
Compression of Sequential Voxel Data
for Sequence-based Animation

Master’s thesis in Computer science and engineering

FILIP ANTONIJEVIC

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Compression of Sequential Voxel Data for
Sequence-based Animation

FILIP ANTONIJEVIC

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

iv

FILIP ANTONIJEVIC

© FILIP ANTONIJEVIC, 2023.

Supervisor: Erik Sintorn, Department of Computer Science and Engineering
Examiner: Ulf Assarsson, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visual example of spatiotemporal coherency in a voxel animation sequence.
This demonstrates how data from a previous time step is retrieved from a previ-
ous time step to be re-used in each consecutive time step. The transparent voxels
represent the spatiotemporally coherent voxels in the animation sequence.

Typeset in LATEX
Gothenburg, Sweden 2023

v

FILIP ANTONIJEVIC
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis presents a method for lossy compression of voxel data in an animation
sequence. Uncompressed voxel animation can become very memory intensive and
therefore need a more efficient method to store and render such data. To achieve
this, a combination of methods were implemented in order to create a compact
data structure, given the name Hyper Octree. This method first involves the use
of a modified sparse voxel octree that is able to exploit spatiotemporal coherency
between each consecutive frame in a sequence. The second method is a compression
of colours using the DXT1 format in order to further compress the data. This
format causes a loss in quality, so a novel approach of using HSV values to sort
or reorder the colours in order to be in close proximity to each other in memory
before compression. This format also causes redundant data to be generated, so the
data is reduced as well to further compress the data. The result shows that the
Hyper Octree was able to greatly reduce the memory consumption and the HSV
sorting was able to preserve the quality of the colours moderately. Sorting colours
with HSV appeared to be most effective depending on which component in the HSV
colourspace was the most frequent in the voxel data’s set of colours.

Keywords: voxel, octree, grid, compression, animation, spatiotemporal, sorting, re-
ordering, DXT, HSV

vi

Acknowledgements
I would like to give my gratitude to my thesis supervisor Erik Sintorn who used
much of his precious time to discuss, assist and explain the many fundamental as-
pects of this projects. This project would not have been possible without him and
I thank him for everything.

I would also like show my gratitude to thesis examiner Ulf Assarsson, who also
gave important feedback that not only put the project in better focus, but even
helped increase its overall quality in the end. His input been invaluable and I thank
him as well.

Filip Antonijevic, Gothenburg, 2023-06-20

viii

x

Contents

1 Introduction 1
1.1 Aim . 2

1.1.1 Motivation . 3
1.2 Problem Statement . 3

1.2.1 Proposal . 4

2 Previous Work 7
2.1 Time-varying Voxel Compression . 7
2.2 Voxel Colour Compression . 8
2.3 Animation Compression . 9

3 Theory 11
3.1 Definition of Voxel . 11
3.2 Voxel Data Structures . 11

3.2.1 Voxel Grid . 11
3.2.1.1 Voxel Grid Traversal 12

3.2.2 Octree . 12
3.2.3 Sparse Voxel Octree . 13

3.2.3.1 SVO Traversal . 14
3.3 Lossy Compression . 15

3.3.1 S3TC Texture Compression 17
3.3.1.1 DXT1 . 17

3.4 Definition of Sequence-based Animation 18
3.4.1 Voxel Grid . 18
3.4.2 Octree . 19

4 Methods 21
4.1 Rendering and Data Structures . 21

4.1.1 Voxel Grid . 21
4.1.2 Compressed Voxel Grid . 22

4.1.2.1 Animation sequence 22
4.1.3 Sparse Voxel Octree . 23

4.1.3.1 Animation Sequence of SVO 24
4.1.4 Hyper Octree - Spatiotemporal Compression 24

4.1.4.1 Subtree Similarity Search 24

xi

Contents

4.1.4.2 Reassign Indices . 25
4.1.5 Exploiting Spatiotemporal Coherency during Traversal 27
4.1.6 Colour Compression . 27
4.1.7 DXT1 . 27

4.1.7.1 Block Descriptors . 28
4.1.7.2 Redundant Blocks 29

4.1.8 HSV Model . 30
4.1.8.1 Voxel Colour Sorting with HSV 30

4.2 Animation Support . 30
4.3 Evaluation . 31

4.3.1 Test Data . 31
4.3.1.1 Quality Comparison 32
4.3.1.2 Memory Consumption Analysis 34

5 Results and Discussion 35
5.1 Quality . 35
5.2 Memory Consumption . 37

5.2.1 Node count . 39
5.3 Limitations . 40

6 Conclusion 43
6.1 Conclusion . 43
6.2 Future Work . 44
6.3 Ethical Considerations . 44

Bibliography 45

A Appendix 1 I

xii

1
Introduction

Voxels are commonly used in video games for real-time voxel visualisation for ren-
dering objects and scenes, and can be considered as an alternative form of graphical
rendering in comparison to the triangle-based pipeline used in all modern GPUs
[7]. However, voxel visualisation is not natively supported on any general GPU nor
officially supported through hardware-accelerated APIs, compared to polygon-based
solutions. Despite this, in recent years there have been more and more ray-based so-
lutions applying raytracing, cone tracing and ray-marching for rendering, alongside
octrees used for efficient storage and faster rasterization [24, 2, 7, 17, 16, 18]. Despite
this, many modern commercial games that utilize voxel visualisation still prefer to
use a polygon-based or hybrid approach, mixing rendering and storage technologies
in order to take advantage of the current GPU pipeline and hardware acceleration
[24]. This approach is used for both static and animated scenes and objects. For
animated scenes and objects, games such as Trove [37], Stonehearth [38] and Cube
World [39] use a pure polygon-based approach for utilizing a voxel-like form of voxel
visualisation. The animation is based on a conventional skeletal animation or rigging
method to deform the voxel models that have been converted into mesh data be-
forehand. This might be done in order to achieve the visual characteristics of voxels
as a type of graphical representation rather than taking advantages of the inherent
qualities of voxels, which is detailed structures that are built up using atomic units
[24].

However, using a polygon-based approach cannot be considered as voxel visualisa-
tion, since it no longer uses voxels in any capacity for neither storage nor graphical
rendering. Using this approach only leads to a conventional, GPU rasterized poly-
gon model that only in appearance looks cubic, mimicking the use of voxel data.
Other than an artistic choice of the developers, the reason why this method might
be more common for animated voxel data in video games might be because of the
memory consumption of such data. Mileff et al. [24] suggest that voxel models have
relatively large set of data and these have been computationally expensive to store
and render because of the lack of support in both hardware and software, up until
very recent innovations. Since hardware only supports a triangle-based pipeline it
would not be very efficient to use a true voxel format. Such format would consume
a lot memory, especially in huge quantities [24, 2]. This would also hold true if such
format was used for animation. This does suggest that there is a need for a more
memory efficient method for using voxel data in an animation sequence.

1

1. Introduction

It is important to clarify that animation with voxel data does not refer to deforming
mesh data as previously described. Rather, it refers to a volumetric data structure
with an extra dimension where each element represents a set of sequential voxel
data, i.e. a 4D container where voxels are a discretization of 3D volumes over time
[8]. Games that use voxel visualisation for this purpose are e.g. Voxatron [35] and
3D-Dot Game Heroes [36]. These use voxel animation for both environments and
characters but are limited to low voxel resolutions. If the animations have many
time steps or use a high voxel resolution, or possibly a a combination of both, it will
inevitably lead to high memory consumption and impact the performance. With-
out any type of compression performed on animated voxel data the memory usage
will become too large to be realistically used in a video game. Therefore, memory
efficiency is important for animated voxel data as it improves both storage and re-
duces memory for rendering [2]. If a method could be conceived to efficiently store
animated voxel data, it could encourage more application of true voxel visualisation
in video games, as well as more utilization of sequence-based voxel animation over
polygon-based approaches.

1.1 Aim
The goal of this project is to explore how sequence-based animation with voxel
data can be made memory efficient through compression and decompression using
sparseness, colour compression and redundancy. Redundancy means to exploit spa-
tiotemporal coherence [3], i.e. to re-use redundant data that exists in the same
place at a different time step. In this case, the goal is to find a lossy solution to
achieve efficient memory usage for voxel animation. This entails not only compres-
sion of geometry through temporal coherency but compression of colour attributes
as well. To achieve this goal it will be necessary to find a method appropriate for
compression of voxel sequences. The method will be limited to its application for
voxel animation in video games.

This project will not explore nor consider an implementation for lossless or near-
lossless compression methods. This is because lossless methods are used to ensure
full recovery of the data when it is decompressed. Usually these sorts of methods
are important if the data must be recovered with guaranteed zero errors, which is
common and necessary in medical imaging applications [11]. In the context of video
games, it is only important that the data in its compressed format appears similar
visually to the original data in its uncompressed format. This can be accomplished
using a lossy compression method, achieving a greater compression ratio compared
to a lossless or near-lossless method [11].

Furthermore, this project will not attempt any other graphical implementations
other than what is relevant for the completion of this project. What is relevant is
a way to render voxels (which will not include any advanced shadows or lighting
techniques), efficient storage for voxels and colours, a mechanism to play an anima-
tion sequence and a way to find spatiotemporal coherency in the data for efficient
memory storage and usage.

2

1. Introduction

1.1.1 Motivation
There are plethora of voxel formats. However currently, there seems to be only
one format that supports animation using voxel data. The VOX format is a voxel
data format with animation capabilities and is primarily used in the voxel modelling
software MagicaVoxel [32]. The VOX format can easily be integrated into game de-
velopment systems due to its simple, RIFF-style format [41]. The base format does
not support animation but an extension version of it has support for sequence-based
animation. Although this format allows animation, it is an uncompressed format
and in addition contains data specifically for use in the software rather than being
optimized for more general purpose use [41, 42]. Furthermore, there is a resolution
limitation of the 3D volume of maximum 2563 voxels in total. This limitation is
because of a hard limitation in the modelling software rather than being a limita-
tion of the format itself. Other voxel modelling software such as Qubicle [33] does
currently not support animation in the manner of MagicaVoxel, allowing instead
animation through bone animation techniques. Bone rigged animation, although a
very common type of animation technique, cannot be considered as voxel animation
since voxel animation can only strictly be done using a form of visualisation, where
each stage in the animation is a separate volumetric data. Another voxel modelling
software is SLAB6 which uses KV6 and KVX formats. Although these formats are
supposedly highly optimized, these are also limited to 256x256x255 [34] and can only
store 256 colours for the whole voxel model. These formats were originally designed
for Build, an old computer game engine, where the limit size was 128x128x200 [34].
These formats do not seem to support any animation capabilities. Because of this,
there does not seem to be a standard, efficient format for compressing a voxel data
structure with a time factor for the purpose of animation. If such a format could
be conceived, it would encourage more application of voxel visualisation in video
games, both for static and animated environments and objects.

1.2 Problem Statement
To give a definite form to the aim of this project, the following research questions
have been formulated:

• What is the best method for lossy compression of animated voxel data for
sequence-based animation that keeps similar fidelity and quality?

This problem requires to consider two aspects that need to be solved: compression
of voxel geometry and voxel colour. The state-of-the-art shows that using a form
of SVO (sparse voxel octree) or SVDAGs (sparse voxel directed acyclic graph) have
shown to be efficient for storage and rendering of voxel data [2, 7, 4, 17, 18]. However,
these techniques are mostly optimized for inherently reconstructing static surfaces,
i.e. surfaces that are not reconstructed often. None of these techniques have in-
herently been designed for sequence-based voxel animation, although Kämpe et al.
[3]’s approach using the Temporal DAGs is a recent state-of-the-art method within
the area of compressing time-varying voxels. This is similar in nature to the aim
this project. Ma and Shen [12] approach of exploiting temporal coherency between

3

1. Introduction

frames by merging similar subtrees of volumetric data is of particular interest as a
very relevant approach to how animated voxel data may be compressed by exploiting
spatiotemporal coherency.

For colour compression, the state-of-the-art suggests that the best approach for the
goal of this project would be to apply a colour quantization technique to compress
colour attributes. Laine and Karras apply a simplified DXT1 to compress the colour
data in the SVO [7], while Dolonius et al. [5] and Dado et al. [6] explore to decouple
the colours from the SVDAG to only needing to count from the root down to every
branch of the tree in order to get the right index for the colour data. However, they
differ in their approaches by how the colour compression is performed. Dado et
al. [6] uses a palette compression scheme by quantizing all colours, then implicitly
retrieving them through material indices stored in blocks, while Dolonius et al. [5]
uses a space-filling curve to map colours and then perform various existing image
and texture compression algorithms on those colours.

