
Relaxed Priority Queue &
Evaluation of Locks

A semantically relaxed priority queue and an experimentally
driven comparison of locks and atomic operations for the sake
of relaxation

Master’s thesis in Computer science and engineering

ANDREAS RUDÉN
LUDVIG ANDERSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Relaxed Priority Queue &
Evaluation of Locks

A semantically relaxed priority queue and an experimentally driven
comparison of locks and atomic operations for the sake of relaxation

ANDREAS RUDÉN
LUDVIG ANDERSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

Relaxed Priority Queue & Evaluation of Locks
A semantically relaxed priority queue and an experimentally driven comparison of
locks and atomic operations for the sake of relaxation
ANDREAS RUDÉN
LUDVIG ANDERSSON

© ANDREAS RUDÉN, LUDVIG ANDERSSON, 2023.

Supervisor: Philippas Tsigas, Department of Computer Science and Engineering,
Chalmers
Advisor: Kåre von Geijer, Department of Computer Science and Engineering, Chalmers
Examiner: Peter Ljunglöf, Department of Computer Science and Engineering, Chalmers

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Relaxed Priority Queue & Evaluation of Locks
A semantically relaxed priority queue and an experimentally driven comparison of
locks and atomic operations for the sake of relaxation
ANDREAS RUDÉN
LUDVIG ANDERSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
We present a new, lock-free and concurrent priority queue, utilizing some ideas
from [1] by Rukundo et al., that relaxes the traditional sequential semantics of the
delete_min operation to achieve better scalability and performance. This relaxation
is such that delete_min operations can be k-out-of-order when compared to sequen-
tial semantics, for which k has a well-defined upper bound. We experimentally
compare our priority queue to established, concurrent priority queues, both with
relaxed and non-relaxed semantics, and find that ours performs well.

Furthermore, we conduct tests with locks using data structures from [1] by Rukundo
et al., comparing the data structures’ performance when making use of a mix of
atomic instructions and locks to that of the original design, which only utilizes
atomic instructions. This allowed us to use different underlying data structures,
and 3 different data structures using locks were tested; a linked list, a dynamic
array, and a list of small arrays. We find that in some instances, this leads to
increased cache-locality in data access patterns, and therefore an overall increase in
performance. As an example of this, a speedup of up to 7.6 times was observed for
the largest relaxation of the queue when using an array, compared to the original,
with large improvements for other data structures as well.

Keywords: Concurrency, Data Structures, Algorithms, Priority Queue, Semantic
Relaxation, Lock-free, Scalability, Performance

v

Acknowledgements
We would like to thank our supervisor, Philippas Tsigas, for giving us the oppor-
tunity to work on this project. Our advisor, Kåre von Geijer, for participating in
many productive discussions. And Peter Ljunglöf, our examiner, who has provided
elaborate feedback on this text. We would also like to thank all our family and
friends for being both encouraging and supportive.

Andreas Rudén, Ludvig Andersson, Gothenburg, 2023-06-29

vii

Contents

List of Figures xi

List of Algorithms xiii

1 Introduction 1

2 Background 3
2.1 Briefly on Concurrent Programs . 3
2.2 Lock-free . 6
2.3 Semantic Relaxation . 10
2.4 2D framework . 10

2.4.1 Lock-free stack example, continued 10
2.4.2 The 2D framework’s stack . 12
2.4.3 The 2D framework’s queue . 16
2.4.4 The framework’s deque . 18

2.5 Priority Queue . 18
2.6 Related works . 19

3 Relaxed Priority Queue 21
3.1 The idea . 21
3.2 Substructure . 22
3.3 Window algorithm . 24
3.4 Correctness . 25
3.5 Using a skip list as the substructure 27

3.5.1 Substructure . 27
3.5.2 Comments about linearization 28
3.5.3 Analysis of bound . 29

4 Implementing Locks 33
4.1 Adding locks to the data structures 33

4.1.1 Stack . 34
4.1.2 Queue . 34
4.1.3 Deque . 35

4.2 The lock used . 35
4.3 The Substructures . 35

4.3.1 (Cyclic) Dynamic array . 35

ix

Contents

4.3.2 List of small arrays . 36

5 Results 39
5.0.1 Hardware and settings . 39

5.1 Priority Queue . 39
5.2 Results of adding locks . 41

5.2.1 Stack . 41
5.2.1.1 Coupled Window . 41
5.2.1.2 Decoupled Window 42

5.2.2 Queue . 43
5.2.3 Deque . 44

6 Conclusion 45
6.1 Future Work . 46
6.2 Final words . 47

Bibliography 49

x

List of Figures

2.1 Thread 1 reads X=1 which is inconsistent with program order, making
this execution not sequentially consistent. 5

2.2 An execution ordering of listing 2 which is sequentially consistent, but
not linearizable. 5

2.3 Execution showing the problem of the code in figure 3. 9
2.4 Width = 4. Four lock-free stack instances composed into a relaxed

stack. A selection algorithm directs the incoming thread to a single
stack instance. 11

2.5 Relaxed stack with width 4, and a window depth of 3. The rectangle
denotes the part of the stack that can currently be operated on by
any incoming threads. 12

3.1 Simple example of the general structure of a skip list. A real im-
plementation has pointers pointing to the first node, which here is
element 0. 28

4.1 A cyclic array with 5 elements. If two more elements were to be
inserted at the head, it would then wrap around and insert the next
item at index 0 of the array. If yet another item would be attempted
to be inserted, the head would catch up to the tail, and the array
would need to be resized by making a new array and copying over the
old array. 36

4.2 A list of small arrays storing 10 elements spread over 3 arrays. If two
more elements were to be enqueued at the head, it would then create
a new array for the next element, with space for 4 elements. An array
is deleted when all the items in that array are deleted from the list of
arrays. 37

5.1 Comparison of the two developed priority queues to the concurrent
skip list, MultiQueue, and k-LSM. Two different thread configura-
tions, 8 cores with 8 threads and 8 cores with 16 threads. 40

5.2 Comparison of performance for Stack, coupled window, for different
widths going from 1x the number of threads up to 8x the number of
threads. 41

xi

List of Figures

5.3 Comparison of performance for Stack, decoupled window, for different
widths going from 1x the number of threads up to 8x the number of
threads. 42

5.4 Comparison of performance for the queue with different relaxation,
for different widths going from 1x the number of threads up to 8x the
number of threads, shown from left to right. The top row uses 8 cores
and 8 threads while the bottom row uses 8 cores and 16 threads. . . . 43

5.5 Comparison of performance for Deque, decoupled window, for differ-
ent widths going from 1x the number of threads up to 8x the number
of threads. 44

xii

List of Algorithms

1 Skeleton of a Lock-Free Stack . 7
2 2D Window . 15
3 ShiftWindow, helper function . 16
4 2D Window for queue . 17
5 Helper function to the queue’s window 18

6 Priority queue’s insert method. 23
7 Priority queue’s delete_min method. 24
8 Substructure selection for PQ’s insert. 30
9 Substructure selection for PQ’s delete_min. 31
10 PQ window shift used by insert. 32
11 PQ window shift used by delete_min. 32

12 Generic Add using locks . 34
13 Generic Remove using locks . 34

xiii

List of Algorithms

xiv

1
Introduction

In the twentieth century, advances in technology would regularly and reliably result
in increased clock speeds of hardware, allowing software to gain performance “for
free”. Today, this type of gain has slowed down, and instead, we observe advances
in technology that bring small improvements to clock speed, but regular increases
to available parallelism. As such, exploiting that parallelism is one of the unfinished
challenges of modern computer science, according to Herlih et al. in [2].

One tool available when trying to utilize parallelism is concurrent data structures,
which are data structures designed to be accessed by multiple processes running in
parallel. This creates a concern regarding correctness, and synchronization must
often be employed to ensure it. Synchronization could cause congestion of the data
structure if multiple processes try to access it at the same time and/or frequently
enough. As Attiya et al. point out in [3], creating efficient concurrent data structures
is known to be a difficult problem of fundamental importance. To derive more effi-
cient data structures, it is often desired to reduce or entirely remove synchronization.
However, it can be shown that it is impossible to eliminate certain synchronizations
and retain the exact behavior of classical data structures.

To address the scalability bottlenecks of concurrent data structures, it has been
suggested by Shavit in [4] that one can relax what constitutes semantically legal
behavior to derive new variants of data structures more suited to multicore systems.
This reduces the demands we place on a structure’s consistency and liveness con-
ditions, in favor of performance and scalability. One type of relaxation that will
be used extensively in this paper is the idea, defined in [5] by Afek et al., to relax
the linearizability condition with a bound on the introduced nondeterminism. That
is, each operation must be linearizable at most at some bounded distance from its
strict linearization point. This will be referred to as k-out-of-order relaxation, where
k denotes the upper bound of the distance an operation may be separated from its
classical counterpart.

In the paper [1] Rukundo et al. introduce the idea of constructing a framework for
k-out-of-order relaxation, with two tunable parameters to affect the relaxation. Our
thesis builds on their ideas, and the details of their paper will be examined in Chapter
2. The core of their idea, however, is the existence of multiple substructures that
are functionally identical to each other, but otherwise independent. For example,
a relaxed FIFO queue in the framework may consist of a handful of atomic FIFO
queues as substructures, where the point of the framework is to let threads choose

1

1. Introduction

a substructure to issue enqueue or dequeue operations to. This idea may remind
the reader of replication, but it should be emphasized that no data is replicated,
and no substructure shares any element with another substructure. The framework
manages the overall situation and ensures that the k-out-of-order bound is upheld.
The design also encourages threads to stay local to a given substructure, to limit the
number of collisions that may be observed. Therefore, the expected usage is for the
number of substructures to be greater than the number of threads, although this is
one of the configurable parameters.

The framework mentioned in the previous paragraph was used to successfully imple-
ment relaxed counters, stacks, queues, and deques. In this paper, we will expand
upon their ideas, and derive an adaptation of their framework that we will use to
implement a relaxed priority queue. This is the subject of Chapter 3.

In Chapter 4, we examine some implications of the framework striving to keep
threads local to minimize collisions. In particular, the experimental question of
replacing the atomic substructures with lock-based counterparts is considered. The
reason for this avenue to be considered is, as mentioned, the assumed low contention
within the substructure, due to how the framework operates. Consequently, the
extra work that goes into a correct lock-free implementation may be outweighing
the work of an uncontested lock and a simple, cache-friendly, data structure. As
such, we will test the performance impacts of replacing the previous substructures
with a handful of different cache-friendly data structures and introduce locks to
maintain correctness.

2

2
Background

In this Chapter the necessary background needed to understand the later chapters
in the thesis is presented. First, the basics of concurrent programs, lock-free data
structures and their correctness is presented (Section 2.1, 2.2). Following that, Sec-
tion 2.3 introduces the idea of semantic relaxation, after which a large section (2.4)
is devoted to explaining the “2D framework” paper [1] that this thesis builds upon.
Towards the end of the chapter the definition of a priority queue is given in Section
2.5, and lastly, some related work is presented in Section 2.6.

2.1 Briefly on Concurrent Programs
In contrast to serial computation, where the execution of a program is done by a
single Execution Core (EC) at any given point of the program’s runtime, a parallel
computation involves the potential for more than one EC to execute the program
code simultaneously. If we set aside the ideal, but trivial case, in which the program
has every EC working on an independent part, then we are dealing with the potential
of more than one EC wanting to read or write to shared data. In such a situation, the
programmer must consider in what order the program’s instructions will be executed.
In the single EC case, the program’s instructions are conceptually executed in order1,
and thus the execution is deterministic. This is not the case for a parallel execution,
in which factors such as EC frequency, memory access times and interleaving cause
instructions to execute in a non-deterministic order.

