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Evaluating and optimizing Transformer models for predicting chemical reactions
An analysis for assessing and improving the effectiveness of the Chemformer model
in retrosynthesis
Siva Manohar Koki & Supriya Kancharla
Department of Computer Science and Engineering
University of Gothenburg and Chalmers University of Technology

Abstract
In this thesis, we assess the effectiveness of a transformer model specifically trained
to predict chemical reactions. The model, named Chemformer, is a sequence-to-
sequence model that uses the transformer’s encoder and decoder stacks. Here, we
employ a pre-trained Chemformer model to predict single-step retrosynthesis and
evaluate its performance for diverse chemical reaction categories using various met-
rics such as Top-k accuracies, and Tanimoto similarity. We compare and analyse
the results of the evaluations to those of the present template-based model. Based
on the findings of the analysis, we fine-tuned the Chemformer model for specific
chemical reactions, such as Ugi, Suzuki-Coupling, Rearrangement, Diels-Alder and
Ring-Forming. In this project, we address five research questions, including whether
the Chemformer model has higher accuracy than template-based model, which reac-
tions it performs better and worse on top-k accuracies, the level of diversity in the
results, and what fine-tuning strategies should be employed to enhance its perfor-
mance. Using attention-based explainable AI, we scrutinize the input features that
impact the transformation in the produced molecule. The results presented here
may be used in the future to design fine-tuning strategies.

The evaluation results of pre-trained Chemformer model yields average Top-k ac-
curacies across most of the reaction classes suggesting that the model struggles to
accurately predict the reactions on in-house test data. When evaluating the model’s
performance on USPTO data, we found similar results. While the results demon-
strate that the pre-trained model outperforms the template-based model, there is
still potential for enhancing its performance. This potential for further improve-
ment paves the way for the fine-tuning process. By applying fine-tuning to specific
sub-tasks such as Ugi, Suzuki-Coupling etc., we managed to significantly enhance
the model’s performance. The fine-tuned model consistently outperforms the both
pre-trained and template-based models, exhibiting a notable 50% improvement in
accuracy over the pre-trained model. This substantial progression reinforces the
effectiveness of transfer learning as a powerful approach for enhancing Chemformer
models.

Keywords: Chemformer, transformer, evaluation, explainable AI, fine-tuning, ma-
chine learning.

v





Acknowledgements
We would like to express our gratitude to our supervisors at AstraZeneca, Samuel
Genheden, and Annie Westerlund, for creating the groundwork for our thesis and
providing us with exceptional support throughout the project. Their guidance and
feedback have been instrumental in the project’s success so far. Also, we extend our
appreciation to our supervisor, Rocio Mercado, and examiner, Ola Engkvist, from
the Department of Computer Science and Engineering at Chalmers and GU, for
their valuable guidance, advice, and feedback throughout the process. Thank you
all for your assistance in helping us achieve our goals.

Siva Manohar Koki and Supriya Kancharla, Gothenburg, April 2023

vii





Contents

List of Figures xi

List of Tables xv

xvii

1 Introduction 1
1.1 Retrosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computer-aided Restrosynthesis prediction . . . . . . . . . . . . . . . 2

1.2.1 Template based approach . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Template free approach . . . . . . . . . . . . . . . . . . . . . . 3

1.3 SMILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Chemformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sequence-to-sequence models . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Input embedding . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Scaled dot product attention . . . . . . . . . . . . . . . . . . . 10
2.3.3 Multi-head attention . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Overall model architecture . . . . . . . . . . . . . . . . . . . 11

2.4 Retrosynthesis with Transformers . . . . . . . . . . . . . . . . . . . . 12
2.5 Chemformer-based Pre-trained Model . . . . . . . . . . . . . . . . . . 13
2.6 Sequence-to-sequence fine-tuning . . . . . . . . . . . . . . . . . . . . 13
2.7 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Top-k accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.2 Tanimoto Similarity . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.3 Fraction Invalid . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.4 Diversity score . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Explainable AI for NLP . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



Contents

3 Methods 19
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Pre-processing Datasets . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Datasets Preparation . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Proportion of reaction classes in datasets . . . . . . . . . . . . 20

3.1.4.1 Proportion of reaction classes in the in-house dataset 21
3.1.4.2 Proportion of reaction classes in the USPTO dataset 22

3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results 25
4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Evaluation on overall and specific reaction classes for in-house
test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Evaluation on overall and specific reaction classes for USPTO
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3 Fraction Invalid . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Chemformer vs template-based performance on an in-house

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.5 Chemformer vs template-based performance on USPTO data . 31
4.1.6 Evaluation on other reaction classes . . . . . . . . . . . . . . . 32

4.1.6.1 In-house: Best and worst performing five reactions . 33
4.1.6.2 USPTO: Best and worst performing five reactions . . 33

4.1.7 Diversity score on overall in-house test set . . . . . . . . . . . 34
4.2 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Fine-tuning on in-house and USPTO dataset . . . . . . . . . . 35
4.2.2 Chemformer accuracies before and after fine-tuning on an in-

house dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Chemformer accuracies before and after fine-tuning on an USPTO

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 In-house: Fine-tuned Chemformer vs template-based model . . 37
4.2.5 USPTO: Fine-tuned Chemformer vs template-based model . . 38

4.3 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 41
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

A Appendix 1 I

x



List of Figures

1.1 An example of a retrosynthesis reaction. The target compound is
shown on the left side of the arrow, while possible reactants can be
found on the right. The corresponding SMILES notations for each of
these compounds are also displayed. Figure taken from [7]. . . . . . . 2

1.2 SMILES notation for Aspirin. The Aspirin SMILES string represents
a molecule known as phenylacetic acid. It consists of a phenyl ring
(c1ccccc1) bonded to an acetic acid moiety (CC(=O)O). Figure taken
from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The Transformer model architecture, where the left and right halves
illustrate how the encoder and decoder of the Transformer, respec-
tively, work using point-wise, fully-connected layers with stacked self-
attention. Figure taken from [39]. . . . . . . . . . . . . . . . . . . . . 9

2.2 The multi-head attention scheme, where multiple heads are concate-
nated and then linearly transformed. . . . . . . . . . . . . . . . . . . 12

2.3 Illustration of the pre-training and fine-tuning processes for down-
stream tasks, where pre-training refers to training the model on As-
traZeneca in-house data prior to fine-tuning its weights for specific
chemical reactions. Figure taken from [21]. . . . . . . . . . . . . . . . 14

3.1 The figure displays the percentage distribution of specific reaction
classes within the in-house dataset. The proportions are determined
in relation to the total count of approximately 18 million data points
in the in-house dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The figure displays the percentage distribution of specific reaction
classes within the in-house dataset. The proportions are determined
in relation to the total count of approximately 186k data points in
the in-house dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The figure displays the percentage distribution of specific reaction
classes within the USPTO dataset. The proportions are determined
in relation to the total count of approximately 1.2 million data points
in the USPTO dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



List of Figures

4.1 Box plots illustrating the various evaluation scores for the pre-trained
Chemformer model when assessed on an in-house dataset. The up-
per plot illustrates the Top-k accuracy metrics and the lower graph
presents the Tanimoto Similarity, followed by the Fraction Invalid and
Fraction Unique values. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Box plots illustrating the various evaluation scores for the pre-trained
Chemformer model when assessed on overall USPTO data. The up-
per plot illustrates the Top-k accuracy metrics and the lower graph
presents the Tanimoto Similarity, followed by the Fraction Invalid and
Fraction Unique values. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 This is an example reaction for Suzuki-Coupling from USPTO dataset,
which is a true reaction. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 This is an example reaction for Suzuki-Coupling from USPTO dataset,
which is a predicted reaction. . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Bar plots illustrating the fraction of invalid SMILES by pre-trained
Chemformer model on in-house and USPTO datasets respectively.
Other reactions that are not part of this plot have zero Fraction Invalid. 29

4.6 Radar plot illustrating the evaluation scores for the pre-trained Chem-
former model and template-based model when assessed on an in-house
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Radar plot illustrating the evaluation scores for the pre-trained Chem-
former model and template-based model when assessed on USPTO
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Bar plots illustrating the evaluation scores for the pre-trained Chem-
former model compared with template-based model on an in-house
dataset. First sub plot illustrates best 5 reactions and second sub
plot illustrates least 5 reactions. . . . . . . . . . . . . . . . . . . . . . 33

4.9 Bar plots illustrating the evaluation scores for the pre-trained Chem-
former model compared with template-based model on USPTO dataset.
First sub plot illustrates best 5 reactions and second sub plot illus-
trates least 5 reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 The diversity score distribution plot visualizes the distribution of di-
versity scores, illustrating the spread and concentration of diversity
across the Inhouse test set. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.11 Box plots illustrating the various evaluation scores for the fine-tuned
Chemformer model when assessed on an in-house and USPTO dataset. 36

4.12 Radar plot illustrating the evaluation scores for the fine-tuned Chem-
former model and template-based model when assessed on an in-house
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.13 Radar plot illustrating the evaluation scores for the fine-tuned Chem-
former model and template-based model when assessed on USPTO
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.14 Explainable AI: Heat map representing attention scores for target and
predicted SMILES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.15 Atom Mapping: Heat map representing atoms that are corresponding
to each other that are highlighted with dark portion. . . . . . . . . . 40

xii



List of Figures

A.1 Bar plot illustrate the top-1 and top-10 accuracies for the pre-trained
Chemformer model and Template-based model when assessed on an
In-house dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

A.2 Bar plot illustrate the top-1 and top-10 accuracies for the pre-trained
Chemformer model and Template-based model when assessed on an
USPTO dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

xiii



List of Figures

xiv



List of Tables

4.1 Chemformer accuracies before and after fine-tuning on in-house dataset 37
4.2 Chemformer accuracies before and after fine-tuning on USPTO dataset 37

xv



List of Tables

xvi



List of Tables

xvii



List of Tables

xviii



1
Introduction

In this chapter, we begin by providing background information on retrosynthesis,
computer-aided retrosynthesis, SMILES, Chemformer, and both template-based and
template-free approaches, which are all essential topics for our thesis. Following that,
we will outline the thesis objectives and present our research questions. Lastly, we
will address the limitations of the thesis and provide an overview of the remaining
sections of the report.

