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Abstract
In the field of medical science datasets are often highly imbalanced, where rare
datapoints are of high importance. This study aims to explore the usage of synthetic
datasets to improve the classification of echocardiogram views. We join together
different echocardiogram datasets (EchoNet-LVH, EchoNet-Dynamic, TMED-2) to
form a custom imbalanced dataset (N=38,915) including Apical two-chamber (A2C),
Apical four-chamber (A4C), Parasternal long axis (PLAX), and Parasternal short
axis (PSAX) views. We study the results of training a diffusion model on differently
sized subsets of this dataset. For each size of real subset available, we train two
echocardiogram view classifiers on (i) the real data subset and (ii) on the synthetic
subset, generated from training on the real subset.

Our results show that synthetic data can be used to improve echocardiogram view
classification performance. Specifically we prove that the classification performance
of minority classes is significantly improved when the imbalanced dataset is limited.
The percentage of images that get correctly classified, for the minority classes A2C
and PSAX, increases from 0 to 0.83 and from 0 to 0.77 respectively, when the real
subset is limited to 1,000 examples.

(a) Trained on real data. (b) Trained on synthetic data.

Figure 0.1: Normalized Confusion Matrix: VGG16 echocardiogram view classifier.

Keywords: Computer, science, computer science, engineering, project, artificial in-
telligence, machine learning, deep neural networks, diffusion models, synthetic data,
echocardiogram classification.
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1
Introduction

Transthoracic Echocardiogram (TTE) are ultrasound images or videos of the heart
(see Figure 1.1) that can be collected in 2D and 3D, where the first is the common for-
mat for heart assessment. They are frequently used for cardiac condition evaluation
in healthcare and clinical trials. As part of their clinical trials, AstraZeneca cur-
rently collects echocardiogram data from their subjects. Hereafter, when referring
to echocardiograms, we implicitly mean TTE 2D images.

This data collection process entails the subject coming to AstraZeneca’s and part-
nering facilities to have a sonographer record echocardiogram video sequences of
their heart while lying down. Importantly, these sequences must be long enough
to show at least a few heartbeats, typically a few seconds. Moreover, the echocar-
diogram records different views of the heart depending on the exact position and
angle of the probe on the subject’s chest. In order to properly conduct their studies,
AstraZeneca requires these ultrasound images to be of good enough quality and to
cover a certain variety of views. Recordings are therefore screened and verified by a
sonographer before being further used for health evaluations or in clinical trials.

Figure 1.1: Echocardiogram images.
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1. Introduction

1.1 Problem Description
The activities of recording echocardiograms and validating quality and views cap-
tured are generally conducted at separate instances and times. If there are faults
in quality, or if key views are missing, the subject may need to be called back for
an additional echocardiogram recording. The risk of not having immediate quality
and view detection measures implemented at the initial echocardiogram recording
session is patients’ drop out of clinical trials, inefficient use of resources and high
costs. Figure 1.2 shows an estimated process for the collection of echocardiograms
as part of clinical trials with challenges highlighted in red.

Figure 1.2: Example workflow for clinical trials.

Acquiring high volumes of medical data of premium quality is a key problem in med-
ical sciences. Data points of primary interests are those representing rare conditions,
seen as minority classes, resulting in most imbalanced datasets. In addition, medical
data must be safeguarded with strict regulatory frameworks to protect the privacy
of patients and their health information.

Partially automating the echocardiogram screening process by verifying views, which
is currently performed manually, could lead to expedited subject processing, more
efficient use of resources, and potentially even to faster patient diagnoses. The out-
come of training a classification model is closely linked to the quantity and quality
of the data it is trained on. Current limitations on the availability of annotated
echocardiograms is a factor that could hinder classifier performance. Extending
available datasets by collecting real echocardiograms is difficult, in part due to pa-
tient privacy concerns, but it is also time consuming. Additionally, the annotation

2



1. Introduction

process is expensive, as it requires highly trained professionals, whose time is espe-
cially valuable.

The lack of annotated subclass-level view data also constitutes an impediment to the
training of a classifier. Given the expensive and time-consuming nature of echocar-
diogram data acquisition and annotation, a promising alternative is instead generat-
ing synthetic data on which to train the classifier. If such a model were to train on
and synthesize echocardiogram views for which data is currently readily available,
and if these synthetic images can be shown to improve performance of a view classi-
fier, then it would constitute a proof-of-concept that synthetic echocardiograms can
be used to complement real training data.

1.2 Project Aim

This project aims to tackle the issue of view detection specifically, as opposed to the
echocardiogram quality aspect. We use a generative diffusion model to generate syn-
thetic echocardiograms with a diversity similar to that of the original training data,
such that they become indistinguishable from real echocardiograms to a human ex-
pert. These synthetic echocardiograms are then used in an attempt to improve the
performance of a view classifier on real echocardiograms. Our hope is to show that
synthetic data can be used to overcome challenges related to imbalanced datasets,
and to address the data privacy concerns by utilising anonymous synthetic echocar-
diograms.

1.3 Research Questions

Based on the aim of the project, we formulate two research questions:

1. Is it possible to improve view classification performance of real echocardio-
grams with synthetic data?

2. Can diffusion models generate synthetic echocardiograms that look realistic
enough to become indistinguishable from real echocardiograms to a human
expert?

Firstly, a diffusion model is trained to generate synthetic echocardiograms with, ide-
ally, good enough quality and diversity that they are indistinguishable from real
echocardiograms to a human expert. Secondly, yet primarily, these synthetic im-
ages are used to train a classifier to ultimately try to improve the performance of
classifying real echocardiogram images.

Successful results could prove helpful in the medical sciences, as they can potentially
lead to saved costs, time and resources, and potentially faster diagnoses for patients
suffering from heart conditions. In addition, it could prove helpful in overcoming
challenges with medical datasets, such as imbalance and data privacy concerns.

3



1. Introduction

1.4 Approach
Several studies have attempted to automate echocardiogram view detection by a va-
riety of methods, machine learning models being particularly prevalent in the recent
literature [1] [2] [3] [4] [5]. These studies vary in datasets, classification algorithms,
and classification performance. However, a common theme among most of the stud-
ies conducted on this topic is the focus on a particular set of echocardiogram views,
namely A2C, A4C, PLAX and PSAX. These categorical views can be referred to
as the highest hierarchy views since they can be further divided into subclasses of
views.

The focus on these top-level views is due in part to their common clinical use [4]. This
clinical relevance might also explain why most publicly available echocardiogram
datasets focus on these views in particular. The lack of annotated data on views at
the subclass level, however, might explain why classifiers able to distinguish between
different subclasses of views are largely absent from the literature.

Synthetic data generation can be used to complement limited medical datasets in
a way that guarantees that privacy regulations are not violated, and is also a less
labour-intensive data acquisition approach. However, generating medical data is
difficult due to the complexity of organs and classification performance often depends
on subtle changes in images. Recently, generative models have emerged within the
field of deep learning and computer vision as an efficient mean to generate synthetic
images. They are trained to generate new images similar to the ones they were
trained on by learning the underlying distribution of the training data.

Generative Adversarial Networks (GANs) have been state-of-the-art in image syn-
thesis in general and within the medical field specifically [6]. With extended research
and usage, GANs have also become known to suffer from mode collapse, unstable
training behavior, difficulty in capturing true diversity [6], vanishing gradient issues,
along with non-convergence and hyperparameter sensitivity [7].

Diffusion models have lately gained traction for image synthesis as proving capable
of generating high-quality images [8] [9] [10] [11]. Recent studies shows that diffusion
models outperform state-of-the-art GANs in image generation tasks, both in general
[12] and in the medical field [13]. This holds true whether they are conditioned on
specific labels [14] or left unconditioned [15].

The research undertaken revealed a lack of knowledge shared regarding the applica-
tion of diffusion models for the synthesis of echocardiograms conditioned on partic-
ular views.

1.5 Limitations
Certain limitations adhere in the context of this thesis, each outlined in this section.

Focus on diffusion models: This research focuses exclusively on diffusion models
as the chosen type of generative model architecture. Although diffusion models have

4



1. Introduction

demonstrated their efficacy in various applications, restricting the investigation to a
single type of generative model may limit the breadth of insights and understanding
that could be gained from exploring alternative models or methods for extending
datasets.

Echocardiogram views: There is a limited number of echocardiogram views ex-
plored in this project due to views present in the datasets used. This means that the
analysis and findings are restricted to the data and classes available. Consequently,
the conclusions drawn from this research and their generalizability to other cardiac
views should be studied further.