With the programmer unable to rely on the order of the instructions, some extra
work needs to be done to ensure the program behaves as intended in every execution
ordering. That is, one must retain the semantic correctness for shared objects. The
notion of correctness for a concurrent object is based on some form of equivalence
to sequential behavior. One type of correctness is that of sequential consistency.
Intuitively, sequential consistency means that for every run of a program, the method
calls appear to happen one at a time in some sequential order that is consistent with
the order of method calls in the program’s source code. The formal definition of
sequential consistency as defined in [6] is as follows:

1This is of course not the case with modern hardware, but the perceivable effect remains the
same.

3

2. Background

Every concurrent object is assumed to have a serial specification that defines two
things: A set of methods as ordered pairs of call and response events, and a set of
legal method sequences. Now, given an execution σ, let ops(σ) be the sequence of
call and response events appearing in σ in real-time order2. Also, given a sequence
s of method events and a process p, let s|p denote the restriction of s to method
events by p. With the notation introduced, the definition itself is:
Definition 2.1.1 (Sequential consistency). An execution σ is sequentially consistent
if there exists a legal sequence τ of methods such that τ is a permutation of ops(σ)
and, for each process p, ops(σ)|p is equal to τ |p.
Another, stricter, notion is that of linearizability. Linearizability has a similar prop-
erty to that of sequential consistency, except instead of the requirement that any
valid order must be consistent with the program order, with linearizability any valid
order must be consistent with the real-time order. I.e., the real-time order of method
calls must be preserved. Formally, [6] defines it as follows:

Definition 2.1.2 (Linearizability). An execution σ is linearizable if there exists a
legal sequence τ of methods such that τ is a permutation of ops(σ), for each process
p, ops(σ)|p is equal to τ |p and furthermore, whenever the response for operations
op1 precedes the call for operations op2 in ops(σ), then op1 precedes op2 in τ .

In an effort to make the definition more intuitive, we could think of linearizability
as being the requirement of a fine-grained implementation of a concurrent object’s
method to have the same effect as an instantaneous atomic method. With that
conceptualization in mind, it may seem rather intuitive that a common way in which
we show that code is linearizable is to identify an instant in the implementation where
the effect of the method takes place. I.e., a point in the code where the method’s
impact becomes observable to the rest of the system. Such a point is known as a
linearization point, or LP. Thus, showing that a concurrent object is linearizable can
be equivalent to finding an LP for every method of the object.

Let us consider some examples to better grasp the differences. First, we write a
simple program with a single thread operating on a variable x. The code can be
seen in listing 1.

x.write(1);
x.write(3);
x.read();

Listing 1: The code thread 1 executes.

In figure 2.1 we see an execution ordering of this program which is not sequentially
consistent. This is because thread 1’s read operation observes the value 1 instead of
3, which is not consistent with the program order.

Let us consider a program with two threads working on a First In, First Out (FIFO)
queue. Initially the queue is empty, and the two threads run the program source code

2For simplicity, the implicit clock is assumed granular enough such that no two events are truly
ever at the same time. This assumption could be lifted by defining a systematic approach to
resolving collisions, for instance, by processor id.

4

2. Background

Figure 2.1: Thread 1 reads X=1 which is inconsistent with program order, making
this execution not sequentially consistent.

given in listing 2. In the execution given in figure 2.2 the real-time order is such that
thread 1 is the first to enqueue 1 onto the queue before thread 2 enqueues 3, and as
such, by real-time ordering and FIFO semantics, we expect that this means that the
dequeue method will yield 1. However, in the execution of figure 2.2 thread 1 and
thread 2 can be seen enqueueing and dequeueing in parallel, and thread 1 obtains
the element 3 which thread 2 is in the process of inserting, rather than the expected
element 1. This violates the FIFO semantics in terms of real-time ordering. On the
other hand, by sequential consistency, which is concerned with program order not
real-time order, this is a correct execution. But, it is not linearizable.

Thread 1: Thread 2:
q.enqueue(1); q.enqueue(3);
q.deqeue();

Listing 2: Two threads operating on a queue.

Figure 2.2: An execution ordering of listing 2 which is sequentially consistent, but
not linearizable.

Linearizability is the property we will concern ourselves with in this report, so it
stands to reason we should consider how we might go about showing that something
is linearizable. When designing a method for a concurrent object that will write to
shared data, the easiest way to ensure correctness and be able to show linearizability
is often by utilizing a lock. That is, access is compartmentalized to a critical sec-
tion, within which processes are guaranteed exclusive access by guarding the critical
section with a lock. A simple pattern of (1) acquire the lock, (2) do work, and (3)
release the lock can be repeated for all relevant methods. This makes it often easy
to show linearizability, as we can pick any point between the acquisition of the lock
and the release of the lock as our linearization point, and show that every method
has such a point.

The usage of locks is often simple and effective, but sometimes the approach has
drawbacks. For more fine-grained control, systems that provide atomic operations,
instructions that unify the behavior of what is traditionally multiple instructions,
come in handy. For example, a processor may implement the atomic instruction
compare and swap, CAS(x, e, n), as part of its instruction set. CAS(x, e, n) takes

5

2. Background

the location of a word3 in memory x which is read and compared against the expected
value e. Then, if and only if the actual and expected values are equal, the memory
is updated to the new value n. The instruction will indicate success or failure,
such that the programmer will be able to tell if the write happened or not. The
instruction takes place in one atomic step, and no intermediate state is visible to
the system.

To show linearizability for a method using atomic operations, we typically need to
identify a single point in the implementation for which the effects of the method
become visible to the rest of the system. This point will most likely be directly
following the success of some atomic operation in the code.

2.2 Lock-free
Before considering the main focus of this thesis, the relaxation of semantic correct-
ness, it is important that the reader is familiar with the concept of lock-free data
structures. In this section a lock-free stack will be gradually developed, to showcase
ideas and pitfalls that are of high significance when moving into the main subject
of this thesis, relaxation. This section is in part inspired by Shavit’s paper [4].

Consider a classic stack, with two methods: push and pop. Push is used to add
elements to the stack and pop is used for taking elements off again. In particular,
the intuitive semantics of the stack are such that pop returns the element most
recently added by push. That is, a stack has Last In, First Out (LIFO) semantics.

When using a stack in a concurrent setting, the correctness of this LIFO semantic
needs to be considered. A simple way to do so is to employ a single lock that guards
the critical sections (the parts where the stack is modified), by acquiring it at the
start of both push and pop, and releasing it at the end of the respective operations.
This is a true and tested solution and would indeed provide a correct concurrent
stack. However, it comes with some drawbacks. As an example, threads that need
to enter the critical section will need to be blocked if the lock is already held. And,
if the thread inside the critical section fails or is suspended, e.g. by the system’s
thread scheduler, no thread will (temporarily) be able to make progress through the
critical section. In a lock-free design the algorithm is non-blocking and the progress
of some thread is guaranteed.

To make a lock-free stack, a processor with atomic instructions can be used to
retain LIFO correctness without blocking threads. This could be achieved by instead
making it a “race”, where simply the first thread to succeed in its atomic instruction
is the first thread to make progress (by definition, every thread failing is not possible).
Notice that this is non-blocking and guarantees that some thread makes progress,
as such it is lock-free. One way to construct this idea into a data structure is to
employ a linked list, where the stack is a pointer to the first node in the list; the
top element.

3Or some size that is a multiple of the processor’s word size, dependent on its instruction set.

6

2. Background

The lock-free implementation is given in algorithm 1. The algorithm uses an object-
oriented design, and Node is an implicitly defined class with two data members: a
pointer to the next element in the list and a data entry value which holds the stored
value. Note that the algorithm is incomplete. In particular, if any contention4

occurs, at least one CAS will not succeed (the expected value is mismatched). This
implies that we need to manage contention. In the stack example, a simple loop
will be used that retries the CAS instruction until success. It should be noted that
more sophisticated methods exist, such as exponential backoff : Every time a CAS
fails, the thread delays for a random time before attempting again. A thread will
double the range from which it selects its random backoff delay each time the re-
attempt fails5. This constitutes a correct lock-free stack, and it is simple to show
that the stack is linearizable. The CAS operation that succeeds can be selected as
the linearization point, and in doing so it can be shown that the stack’s behavior
is equivalent to a sequential stack where the methods take effect when the CAS
instructions succeed.

Algorithm 1: Skeleton of a Lock-Free Stack
1.1 Function Push(x):
1.2 oldTop← Top
1.3 newTop← new Node{next← oldTop, value← x}
1.4 return CAS(Top, oldTop, newTop)
1.5 end
1.6

Precondition : Top must not be null.
1.7 Function Pop():
1.8 oldTop← Top
1.9 newTop← oldTop.next

1.10 if CAS(Top, oldTop, newTop) then
1.11 return oldTop.value
1.12 else
1.13 return error
1.14 end
1.15 end

However, in practice the lock-free stack may have a more deceptive error: an ABA
error. When an atomic operation such as compare-and-swap is in play, the structure
is generally of the following form: obtain some data that will be the “expected value”,
do some work to create the “new value”, and then perform a CAS operation to swap
them. Between the point of obtaining the expected value and the CAS instruction,
the actual value might have changed to be something else, but then changed back
again. Depending on the assumptions made, re-observing the old expected value
may cause erroneous behavior.

4Two or more threads trying to alter the top pointer simultaneously.
5The randomness and exponentiality are to circumvent the problem of repeated failures getting

stuck in a pattern.

7

2. Background

In listing 3 a sample implementation of the pop method from algorithm 1 that is
vulnerable to ABA errors is presented. The implementation is given in C, a manual
memory language, targeting the gcc compiler. In the implementation, the decision
has been made that for algorithm line 1.8 the implementation will copy the memory
address of Top as the expected value. Furthermore, upon successfully finishing
algorithm line 1.10, the node’s memory will be freed as it is no longer part of the
stack.

#define CAS(m, e, n) __atomic_compare_exchange(\
m, e, n, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)

typedef struct node bool pop(DataType* out)
{ {

struct node* next; while (true)
DataType value; {

} node_t; node_t* old_top = top;
if (old_top == NULL) return false;

volatile node_t* top node_t* new_top = old_top->next;
if (CAS(&top, &old_top, &new_top))
{

*out = old_top->value;
free(old_top);
return true;

}
}

}

Listing 3: Faulty example implementation in C targeting gcc of pop from algorithm
1.

In figure 2.3 an execution showcasing the ABA error is given. Thread X, currently
executing pop, is suspended after having copied the address of top but before exe-
cuting the CAS instruction. In the interim, before X is resumed, the top is popped
by another thread, Y. Upon resuming, this should not cause an issue, as we will
now observe a new address as top and X’s CAS will fail. However, in this particular
execution, push is also called by Y before X is resumed. The memory allocator of
the system, having correctly reclaimed the memory for the old top, when processing
the request to allocate a new node, chooses to reuse the exact same memory location.
This is correct behavior; Y puts that node as the new top of the stack. But, when X
is resumed, it will try doing its CAS, and succeed, despite its expected value having
come from an old node; this is because the new top happens to be on the same
memory address, and that is the expected value we used for CAS. This causes the
actual head to be lost, and for X to return a duplicate of a value Y already popped.

To amend this implementation error, a monotonically increasing counter could be
introduced alongside the memory address. By having the counter output unique
values, and taking identity to be dependent on both it and the memory address, every

8

2. Background

node has a unique identifier, and the re-observation that caused the previous error is
impossible. As such, the ABA error is eliminated from the sample implementation.
The corrected code has been reproduced in listing 4.

Figure 2.3: Execution showing the problem of the code in figure 3.