1.1 Retrosynthesis

Synthesis planning is a process to determine how to synthesize a chemical compound
from available starting materials [1]. A reverse method called retrosynthetic analy-
sis starts with the desired product and works backward to identify the sequence of
simpler molecules, called reactants, that can be combined to make the product. The
concept of retrosynthesis was pioneered by E.J. Corey, who received the Nobel Prize
in Chemistry in 1990 for his contributions to the theory and methodology of organic
synthesis [2]. This process is used to plan the synthesis of chemical compounds from
available starting materials. Retrosynthesis is a critical aspect of organic chemistry,
involving the strategic dissection of complex target molecules into simpler precur-
sors (simpler building blocks generated by breaking complex molecules) to facilitate
their synthesis [3] through a series of reverse synthetic steps as shown in Figure 1.1,
guided by established disconnection rules and strategic bond disconnections [4], [5].
As a fundamental tool in the design and planning of synthetic routes, retrosynthetic
analysis has significantly impacted various fields, including drug discovery, materials
science, and natural product synthesis [4], [6]. Ultimately, the goal is to identify a
practical and efficient synthetic pathway that yields the target molecule from readily
available starting materials.
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1. Introduction

Figure 1.1: An example of a retrosynthesis reaction. The target compound is shown
on the left side of the arrow, while possible reactants can be found on the right. The
corresponding SMILES notations for each of these compounds are also displayed.
Figure taken from [7].

1.2 Computer-aided Restrosynthesis prediction
A Computer-aided retrosynthesis prediction is a computational approach for design-
ing efficient synthetic routes for complex organic molecules [8]. The introduction of
machine learning techniques has significantly improved the capabilities, scalability,
and generalizability of computer-aided retrosynthesis systems, leading to better pre-
dictions, more efficient route planning, and accelerated discovery in chemistry. It
involves using machine learning algorithms to learn from a large database of known
chemical reactions and then using this knowledge to propose retro-synthetic steps
for a given target molecule.

Computer-aided retrosynthesis prediction has the advantage of significantly speeding
up the drug discovery process by quickly identifying viable synthetic routes for
a target molecule. This is especially important because wet-lab experiments to
identify viable synthetic routes can be time-consuming and expensive [9], and using
computational tools can help to prioritize which routes are worth pursuing in the
lab. It also has the potential to reduce the cost of drug development by minimizing
the number of synthetic steps required to produce the desired compound. Several
companies and research groups are currently developing and refining computer-aided
retrosynthesis prediction tools [10]. These tools are expected to become increasingly
important in the drug discovery process as computational methods continue to play
an ever larger role in the field of chemistry.

Computer-aided retrosynthesis prediction involves both template-based and template-
free approaches [11]. These two approaches will be detailed further below.

1.2.1 Template based approach
The template-based approach [12] is a widely used method in several gold standard
models [13] for retrosynthesis prediction. This approach was one of the initial ap-
proaches used in retrosynthesis prediction and it involves using a library of known
reactions and retrosynthetic transformations [14].

2



1. Introduction

While the template-based approach is a relatively simple and straightforward method,
it has limitations, such as the availability and accuracy of the reaction database used
to generate the templates. However, it still remains a useful and effective approach
for generating potential synthetic routes. Several gold standard models for retrosyn-
thesis prediction, such as Chemetica [15], have incorporated the template-based
approach into their algorithms. These models have been trained on large datasets
of known reactions and have been shown to achieve high accuracy in predicting
synthetic routes for a given target molecule.

1.2.2 Template free approach
The template-free approach [11] does not rely on pre-defined templates. Instead,
these methods utilize machine learning algorithms and other computational tech-
niques to learn the underlying chemical patterns and transformations directly from
the data. One application of template-free approaches is the generation of new re-
actant SMILES (Simplified Molecular Input Line Entry System) for a given target
molecule. SMILES Figure 1.2 are compact and standardized textual representations
of chemical structures and are widely used in chemical informatics and drug discov-
ery. These models can automatically learn the transformations without relying on
predefined templates.

There are several types of template-free approaches used in retrosynthesis prediction,
including, graph-based models [16] and machine learning-based models [12]. For e.g.,
graph-based models use graph theory to represent chemical structures and reactions
as graphs and these models suggest reactants typically using graph-convolutional
neural networks which performs convolution-like operation on the graph (e.g. Local-
Retro [17], Variational Graph Neural Networks [18]) Machine learning-based models
such as Molecular Transformer [19], DeepSMILES [20], and Chemformer [21] use su-
pervised or unsupervised algorithms to learn patterns.

Template-free approaches have several advantages over template-based approaches,
including their ability to predict complementary and more complex reactions sug-
gested by template-based approaches. However, they also have limitations, such as
the quality and quantity of the training data is much more limited. Despite these
limitations, template-free approaches are a promising area of research in retrosyn-
thesis prediction and are being actively developed and improved [21].

1.3 SMILES
The chemical notation system SMILES (Simplified Molecular Input Line Entry Sys-
tem) was created for contemporary chemical information processing. SMILES, which
uses molecular graph theory as its foundation, enables rigorous structural specifica-
tion through the use of an extremely compact and intuitive grammar. It is a linear
notation that uses symbols and characters to denote atoms, bonds, and other struc-
tural features. SMILES notation is widely used in chemical databases and computa-
tional chemistry applications because of its concise and unambiguous representation
of molecular structures [22]. In SMILES notation, each atom is represented by its

3



1. Introduction

atomic symbol, while bonds between atoms are denoted by various characters such
as hyphens and equals signs. Other characters are used to describe ring structures,
branching, and other molecular features. SMILES representation for molecules is as
shown in Figure 1.2. High-speed machine processing works nicely with the SMILES
notation scheme. Numerous highly effective chemical computer applications, such
as the creation of a distinctive notation, constant-speed (zeroth order) database
retrieval, flexible substructure searching, and property prediction models, can be
designed which results to the ease of use by the chemist and machine compatibility.

The SMILES notation is easily accessible to chemists, yet flexible enough to allow
interpretation and generation of chemical notation independent of the specific com-
puter system in use [23]. Similar to conventional chemical notation, it improves on
conventional software methods by greater speed and better use of computer capac-
ity. Molecular structures are uniquely and accurately specified and can be used with
chemical databases.

Figure 1.2: SMILES notation for Aspirin. The Aspirin SMILES string represents
a molecule known as phenylacetic acid. It consists of a phenyl ring (c1ccccc1) bonded
to an acetic acid moiety (CC(=O)O). Figure taken from [24].

1.4 Chemformer
Chemformer [21] is built on the BART (Bidirectional and Auto-Regressive Trans-
former [25]) language paradigm, which makes use of the Transformer’s encoder and
decoder stacks. Since the input sequences to the encoder and decoder are treated in-
dividually, which lowers the amount of computing required in comparison to a model
that processes both sequences together. Therefore it is extremely ideal for seq2seq
tasks like reaction prediction and molecular optimization. By utilizing merely the
encoder stack, the BART paradigm can also be easily applied to exclusionary tasks.
Examples of such tasks include classification [26] and similarity search [27].

1.5 Aim
The primary objective of this thesis is to assess and enhance the efficacy of the
Chemformer model for predicting chemical reactions. To accomplish this, we em-
ploy the Chemformer model fine-tuned for the retrosynthesis task [19], and evaluate

4



1. Introduction

its performance for diverse chemical reaction categories using various metrics. The
results of the evaluations are then compared to those of the present template-based
model. By employing attention-based explainable AI, we scrutinize the input fea-
tures that impact the transformation in the produced molecule by producing heat
maps. Based on the findings of the analysis, we fine-tune the Chemformer model for
specific chemical reactions, such as Ugi, Suzuki-Coupling, Diels Alder, ring-forming
and rearrangement.

1.5.1 Research questions
1. How does the performance of Chemformer compare to existing template-based

models?