Bias in data: Data used in this study may contain biases stemming from various
factors, such as: sample selection, class label imbalances, potential socioeconomic
backgrounds of admitted patients, clinical routines, and the equipment used to ac-
quire data. If these biases exist in the training data, they will likely influence the
knowledge gained by diffusion models during training. As a result, bias found in the
training data may be translated to synthetic images generated. Additionally, when
classification models, trained on biased data, are used at inference with data from
a different distribution, they may fail to perform effectively.

Limited usage rights for non-commercial purposes: Usage rights associated
with the data involved in this research are restricted to non-commercial use only.
Consequently, the findings and outcomes of this study cannot be directly utilized or
applied in commercial endeavors or by AstraZeneca. However, despite this limita-
tion, the research still holds value as a proof-of-concept, showcasing the feasibility
and potential benefits of employing generative models in the medical field.

Potential risk of synthetic images generated: Generative models learn pat-
terns found in real echocardiograms to generate new images that mimic the real
ones. The risk of this process is that synthetic images could include close copies
of original images and therefore become a patient privacy concern. There is also
a possibility that generated images may contain anatomical inaccuracies or incon-
sistencies, which could lead to incorrect interpretations, misdiagnoses, or ineffective
treatment plans if used improperly.

It is important to emphasize that the purpose of this research is not to claim medi-
cal correctness but rather to explore the potential of diffusion models in generating
synthetic echocardiograms to improve the performance of a downstream view clas-
sification model.

1.6 Ethical Considerations
Ethical concerns related to the use of synthetic medical data is closely related to
the impacts it could have in the future and specifically for patients’ health and life.
Here are some immediate concerns, although not an exhaustive list:

• Regulatory frameworks: Integration and implementation of synthetic data
in the healthcare sector requires careful consideration and governance of reg-
ulatory frameworks, such as data protection, accountability and validation
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standards, to ensure reliable and ethical use of synthetic data in healthcare
applications.

• Patient privacy concerns: By substituting actual patient data with synthetic
counterparts, healthcare organizations can minimize the risk of privacy breaches,
distribute and repurpose data more. Nevertheless, caution must be exercised
in the event of biased synthetic data being employed for decision-making and
diagnoses, as this could result in erroneous or discriminatory outcomes. Simi-
larly, the generation of images using real patient data to produce potentially
misleading or inaccurate representations demands careful scrutiny to uphold
the standards and ensure accuracy and integrity of medical imaging.

• Environmental footprint: Environmental consequences stemming from the
computational requirements of running deep learning models raise concerns
regarding their negative impact. Lower-income communities may experience
heightened vulnerability due to limited resources and capacity to adapt to
environmental damages stemming from activities leaving a negative footprint.
This highlights the importance of environmentally responsible model develop-
ments and usage of resources.

Overall, while generative models have the potential to generate realistic-looking
medical images, there is a need for caution regarding usage of synthetically generated
contents. Ongoing validation, expert input, and integration with clinical expertise
are necessary to ensure that the generated images are used appropriately for medical
applications.

1.7 Thesis Outline
Subsequent section (2) of this report is structured to provide a view of most recent
studies published in relation to state-of-the-art echocardiogram view classification
and synthetic data generation with diffusion models. Following that is Section 3
with an in depth presentation of the image and video datasets used, along with
the preprocessing techniques applied. Section 4 provides an overview of the project
pipeline, evaluation approaches applied per diffusion and classification tasks and the
explanation to experiments carried out. Experiment headlines are organised to have
a corresponding headline in the Results section (5) to easily connect the experiment
design to its corresponding outcome. Finally, we present a concluding section (6)
answering our research questions, stating our contributions and suggestions to future
work.
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Theory

This section highlights recent studies of echocardiogram view classification using
state-of-the-art deep learning networks. Specifically we highlight the potential ben-
efits of using synthetic datasets to overcome challenges of typically scarce medical
datasets. Lastly, the concept of diffusion models is introduced, explaining how it
works and can be used to generate images that mimic original data distributions.

2.1 View Classification
The process of classifying echocardiograms views (including A2C, A4C, PLAX,
PSAX) has been attempted and documented in the research. However, few studies
present a successful classification of larger collection of views maintained in small
datasets. We will briefly outline most recent studies that attempt to solve echocar-
diogram view classification using state-of-the-art deep learning architectures. A
more comprehensive overview of echocardiogram view classification research can be
found in [16].

[17] proposes a real-time system including view classification for four views (among
them A4C and PLAX). The system uses a self-supervised echocardiogram specific
representation built with a small MobileNetV2 autoencoder trained on EchoNet-
Dynamic dataset (112x112 image resolution). The encoder is modified by having
fewer layers and a fuzzy pooling layer replacing the average pooling layer to better
handle image speckle noise (grainy noise due to interference of ultrasound waves). A
light-weight multi-head model then identifies unique views and dismisses low quality
samples. View classification performance results reported 0.985 Area under the
Curve (AUC) as compared to 0.963 with DenseNet161, 0.958 when using VGG16
and 0.951 with ResNet18, all with echo-specific weights.

Another real-time solution for view classification was presented in [5] identifying 14
different echocardiogram views using neural architecture search, more specifically
Differentiable architecture search (DARTS), to automate the model architecture
design process. With focus on a minimized network architecture with maximal pre-
diction accuracy, they also aimed to include subclasses of echocardiogram views and
assess the model performance based on different input image resolutions and train-
ing dataset sizes. PLAX, PSAX and A4C views were the majority classes. Macro
average Precision and Recall (average overall metrics of per-view performance) and
F1-Score (harmonic mean of Precision and Recall) was used as evaluation metrics.
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Two different DARTS model architectures were evaluated and compared to VGG16,
ResNet18 and DenseNet201. Results showed that accuracy performance converged
between the larger input image resolutions (96x96, 128x128) for all five models as
compared to the smaller resolutions (32x32, 64x64) where the drop was coming
from specific views such as A4C right ventricle. The best performing model was
their 2-cell-DARTS on 128x128 images having 0.951 in F1 score, where it was most
challenging to detect Apical five-chamber (A5C) view as being mistaken for other
apical views while views with distinct characteristics were easier to distinguish. Re-
garding training dataset size, the larger the better accuracy performance generally.

Identification of views is often done by classifying individual frames collected from
video sequences. Using deep neural network architecture with the ability to consider
cardiac movements may result in advancements in performances. [18] was Inspired
by recent work in the field of human action recognition, processing spatial and
temporal factors in videos. A total of 8,732 videos were utilised and had 14 classes
represented unequally (including A2C, A4C, PLAX) and were labelled by experts.
The first 40 frames of each video were resized to 299x299 or 224x224 pixels and
normalized to a value between 0 and 1 at training time. The study compared single-
frame 2D Convolutional Neural Network (CNN) (Xception, DenseNet121, ResNet,
InceptionV3, VGG16), multi-frame time-distributed CNN (TD Xception), spatio-
temporal 3D CNN (C3D, Inception3D). The error rate of the latter two was half of
the best performing 2D CNN, holding promise to making use of information from
the cardiac cycle as oppose to isolated frames.

Three state-of-the-art architectures, VGG16, DenseNet and ResNet, were exploited
to use knowledge distillation to build an ensemble of lightweight deep learning ar-
chitectures [19]. The task was to classify 12 echocardiogram views (from Apical,
Parasternal, Subcostal, Suprasternal windows) from an imbalanced dataset of 16,612
videos, equal to a 807,908 frames resized to 80x80 grayscale pixels, labeled by a
cardiologist. The combination of lightweight models achieved comparable perfor-
mance to an ensemble of the original architectures. Among the contributions were
a lightweight system that achieved a six times speedup at inference by utilising
only around 1% of the original model parameters, a method beneficial to mobile
application and real-time scenarios.

With the ambition to use minimal data while maximizing the performance accuracy,
a deep convolutional neural network inspired from VGG16 was used to classify 15
echocardiogram views [3]. A datasets of 267 labeled echocardiograms (videos and
images), resulting in a dataset with 223,787 grayscale images with 60x80 pixel res-
olution scaled to values between 0 and 1. The model achieved 0.964 in F1-score on
videos and 0.904 on still images on average. Minority classes and views with distinct
features (m-mode) had lowest performance.

These most recent studies have attempted to classify multiple views available in
echocardiography. However, the definition of views is somewhat inconsistent, for
example, considering Continuous Wave Doppler, Pulsed Wave Doppler and Motion-
mode the same view, or Aortic Vale, Mitral Vale, Left Ventricle and Right Ventricu-
lar Annulus were all considered Motion-mode [3]. Overall, the problem of very small
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dataset samples are not represented, while the problem of seeing under-represented
classes seem to be persistent across studies.