1.2.1 Proposal
For compression of voxel geometry the author proposes an approach of implementing
an voxel octree data structure that is able to exploit spatiotemporal coherency. More
specifically, the proposal is to implement an SVO with capabilities to become a
sequence-based animation, while also implementing a mechanism to exploit temporal
coherency in a similar way how SVDAGs are constructed to exploit spatial coherency
[4] and how Temporal DAG exploits temporal coherency [3] respectively; and as
well as implementing a method similar to how Ma and Shen’s technique [12] of
merging subtrees that are in consecutive time steps if they are similar. Of course, the
difference is that this would be done as an offline approach and use a lossy encoding
unlike Kämpe et al that only attempted a lossless solution [3]. The reasoning for an
offline approach to encode the data is because this project is not concerned to achieve
real-time encoding of arbitrary data for a limited bit rate. Instead the purpose is
to encode the voxel data to be memory efficient for storage, create a format that
will later be used in an application in real-time, i.e. specifically in video games
for animation. The assumption is that the data will not be entirely arbitrary but
instead specified by the developer.

For colour compression, the state-of-the-art attempts to compress both voxel and
attributes separately by decoupling the voxel data. The author proposes a similar
approach to both Dado et al. [6] and Dolonius et al. [5] of decoupling the colour data
from from the voxel geometry and compress the data separately. On the colour data
the author proposes to perform a DXT1 compression, while the voxel geometry will
be compressed as described previously. The motivation for a lossy compression is
to reduce the memory consumption of colours. Although DXT1 has a compression
ratio 6:1 or 4:1 [46], it is likely to lead to some quality degradation due to how
colours are decompressed if the colours in a block are not close in the colour space,
which will lead to undesirable results. Because of this, a novel attempt will be made
to mitigate this quality degradation using a colour packing scheme by sorting the
colours using the inherent properties of the uncompressed colours. Specifically, the

4

1. Introduction

attempt will be made to sort or order colours using HSV values for a similar purpose
like Dolonius et al. [5] that used a space-filling curve to map the colour data to a
2D image for their compression procedure. The motivation for using HSV values
has to do with their inherent properties that will allow colours to be sorted in close
proximity to each other in that colour space [29]. The attempt will be done in order
to keep a good compression ratio while also preserving the quality of the colours
when decompressed as much as possible. This does however, have the implication
that the compression ratio might not be as high as it possibly could be. Nonetheless,
it is therefore even more important that the spatiotemporal compression has a high
enough compression ratio to complement for any loss of possible compression gains
when attempting to mitigate the quality degradation.

Since the use of sparse voxel octrees, exploiting spatiotemporal coherency and de-
coupling of attributes was shown to be effective for static and time-varying voxel
data, the hypothesis for this project is that these will also be effective methods for
animated voxel data. How effective these methods are for the purpose of this project
will be evaluated in order to give a conclusive answer to the research question.

5

1. Introduction

6

2
Previous Work

In general, voxel data compression and rendering is a well-researched area. However,
the main area of research is mostly compression and optimization of static voxel
data structures by exploiting sparseness. When these are used the surfaces are
not reconstructed often. Previous research that focuses on sequential voxel data for
animation appears to be scarce, although time-varying voxel data [3] and interactive
modifying sparse voxels [10] has been explored before by Kämpe et al. and Careil
et al. respectively. There has been some research done on efficient animation with
SVOs, e.g. Espe et al. [9] present a novel method for animation of voxel models using
the SVO format. However in this case animation refers to model transformation
such as rotation, translation and anisotropic scaling and the challenge comes from
preserving the hierarchical structure for efficient traversal. Thus, their research is
out-of-scope for this project.

2.1 Time-varying Voxel Compression
Kämpe et al. [3] encode voxel data with time-varying factor for the purpose of
streaming 3D video and efficient memory storage, named the Temporal DAG. Each
time step has identical grid resolution. This variation exploits coherence using a
sequence of SVOs by encoding them into a single DAG where each root represents
a time step. Coherency is searched for in each SVO which has its nodes arranged
in a list per level in order to find all subtrees that are identical. Identical nodes are
found by sorting the list of nodes and once sorted all identical nodes are adjacent
in the list. The nodes on parental level are updated to point to the corresponding
nodes. When the top level is reached, all coherence has been encoded within each
frame and between frames. When all coherence is found, the DAG’s topology is
fixed and all allocated pointers for non-existing children are removed in order to
make it compact. Further compression is applied by minimizing the bits per pointer
and encode the final result into a bitstream. Results show that temporal DAGs
require a large number of pointers but that many of these can be stored implicitly.
Also, memory performance is superior to other voxel representations that encode less
coherence. However for longer sequences of time steps, a single DAG requires too
much working memory since it accumulates many nodes which increases the memory
consumption for each time step. This method only considered lossless encoding in
order to guarantee limited bit rate for arbitrary data. A lossy compression would
lessen the effectiveness of the compression for real-time encoding of arbitrary data.

7

2. Previous Work

Ma and Shen [12] describe a method to use coherency between each time steps by the
use of octree encoding for spatial and difference encoding for temporal compression
by fusing together octrees that have similar values and also merging subtrees if they
are identical. Their method involves to first quantize the time-varying data at the
voxel level, then the data is encoded and organized hierarchically into an octree. The
octree is used to control rendering, image quality and compression. This approach
is able to fuse voxels with identical values and continues to do so until there are
no more voxels to merge. Finally, they implement a difference encoding in order
to predict each sample based on the past. This encoding allows for each octree
to be partially merged with a previous octree in the timeline by finding identical
subtrees and only store a pointer to that subtree. The result of this approach shows
great improvement using the compressed data for both storage and rendering while
visualization results stay visual indistinguishable compared to uncompressed.

Yu et al. [30] proposed a GPU-based method to efficiently visualize large set of 3D
data that evolves over time (4D data) from virtual heart simulations, specifically to
study the evolution of cardiac excitation waves in normal and pathological conditions.
Their proposed approach is to compress the data in two parts: the first part is to
use a standard hierarchical vector quantization method (SHVQ) with N-nearest
neighbour search on the GPU. They used an optimized variety of SHVQ, utilizing
indexing and codebooks. The second part is to decompress the compressed data on
the GPU and using a ray casting method for rendering. The result shows, using
large test data of time-varying cardiac electrophysiological simulation data, that the
approach can achieve rendering of the data above 35 frames per second, achieving
real-time rendering speeds with high quality that are accurate and decreases the
time in the compression part.

2.2 Voxel Colour Compression
Dolonius et al. [5] explored decoupling and compressing color information from
voxelized surfaces for real-time use. Decoupling method involves storing voxel counts,
that counts from root to a node every preceding siblings plus one in order to index the
colour data to a DAG node. Using the original SVO an array of colors is generated
by depth first traversal of the tree. This array is later transformed into a 2D image
using a 2D space-filling curve (Hilbert or Morton), then several various compression
methods are used. In particular hardware accelerated texture compression was used
such as BC7 and ASTC. Off-line image compression algorithms PNG, JPG and
JPEG2000 were also used. The result is a method which allows for decoupling
geometry and color, with color data ordered to a 3D-space filling curve with much
colour coherency. It also showed that BC7 and ASTC provide with 3x compression
with little loss in quality and with great speed and efficiency. They also considered
the application of off-line image compression to be better adapted for their novel
method.

Dado et al. [6] present a method compress arbitrary data by decoupling geometry
and voxel data using a novel mapping scheme using palette compression in order
to perform specialized compression for attributes and geometry separately. Their

8

2. Previous Work

approach, based on an implementation of SVDAG, is to first assign indices to all
nodes in the initial tree in depth-first order, to then calculate and offset for the
difference between the index of child node and the parent node. The original index
to the colour data will be produced when all offsets are summarized along a path
from the root, i.e. the index is reconstructed via the offsets. The colours are stored
in an attribute array in a depth-first order and using this mapping scheme the voxel
attribute can be efficiently retrieved from the array. The voxel geometry is efficiently
represented when all the geometry is stored in SVDAG after the decoupling. The at-
tribute array still uses a large amount of memory, which is subsequently compressed.
Their approach uses a variable-length, palette compression. The attribute array A
= { a0,..., aΛ − 1 }, where Λ is the total number of leaf nodes in the SVDAG. A
material array M = { a0,..., aλ − 1 }, where λ is the number of unique attributes in
the scene, is used to store all λ unique attributes. Another array is used for storing
indices into M. Since all attributes in A are stored depth-first, the spatial coherency
of the scene is retained [6]. The attributes are partitioned into multiple blocks of
consecutive entries, where each contains a number of different indices. There is an
associated palette for each block containing necessary indices into the material ar-
ray to retrieve all attributes in the block. Furthermore, a compression of the offset
values, for mapping attributes, is performed by using fewer bits to represent them
by analysing and finding the minimum number of bits required to encode offsets at
each level of the SVDAG. This is possible because each node has an offset to its
child that is at least + 1 offset, meaning these can be implicitly stored. Finally,
the same compression technique is applied to child pointers. However, it is not as
effective since most pointers generally require full four bytes per pointer. In short,
the result from this approach outperforms existing state-of-the-art techniques, and
also concluding that it is a well-suited method for GPU architectures [6].

2.3 Animation Compression
There has been some research previously done on compression of animated data,
although these are mostly concerned with mesh-based geometry, which are types of
compression that are not directly compatible or applicable for this project. Despite
this, they are important to mention as they have indeed given insight and under-
standing to further motivate and influence the development of compression schemes
used for this project.

Sattler et al. [13] used trajectories of vertices, clustered using Lloyd’s algorithm
in combination with principal component analysis (PCA) to segment each mesh
parts that move almost independently. The parts can be compressed better than
using standard PCA on the complete animation. The eigenvectors and weights
in the clustered PCA (CPCA) are compressed in the time domain, and further
compressed using quantization, as well as for connectivity data. Han et al. [14]
compressed time-varying mesh sequences (frames) with the use of an extended Block
Matching Algorithm to reduce temporal redundancy of the geometry data in time-
varying mesh. The algorithm divides the frames into blocks which are compared
with reference frames’ blocks. An estimation is calculated to find blocks that match,

9

2. Previous Work

which generates motion-compensated block subtracted from the current block to
produce residuals. These are transformed with DCT and quantized. Finally, the
DCT coefficients and motion vectors are entropy encoded. Zhang et al. [15] used
an octree encoding for motion vectors of animated mesh geometry that capture
the coherence of motion in spatial localities. A hierarchical octree is generated for
each frame. For each frame motion vectors are generated by looking at the motion
between frames. The vectors represent the motion between the previous frame to
the current frame which are used to prediction of the next frame.

10

3
Theory

This Section provides with the the necessary context, theory and explanations in
order to understand to further understand the aim of this project, the difficulties
that may arise and how these may be mitigated. It will also give context to the
implementation, as well give a detailed explanation of the theory behind each part
of the implementation.

3.1 Definition of Voxel
A voxel is defined as closed, axis-aligned unit cube representing an attribute or
element within a three-dimensional integer lattice, or more commonly a grid. The
grid is defined as Z3, as a subset of a 3D Euclidean space R3 and whose coordinates
are integers [22]. All voxels within the grid can be categorized either to represent
objects or represent the transparent background depending on how each attribute
is defined within the grid. In other words, the attributes only need to be considered
to either mean occupied or empty within the grid [22]. A voxel can also be seen
as an atomic unit of 3D model or a three-dimensional pixel [24]. Incidentally, The
term voxel originates from a combination of the terms pixel and volume, meaning
"volumetric pixel" [21].

3.2 Voxel Data Structures
Voxels can be stored in many different kind of voxel data structures. The purpose
and application of each data structure depends on the storage and how it is used.
Most types of data structures assumes that the voxel data will be static and the
surfaces will not be reconstructed often or at all.