2. For which reactions does Chemformer perform better, and for which reactions
does it perform poorly and why?

3. What is the level of diversity in the results generated by Chemformer?

4. Can Explainable AI help us understand and validate the model predictions?

5. Can we enhance the Chemformer’s performance on specific reaction classes by
employing fine-tuning?

1.6 Limitations
In the case of the Transformer model, transfer learning [26] is the most commonly
used strategy, wherein the Chemformer model is pre-trained on a comprehensive
and varied collection of chemical reactions and subsequently fine-tuned on a specific,
smaller set of reactions. This approach can enhance the model’s ability to general-
ize and improve its performance on particular reaction categories. However, other
strategies, such as Multi-Task Fine-tuning [28], Data Augmentation [29], and En-
semble Fine-tuning [30], have also proven effective in boosting model performance.
However, due to time constraints, we will only employ transfer learning to address
our research queries in this thesis paper. For more investigation, these other ap-
proaches will be described under future work in the conclusion chapter.

1.7 Thesis Outline
The first chapter provides a concise summary of retrosynthesis, Chemformer, and
the template-free approach. Our research scope and the constraints of the thesis
have also been outlined.

• In the theory section, we will provide an overview of seq2seq models, AiZyn-
thFinder, and SMILES. We will also provide in-depth background into the
Transformer model, Retrosynthesis with transformers, various evaluation met-
rics, different chemical reactions, attention as an explainability method, and
seq2seq fine-tuning in greater detail.

5



1. Introduction

• In the methods section, we will outline our methodology for data preparation,
discuss the specific chemical reactions that are the focus of this thesis, and
detail the implementation of our model.

• In the results section, the findings of our study will be presented and their
implications for the research questions will be discussed.

• In the conclusion section, the main conclusions and potential approaches for
future work are proposed.

6



2
Theory

In this chapter, we have provided a background for all the topics this thesis will
address. We begin with highlighting specific chemical reactions of interest followed
by Sequence-to-sequence models. Then, we introduce the currently most common
transformer architecture for sequence-to-sequence problems. We first describe the ar-
chitecture of the Transformer model in detail and then explain how the Transformer
model is used for retrosynthesis prediction and how the model was pre-trained. Sub-
sequently, We will provide a concise overview of various evaluation metrics and in
the final sections, we will discuss explainable AI for natural language processing and
the fine-tuning of sequence-to-sequence models.

2.1 Chemical Reactions
Chemical reactions involve the transformation of chemical substances into new sub-
stances with different chemical and physical properties and can be classified into
several categories based on the changes that occur in the reactants and products.
Ring-Forming reactions cleave cyclic compounds to form open-chain or linear struc-
tures[31], while rearrangement reactions involve the rearrangement of atoms or func-
tional groups to form a different isomer or structural variant [32]. The Suzuki cou-
pling reaction is a versatile cross-coupling method for the formation of carbon-carbon
bonds between aryl or vinyl halides and organoboron compounds. It has broad sub-
strate scope, mild reaction conditions, and is widely used in organic synthesis. [33],
while Diels-Alder reactions involve the addition of a conjugated diene to an alkene
to form a cyclic compound with a six-membered ring [34]. Finally, Ugi reactions
synthesize peptidomimetic compounds from an aldehyde, an amine, an isocyanide,
and a carboxylic acid via a four-component condensation process, and are widely
used in drug discovery and development due to their efficiency and versatility [35].

2.2 Sequence-to-sequence models

Sequence-to-sequence (seq2seq) models are a type of deep learning model that can
learn to map an input sequence to an output sequence, typically of a different length
or format. seq2seq models are widely used in natural language processing (NLP)
tasks such as machine translation, text summarization, and chatbot generation.
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The basic architecture of a seq2seq model consists of two recurrent neural networks
(RNNs) - an encoder RNN and a decoder RNN. The encoder RNN reads the input
sequence and produces a fixed-length representation of the input called the context
vector, which is used by the decoder RNN to generate the output sequence [36].

At each time step t, the encoder RNN takes in the input sequence xt and the previous
hidden state ht−1 and produces the current hidden state ht using the following
equation:

ht = fenc(xt, ht−1) where fenc is the encoder RNN function.

The final hidden state of the encoder RNN, hT , is used as the context vector c to
initialize the decoder RNN. At each time step t’ in the output sequence, the decoder
RNN takes in the previous output yt′−1 and the previous hidden state ht′−1 and
produces the current output yt′ and the current hidden state ht′ using the following
equations:

ht′ = fdec(yt′−1, ht′−1, c)

yt′ = g(ht′)

where fdec is the decoder RNN function,

g is a function that maps from ht′ to yt′ ,

and c is the context vector produced by the encoder RNN.

One of the key advantages of seq2seq models is that they can handle input and
output sequences of variable lengths [37]. This makes them particularly useful for
tasks such as machine translation, where the length and structure of the input and
output sentences can vary widely. seq2seq models can also learn to capture the
context and meaning of a sentence, which can be challenging for traditional rule-
based or statistical NLP models.

Seq2seq models can be further enhanced with various techniques, such as attention
mechanisms that allow the decoder to selectively focus on different parts of the input
sequence when generating the output sequence. Other improvements include using
bidirectional RNNs to capture both past and future context or using convolutional
neural networks (CNNs) as an alternative to RNNs for sequence modeling [38].

2.3 Transformer
The Transformer employs the encoder-decoder architecture and leverages the atten-
tion mechanism [38], which gives more weight to certain components of the input.
The attention mechanism operates in three ways: self-attention in the encoder, self-
attention in the decoder, and cross-attention between the encoder and decoder[26].
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Figure 2.1: The Transformer model architecture, where the left and right halves
illustrate how the encoder and decoder of the Transformer, respectively, work us-
ing point-wise, fully-connected layers with stacked self-attention. Figure taken from
[39].

These attention mechanisms are represented by the dark yellow attention blocks in
Figure 2.1.

Self-attention pertains to the connections between different positions within a single
sequence to create a representation of that sequence. For example, consider the
sentence "The animal did not eat the food because it was too full". It may not be
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clear to an algorithm whether "it" refers to the food or the animal, but self-attention
enables the model to associate "it" with "animal" by looking at other positions in
the input sequence for context. On the other hand, cross-attention involves linking
two different sequences and providing information from the input sequence to the
decoding layers to predict the next token in the sequence, which is then added to the
output sequence. This project focuses only on cross-attention since it has a more
direct relationship with the output sequence.

2.3.1 Input embedding
The input embedding process in the Transformer model involves converting words to
word embeddings using an embedding layer, followed by combining positional encod-
ing information. Word embeddings are obtained by multiplying one-hot encoding
vectors with a learned weight matrix. These real-valued vectors capture semantic
meaning. Positional encodings are added to incorporate relative or absolute posi-
tions of tokens in the sequence. Various methods, such as sine and cosine functions,
are used for encoding positional information.

PEpos,2i = sin
(

pos

100002i/dmodel

)
(2.1)

PEpos,2i+1 = cos
(

pos

100002i/dmodel

)
(2.2)

The model learns to attend to the linear properties of these functions, where "pos"
refers to the position and "i" refers to the dimension [26].

2.3.2 Scaled dot product attention
When processing a sequence of vectors x = [x1, . . . , xn] with an attention mecha-
nism, each vector xi undergoes separate linear transformations to generate query,
key, and value vectors qi, ki, and vi. These vectors represent what information is
being searched for, its relevance to the query, and the actual content of the input,
respectively. The attention head then calculates attention weights α for all pairs
of words using a dot product between the query and key vectors, which are then
normalized using softmax to a value between 0 and 1. The dimension of keys, dk, is
used in the normalization process. Finally, the attention head generates an output
o as a weighted sum of the value vectors.

αij = exp(qT
i kj/

√
dk)∑n

l=1 exp(qT
i kl/

√
dk)

(2.3)

oi =
n∑

j=1
αijvj (2.4)
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Here, αij is the attention weight between query vector qi and key vector kj, and oi

is the output vector for query qi. dk represents the dimension of the key vectors, vj

represents the value vector for the j-th input token, and n is the number of input
tokens in the sequence.

In practice, the attention function is computed on a set of queries, keys, and values
simultaneously, packed together into a matrix Q, K, and V

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

The dot product of queries with all keys is normalized with dk, as described in
reference [26]. In self-attention, keys, values, and queries are generated from the
same sequence, while in cross-attention, the queries come from a different sequence
than the key-value pairs. Each attention function corresponds to computing one
head, and to perform the attention function in parallel, multiple heads are used in
the model[26].

2.3.3 Multi-head attention
The multi-head attention mechanism computes attention not just once, but multiple
times to capture different aspects of the input. This approach enables the model
to gather information from various sub-spaces, as illustrated in Figure 2.2. Each
head is a distinct linear projection of the input representation, serving as the query,
key, and value. During the learning process, the scaled dot product attention is
computed h times in parallel, and the resulting outputs are concatenated. A single
linear projection is applied using:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O (2.5)

headi = Attention(QW Q
i , KW K

i , V W V
i ) (2.6)

The projections are parameter matrices WQi, WKi, WV i, and WOi [26].