#define INC(x) __atomic_add_fetch(x, 1, __ATOMIC_SEQ_CST)

typedef struct DataType pop()
{ {

struct node_t* ptr; size_t cnt = INC(&counter);
size_t counter; while (true)

} pointer_t; {
pointer_t old_top = top;

typedef struct node if (old_top.ptr == NULL)
{ return false;

pointer_t next; pointer_t new_top = {
DataType value; .ptr = old_top, .counter = cnt };

} node_t; if (CAS(&top, &old_top, &new_top))
{

volatile DataType val = old_top.ptr->value;
size_t counter; free(old_top.ptr);
volatile return val;
pointer_t top = }

{ .next = NULL, }
.counter = 0 }; }

Listing 4: Fixed version of listing 3.

Even though the lock-free stack works correctly, it still has problems: it scales
poorly. This comes about because it has a single point of access which results in a
sequential bottleneck. Successful pushes and pops proceed one at a time, ordered
by successful CAS instructions. The problem can be alleviated by demanding less
of the stack. One such example is a push call which is immediately followed by
a pop call. Currently, the algorithm requires the threads to succeed in inserting
and removing the element from the stack, going through the sequential bottleneck.
Instead of demanding this, a technique known as elimination can be used. In this

9

2. Background

technique, a thread pushing or popping selects a random index in an elimination
array. If two threads “meet” at this index while pushing or popping at about the
same time, they will exchange the element without accessing the lock-free stack.
Only threads which enter the elimination array and do not meet a “partner” will go
on to access the underlying stack.

This elimination idea is an improvement, however it still comes with problematic
cases. For example, a burst of push calls followed by pop calls will not result in any
elimination, and again the stack experiences a sequential bottleneck. This leads to
the pursuit of a reduction of demand placed on the stack. In the next section this
idea will be expanded upon.

2.3 Semantic Relaxation
One method to reduce the sequential bottleneck (discussed in the previous section)
is the reduction of the consistency constraints. In particular, the relaxation of lin-
earizability is the idea defined in [5] to relax the linearizability condition, and to
do so in such a way that an upper bound can be defined on the introduced non-
determinism. In other words, each method must be linearizable at most at some
bounded distance from its strict linearization point. This will be referred to as
k-out-of-order relaxation.

In the lock-free stack developed in the previous section, the semantics are that of
LIFO. To relax these means to abandon the strict ordering of LIFO. Instead, a
k-out-of-order stack is correct if it is at most distance k from these semantics. It
should be easy to see why this may increase performance and scalability: it is now
correct for multiple threads executing pop to make progress at the same time, as
they do not need to ensure the element is the literal top. In the next section this
idea of semantic relaxation will be put into use.

2.4 2D framework
In this thesis we extend the work done in [1] by Rukundo et al. In their publication
they develop a framework for semantic relaxation in which new data structures are
derived using multiple independent lock-free data structures, and a shared window
to determine which such data structure a thread should operate on. From the frame-
work they derive some variations of a counter, a stack, a queue, and a deque. Sections
2.4.2, 2.4.3, and 2.4.4 are dedicated to an examination of the paper’s algorithms. In
the next section, the core ideas of the paper will be utilized to semantically relax
the stack from the previous section. This serves as an introduction to the more
detail-oriented sections that follow after it.

2.4.1 Lock-free stack example, continued
In section 2.3 a lock-free stack was examined. In this section that stack will be
utilized to construct a k-out-of-order stack. Given a width w the out-of-order stack

10

2. Background

contains w instances of the lock-free stack. This can be seen in figure 2.4. In the
figure, a thread that wants to push an element onto the stack is incoming. Part of
designing the stack will be to direct the incoming thread to one of the w lock-free
stacks. This will be referred to as selecting a substructure, and algorithms to do so
will be presented in later sections. To summarize, the relaxed stack is composed
of w lock-free stacks, which will more generally be referred to as substructures, and
a selection algorithm, which directs threads to a substructure to perform either a
push or a pop.

Figure 2.4: Width = 4. Four lock-free stack instances composed into a relaxed stack.
A selection algorithm directs the incoming thread to a single stack instance.

So far this imposes no bound on k. This will have to be addressed in how the
selection algorithm works. In figure 2.5 there exists, besides the width w, also a
newly defined depth d and an offset o, resulting in the depicted 2D rectangle super-
imposed on the substructures. This area defines the operable area of the relaxed
stack. Henceforth this area will be referred to as the window into the stack. Ele-
ments in any substructure may only be pushed to or popped from if the element
is observable within the window. For example, in Figure 2.5, it is legal to pop two
elements from the first substructure – 3 and 5 – or to push a new element onto it.
But for the two middle substructures, no elements can be popped as there are none
within the window. For these two it is only legal to push. The last substructure
has the opposite situation – it is legal to pop elements, but no new elements can be
pushed in currently. With this window construction we have successfully placed a
bound on k.

Given the distribution of push or pop operations in a slice of execution, the window
may entirely fill up, or become empty. When this happens, the response is to adjust
the offset, o. E.g., by increasing its value, the window shifts upwards and new

11

2. Background

elements can be pushed again. Atomic instructions are used to adjust the window.
If the window is entirely empty preceding a pop, the offset is decreased by a shift
parameter6, and similarly if full, the offset must increase before a push can proceed.

The window construction is what the 2D framework uses to bound k, the distance
from the true linearization point. The bound for the stack is examined in [7] by
von Geijer, who provides an analysis and a proof that shows k is bounded by

(
2shift + depth +

⌊
depth− 1

shift

⌋
shift

)
(width − 1). (2.1)

It is not entirely obvious or intuitive why the bound is so, and the elaboration would
entail details that we believe do not provide much insight.7

Figure 2.5: Relaxed stack with width 4, and a window depth of 3. The rectangle
denotes the part of the stack that can currently be operated on by any incoming
threads.

2.4.2 The 2D framework’s stack
This section will investigate the details of how the 2D framework’s window is oper-
ated to create a selection algorithm. This algorithm will then be used to derive a
relaxed stack.

In the paper a Treiber stack [8] is used for the substructures. This is the same lock-
free stack that was examined in section 2.3. The functionality of the framework is
as described in section 2.4.1, with the window, determined by a width, a depth, and
an offset, defining the operable area of the lock-free stacks. Threads are directed
onto a substructure to perform their push or pop. So far, the functionality is exactly
as in the previous stack example. The detail that remains to be filled in is how the
selection algorithm works.

To implement the window and the selection of substructures for push and pop op-
erations, the data structure for the window first needs to be defined. It is given
in listing 5. The structure has four fields. Two of them are as discussed earlier;

6With 1 ≤ shift ≤ depth, e.g. shift = 0.5depth.
7The curious reader is invited to read the cited paper, section 5.2.1.

12

2. Background

the window’s dimensions are given by width and depth. The integer max fulfills an
analogous function to the offset in the previous example, although it denotes the
top of the window, rather than the bottom. Thus the observable area of the window
is within the range (max− depth, max), and any substructure must have its count,
the number of elements it holds, within that range after an operation. The last
parameter, version, is to combat ABA errors (see Section 2.4.1). A single global
instance of the window is maintained and read by accessing threads. It should be
noted that the width and depth are fixed parameters, and implementations are rec-
ommended to maintain them separately from data that will be updated by the CAS
instructions.

struct Window
{

width: integer (constant)
depth: integer (constant)
max: integer
version: integer

}

Listing 5: The data of a Window structure.

In algorithm 2 the full pseudocode for selecting a valid substructure (i.e. lock-
free stack) for pushing or popping has been recreated. The algorithm starts by
initializing some data. On line 2.4 the index is chosen to be the last index that
the thread reports having accessed, unless the thread also reports contention. If
the thread reports contention, it implies pushing or popping from the substructure
failed (i.e, the CAS instruction failed). If that is the case, the thread asks for a new
substructure, and the index will not be reused, and instead it gets randomly chosen.
Following that, a thread-local copy of the global window is taken at line 2.5.

Following initialization, the algorithm will repeat infinitely until a substructure is
selected. Skipping over the first if-block for now, consider the lines 2.19-2.23. The
substructure referenced by the index is inspected. If the selected operation can be
done on the substructure while staying within the window (which is found out by
comparing the window parameters to the substructure’s count), that substructure,
together with the selected index is returned. Otherwise, the version number is
inspected. Recalling what was mentioned about ABA errors in an earlier section:
the idea is to know if the window has been shifted while we were searching for a
valid substructure. If it has been, the selection process needs to start over. The
search counter is reset back to zero and the global window is copied anew (line
2.36). If the version has not changed, then the case starting at line 2.25 is taken.
This block of code is moving to the next substructure by advancing the index. If
the number of jumps taken does not exceed the given max_jumps configuration
parameter, then the algorithm will move to the next substructure by randomizing
the index. However, if all jumps are exhausted, the algorithm proceeds to do a linear
search by increasing the index modulo the width. Note that this jump functionality
exists to avoid the possibility of many threads failing at one step and “moving
together” to successive failure points, with only one thread making progress per

13

2. Background

step. This jump functionality is a configurable parameter, and whether or not it
results in increased performance depends on the other parameters and the type of
usage. By default, the number of jumps is kept small (max_jumps = 2).

Lastly, consider the if-block at line 2.8. This branch is only taken once the loop has
found all substructures to be invalid candidates, without another thread updating
the window during the search. If there exists no valid substructure, an attempt to
shift the window happens and then the algorithm starts over. The window shift code
is recreated in algorithm 3. At line 3.2 the version of the thread-local window is
compared against the version of the global window. This is just a sanity check: if the
window has already shifted, no additional shifting attempt is needed. The procedure
itself is simple: a new max value is calculated and a new window is created. The
new window is attempted to be compare-and-swapped to replace the global window,
and the thread-local window is used as the expected value. Failure is not checked
for, as contention implies that some other thread has already changed the window.

The next Section will examine how a queue can be created with a handful of changes
to this procedure.

14

2. Background

Algorithm 2: 2D Window
2.1 Function SelectSubstructure(op, lastIndex, contention):
2.2 linear_search← jumps← 0
2.3 isEmpty← true
2.4 index← lastIndex if ¬contention else RandomIndex()
2.5 LocalWin←Win
2.6

2.7 Loop
2.8 if linear_search = width then
2.9 if op = get ∧ isEmpty then

2.10 return (X, index)
2.11 end
2.12

2.13 ShiftWindow(op, LocalWin) ▷ See alg. 3
2.14 linear_search← 0
2.15 isEmpty← true
2.16 LocalWin←Win
2.17 end
2.18

2.19 X← SubStructs[index]
2.20 if op = push ∧ X.count < Win.max then
2.21 return (X, index)
2.22 else if op = pop ∧ X.count > (Win.max− depth) then
2.23 return (X, index)
2.24 else if LocalWin.version = Win.version then
2.25 if jumps < max_jumps then
2.26 index← RandomIndex()
2.27 jumps← jumps + 1
2.28 else
2.29 index← index + 1 mod width
2.30 linear_search← linear_search + 1
2.31 end
2.32 if X.count > 0 then
2.33 isEmpty← false
2.34 end
2.35 else
2.36 linear_search← 0
2.37 LocalWin←Win
2.38 end
2.39 EndLoop
2.40 end

15

2. Background

Algorithm 3: ShiftWindow, helper function
3.1 Function ShiftWindow(op, localWin):
3.2 if localWin.version = Win.version then
3.3 if op = push then
3.4 max← localWin.max + shift
3.5 else if op = pop ∧ localWin.max > depth then
3.6 max← localWin.max− shift
3.7 end
3.8 newWin← {version = Win.version + 1, max = max}
3.9 CompareAndSwap(Win, localWin, newWin)

3.10 end
3.11 end

2.4.3 The 2D framework’s queue

The queue in the framework is defined in a similar way to how the stack works. Some
differences need to be considered, however. Firstly, the paper uses an MS queue8

[9] for the substructures. Secondly, and more importantly, the window functionality
runs into some considerations. Unlike the stack, in which there exists a single access
point for pushing and popping, the queue has two points of access – elements are
enqueued at the tail of the queue and dequeued at the head of the queue. As such,
positioning a window over the substructures becomes non-obvious. The way the
paper resolves this is to simply have two windows, one that defines the operable
area for the tail and one for the head.