3.2.1 Voxel Grid
Example of a common data structure is a voxel grid. A voxel grid is a three-
dimensional grid packed with data. Each cell in a grid must contain some data
of the same type, e.g. color attributes. Dense voxel grids are considered a good rep-
resentation for reconstructing surfaces, however these will eventually have very high
memory footprint. Denseness entails more data to be packed into the grid, meaning
more memory usage which becomes apparent with higher resolutions, making them

11

3. Theory

Figure 3.1: An example of how voxel grid traversal is performed in a two dimensional
space. The principle is the same if extended to a three dimensional space [1]. Here,
the ray traverses from its ray origin in a given direction and visits the voxels a, b, c,
d, e and f in that order. This example and the figure are based on material written
and created by Amanatides and Woo [1].

not optimal for efficient storage nor for interactive software [3, 2]. This is because
ray tracing of voxel grids mostly processes empty volumetric data: more specifically,
empty cells within a voxel grid will still contain data that is defined as an empty
attribute because each cell of a grid must contain something. Therefore, it is widely
considered more efficient to have a sparse representation for the data [7, 2]. This is
especially true for higher resolutions.

3.2.1.1 Voxel Grid Traversal

Retrieval of data from voxel grids can be done through ray tracing. Amanatides and
Woo [1] presented an incremental grid traversal algorithm for 3D space partitions.
The algorithm traverses the grid through casting rays, defined as u⃗ + tv⃗ for t ≥ 0.
where u⃗ is ray origin, v⃗ is ray direction and t is the span of the ray within a voxel.
Each iteration, a ray is traced from u⃗ with direction v⃗, then traced along each axis
(x, y, z) and computes the t value. Finally, it chooses the smallest one by comparison
of each axis in order to determine the ray direction v. This procedure is continued
along each cell of the grid until a voxel is found [1]. See Figure 3.1 for a visual
example of the voxel grid traversal on a 2D grid.

3.2.2 Octree
Sparseness is a type of spatial coherence that efficiently represents only regions of
the data that is non-empty [3, 2]. This can be represented with the use of an octree
data structure. An octree is a spatial partitioning tree structure that has been
constructed by recursively subdividing a finite scene into octants. The hierarchy of
the tree represents the spatial partitioning of the 3D volume: each node represents
an octant of the subdivided scene. The root node has eight successor nodes, all
of which represent eight octants. Subsequently, each of these successor node are
subdivided further into eight octants. Recursively this subdivision is performed until
a certain threshold is met, such as until the subdivision produces octants becoming
the smallest size defined by the threshold. This threshold could be, and usually so,
the size of the voxels [20]. Incidentally, each node contains a pointer to each child
node. This means for each node, there is a total of eight pointers to each child node.

12

3. Theory

3.2.3 Sparse Voxel Octree
The storage of eight pointers to each successor node in the octree will become a
very expensive proposition concerning memory usage. Efficient Sparse Voxel Octree
(SVO) is a more compact octree data structure originally introduced by Laine and
Karras [7]. The tree is constructed by recursive subdivision into octants, not unlike
the standard representation of octrees. However, the difference is that the data
structure is designed to minimize the memory footprint by a scheme that reduces
most of the data to be stored in conjunction with its parent, i.e. divided into blocks
that are stored contiguous in memory. This means that it removes the need to store
the leaf nodes individually [7]. Within these blocks all references are relative in
memory. These blocks are an array of child descriptors, a 64-bit descriptor that
corresponds to a single non-leaf voxel. Leaf nodes are described by the parent nodes
and therefore do no require their own descriptor. The descriptor is composed of two
32-bit parts, the first part describes the set of child voxels while the second part is
concerned with contour data. The second part concerning contour data will not be
described as it is unrelated to this project. More importantly, the first 32-bit part
consists of 15-bit + 1 bit pointer for every non-leaf node and two bit masks, valid
mask and leaf mask. The first 16-bits contains an index to the first child node of
the current node, while the bit masks describe if there are any child nodes and if
they are leaf nodes respectively. The valid mask is also used to locate where the
child nodes are located in the memory. Since all child nodes are stored contiguous in
memory, it is a simple matter of counting the bits, then fetching the corresponding
child node using the bit counting as an offset. See Figure 3.2 for the tree layout and
its corresponding array, as well has how nodes are traversed using the child indices
stored at the corresponding node.

There are several variations of this data structure. One such is the sparse voxel
directed acyclic graph (SVDAG or DAGs) first introduced by Kämpe et al. [4].
This is a data structure that reduces the SVO down to a sparse voxel directed
acyclic graph (SVDAG or DAG) using a bottom up approach. The approach is to
merge identical leaves, updating the child-pointers to the new leaves. The purpose
is to find nodes with identical pointers and child masks that then are merged by
only considering the root nodes until it is not possible merge any more. From this
the smallest DAG is extracted [4].

It is important to note that the limitation of SVDAGs is that these only consider
coherency of voxel geometry but are unable to store explicitly any other information
concerning attributes, such as colour first and foremost [4]. Despite this, there are
methods to implicitly encode and retrieve colour data from an SVDAG. Dado et
al. [6] and Dolonius et al. [5] describe various methods to map colours and retrieve
colour data from SVDAGs, described in detail in Section 2.

Other variations of this data structure exists. Here are a but a few examples:
Symmetry-aware SVDAG [17] is a more efficient compression of DAGs through a sim-
ilarity transform and storage of pointers using variable bit-rate encoding. Clustered
SVO [16] is a new hierarchical data structure based on SVO that uses wide range of
pointer lengths for the child nodes to achieve more compact encoding. Pointerless

13

3. Theory

Figure 3.2: An example of a Sparse Voxel Octree and the underlying array of child
descriptors. As can be seen, the nodes in the tree store an index to the nodes first
child, while also keeping track of the number of children nodes shown in the 2 8-
bit masks valid mask and leaf mask. Note that the leaf nodes at the bottom of
the tree point to a colour array rather than storing a colour directly. The layout
at the bottom right of the image corresponds to the explanation given in Section
3.2.3. Figure was inspired by the work of Laine and Karras [7]. This example uses
a quadtree for simplicity sake.

SVODAG [18] uses a pointerless approach to the construction of SVDAGs, i.e. no
pointers are stored in each child node and only use a purely binary representation
for the octree.

3.2.3.1 SVO Traversal

Laine and Karras [7] describe their rendering algorithm for traversing each voxel
by casting rays against the octree and tracing them independently. Defining a ray
as pt(t) = p + td, with t along any axis n (x, y and z axes) for an axis-aligned
plane of a cube, tn(n) = (1/dn)n + (-pn/dn). The axis-aligned cube is represented
as pair of corners c0 = (x0, y0, z0) and c1 = (x1, y1, z1) where tn(c0n) ≤ tn(c1n).
The span of t-values are defined as tcmin = max(tx(x0), ty(y0), tz(z0)) and tcmax =
max(tx(x1), ty(y1), tz(z1)). The octree is mirrored, redefining the coordinates so each
component of d becomes negative. More specifically, this is done by determining
an octant bitmask based on the direction of the ray at the beginning of traversal.
A logical XOR (exclusive or) is performed on the octant mask when permuting
the child slot indices when accessing them from the field of child descriptors. This
mirroring guarantees that x0 > x1, y0 > y1 and z0 > z1 and makes the functions tx,
ty and tz descending. This is done to simplify the computation of tcmin and tcmax

which depend much on the sign of d [7].

Voxels are stored in by their parents, therefore are all expressed by using the data
associated with the parent. That is, the current voxel is expressed using its parent
voxel parent, holding the current descriptor and child slot index idx ranging from

14

3. Theory

0 to 7. Since there is no way to store spatial location of voxel there is a need to
maintain a cube that corresponds to the current voxel. The cube is defined as using
a non-negative integer scale that defines the extent of the cube with exp2(scale -
smax), where smax is the max scale of the cube. It is also defined with a vector pos
= (x1, y1, z1) that has range between 0 to 1 in all dimensions. Positioned at the
origin, the entire octree is defined and contained by this cube of size smax. It is then
possible to determine the next voxel of the same scale along the ray by comparing
tx(x0), ty(y0) and tz(z0) against tcmax then advancing the cube along the axis. If a
voxel has the same parent, a new child slot index is obtained by flipping the bits of
idx corresponding to the same axes. Also, idx and pos need to be unmirrored after
traversing the octree since they are mirrored according to the octant mask [7].

Incidentally, it is not enough to use an incremental traversal but must instead be
a hierarchy traversal. It is necessary since SVOs express sparseness in that they
can only store voxel data represents non-empty voxels [7]. Liane and Karras’s [7]
algorithm intersects the voxels using a ray that traverses the octree in a depth-first
order. The algorithm incorporates the use of a stack (of max depth smax) that stores
the parent voxels associated with the parents of the current voxel. The entries of
the stack are addressed using the cube scale values. Each iteration, there are three
cases or stages for fetching a voxel:

• Push, means to proceed to the child voxel if the ray has entered it. That is,
this is executed when descending the hierarchy, potentially storing previous
parents into the stack at position of the scale based on on a conservative check,
i.e. if h < tcmax, where h is the current tmax [7].

• Advance means to select the next neighbouring voxel. In order to know if the
ray position stays with the same parent voxel, the first step is to assume that
it does stay and then compute candidate positions for idx* and pos*. Finally,
if the resulting idx is valid compared with the ray direction by observing if
the flipped bits are not conflicting and if this is true, then it does advance
to the next voxel using the candidate positions of pos* and idx* as their new
values respectively. the candidate idx* is obtained by finding if there are any
conflicting bits that have been flipped in the current idx [7].

• Pop, means to proceed to the next neighbouring voxel of the highest parent
that the ray exits. This is executed when ascending the hierarchy while, and
uses the current pos to find new values for pos’, scale’ and idx’. That is, scale’
by finding the hiughest bit between pos’ and pos. From this, the child slot
index idx’ from pos* from the corresponding scale’. pos’ is obtained by from
pos* but clear the bits that corresponds to scale’, which will derive a cube
witht the correct scale factor that contains pos*. Finally, by popping from the
stack, the parent voxel is restored [7].

3.3 Lossy Compression
Lossy compression is a type of compression that incorporates methods to represent or
to look the same as the original data by reducing, discard and and approximating the

15

3. Theory

Figure 3.3: The example to the left demonstrates how the ray traverses the octree in
a hierarchical order. The example to the right demonstrates how the ray traverses
each voxel at equal scale. The figure was inspired by the work of Laine and Karras
[7]. This example uses a quadtree for simplicity sake.

original data. This is done in order to reduce memory storage or for more efficient
transmission of data [11]. For colours, there are many different type of methods,
most resorting to discard and reduction of the data in some way. The most common
type of lossy colour compression is using vector quantization, or specifically colour
quantization. This is a type of technique used to reduce the number of colours in the
original data to the point of keeping the original data having mostly similar fidelity
and quality although with reduced memory storage [11].

The simplest of colour quantization is using indexed colour, where colours in images
are instead represented by a number that refers to a distinct colour in a colour palette.
The palette only contains distinct colours instead of storing each individual colour
which multiple ones can be exactly the same. However this type of compression
can only be gained from this method if the number of colours are small enough,
otherwise the compression ratio will be negligible. For example, if a voxel grid
contains elements of size 8-bit, this means only 256 unique colours can be referred
to when rendering. If more than 256 colours are needed, e.g. using size of 32-bit,
indexing will not gain any true compression as this is the equivalent of storing 24-
bit RGB colours within the grid. In this case, a more useful application of indexed
colours could be used for decoupling of colours from geometry [6, 5] while choosing
other types of lossy compression techniques.

Another type of colour quantization is using octrees to store to store each sample in
RGB space [23]. This is done by branching out each node depending on the most
significant bit of each colour sample, and each successor most significant bit is used
for each lower depths of the octree. Each colour is represented by a leaf of depth
eight, while all intermediate nodes are the subcubes of the RGB space [23]. The
whole tree uses a binary representation for each colour. Although the compression
ratio and memory efficiency is high using this method, it is not suitable for neither

16

3. Theory

voxel grid nor voxel octrees. This is because voxel grids need to store data directly
within the grid, while for voxel octree it will be somewhat of a redundant solution.
For both voxel grid and SVOs, the author believes a more suitable solution is to use
a form of texture compression and efficient storage of the voxel colours rather than
color quantization using octrees. A more efficient compression method using colour
quantization is S3TC or DXT texture compression, explained in detail below [26].

3.3.1 S3TC Texture Compression
S3TC, or also known as DXT [25, 46] is a lossy texture compression format where
each pixel in an image is divided into sets of 4x4 blocks (which are non-overlapping)
and these pixels within the blocks are quantized to a set of values. These values
are approximated with points on a line in the color space in order represent colours.
A minimum and maximum, that have been quantized into into 16-bit, 565 RGB
colour format, define the span of this line, and each colour in the block is stored as
interpolation values points along this line. This interpolation value will construct a
bitmap colour based on where it is located along the line [25, 46]. This compression
format has five formats designed for specific image data types, however all have
a procedure similar to the one described previously. The difference between each
format is how information concerning alpha is stored, while DXT1 does not support
alpha transparency [46]. Each format also stores the blocks differently, varying in
both size and type of data stored, i.e. related to alpha transparency data. in Section
3.3.1.1 there is an detailed explanation on the DXT1 format. The other formats will
not be discussed further as these are out of scope for this project.

