resources and
gives users options of submitting job to be run base on a scheduling schema with
Slurm.

The results below are numbers of the first-stage NR-IQA processing. These numbers
represent the evaluation scores for different metrics comparing an original dataset
with a synthetic dataset. The metrics used are RMSE (Root Mean Squared Er-
ror), ISSM (Image Structural Similarity Measure) and SAM (Spectral Angle Mapper).

• Root Mean Squared Error (RMSE) - measure of the average difference
between the values predicted by a model or algorithm and the actual observed
values. In this case, the RMSE average score for the original dataset is 0.0,
which means there is no difference between the original dataset and the pre-
dicted values. However, the RMSE average score for the synthetic dataset
is 30.39, indicating a large difference between the synthetic dataset and the
predicted values.

• Image Structural Similarity Measure (ISSM) - measure of the similarity
between two images, where a higher value indicates higher similarity. In this
case, the ISSM average score for the original dataset is 1.0, indicating a perfect
similarity between the original dataset and the predicted values. However, the
ISSM average score for the synthetic dataset is 0.33, indicating lower similarity
compared to the original dataset.

• Spectral Angle Mapper (SAM) - measure of the similarity between two
spectra, typically used for remote sensing or hyperspectral data. In this case,
the SAM average score for the original dataset is 0.0, indicating a perfect simi-
larity between the original dataset and the predicted values. Similarly, the SAM
average score for the synthetic dataset is also 0.4, indicating a perfect similarity.

Based on the evaluation scores, it appears that the generated synthetic images have
significant differences compared to the original images. The RMSE score of 30.38,
and the ISSM score of 0.32 all indicate relatively low similarity or high dissimilarity
between the synthetic images and the original images.

When comparing original dataset and synthetic dataset of images using SAM, RMSE
and ISSM, the interpretation of what is considered a good score can vary depending
on the specific context and requirements of the application. However, it’s important
to note that the SAM score, which measures spectral similarity, is perfect with a
score of 0.4, indicating moderate similarity between the synthetic and original images.
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This could suggest that the synthetic images may have similar spectral properties as
the original images, but can differ in other image characteristics. RMSE and ISSM
also indicate moderate similarity. The scores are also presented in Table 4.1, which
is shown in Appendix A.

Metric Score of Original Score of Synthetic
RMSE ∼ 0.1 ∼ 30.39
ISSM ∼ 1.0 ∼ 0.329
SAM ∼ 1.0 ∼ 0.4

Table 4.1: Results from the computation of NR-IQA algorithm for the metrics
RMSE, ISSM and SAM.

4.5.2 Second-Stage Results - FID
The FID scores obtained for both the baseline models, namely the original dataset
and the synthetic dataset, are approximately 26. These results suggest that the FID
score benchmark display certain dissimilarities, although within an acceptable range.
The observed dissimilarities need further reflection on the underlying reasons.

Primarily, it is important to note that the FID score is not directly associated with
the implementation of quality assessment, unlike the process of NR-IQA. Instead, FID
focuses on quantifying the similarity between two image datasets by implementing
feature statistics extracted from a pre-trained deep learning model, typically this
would be Inception. This methodology does not rely on reference images or explicit
quality assessment measures. Figure 4.3 depicts the overall dispersion of the images,
with red dots representing the synthetic images and blue dots representing the
original images. Visually it demonstrates the spatial distribution of the images in
the feature space. It also highlights the degree to which the synthetic images align
with the original images. A higher degree of alignment indicates a better FID score.
Overall, the results from the two processes, first-stage and second-stage in Phase 2

suggests that while there are dissimilarities between the synthetic and original images,
but they fall within an acceptable range. Additionally, there are some discrepancies
in terms of pixel-level dissimilarity, structural similarity, and spectral similarity,
indicating that the synthetic images may not fully capture the characteristics of the
original images.

4.5.3 Third-Stage Results - SVR
The last process of the pipeline that validates the image quality but in a reference
image quality assessment is the SVR. With Support Vector Regression image quality
prediction the image quality can be assessed from the perspective of the original
images.