In algorithm 4 the algorithm of the previous section has been modified to use two
windows. Only the differences will be highlit; for the rest of the explanation refer to
section 2.4.2. Nevertheless, the first change already appears at line 4.5, where what
is copied into the thread-local window is either the global window for enqueuing
(WinTail) or that for dequeuing (WinHead). The next change is observed at lines
4.20 and 4.22. Here it can be seen see that the window’s max field is not com-
pared against the count of the structure, instead there are two constantly growing
counters for enqueuing and dequeuing. This is the main difference of this window
implementation: it does not shift up and down as the substructures grow/shrink
the way the stack did. Instead, it monotonically moves upwards; as does the en-
queue and dequeue counters of the substructures. This means that the shift window
implementation also needs to change slightly. For the sake of completion, it has
been recreated in algorithm 5. As the reader can see, the only functional change is
that the operation used changes which window is shifted, and the window is always
shifted upwards.

8The MS queue is explained in detail in Section 4.1.2

16

2. Background

Algorithm 4: 2D Window for queue
4.1 Function SelectSubstructure2(op, lastIndex, contention):
4.2 linear_search← jumps← 0
4.3 isEmpty← true
4.4 index← lastIndex if ¬contention else RandomIndex()
4.5 LocalWin←WinTail if op = enqueue else WinHead
4.6

4.7 Loop
4.8 if linear_search = width then
4.9 if op = dequeue ∧ isEmpty then

4.10 return (X, index)
4.11 end
4.12

4.13 ShiftWindow2(op, LocalWin, true) ▷ See alg. 3
4.14 linear_search← 0
4.15 isEmpty← true
4.16 LocalWin←WinTail if op = enqueue else WinHead
4.17 end
4.18

4.19 X← SubStructs[index]
4.20 if op = enqueue ∧ X.enqueue_count < WinTail.max then
4.21 return (X, index)
4.22 else if op = dequeue ∧ X.dequeue_count < WinHead.max then
4.23 return (X, index)
4.24 else if

(op = enqueue ∧ LocalWin.version = WinTail.version) ∨ (op =
dequeue ∧ LocalWin.version = WinHead.version) then

4.25 if jumps < max_jumps then
4.26 index← RandomIndex()
4.27 jumps← jumps + 1
4.28 else
4.29 index← index + 1 mod width
4.30 linear_search← linear_search + 1
4.31 end
4.32 if X.count > 0 then
4.33 isEmpty← false
4.34 end
4.35 else
4.36 linear_search← 0
4.37 if op = enqueue then
4.38 LocalWin←WinTail
4.39 else
4.40 LocalWin←WinHead
4.41 end
4.42 end
4.43 EndLoop
4.44 end

17

2. Background

Algorithm 5: Helper function to the queue’s window
5.1 Function ShiftWindow2(op, localWin):
5.2 if op = enqueue then
5.3 if localWin.version = WinTail.version then
5.4 max← localWin.max + shift
5.5 newWin← {version = WinTail.version + 1, max = max}
5.6 CompareAndSwap(WinTail, localWin, newWin)
5.7 end
5.8 else
5.9 if localWin.version = WinHead.version then

5.10 max← localWin.max + shift
5.11 newWin← {version = WinHead.version + 1, max = max}
5.12 CompareAndSwap(WinHead, localWin, newWin)
5.13 end
5.14 end
5.15 end

2.4.4 The framework’s deque
The framework also implements a deque. It uses the substructures found in [10].
Some changes have been made to account for working with the given substructure,
however, we believe studying the differences does not illuminate anything that is of
importance to this thesis. As such, we invite curious readers to read about it in the
paper [1].

2.5 Priority Queue
In Chapter 3 we will develop a relaxed priority queue. As such the definition of a
priority queue needs to be examined first.

In its simplest form, a priority queue is a data structure that provides the external
interface of two methods: insert and delete_min (or max), with the semantics that
insert adds an element to the queue with an associated priority (both supplied by
the user) and delete_min removes (and retrieves) an element subject to the following
properties:

Property 1: Given a deleted item i, there exists no item j ∈ PQ such that prio(i) >
prio(j).

Where PQ is the set of all elements in the priority queue and prio(n) is the priority
level associated with the element n by some previous insert method call. Also, it
sometimes holds that:

Property 2: Given a deleted item i, for every j ∈ PQ : prio(i) = prio(j) it holds
that in the execution order of operations insert(i) appears earlier than insert(j),
i.e. first come, first served.

18

2. Background

Property 1 is the defining property of a priority queue, whereas there exist priority
queues that do not adhere to property 2.

2.6 Related works
Concurrent priority queues have had a long history of research in papers such as [11],
[12] or [13]. With some of the more performant versions being based on skip lists,
such as the one presented in [14] by Lindén and Jonsson, which will be examined in
detail in Chapter 3.

While there exist many lock-free and wait-free variants of the priority queue, the
scalability of the delete_min is an inherent problem, due to the sequential nature
of its semantics. Attempts to ease this issue include efforts such as that seen in [15]
by Calciu et al., where insert operations are carried out in parallel, and delete_min
operations use an elimination array and batching of operations.

Other attempts include the relaxation of linearization requirements, such as seen
in the k-LSM priority queue described in [16] by Wimmer et al. In the k-LSM
priority queue, the authors present a lock-free design which relaxes the linearization
requirements on insert, to allow threads to batch up to k inserts, and on delete_min,
to allow deletion of any of the k+1 smallest elements from the set of elements visible
to all threads.

While k-LSM places an upper bound on the relaxation, k, other relaxation designs
which do not place a hard bound on relaxation include the Multiqueue presented
in [17] by Rihani et al. The Multiqueue is constructed from cp lock-based priority
queues, where c > 1 is a tunable parameter and p the number of parallel threads.
For insert, the Multiqueue samples random queues from the full set of queues until it
manages to acquire the lock of one. The delete_min operation works similarly, but
samples two queues and deletes from the one with a smaller minimum. Consequently,
the rank error of the deleted element has a stochastic bound.

19

2. Background

20

3
Relaxed Priority Queue

In this Chapter, we present a method to create a relaxed priority queue (PQ) with
a fixed number of priorities. First, the general idea is presented in Section 3.1, af-
ter which the substructure is described in Section 3.2 and then the algorithm for
selecting a substructure is presented in Section 3.3. In Section 3.4 the correctness
of the PQ is considered and a relaxation bound is presented. Finally, an alterna-
tive substructure is presented in the last section (3.5), and the changes made to
accommodate this are elaborated upon.

3.1 The idea
The PQ reuses the idea of a window to select substructures, as discussed in Chapter
2, but adds a third dimension on top of it: each priority level has its own window.
I.e., we have width number of substructures that store the elements of the PQ.
Together with a window offset (that slides around) and a defined depth, we have
denoted an operable area just like before. Within this area, it is valid for threads to
insert and delete nodes. However, as mentioned, a third dimension has been added,
and that is the levels. Elements stored in the PQ are assigned a priority in the
range [0, levels). The priority adds an additional requirement that aligns well with
the definition of a priority queue (see section 2.5); the delete_min operation must
delete an element from a substructure that is within some bounded distance to the
actual absolute minimum priority level across the PQ. Note that the presented PQ
is correct by property 1, as given in section 2.5, within some bound k, but that
property 2 is entirely ignored by our implementation. This allows for a wide choice
of substructures, and for the sake of simplicity we will use an array of Treiber stacks,
which has been previously described in Section 2.4.1.

The interface of the insert method requires a priority level p alongside the element to
be inserted. In response, the algorithm implementing the window considers the set
of substructures, finding a substructure s for which (maxp − depth) ≤ countp(s) <
maxp, where maxp denotes the maximum number of elements with priority p any
substructure may contain, and countp(s) denotes the number of elements with pri-
ority p in substructure s. Once s has been found, a CAS instruction is attempted
to insert the new element and increase the countp(s) by one.

For the delete_min method, the window will locate an element that is at most k-
out-of-order from the “front”, i.e. from the actual lowest priority. Similarly to insert,

21

3. Relaxed Priority Queue

a structure s for which it holds that (maxp − depth) < countp(s) ≤ max is located,
and a CAS instruction is attempted to remove the selected element and decrease
the count countp(s) by one.

3.2 Substructure
In this section the algorithm of the priority queue’s insert and delete_min will be
explored. Our PQ uses a substructure with levels Treiber stacks (see Section 2.4.1),
such that each level is stored separately in each substructure. As the chosen priority
queue semantics define the in-level ordering to be arbitrary (see property 2 in Section
2.5) the choice of the Treiber stack as the underlying substructure can be replaced
by any sufficient data structure instead.

The structure of the priority queue as a whole is described in Listing 6. The
“PQ” scope will be implicit in presented algorithms, e.g. just Windows instead
of PQ.Windows. Four types are defined. The Window type, which defines an oper-
able area (note that width and depth are constants and thus not listed as part of
the type). In total, the PQ consists of level window instances. The window will be
explained in detail in the next section. The Substruct type, which contains an array
of descriptors with levels elements. In turn, the Descriptor type corresponds to a
single Treiber stack, the stack presented in Section 2.4.1 using a linked list structure,
storing the top element of the stack and a count of total elements. This Descriptor
is its own type to facilitate using it as an expected value for compare-and-swap
instructions, as will be seen later. Lastly, the Node type is the storage type for
elements contained within the stacks, it consists of a value held at that node and a
link to the next node in the stack.

PQ { Windows: Window[levels], SubStructs: Substruct[width] }
type Window { max: int, version: int }
type Substruct { priorities: Descriptor[levels] }
type Descriptor { top: Node, count: int}
type Node { next: Node, data: Arbitrary Type }

Listing 6: The priority queue’s data structure.

In Algorithm 6 the insert method is presented. Note that each thread maintains a
thread-local index variable, which is initialized to 0 before any method calls. This
variable will be passed, together with the current contention state, to the substruc-
ture selection algorithm. The semantical meaning being; prefer reusing the last
successfully used substructure unless there was a “collision” at the compare-and-
swap at line 6.8. The algorithm starts by setting this contention variable to false
and creating a new head Node for the stack at line 6.3. The new node is initialized
with the given value. At line 6.5 the substructure selection function is used. This
function will be explained in detail in the next section, but for now it serves to know
that it will select a substructure of the PQ such that insertion into it places the new
element into the window’s operable area. In particular, it returns the index (into
the SubStructs array) to the selected substructure and a descriptor for the given

22

3. Relaxed Priority Queue

priority. This descriptor is a “snapshot” of the state of the stack before the window
coverage was confirmed, and will serve as the expected value for the compare-and-
swap at line 6.8. This ordering is important for correctness, which will be considered
further in Section 3.4. As mentioned earlier the thread-local index is passed in to
facilitate thread-locality and reduce collisions. A new descriptor is created, which
will serve to replace the old one, effectively increasing the count and inserting into
the stack in one atomic operation (as opposed to two). This happens if and only if
the compare-and-swap at line 6.8 succeeds. If not, it implies another thread came
first to insert or delete from this substructure’s priority. Then, contention is set to
true and the substructure selection is started over, and a new descriptor will be
obtained.