3.3.1.1 DXT1

DXT1 is the smallest variation of S3TC, constructed exactly as described above. The
blocks are encoded as 64-bit, each with 2 16-bit for the minimum and maximum 16-
bit 565 RGB colours called c0 and c1 and 32-bit for 16 codewords that are 2-bits
each [26]. The 2-bit codewords define how to combine c0 and c1 to produce the right
corresponding colour to the original image data, although in a compressed format.
If c0 is larger than c1, then calculate two color components c2 = 2

3c0 + 1
3c1 and c3

= 1
3c0 + 2

3c1. Otherwise, if c0 is lesser or equal than c1, then c2 = 1
2c0 + 1

2c1 and c3
becomes a black color representing transparency as a pre-multiplied alpha format.
These calculations are performed by first finding checking the block of codewords
that determine the value for each pixel [46]. Because transparency is considered a
black colour in this format, this will cause artifacts in the output, such as a black
border surrounding transparent areas in a texture when linear texture filtering is
applied. This is because the interpolation will be done between a black (transparent)
texel and an opaque texel that are neighbours in the texture image [46].

Although this format has a fixed compression ratio of 6:1 for 24-bit colours (alpha
is 255) and 4:1 for 32-bit colours [46], due to how all colours in a block are interpo-
lated between two minimum and maximum colour values, this will result in quality
degradation. For example, if a block is occupied by colours that are not on a linear
line in the colour space, this results in an interpolation which will not match the

17

3. Theory

Figure 3.4: An example of how the DXT1 compression format affects quality of the
colours. Although the compressed set of green colours were able to preserve the
quality relatively well, the bottom set of colours have severe loss in quality. This
happens due to it being many different colours across the RGB colourspace, therefore
the DXT1 block is unable to encode and interpret the colours correctly. Inspired by
a figure created by FSDeveloper [48].

original data at all [48]. See Figure 3.4 to see how the quality can be affected by
this compression format.

3.4 Definition of Sequence-based Animation

It is important to give a clear definition of the term sequence-based animation. The
definition is grounded in the meaning of traditional animation, i.e. a sequence of
drawings on a transparent background that represents the illusion of movement
between several frames when played. A "frame" means the drawing itself repre-
senting the state of motion in time. This collection of frames together form the
illusion of motion [27]. For this project the definition remains similar, although each
frame in an animation sequence represents a corresponding voxel model that creates
the illusion of motion. The term "frame-based animation" is interchangeable with
"sequence-based animation". Formal definitions for how this type of animation can
be represented in voxel data structures is given in Section 3.4.1 and 3.4.2 for voxel
grid and octrees respectively.

3.4.1 Voxel Grid

For a set of voxel grids G, a sequence is defined as set of continuous voxel grids of
size n3, where n is a value that is power of 2, Gi = {n3

0, n3
1, . . . , n3

m} where i is the
current time step and m is the total number of voxel grids in the sequence where
i ≤ m − 1, i ∈ N0, m ∈ N ̸=0. Thus, the full size of a sequence-based animation voxel
grid becomes n3 × m.

18

3. Theory

3.4.2 Octree
For a set of octrees T , a sequence is defined as a set of continuous set of subtrees
s, where Ti = {s0, s1, . . . , sm}, where i is the current time step and m is the total
number of octrees in the sequence where i ≤ m − 1, i ∈ N0, m ∈ N ̸=0. Each si

consists of a total of nodes Ni = Ci + Li, where Ci is the total non-leaf nodes and
Li is the total leaf nodes.

19

3. Theory

20

4
Methods

This section explains how all necessary methods were implemented and what was
taken into consideration during their implementation. The implementation of the
methods are strongly influenced by the descriptions and implementations of the
original authors (which are mentioned in each following sections). However, there
were some necessary modifications that had to be made in order to adapt them for
the purpose of this project.

Although construction and compression is done entirely on the CPU, in an offline
approach, rendering and decompression is done in real-time on the GPU through the
use of vertex and fragment shaders. All implementations were done using OpenGL
and C++.

4.1 Rendering and Data Structures
All rendering is performed on the GPU using vertex and fragment shaders. The setup
for the rendering is a blank canvas constructed from two triangles. On the fragment
shader both rendering and decompressing of colour data is performed. Since block
descriptors are stored at the leaf level of the hyper octree and the compressed grid, it
is merely a case of finding the corresponding block and decompress it. Incidentally,
the vertex shader is merely used for passing the two triangles to the GPU and
nothing more.

Since rendering voxel grids and sparse voxel octree differ in many ways, the im-
plementation of their respective rendering algorithm and how the voxel data is in-
terpreted by the respective algorithm is also quite different. See Section 4.1.1 and
Section 4.1.3 for more information of how this was implemented.

4.1.1 Voxel Grid
The voxel grid was implemented as a volume texture, or 3D texture, then ray traced
using the technique introduced by Amanatides and Woo [1]. A 3D texture is a
container with dimensions of width, height and depth. The 3D texture can be
populated with any data type of choosing, but for its uncompressed format it is
populated with 24-bit RGB colours: both for empty and non-empty voxels, where a
colour value of 0 interpreted as an empty voxel. The 24-bit colours always assume
that the alpha channel is 255, while for empty voxels it is 0. The data can be sampled

21

4. Methods

Figure 4.1: Illustrative figure of how each voxel data in an animation sequence is
stored using a voxel grid. Each voxel data is stored within a voxel grid the size of
N3 and represents the animation sequence at a certain time step. Each time step
has an offset the size of N. Original model was created by ephtracy [43].

by accessing through a shader using coordinates with these three dimensions, all
ranging between 0.0 and 1.0 [47]. In order to access the data, two important steps
must be done during the traversal. The first step is to check if the ray is intersecting
with the voxel grid. This is a ray-box intersection implemented as modified 3D SDF
(signed distance field) using Inigo Quilez’s implementation of a box SDF primitive
[49], where it is only necessary to check if the ray is within the primitive using the
current position and the half size of the current voxel data. If this is true, then it
is possible to test if the voxel fetched at the ray’s current position is non-empty or
not. If it is non-empty, then it is possible to sample the 3D texture by taking the
current position and then normalizing it using the full size of the voxel grid. Let p⃗
be the current position of the ray and let s⃗ be the size of the grid, then define the
normalized coordinate c⃗, where c⃗ = p⃗

s⃗
. using c⃗, the corresponding voxel in the voxel

grid may be fetched from the 3D texture.

The normalized coordinate c⃗ must also be a given an offset that will position the
ray at the right voxel at the right time step. Note that the animated voxel grid will
not be uniformly sized, please refer to Section 3.4.2 for further information.

4.1.2 Compressed Voxel Grid

A compressed voxel grid is implemented similar to a regular voxel grid, except that
that each 3D texture is populated with 16-bit indexing values. These indexing values
are actually block descriptors, which are explained in detail in Section 4.1.7.2. The
index 0 is a reserved value used to represent an empty voxel, just the same as it is
used in a regular voxel grid. The term "compressed grid" will be used hereafter.

4.1.2.1 Animation sequence

Constructing an animation sequence is trivial. Define a 3D texture that is of size
N3 × M , then populate the texture at each coordinate corresponding to each voxel
in the voxel scene per time step. See Figure 4.1 for how each voxel data per time
step is stored in the 3D texture.

22

4. Methods

4.1.3 Sparse Voxel Octree
Sparse voxel octree data structure was implemented as described by Laine and Kar-
ras [7] but with some modifications. First, this implementation uses an index-based
approach instead of C-style pointers. This has the benefit of being easier to convert
to an array readable by a fragment shader, but introduces some complications for
removing and reassigning the pointers correctly. See Section 4.1.4.2 for how the
reassigning of indices is done.

Second, the format of the child descriptors has been changed substantially compared
to Laine and Karras’s original format, at least for the implementation of the Hyper
Octree, see Section 4.1.4. For regular SVO, the format is only slightly altered for
simplicity sake, using 16-bits for child indices and ignoring any regard for far pointer
semantics. Otherwise the format is remains unchanged.

For the Hyper Octree the format is quite different. Instead of having the format
being 15-bit for child indices + 1 bit far pointer and 2 8-bit masks for valid and
leaf bits respectively [7], the format is now 23-bit for child indices, 1-bit flag that
is set if the node is redundant (i.e. spatiotemporal coherency) and 1 8-bit leaf
mask. The 23-bit child indices will allow for larger resolutions of voxel data because
more nodes may be stored, as much as up to 223 of total nodes compared to only
216 of total nodes. The 1-bit flag allows for explicit checking if a node is marked
as redundant or not, replacing the original semantics regarding far pointers. Also,
semantics regarding contour data section of the child descriptor will not be added
to this format as it is out-of-scope for this project. This results in a reduced child
descriptor from 64-bit to 32-bit. Despite now only utilizing 1 8-bit leaf mask, the
usage of 2 8-bit masks as Laine and Karras describe [7] can still be done implicitly,
since the value of both bits are always the same except at the leaf level. At the leaf
level, the valid mask will have all bits set (0xFF) and the leaf mask will have all bits
cleared (0x00). Therefore, their values can always be stored implicit using only 1
8-bit mask. Otherwise, the functionality of the bit mask remains unchanged to the
functionality of the original 2 bit masks.

The rendering of the Sparse voxel octree is based on the ray cast algorithm source
code described and presented by Laine and Karras [7]. Although no substantial
modifications were made to the implementation of their ray cast algorithm, a few
but important additions were added for exploiting spatiotemporal coherence in the
voxel data. Every time a new node is fetched, an iterative search may be performed
if the node is marked as redundant in order to find the corresponding subtree in a
previous time step. Also, the original offset value for the time step is saved on the
stack in order for the ray casting algorithm to render the voxels properly, regardless
if the current node is marked as redundant or not. See Section 4.1.4 for a more
detailed explanation how the spatiotemporal compression is performed.

In contrast to Liane and Karras that perform voxelization of non-voxel data [7], this
implementation does not perform any voxelization but instead builds an SVO out
of a set of pre-defined voxel data. The SVO is constructed in a depth-first order,
with a max depth of the octree defined by the resolution of the voxel data N, i.e.
depthmax = log 2 N, where N must be a power of 2.

23

4. Methods

The colour data and voxel geometry is decoupled, which means that at the leaf level
of the octree there is only an index that points to the position in a colour array
where the colour data in actuality is stored. This was done in order to compress
both the voxel geometry and the colour attributes separately, similar to previous
work as mentioned previously.

4.1.3.1 Animation Sequence of SVO

Constructing an animation sequence for octrees involves merging several octrees into
and stored a contiguously in memory. Each size of the octree (i.e. the number of
total nodes) becomes the offset value between each frame. Since the colour data is
decoupled, this means that a unique offset value for colour data also needs to be
calculated. These offset values are stored in an array at indices representing the
corresponding time step.

4.1.4 Hyper Octree - Spatiotemporal Compression
In order to exploit spatiotemporal coherency in order to compress the animated
sparse voxel octree, the author’s method of choice is influenced through a combi-
nation of the methods described by Kämpe et al. [4, 3] for compressing redundant
nodes in an SVO and Ma and Shen’s method [12] for encoding an octree to merge
similar subtrees in consecutive time steps. The method used to find similar subtrees
in a tree structure was created by the author independently, although was loosely
inspired by the method described by Grossi [28] for finding common subtrees be-
tween ordered trees. This SVO format has been given the name Hyper Octree by
the author in order to differentiate this the regular format that is uncompressed.

4.1.4.1 Subtree Similarity Search

The first step of the method is to create a record of all subtrees in each octree.
A subtree must have at least one child node, therefore individual nodes are not
considered subtrees. Each record contains a codeword as a text string, index and a
colour array: a text string S that encodes all possible edges for each subtree, depth
value D, node index I and an array A of all colours stored at the leaf level of the
subtree. The records are stored in the chronological order of the animation. See
Figure 4.3 for an example of how subtrees are recorded.