The code steps below performs an image quality assessment task using the BRISQUE
(Blind/Referenceless Image Spatial Quality Evaluator) algorithm. The purpose is
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Figure 4.3: Figure displaying images in the feature space where red dots are the
synthetic images and the blue dots are the original images.

to train a Support Vector Regression (SVR) model on a dataset of original images
and then use the trained model to predict the quality scores for a separate set of
synthetic images. The following steps summarize the process:

1. The code loads a dataset of original images from a specified folder.
2. Preprocessing is performed on the original images, and BRISQUE scores are

calculated using the gray-level co-occurrence matrix.
3. The data is prepared for SVR training by reshaping the BRISQUE scores and

generating dummy target values.
4. The original dataset is split into training and validation sets.
5. An SVR model with an RBF kernel is trained using the training data and

feature scaling.
6. A separate dataset of synthetic images is loaded from a specified folder.
7. BRISQUE scores are calculated for the synthetic images.
8. The SVR model predicts the scores for the synthetic images.
9. The predicted scores for the synthetic images are printed.

10. Model performance is evaluated on the validation set using mean squared error
(MSE).

11. The MSE is printed as a measure of the model’s performance on the validation
set.

The results from the SVR run show that BRISQUE scores for the synthetic images
range from 0.355 to 0.619, with lower scores indicating better quality. The scores
reveal that the quality of the synthetic images varies, with some images having
relatively high scores (e.g., 0.619) and others having lower scores (e.g., 0.355). The
mean squared error (MSE) is a metric used to evaluate the quality of a regression
model and in this case, the MSE is used to assess the quality of the synthetic dataset
compared to the original dataset. Further, in general, a lower MSE indicates better
model performance, as it indicates that the perfromance of the model is closer to the
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actual values. Therefore, the MSE in this case indicates a good overall performance
even though some outliers can have affected the last score somewhat. Lastly, note
that the SVR algorithm implementation can be seen in the Appendix A.2.

4.6 Results from Phase 3
The final stage of the pipeline has been implemented using a batch script. It involves
multiple steps to calculate No-reference Image Quality Assessment (NR-IQA) scores
for all synthetic datasets, i.e all the 100,000 images. These scores are computed based
on the five metrics explained in Section 3.9, two of them are not included in the
first-stage process but are added as additional security. Those metrics are Quality
Index Operator (QIO) and Peak Signal-to-Noise Ratio(PSNR). Subsequently, the
images are ranked in ascending order based on their performance compared to some
scores from images in the original dataset. This approach enables reduced reference
image quality assessment and implements method of identifying images with the
best quality and similar structural features.

The batch implementation follows a logic where each iteration processes a batch of
512 images. For each image, the relevant metrics are computed as described, and
based on these scores, 180 images with the highest image quality are identified. Then
their names and corresponding scores are recorded in a list. Simultaneously, these
top-ranking images are relocated to a designated folder and the images that are not
top ranked will also be discarded in the same way the top images are. The difference
is that the rest of the 512 images are just discarded. It is worth noting that the
randomly selected 512 images are permanently deleted from their original location,
irrespective of their ranking. This step ensures that the images are not processed
repeatedly and progressively reduces the total number of images in subsequent runs
of the batch sizing method.

As a result of this process, 40,029 images has been retained from the initial pool of
100,000 generated images. These selected images is the curated set of TDS sample,
serving as the input for the classification model. They represent the final outcome
of the pipeline and are deemed to possess the highest quality among the generated
images.

4.7 Semi-automatic AU annotation for curated
dataset SCFD

Upon obtaining the curated SCFD dataset, comprising synthetic images with the
highest IQA scores in the TDS pipeline, the dataset underwent annotation using
the Semi-automated Annotation method. Consequently, a structured NumPy file
was generated, adopting a six-column format as illustrated in Figure 3.9 (Section
3.10.2). The NumPy file encompasses binary annotations for a total of 40,029 images,
exemplified by the illustration provided in Figure 3.9. In the subsequent phase of
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the project, this NumPy file together with the generated synthetic images within the
curated SCFD, will serve as the input for the FER classification model.

4.8 FER Classification Model’s Performance with
Integrated TDS pipeline and Semi-automated
Annotation

Following up to the first result benchmark that was obtained by utilizing uncurated
synthetic dataset SCFD and without the TDS pipeline, this section presents the result
and benchmark involving the integration of the TDS pipeline and the Semi-automatic
Human Annotation method. The inclusion of TDS with IQA methods within the
pipeline will be thoroughly examined to draw conclusive insights regarding their
impact on performance improvement.