Algorithm 6: Priority queue’s insert method.
6.1 Function insert(priority, value):
6.2 contention← false
6.3 newTop← new Node{data : value}
6.4 Loop
6.5 (desc, index)← SelectSubstructureForInsert(priority, index, contention)
6.6 newTop.next← desc.top
6.7 desc’← Descriptor{top : newTop, count : desc.count + 1}
6.8 if CompareAndSwap(SubStructs[index].priorities[priority], desc, desc’) then
6.9 break

6.10 else
6.11 contention← true
6.12 end
6.13 EndLoop
6.14 end

In Algorithm 7 the delete_min operation is given. At line 7.4 the substructure
selection can be observed. As with insert, the last used index and the contention
flag is passed to the function to prefer remaining within the most recently accessed
substructure if there was no conflict. The selection algorithm is explained in detail
in the next section. However, it will either return an “empty” descriptor to indicate
the PQ is empty as seen on line 7.5, or it will return a descriptor, the index (into
SubStructs) of the selected substructure, and the selected priority. In the success
case, line 7.8 creates a new descriptor to update the top node of the underlying stack
and the count in one atomic operation, as with insert. This update corresponds
to removing the top node and making the second node (if there is one) the new
top. This corresponds to a successful compare-and-swap at line 7.9, which means
the executing thread succeeded in removing the top node, and its value is thusly
returned as the output of delete_min. Otherwise, contention is flagged and the
procedure starts over with a new substructure selection.

Implementation Detail: The algorithm for delete_min may require extra care
by a programmer implementing it. If the programmer is using a garbage collector,
then no special attention is needed. But, if they instead are using manual memory
handling and freeing nodes in delete_min, then the Descriptor type needs an ABA
protection counter. See Section 2.2 for more details.

23

3. Relaxed Priority Queue

Algorithm 7: Priority queue’s delete_min method.
7.1 Function delete_min():
7.2 contention← false
7.3 Loop
7.4 (desc, index, prio)← SelectSubstructureForDeleteMin(index, contention)
7.5 if desc is empty then
7.6 return PQ is empty
7.7 end
7.8 desc’← Descriptor{top : desc.top.next, count : desc.count− 1}
7.9 if CompareAndSwap(SubStructs[index].priorities[prio], desc, desc’) then

7.10 return desc.top.data
7.11 else
7.12 contention← true
7.13 end
7.14 EndLoop
7.15 end

3.3 Window algorithm
In this section we present the window algorithms for the PQ. Since the structure
shares similarities with the algorithms explained in section 2.4, primarily the differ-
ences will be discussed in the text. Firstly, in algorithm 8 the insert method of the
PQ is presented. At line 8.7 the case where the entire structure has been searched
through without finding a valid substructure to insert into is handled. If the window
is entirely full, a shift operation is attempted. After the shift attempt the opera-
ble area may contain empty slots that can be used for insertion, and the search is
restarted entirely. The details of the shift function are given in algorithm 10.

For each considered substructure there are three if-cases present. The first check,
at line 8.14, checks if the substructure has free slots within the window area for
the given priority. If it does, the window version is verified and the descriptor is
returned. Note that the descriptor is copied before the window check, and as such
serves as an expected value for CAS in the substructure, as described in the previous
section. The case at line 8.16 verifies that the window is up-to-date and advances
through the set of substructures if it is. And the last case at line 8.24 handles the
case when the local window is not up-to-date by restarting the entire search.

The procedure to select a substructure for delete_min is presented in algorithm
9. Let us consider how this differs from the insert method. Firstly, the operation
needs to not only select a valid substructure, but also to decide which priority level
to delete from. This has the implication that, unlike insert, one cannot simply look
at one window for selection, instead multiple windows need to be considered. At line
9.5 (among others) an important change can be observed: a local copy is made of
every global window, since it is not yet known which priority will be selected. Just
like before, this is done to detect window shifts by other threads. Further differences
from this can be observed at line 9.17, where a new loop is introduced. For every
considered substructure, every priority level must be considered in order of highest
priority. At line 9.20 the current substructure is checked for elements with priority

24

3. Relaxed Priority Queue

i that lay within the operable region, as defined by the window. If this is not the
case, note that care must be taken: simply continuing onto the next priority level
may be erroneous. First it must be confirmed that the reason there is no valid
element is because the structure has none of that priority. If it did, however, since
the window could be shifted (see line 9.11) and an element taken out from that
priority instead, afterwards, it would be wrong to take out another element of lower
priority from X. The check at line 9.30 is to guard against this occurrence. If a
valid substructure was found, the descriptor is returned at line 9.23 together with
the priority. Note that before the return of the descriptor, every local window of
better or equal priority to the selected priority needs to be confirmed. This can be
seen at line 9.21. Again, as noted for insert, this check happens after the copying of
the descriptor, which is relevant since said descriptor serves as the expected value
in the substructure’s compare-and-swap. Apart from the discussed points, the rest
of the algorithm mimics the behavior of previous selection algorithms.

The window shift functions are given in Algorithm 10 and 11 for insert and delete_min,
respectively. The algorithms are simple; in the insert case a new window is created
from the local window by increasing the version and the max parameter, and then
using a compare-and-swap instruction to update it atomically. The delete_min shift
is slightly more involved, needing to search through the priority levels to find the first
shiftable priority. Higher priorities (i.e. lower values) are preferred, in accordance
with priority queue semantics.

3.4 Correctness
In this section we consider the linearizability of our PQ and its lock-free guarantees.
The matching sequential priority queue semantics is that of Property 1 as defined
in Section 2.5, but not Property 2.

Lemma 1. The priority queue as defined by its operations insert and delete_min
is lock-free.

Proof. Consider the operations of the priority queue: insert and delete_min. These
depend on two methods: SelectSubstructureForInsert and
SelectSubstructureForDeleteMin. By inspection of the algorithms it follows that
these four operations are non-blocking, since no thread can block another. Further-
more, only insert and delete_min of these four can fail to progress. This can happen
at the respective compare-and-swap instructions. Consider a thread t that fails the
compare-and-swap of insert. This failure happens if and only if the obtained descrip-
tor used for the expected value no longer corresponds to the state of the stack. As
such, it follows that the failure of t implies that some other thread t′ has successfully
updated the stack. Such an update corresponds to the compare-and-swap in either
insert or delete_min, which implies that t′ succeeded in its operation. As such, it
follows that a thread fails to progress in insert if and only if some other thread
succeeds progressing in insert or delete_min. The argumentation for delete_min is
left out, but follows the same reasoning. Thus, we can conclude that the priority
queue is lock-free.

25

3. Relaxed Priority Queue

Lemma 2. The insert operation is linearizable.

Proof. An insert operation is linearized at the point of a successful compare-and-
swap operation. By the chosen sequential priority queue semantics, the relative
ordering of element a, b for which prio(a) = prio(b) is arbitrary. From this it fol-
lows that insert has no out-of-order considerations with regards to the sequential
semantics.

Lemma 3. The delete_min operation is linearizable with respect to k-out-of-order
priority queue semantics, where k is bounded by (depth)(levels− 1)(width).

Proof. A delete_min operation is linearized at the point of a successful compare-
and-swap operation. Let e be some element of priority l chosen for deletion by the
algorithm and let k be the total number of elements in every priority level 0 ≤ i < l.
Next we will consider how to bound the value of k.

Let us assume the selected element has prio(e) = levels−1, i.e. the least important
priority level. Then k is equal to the total number of elements in priority 0 ≤ i <
levels− 1 in the PQ.

Consider e prior to deletion. Let S denote the substructure that e resides in and in
particular let s denote the stack of S that e resides in. Also, let max(wini) denote
the max field of the window for priority i. Since algorithm 9 searches through the
substructure’s stacks in order of descending priority (0 is searched before 1, which is
searched before 2, ...), the selection of the priority level l which e belongs to can only
happen if every stack for priority levels less than l were observed empty in S. Thus, it
follows, at the time the thread-local window copies were obtained (which happened
before the search started), for every 0 ≤ p < l it holds that max(winp) = depth.
At line 9.19 the state of s is saved into a descriptor. Let t0 denote the time the
descriptor was taken. After that, the version of every window for priority 0 ≤ p ≤ l
is verified unchanged. From which it follows, at t0, for every priority 0 ≤ p < l, it
held that max(winp) = depth. As, such, at t0 there are at most (depth)(levels− 1)
higher importance elements than e in any given substructure. And, since there are
at most width substructures, there are at most (depth)(levels− 1)(width) elements
less out-of-order than e at t0.

Now, we have shown that the bound holds at t0. Consider the linearization point
of the CAS, let’s call it t1. The success of the CAS implies that there has been no
writes to s between t0 and t1. Furthermore, the thread does not participate in any
other happens-before relations between t0 and t1 (except reading the windows, but
they are unchanged and it imposes no new orderings on it). From this, it follows
that there will always exist a linearization of the concurrent history in which t0 is
immediately preceding t1, implying the bound holds at t1 as well.

Finally, because we made the assumption that e is of the least priority, any se-
lection of e from a higher priority will be bounded by k as well (although this
bound is unnecessarily loose for such an e). As such, it follows that the stated
k = (depth)(levels− 1)(width) holds generally, for any deleted element.

26

3. Relaxed Priority Queue

3.5 Using a skip list as the substructure
In addition to the relaxed priority queue already presented above, we also tried using
a skip list as the substructure. The skip list used was an already existing concurrent
priority queue, developed by Lindén and Jonsson in [14]. This substructure is ex-
plained in detail in Section 3.5.1, but before that, the differences in the substructure
selection algorithm, and how it interacts with the substructure will be explained.
In this version, there are no descriptors holding the count for the priority in the
substructure. Instead, there is an array holding all the counts for the substructure,
and the structure instead only directs the thread to a substructure, where it will
attempt to get the minimal item instead of an already selected priority. This means
that in practice, due to the concurrency of the structure, there can be a different
minimal element than the expected one. If the found priority is at least as low as
the expected one, the item is deleted and returned. If the found priority is higher
than the expected one, this means that the expected item was already deleted, and
this indicates contention. It is of note that it is only deletion of the expected value
such that the new minimum that is found is of a higher priority that is a problem.
This is because the ordering within a priority level does not matter, so another item
with the same priority is acceptable. A freshly inserted item that has lower priority
than the expected value is also allowed, since finding such an element means the
relaxation bound still holds. This change of removing the descriptor for each pri-
ority and replacing it with an array holding the counts introduces some changes to
the functions, both insert and get_min. These changes replace the CAS operation
updating the descriptor with two operations; first the operation is performed on the
substructure, and then the count is atomically changed after success of the operation.
This introduces some problems discussed in Section 3.5.2.

3.5.1 Substructure
The substructure that was used for the relaxed priority queue is as previously men-
tioned a concurrent priority queue based on a lock-free skip list, developed by Lindén
and Jonsson in [14]. This data structure consists of multiple layers, each a linked
list, where the upper layers are exponentially more sparse, allowing many nodes to
be skipped when traversing these layers. The bottom layer is a normal linked list
that spans all nodes in the priority queue in priority order. This means that the
most important item is the first item in the list and can be accessed in constant
time, while new items inserted have to be inserted at the correct location to keep
the list sorted in priority order. This can be seen in figure 3.1.

The data structure supports two operations; Insert and DeleteMin. When inserting
a value, a node is created with the given priority and value, and the skip list is
searched for the correct position to insert at. The node is inserted at the bottom
layer first, and then the upper layers are updated. The node is considered inserted
when the node is inserted in the first layer, and can thus be deleted before the upper

27

3. Relaxed Priority Queue

layers are updated.

When deleting the first item in the queue, the node is deleted by setting the least
significant bit in the pointer from the previous node pointing to that node to 1. This
works because pointers are word aligned, and the least significant bit is thus always
0. If the pointer to the first node is already marked as being deleted, the next node
is checked until a node that is not already deleted is found. Multiple nodes are
marked as deleted using this pointer trick and the memory for these is reclaimed at
the same time later in a batch. This deletion works in a similar way to the inserts,
where the bottom pointer is updated atomically to point at the new head, and then
the upper pointers are updated. This can be done in any order, but is done from
the top down for deletions compared to down up for inserts, as the authors had
observed a speedup with that configuration.