Repeatedly seen in studies mentioned above are VGG16 [20], ResNet18 [21], DenseNet121
[22] and InceptionV3 [23]. These are all state-of-the-art CNN that will be further
explored in the classification task of this project. Each has its own characteristics,
laid out in detail in their respective research papers, yet they all share a key compo-
nent as they include convolutional layers. These make up the fundamental building
blocks that capture spatial patterns and features from input images. This allows the
networks to learn hierarchical representations of the data, starting from low-level
features to high-level semantic information.

2.2 Image Synthesis
Large deep neural networks outlined in Section 2.1 are know to be data hungry.
As large volumes of annotated high-quality medical data is limited, an approach to
extending crucial datasets is data augmentation by artificially manufacturing data.
This is not only beneficial from a resource perspective, but synthetic data may
also allow for wider distributions of medical data without violating patient privacy,
since the data being distributed is not real patient data. Re-purposing datasets and
reproducing medical research results would also become easier with the usage of
synthetic data.

Synthetic data can be created through the use of generative algorithms, producing
data of desirable volumes that can be customized to fit specific needs [24]. In the
medical field, synthesized data can cover the diversity and quality of the datasets it
was trained on, and emulate underrepresented classes to improve the adaptability
of machine learning models at inference. For example, datasets can be balanced by
generating data conditioned on specific classes.

There are limitations and risks associated with the usage of synthetic data in the
medical field. Examples of such scenarios are unknown or new conditions, such as
COVID-19, that may not have been part of the data a generative model was trained
on [25]. Synthetic data can also be used maliciously by creating contents that may
be inaccurate or misleading, such as anatomically incorrect images.

2.3 Diffusion Models
Modeling of complex data distributions can be achieved through the utilization of a
Markov chain. This approach gradually transforms a well-behaved distribution into
the desired complex target distribution of the data by means of incremental steps
[8]. The underlying principle involves the progressive diffusion of the initial images
through the addition of small amounts of Gaussian noise at each step, over multiple
iterations. At the completion of this Markov chain process, the resulting images
conform to the well-behaved distribution, typically a zero-mean identity-covariance
Gaussian distribution N (0, I).
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By capturing the input-output image pairs at each stage of the diffusion process, a
model can be trained to effectively reverse this diffusion process. Specifically, the
model is trained to accurately reconstruct the input image based on the correspond-
ing output at each time step, thereby learning to effectively denoise the images step
by step. Finally, running the learned reverse diffusion process on randomly sampled
noise results in generated images that mimic the distribution of the original data
[8].

In [8], the Gaussian forward diffusion process is defined as:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI),

where xt−1 and xt are the input and output images of the diffusion step, respectively,
and βt is the diffusion rate, which can vary for different time steps.

Similarly, the learnable reverse diffusion process is:

p(xt−1|xt) = N (xt−1; , fµ(xt, t), fΣ(xt, t)),

where fµ(xt, t) and fΣ(xt, t) are functions defining the mean and covariance of the
reverse diffusion process. These functions are defined as neural networks whose
parameters can then be learned.

Figure 2.1: Image diffusion process.

At their inception, diffusion models showed good results with simpler toy data, but
their formulations entailed some complexities that may have prevented them from
taking off right at the outset. With a few clever simplifications, however, it was
shown that diffusion models could achieve remarkable results in image generation
on more complex real-world data [10]. Diffusion rates βt and covariances Σ(xt, t) can
potentially be learned, but setting them at fixed values can prove a beneficial gain
of simplicity at the cost of flexibility. Similarly, [10] introduces a reparameterization
trick:

Let:

αt = (1 − βt), and ᾱt =
t∏

s=1
αs.
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Then:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I),

which is a simplified formulation for sampling xt at an arbitrary time step directly
from x0. This can be further reparameterized to:

xt(x0, ϵ) =
√

ᾱtx0 +
√

(1 − ᾱt)ϵ, where ϵ ∼ N (0, I)

Using this reparameterization, they arrive to a simplified training objective:

Ex0, ϵ =
[

β2
t

2σ2
t αt(1 − ᾱt)

||ϵ − ϵθ(
√

ᾱtx0 +
√

1 − ᾱtϵ, t)||2
]

,

where σ2
t I is the untrained time dependent covariance of the reverse diffusion process

(normally set to σ2
t = βt), ϵ ∼ N (0, I), and ϵθ is a function approximator that learns

to predict ϵ from xt.

Further research into diffusion models re-established the importance of learning vari-
ances in the reverse diffusion process [11]. This, however, necessitated modifying
the simplified loss function [10] proposed in earlier work, as it provided no learning
signal for the variance. A hybrid loss function was designed, which allowed learning
both means and variances of the reverse diffusion process with Improved Denois-
ing Diffusion Probabilistic Models (Improved Diffusion) [11]. Learning variances in
addition to means led to higher quality sampled images.

Yet another improvement to diffusion models came in the form of the cosine noise
schedule, introduced as an alternative to the default linear noise schedule [11]. The
linear noise schedule, which dictates how βt evolved throughout diffusion time steps,
was found to be suboptimal for low resolution images (32x32 and 64x64). In essence,
a linear noise schedule destroys the image information too quickly to make the end
of the forward diffusion process informative during training. In contrast, a cosine
noise schedule was found to destroy the information contained within training images
more gradually, which in turn proved to work better with low resolution images. Use
of this cosine noise schedule led to lower FID than those achieved with a linear noise
schedule, which would indicate higher quality in generated samples.

Figure 2.2: Forward diffusion process using linear (top) and cosine (bottom) noise
schedules at evenly spaced intervals [11].
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Since their introduction in [8], and especially after many useful improvements arising
from research in the area [10], [11], [26], diffusion models have exploded in popular-
ity and have been used to great effect for a variety of tasks, such as text-to-image
generation, image inpainting, to name a few. A few notable examples of trained
diffusion models include Dall-E 2, Stable Diffusion, and Midjourney.

(a) Dall-E 2 (b) Stable Diffusion (c) Midjourney

Figure 2.3: Example images from notable diffusion models

It was demonstrated in "Diffusion Probabilistic Models beat GANs on Medical Im-
ages" (Medfusion) the potential of diffusion models applied specifically in the con-
text of medical imaging [13]. Diffusion models have exhibited outstanding perfor-
mance when training on different datasets comprising ophthalmological, radiologi-
cal, and histological data, surpassing other models like Generative Adversarial Net-
work (GAN) across multiple evaluation metrics used to assess image sample quality
and diversity (e.g., FID, Precision, Recall). Notably, diffusion models have shown
a distinct advantage over GANs in that they do not generate the typical artifacts
commonly observed in GAN-generated images. This characteristic presents an ad-
vantage for diffusion models when it comes to utilizing their generated samples as
training data for machine learning models that are expected to perform well on real
data.

In this thesis work, we aim to continue this line of research using echocardiogram
images to train several diffusion models, and leveraging the generated synthetic data
for training an echocardiogram view classifier.
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In this project, five distinct echocardiogram datasets were employed, each comprising
a composite of images and videos featuring A2C, A4C, PLAX, and PSAX views of
the heart at varying states. The TMED2, EchoNet-LVH and EchoNet-Dynamic
datasets are used for training, tuning and validation of diffusion and classification
models. The CAMUS and Unity datasets are solely used for testing classification
performance under domain shift.

To enable subsequent modeling, each dataset underwent a preprocessing procedure
tailored to its inherent characteristics, resulting in a standardized set of images with
uniform formatting. This section outlines the salient attributes of echocardiograms,
including their intricate nature, describes each dataset, and provides a comprehen-
sive account of the corresponding preprocessing methodologies for images and videos.

3.1 Echocardiograms
Standard echocardiogram studies usually involve recording multiple videos (50-100)
and images of one heart at varied angles and positions using different techniques.
Echocardiogram images are complex due to the intricate anatomy and physiology of
the heart. The heart is a dynamic organ, and the different views captured during an
echocardiogram can provide different insights into its structure and function. The
complexity in acquiring echocardiograms and the image variability itself can make
it challenging to accurately classify the correct view of the obtained image.

Factors that have impact on the complexity of echocardiogram images include the
patient’s heart rate, the patient’s body, and the presence of any obstructions, such as
tissues. Additionally, the various imaging machines and techniques used to capture
echocardiograms and the experience of the operator can increase this complexity.

The area of the echocardioagram that displays the ultrasound image of the heart is
referred to as the cone area, based on its shape. Depending on the machine settings
used, the size and magnification of the cone area can vary. Echocardiograms usually
have overlaying information such as view labels, meta data (text related to the
patient) and electrocardiographic signal curves indicating the heart beat. They can
also contain overlaying coloring generated from a Doppler echocardiogram, which
can help determine the speed and direction of blood flow.