2.3.4 Overall model architecture
The Transformer architecture follows an encoder-decoder structure, similar to seq2seq
models. Both the encoder and decoder are composed of N identical layers stacked
on top of each other. Figure 2.1 illustrates the architecture of one encoder-decoder
layer. The encoder consists of two sub-layers: the first is a multi-head self-attention
mechanism, and the second is a position-wise fully connected feed-forward network.
Each sub-layer is followed by normalization and a residual connection. The output
of each sub-layer is given by LayerNorm(x + Sub-layer(x)), where Sub-layer(x) is
the function implemented by the sub-layer itself. In the original Transformer model,
the dimension of all sub-layers and embedding layers is set to dmodel= 512.
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Figure 2.2: The multi-head attention scheme, where multiple heads are concate-
nated and then linearly transformed.

In addition to the two sub-layers in each encoder layer, the decoder has a third
sub-layer that performs multi-head attention over the output of the encoder stack.
To avoid the decoder positions attending to future positions, the self-attention layer
masks the future positions, ensuring that the prediction for position i only depends
on the known outputs at positions less than i [26].

2.4 Retrosynthesis with Transformers
As mentioned earlier, retrosynthesis is the process of planning the synthesis of a
target molecule by breaking it down into simpler starting materials as shown in
Figure 1.1. Transformer models have recently shown promise for retrosynthesis
planning, it is a type of neural network architecture that has shown impressive
performance in natural language processing tasks.

Transformer models are seq2seq models. As such, a transformer model for retrosyn-
thesis [40] takes the product SMILES string as input. The target molecule uses
SMILES representation, where nodes represent atoms and edges represent chemical
bonds. The SMILES are then fed into a Transformer model, which directly predicts
the reactant SMILES. The model takes into account both the target molecule and
the available starting materials, as well as the reactions that are likely to occur.

One advantage of using Transformer models for retrosynthesis [40] planning is that
they can capture long-range dependencies between atoms and chemical bonds, which
can be difficult to model using traditional rule-based approaches. Additionally, the
models can learn from large amounts of data, allowing them to generalize to new
molecules and reaction types. However, there are also some challenges to using
Transformer models for retrosynthesis planning. One issue is that the models require
large amounts of training data, which can be difficult to obtain for rare or novel
reactions. Additionally, the models may generate sub-optimal reaction pathways or
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overlook important reaction conditions.

2.5 Chemformer-based Pre-trained Model
In this thesis, we use the Chemformer model, which is a pre-normalized transformer
model trained to carry out computer-aided synthesis planning. In a pre-normalized
transformer model, normalization is applied before each sub-layer, including the self-
attention and feedforward layers. This pre-normalization technique is intended to
address the problem of vanishing gradients that can occur in deep neural networks
with many layers.

The Chemformer model was first pre-trained in a self-supervised manner on As-
traZenecas in-house dataset comprising 18 million records.We evaluate this base
model on both the in-house test set and the USPTO dataset. To further improve
the models performance, we utilize attention-based explainable AI to debug the
evaluation results and devise a strategy for fine-tuning the model.

We conduct in-depth analysis on specific hard reaction classes of interest, such
as Ring-forming reactions, Rearrangement reactions, Diels-Alder, Ugi and Suzuki-
Coupling, and evaluate the models performance on these classes. To improve the
model’s performance on specific reaction classes, we utilize a seq2seq fine-tuning
method. This involves loading pre-trained weights for each reaction class and then
applying a task-specific fine-tuning process. Figure 2.3 illustrates how the pre-
training and downstream fine-tuning tasks are applied to the Chemformer model.

Our study aims to not only improve the Chemformer model’s performance but also
provide insights into the feasibility of using attention-based explainable AI for de-
bugging model evaluation results.

2.6 Sequence-to-sequence fine-tuning
Sequence-to-sequence (seq2seq) models [41] are widely used in Natural Language
Processing (NLP) tasks, such as machine translation and text summarization. One
of the challenges with seq2seq models is that they need to be trained on large
amounts of data to generate accurate predictions. Training seq2seq models from
scratch can be computationally expensive and time-consuming.

Fine-tuning pre-trained seq2seq models [42] can be a useful strategy to overcome this
challenge. Fine-tuning is the process of taking a pre-trained model and adapting it
to a new task or dataset by further training it on that specific task or dataset. In the
context of seq2seq models, fine-tuning involves taking a pre-trained encoder-decoder
model and adapting it to a new translation task [41], for example, by training
it on a new parallel corpus. Fine-tuning a seq2seq model involves updating the
model’s weights using a smaller dataset specific to the task of interest. The pre-
trained weights are used to initialize the model, which is then fine-tuned using
the new dataset. The fine-tuning process typically involves training the model for
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Figure 2.3: Illustration of the pre-training and fine-tuning processes for down-
stream tasks, where pre-training refers to training the model on AstraZeneca in-house
data prior to fine-tuning its weights for specific chemical reactions. Figure taken from
[21].

a few epochs, which allows the model to adapt to the new data and improve its
performance on the target task.

The general steps involved in sequence-to-sequence fine-tuning are:

1. Load a pre-trained seq2seq model

2. Prepare a new dataset specific to the task of interest

3. Fine-tune the model on the new dataset

4. Evaluate the performance of the fine-tuned model on a validation set and make
any necessary adjustments to the training process.

Fine-tuning can be an effective way to leverage pre-trained models and reduce the
amount of data required for training. It also enables the transfer of knowledge from
pre-trained models to new tasks, which can be especially useful in scenarios where
there is limited data available for a specific task.

2.7 Evaluation Metrics
The effectiveness of the statistical or machine learning model is assessed using evalu-
ation metrics. For each project, evaluating machine learning models or algorithms is
crucial. The Chemformer model is tested using a wide variety of evaluation metrics.
These evaluation metrics are first applied to the pre-trained Chemformer model us-
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ing the in-house test data. After fine-tuning, the model is finally evaluated on the
USPTO dataset. We also assess how well the model generalizes to new reaction
classes.

2.7.1 Top-k accuracy
Top-k accuracy is a widely used evaluation metric in machine learning and deep
learning [43]. It is a measure of how well a model can correctly predict the class or
label of a given input.

In classification tasks, a model takes an input and outputs a probability distribu-
tion over a set of possible classes. The top-1 accuracy measures the proportion of
examples for which the predicted label matches the true or target label exactly. For
example, a model may assign a probability to each possible label or class, and the
predicted label is the one with the highest probability [44]. In the case of chem-
former, an assignment is performed for each token present in the SMILES notation.
The computation of top-k accuracy hinges upon this token-wise assignment process.
Notably, the accuracy measure considers not just a generic match but insists on
exact correspondence with the SMILES notations. Thus, the precise matching of
these SMILES tokens is fundamental to our evaluation process and plays a pivotal
role in the computation of top-k accuracy.

Top-k accuracy is a simple and intuitive evaluation metric that measures how often
a model makes the correct prediction among all possible classes. However, it can be
limited in case of retrosynthesis where there are multiple correct answers or when
the predicted class is close to the true class but not exactly the same. In such cases,
other evaluation metrics such as top-k accuracy or mean average precision may be
more appropriate.

2.7.2 Tanimoto Similarity
The Tanimoto similarity is a measure of similarity between two sets. It is commonly
used in cheminformatics [45] and information retrieval to compare the similarity of
molecules. The Tanimoto similarity coefficient is a number between 0 and 1, with 1
indicating perfect similarity and 0 indicating no similarity.

Tanimoto similarity coefficient is defined as the ratio of the intersection of two sets to
the union of the sets. In this context, sets A and B represent the sets of substructures
(such as atoms or bonds) present in two molecules. Mathematically, the Tanimoto
similarity coefficient between sets A and B is defined as:

T (A, B) = |A ∩ B|
|A ∪ B|

(2.7)

where |A| and |B| denote the cardinality (number of elements) of sets A and B,
respectively, and |A B| denotes the number of elements that are common to both
sets.
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In the context of our study, the predicted molecules are subjected to the comparison
against the target molecules using the fingerprints [46]. This comparison is carried
out by passing the fingerprints of the predicted and target molecules to the ’rd-
kit.DataStructs.TanimotoSimilarity’ module. The Tanimoto similarity calculation
performed by this module serves as a fundamental metric that quantifies the ex-
tent of overlap between the structural features encapsulated within the fingerprints.
By producing a numerical representation of their similarity, this calculation offers
valuable insights into the degree of resemblance between the predicted and target
molecules. Such a quantitative assessment of molecular similarity is crucial in eval-
uating the effectiveness and accuracy of our prediction model.

2.7.3 Fraction Invalid
Fraction Invalid is a metric used to evaluate the chemical validity of the SMILES
generated by the Chemformer model. It measures how many invalid SMILES (i.e.
that do not correspond to the physical molecule) were proposed by the Chemformer
model [47]. SMILES may be considered invalid for a variety of reasons, such as
invalid syntax, infeasible bonding, unstable structures, incorrect valence or incom-
plete or mismatched ring closures. A lower fraction invalid suggests that the model
has successfully produced a substantial number of valid SMILES. Consequently, this
increases the likelihood of achieving higher accuracy.