In Figure 4.4, the ROC curve for AU1 (Inner Brow Raiser) indicates that the
enhanced classification model faces challenges in accurately predicting the presence
of AU1. In comparison to other AUs, the model’s performance in detecting AU1 is
relatively lower. However, a comprehensive analysis of the curves reveals an overall
improved performance compared to the baseline model. Notably, the orange curve
representing AU4 (Brow Lowerer) and the green curve representing AU5 (Upper Lid
Raiser) exhibit slightly better performance when compared to their respective curves
in the baseline model. However, the ROC curve of of AU15 seems to have worsen
quite a bit, indicating a slight degradation compared to the baseline result.

Figure 4.4: ROC AUC per AU baseline result of synthetic images in curated SCFD
dataset

The application of the TDS pipeline in conjunction with semi-automated annotation
resulted in new AUC values, reflecting the performance of the classification model.
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Figure 4.5: Summary of AUC values per AU of the original model, baseline model
and the enhanced model with intergrated TDS pipeline and semi-automated human
annotation using synthetic images in curated SCFD dataset

Notably, half of the classes exhibited improved performance, while 30% of them
remained unchanged. The AUC values of AU1, AU4, AU5 have outperformed those
of the baseline model, while the AUC of AU6 and AU15 remains the same as the
result of both the baseline model that use the uncurated version of SCFD and the
original model that only use 7,800 images of the real dataset DISFA. Furthermore,
one class showed a decline in performance. This outcome suggests that there is
potential for further refinement and optimization in both the TDS pipeline and the
semi-automated annotation process to achieve even better performance across all
classes.

Despite this outlier, the enhanced pipeline demonstrated an enhanced consistency in
performance across the six classes. The deviation between their scores seemed to have
been minimized, leading to a more uniform and consistent predictive performance
across the classes. This observation implies an improved stability and reliability of
the enhanced pipeline in accurately classifying instances from various classes.
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This section presents an analysis of the research’s findings and discusses the implica-
tions of the results and thereby draws conclusions. The section discussion focuses on
important insights gained from the research and addresses limitations and challenges
encountered during the research. Additionally, the conclusion summarizes the main
findings and their significance, reaffirming the study’s contributions to the study field
of synthetic data generation and enhancing FER models’ performance. Lastly, the
section future work identifies potential areas for further investigation and suggests
potential avenues to expand upon the current research.

5.1 Discussion
This section begins by revisiting the research questions and objectives, then assessing
the extent to which they have been addressed. Furthermore, the main findings are
discussed in details to identify relevance and disparities to the defined research ques-
tions. This chapter also addressed this reach’s contribution to the existing knowledge
in the field of synthetic image generation and enhancing FER classification model’s
performance.

5.1.1 TDS pipeline
The findings obtained from the different phases of the IQA pipeline have demon-
strated a systematic approach for evaluating the quality of synthetic images. The
evaluation has been implemented using both reference and no-reference IQA tech-
niques. Furthermore, relevant domain knowledge of image assessment required in
order to be implement the defined IQA pipeline. Additionally, it should be noted
that during the development process, obtaining a larger synthetic dataset to serve as
input for the classification model was one of the priorities. Hence, the IQA pipeline
was designed to address not only the aspect of image quality but also the aspect of
quantity in selecting images for the classifier. Therefore, the task involves balancing
between collecting images with the highest reported scores across five IQA metrics
and ensuring to obtain a sufficient number of images as training data. To achieve
this, the method of batch sizing was implemented, which resulted in an amount of
approximately 40,000 synthetic images.

Secondly, is important to highlight that the pipeline was implemented using stages as
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processes in order to validate the first run of the IQA, namely the NR-IQA. Once the
NR-IQA was validated and shown to produce comparable results to RR-IQA, a num-
ber of NR-IQA methods were implemented, which also served as the final selection
method. This approach allowed for a lightweight IQA that consisted of five dif-
ferent metrics, as opposed to using RR-IQA that sorely relied on the BRISQUE score.

Furthermore, the performance of the NR-IQA and reference-based IQA exhibited
comparable results. This finding implies that the outcomes obtained from the TDS
pipeline should not have an adverse impact on the benchmarks established for the
baseline and final results of the classification model. Therefore, the focus should
shift from selecting specific metrics for image selection in the classification model to
implementing accurate methods for image assessment.