Once all records have been generated, it is then possible to begin a comparison of
all subtrees and find subtrees that are the same between two consecutive octrees.
Given two consecutive octrees Oj and Oi in a Hyper Octree H, where i is the next
consecutive time step after j. Using each octree’s corresponding subtree record Rj

and Ri, the comparison is to check if any text string in both Rj and Ri, and each
corresponding colour array, are equal. If this is true, the subtree is marked and
the whole subtree is removed from Oi, except for the root node of that subtree. In
addition, a new index Oinew_idx

is fetched from Ri, and stored in memory Ojnew_idx

to be later used for reassigning the node’s child index (See Section 4.1.4.2). This
node is given a special marker by setting the 1-bit flag to one, ensuring that during

24

4. Methods

Figure 4.2: Example of how exploiting spatiotemporal coherency allows for recon-
struction of each octree at a given time step by pointing to identical subtrees in
previous time steps. In the above series of figures it can be observed what happens
after similar subtrees have been found and subsequently removed from the octree.
The bottom series of figures demonstrates how geometrically the model appears
when it is reconstructed using subtrees that exists in an previous time step. The
the magenta-coloured voxels are only illustrative of this result. Original model was
made by ephtracy [43].

traversal that this node is marked as redundant. This works because under normal
circumstances this bit is set to zero. The child index is then updated to point to
the relevant the subtree in previous time step in octree Oj.

4.1.4.2 Reassign Indices

After all redundant subtrees are removed, it is important reassign indices to point
to the right location in memory. A simple method is used to achieve this. Before
the nodes are removed, record the current location index I that every node is stored
at in memory. Then, for every octree O and for each node that has been marked as
redundant, remove it from the node array including the leaf nodes. Then once all
nodes have been removed, reassign every node by for every node Ni, for for a Oj in
the same array where it’s child index COi

equals the previous location index IOj
. If

these are equal, assign index j to be the new child index of node Ni. Also, for every
node that has the special marker, assign the stored new index Oinew_idx

to the child
index of Oichild_idx

.

25

4. Methods

Figure 4.3: Example of how subtrees are recorded in a given octree. The index value
is the index where each corresponding node is stored in memory, not to be confused
as the node’s child index. Note that only a node with at least one child node is
considered as a subtree, while leaf nodes alone are not considered subtrees. This
example uses a quadtree for simplicity sake.

26

4. Methods

4.1.5 Exploiting Spatiotemporal Coherency during Traver-
sal

During traversal, it will now be possible to find a redundant subtree because of the
special marker described previously. For every iteration in the traversal, a node is
fetched from the octree using an appropriate offset value from the corresponding
time step stored in an auxiliary array. If the currently fetched node has a 1-bit flag
that is non-zero, this means that it is redundant and therefore it becomes possible
to retrieve a subtree from the previous time step. This exploits the spatiotemporal
coherency in the voxel data between each consecutive time steps. If the 1-bit flag
is zero, this means that this is a unique subtree and therefore no subtree from the
previous time step will be retrieved. This process guarantees that spatiotemporal
coherency will be achieved during the traversal of the octree. Once the process is
complete, the traversal continues as normal. See the pseudo-code below for this
method.

function FindCoherentNode(nodes, timeStep, descriptor)
if descriptor is redundant

index := fetch index from descriptor
descriptor := nodes[index + offsets[timeStep - 1]]

return descriptor

4.1.6 Colour Compression
Compression of colour data is done separately from the spatiotemporal compression.
Therefore, colours are stored in an colour array, similar to Dado et al. and Dolonius
et al. [6, 5]. The colour compression of choice is S3 Texture Compression, specifically
the DXT1 format. This format was chosen because of its high compression ratio of
6:1 for 24-bit RGB colours [25, 46]. See Section 3.3.1 for more information about
how this compression format works.

Indexed colours are used in both voxel grid and sparse voxel octree implementations,
although voxel grid only uses this for its compressed grid format, while octrees use
it for compressed and uncompressed formats. Assignment of indices is done at
the construction stage for both voxel grids and octrees which is trivial. Reassigning
indices after compression procedures is less trivial and is explained in Section 4.1.7.2.

DXT1 compression while octree uses this for both uncompressed and compressed
formats. Assignment of indices is done at the construction stage for both voxel grids
and octrees which is trivial.

4.1.7 DXT1
The Compression and decompression procedure using DXT1 is done as previously
described in detail in Section 3.3.1. The compression procedure is implemented
using an stb library originally created by Fabian "ryg" Giesen [44]. Once the voxel
colours are compressed, the 64-bit blocks are stored in an array of 2D unsigned
integer vectors (i.e. uvec2) and each component is of size 32-bits. This is because of

27

4. Methods

an inherent limitation where is no other way to pass a 64-bit long unsigned integer
by itself. Once all the data is stored, the array is passed into the fragment shader,
where only a single block needs to be fetched decompressed. The decompression is
done as needed and since the compression is done in a depth-first order, the original
order is retained after decompressing and therefore colours can be fetched without
complications. Therefore, no other auxiliary data structure is utilized, achieving
a 6:1 compression ratio [46]. Finally, the original voxel colour array is removed
from memory after this process has been finalized. The implementation for the
decompressor was inspired by the source code written by Benjamin Dobell [45].

4.1.7.1 Block Descriptors

Accessing blocks is done on the leaf level of the octree. Since the original voxel
colour arrays are no longer needed, these are replaced with DXT1 block descriptors.
Block descriptor is a either 2 bytes of 4 bytes descriptor that packs information
concerning accessing the right DXT1 block. The information is stored within a leaf
in the octree and describes which block the current compressed colour is stored at
and which of the pixels within that block needs to be fetched. The format for the
block descriptors are very similar between voxel grids and octrees and only differ
whether to use 2 bytes or 4 bytes for the entire block descriptor.

For octrees, these descriptors are of size 23-bits, consisting of 4-bits that is used
to identify which codeword within the block needs to be decompressed and 19-bits
for identifying which block needs to be fetched. More specifically, the first 4-bit
is a mask which are used to represent a value between 0 and 15. This value is the
identifier to find which 2-bit codeword needs to be used to fetch the right pixel in the
DXT1 block. For voxel grids, the descriptors are very identical with the exception
that the descriptors are packed into mere 16-bits. These descriptors consists of the
same 4-bit mask as previously described and use 12-bits to store the index to the
block to needs to be decompressed.

The block descriptors are also correctly mapped in the octrees and voxel grids using
a simple iterative process. This is done by examining two colour values, one stored
at the original location in the voxel colour array before sorting and one stored in a
new location after sorting. If these two colours are the same, then the index of the
original location is used to store the block descriptor in the leaf node. This achieves
a similar result to using a Morton ordering like Dolonius et al.[5] and Lee et al. [19]
used for mapping voxel colours to 2D images. The reason for the approach used in
this project was because of its simplicity and because of time constraints. In the
end, the author believes that the result should achieve the same result. See the
pseudo-code below for how this procedure is implemented.

28

4. Methods

function MapColours(octree, oLeafs, sLeafs, blocks)
markedLeafs is an array of bools, size of leaf amount
i: = 0
while i < size of oLeafs

j: = 0
while j < size of sLeafs

if marked[j] is true, j := j + 1 then continue

if oLeafs[i] equals sLeafs[j]
store blocks[j] at octree[i]
set markedLeafs[j] to true
then break

else j := j + 1
i := i + 1

return octree

4.1.7.2 Redundant Blocks

Due to the nature of the DXT1 format to encode the pixels of a texture into 4x4
blocks [46], this means if multiples of the same colour are encoded into several blocks,
the final result will produce a huge amount of redundant set of blocks. This is
especially true in this case where across multiple time steps many redundant colours
will be stored in several blocks. This becomes very wasteful of memory usage and
will exceed the limitations of the number of bits that are used for fetching the block
index. Voxel grids are limited to only 212 number of indices, while octrees may use
up to 223 which is considerable more in comparison. However even with octrees
even these would not be enough as the number of blocks would exceed beyond this
amount at higher voxel resolutions. Besides, the author speculates that this may
also be the case if the colour array contains many redundant colours no matter how
which voxel resolution is used in the end. This is definitely the case if many frames
are used in an animation sequence.

Because of this, a simple procedure was created by the author in order to reduce
the blocks down to only the most unique block of colours, removing all redundant
blocks. The procedure is as follows: after storing all block descriptors as described
in Section 4.1.7.2, it is then possible to remove redundant blocks from memory by
sorting all blocks, then finding all unique elements in memory and subsequently
discard all redundant ones. This is implemented by first sorting all blocks using
std::sort, then erasing all redundant elements using std::unique and a data structure
erase operator [50]. This will result in an array of unique DXT1 block colours.

Afterwards, it is important to once again remap the indices for each block in the
octree at the leaf level. This part is in a similar way to the pseudo-code described in
Section 4.1.7.2, however instead of comparing leaf nodes, the comparison becomes
between each DXT1 block associated with each leaf node to the new set of DXT1
block, performing a search to find each corresponding block at a new index value.

29

4. Methods

When a corresponding index is found, the codewords from the old block descriptor
is retrieved then inserted into the new block descriptor that now contains the correct
new index value.

4.1.8 HSV Model
HSV is an alternative model of the RGB monitor gamut based on perceptual vari-
ables, which are hue (H), saturation (S) and value (V) (or brightness). The model
is described using a layer of disks where each of the values has a point, all of which
describe different values based on human perpetual colourspace. Hue (H) describes
the position of a colour in on the disk, ranging between 0 to 360 degrees. Saturation
(S) describes the gray value of the hue. Value (V) is the intensity of the satura-
tion [29]. The author hypothesizes that these characteristics could be used to sort
colours in such a way that would put colours that are perceived to be close to each
other in the colour spectrum. This may be possible because of the aforementioned
attributes of using such model. A method for how this is achieved is described in
Section 4.1.8.1.

4.1.8.1 Voxel Colour Sorting with HSV

When compressing colours using DXT1, there will be some quality degradation
because of the limitations of the format as described in Section 3.3.1. to alleviate
the quality degradation or possibly mitigate it, a novel approach has been used
to sort the colours using HSV values. This is done before colour compression, then
after compression the leaf pointers must be updated to point to the new sorted order.
This is a novel approach based entirely on the characteristics of HSV values [29] and
also inspired by Lee et al.’s approach of sorting colours that have been packed using
Morton order [19]. Although this attempt does not use any space-filling curve to
pack the colours, the same result is achieved using a simple procedure explained in
Section 4.1.7.2. The reason for this was because of time constraints.

As stated previously, this approach is done before any type of compression is per-
formed. The approach is quite simple: In order to sort by HSV, a list is created
that contains HSV values alongside corresponding 24-bit RGB values. The HSV
values are converted from the RGB values using the algorithm described by Smith
[29]. Then, using std::sort of the standard C++ Library [51], it becomes possible to
sort this list based using Hue (H), Saturation (S) and Value (V) in any order of six
possible permutations. Finally, the sorted list’s RGB value is transferred to colour
array of the leaf nodes. See Figure 4.4 to observe an example of how the difference
in possible quality using this method using static voxel data compared to unsorted
colour compression.

4.2 Animation Support
In order for the voxel scene to become animated the voxel scenes need to be encoded
to interpret several concatenated voxel scenes as different time steps in an animation.
For both voxel grids and octrees this is quite trivial: calculate an offset for each

30

4. Methods

Figure 4.4: An example of how HSV can order colours to be closer to each other
for the DXT1 compression results in better preserved quality when compared to
an unsorted attempt. The image to the left is uncompressed, the middle is DXT1
compressed unsorted and the right image is DXT1 sorted using the permutation
VSH, one of six possible permutation of HSV colour sorting. The model was derived
from MagicaVoxel [32].

time step, then pass a shader uniform parameter that controls which offset to use in
order to render out the corresponding time step in the animation. The type of offset
value differs between voxel grids and octrees. For voxel grids, this is offset value
represents an offset of the current ray position, i.e. since the animation is encoded
as a collection of several voxel grids it is only necessary to offset the position of the
ray to a voxel grid beyond what is rendered on the screen. For octrees, this is an
offset that points to the root node of each octree. This offset value is based on the
the size of each octree, with every offset per octree accumulating the previous offset
values, since the full octree is stored linearly in an array.

4.3 Evaluation
The evaluation of the methods described above will be done in order to give a
conclusive answer to the problem statement. Each part of the evaluation will be
used to test and compare the results with various test data (See Section 4.3.1). The
evaluation will compare primarily three types of data structures: voxel grids, SVO
and Hyper Octree. It will also encompass a comparison between all six possible
permutations of the HSV sorting scheme, in order to evaluate how successful each
permutation is to minimize quality degradation when the DXT1 colour compression
is used.