2.7.4 Diversity score
Diversity plays a crucial role in assessing reaction class diversity among the top-k
predicted SMILES. Different approaches exist for defining diversity, one of which is
entropy. The diversity score with entropy is a quantitative measure used to assess
the diversity or variety within a dataset [48]. It utilizes the concept of entropy from
information theory to quantify the uncertainty or randomness associated with the
distribution over reaction classes. To calculate the diversity score using entropy, we
consider the probabilities of each reaction class within the dataset. A flat distribu-
tion, where probabilities are evenly spread across different reaction classes, results
in high uncertainty within the dataset. This high uncertainty leads to an increase
in entropy. Consequently, a high entropy value indicates a higher diversity among
the predicted reaction classes. On the other hand, if one reaction class is dominant
among the predictions, the entropy and the diversity will be low. In such cases, the
dominance of a single reaction class reduces the overall uncertainty and limits the
diversity of the predicted reactions.

Given a set of reaction classes denoted by X, where each reaction class x is associated
with a probability or frequency P (x), entropy can be defined as follows:

H(X) := −
∑
x∈X

p(x) log p(x)

The resulting entropy value is normalized to the interval [0, 1]. The normalization
ensures that the entropy measure falls within a standardized range, allowing for
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meaningful comparisons and interpretations of diversity among reaction classes.

where Σ denotes the sum over the variable’s possible values. The choice of base for
log, the logarithm, varies for different applications, base value 2 is used to calculate
the entropy.

2.8 Explainable AI for NLP
Complex domains such as natural language processing have seen high accuracy
achieved by deep learning algorithms. However, models can be compared to black
boxes where the input and output can be observed but the reasons behind the
model’s predictions remain unknown. To address this issue [49], researchers have
developed various techniques to make NLP models more interpretable. One pop-
ular approach is to use attention mechanisms, which allow the model to focus on
certain parts of the input text that are most relevant to the prediction. Explainable
AI comprises a set of tools and frameworks to aid in the comprehension and inter-
pretation of deep learning models. Heat maps are created in relation to attention
scores, providing an interpretable visual representation of how the model’s focus on
input tokens influences the resulting output tokens. When a model is considered
explainable, it denotes the ability of humans to comprehend the outcomes of an
AI-generated solution [50]. This understanding can encompass the role played by
various parts of the model in learning specific tasks and the significance of different
input features in making predictions.
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Methods

In this section, we will discuss the essential steps for evaluating data. Initially, we
will outline the process of selecting data for the dataset. Later on, we will elucidate
how the dataset was partitioned and categorized according to the reaction types.
Lastly, we will provide a comprehensive explanation of how the evaluation is carried
out.

3.1 Data
The project utilizes chemical reaction data comprising various chemical classes (ap-
proximately 70), such as Ugi reactions, Diels-Alder reactions, Suzuki-Coupling re-
arrangement, Ring-Forming, and Rearrangement reactions. These reactions can be
unimolecular, bimolecular, or trimolecular. Each record includes the reactants and
product of the chemical reaction, encoded as a reaction SMILES.

3.1.1 Datasets Used
There are two datasets to work with:

• In-house dataset: A CSV file comprises 18 million reactions sourced from
AstraZeneca’s proprietary databases such as Reaxys [51], Pistachio [52] and
in-house electronic lab notebooks (ELNs).

• USPTO dataset: A CSV file comprises 1 million reactions obtained from
publicly accessible data from the United States Patent and Trademark Office
(USPTO [53], [54]) is provided.

The former is used to train and evaluate the models, and the latter only evaluates
the models. The data is ready for modeling after being pre-processed [55].

3.1.2 Pre-processing Datasets
Pre-processing steps performed by AstraZeneca researchers are:

• removing all SMILES that cannot be sanitized with RDKit [56],

• removing any product that also is identical to a reactant,
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• performing role assignment based on the atom-mapping (all reactants should
share at least one atom-mapping number with a product),

• removing duplicate reactions based on reactants and products.

3.1.3 Datasets Preparation
For evaluation purposes, data splitting and categorization were performed. The in-
house data was randomly divided into training, validation, and test sets at a 98:1:1
ratio, resulting in 18 million records for training and 186k records each for validation
and testing.

We applied the below rules to categorize specific reaction classes.

• Ring-Forming reactions: Is indicated with the Ring-Forming column in the
dataset. The process for identifying reactions suitable for the RingBreaker
class is based on atom-mapping [55].

• Rearrangement reactions: These have a reaction class name that ends with
"rearrangement"

• Diels-Alder cycloaddition: These have a reaction class name starting with
3.11.3

• Ugi reaction: These have a reaction class name starting with 2.1.28

• Suzuki-Coupling: These have a reaction class name starting with 3.1

As the dataset contained numerous reactions, we concentrated on specific reactions,
as detailed in Section 3.1. The NextMove software was used to provide the reaction
classification. In order to target specific reaction classes for evaluation, we segmented
the data into two distinct parts. The first part encompassed only the category name
(e.g., Ugi reaction), while the second part was solely devoted to the category index
or identifier (e.g., 2.1.28). Separate data files were then created for each reaction,
to assess them individually.

Conversely, in the USPTO dataset, the reactants and products were extracted from
the dataset and atom-mapping is removed. There was also no designated category
for segregating data into training or testing groups. As a result, we incorporated
a new classification that would distinctly designate the data for testing. Some
reactions in this dataset were not categorized, so we classified them according to the
aforementioned rules. Subsequently, we divided the datasets into distinct CSV files
based on reaction classes for individual evaluation.

3.1.4 Proportion of reaction classes in datasets
The proportion of chemical reactions in datasets can vary depending on the focus
and scope of the dataset. Datasets may also be biased towards certain types of
reactions, it’s important to keep in mind that the proportion of chemical reactions
in a dataset is not necessarily representative of all chemical reactions that occur in
nature or are of scientific interest. Here in this study, our main focus is on particular
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reaction classes as explained in (section 3.1.3). The following figures will illustrate
more clearly how the proportions of reaction classes varied.

3.1.4.1 Proportion of reaction classes in the in-house dataset

The in-house dataset that was created in-house was divided into training and testing
sets. During the training and testing process, the model was exposed to 18 million
records. However, it was observed that the Ugi had a lower proportion in comparison
to other reactions, which had a higher proportion. This distribution for training
dataset can be visualized in the Figure 3.1 and distribution for test dataset can be
visualized in the 3.2

Figure 3.1: The figure displays the percentage distribution of specific reaction
classes within the in-house dataset. The proportions are determined in relation to
the total count of approximately 18 million data points in the in-house dataset.

Figure 3.2: The figure displays the percentage distribution of specific reaction
classes within the in-house dataset. The proportions are determined in relation to
the total count of approximately 186k data points in the in-house dataset.
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3.1.4.2 Proportion of reaction classes in the USPTO dataset

In the USPTO dataset, the Ugi class is underrepresented as it is only present in
small portion. Conversely, Ring-Forming, Suzuki-Coupling and Diels reactions are
more prevalent in the USPTO dataset, with a considerable proportion of samples
belonging to these classes. This distribution has also been depicted in the Figure 3.3.

Figure 3.3: The figure displays the percentage distribution of specific reaction
classes within the USPTO dataset. The proportions are determined in relation to
the total count of approximately 1.2 million data points in the USPTO dataset.

3.2 Evaluation
1. The pre-trained Chemformer model undergoes evaluation at multiple stages,

including:

• In-house test set: consisting of 186,000 records

• USPTO dataset: containing 1.1 million records

• Individual reaction classes: evaluating the model’s performance within
specific challenging reaction classes of interest, such as Ring-Forming reac-
tions, Rearrangement reactions, Diels-Alder, Ugi, and Suzuki-Coupling.

2. To carry out the evaluation, the following steps are taken:

• The Chemformer model is loaded, and data is processed in batches of 128
records.

• The model takes input products and generates sample SMILES and their
unique values in output files

• These files are further processed to canonicalize both target and sampled
SMILES, which aids in generating the necessary evaluation metrics

• A variety of evaluation metrics are employed to perform diverse analyses
on the Chemformer model’s effectiveness. These evaluation metrics are
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detailed in Section 2.8.

3.3 Transfer learning
We explore the application of transfer learning on pre-trained model with the ob-
jective of fine-tuning specific chemical reaction classes - Ugi, Suzuki-Coupling, Re-
arrangement, Diels-Alder and Ring-Forming reactions. Our approach commenced
with extracting distinct subsets of data from in-house training set for each of these
reaction classes. Each subset of data is then used to fine-tune the pre-trained model
using a specified learning rate of 0.01, a cross-entropy loss function, a batch size of
32, and iterating for 70 epochs. The process of fine-tuning is executed individually
for each reaction class, resulting in five uniquely fine-tuned models. During the fine-
tuning procedure, checkpoints are established at regular intervals to record progress
and monitor performance. The final fine-tuned model is selected based on the check-
point where accuracy is observed to converge. This final model is then subjected
to evaluation on both our in-house testing set as well as the USPTO datasets. The
purpose of this approach is to assess the efficacy of transfer learning in predicting
specific reaction classes and understand the impact of the fine-tuning process on
model accuracy and performance.

3.4 Explainable AI
Our process uses the BART model, called Chemformer, to provide explanations
for its predictions. The explanations take the form of feature importance values
and attention heat maps for given molecular transformations. These explanations
help in understanding which parts of the input molecules are important for a given
predicted transformation.
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4
Results

This chapter aims to detail the outcomes of our research, providing an analytical
perspective on the gathered data and addressing the potential implications. Our
discussion commences with an overview of the distribution of various chemical reac-
tions, followed by an evaluation of these reactions based on distinct metrics and a
review of their fine-tuning processes. Finally, we explore the application of Explain-
able AI as a tool for interpreting the outcomes produced by the model.