Consequently, a methodology wherein the input for each phase was derived from the
output of the preceding phase was employed in the TDS process. This approach
ensured that the results obtained from each phase sequentially validated one another,
leading to a consistent conclusion. Through the execution of three analyses, a
significant disparity in image quality between the synthetic and original images was
identified. These findings serve to reinforce the reliability and effectiveness of the
implemented IQA methods.

Moreover, the incorporation of the TDS pipeline has facilitated the identification and
inclusion of training data of highest quality available in SCFD based on the evaluation
of five selected metrics. As a consequence, the application of the TDS pipeline has led
to an enhanced classification outcome of the final model in comparison to the baseline
result. This result of the employed TDS approach substantiates the effectiveness of
the methodology in training the model and optimizing the classification performance
through the utilization of high-quality synthetic data.

Overall, these findings highlight the contribution of the pipeline towards evaluating as
well as selecting of high-quality synthetic images, and thereby improved classification
result. By improving the understanding and implementation of IQA techniques, this
study provides valuable insights for future research endeavors in this domain.

5.1.2 Semi-automated Annotation method
The exploration of a trial approach involving the annotation of a single AU for
each annotated seed has yielded valuable findings and insights. This investigation
has shed light on several disadvantages associated with the approach in particular
and human annotation in general. The idea of approach itself leads to a lack of
association between the seed and the AU annotation, which makes it impossible to
annotate at the later stage after data generation. With other words, it is unpracti-
cal and thus is low in robustness. Further, challenges with human annotation are
the labor-intensive nature of manual annotation, logistical challenges arising from
the absence of a well-designed data storage system, implications stemming from
human errors and limited expertise in the field of annotation, and, notably, the
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time-consuming nature of the process. Hence, it is desired to automate annotation
to the greatest extent possible, particularly when dealing with large-scale datasets
such as those generated through synthetic data generation, to address the scarcity
of available real data. However, previous research [3] has demonstrated a lack of
compelling evidence supporting the effectiveness of leveraging machine learning model
predictions as a means of annotation in the current state-of-the-art synthetic data
generation. Therefore, development of a more robust and effective method than
both of the method mentioned above is crucial for the aim of enhancing the FER
classification model, as the quality and quantity of data have a significant impacts
on model performance.

In order to tackle this, the proposed approach of Semi-automated Annotation method
addresses the limitations of the previous project’s approach, allowing for annotation
on a larger scale. It involves manual annotation for seed selection, followed by auto-
matic annotation during synthetic data generation for multiple images associated
with each chosen seed. The approach incorporates a systematic seed identification
procedure, known as seed-ID, which utilizes prefixes in image names to create associ-
ation between the seeds and the AU annotations of the synthetic images. Moreover,
binary annotation is used to mark the presence or absence of specific AUs in each
image, enabling comprehensive tracking of AU occurrences. The method efficiently
maps prefixes to corresponding AUs and leverages seed tracking lists to annotate
images accordingly.

By integrating this annotation method with synthetic data generation, it minimizes
the need for labor-intensive manual efforts and enables streamlined data labeling. It
allows for the generation of a significantly large synthetic dataset, facilitating the
development and evaluation of robust models for AU prediction in a FER classification
model. Most importantly, the proposed method exhibits a high level of practicality,
as it does not impose the requirement of obtaining annotations simultaneously with
the data acquisition process. This characteristic makes it highly compatible with the
TDS pipeline.

5.1.3 Performance of the FER classification model
Analysing the preliminary results of the baseline model, it was observed that even
when the number of synthetic images was increased fourfold compared to the number
of real images, the overall performance of the model decreased for multiple classes of
AUs, while experiencing only a slight improvement for one AU class. One possible
explanation for this phenomenon is that the initial SCFD dataset of synthetic data,
which has not undergone processing using the TDS pipeline, could have contained a
set lower quality instances. It is plausible that the inclusion of lower-quality instances
within the initial dataset adversely affected its overall quality and subsequently
contributed to the decline in performance across various classes. the small size of the
original CFD dataset could have posed challenges for the StyleGAN2-ADA network
to effectively learn its distinctive features within the limited training time allocated.
This limitation may have caused the presence of low-quality images within the initial
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synthetic dataset used on the baseline model.