Datasets used were originally video sequences capturing a couple of hearts beats over
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a few seconds, or still images capturing the heart at different states of cardiac cycle.
The following sections detail video and image specific datasets and the processing
applied to each.

3.2 Image Preprocessing

Images from datasets encompass different complexities and characteristics. They
all had varied file formats, color channels, image dimensions, pixel intensities and
outlier data. Due to the variability of echocardiograms there are a number of prepro-
cessing steps carried out before feeding images to deep learning models. Processing
techniques used are explained and motivated here:

• Consistent file format: Changing the original file formats from video avi and
medical mhd to png images to ensure a consistency in the file format that is
fed to the models.

• Grayscale: The key area of echocardiograms is the cone itself. The cone is
grayscale, at least to the human eye, and the color channels from the original
datasets does not provide additional information. Hence, making sure that all
images are grayscale, with one color channel instead of three color channels
(Reg, Green, Blue), reduces the complexity to the model.

• Resize: Resizing the images to a standard size to ensure that they can be pro-
cessed by the machine learning models. This was achieved by down-sampling
images with Open CV’s cubic interpolation to a standard 112x112 pixels, if
not already in that shape.

• Center-crop: When an image is resized or transformed without cropping, the
aspect ratio can change, leading to a distorted appearance. By center-cropping,
we ensure that the most important part of the image remains intact while
eliminating the unwanted parts.

• Normalize: The grayscale echocardiogram images contains pixel intensity val-
ues on a varied scale, between 0 and 255, due to the differences in machine set-
tings. It is therefore important to normalize these to ensure that images have
similar brightness and contrast levels, which can improve the performance of
the classifier. Normalization is done as part of the PyTorch data loader before
feeding images to models into a range of values between -1 to 1.

• Outlier removal: Discarding outliers from the datasets, such as images with
anomalies (color Doppler, images containing multiple views, abnormal coloring
of images), to ultimately improve the performance of the classifier. Example
of outliers identified in the dataset can be seen in Figure 3.8 and 3.9 where
the latter exemplify outliers usable after converting to grayscale images.
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3.3 CAMUS Dataset

The CAMUS dataset [27] contains 2,000 echocardiogram 2D-images collected from
500 patients during clinical exams at the University Hospital of St Etienne (France).
Data was collected with varied acquisition settings resulting in different qualities
and pathological cases, as typically seen in a general clinical setting. Two views and
a total of four images were collected per patient: apical two-chamber (A2C) and
four-chamber (A4C) at both End diastole (ED) and End Systole (ES), which can
be seen in more detail in Figure 3.1. For some patients it was not possible to collect
the four-chamber view and instead a five-chamber view was acquired. A GE Vivid
E95 ultrasound scanner was used with a GE M5S probe for all patient screenings.

Original images were downloaded in mhd file format with one color channel (grayscale),
with varied heights and widths, and two label views (A2C and A4C, at ED and ES)
being part of the file name. There was no overlay information but solely the echocar-
diogram cone area. The dataset is balanced between the two views (1,000 A2C, 1,000
A4C) and all 2,000 images were converted from mhd to 8-bit arrays with Simple ITK
python library, down-sampled to 112 by 112 pixels, and saved in png file format.

Figure 3.1: Example images from CAMUS dataset showing one patient and A2C
(top row) and A4C (bottom row) echocardiogram views at both end diastole (left

column) and end systole (right column), post processing.
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3.4 Unity Imaging Collaborative Dataset

From the Unity dataset [28], 7,231 echocardiograms of A2C, A4C and PLAX views
will be utilised. These have been labelled by experts of the UK group of cardiologist’s
and sonographer’s called Unity Imaging Collaborative. The data is organised in a
manner where each echocardiogram video was named by a unique hexadecimal code
from which multiple frames can be selected. There is no given naming convention
to identify individual patients. Though, when echocardiograms were used for the
research purpose it was originally created for, data was divided to have no overlap
between unique hexadecimal codes in between training and validation sets. Hence,
the same approach was adopted for this project.

The original images were downloaded as png files in 3-color channels (RGB) with
varying overlay information and color segmentation of echocardiograms. Several
image resolutions were identified across images, all center-cropped, converted to
grayscale and resized to 112x112 resolution before being used for testing in this
project.

Figure 3.2: Randomly selected Unity images of PLAX views after being downsized
and converted to grayscale.
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3.5 TMED2 Dataset

The TMED2 [29] includes 17,707 two-dimensional echocardiogram images collected
from 1,280 patients. The view labels represented in the dataset are A2C, A4C,
PLAX and PSAX, and are imbalanced with a heavier weight towards PLAX and
A4C views.

The collection process was conducted as part of routine clinical care at Tufts Medical
Center during 2011-2020. Certified sonographers labeled each image with a annota-
tion tool and were instructed to label multiple examples of all four views for each
patient. This resulted in that the number of images per patient and view label var-
ied while the majority of patients had about 1-15 images per view. For this reason,
up to 15 images were selected per patient, in order to use as much of the dataset as
possible while avoiding over representation of a few patients that had a much higher
number of images per view.

Images were originally available in 112x112 pixel resolution and grayscale in png
format where doppler images, m-mode image and colored images were excluded.
Hence, there was no need for additional image processing.

Figure 3.3: Randomly selected TMED2 images showing A4C (top left), A2C (top
right), PLAX (bottom left) and PSAX (bottom right) views.
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3.6 Stanford EchoNet-Dynamic and EchoNet-LVH
Datasets

The EchoNet-Dynamic and EchoNet-LVH datasets (hereafter referred to simply as
Dynamic and LVH, respectively) were published by the Stanford University Hospital
(US) and contain 10,030 labeled A4C echocardiogram videos and 12,000 labeled
PLAX echocardiogram, respectively. Recordings were collected as part of routine
clinical care by trained sonographers in an academic medical center with lab settings
typical for echocardiogram acquisition. Varied ultrasound machines (iE33, Sonos,
Acuson SC2000, Epiq 5G, Epiq 7C) were used to gather Dynamic videos while
devices used in collection of LVH are not explicitly stated. Both datasets provide
cropped and masked videos to exclude overlay information outside of the cone area.

Videos can be accessed through the Stanford AI in Medicine and Imaging (AIMI)
center. Each video sequence comes in avi video file format, three color channels
(RGB), and is about 3-4 seconds long. Sequences represent a number of heart beats
to capture varied states of the heart view and contain about 50 frames per second
(frames are still images of a video at certain points in time). Example frames from
a heart beat video sequence is shown in Figure 3.4 for Dynamic and Figure 3.5 for
LVH dataset. There were about 100-275 frames per video for Dynamic and 75-250
frames per video for LVH dataset (excluding very short or very long outliers), that
are visualized in Figure 3.6 and 3.7. One final frame per video was then selected at
random to account for the various states throughout the heart beat cycle. However,
before sampling frames from the videos, outlier videos had to be identified and
handled appropriately. This process is outlined in the following section. The final
frames selected were center-cropped, down-sampled to 112 by 112 pixels, converted
to grayscale and saved in png format. Thus, we end up with 10,026 A4C images
(from 10,026 Dynamic videos) and 11,182 PLAX images (from 11,182 LVH videos).

Figure 3.4: Example sequence of frames from one Dynamic video (A4C view).

Figure 3.5: Example sequence of frames from one LVH video (PLAX view).

The distribution of frames count per dataset is depicted in Figure 3.6 and 3.7.
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Figure 3.6: Frame count distribution of Dynamic dataset with 95% of frames
centered around the mean.

Figure 3.7: Frame count distribution of LVH dataset with 95% of frames centered
around the mean.

3.7 Video Preprocessing
The video preprocessing pipeline involved two key steps: video validation and frame
selection. The video validation process aimed to identify valid videos for use in the
analysis, filtering out videos with dual views, colored Doppler views, or abnormal col-
oring (Figure 3.8). Subsequently, a subset of frames were selected with an approach
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that avoids bias and accounts for variability in frames selected during different states
of the heart beat cycle.

3.7.1 Video Validation
The majority of the analyzed videos appeared to be predominantly grayscale to the
human observer, with occasional colored overlay information. To limit the model’s
complexity while mitigating the risk of information loss, it is beneficial to convert
the original three-color channels into one-color channel. Prior to this conversion,
it was necessary to validate which videos contained colored pixels and assess the
usability of such videos.

We developed two approaches for video validation. The initial approach involved
extracting the first frame of each video and calculating the pixel-wise differences
between the intensities of the three color channels (red-green, green-blue, blue-red).
This was based on the assumptions that a video sequence is likely to have similar
pixel intensities across frames, and that grayscale pixels have similar or identical
values across all channels (RGB). Any pixel whose maximum difference across these
channels exceeded a specified threshold was classified as a color pixel.