4.1 Evaluation

4.1.1 Evaluation on overall and specific reaction classes for
in-house test data

The model’s performance on our proprietary test data, as depicted in Figure 4.1,
reveals consistent results across various metrics. The Top-1, Top-3, Top-5, and
Top-10 metrics demonstrate performance of 34%, 49%, 55%, and 61%, respectively
across the overall in-house test set. This indicates that the model’s accurate pre-
dictions increase in relation to the increase in Top-k. In other words, the Top-10
metrics contain more accurate predictions compared to the Top-5, Top-3 or Top-1.
A Tanimoto similarity coefficient of 0.7 suggests that the reactions predicted by the
model exhibit a 70% correspondence with ground truth reactions. Furthermore, the
significant Fraction Unique score of 0.77 indicates a high level of diversity within
the model’s predictions and with a Fraction Invalid score of 0.01, demonstrates that
only 1% of predicted reactions are invalid, emphasizing the overall validity of model’s
output.

Upon evaluating individual reaction classes, the Ugi, Diels-Alder and Suzuki-Coupling
reaction classes consistently showcases high performance, ranging from 80% for Top-
1 to 89% for Top-10 for Ugi, 70% for Top-1 to 88% for Top-10 for Diels-Alder and
37% for Top-1 to 79% for Top-10 for Suzuki-Coupling. In contrast, the Ring-Forming
and Rearrangement reaction class demonstrates performance below the overall test
set metrics, ranging from 32% for Top-1 to 58% for Top-10 for Ring-Forming and
24% for Top-1 to 49% for Top-10 for Rearrangement. This indicates that the predic-
tion of Ring-Forming and Rearrangement reactions presents a significant challenge,
due to their complex mechanisms and intramolecular interactions.

Additionally the Tanimoto similarity for Ugi, Diels-Alder is 0.98, for Rearrangement,
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Ring-Forming and Suzuki-Coupling is 0.58, 0.70 and 0.78. While Fraction Invalid is
0.01 for Ring-Forming, Diels-Alder and Suzuki-Coupling reaction classes. Whereas,
Rearrangement and Ugi exhibits 0.0 for Fraction Invalid. The Fraction Unique
for Ugi, Diels-Alder, Ring-Forming, Rearrangement, Suzuki-Coupling are 0.43,0.53,
0.72, 0.81 and 0.86 respectively. High Tanimoto similarity and low Fraction Unique
for both Ugi and Diels-Alder proves that they are quite consistent and predictable
reaction mechanisms.

These metrics indicate that the pre-trained model demonstrated good performance
on the in-house test set, particularly in the case of Ugi and Diels-Alder reactions
which exceeded performance metrics across all other reaction categories. The sub-
stantial Tanimoto similarity signifies a high degree of accuracy in the model’s pre-
dictive capabilities. Combination of low Fraction Invalid and high Fraction Unique
provide a good evaluation of models quality and diversity.

Figure 4.1: Box plots illustrating the various evaluation scores for the pre-trained
Chemformer model when assessed on an in-house dataset. The upper plot illustrates
the Top-k accuracy metrics and the lower graph presents the Tanimoto Similarity,
followed by the Fraction Invalid and Fraction Unique values.

4.1.2 Evaluation on overall and specific reaction classes for
USPTO data

The evaluation of the model’s performance on USPTO data, as depicted in Fig-
ure 4.2, reveals insightful results. Across all reaction classes, the Top-1, Top-3,
Top-5, and Top-10 metrics achieve accuracies of 42%, 61%, 67%, and 73%, respec-
tively, surpassing the evaluation on the overall In-house dataset. Conversely, the
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Tanimoto similarity, Fraction Invalid, and Fraction Unique metrics exhibit remark-
able accuracy levels of 0.81, 0.0, and 0.81, respectively, across all reaction classes in
the USPTO dataset.

Upon evaluating individual reaction classes, the Ugi, Diels-Alder and Suzuki-Coupling
reaction classes consistently showcases high performance, ranging from 58% for Top-
1 to 75% for Top-10 for Ugi, 69% for Top-1 to 98% for Top-10 for Diels-Alder and
45% for Top-1 to 86% for Top-10 . In contrast, the Ring-Forming and Rearrange-
ment reaction class demonstrates performance below the overall USPTO test set,
ranging from 32% for Top-1 to 63% for Top-10. for Ring-Forming and 36% for Top-
1 to 58% for Top-10 for Rearrangement. This mirrors the same pattern observed in
the in-house test set.

Additionally the Tanimoto similarity for Ugi and Diels-Alder is 0.98, 0.60 for Rear-
rangement and Ring-Forming, 0.83 for Suzuki-Coupling. While Fraction Invalid is
0.0 for all reaction classes. The Fraction Unique for Ugi, Diels-Alder, Ring-Forming,
Rearrangement and Suzuki-Coupling are 0.57, 0.52, 0.78, 0.79 and 0.86 respectively.
Despite the lower top-k accuracy metrics for Ring-Forming and Rearrangement re-
actions, the high Fraction Unique value indicates a considerable diversity in these
reactions. This suggests that even though precise prediction of these reactions may
pose challenges, the model can generate a broad spectrum of unique results within
these categories.

The metrics observed are largely comparable to those from the in-house test set,
demonstrating consistency in the model’s performance across different test sets. An
exception to this similarity is the presence of more outliers in the USPTO set. The
reason behind these outliers could be attributed to a higher number of data batches
from the USPTO, as well as the fact that the model has been pre-trained on the
in-house test set, thereby influencing its familiarity with the chemical space, which
could be different when compared to the USPTO set.
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Figure 4.2: Box plots illustrating the various evaluation scores for the pre-trained
Chemformer model when assessed on overall USPTO data. The upper plot illustrates
the Top-k accuracy metrics and the lower graph presents the Tanimoto Similarity,
followed by the Fraction Invalid and Fraction Unique values.

When compared with all the reaction classes in USPTO dataset, Ugi and Diels-Alder
performed well. These reaction classes are multi-centered, often yielding products
that are less diverse than those derived from other reaction types, such as Suzuki-
Coupling. Both the Ugi and Diels-Alder reactions involve the creation of distinct
bond types and structural arrangements, which leads to a reduced variability in
the resultant products, thereby simplifying prediction tasks. In contrast, the com-
pounds produced from Suzuki-Coupling can exhibit substantial structural diversity,
potentially adding a layer of complexity to the prediction process. For instance,
Figure 4.3 represents the true reactions, and Figure 4.4 represents the predicted
reactions. Although the predicted reaction does not appear to be a typical Suzuki
reaction at first glance, it can be categorized as a cross-coupling Suzuki reaction ow-
ing to the presence of the bromine chemical element. These exceptional predictions
reduce the overall accuracy to 45% on the USPTO dataset. However, upon more
detailed examination, it can be concluded that 67% of the predicted reactions can
indeed be classified as Suzuki reactions.
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Figure 4.3: This is an example reaction for Suzuki-Coupling from USPTO dataset,
which is a true reaction.

Figure 4.4: This is an example reaction for Suzuki-Coupling from USPTO dataset,
which is a predicted reaction.

4.1.3 Fraction Invalid
The "Fraction Invalid" is a measurement employed to determine the quantity of
incorrect predictions within a given set. It is essentially the proportion of inaccurate
SMILES strings compared to the complete number of SMILES strings that have
been produced. Evident in Figure 4.1 and Figure 4.2, there is a substantial Fraction
Invalid detected across the overall test sets in specific batches. This observation is
largely attributed to certain reactions, which are inclined to produce a considerable
fraction of invalid outcomes, as demonstrated in Figure 4.5. Therefore, if data
batches, that are assembled randomly, have these specific reactions, it leads to an
overall higher fraction of invalid data within these particular batches.

Figure 4.5: Bar plots illustrating the fraction of invalid SMILES by pre-trained
Chemformer model on in-house and USPTO datasets respectively. Other reactions
that are not part of this plot have zero Fraction Invalid.
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4.1.4 Chemformer vs template-based performance on an in-
house data

The below Figure 4.6 presents performance comparison between the Chemformer
and template-based methods for predicting the Top-1 and Top-10 reaction outcomes
across five distinct reaction classes (Ring-Forming, Rearrangement, Diels-Alder, Ugi,
and Suzuki-Coupling) using our proprietary in-house data.

The term "Chemformer (Top-1)" refers to the proportion of reactions for which the
Chemformer model has accurately predicted the most likely outcome, while the cor-
responding proportion for the template-based model is also indicated. Similarly,
"Chemformer (Top-10)" signifies the proportion of reactions for which the Chem-
former model has accurately predicted one of the ten most likely outcomes, with a
corresponding measure for the template-based model.

For instance, in the Ring-Forming class, the Chemformer model achieved a Top-1
prediction accuracy of 32% and a Top-10 prediction accuracy of 58%, while the
template-based model yielded a Top-1 prediction accuracy of 29% and a Top-10
prediction accuracy of 43%. Similarly, in the Rearrangement class, the Chemformer
model attained a Top-1 prediction accuracy of 24% and a Top-10 prediction accuracy
of 49%, whereas the template-based model achieved a Top-1 prediction accuracy of
15% and a Top-10 prediction accuracy of 25%.