As for the enhanced classification model, it has yielded improvements in performance
for the majority of classes, which is 50 percents of the six classes of interest. In
particular, the AUC values of AU1, AU4, and AU5, have increased compared to both
the baseline and original models, indicating an enhancement in the classifier’s ability
to distinguish between positive and negative cases. In the case of AU12 emerges as
an outlier performance-wise, exhibiting a significantly lower AUC value compared to
both the baseline and original models, could depend on the less frequent occurrences
of class AU12. Moreover, the interpretation of facial expressions is highly individual
and can vary significantly among unprofessional annotators. Thus, it is plausible to
consider that a less comprehensive standard may have been applied during the seed
annotation for this specific class.

Nevertheless, these outcomes still indicates that the performance’s advancements
are achieved through the enhancement processes such as TDS pipeline and Semi-
automated Annotation method. Although this research only studies the effectiveness
of TDS pipeline and annotation for performance enhancement of a FER classification
model, as they are deemed to show effectiveness, they can even be applied to other
types of model that are in need or synthetic data due to scare, suitable data.

Furthermore, as highlighted in section 4.8, the enhanced model demonstrates a higher
consistency in performance, as evidenced by the minimal deviation observed among
the AUC values across different classes. This balance in performance indicates that
the TDS pipeline method has contributed with a selection of uniformly distributed
dataset of high quality synthetic images. This consequently results in a higher level of
stability and reliability in the classification outcomes provided by the enhanced model.
Despite the subtle differences in performance observed among individual classes,
the overall trend showcases a more harmonized and balanced performance across
the entire spectrum of classes. This uniformity in performance further enhances
the credibility and robustness of the enhanced model in effectively addressing the
classification tasks at hand.

5.2 Conclusion
Firstly, this thesis demonstrates a systematic approach to evaluate synthetic image
quality using both reference and no-reference Image Quality Assessment (IQA) tech-
niques. The TDS pipeline validates results across phases and consistently reveals
differences between synthetic and original image quality. This aims to reinforce
the reliability of the IQA methods. Overall, this study emphasizes the pipeline’s
effectiveness in evaluating and selecting high-quality synthetic images, contributing
to the understanding of image quality assessment in synthetic face generation for
FER model improvement.

Secondly, the exploration of Latent Space and the implementation of the Semi-
Automated Annotation method have contributed to the improvement of the enhanced
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model’s performance, surpassing both the baseline result. Despite encountering chal-
lenges in accurately predicting AUs that have lower occurrences in the synthetic
dataset SCFD, the enhanced model still outperformed the baseline benchmark. How-
ever, there is potential for further enhancement by fine-tuning the FER classification
model. Additionally, the utilization of synthetic data generation, such as StyleGAN2-
ADA, has already demonstrated increased performance, particularly in capturing
less frequent instances of AUs. These findings indicate promising avenues for future
research and the continued improvement of AU prediction models.

Further, it was observed that the enhanced model with the integration of TDS
pipeline and Semi-automated Annotation method exhibits a higher degree of con-
sistency in performance across the compared to the baseline and original models.
This indicates that the integration of TDS pipeline and Semi-automated Annotation
method contributes to a more stable and reliable classification outcome. Moreover,
this increased consistency in performance enhances the credibility and robustness
of the enhanced model compared to the baseline model. Despite subtle variations
in performance among individual classes, the overall trend highlights the model’s
ability to effectively address the classification tasks with a more balanced performance.

In conclusion, TDS has effectively evaluated both the image quality and performance
of synthetic images, leading to improved results when incorporating them into the
FER model. The relatively small qualitative improvement indicates room for further
enhancements. However, the results are still significant as they demonstrate that
modifying the model’s input can lead to substantial performance improvements.
Finally, as mentioned, the fact that we used a larger number of images and selecting
them in a systematic way via IQA process had considerable positive effect on the
final result.

5.2.1 Contributions
Having summarized the findings and their significations in the previous section, the
research’s contributions have been identified. Thus, this section will be dedicated
to provide a comprehensive description of the main contributions archived in this
research.