To account for videos in which the echocardiogram cone was grayscale but contained
minor colored overlay information, we introduced a grayscale proportion threshold.
Videos whose ratio of grayscale-to-total pixels was below this threshold were deemed
to contain too much color, and were excluded from the subsequent analysis. On the
other hand, videos whose grayscale proportion exceeded the threshold were classified
as grayscale and continued on to frame selection. While this approach seemed sound
on paper, in practice we encountered inconsistent results. Therefore, we deemed it
necessary to reevaluate our methodology.

We eventually adopted a second approach to video validation, which involved ana-
lyzing the first frame of each video to calculate the maximum absolute difference
in intensities across the color channels for each pixel. These values were stored
in an array for each video. Videos were categorized into distributions based on
Kolmogorov-Smirnov (KS) tests with a significance level of 0.05. The first video
was assigned to a distribution, and subsequent videos were compared to it using KS
tests. If the null hypothesis could not be rejected, the new video was grouped with
the initial video’s distribution. However, if the null hypothesis was rejected, the new
video was not assigned to any distribution and was saved for re-evaluation during
the next iteration. This process was repeated for all videos until every video was
categorized into a distribution. To ensure data quality, we manually inspected one
example frame from each distribution and identified unusable outliers (Figure 3.8).
The entire distribution to which an unusable outlier example belonged was consid-
ered unreliable, and its videos were excluded from further analysis. The remaining
videos were deemed valid for subsequent frame selection. It is important to mention
that some examples may appear to be outliers in terms of color scheme (Figure 3.9),
but can still be used after converting them to grayscale. Such examples were consid-
ered as usable outliers. Since all extracted frames were to be converted from three
channel format (RGB) to one channel format (grayscale), no further preprocessing
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was required for these usable outliers.

Figure 3.8: Identified outlier echocardiograms that were excluded from the dataset.
From left to right: image including split views, Doppler image with coloring,

abnormal coloring.

Figure 3.9: Outlier echocardiograms identified but included in the dataset after
preprocessing.

3.7.2 Frame Selection
We devised an involved approach to frame selection that aimed to capture diverse
frames, in terms of pixel intensity values, from each video. This was based on the
assumption that consecutive frames in a video are likely to be similar. To achieve
this goal, we constructed a frame similarity matrix by comparing each frame in a
video to every other frame. Specifically, we utilized mean squared error (MSE) to
measure the similarity between pairs of frames.

Using the frame similarity matrix, we then applied a video-specific similarity thresh-
old to select only frames that were dissimilar from each other. This was accomplished
by identifying the 0.25 quantile of the similarity score for each video and selecting
only the frames whose similarity score fell below this threshold. By selecting frames
with low similarity, we were able to capture a diverse range of frames from each
video and thereby increase the variability of our training data.

Although our original approach of selecting frames based on their dissimilarity
yielded satisfactory results, we eventually decided to instead select a single ran-
dom frame per video. Our motivation was to avoid overrepresentation of images
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extracted from video datasets in our final training set, thereby achieving a reason-
able balance across source datasets. Additionally, this approach yields variability
of data by allowing selection of frames from arbitrary moments in the heart beat
sequence and avoids bias in sampling.

3.8 Dataset Summary
In summary, it is important to know the limits of each dataset by its own characteris-
tics. Despite all being collected in a typical clinical setting, these characteristics may
not generalise well to other echocardiogram datasets acquired with other operational
techniques, staff, devices and settings. Additionally, both video processing and im-
age processing techniques had to be applied before arriving at our final datasets:
our main 4-class dataset, used for training, validation and testing of diffusion and
classification models, and our secondary 3-class dataset used for testing purposes
only.

The 4-class (A2C, A4C, PLAX, PSAX views) dataset thus contains images from
TMED2, Dynamic and LVH, and totals 38,915 echocardiogram images. This 4-class
dataset is further split into train, validation and test sets (80%/10%/10%), detailed
in Table 3.1. A total of 9231 images are derived from CAMUS and Unity datasets
with 2,000 and 7,231 images respectively. Those images belong to 3 classes (A2C,
A4C, PLAX) as shown in Table 3.3. An additional five smaller subsets of training
data are created from the 4-class training split to explore the impact of dataset size
on diffusion and classification performance.

Table 3.1: Summary of 4-class dataset with train, validation and test splits.

Split/Dataset LVH Dynamic TMED2 Total Share
Train 8,945 8,020 14,165 31,130 80%

Validation 1,118 1,002 1,775 3,895 10%
Test 1,119 1,004 1,767 3,890 10%
Total 11,182 10,026 17,707 38,915
Share 29% 26% 46% 100%

Table 3.2: Imbalance between classes shown for 4-class dataset.

Split/Dataset A2C A4C PLAX PSAX Total Share
Train 2,752 11,635 14,573 2,170 31,130 80%

Validation 345 1,465 1,807 278 3,895 10%
Test 335 1,431 1,845 279 3,890 10%
Total 3,432 14,531 18,225 2,727 38,915
Share 9% 37% 47% 7% 100%
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Figure 3.10: 4-class dataset (N=38,915) detail by view and split.

Table 3.3: Summary of 3-class dataset only used for testing.

CAMUS Unity
A2C A4C A2C A4C PLAX Total

Items 1000 1000 1029 3311 2891 9231

A total of six real training data subsets are used in experiments outlined in the
remaining parts of this report, and are summarized in Table 3.4. The proportion
of images belonging to each dataset (LVH, Dynamic, TMED2) and class is kept in
all data splits and subsets created. Individual patients are kept separated with no
overlap between different splits of the data where patient information was available
(only Unity did not provide patient IDs but hexadecimal codes). For example, images
from one patient, if part of the training set, will not be part of validation nor test
sets, and vice versa.
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Table 3.4: Summary of six training subsets of real data created from the training
set of the original 4-class dataset.

Size Views: Datasets:
A2C A4C PLAX PSAX Dynamic LVH TMED2

1,000 89 374 468 69 253 289 458
2,000 176 748 937 139 515 574 911
4,000 354 1,496 1,872 278 1,045 1,162 1,793
8,000 707 2,990 3,745 558 2,070 2,289 3,641
16,000 1,415 5,980 7,490 1,115 4,077 4,576 7,347
31,130 2,752 11,635 14,573 2,170 8,020 8,945 14,165
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This section provides an overview of the project along with a definition and moti-
vation of evaluation metrics used to assess synthetic images and view classification.
Finally, we describe the specific experiments carried out in relation to diffusion mod-
els, generating images and echocardiogram view classification. Both this section and
the following Section 5 use the same subheadings for individual experiments to fa-
cilitate matching experiments’ methodology and results.

4.1 Pipeline Overview
The first natural step to answer our second research question, related to exploring
the impact of classification performance by using synthetic data, is to establish a
baseline classification performance of real data alone. The next step, in order to
make the most out of the real data available, would be to use the same real dataset
to train a diffusion model to generate a greater volume of synthetic images. These
synthetic images would in turn be used to train a separate classifier. We would then
be able to compare the performance between the baseline classifier trained on real
data against the one trained on synthetic data. The purpose would be to explore
the potential performance difference between these two approaches:

• using real data available, as is, to train a classifier

• using real data available to train a diffusion model, sampling from it a larger
synthetic dataset, and using the synthetic data to train a classifier

One assumption is that the size of the imbalanced original dataset may matter. For
this reason, we explore increasingly smaller subsets of the original training dataset.
As this analysis would be limited to explore classification performance when trained
on either real or synthetic data exclusively, we also explore whether real data aug-
mented with synthetic data could yield valuable results. The aim is to investigate
what the optimal use of synthetic data could be in echocardiogram view classifica-
tion.

In order to answer our research questions we have developed a project pipeline for
this thesis work. This pipeline entails the customized data to be used, generation
of synthetic echocardiograms, and evaluating classifiers trained with the different
datasets. The project pipeline is depicted below in Figure 4.1.
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Figure 4.1: Project pipeline overview

The pipeline includes the following steps:

1. Acquire datasets from research institutes.

2. Preprocess image and video data to exclude outliers and configure final images
to a consistent format.

3. Build custom datasets of varied sizes, keeping the proportions of imbalanced
classes unchanged.

4. Choose a Diffusion model architecture based on the literature review and initial
experimental results.

5. Use the architecture to train an initial diffusion model, sample images, evaluate
and tune hyperparameters.

6. Train multiple diffusion models with real datasets of different sizes to sample
synthetic image datasets of a fixed size.

7. Evaluate the generated images against the validation data by calculating FID.

8. Choose classification model architectures based on the literature review and
evaluate with initial experimental results.