Notably, the Chemformer model outperformed the template-based model across all
reaction classes. For example, in the Diels-Alder class, the Chemformer model
achieved a Top-1 prediction accuracy of 70% and a Top-10 prediction accuracy of
80%, whereas the template-based model achieved a Top-1 prediction accuracy of
35% and a Top-10 prediction accuracy of 49%. Similarly, in the Ugi and Suzuki-
Coupling reaction classes, the Chemformer model demonstrated a Top-1 prediction
accuracy of 80%, 69% and a Top-10 prediction accuracy of 89%, 80% surpassing the
template-based model with its respective Top-1 prediction accuracy of 52%, 29%
and Top-10 prediction accuracy of 67% and 60% respectively.

These findings indicate that the Chemformer model consistently outperforms the
template-based model in predicting both the Top-1 and Top-10 outcomes across all
reaction classes in an in-house test set.
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Figure 4.6: Radar plot illustrating the evaluation scores for the pre-trained Chem-
former model and template-based model when assessed on an in-house dataset.

4.1.5 Chemformer vs template-based performance on USPTO
data

The below Figure 4.7 presents performance comparison between the Chemformer
and template-based models for predicting the Top-1 and Top-10 reaction outcomes
across five distinct reaction classes (Ring-Forming, Rearrangement, Diels-Alder, Ugi,
and Suzuki-Coupling) using our proprietary in-house data.

The "Chemformer (Top-1)" represents the fraction of reactions for which the Chem-
former model accurately predicted the Top-1 outcome, while the corresponding frac-
tion for the template-based model is indicated in the "Production template-based
(Top-1)" column. Similarly, the "Chemformer (Top-10)" column denotes the frac-
tion of reactions for which the Chemformer model correctly predicted the Top-10
outcome, while the "Production template-based (Top-10)" column displays the cor-
responding fraction for the template-based model.

For instance, in the Ring-Forming class, the Chemformer model achieved a Top-1
prediction accuracy of 32% and a Top-10 prediction accuracy of 63%, while the
template-based model yielded a Top-1 prediction accuracy of 28% and a Top-10
prediction accuracy of 46%. Similarly, in the Rearrangement class, the Chemformer
model attained a Top-1 prediction accuracy of 36% and a Top-10 prediction accuracy
of 58%, whereas the template-based model achieved a Top-1 prediction accuracy of
30% and a Top-10 prediction accuracy of 46%.

Notably, the Chemformer model outperformed the template-based model across all
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reaction classes. For example, in the Diels-Alder class, the Chemformer model
achieved a Top-1 prediction accuracy of 69% and a Top-10 prediction accuracy of
98%, whereas the template-based model achieved a Top-1 prediction accuracy of
42% and a Top-10 prediction accuracy of 69%. Similarly, in the Ugi and Suzuki-
Coupling reaction classes, the Chemformer model demonstrated a Top-1 prediction
accuracy of 58%, 49% and a Top-10 prediction accuracy of 75%, 89% surpassing the
template-based model with its respective Top-1 prediction accuracy of 29%, 30%
and Top-10 prediction accuracy of 42% and 67% respectively .

These findings indicate that the Chemformer model consistently outperforms the
template-based model in predicting both the Top-1 and Top-10 outcomes across all
reaction classes in an USPTO dataset.

Figure 4.7: Radar plot illustrating the evaluation scores for the pre-trained Chem-
former model and template-based model when assessed on USPTO dataset.

4.1.6 Evaluation on other reaction classes
In addition to the particular reaction classes explored in previous sections, the
model’s overall performance across various reaction classes is also assessed by eval-
uating on additional reaction classes found in both in-house and USPTO test sets
as shown in Figure A.1 and Figure A.2. The evaluation outcomes from this anal-
ysis confirm that the pre-trained Chemformer has surpassed the performance of
template-based models, barring the Stille reaction, which is not considered a crucial
reaction class, primarily due to its higher toxicity. Moreover, there are alternative
cross-coupling reactions that yield similar outcomes to the Stille reaction. One such
example is the Suzuki-Coupling reaction, which is already a central focus of our
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study. This underscores the general efficacy of Chemformer across a broad range of
reaction classes.

4.1.6.1 In-house: Best and worst performing five reactions

Beyond the specific reactions addressed in Section 4.1.4, the Figure 4.8 presents
a comparison of the five best and least effective reactions when evaluated on the
Chemformer model in comparison to the template-based model for the in-house
data.

Figure 4.8: Bar plots illustrating the evaluation scores for the pre-trained Chem-
former model compared with template-based model on an in-house dataset. First sub
plot illustrates best 5 reactions and second sub plot illustrates least 5 reactions.

4.1.6.2 USPTO: Best and worst performing five reactions

Beyond the specific reactions addressed in Section 4.1.5, the Figure 4.9 presents
a comparison of the five best and least effective reactions when evaluated on the
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Chemformer model in comparison to the template-based model for USPTO data.

Figure 4.9: Bar plots illustrating the evaluation scores for the pre-trained Chem-
former model compared with template-based model on USPTO dataset. First sub
plot illustrates best 5 reactions and second sub plot illustrates least 5 reactions.

4.1.7 Diversity score on overall in-house test set
The distribution plot in the Figure 4.10 visualizes the diversity scores within in-
house test set. Which ranges from 0 to 1 and serve as a measure of the diversity
within a dataset. A diversity score of 0 indicates low diversity, while a score of
1 represents high diversity. The overall diversity score for the in-house test set is
calculated to be 0.49618955. This score suggests that a significant portion of the
samples or categories within the dataset have unique reactions, concentrated towards
the extremes of 1 and 0, which greatly impacts the overall dataset diversity. The
scatter plot, accompanied by a best fit line, showcases the relationship between the
relative entropy and number of unique reaction classes. It is important to note that
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even if the unique reactions may be the same for different products, the entropy
values differ due to variations in the distributions of reaction classes.

Figure 4.10: The diversity score distribution plot visualizes the distribution of
diversity scores, illustrating the spread and concentration of diversity across the In-
house test set.

4.2 Fine-tuning
After pre-training, the Chemformer model is fine-tuned on downstream datasets by
applying transfer learning. For this we investigated five reaction classes as shown
in Figure 4.11. In line with evaluation, the in-house and USPTO test datasets are
used to benchmark Chemformer against template-based model on retrosynthesis
prediction task. A cross-entropy loss function and a learning-rate of 0.01 are used
to train the model.

4.2.1 Fine-tuning on in-house and USPTO dataset
The subplot for in-house dataset in Figure 4.11 shows delta values indicating per-
formance improvements achieved by fine-tuning the Chemformer model. Notably,
the suzuki-coupling reaction demonstrates a significant increase with a delta of 32%
for top-1 accuracy. Similarly, Diels-Alder and ugi reactions exhibit noticeable en-
hancements with deltas of 18% and 2%, respectively. The Rearrangement reaction
shows the highest improvement with a delta of 51% for top-1 accuracy. The same
trend is observed for top-10 accuracies, with Suzuki-Coupling, Diels-Alder, Ugi, and
Rearrangement reactions having deltas of 15%, 5%, 11%, and 43%, respectively.

Additionally, the subplot for the USPTO dataset in Figure 4.11 displays delta values
reflecting performance gains achieved through fine-tuning the Chemformer model.
The Suzuki-Coupling reaction shows a substantial improvement with a delta of 37%
for top-1 accuracy, while Diels-Alder and Ugi reactions exhibit notable enhancements
with deltas of 24% and 42%, respectively. The Rearrangement reaction demonstrates
the highest improvement with a delta of 0.53 for top-1 accuracy. Similarly, the top-
10 accuracies for Suzuki-Coupling, Diels-Alder, Ugi, and Rearrangement reactions
have deltas of 12%, 2%, 25%, and 40%, respectively.

These delta values indicate the positive impact of fine-tuning on the Chemformer
model’s accuracy for both the in-house and USPTO datasets, resulting in improved
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performance and predictive capabilities. Moreover, it is noteworthy that although
the delta values for the Ugi and Diels-Alder reactions are relatively low, these reac-
tion classes already exhibit high performance.

Figure 4.11: Box plots illustrating the various evaluation scores for the fine-tuned
Chemformer model when assessed on an in-house and USPTO dataset.