The primary contribution of this master thesis is the development of a novel pipeline
that incorporates IQA methods. The approach taken in this work, known as the
Train Data Selection (TDS) pipeline, aims to address the challenge of effectively
assessing a large dataset comprising over 100,000 generated images. One of the key
considerations in this process is striking the right balance between data quality and
data quantity, which was lacking in the predecessor project and may have impacted
the initial benchmark performance. Due to the prevalence of this issue, the approach
was taken involves mitigating the scarcity of data by leveraging GAN-generated
datasets while simultaneously addressing quantity-related challenges through Latent
Space exploration and the TDS pipeline. These strategies are employed to tackle the
inherent challenges and optimize the performance of the classification model in this
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study.

Another contribution of this research is the development and integration of a method-
ology for Semi-automated Human Annotation. This approach not only aims to
reduce human intervention in the annotation process but also seeks to achieve a more
systematic approach to manual annotation. Since the use of pre-trained models’ pre-
dictions as annotations can potentially cause complications such as the performance
of relying sorely on the performance of the pre-trained. This resulting annotation
methodology aims to enhance the efficiency of the annotation process, ultimately
improving the overall quality and accuracy of the conducted annotation.

5.3 Future Work
The subsequent section of this thesis project is dedicated to outlining potential
avenues for future research. These subjects of inquiry serve to extend and build upon
the findings and outcomes attained in the current thesis research, providing new
possibilities for further exploration and advancement in related fields of synthetic
data generation and applications within FER.

Firstly, an indexing tracking embedded in image names can also be integrated in
seed-ID for future research. This can be used to annotate images to specific clas-
sification pools. A suggested approach is that image with certain AU and with
certain index could be uniquely identified to a certain classification pool. This index
tracking approach can hold potential for enhancing the accuracy and efficiency of
the image classification, as it allows for further control over AU identification and
categorization in synthetic images. Further, due to time constraints, the current
project did not explore the inclusion of the index and degrees in image names when
comprising the images. However, incorporating this information in future research
can contribute to a further control and thereby accuracy in annotation of various
AUs presences in synthetic data instances, thereby leading to further improvements
in the classification performance.

Furthermore, while this thesis has made moderate progress in terms of performance,
there is still untapped potential for further enhancing the performance of the TDS
pipeline. Specifically, exploring the utilization of TDS as a method to evaluate the
generative capabilities of the styleGAN2-ADA model holds promise for achieving
improved classification results. Therefore, future researches can explore more refined
methods to further enhance the capabilities of TDS pipeline in evaluating image
quality and generative models performance. Furthermore, it is worth considering
the possibility of incorporating specific thresholds for IQA metrics as additional
quality criteria in future reseraches. Additionally, this approach offers flexibility
by allowing the thresholds to be adjusted according to the desired level of image
quality. By implementing these thresholds, the system can also ensure that only
images meeting or exceeding the predefined quality standards are included in the
synthetic dataset. This should serve the purpose of maintaining a high standard
of image quality aligned with the specific requirements and objectives of future studies.
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In addition, data annotation is the foundation of high-quality datasets and hu-
man annotation often provides the ideal control. However, this method can be a
resource-intensive and potentially unreliable process, especially in this case, where it
is conducted on a limited scale. Additionally, professional annotation services can
greatly enhance the quality of data, but they require substantial investment in time
and other resources. Moreover, the preliminary results of this study shed light on the
challenges associated with controlling and validating predictions from pre-trained
models when employed for annotation purposes. As said before, future research lies
in investigating a hybrid annotation approach that combines the semi-automated
annotation technique proposed in this thesis with the baseline annotation method
utilizing classification model to predict the presence of AUs.

Moreover, the classification model consists of some augmentation techniques among
other functions that it inherits from the previous projects. However, the augmenta-
tion strategy primarily focused on flipping images to introduce a few variations to
the training process. Nevertheless, it is worth considering incorporating additional
augmentation methods for images such as gamma noise, grayscale transformations,
and other similar noise-based methods for even more advanced image augmentation
and thus can potentially enhance the model’s robustness. Notably, images quality
in both synthetic dataset and real dataset can potentially be improved using the
suggesting augmentation techniques, as the real dataset DISFA can also benifit
from further image quality enhancement. Furthermore, these mentioned techniques
can potentially bridge the existing quality gap between synthetic images and their
original counterparts and thus can potentially contribute to more robust IQA and
model training, and thereby enhance classification outcome.