4.3.1 Test Data
Although there is plentiful of test data for static voxel data, there is lack of voxel data
for sequence-based animation. Therefore, most of the test data used for evaluating
this approach had to be created by the author. Those that were found for the
evaluation were created by ephtracy [43] and can be seen in Figure 4.13.

The test data was created using the voxel modelling software MagicaVoxel [32]
alongside a few extra utilities and extensions for generating geometry and brush
functionality created by Lachlan McDonald [52]. It is the opinion of the author of
this thesis that the test data provided for the evaluation is the most likely type

31

4. Methods

of data that will take most effective advantage of both the colour compression and
spatiotemporal coherency. The author also believes that the test data represents
a closer approximation to the type of data that could be applied in a voxel video
game as well, i.e. animation that is not entirely arbitrary nor random and has a
continuity between each frame [35, 36, 38, 39]. For the compression schemes used,
exploiting spatiotemporal coherency in completely random and non-continuous test
data would be very difficult to achieve effectively, while the colour compression most
likely would result in poor quality. Therefore such data is considered by the author
not to be suitable in order to provide a conclusive answer to the research question.
Nonetheless, the test data provided for the evaluation was chosen and created in
order to evaluate the effectiveness of the compression schemes in various situations
and cases, such as density, varying types of movement and even colour changes. See
Figure 4.13 for all the test data used for the evaluation.

The animations of each test data is diverse in order to test various cases of how
animation may be applied to animated voxel data. The colour also varies greatly:
while it may appear some only have a few colours, any test data that appears to
have some kind of shading is actually just colour attribute. The following is a brief
description of each test data:

• BULB is a mandelbulb that each time step becomes larger and morphs into a
more spherical-like shape, while all of it’s colours remain consistent between
each frame.

• ORBS is a collection of spherical objects that move and merge into each other
and slowly over time change colour.

• BALL is a red checkered ball that is made to appear bouncing and rotating.
This one is inspired by the "Boing" Ball demo originally created by R.J. Mical
and Dale Luck [40].

• RINGS are three intersecting rings with different patterns that rotate in vari-
ous angles.

• CUBE is a greeble-shaped checkered pattern cube with that contracts and
then expands, appearing to mimic a heart pulse.

• CLOCK is an hourglass that has sand pouring down when turned.

• Finally, HORSE and DEER appear as running animals as the names suggests.
As previously mentioned, these were created by ephtracy [43].

4.3.1.1 Quality Comparison

The quality of the compressed data is important to be at an acceptable level where
the data appears as similar as possible to the original data, while requiring less
memory usage. Therefore, in order to see which combination of methods produces
the most memory effective result with the highest quality possible there will be a
need to do a quality comparison. The quality comparison will be done by compar-
ing Peak signal-to-noise ratio values (PSNR), a common approach to evaluate and
measure the quality when reconstructing lossy compressed image data [31]. PSNR

32

4. Methods

value represents how much noise has affected the quality and fidelity of the original
data. Values between 30 and 50 dB (decibel) are typical values for PSNR in lossy
image data. Higher value means it is better and values that go over 40 dB are con-
sidered to be very good. Values that are 20 dB or below are within the unacceptable
quality range [31]. By calculating a PSNR value for each test data using all six per-
mutations of the HSV colour sorting scheme, it becomes possible to compare which
permutation is the most successful in improving the quality of compressed colours.

BULB: 1283,11 frames. ORBS: 643, 21 frames. RINGS: 1283,18 frames.

BALL: 1283, 19 frames. CUBE: 643,15 frames. CLOCK: 643,13 frames.

HORSE: 323, 4 frames. DEER: 323, 4 frames.

Figure 4.13: The test data used for evaluation. Each data is rendered using the
modified SVO data structure Hyper Octree. Except for HORSE and DEER that
was originally created by ephtracy [43], all other data was created by the author
with the voxel modelling software MagicaVoxel [32].

33

4. Methods

4.3.1.2 Memory Consumption Analysis

A memory usage analysis will be performed of how much memory is used from
the final output after all compression procedure have been applied to the animated
voxel data. In this case, the memory usage refers to how much memory is used to
store geometry, colours and other necessary auxiliary data structures, such as the
aforementioned array for time step offsets. Measurement will be done during the
construction and compression process. This will be done for both regular voxel grids,
compressed grids, sparse voxel octree and Hyper Octree.

34

5
Results and Discussion

This section presents the result and discussion concerning the evaluation performed
as described in Section 4.3 on the test data that can be seen Figure 4.13. In Tables
5.1-5.4, there are red and green highlights in certain cells: these indicate the best
and worst case for each test data depending on the context. The evaluation and the
execution of the methods were performed on a NVIDIA GeForce RTX 3060 GPU
and AMD Ryzen 7 5800H CPU.

5.1 Quality

Table 5.1: Quality Measurement (in dB)

Data HSV VHS SVH VSH SHV HVS
BULB 18.1822 20.7589 23.0819 18.095 20.0038 19.7372
ORBS 18.1169 22.0709 26.2958 21.9395 19.8364 17.8267
BALL 18.243 33.9142 18.243 33.9142 18.243 33.9142
RINGS 18.0617 26.0889 29.7724 33.5734 19.4854 19.8031
CUBE 20.3879 37.2228 37.2228 37.2228 20.3879 20.3879

CLOCK 19.8702 30.9893 36.2239 36.7487 19.6886 21.7318
DEER 38.8142 38.509 36.8928 35.7898 38.8322 38.5063

HORSE 39.6377 39.5039 39.5071 39.5149 39.6177 39.5039
Average 23.9143 31.1322 30.9045 32.0998 24.5112 26.4264

The result from the quality evaluation can be seen in Table 5.1. See Figure A.9 for
how each test data appears when DXT1 is applied with no sorting. Also see Figure
A.10 for a visual comparison of each permutation. The quality measurement was
performed independently of the data structures used to store the voxel data. This
was possible since the colour data was decoupled from the geometry, which allows
the colours be stored in a separate colour array that is then retrieved from through
colour indexing. Since indexing is used for both grids and octrees to retrieve the
colour data in their uncompressed formats, it then becomes possible to do the same
with DXT1 blocks in the compressed formats.

The result shows that the permutations VSH and VHS provide on average the
highest PSNR values, while HSV and SHV provides the lowest PSNR values on

35

5. Results and Discussion

average. Incidentally, all of these permutations are in fact the complete opposite
of each other, completely mirrored in the order of the sorting. BULB and ORBS
only produced quality outcomes that were within the unacceptable range with all
permutations. The rest: RINGS, CUBE, BALL and CLOCK produced good quality
outcome within permutations that used the brightness (V) component first, while
all other ones produced outcomes within the unacceptable range.

This suggests that on average for any given voxel data, if sorting by HSV the per-
mutations using the component value or brightness (V) first will lead to higher
quality outcome of the compressed voxel colour data than with any other permuta-
tion. This may indicate that depending on which component is used first for sorting
will have an impact on the quality outcome. The quality may also be affected by
which proceeding components are used for the sorting, where it is very clear that a
combination of saturation (S) and hue (H) give the highest result in both VSH and
VHS. This does not necessary correspond with the lowest PSNR values on average
however, where HSV and SHV have very different components for the first sorting,
but indeed have the same last component of brightness (V). This suggest that sort-
ing by saturation and hue and then brightness will give the lowest quality outcome
on average.

In Figure A.10, this can be seen clearly how indeed permutations VSH gives the
closest approximation to the quality of the uncompressed format. This is not nec-
essarily true for VHS however, where there actually is a bit more loss in quality
despite the higher PSNR value with some of the test data. A possible explanation
why the order of the components in the HSV sorting causes the reordering of the
colours to mostly improve the quality outcome is because of the amount of similar
colours and what type of colours are used in the test data. What is meant with
’type of colours’ is the characteristics of a color, i.e. where does the colour lie on the
colourspace and how intensive and what brightness does the colour have. Which of
these characteristics is the most pronounced in a set of colours is the deciding factor
to how the colours will be reordered and how this reordering was done affects the
final quality output. For example, HORSE produces consistently very high values
across all permutations, and DEER also produces relatively high values as well that
only varies slightly with a few of the permutations and slight loss in quality such as
with SVH and VSH. Even here the slight difference in the values of DEER compared
to HORSE is because of the same reason. On the one hand, HORSE uses only a
set of colours are very closely related or stored in the RGB colour space: a set of
varying brownish and dark colours. On the other hand, DEER uses a set of lighter
brown, yellowish colours along with notable light set of colours for its antlers and
other parts. Since the DXT1 format stores colours in blocks and then interpolates
the value in these blocks as the corresponding colours [25, 46], this means that the
loss of quality will very much depend on which colours are stored in the block. In
the case of HORSE these correspond to colours that all may be interpolated no
matter which order they are stored. This means that the loss quality is practically
non-existent no matter which permutation is used. This is also partially true for
DEER, although the slight loss of quality with some permutations is because of the
brighter colours which may not be as easily interpolated if stored together with more

36

5. Results and Discussion

darker colours.

This is in contrast to the rest of the test data, which have many different varying
colours in both brightness (V), saturation (S) and hue (H). The quality seems to
be improved depending on which of the components of HSV colourspace is most
present in the test data. In cases such as BULB and ORBS seems to improve the
quality the most using saturation (S) first and foremost, even if it is only a small
improvement. In contrast the rest of the test data appears to be best suited for
sorting after brightness (V) first suggesting that brightness is the most common
decisive component on average. Therefore, the conclusion can be drawn that the
brightness component gives the best quality outcome using HSV sorting for DXT1
compression format because it is the most common, unifying component.

5.2 Memory Consumption

Table 5.2: Total Memory Consumption (in MB)

Data Voxel Grid Compressed Grid SVO Hyper Octree
BULB 92.273 46.162 23.591 12.056
ORBS 22.020 11.021 25.392 12.887
BALL 159.384 79.694 23.4 8.934
RINGS 150.995 75.50 21.051 7.522
CUBE 15.729 7.865 23.330 6.964

CLOCK 13.632 6.816 3.149 1.093
DEER 0.524 0.262 0.014 0.006

HORSE 0.524 0.262 0.030 0.014

The result from the memory usage analysis can be seen in Table 5.2. The difference
between the voxel grid and the compressed grid is that the Compressed Grid is
a voxel grid that utilizes DXT1 compression. This compression is the same for
both grids and octrees. Also, SVO in this case means a regular sparse voxel octree
that does not exploit spatiotemporal coherency nor compresses colours using DXT1,
instead only utilizes a colour array that are indexed to from the leaf nodes.

Overall, the Hyper Octree was able to achieve the greatest compression ratio com-
pared to Voxel Grid, Compressed Grid and SVO. This is attributed to the utiliza-
tion and amalgamation of sparseness, spatiotemporal coherency and DXT1 colour
compression in the Hyper Octree resulting in considerable reduction in memory con-
sumption on average when compared to the rest. Also, reducing the DXT1 down to
only unique blocks made it possible to reduce the memory consumption even further,
resulting in orders of magnitude less memory consumption for DXT1 blocks. This
can be seen in Table 5.3, where it can be seen that the memory consumption of the
original array of DXT1 blocks compared to the reduced DXT1 blocks is considerable
improved. This also improved the memory consumption for the Compressed Grid
that uses the same set of DXT1 blocks.

37

5. Results and Discussion

It may therefore be argued that the reduction of the DXT1 blocks was also done out
of necessity: neither the Hyper Octree nor the Compressed Grid would have had
sufficient amount space within 19-bits and 12-bits respectively to index such huge
amount of blocks. In any case, such huge amount of memory consumption with the
original DXT1 blocks would have not gained any value from the compression itself
it the blocks where not reduced down to only the most unique ones.