4.2.2 Chemformer accuracies before and after fine-tuning
on an in-house dataset

The below table shows a comparison of the Chemformer, before and after fine-tuning
on an in-house dataset for different chemical reactions. Overall, the model’s per-
formance shows significant improvement after fine-tuning. Before fine-tuning, the
Chemformer model achieves relatively lower accuracies, but after fine-tuning, its
predictive capabilities enhance considerably. The Suzuki-Coupling reaction exhibits
a substantial increase in accuracy, with the top-1 prediction improving from 37% to
69% and the top-10 prediction rising from 79% to 94%. Similarly, the Rearrangement
reaction shows notable progress, with the top-1 accuracy increasing from 24% to 75%
and the top-10 accuracy improving from 49% to 92%. The Chemformer model per-
forms well for the Diels-Alder reaction initially, and fine-tuning helps maintain its
high accuracy, with top-1 and top-10 accuracies reaching 88% and 93%, respectively.
The Ugi reaction also demonstrates strong performance even before fine-tuning, but
after fine-tuning, the Chemformer model achieves high accuracy with top-1 and top-
10 accuracies of 100%. These results shows that the effectiveness of fine-tuning in
enhancing the Chemformer model predictive abilities for these chemical reactions
on in-house test set.
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Table 4.1: Chemformer accuracies before and after fine-tuning on in-house dataset

Reaction Before: Top-1 Before: Top-10 After: Top-1 After: Top-10
Suzuki-Coupling 0.37 0.79 0.69 0.94
Rearrangement 0.24 0.49 0.75 0.92
Diels-Alder 0.70 0.88 0.88 0.93
Ugi 0.80 0.89 1.0 1.0

4.2.3 Chemformer accuracies before and after fine-tuning
on an USPTO dataset

The below table shows a comparison of the Chemformer model, before and after
fine-tuning on USPTO dataset for different chemical reactions. Overall, the model’s
performance improves significantly after fine-tuning. For the Suzuki-Coupling re-
action, the top-1 accuracy increases from 45% to 82%, and the top-10 accuracy
rises from 86% to 98%. Similarly, the Rearrangement reaction shows performs, with
the top-1 accuracy improving from 36% to 89% and the top-10 accuracy increasing
from 58% to 98%. The Chemformer model already performs well for the Diels-
Alder reaction initially, and fine-tuning further enhances its accuracy, reaching a
top-1 accuracy of 93% and top-10 accuracy of 100%. The Ugi reaction also exhibits
strong performance, and after fine-tuning, the Chemformer model achieves perfect
accuracy with top-1 and top-10 accuracies of 100%. These results shows that the
effectiveness of fine-tuning in enhancing the Chemformer model predictive abilities
for these chemical reactions on USPTO dataset.

Table 4.2: Chemformer accuracies before and after fine-tuning on USPTO dataset

Reaction Before: Top-1 Before: Top-10 After: Top-1 After: Top-10
Suzuki-Coupling 0.45 0.86 0.82 0.98
Rearrangement 0.36 0.58 0.89 0.98
Diels-Alder 0.69 0.98 0.93 1.0
Ugi 0.58 0.75 1.0 1.0

4.2.4 In-house: Fine-tuned Chemformer vs template-based
model

The Figure 4.12 represents a comparison of fine-tuned Chemformer model and
template-based model on an in-house test set, in predicting outcomes for different re-
action classes. Across the reactions, the fine-tuned Chemformer models consistently
demonstrate higher accuracy. For the Ugi reaction, both models achieve an accuracy
of 100% for the Top-1 prediction, but the fine-tuned Chemformer outperforms the
template-based model with accuracies of 1% and 52% for the Top-10 prediction, re-
spectively. Similarly, for the Suzuki-Coupling reaction, the fine-tuned Chemformer
model achieves higher accuracies of 69% (Top-1) and 94% (Top-10) compared to 28%
and 60% for the template-based approach. The trend continues with the Rearrange-
ment reaction, where the fine-tuned Chemformer achieves accuracies of 75% (Top-1)
and 92% (Top-10), surpassing the template-based model accuracies of 15% and 25%.
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In the case of the Diels-Alder reaction, the fine-tuned Chemformer model performs
better with accuracies of 88% (Top-1) and 93% (Top-10), while the template-based
model achieves accuracies of 35% and 49%, respectively. Overall, the results suggest
that the fine-tuned Chemformer model consistently outperform the template-based
model in accurately predicting reaction outcomes.

Figure 4.12: Radar plot illustrating the evaluation scores for the fine-tuned Chem-
former model and template-based model when assessed on an in-house dataset.

4.2.5 USPTO: Fine-tuned Chemformer vs template-based
model

The Figure 4.13 represents a comparison of, fine-tuned Chemformer model and
template-based model on an USPTO dataset, in predicting outcomes for different
reaction types. The results indicate that the fine-tuned Chemformer model con-
sistently outperform the template-based model in terms of accuracy. For the Ugi
reaction, both the Top-1 and Top-10 predictions achieve an accuracy of 100% using
the fine-tuned Chemformer models, while the template-based model achieves lower
accuracies of 29% and 42% for the respective predictions. In the case of Suzuki-
Coupling, Rearrangement, and Diels-Alder reactions, the fine-tuned Chemformer
models achieve higher accuracies, ranging from 82% to 100% for Top-1 predictions
and 98% to 100% for Top-10 predictions. On the other hand, the template-based
models demonstrate lower accuracies, varying from 30% to 42% for Top-1 predic-
tions and 46% to 69% for Top-10 predictions. These results emphasize the superior
performance of the fine-tuned Chemformer model in accurately predicting reaction
outcomes across different reaction types.
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Figure 4.13: Radar plot illustrating the evaluation scores for the fine-tuned Chem-
former model and template-based model when assessed on USPTO dataset.

4.3 Explainable AI

Attention mechanism can be interpreted as the model’s "focus" or "importance
weighting" during the prediction process. For example, in atom mapping tasks,
the attention scores reflect the predicted correspondence between atoms in the re-
actants and the products of a chemical reaction. These attention scores can be
visualized using a heat map from Figure 4.15. Each axis of the heat map represents
the tokens atoms in the reactants and products, and the colour of each cell in the
heat map represents the attention score, with warmer colours typically representing
higher scores. This visualization provides an interpretable overview of the model’s
decision-making process, highlighting the atoms that the model deems most relevant
for the prediction.

We also created a heatmap of the product-reactants atom-mapping Figure 4.15.
Atom-mapping, refers to the process of identifying which atoms in the reactant
molecules correspond to which atoms in the product molecules in a chemical re-
action. This helps to understand attention scores in Figure 4.15, atoms that are
corresponding to each other have more attention weights. This heat map serves as
a tool to interpret the attention scores heat map Figure 4.15, where we anticipate
high attention scores to be attributed to atoms that correspond with one another.
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Figure 4.14: Explainable AI: Heat map representing attention scores for target and
predicted SMILES.

Figure 4.15: Atom Mapping: Heat map representing atoms that are corresponding
to each other that are highlighted with dark portion.
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In this thesis, we assessed and enhanced the accuracy of the Chemformer model
for chemical reaction prediction. The results indicate that the Chemformer model
can outperform template-based models for certain reaction categories and is effec-
tive in predicting diverse chemical reactions. Our model demonstrated strengths in
accurately matching reactants to known reactions and generating diverse potential
products, as evidenced by high Tanimoto similarity between actual and predicted
SMILES, Token accuracy, and Fraction Unique metrics. However, during initial
evaluation pre-trained model struggled to accurately predict the most likely reac-
tion given a set of reactants, as evidenced by low Top-k metrics. The performance
of Chemformer across all reaction classes has been substantially enhanced through
fine-tuning on specific sub-tasks. This underscores the potency of transfer learning
as an effective method for this model. There has been a marked improvement in the
predictive abilities of the Top-k selections due to fine-tuning. In certain scenarios,
such as with the Ugi reaction, a remarkable achievement of 100% accuracy has been
achieved. This progress affirms the value of fine-tuning and its significant role in
boosting Chemformer’s performance. In a similar vein, high Tanimoto coefficient
serves as a measure of similarity between predicted and target reactions. Addition-
ally, we have demonstrated that Explainable AI is instrumental in comprehending
the behavior of the model, particularly in terms of how it maps reactant and product
atoms.

5.1 Future work
The other fine-tuning strategies detailed in this section appear to be logical and
have potential for application to the model. However, due to time constraints, these
are beyond the scope of our thesis. Nonetheless, we will provide insights into these
topics to establish a foundation for future research.

1. Multi-Task Fine-tuning: Fine-tune the Chemformer model on multiple
tasks simultaneously, such as retrosynthesis prediction, reaction classification,
or yield prediction. This approach can improve the model’s performance on
each task by sharing knowledge across tasks [28].

2. Data Augmentation: Generate more training data by augmenting existing
data, such as by adding noise or perturbing reaction conditions. This strategy
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can help the Chemformer model learn more robust features that generalize
better to new data [29].

3. Ensemble Fine-tuning: Fine-tune multiple pre-trained Chemformer models
and then ensemble their predictions to get the final result. This approach can
improve the model’s robustness and accuracy by combining the knowledge
from different models [30].
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Appendix 1

Note: Canonicalization is especially important when performing sim-
ilarity calculations, as it standardizes the representation of chemical
structures, allowing for accurate comparisons. The utilization of the
RDKit Canonicalize function consistently produces identical outcomes.
Moreover, performing Canonicalization by first splitting the reactants
then Canonicalizing and then applying sorting also yields comparable
results for similarity calculations.
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A. Appendix 1

Figure A.1: Bar plot illustrate the top-1 and top-10 accuracies for the pre-trained
Chemformer model and Template-based model when assessed on an In-house dataset.

II



A. Appendix 1

Figure A.2: Bar plot illustrate the top-1 and top-10 accuracies for the pre-trained
Chemformer model and Template-based model when assessed on an USPTO dataset.
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