Figure 3.1: Simple example of the general structure of a skip list. A
real implementation has pointers pointing to the first node, which
here is element 0.

When using this substructure in the relaxed implementation, some changes were
made to the substructure. The original implementation had the insertion try again
if the CAS operation trying to insert the node at the bottom layer failed, but this
was changed to abort the insert and indicate contention, and another substructure
is searched for before trying the insert again. When deleting a node, the expected
priority found in the window function is checked against the found priority of the
node, and if this priority is higher than what was expected, the deletion is aborted
since another thread deleted the item first, and this indicates contention. If the
deletion would not be aborted at this point, then the relaxation bounds of the
structure may not hold.

3.5.2 Comments about linearization
In the first PQ that was presented in this chapter descriptors are used to create a
linearization point by updating the count and elements in the PQ at the same time.
Since that concept is missing from this second implementation, no strict linearization
point exists. This is one of the main limitations that motivated the development of
the descriptor-based version. For this version, instead of a specific linearization point,

28

3. Relaxed Priority Queue

the effects of an operation take effect before it is visible to the external structure.
This is because the counts for the priority in question are updated after the operation
on the substructure is completed and there is a window where the effects have taken
place, but before the count is updated. This time period introduces the potential
for errors when comparing the actual state of the data structure to the correct one,
but this error is bounded, since each thread accessing the data structure can only
contribute an error of 1 to a count. Due to this, the sum of the error for every count
is bounded to be within ± the number of threads.

3.5.3 Analysis of bound
The same reasoning as that found in the proof for the bound of the first version
holds for this version of the PQ as well, with only one difference. That difference is
that since the substructure is guaranteed to always return the best priority in the
substructure, it does not add to the bound, leading to the bound being (width −
1)(depth)(levels− 1). However, due to the issue that no correct linearization point
exists and an error can be present, that will be accounted for here.

To reason about this error term, consider the scenario where all priorities in all
substructures are filled so that there is only a single spot left for a new item to be
inserted in each. Assume now that all threads issue inserts to the same priority in the
same substructure at the same time, and that all of these succeed before the count
is updated. This results in threads - 1 too many items in the substructure for that
priority, compared to the maximum allowed for the window. This can be repeated
for all priorities except the last one, and all substructures except for the substructure
where the deletion occurs, resulting in an extra (width− 1)(levels− 1)(threads− 1)
items of better rank than the deleted item.

If the issue with the linearization point was to be fixed, then this error term would
not be needed.

29

3. Relaxed Priority Queue

Algorithm 8: Substructure selection for PQ’s insert.
8.1 Function

SelectSubstructureForInsert(priority, lastIndex, contention):
8.2 linear_search← jumps← 0
8.3 index← lastIndex if ¬contention else RandomIndex()
8.4 LocalWin←Windows[priority]
8.5

8.6 Loop
8.7 if linear_search = width then
8.8 ShiftWindowInsert(priority) ▷ See alg. 10
8.9 linear_search← 0

8.10 LocalWin←Windows[priority]
8.11 end
8.12

8.13 X← SubStructs[index].priorities[priority].descriptor
8.14 if X.count < LocalWin.max ∧ LocalWin.version =

Windows[priority].version then
8.15 return (X, index)
8.16 else if LocalWin.version = Windows[priority].version then
8.17 if jumps < max_jumps then
8.18 index← RandomIndex()
8.19 jumps← jumps + 1
8.20 else
8.21 index← index + 1 mod width
8.22 linear_search← linear_search + 1
8.23 end
8.24 else
8.25 linear_search← 0
8.26 LocalWin←Windows[priority]
8.27 end
8.28 EndLoop
8.29 end

30

3. Relaxed Priority Queue

Algorithm 9: Substructure selection for PQ’s delete_min.
9.1 Function SelectSubstructureForDeleteMin(lastIndex, contention):
9.2 linear_search← jumps← 0
9.3 isEmpty← true
9.4 index← lastIndex if ¬contention else RandomIndex()
9.5 for i ∈ [0, levels) : LocalWins[i]←Windows[i]
9.6 Loop
9.7 if linear_search = width then
9.8 if isEmpty then
9.9 return (empty, 0, 0)

9.10 end
9.11 ShiftWindowDeleteMin(priority) ▷ See alg. 11
9.12 linear_search← 0
9.13 isEmpty← true
9.14 for i ∈ [0, levels) : LocalWins[i]←Windows[i]
9.15 end
9.16

9.17 for i← 0 to levels do
9.18 ValidWVs← true
9.19 X← SubStructs[index].priorities[i].descriptor
9.20 if X.count > LocalWins[i].max− depth then
9.21 ValidWVs← (∀j : 0 ≤ j ≤ i : LocalWins[i].version =

Windows[i].version)
9.22 if ValidWVs then
9.23 return (X, index, i)
9.24 end
9.25 if ¬ValidWVs∨LocalWins[i].version ̸= Windows[i].version then
9.26 isEmpty← true
9.27 linear_search← 0
9.28 for i ∈ [0, levels) : LocalWins[i]←Windows[i]
9.29 go to 9.41
9.30 else if LocalWins[i].max− depth > 0 then
9.31 isEmpty← false
9.32 break
9.33 end
9.34 end
9.35 if jumps < max_jumps then
9.36 index← RandomIndex()
9.37 jumps← jumps + 1
9.38 else
9.39 index← index + 1 mod width
9.40 linear_search← linear_search + 1
9.41 end
9.42 EndLoop
9.43 end

31

3. Relaxed Priority Queue

Algorithm 10: PQ window shift used by insert.
10.1 Function ShiftWindowInsert(priority, LocalWin):
10.2 if LocalWin.version = Windows[priority].version then
10.3 NewWin← {version : LocalWin.version + 1, max :

LocalWin.max + shift}
10.4 CompareAndSwap(Windows[priority], LocalWin, NewWin)
10.5 end
10.6 end

Algorithm 11: PQ window shift used by delete_min.
11.1 Function ShiftWindowDeleteMin(LocalWins):
11.2 for i← 0 to levels do
11.3 if LocalWins[i].version ̸= Windows[i].version then
11.4 break
11.5 end
11.6 if LocalWins[i].max− depth ≤ 0 then
11.7 continue
11.8 end
11.9 NewWin← {version : LocalWins[i].version + 1, max :

LocalWins[i].max− shift}
11.10 CompareAndSwap(Windows[i], LocalWins[i], NewWin)
11.11 break
11.12 end
11.13 end

32

4
Implementing Locks

In this Chapter, the idea of adding locks to the existing data structures found in
the previously presented “2D framework” is explored. The motivation behind this is
to be able to replace the substructure used, and hopefully gain benefits from better
cache locality. Another motivation is that using locks is assumed to work well in the
substructure of the 2D framework, as the window selection tries to keep a thread
local to a substructure when possible, and thus keeping contention limited and the
locks uncontested.

First, the way in which the locks were added to the data structures is presented in
Section 4.1. After this the newly developed substructures, that the addition of the
locks enabled, are presented in Section 4.3.

4.1 Adding locks to the data structures
When performing any operation on one of our developed data structures, a substruc-
ture is selected using the window function, and the corresponding lock is attempted
to be acquired. If acquiring the lock fails, this indicates contention and the window
function is called again to find a new substructure to attempt to lock. This is re-
peated until a lock is successfully acquired. When a lock is successfully acquired,
the change to the substructure is made with the knowledge that there are no other
threads also attempting to change the same substructure. After the change is made,
the lock is released and other threads can acquire it.

The algorithms for doing this are quite similar to the existing algorithms from [1],
covered in 2.4. The two algorithms below, 12 and 13, are general add and remove
algorithms showing the way that locks are used to separate the substructures from
the outer layer while still ensuring that the semantics are followed.

33

4. Implementing Locks

Algorithm 12: Generic Add
using locks

12.1 Function Add(item, ref index):
12.2 possible work before the loop
12.3 Loop
12.4 index← Window(index)
12.5 if trylock(index) fails then
12.6 continue
12.7 end
12.8 if SubStructs[index].count >

global_window.max then
12.9 unlock (index)

12.10 continue
12.11 end
12.12 SubStructs[index].add(item)
12.13 unlock(index)
12.14 return
12.15 EndLoop
12.16 end

Algorithm 13: Generic Re-
move using locks

13.1 Function Remove(ref index):
13.2 possible work before the loop
13.3 Loop
13.4 index← Window(index)
13.5 if trylock(index) fails then
13.6 continue
13.7 end
13.8 if SubStructs[index] is empty

then
13.9 unlock (index)

13.10 return empty
13.11 end
13.12 if SubStructs[index].count <

global_window.min then
13.13 unlock (index)
13.14 continue
13.15 end
13.16 val←

SubStructs[index].remove()
13.17 unlock(index)
13.18 return val
13.19 EndLoop
13.20 end

4.1.1 Stack
In the case of a linked list being the substructure (we will come back to the other
substructures tested later), when pushing to the stack, the node is created first, and
then the loop of calling the window function and trying to acquire the lock starts.
For popping, the window search and lock loop is run first, and when the lock is
acquired, the node is removed from the stack, and only after releasing the lock, the
value is read from the node, which is freed, and the value is returned. With the other
two data structures, there is no work before acquiring the lock, or after releasing it,
so the structure of both is the same; acquire the lock, perform the operation, and
release the lock.

4.1.2 Queue
The queue has two access points per substructure, so when the substructure is a
linked list, two locks are used. These two locks are on either side of the queue, with
one for enqueue operations, and the other for dequeue operations. This ensures
that when the width is small compared to the number of threads using the data
structure, the amount of contention is kept lower than if only a single lock had been
used. Having two locks per substructure means the enqueue and dequeue operations
have to work in such a way that the dequeue operation does not delete a node that
the enqueue operation can potentially reference. This was already solved in the
existing implementation of the 2d-framework, which uses a concurrent MSqueue by

34

4. Implementing Locks

Michael and Scott [9]. Adapting that structure to our needs was easy, as the original
publication contains a version of the same data structure using locks that was used
as inspiration. The queue by Michael and Scott has a dummy node as the head (the
node to be removed), and dequeue operations read the value of the next node, but
delete the dummy node. With this strategy, the node to be removed isn’t the node
that enqueue operations reference (the tail), since there is always a node in between.
When the queue is empty, there is still a dummy node in the structure for enqueue
to reference, and this node is not deleted since it has no ’next’.

4.1.3 Deque
The deque is similar to the queue in having two access points, however, unlike the
queue both ends can be subject to enqueue and dequeue operations. To account for
this, two decoupled windows are used, one for enqueue/dequeue on the left end, and
one for enqueue/dequeue on the right end. Short of this addition, the deque follows
the generic structure for the general add and remove.

4.2 The lock used
To actually perform the locking process, there were a few different possible locks
that could be used. However, it was noted that the only use of locks was done by
trying to acquire the lock, which simplified the possible implementation a lot. To
implement the locking of a boolean representing the lock, two atomic operations in
gcc were used. __atomic_test_and_set tries to set the boolean to true, and
the return value shows whether it successfully did so or not. The __atomic_clear
operation simply clears the boolean which allows other threads to set it using the
first operation.

4.3 The Substructures
The benefit of having a lock, or multiple locks, on each substructure is that the
underlying data structure can be changed from the original lock-free linked list based
version to some other data structure where a lock-free implementation is hard, or
impossible. There could also be some performance benefits gained from other data
structures that offset the lost performance of adding the locks. In this project, we
implemented three different lock-based substructures; a linked list, a dynamic array,
and a list of small arrays. The linked list was included mostly as a comparison point
to the original lock-free version of the framework, where as little as possible was
changed, to be able to in isolation see the effects of adding locks to the code.