Table 5.3: DXT1 Blocks Memory Consumption (in MB)

Data Original DXT1 Reduced DXT1
BULB 8.389 0.0244
ORBS 8.389 0.01072
BALL 4.194 0.002016
RINGS 4.194 0.00264
CUBE 4.194 0.000264

CLOCK 0.524 0.0004
DEER 0.002048 0.000392

HORSE 0.008192 0.00024

However, the octree-based data structures can only achieve greater compression
ratio when sparseness is utilized in the voxel data. This can be clearly observed
when comparing dense voxel data: the regular Voxel Grid that was able to achieve
a more efficient memory consumption compared to the SVO in the case of CUBE
and ORBS. This is also true with the Compressed Grid, which achieved slightly
better compression compared to SVO with CUBE and even the Hyper Octree in the
case of ORBS. But it must be stated that this is a quite expected outcome because
of the nature of dense voxel data and voxel grids. Voxel grids are inherently dense
and have a memory footprint that is directly proportional to its volume. In contrast,
compact data structures using an octree only a fraction of the entire volume stored in
memory, representing only the occupied space of the data within this entire volume
[7, 3, 2]. From this it can be understood and concluded that any animated sequence
that contains dense voxel data will be more memory efficient if stored in a dense
data structure such as a voxel grid rather than octree. If dense data is stored in a
sparse and compact data structure it will only increase the memory consumption
and eventually its size will exceed the memory of dense voxel grid if the same data
was stored in both.

This can be observed in the Table 5.2, where once again this holds true for both
ORBS and CUBE when compared to SVO. The Hyper Octree is overall able to
reduce much of the memory consumption because of the removal of redundant nodes
and the use of DXT1 blocks. Even so, the Hyper Octree could not reduce down below
the memory usage of the Compressed Grid in the case of ORBS, which is a dense
type of data. Therefore the previously stated conclusion holds.

38

5. Results and Discussion

Table 5.4: Frame Node Count

First Frame Average Consecutive Total
SVO HO SVO HO SVO HO

BULB 398529 215500 499934 253853 5897812 3007888
ORBS 290256 155538 288463 145879 6347993 3219010
BALL 307099 164675 291729 108851 5849962 2232857
RINGS 290841 157401 276214 95690 5262706 1879821
CUBE 535969 286709 353104 96947 5832544 1740921

CLOCK 60433 32748 55898 18497 787123 273209
DEER 884 529 657 275 3513 1632

HORSE 1872 1064 1423 619 7567 3543

5.2.1 Node count
The result from the node count for SVOs and Hyper Octrees can be seen in Table
5.4. This evaluation was influenced by Kämpe et al.’s approach of a similar nature
[3]. This comparison looks at how many nodes were able to be compressed for the
first frame, the average of the consecutive frames and the total amount of nodes.
This comparison does not include regular Voxel Grids nor Compressed Grids as
these data structure cannot exploit spatiotemporal coherence and would therefore
have no purpose in this comparison, other than to become a somewhat contrived
comparison. See Figures A.1 - A.8 for a visual comparison of how much each test
data is able to exploit spatiotemporal coherency.

The result shows that the Hyper Octree was able to reduce the total amount of
nodes up to a factor of 2 for the majority of the test data. It was even capable of
reducing the total amount of nodes with a factor of 3 in the case of CUBE. Out of
all the test data BULB reduced by the lowest amount of total nodes, just below a
factor of 2. For average consecutive frames, the majority of the test data were able
to reduce consecutive frames to have less than the amount of the first frame, also
by a factor of 2. Some of the test data were able to reduce a bit more, in the case of
CUBE and CLOCK reducing by a factor of 3, while RINGS and BALL reduced by
a factor of just below 3. BULB reduced by the least amount of nodes, by a factor
of just below 2. Finally, for the first frame none of the test data were able to reduce
the amount of nodes higher than by a factor just below 2, with DEER reducing the
least amount and CUBE reducing the highest amount. Overall, the Hyper Octree
was able to reduce the total amount of nodes considerably when compared to the
regular SVO.

The reason for the factor of reduction in nodes depends on two aspects: the amount
of nodes necessary for storing colours and how much spatiotemporal coherency can
be exploited between each frame. For the first frame, the reduction factor depends
much on how and how many colours are stored in memory. Since the regular SVO
only uses 16-bits for storing indices, it would not be possible to directly store each
colours at the leaf node. Instead, only an index is stored which points to the true
location of the colour data. Although this implementation used a colour array, these

39

5. Results and Discussion

colours might as well have been stored in the octree directly. This would have meant
there would have been double the amount of leaf nodes: one for storing an implicit
index and the colour data itself. Even in the cause of a separate colour array, it
still means there is double the amount of leaf data. This is in contrast to the
Hyper Octree: First, the Hyper Octree stores only a block descriptor in order to
fetch the corresponding DXT1 block. This means that the colour array is completely
discarded. Also, the DXT1 blocks are also reduced by orders of magnitudes reducing
the amount of leaf nodes required. We can consider the the DXT1 blocks as the
leaf nodes. In the end, this reduces the number of required nodes in the first frame
significantly.

This difference in by how high the factor of reducing the nodes in each frame most
likely depends on how much spatiotemporal coherency exists in the data. This
depends on how likely it is to find similarities between each frame. In the case of
CUBE, we observe that it was able to gain the most out of all the test data using
spatiotemporal coherence. This is because the locality of the voxels is very consistent
and same between each frame, since the data is dense and much of it remains mostly
the same. In contrast BULB reduced the least in consecutive frames, mostly likely
because the data changes drastically between each frame and the locality of the
colours. The diversity of the colours may also be deciding factor.

For the total amount of frames and the consecutive frames, the factor depends
on the amount of spatiotemporal coherency that exists between each frame. In
Table 5.2.1, this can be observed in the average node count in consecutive where
in some of the test data such as CUBE, RINGS, BALL, DEER and CLOCK there
is more spatiotemporal coherency than there is in BULB, ORBS, and HORSE. An
example could be BULB, which is the only test data that required more nodes in the
consecutive frames compared to the first frame when observing the rest of the test
data. This implies that BULB has the least amount of spatiotemporal coherency.
Another example could be ORBS, that required almost the same amount of nodes for
the first frame and the consecutive frames, suggesting a similar implication. When
observing the coherency as shown visually in Figures A.1 - A.8, it becomes a bit
more obvious why this is so, where BULB and ORBS indeed show to have less
spatiotemporal coherency between each frame when compared to the rest of the test
data. This may also explain why the memory consumption is still relatively high for
both BULB and ORBS when using the Hyper Octree as seen in Table 5.2 despite
having reduced memory consumption considerably when compared to the other data
structures. So, the total amount of nodes in the Hyper Octree is dependent on how
much spatiotemporal coherency can be achieved in the consecutive frames, which in
of itself depends much on the data in question.

5.3 Limitations
The current approach used in order to exploit spatiotemporal coherency in animated
voxel data is limited to only exploiting coherency between each frame. While this
approach was first suggested as a compression scheme by Ma and Shen [12], as well
as a similar method used by Kämpe et al. [3], it is only able to achieve spatiotem-

40

5. Results and Discussion

poral coherency if there is similarities between each consecutive time step. This
limitation also applies to their approaches [12, 3] as this approach was based upon
their suggestions. A possible improvement in order to achieve a possibly greater
compression ratio would be to find and exploit spatiotemporal coherency across sev-
eral consecutive frames. That is, instead of only comparing two consecutive frames,
it could be possible to check for coherency in every frame for each frame in order
to find similarities in the subtrees with each iteration. This way, it would be possi-
ble to retrieve voxel data from several time steps or possibly keep a spatiotemporal
continuity in the data much longer and as a result could achieve a much greater
compression ratio. Naturally, this would create some computational overhead in the
creation process, especially at larger voxel resolutions, because such comparisons
would be very detailed and precise but also time consuming and memory intensive.
Nonetheless, this may prove to be useful to explore further.

The HSV sorting was able to improve the quality of the DXT compression format
and especially so using permutations where the first component in the sorting was
brightness (V). The permutation VSH proved to be the best permutation on average
for reordering colours for ordering similar colours to be in close proximity to each
other. Lee et al. [19] concludes that sorting colours, or reordering of colours, to
maximize the locality of similar colours appears to improve the quality of the data.
Their conclusion appears to be in conjunction with the conclusion of this project,
even if this project did not use any Morton ordering and instead simply remapped
indices to the corresponding colour. Despite this, using permutations where (V)
is the first component is not always guaranteed to reorder the colours effectively in
order to improve the quality. This seems to be true for test data with much variety in
saturation and hue. As seen in Table 5.4 and in Figure A.10, Although the majority
of the test did improve the quality using the permutation VSH, BULB and ORBS
where not able to improve significantly while the rest where visually satisfactory.
This may be because of the huge amount of colours used in both BULB and ORBS
vary in mostly hue and saturation and not so much in brightness. The limitation of
this approach is that there is no method for deciding which permutation should be
used and therefore will lead to inadvertent results. A possible and simple solution
would be to use the best corresponding permutation for each test data. Otherwise,
it may be best to default using the VSH as it was proven to give the best result on
average.

41

5. Results and Discussion

42

6
Conclusion

6.1 Conclusion
The aim of this project was to compress animated voxel data using a combination
of different approaches that could exploit the characteristics of frame-based anima-
tion sequences. These where sparseness with sparse voxel octree, spatiotemporal
coherency by finding similar subtrees between frames and colour compression using
DXT1 format. A sorting scheme using the colourspace HSV to reorder colours be-
fore the compression was also implemented in order to improve the quality of the
compressed colours. Redundant DXT1 blocks are also reduced down to only the
unique blocks to further compress the data. The amalgamation of these methods
was given the name Hyper Octree, a sparse voxel octree-based data structure that
is able to exploit spatiotemporal coherency and utilize compressed colours.

The result shows that this method is able to reduce memory consumption by at
least a factor of 2 and even up to a factor of 3 in some special cases when there
were a high degree of spatiotemporal coherency in the data. Quality of compressed
colours were able to be improved by sorting colours using HSV values. In particular,
the permutation VSH proved to give the best average result. However, this was
not always the case since some test data would improve much better using other
permutations, depending if saturation or hue was the dominant characteristics in
set of colours. In any case, the sorting scheme proved a possibility to improve the
quality of lossy compressed colours in voxel data.

The original research question as it was written in Section 1.2, was as follows:

• What is the best method for lossy compression of animated voxel data for
sequence-based animation that keeps similar fidelity and quality?

In conclusion, the most efficient method is to utilize sparseness, exploit spatiotempo-
ral coherency, colour compression and colour sorting. More specifically, one possible
and effective implementation is to use a sparse voxel octree capable spatiotemporal
coherency (re-use data from a previous time step) and compressing colours using
the DXT1 compression format. Also, sorting the colours using HSV values before
compression will reorder all colours to be in close proximity to each other in the HSV
colourspace. This may lead to improved quality of the compressed colours as long
as the correct permutation is used, since the output will depend much on the type
of colours used in the voxel data. Overall, the permutation VSH proved to be give

43

6. Conclusion

the most improved quality out of all six permutation on average and could serve as
a good default. In the end, this gives a lossy compression for animated voxel data
that is able to mostly keep a high degree of quality while still reaching a high degree
of compression as well.

6.2 Future Work
The author considers that the methods implemented were neglected to be optimized
to be fast and efficient concerning time. This was neglected as it this was not the
aim of the project itself, but unfortunately this lead to considerable amount of time
needed in order to create and generate the animation sequences in the Hyper Octree
format. One reason for this comparing all possible subtree records between two
consecutive octrees. Although the method was functionally correct and produced a
correct output, it caused an considerable overhead that would lead the procedure
to take up to several hours if the voxel data was of a higher voxel resolution. For
much larger resolution this method would not be suitable and would benefit from
finding a more optimized way in order to compare large amount of subtrees without
causing an overhead if possible.

This project was limited to only considering using the DXT1 compression format
for colour compression. This was mostly because of time constraints, and while the
DXT1 format together with the HSV sorting proved to be moderately successful
in retaining good quality and relatively high compression rate, other types of com-
pression methods should be considered. These may possible be better for retaining
high quality while also being able to achieve high compression ratio. It would also
be interesting to attempt another way of sorting colours together with DXT1 or
another compression technique, to see how different types of components may affect
the quality.

6.3 Ethical Considerations
The ethical considerations for this project were practically non-existent. The out-
come from this thesis, the test data produced for the evaluation and the methods
created for the purpose of answering the research question are unlikely to have any
greater impact on any ethical aspects or concerns. However, for the project itself,
the author decided against using or creating test data in the likeness of any artifact
that have any religious or cultural significance. Misrepresentation of such artifacts is
something to be avoided as it may be considered offensive and sensitive. Therefore
it was decided that such test data would not be used for the evaluation.

44

Bibliography

[1] Amanatides, J. and Woo, A. (1987). "A Fast Voxel Traversal Algorithm for Ray
Tracing," Proc. Eurographics 87 Conf., pp. 3-10, 1987.

[2] Aleksandrov, M., Zlatanova, S. and Heslop, D. J. (2021). "Voxelisation Algo-
rithms and Data Structures: A Review". Sensors (Basel, Switzerland), 21(24),
8241. https://doi.org/10.3390/s21248241.