9. Train classification models with real and synthetic datasets of varying sizes.

10. Evaluate and compare classification models’ performances on the real valida-
tion set.

4.2 Evaluation Approach
In this section we provide a brief introduction to our evaluation approaches covering,
both synthetic data generation and echocardiogram view classification.

26



4. Methods

4.2.1 Synthetic Images
Evaluating generative models is still an area of active research. However, a common
approach is to compare the distributions of real and synthetic images. FID [30]
is outlined below as the main quantitative metric for evaluating synthetic images.
A more qualitative evaluation approach is taken by visualizing the features of syn-
thetic and real image using dimensionality reduction, and by having medical experts
surveyed on the task of distinguishing real echocardiograms from synthetic ones.

4.2.1.1 Quantitative Assessment

We employ FID as an overall metric for judging performance of a trained diffusion
model. FID is a measure of similarity between two sets of images. It computes
feature representations using a pretrained Inception V3 network for both sets of
images, fits a Gaussian distribution to each set of feature representations, and finally
computes the Fréchet distance between the two. As a measure of distance between
these two distributions, a lower FID implies a higher similarity between the two sets
of images. We thus use FID to evaluate synthetic echocardiogram images against
real echocardiogram images.

4.2.1.2 Feature visualizations

The feature representations of real and synthetic images are taken from the acti-
vation of the second to last output layer of a CNN architecture to be trained on
the 80% training dataset. These are then comprised into a two-dimensionsal t-SNE
embedding scaled between 0 to 1, before being plotted. The purpose of this visual-
izations is to explore how the real and synthetic images position in relation to each
other. This can help illustrate how diverse the synthetic echocardiograms are when
compared to the real data.

4.2.1.3 Human Evaluation

A survey will be shared with persons with varied medical experience and specialties,
with the assumption that they would be better than random at distinguishing be-
tween real and synthetic echocardiograms. They will be presented with 50 image
pairs, each showing one real and one synthetic echocardiogram displayed next to
each other. Then they will be asked to identify which out of the two images that
was the real echocardiogram by picking left or right. An example image pair is
shown in Figure 4.2. The placement (left or right) of the real echocardiogram was
decided at random. Both images in each pair belong to the same view. The survey
will only include views from the majority classes (A4C and PLAX). Real images
will be randomly selected from the training set while synthetic echocardiogram will
be generated from our diffusion model trained on the full 4-class training dataset.
At the end of the survey participants will be able to describe and share what their
general approach to distinguish between real and synthetic echocardiograms was.
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Figure 4.2: Simple game to test whether a human subject can distinguish real from
synthetic echocardiograms.

4.2.1.4 Limitations of Synthetic Evaluation

Synthetic data evaluation is still a recent and relevant research area and continu-
ously being developed. Considering this, there are some limitations to the current
evaluation approach:

• Creation of synthetic images of high diversity has been a persistent challenge
for generative models. While a model that consistently produces high-quality
output is desirable, it is of limited usefulness if it is only capable of generating
a limited variety of images.

• Quantitative FID measures is based on complex calculations making them
difficult to interpret and comprehend.

• FID is less valuable on its own. For example, if generating images with one
diffusion model and calculating FID between those images and the original
training images, it is difficult to identify what score constitutes good or bad
performance without any context or comparison. The aim in this project is to
use FID as a means to compare and evaluate different diffusion models to one
another, and assess how long they should be trained for. In order to ensure a
fair comparison between different sets of synthetic images, they should all be
of the same size (i.e. number of images) and their FID should all be computed

28



4. Methods

against the same set of real images, to limit confounding factors.

• There is a lack of measures to assess the realism of synthetic images, meaning
the generated images could potentially be anatomically incorrect or otherwise
inaccurate.

• The current evaluation approach does not measure potential copies or close
copies of original patient images in the synthetic data generated, which evokes
a patient privacy concern.

• There are currently no measures taken to quantify potential bias found in
synthetic data other than the known characteristics laid out in the data section.
Generally, to avoid having bias translated into synthetic images one should
train on a dataset known to have captured the proper diversity of conditions
of the population and clinical phenotypes. The larger the dataset the greater
the likelihood to cover for a wider diversity. However, due to patient data
privacy, distributing medical data is complex, and there is a risk of violating
regulations and leak sensitive information.

• FID is currently calculated using the InceptionV3, pretrained on ImageNet,
which learned features that may be very different from those relevant to
echocardiograms. A more reasonable approach would be to use a model trained
on echocardiograms to extract features with which to compute FID.

4.2.2 View Classification
Handling imbalanced datasets is a critical aspect of view classification evaluation.
Imbalanced datasets occur when the number of instances in different classes is sig-
nificantly unequal. The 4-class dataset used in this project has two minority classes
(A2C, PSAX) accounting for only about 10% of the dataset each, while the other two
classes (A4C, PLAX) are in the majority. In this scenario, using traditional evalua-
tion metrics like accuracy may not provide an accurate representation of model per-
formance as it would generate accurate predictions for the majority of observations
when having minority classes. Instead, metrics like Macro F1-score and Area un-
der the Precision-Recall Curve (Area Under the Precision-Recall Curve (AUPRC)),
also referred to as Average Precision, provide a more transparent and informative
measure of performance. Additionally, Confusion Matrices will be used to provide a
comprehensive summary of the model’s predictions by offering a detailed breakdown
of the classification results.

Both Precision and Recall calculations rely on True positives, False positives and
False negatives. Precision ( Tp

Tp+Fp
) refers to the ratio of correctly classified positive

instances to the total instances predicted as positive. On the other hand, Recall
( Tp

Tp+Fn
) measures the ratio of correctly classified positive instances to the total ac-

tual positive instances. AUPRC is a single value summarizing the Precision-Recall
Curve (PRC), which itself is a graphical visualization showing the trade-off between
Precision and Recall at various threshold values. Plotted on the x-axis is Recall, and
Precision on the y-axis, both bounded between 0 and 1. Higher scores, closer to 1,
are generally preferred indicating that the classifier performs well for the given task.
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AUPRC is calculated by summarizing the PRC as a weighted mean of Precision for
every threshold, and uses a weight calculated on the difference in Recall from the
previous threshold. This is performed for each class before being average across the
total number of classes. As shown in Equation 4.1, Pn and Rn is the corresponding
Precision and Recall at threshold index n:

AUPRC =
∑

n

(Rn − Rn−1)Pn (4.1)

F1-score is a single metric that combines Precision and Recall into a harmonic mean,
providing a balanced global measure of the model’s performance. It is especially
useful when both Precision and Recall are equally important in view classification
tasks. Macro F1-score is calculated per class and is then averaged across classes. Any
class without true or predicted images are ignored to ensure only relevant classes are
included in the calculation and equally weighted to not prioritize majority classes
over minority ones. F1-score calculation is outlined in Equation 4.2 below:

F1 = 2 Precision ∗ Recall
(Precision) + Recall

(4.2)

4.3 Experiments
Experiments are divided into two main components, one building on top of the
other. Starting with experiments to help us land with a diffusion model of choice
that can be used for sampling synthetic images. In turn, these synthetic images will
be further used in experiments related to echocardiogram view classification, along
with real data subsets.

The original 4-class real data (LVH, Dynamic, TMED2) was split into 80% training,
10% validation and 10% testing, while 100% of the 3-class real data (CAMUS-Unity)
was used for final testing. All code was written in Python (version 3.9.12) and Py-
Torch (version 2.0.1) was our main framework utilised for deep learning experiments
throughout the project. Computational resources needed to train and evaluate dif-
fusion and classification models were supplied via Alvis with NVIDIA Tesla A100
and A40 GPUs.

4.3.1 Diffusion
4.3.1.1 Initial Repository Exploration

After careful consideration, we identified two GitHub repositories, Medfusion [13]
and Improved Diffusion [11], that we could use to generate synthetic images. We
conducted tests on both repositories, making minimal modifications, to train the
models on our custom datasets.

At this early stage of the process we created 2 custom datasets on which to train
on and benchmark the candidate diffusion repositories. These datasets were early
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iterations of the full training set detailed in our Data summary section (3.8).

Figure 4.3: Datasets used for initial repository exploration.

It is worth noting that these custom datasets were only used for the purpose of
deciding on a repository, and were not used throughout the rest of this thesis. The
reason for this is that, as our work progressed, and as our understanding of the
capabilities of diffusion models increased, we made further changes to the datasets
we worked with, to be able to arrive at more clear and more interesting conclusions.
These changes ranged from committing to utilizing 4 classes, to sampling fewer
frames from LVH and Dynamic videos for balance purposes. Regarding the results
from the analysis conducted, the difference in performance between the 2 repositories
was large enough across both datasets that we felt confident in moving forward with
the selected one. Our underlying assumption here was that the large performance
difference must be due primarily to one repository being better for our use case than
the other, and that this pattern would hold even when tested with different datasets
like the ones we would later end up using.