4.3.1 (Cyclic) Dynamic array
The motivation behind using an array instead of a linked list was to gain benefits
from data locality on subsequent accesses to the same data structure from the same

35

4. Implementing Locks

thread. The existing framework already keeps each thread local to the same sub-
structure as much as possible to minimize contention, so a cache-friendly structure
like an array should benefit from this too. Since the max number of items in the
data structure is not known at compile time, a dynamic array is used, where the
array is resized to be twice as large when it fills up.

When using an array, there is no work to be done before or after doing the push/pop
operation, so the structure of each operation is the same; acquire the lock, perform
the operation on the array, and release the lock.

For the queue and deque, we use an implementation based on a cyclic dynamic
array. The index of the head and tail elements are kept in two variables, and
these are incremented or decremented when enqueueing or dequeuing items from
the array. When any of these counters reach the beginning or end of the array, they
wrap around and continue from the other end, allowing the array to be reused after
reaching the end, assuming some space has been freed up at the other end. When
the head catches up to the tail the array is full and needs to be re-sized by copying all
of the elements into a new larger array, in the correct order. An example situation
when using the cyclic array can be seen in figure 4.1.

Figure 4.1: A cyclic array with 5 elements. If two more elements
were to be inserted at the head, it would then wrap around and
insert the next item at index 0 of the array. If yet another item
would be attempted to be inserted, the head would catch up to the
tail, and the array would need to be resized by making a new array
and copying over the old array.

4.3.2 List of small arrays
One of the substructures we have tested for the version using locks is a linked list
where elements are small arrays, with sizes aligned to some multiple of the system’s
cache line size1. The idea behind this structure is that it is assumed that it still
benefits from the cache locality of an array, but unlike the dynamic array, where
growing an array usually involves moving large amounts of data in memory, the
addition of elements to the list of small arrays is allocating relatively small amounts
of memory at a time, and there exists no need to copy data around to facilitate
growth. In figure 4.2 the structure of the list of arrays is given. The presented
structure assumes the ability to grow and shrink both the tail and head. If we
instead were implementing this substructure for a stack, we could leave out the
head’s offset, and instead push and pop only at the tail.

The four supported operations are enqueue_tail, dequeue_tail, enqueue_head and
dequeue_head. The behavior of the methods will be to update the tail_block and

1We used 128 bytes, which was two cache-lines in our system.

36

4. Implementing Locks

Figure 4.2: A list of small arrays storing 10 elements spread over 3
arrays. If two more elements were to be enqueued at the head, it
would then create a new array for the next element, with space for
4 elements. An array is deleted when all the items in that array are
deleted from the list of arrays.

head_block pointers when needed by allocating or freeing new blocks. In listing 7
the pseudocode for the four methods has been specified.

enqueue_tail(x): dequeue_tail():
if tail_offset == 0: if tail_offset == ELEMS_PER_BLOCK:

create new block nb ob = tail_block
nb.next = tail_block tail_block = ob->next
nb.prev = NULL tail_block->prev = NULL
tail_block.prev = nb tail_offset = 0
tail_block = nb delete ob
tail_offset = ELEMS_PER_BLOCK

--tail_offset return tail_block.data[tail_offset]
tail_block.data[tail_offset] = x ++tail_offset

enqueue_head(x): dequeue_head():
if head_offset == ELEMS_PER_BLOCK: if head_offset == 0:

create new block nb ob = head_block
nb.next = NULL head_block = ob->prev
nb.prev = head_block head_block->next = NULL
head_block.next = nb head_offset = ELEMS_PER_BLOCK
head_block = nb delete ob
head_offset = 0

head_block.data[head_offset] = x --head_offset
++head_offset return head_block.data[head_offset]

Listing 7: Pseudocode for the four methods of a list of small arrays

37

4. Implementing Locks

38

5
Results

To evaluate the performance of all of the developed data structures, both the priority
queue and the lock-based data structures were compared against existing versions
in benchmarks. For the priority queues developed, these were compared to two
existing relaxed priority queues, MultiQueue and k-LSM, and also the concurrent
priority queue used as the substructure for the skiplist-based relaxed PQ, while the
lock-based structures were compared to the original lock-free versions from [1].

The benchmarks randomly perform operations that add or remove values from the
data structure. For our tests, the percentage of operations adding and removing
elements was set to 50% each, and the data was randomly generated integers. When
the data structure needs multiple values as is the case for the priority queue, the
same integer is used for both the priority and the value. The data structure is primed
with some initial elements to avoid the situation where the data structure is empty
when trying to remove an element, as this would affect the measured performance.

5.0.1 Hardware and settings
The benchmarks were run on a server with two sockets, each with an ‘Intel (R) Xeon
(R) E5-2687W v2 CPU @ 3.40GHz ‘, with 8 cores and 16 threads each. These CPUs
have 32k L1 caches (data and instruction), 256k L2 cache, and 25.6M L3 cache each.
During the benchmarks, a max of 8 cores and 16 threads were used.

The server was running Ubuntu 22.04.2 LTS and the code was compiled using gcc
with optimization level -O3. During the benchmarks, two thread configurations were
run; 8 cores with and without multithreading.

The two developed priority queues were tested with 8 discrete priority levels.

The dynamic array is initialized with a size of 4, and each time it is resized, the new
size is 2x the previous.

The arrays in the list of small arrays can hold 14 items each.

5.1 Priority Queue
Each of the two graphs in figure 5.1 contain 4 different widths for the two developed
priority queues, with these widths being 1x, 2x, 4x, and 8x the number of threads

39

5. Results

used for the benchmark. In addition to these, the substructure used for the skip list
was tested without the relaxation framework, as a comparison. This was run with
a batch deletion size of 16 only and is shown as a horizontal line in the graph. This
batch deletion size is the same size used when the skip list is used as a substructure.
Two existing relaxed priority queues, MultiQueue [17] and k-LSM [16], were also
tested. MultiQueue is also shown as a horizontal line as only one configuration was
run for each thread configuration, while k-LSM was tested for multiple relaxations.
The performance of k-LSM for low relaxations was very low, so to better show the
results of the newly developed data structures, the first data points for k-LSM are
not included.

When looking at the graphs, note that the scales on the y-axis are different between
the two graphs.

It can be seen in the graphs that there is quite a large performance difference between
the two versions developed, with the version using the skip list substructure only
reaching about 25% of the performance of the version using an array of stacks, when
running on 8 threads. The gap between the two versions is not quite as large when
running on 16 threads.

100 101 102 103 104 105 106 107
Relaxation

107

108

Th
ro
ug

hp
ut
 o
p/
s

8c8t

100 101 102 103 104 105 106 107
Relaxation

106

107

108

8c16t

pq-skiplist width 1x
pq width 1x
pq-skiplist width 2x

pq width 2x
pq-skiplist width 4x
pq width 4x

pq-skiplist width 8x
pq width 8x
pq-skiplist depth 1

pq depth 1
Lindén skiplist, batch size 16

k-LSM
multiqueue

Priority Queue, 8 and 16 threads

Figure 5.1: Comparison of the two developed priority queues to the concurrent skip
list, MultiQueue, and k-LSM. Two different thread configurations, 8 cores with 8
threads and 8 cores with 16 threads.

40

5. Results

5.2 Results of adding locks
In the benchmarks for the locks, there were four different configurations, 3 different
new substructures (linked-list, array, and list of small arrays), and the original lock-
free version to compare against. The original version is shown in the graphs as a
dashed line compared to a solid line for the new versions.

5.2.1 Stack
5.2.1.1 Coupled Window

The results for the stack, shown in figure 5.2, show quite different results when
looking at the lower part of the relaxation on each width compared to the higher
end. With low depth, the original implementation performs best, no matter the
width, but for high depths, the newly developed versions using locks overtake the
original in performance.

101 102 103 104 105
k relaxation

107

108

th
ro
ug

hp
ut
 (o

p/
s)

8 threads, width 8

102 103 104 105 106
k relaxation

108

8 threads, width 16

102 103 104 105 106
k relaxation

108

8 threads, width 32

102 103 104 105 106
k relaxation

108

8 threads, width 64

102 103 104 105 106
k relaxation

107

108

th
ro
ug

hp
ut
 (o

p/
s)

16 threads, width 16

102 103 104 105 106
k relaxation

107

108

109
16 threads, width 32

102 103 104 105 106
k relaxation

108

109
16 threads, width 64

103 104 105 106 107
k relaxation

108

109
16 threads, width 128

array linked list list of arrays original

2D stack, coupled window

Figure 5.2: Comparison of performance for Stack, coupled window, for different
widths going from 1x the number of threads up to 8x the number of threads.

41

5. Results

5.2.1.2 Decoupled Window

The results for the decoupled window in figure 5.3 are quite similar to the coupled
window when the width is high, but for low widths, there seems to be a larger
performance difference between the original and the new versions using locks.

102 103 104 105 106
k relaxation

108

th
ro
ug
hp
ut
 (o
p/
s)

8 threads, width 8

102 103 104 105 106
k relaxation

108

8 threads, width 16

102 103 104 105 106
k relaxation

108

8 threads, width 32

103 104 105 106 107
k relaxation

108

8 threads, width 64

102 103 104 105 106
k relaxation

107

108

th
ro
ug
hp
ut
 (o
p/
s)

16 threads, width 16

102 103 104 105 106
k relaxation

107

108

16 threads, width 32

103 104 105 106 107
k relaxation

107

108

16 threads, width 64

103 104 105 106 107
k relaxation

107

108

16 threads, width 128

array linked list list of arrays original

2D stack, decoupled window

Figure 5.3: Comparison of performance for Stack, decoupled window, for different
widths going from 1x the number of threads up to 8x the number of threads.

42

5. Results

5.2.2 Queue
The results for the queue are shown in figure 5.4.

An interesting result for the queue is the performance of the linked list with a very
low width and depth when running the 8 cores, 8 threads configuration. For these
settings, the performance of the linked list implementation is far above that of both
of the array-based data structures that we added. This is likely due to the extra
access points to the substructure, provided by the use of two locks per substructure
in the version using locks, which can also be done on the lock-free original.

When looking at the higher relaxations, especially the higher depths, the array-
based data structures show some quite impressive improvements over the original
implementation. In the 16 threads, 128 width configuration, the speedup of the
array compared to the original reaches an impressive 7.6x speedup for the largest
relaxation. This is the highest speedup of any program and version tested.

101 102 103 104 105
k relaxation

107

th
ro
ug

hp
ut
 (o

p/
s)

8 threads, width 8

101 102 103 104 105
k relaxation

107

108

8 threads, width 16

102 103 104 105 106
k relaxation

108

8 threads, width 32

102 103 104 105 106
k relaxation

108

8 threads, width 64

101 102 103 104 105
k relaxation

107

th
ro
ug

hp
ut
 (o

p/
s)

16 threads, width 16

102 103 104 105 106
k relaxation

107

108

16 threads, width 32

102 103 104 105 106
k relaxation

107

108

16 threads, width 64

102 103 104 105 106
k relaxation

107

108

16 threads, width 128

array linked list list of arrays original

2D queue, decoupled window

Figure 5.4: Comparison of performance for the queue with different relaxation, for
different widths going from 1x the number of threads up to 8x the number of threads,
shown from left to right. The top row uses 8 cores and 8 threads while the bottom
row uses 8 cores and 16 threads.

43

5. Results

5.2.3 Deque
The relaxed deques developed and the original all show some quite odd results. This
section will focus on presenting interesting features when comparing the developed
versions to the original, while comments on the general oddities are presented in
Chapter 6. Due to these oddities, and thus uncertainty about the results, this
section is a bit short.

When looking at the results for the deque in figure 5.5, the original performs a lot
better than the versions using locks for low widths, with the versions using locks
quickly surpassing the original in performance once width increases. This indicates
that the lock-free version doesn’t scale as well, since even the version using locks and
linked lists improve a lot more in performance compared to the original for larger
widths.