[3] Kämpe, V., Rasmuson, S., Billeter, M., Sintorn, E. and Assarsson, U. (2016).
"Exploiting coherence in time-varying voxel data". I3D ’16: Proceedings of the
20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.
pp. 1521. https://doi.org/10.1145/2856400.2856413.

[4] Kämpe, V., Sintorn, E. and Assarsson, U. (2013). "High Resolution Sparse
Voxel DAGs". ACM Transactions on Graphics Volume 32, Issue 4, July 2013.
Article No.: 101. pp 1-13. https://doi.org/10.1145/2856400.2856413.

[5] Dolonius, D., Sintorn, E., Kämpe, V., and Assarsson, U. (2019). "Compressing
Color Data for Voxelized Surface Geometry". in IEEE Transactions on Visual-
ization and Computer Graphics, vol. 25, no. 2, pp. 1270-1282, 1 Feb. 2019, doi:
10.1109/TVCG.2017.2741480.

[6] Dado, B., Kol, T.R., Bauszat, P., Thiery, J.M. and Eisemann, E. (2016). "Geom-
etry and attribute compression for voxel scenes". In Computer Graphics Forum
(Vol. 35, No. 2, pp. 397-407).

[7] Laine, S. and Karras, T. (2011). "Efficient Sparse Voxel Octrees". in IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 8, pp. 1048-
1059, doi: 10.1109/TVCG.2010.240.

[8] Hickson, S., Birchfield, S., Essa, I. and Christensen, H. (2014). "Efficient Hi-
erarchical Graph-Based Segmentation of RGBD Videos". 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014, pp. 344-351, doi:
10.1109/CVPR.2014.51.

[9] Espe, A. E., Gjermundnes, O. and Hendseth, S. (2019). "A Method for Rigid-
Body Animation of Sparse Voxel Octrees for Use in Ray Tracing". Journal CoRR
abs/1911.06001, November 2019. https://doi.org/10.48550/arXiv.1911.06001.

45

Bibliography

[10] Careil, V., Billeter, M. and Eisemann, E. (2020). "Interactively Modifying Com-
pressed Sparse Voxel Representations". Computer Graphics Forum (Proc. Eu-
rographics), 2020. http://graphics.tudelft.nl/Publications-new/2020/CBE2.

[11] Rodríguez, M.B., Gobbetti, E., Guitián, J.A.I., Makhinya, M., Marton, F.,
Pajarola, R. and Suter, K.S. (2014). S"tate-of-the-art in compressed GPU-based
direct volume rendering". Comput. Graph. Forum 2014, 33, 77100.

[12] Ma, K.-L. and Shen, H.-W. (2000). "Compression and Accelerated Rendering
of Time-Varying Volume Data". Proc. 2000 Int’l Computer Symp. - Workshop
on Computer Graphics and Virtual Reality, pp. 82-89, 2000.

[13] Sattler, M., Sarlette, R., and Klein, R. (2005). "Simple and efficient com-
pression of animation sequences". In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (pp. 209-217).

[14] Han, S.-R., Yamasaki, T. and Aizawa, K. (2007). "Time-varying mesh com-
pression using an extended block matching algorithm". IEEE Transactions on
Circuits and Systems for Video Technology 17, 11, 1506-1518.

[15] Zhang, J., and Owen, C.B. (2007). "Octree-based animated geometry compres-
sion". Computers and Graphics 31, 3, 463–479.

[16] Mado, B., Chovancová, E., Chovanec, M. and Ádám, N. CSVO: "Clus-
tered Sparse Voxel OctreesA Hierarchical Data Structure for Geome-
try Representation of Voxelized 3D Scenes". Symmetry 2022, 14, 2114.
https://doi.org/10.3390/sym14102114

[17] Villanueva, A.J., Marton, F. and Gobbetti, E. (2017). "Symmetry-aware Sparse
Voxel DAGs (SSVDAGs) for compression-domain tracing of high-resolution ge-
ometric scenes". Journal of Computer Graphics Techniques Vol, 6(2).

[18] Vokorokos, L., Mado, B. and Bilanová, Z. (2020). "PSVDAG: Compact Vox-
elized Representation of 3D Scenes Using Pointerless Sparse Voxel Directed
Acyclic Graphs". Computing and Informatics, 39(3).

[19] Lee, K., Yi, J., Lee, Y., Choi, S. and Kim, Y.M. (2020), September. "GROOT:
a real-time streaming system of high-fidelity volumetric videos". In Proceed-
ings of the 26th Annual International Conference on Mobile Computing and
Networking (pp. 1-14).

[20] I. Gargantini. "An Effective Way to Represent Octrees". (1982). Communica-
tions of the ACM, Volume 25 Issue 12, Dec. 1982, Pages 905-910

[21] Foley, James D., Andries van Dam, John F. Hughes and Steven K. Feiner (1990).
"Spatial-partitioning representations, Surface detail". Computer Graphics: Prin-
ciples and Practice. The Systems Programming Series. Addison-Wesley. ISBN
978-0-201-12110-0.

[22] Cohen-Or, D. and Kaufman, A. "Fundamentals of surface voxelization". Graph.
Model. Image Process. 1995, 57, 453461.

46

Bibliography

[23] Gervautz, M. and Purgathofer, W. (1988). "A simple method for color quantiza-
tion: Octree quantization". In New Trends in Computer Graphics: Proceedings
of CG International88 (pp. 219-231). Springer Berlin Heidelberg.

[24] Mileff, P. and Dudra, J. (2019). "Simplified voxel based visualization". Produc-
tion Systems and Information Engineering, 8, pp.5-18.

[25] Van Waveren, J.M.P. (2006). "Real-time DXT compression". May 20th, 2006.

[26] Iourcha, K.I., Nayak, K.S. and Hong, Z. System and Method for Fixed-
rate Block-based Image Compression with Inferred Pixel Values, U.S. Patent
5956431A, Abbrev. October 2nd, 1997.

[27] Laybourne, K. (1998). "The Animation Book: A Complete Guide to Animated
Filmmaking From Flip-Books to Sound Cartoons to 3-D Animation". New
York: Three Rivers Press. ISBN 051-788602-2.

[28] Grossi, R. (1993). "On finding common subtrees". Theoretical Computer Sci-
ence, 108(2), pp.345-356.

[29] Smith, A.R. (1978). "Color gamut transform pairs". ACM Siggraph Computer
Graphics, 12(3), pp.12-19.

[30] Yu, S., Zhang, S., Wang, K., Xia, Y. and Zhang, H. (2017). "An efficient and
fast GPU-based algorithm for visualizing large volume of 4D data from virtual
heart simulations". Biomedical Signal Processing and Control, 35, pp.8-18.

[31] Bull, D.R. (2014). "Digital picture formats and representations". Communicat-
ing pictures, pp.99-132.

[32] Ephtracy. (2021). MagicaVoxel.

[33] Minddesk Software GmbH. (2016). Qubicle Voxel Editor.

[34] Ken Silverman. (2011). Slab6.

[35] Joseph, W. (2011). Voxatron. PC. Japan, Tokyo.

[36] Silicon Studio Co., Ltd. (2009). 3D Dot Game Heroes. Playstation 3. Japan,
Tokyo.

[37] Trion Worlds. (2015). Trove. Windows, PlayStation 4, Xbox One, Nintendo
Switch. U.S., Redwood City, California.

[38] Radiant Entertainment. (2018). Stonehearth. Windows, macOS. U.S., Los Al-
tos, California.

[39] Picroma. (2019). Cube World. Windows. Germany.

[40] Swiss Cracking Association. "Amiga Workbench Demos". Swiss Cracking Asso-
ciation. https://www.sca.ch/amiga/guests/boing.html [Accessed 2023-05-10].

[41] Ephtracy. "MagickaVoxel-file-format-vox.txt". Github.
https://github.com/ephtracy/voxel-model/blob/master/MagicaVoxel-file-
format-vox.txt [Accessed 2022-11-08].

47

Bibliography

[42] Ephtracy. "MagickaVoxel-file-format-vox-extension.txt". Github.
https://github.com/ephtracy/voxel-model/blob/master/MagicaVoxel-file-
format-vox-extension.txt [Accessed 2022-11-08].

[43] Ephtracy. "MagicaVoxel". Github. http://ephtracy.github.io/ [Accessed 2023-
05-27].

[44] Sean Barret. "stb_dxt.h". Github.
https://github.com/nothings/stb/blob/master/stb_dxt.h [Accessed 2023-04-
14].

[45] Benjamin Dobell. "S3TC DXT Decompression". Github.
https://github.com/Benjamin-Dobell/s3tc-dxt-decompression [Accessed
2023-04-14].

[46] Khronos. "S3 Texture Compression". Khronos.
https://www.khronos.org/opengl/wiki/S3_Texture_Compression [Accessed
2023-05-16].

[47] Khronos. "Texture". Khronos. https://www.khronos.org/opengl/wiki/Texture
[Accessed 2023-05-16].

[48] FSDeveloper. "DXT compression explained". FSDeveloper.
https://www.fsdeveloper.com/wiki/index.php/DXT_compression_explained
[Accessed 2023-05-16].

[49] Inigo Quilez. "Distance functions". Inigo Quilez.
https://iquilezles.org/articles/distfunctions/ [Accessed 2023-02-14].

[50] C++ Reference. "unique". C++ Reference.
https://en.cppreference.com/w/cpp/algorithm/unique [Accessed 2023-05-19].

[51] C++ Reference. "sort". C++ Reference. https://en.cppreference.com/w/cpp
/algorithm/sort [Accessed 2023-04-19].

[52] Lachlan McDonald. "magicavoxel-shaders". Github.
https://github.com/lachlanmcdonald/magicavoxel-shaders [Accessed 2023-
05-09].

48

A
Appendix 1

The Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7 and A.8 are a visual representations
of exploiting spatiotemporal coherency. Each Figure represents the test data used
in the evaluation and each one show how effectively spatiotemporal coherency is
achieved. The magenta-coloured voxels indicate which voxels are redundant and are
reconstructed by retrieving data from the previous time step. The sequence of each
animation is laid out in chronological order.

Figure A.10 is a full compilation of all the quality outcomes from performing DXT1
colour compression and sorting the colours using HSV permutations. Observing the
various test data in each corresponding column, it becomes clear that the quality
outcome varies depending on which type of colours and how much variety there is
with each colour, as this affects the reordering and subsequent compression output.

Figure A.1: Spatiotemporal coherency in CLOCK.

I

A. Appendix 1

Figure A.2: Spatiotemporal coherency in RINGS.

Figure A.3: Spatiotemporal coherency in BULB.

Figure A.4: Spatiotemporal coherency in CUBE.

II

A. Appendix 1

Figure A.5: Spatiotemporal coherency in BALL.

Figure A.6: Spatiotemporal coherency in ORBS.

III

A. Appendix 1

Figure A.7: Spatiotemporal coherency in DEER.

Figure A.8: Spatiotemporal coherency in HORSE.

Figure A.9: How each test data appears when colours are compressed using DXT1
with no HSV sorting.

IV

A. Appendix 1

Figure A.10

V

	Introduction
	Aim
	Motivation

	Problem Statement
	Proposal

	Previous Work
	Time-varying Voxel Compression
	Voxel Colour Compression
	Animation Compression

	Theory
	Definition of Voxel
	Voxel Data Structures
	Voxel Grid
	Voxel Grid Traversal

	Octree
	Sparse Voxel Octree
	SVO Traversal

	Lossy Compression
	S3TC Texture Compression
	DXT1

	Definition of Sequence-based Animation
	Voxel Grid
	Octree

	Methods
	Rendering and Data Structures
	Voxel Grid
	Compressed Voxel Grid
	Animation sequence

	Sparse Voxel Octree
	Animation Sequence of SVO

	Hyper Octree - Spatiotemporal Compression
	Subtree Similarity Search
	Reassign Indices

	Exploiting Spatiotemporal Coherency during Traversal
	Colour Compression
	DXT1
	Block Descriptors
	Redundant Blocks

	HSV Model
	Voxel Colour Sorting with HSV

	Animation Support
	Evaluation
	Test Data
	Quality Comparison
	Memory Consumption Analysis

	Results and Discussion
	Quality
	Memory Consumption
	Node count

	Limitations

	Conclusion
	Conclusion
	Future Work
	Ethical Considerations

	Bibliography
	Appendix 1