In summary, these areas of research hold potential for advancing the field of im-
age classification and validation. The suggested recommendations, including the
integration of index tracking in seed identification, further exploration of TDS with
thresholds for IQA metrics, development of hybrid annotation systems, augmentation
refinement, incorporating other models such as regression model or other non-linear
models, present exciting avenues for future investigations. Therefore, there are
potential for delving into these aspects to contribute with improvement in accuracy
and efficiency as well as reliable validation methodologies for the FER domain.
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A
Appendix 1

A.1 Data Aquasition Related Goals: DISFA
The DISFA dataset exhibits several similarities with the target task, making it
a suitable choice. The elicitation process is naturalistic, and the recordings are
predominantly frontal. Moreover, each frame of the dataset contains annotations for
12 Action Units (AUs). These 12 AUs are listed below:

Inner Brow Raiser AU1
Outer Brow Raiser AU2

Brow Lowerer AU4
Upper Lid Raiser AU5

Cheek Raiser and Lid Compressor AU6
Nose Wrinkler AU9

Lip Corner Puller AU12
Lip Corner Depressor AU15

Chin Raiser AU17
Lip Stretcher AU20

Lips Part AU25
Jaw Drop AU26

Table A.1: Action Units Corresponding to Specific Facial Expressions

The dataset includes four minutes of video footage at a rate of 20 frames per second
for each subject. The demographic distribution of the subjects is satisfactory in
terms of ethnicity, age, and gender, although the majority are white. Given the
relatively good fit with the previously discussed requirements, DISFA was chosen
over as the baseline for this thesis.
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A. Appendix 1

A.2 Support Vector Regression for Image Quality
Prediction Using BRISQUE Metric

Algorithm 4 Image Processing, Data Split, and SVR Training
Require: Original images folder, Synthetic images folder, Test size ratio

procedure ImageProcessingDataSplitSVR
Load original images from folder
for each original image do

Preprocess the image and calculate BRISQUE score
Convert image to grayscale
Scale image to 8-bit unsigned integer
Calculate gray-level co-occurrence matrix (GLCM)
Compute contrast, correlation, energy, and homogeneity from GLCM
Calculate BRISQUE score as the average of contrast, correlation, energy,

and homogeneity
end for
Prepare data for SVR training
Split the dataset into training and validation sets using train_test_split
Train SVR model
Load synthetic images from folder
for each synthetic image do

Preprocess the image and calculate BRISQUE score
Convert image to grayscale
Scale image to 8-bit unsigned integer
Calculate gray-level co-occurrence matrix (GLCM)
Compute contrast, correlation, energy, and homogeneity from GLCM
Calculate BRISQUE score as the average of contrast, correlation, energy,

and homogeneity
end for
Predict scores for synthetic images using SVR model
Print predicted BRISQUE scores for synthetic images:
for each synthetic image do

Print "Image" and image index
Print "Score:" and predicted score for the image

end for
Evaluate model performance on the validation set

end procedure=0

II



A. Appendix 1

A.3 NumPy File Viewer as a Tool
The NPYViewer [43] is a pre-existing npy-file viewer written in Python using the
PyQt5 library. It allows the user to browse and view multiple npy files at once, as
well as display metadata about the selected file. It has a simple GUI which offers a
viewer as 3D point cloud, grayscale images, as heightmaps and various timeseries
visualizations as well as adjacency matrices (weighted graphs etc). Other current
features supported are:

• View and manipulate 2D NumPy arrays and lists saved in .npy files as spread-
sheets

• Convert .npy files to .csv format and vice versa
• Export .npy files as .mat files for use in MATLAB and Octave
• Display 2D NumPy arrays as grayscale images or 3D point clouds for arrays

with 3D coordinates
• Visualize 2D NumPy arrays as heightmaps and 1D NumPy arrays as timeseries

data
• Load .npy files as command line arguments with support for visualization of

adjacency matrices as directed edge weighted graphs
• Print NumPy arrays in the terminal using the -noGUI argument
• The program uses PyQT5 to create a user-friendly graphical user interface

(GUI)
The NPYViewer tool is primarily used to validate the annotation process and make
sure that the npy-file has been created correctly. That includes checking that the
size of the npy-file dimension is correct and that the overall annotation looks equally
distributed; since one already has control over the generation of images.
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A.4 Thesis Project Roadmap
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Figure A.1: Thesis Project Roadmap.
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