102 103 104 105 106

k relaxation

107

8×106

9×106

th
ro

ug
hp

ut
 (o

p/
s)

8 threads, width 8

102 103 104 105 106

k relaxation

1.4×107

1.6×107

1.8×107

2×107

2.2×107

8 threads, width 16

102 103 104 105 106

k relaxation

2×107

3×107

4×107
8 threads, width 32

103 104 105 106 107

k relaxation

3×107

4×107

6×107

8 threads, width 64

102 103 104 105 106

k relaxation

107

3×106

4×106

6×106

th
ro

ug
hp

ut
 (o

p/
s)

16 threads, width 16

102 103 104 105 106

k relaxation

107

3×106

4×106

6×106

2×107
16 threads, width 32

103 104 105 106 107

k relaxation

107

16 threads, width 64

103 104 105 106 107

k relaxation

107

16 threads, width 128

array linked list list of arrays original

2D deque, decoupled window

Figure 5.5: Comparison of performance for Deque, decoupled window, for different
widths going from 1x the number of threads up to 8x the number of threads.

44

6
Conclusion

Our developed priority queue shows promising performance in our tests, as presented
in the results. However, it should be noted that due to the PQ’s fixed level of
priorities there is a functional difference to those priority queues which can have
arbitrary “key values”. Furthermore, our relaxation depends on the fixed number of
supported priorities, which may make our PQ unsuited for some use cases.

A possible use case where our PQ would be useful is if the possible priority levels are
easily enumerable, such as for a scheduler with a low number of possible priorities.
If the priorities are not easily enumerable, such as if the priority is a float, then
our approach wouldn’t work at all. This could be the case for some kind of graph
algorithm where the distance to a node is used as the priority.

Also, due to lack of time, we have not properly been able to test how performance
scales with the fixed number of priorities. It is quite likely, due to the selection
algorithm, that a much larger number of fixed priority levels would result in a drastic
performance downgrade. This, however, has not been tested. Similarly, in our
priority queue test, Multiqueue which is likewise tunable (by varying e.g. the number
of copies per thread), was only tried in its “default” configuration. To summarize, we
believe further testing of how the tunable parameters alter the relative performance
of the priority queues in our result, would be of interest.

In the results of the substructures using locks, the array appears to be the clear
winner, with the list of arrays being second and the linked list being definitively
last among the new substructures. The result of the linked list performing worse
was as we predicted, as part of the idea behind adding locks was seeing the effect
of cache locality, for which the array structure has the advantage. Previously we
mentioned using a list of small arrays as allowing us to combine cache locality
together with avoiding the large delays associated with the dynamic array’s grow
and shrink operations. It should be noted that due to how the tests were conducted,
this benefit was not expected to manifest. This is because the tests prefill the
structures with a large amount of data and then perform insertion and deletion
with equal probability. This results in the dynamic array never needing to grow
(and similarly it was not made to shrink), and as such the results are biased towards
the dynamic array. This means while we believe it possible to conclude that the
cache locality of the array versions is a clearly distinguishable factor, we are unable
to draw conclusions about the performance of the dynamic array versus the list of
arrays for all but our limited test case.

45

6. Conclusion

When shifting the focus to compare the new data structures to the original versions,
we can see that there are cases for all types of data structures where the new sub-
structures outperform the original when using high relaxation. This is especially
clear for the array, but the other data structures also outperformed the original in
some cases. One surprising result was that the linked list using locks outperformed
the original in some benchmarks, for example, the stack with a coupled window,
where the high width and depth results indicated that no performance was lost
when adding the locks, and even a small improvement in performance was seen.

During the development of the substructures using locks, a few different locks were
tested to see if performance varied. For some reason the performance of the mutex
lock in the pthread library performed a lot worse than any of the other locks in that
library or the lock that was ultimately used. Since it was realized that the only use
of locks is in a try-lock manner, this low performance was not further investigated
and instead the method of handling the lock described in Section 4.2 was used.

It could be clearly seen in the results for the deque in the 2D framework that the
behavior is quite odd. Since this is not only for our new implementations, but also
the original, it is thought to be related to how the substructure selection algorithm
works, but this has not been investigated further.

6.1 Future Work
The developed priority queues only have support for a fixed number of priorities.
Further development to remove this limitation would be of interest. Our current
idea how this may be done is to still retain the notion of one window per priority,
but instead of precreating them one would dynamically allocate the windows for
a priority the first time it is needed. This means the windows could no longer be
kept in an array but instead a data structure with fast key-based lookup would be
needed, e.g. a tree or hash-map. When a thread would insert into a new priority
level, a window would be created and added to the lookup structure. Once the
priority level becomes empty (from delete_min), the corresponding window would
probably either need to be removed, or considered for deletion at some later stage
if not reused, to avoid the overall size of the priority queue becoming problematic.
Furthermore, the substructures would need to also be made more dynamic. For
example, instead of an array of stacks as our first presented version was using, a
tree or hash-map of stacks could be employed, where the key would be the priority
level. For the version that uses Lindén’s skip list, the substructure already supports
arbitrary priority keys.

During this work, the relaxation bounds have been calculated for the developed
priority queues, but they have not been tested empirically. This would be of interest
to test, especially to compare the two versions, and to others, since the one based
on a skip list can return a better value than expected, which could potentially affect
the rank errors observed.

In the testing of locks, the data structures of the original paper were used for the
experimentation. However, we never had the time to try adding locks to the newly

46

6. Conclusion

developed priority queues (and replacing the substructure to be something else).
This could be of interest to do. Even if there is performance degradation, it would
be possible to choose a substructure that defines local ordering within priority levels.
While this would not ensure an over-all order, it may alleviate the potential problem
of some elements being “stuck” for a longer duration. For some uses this may be an
interesting trade-off.

As mentioned earlier, the tests used did not let us truly see if our ideas about the
list of small arrays are true or false. Unfortunately, we did not have the time to
address this shortcoming. In order to do so, we would have liked to develop tests
that try varying types of usage cases, including but not limited to: tests with no
prefill, tests with small total size, tests with high ratio of insertions, tests with high
ratio of deletions and tests with “streaks” of insertions and deletions.

In addition to the ways that we implemented locks for the existing data structures
in the 2d framework, there were a few other ideas that were never implemented
due to time restrictions. One of these was to have a lock on every node in the
list of arrays. In the case of the queue or dequeue, this would enable concurrent
add/remove operations on each end. This was not able to be implemented in the
time scope of the project.

The results for the list of small arrays were for a configuration using 2 cache lines
for each node, meaning 14 elements on our machine. It might be of interest to look
at what the performance impact would be of changing this parameter to a larger
value, and if that perhaps could close the gap to the cyclic array when there are
more opportunities for cache locality.

6.2 Final words
In this thesis we have developed a new, lock-free and concurrent priority queue
that compares well with other established relaxed priority queues, such as k-LSM
and Multiqueue, but with the caveat that the number of priorities must be fixed
beforehand. And the relaxation and performance will vary with this fixed number
of priorities.

By introducing locks, and the use of arrays, extra performance can be gained for
relaxed data structures, especially when there is low contention and a thread is
allowed to continue working on the same array.

47

6. Conclusion

48

Bibliography

[1] A. Rukundo, A. Atalar, and P. Tsigas, “Monotonically relaxing concurrent
data-structure semantics for performance: An efficient 2d design framework,”
CoRR, vol. abs/1906.07105, 2019. arXiv: 1906 . 07105. [Online]. Available:
http://arxiv.org/abs/1906.07105.

[2] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear, The Art of Multiprocessor
Programming, 2nd ed. Morgan Kaufmann, 2020.

[3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M.
Vechev, “Laws of order: Expensive synchronization in concurrent algorithms
cannot be eliminated,” SIGPLAN Not., vol. 46, pp. 487–498,

[4] N. Shavit, “Data structures in the multicore age,” Communications of the
ACM, vol. 54, no. 3, pp. 76–84, 2011.

[5] Y. Afek, G. Korland, and E. Yanovsky, “Quasi-linearizability: Relaxed consis-
tency for improved concurrency,” in Principles of Distributed Systems: 14th
International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17,
2010. Proceedings 14, Springer, 2010, pp. 395–410.

[6] H. Attiya and J. L. Welch, “Sequential consistency versus linearizability,”
ACM Transactions on Computer Systems (TOCS), vol. 12, no. 2, pp. 91–122,
1994.

[7] von Geijer, Kåre, Highly Scalable Queues and Stacks with Elastic Relaxation,
eng, Student Paper, 2022.

[8] R. K. Treiber, Systems programming: Coping with parallelism. International
Business Machines Incorporated, Thomas J. Watson Research, 1986.

[9] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms,” in Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing, 1996, pp. 267–275.

[10] M. M. Michael, “Cas-based lock-free algorithm for shared deques,” in Euro-Par
2003 Parallel Processing: 9th International Euro-Par Conference Klagenfurt,
Austria, August 26-29, 2003 Proceedings 9, Springer, 2003, pp. 651–660.

[11] J. Biswas and J. C. Browne, “Simultaneous update of priority structures,”
Texas Univ., Austin (USA). Dept. of Computer Sciences, Tech. Rep., 1987.

[12] A. Israeli and L. Rappoport, “Efficient wait-free implementation of a con-
current priority queue,” in Distributed Algorithms: 7th International Work-
shop, WDAG’93 Lausanne, Switzerland, September 27–29, 1993 Proceedings
7, Springer, 1993, pp. 1–17.

49

https://arxiv.org/abs/1906.07105
http://arxiv.org/abs/1906.07105

Bibliography

[13] N. Shavit and I. Lotan, “Skiplist-based concurrent priority queues,” in Pro-
ceedings 14th International Parallel and Distributed Processing Symposium.
IPDPS 2000, IEEE, 2000, pp. 263–268.

[14] J. Lindén and B. Jonsson, “A skiplist-based concurrent priority queue with
minimal memory contention,” in Principles of Distributed Systems: 17th In-
ternational Conference, OPODIS 2013, Nice, France, December 16-18, 2013.
Proceedings 17, Springer, 2013, pp. 206–220.

[15] I. Calciu, H. Mendes, and M. Herlihy, “The adaptive priority queue with elim-
ination and combining,” in Distributed Computing: 28th International Sym-
posium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings 28,
Springer, 2014, pp. 406–420.

[16] M. Wimmer, J. Gruber, J. L. Träff, and P. Tsigas, “The lock-free k-lsm relaxed
priority queue,” ACM SIGPLAN Notices, vol. 50, no. 8, pp. 277–278, 2015.

[17] H. Rihani, P. Sanders, and R. Dementiev, “Multiqueues: Simple relaxed con-
current priority queues,” in Proceedings of the 27th ACM symposium on Par-
allelism in Algorithms and Architectures, 2015, pp. 80–82.

50

	List of Figures
	List of Algorithms
	Introduction
	Background
	Briefly on Concurrent Programs
	Lock-free
	Semantic Relaxation
	2D framework
	Lock-free stack example, continued
	The 2D framework's stack
	The 2D framework's queue
	The framework's deque

	Priority Queue
	Related works

	Relaxed Priority Queue
	The idea
	Substructure
	Window algorithm
	Correctness
	Using a skip list as the substructure
	Substructure
	Comments about linearization
	Analysis of bound

	Implementing Locks
	Adding locks to the data structures
	Stack
	Queue
	Deque

	The lock used
	The Substructures
	(Cyclic) Dynamic array
	List of small arrays

	Results
	Hardware and settings
	Priority Queue
	Results of adding locks
	Stack
	Coupled Window
	Decoupled Window

	Queue
	Deque

	Conclusion
	Future Work
	Final words

	Bibliography