In each repository, we made the necessary modifications for the models to accept
inputs of the correct shape (112x112x1) and initiated the training process. Addi-
tionally, we dedicated a small amount of time to tuning the hyperparameters of
each repository at this stage, such as learning rate and layers of the noise estimator
(U-Net), but ultimately reverted to the default settings since they produced superior
results.

Once training was complete, we sampled 1,000 images from each model (Medfusion
and Improved Diffusion). As expected, sampling was a bottleneck, taking consider-
able time. Generating 1,000 synthetic images required approximately 30 minutes,
while generating 10,000 images using four GPUs in parallel took 5-6 hours. The
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final step in this stage of the process was evaluating the sampled images against the
real echocardiograms. For this purpose we used the FID metric. As a metric sanity
check we evaluated a set of 1,000 synthetic samples against itself, and obtained the
expected results (FID=0). Then we proceeded to examine the results of the 1,000
synthetic images against the training dataset. These results are presented in Sec-
tion 5 and based on them we decided to move forward with the Improved Diffusion
repository for the rest of this project.

We identified two critical hyperparameters to fine-tune in our Improved Diffusion
model. Typically, diffusion models are trained to learn only the mean of the noise
at each time step in the reverse diffusion process. However, research suggests that
in some cases, learning the variances in addition to the means can improve perfor-
mance. Likewise, the original linear noise schedule used in the forward diffusion
process can be replaced with a cosine noise schedule to yield better results [11]. To
investigate these possibilities, we trained four models using different combinations
of these hyperparameter choices two synthetic samples were generated. The first set
comprised 1,000 images, while the second set consisted of 10,000. We explored the
relationship between the number of sampled images and the resulting FID. Specif-
ically, we compared each set of 1,000 synthetic images against 1,000 random real
images, and each set of 10,000 synthetic images against 10,000 random real images.
At this point we were only interested in comparing the hyperparameters themselves
and not the size of synthetic samples. calculated between the two synthetic samples
and a set of 10,000 real images.

4.3.1.2 Ideal Sample Size

A great volume of images can be generated once a diffusion model is trained, however
the number of samples to be generated requires significant computational resources.
Given that sampling can be time-consuming, we aimed to strike a balance between
achieving convergence in FID and minimizing sampling time. To gain more knowl-
edge about the ideal sample size we proceeded to generate multiple synthetic samples
(1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 15,000, 20,000, 30,000, 40,000, and 50,000).
The evaluation was performed by calculating FID between all eleven sets of synthetic
samples and a set of 10,000 real images to find a convergence point of FID.

4.3.1.3 Training Time

The Improved Diffusion model can be trained indefinitely unless stopped at certain
time, loss or number of update steps. We trained a diffusion model on the full
training set of almost 32,000 real images for 72,000 update steps, saving checkpoints
at evenly spaced intervals of 9,000 steps. We then sampled a set of 10,000 synthetic
images from each of these model checkpoints, and computed their respective FID
when compared against a fixed validation set. Thus, we obtain FIDs of images
sampled at different points throughout the diffusion model training process. This
provides a quantitative way to compare the quality of the generated images directly
throughout the diffusion model training process, rather than simply going by the
loss metric which proved an unreliable proxy for image quality.
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4.3.1.4 Qualitative Evaluation

Visualizations of real and synthetic images will be presented in the results section
to allow for some human-eye comparison of real and synthetic images. The purpose
is to demonstrate the quality of generated images, and give the opportunity to try
to spot synthetic images when mixed with real ones. The idea is also to facilitate
comprehension of the challenge presented in the survey administered to individuals
with medical experience. Only allowing participant with medical expertise was based
on the assumption that medically trained professionals would at some point be
exposed to ultrasound images and echocardiograms, and therefore have a better
chance at distinguishing real echocardiograms from synthetic ones. Their task was
to distinguish real echocardiograms from synthetic ones when presented with pairs
of images including one real and one synthetic echocardiogram. The findings from
the survey is presented in Section 5.1.5.

4.3.2 View Classification

4.3.2.1 Initial Architecture Exploration

As a first step in choosing a classification model for view classification, multiple
state-of-the-art deep neural networks were selected based on the latest echocardio-
gram view classification research outlined in Section 2. The selected models were
VGG16, DenseNet121, ResNet18 and InceptionV3, loaded with PyTorch deep learn-
ing framework.

Two training approaches were utilised for each model to evaluate a to decide on a
preferred approach out of the two. For the first approach, model architectures were
used without loading or freezing any pretrained weights, essentially training models
from scratch. In each architecture, the last fully connected layer was replaced by
one of output size equal to number of classes. For the second approach, both model
architectures and their corresponding pretrained weights were loaded, all pretrained
on ImageNet-1K. The convolutional layers were frozen and the last fully connected
layer was replaced by one of output size equal to number of classes. We intended
to try out different transfer learning approaches, but after reviewing our initial
classification results (Table 5.3) we deemed this unnecessary.

All models were trained on the largest subset of real data (32k), while evaluation
was done on the validation set. Training for all models was carried out using 25
epochs, stochastic gradient decent with a 0.001 learning rate and 0.9 momentum, a
learning rate scheduler with a step size of 5 and 0.1 gamma, a batch size of 32, and
cross-entropy loss.

4.3.2.2 Experiments with Real and Synthetic Subsets

We continue to analyse the performance of three classifier architectures under dif-
ferent settings. Our main point of interest is to study how synthetic data can help
improve classification performance when real data is limited to varying degrees. In
order to do so, and as outlined in Section 3.8, we create training subsets of real and
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synthetic data based on the training set from our 4-class dataset:

• Real subsets: We employ the full training set, consisting of almost 32,000
images covering 4 views. In addition, we take increasingly smaller subsets of
the full training set, keeping the proportions among views constant, to arrive
at 5 additional training sets of sizes 1,000, 2,000, 4,000, 8,000 and 16,000
images, all covering the same 4 views. This results in a total of 6 different real
subsets used to train the classifiers.

• Synthetic subsets: We train one diffusion model on each of the real training
subsets described above. Once the diffusion models are trained, we sample
from each a balanced dataset of 32,000 synthetic images. This results in 6
synthetic subsets of the same size, coming from diffusion models trained on
the real subsets of varying sizes. The intention behind this is to explore how
the amount of real data available impacts the performance of the resulting
synthetic data on a downstream classification task, keeping the size of the
sampled synthetic data itself constant. Table A.2 uses column "Size" to refer
to the size of the real subset that was used to train the diffusion model from
which the synthetic images were sampled from in each case.

The experiment flow for real subsets is summarized in Figure 4.4 while the corre-
sponding experimental flow for synthetic subsets is visualized in Figure 4.5.

Figure 4.4: Overview of experiments with real subsets of varying sizes.
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Figure 4.5: Overview of experiments with synthetic subsets of fixed size.

4.3.2.3 Cluster Visualization of Image Features

Real and synthetic images are grayscale, each consisting of 12,544 pixels (112x112x1)
with values (intensities) between 0 and 1. These 12,544 numbers for one image can
be formatted into a 1x12544 vector, also referred to as the pixel space.

In order to generate an interpretable visualization, we run images through our
VGG16 view classifier trained on the full subset of real images, extract the ac-
tivations of the second to last layer to be used as image features, and perform
dimensionality reduction on these. This process transforms the high-dimensional
pixel space (12,544-dimensions) first into a lower-dimensional feature space (4,096
dimensions), and finally into a planar representation (2 dimensions).

Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) are common reduction methods converting n-dimensions into k-
dimensions while preserving as much information as possible. The main difference
is that PCA preserves large pairwise similarities to optimize variances while t-SNE
preserves local similarities. t-SNE is a non-linear unsupervised method that allows
more flexibility compared to PCA when it comes to more complex non-linear data.

t-SNE uses a student t-distribution having a long tail to fit points so that the neigh-
bourhood of points are maintained. The number of neighbours to preserve is defined
by a perplexity parameter (30 by default). Similarities between points (conditional
probability that xi would pick xj as its neighbor) are converted to joint probabilities
by the algorithm, which then aim to minimize Kullback-Liebler divergence between
the joint probabilities of high-dimensional data and low-dimensional embeddings. It
is a stochastic non-deterministic algorithm, meaning it is random by nature and
can produce different results at every initialization (random_state=42 used for re-
producibility). By default, the algorithm runs for 1,000 iterations, continuously
moving data points, which can be computationally heavy when working on very
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high-dimensional data. Default values for perplexity and iterations were used af-
ter testing 20,30,50,70 in perplexity with both 1000 and 2000 iterations with very
similar results.

4.3.2.4 Impact of Synthetic Data on Minority Classes

The use of synthetic data can serve as a means of mitigating data imbalance is-
sues. To illustrate this point, we present a closer look at the results obtained from
evaluating our ResNet18 models trained on real and synthetic data in the scenario
where only 1,000 authentic images are available. We have selected ResNet18 for
this purpose since it is the architecture that demonstrates the smallest increase in
performance when transitioning from training on authentic data to training on syn-
thetic data. Therefore, the results presented in this section can be considered a
conservative illustration of the potential benefits that can be attained by utilizing
synthetic data to address class imbalance issues on small real datasets.

4.3.2.5 Synthetic Augmentation of Real Data

This section focuses on examining the effects of incorporating synthetic images into
real data. Our objective is to assess the impact of gradually introducing synthetic
images to each of our real subsets. Specifically, we incrementally add a certain
number of synthetic images to the real subsets such that, at each step, 10% of the
size of the real subset is added as synthetic images. The resulting image set is then
utilized to train a VGG16 classifier, and its performance (measured by AUPRC) is
evaluated on an unseen validation set.

4.3.2.6 Synthetic data compared to basic upsampling method

In order to evaluate how the use of synthetic data compares to some basic upsampling
method, an experiment will be carried out to extend the data belonging to classes by
randomly selecting and copying images. With this technique two additional datasets
will be created:

1. With the 1,000 real subset, classes will be upsampled to the same amount of
images available in the class with highest frequency. This result in that A2C,
A4C and PSAX will be upsampled to contain 468 images each, same as the
majority PLAX class. This makes up a total of 1,872 images across all four
classes.

2. With the 1,000 real subset, classes are upsampled to contain 8,000 images each,
leading to a total of 32,000 images across the four classes. This makes the size
comparable to the synthetic dataset generated by the diffusion model trained
on the 1,000 real subset.

A VGG16 model architecture will then be used to train on these two upsampled
datasets separately. They will then be compared to the AUPRC performance of the
VGG16 classifier trained on the 1,000 real subset and the 32,000 synthetic subset
(originating from the 1000 real subset). All four classifiers are evaluated on the same
validation set.
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4.3.2.7 Final Testing

Finally we evaluate our final choice of trained classifier on the holdout test set, which
contains images coming from the same 4-class datasets (i.e. same distribution) as
the training and validation sets: LVH, Dynamic, and TMED2.

Additionally, we use a secondary holdout test set, which contains images from en-
tirely different sources: CAMUS and Unity. These contain only 3 views in total
(A2C, A4C, & PLAX), with potentially large differences in the images compared to
the training set, due to factors such as machines used for echocardiogram recordings,
among others. This secondary test set is therefore used to analyse how well the final
model performs under domain shift.
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5
Results

This section is structured into two distinct subsections, namely Diffusion and Clas-
sification results, which are inherently connected. The findings obtained from the
Diffusion section forms the base for the experiments conducted in the subsequent
Classification section. This latter section offers our insights into the influence of syn-
thetic echocardiograms on the performance of view classification based on our own
experiments. Notably, each result subheading is closely linked to the description of
how each experiment was designed in Section 4.3.

5.1 Diffusion

Results related to Diffusion, presents an exploration of two distinct repositories,
which culminated in the selection of a suitable diffusion model and settings. The
subsequent discussion sheds light on the rationale behind the sample size used for
generating synthetic images and the associated time and resources required. Fur-
thermore, an evaluation is provided assessing the quality of the synthetic samples
generated.

5.1.1 Initial repository exploration

Below we present the first comparison between the two tested repositories after
training them with two different datasets: one 2-class dataset (A4C and PLAX)
and one 4-class dataset (A2C, A4C, PLAX, PSAX). These were both of very large
sizes (>300,000 images) since multiple frames were being samples from the LVH
and Dynamic video datasets. These datasets later proved irrelevant due to their
unrealistically large volume of labeled data in medical scenarios, and being largely
imbalanced in relation to dataset representation, where TMED2 became a minority.
Hence, these datasets were solely used for initial testing of repositories.

Table 5.1 shows the results of this evaluation. In both cases Improved Diffusion
outperformed Medfusion by a fairly large margin, so we decided to move forward
with the Improved Diffusion.
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Table 5.1: FID comparison between the Medfusion and Improved Diffusion reposi-
tories where low FID is better.

Dataset/ FID Medfusion Improved Diffusion
Large-2-class 95.89 30.48
Large-4-class 78.16 47.46

We then moved on to hyperparameter tuning. With limited time, we chose to focus
on those deemed likely to have the most effect: learning variances and noise sched-
ulers [11]. In order to conduct this test, we sampled 2 sets of synthetic images from
our trained diffusion models, one set with 1,000 and another with 10,000 synthetic
images. The results are presented in Table 5.2 below:

Table 5.2: Results when testing different hyperparameter combinations for the Im-
proved Diffusion repository.

Learn Variance Noise Scheduler FID (1k samples) FID (10k samples)
True Linear 16.03 4.56
True Cosine 20.87 9.07
False Linear 21.33 9.20
False Cosine 17.47 6.54

The Improved Diffusion paper [11] shows that learning variances with a cosine noise
scheduler usually yields the better results on lower resolution images (32x32 and
64x64). We found that learning variances with a linear noise scheduler generated
better results in our case, exhibiting the lowest FID of 4.56. Since neither noise
scheduler performed strictly better, but depended on the choice of whether or not
to learn variances, it is possible that our resolution (112x112) is close to the point
where linear and cosine schedules perform equally well.

Nevertheless, we do see that one combination of hyperparameters performs marginally
better than the rest. We therefore choose to move forward training our different dif-
fusion models using the Improved Diffusion repository as a base, with a linear noise
scheduler and learning the variances of the reverse diffusion process.

5.1.2 Ideal sample size
Figure 5.1 shows convergence of FID starting at around 10,000 synthetic samples
for our echocardiogram dataset. Generating samples of sizes larger than 10,000
images should be safe with little FID improvements as the sample grows larger.
Larger samples require considerably more time and computational power to generate.
However, we want to make sure we are not on the starting point of converge but
have some safe margins. It is also reasonable to sample a set of size comparable
to our largest real subset of about 32,000 images. Therefore, 32,000 strikes a good
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balance between FID convergence and is a reasonable size for further experiments
without resulting in unreasonable computation time required.

Figure 5.1: Evolution of FID as the number of evaluated synthetic images
increases.

A key assumption here is that, independent of how long a diffusion model is trained
for and on how many real images it was trained with (within reason), the convergence
performance of different synthetic sample sizes holds when evaluated against a fixed
set of real images. In other words, 32,000 should be a safe minimum number of
images to generate in order to compute a reliable and representative FID.

5.1.3 Time needed to train Diffusion model

Our results, comparing FID and training update steps are displayed in Figure 5.2.
These show that, for our chosen training configurations, FID seems to converge
somewhere between 63,000 steps (FID 12.79) and 72,000 steps (FID 12.20). This
corresponds to just under 10 hours of training on four A100 GPUs. It is worth
noting that upon visual inspection the images generated after only 9,000 and 18,000
steps were hardly distinguishable from noise, so we leave their corresponding FIDs
(379.36 and 400.78, respectively) out of the plot to allow for a more informative scale.
The evolution of synthetic images during diffusion training at increase update steps
is seen in Figure 5.3.
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Figure 5.2: Evolution of FID throughout diffusion training.

Figure 5.3: Evolution of generated images throughout diffusion training.

5.1.4 Qualitative Evaluation
This section showcases some randomly sampled real images from the training dataset
and synthetic images generated with the Improved Diffusion model having the lowest
FID performance (learning variances with a linear noise scheduler). Two sets of
twelve images each will be shown:

1. Figure 5.4: Only real images.

42



5. Results

2. Figure 5.5: An even mix of unlabeled real and synthetic images.

The even mix of real and synthetic images is also available in the Appendix (Figure
A.1) where it includes the real/synthetic label along with the class label (A4C,
PLAX).
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Figure 5.4: Real echocardiogram images.
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Figure 5.5: Assessment task: try to distinguish the 6 synthetic from the 6 real
echocardiograms.
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5.1.5 Survey: Can you spot the real echocardiogram?

A total of 15 individuals participated in the survey, while this sample size is not large
enough to draw statistical conclusions, it is valuable from a qualitative perspective
to start to understand how medical experts perceive the synthetic images generated.

Medical specialism of participants spanned Cardiology (2), Anesthesiology (9), Pri-
mary care (1), Infectious diseases (1), Surgery (1), and Ear, Nose and Throat (1)
(Figure 5.6). Participants were all either currently, working to get their medical or
specialist licence, working as specialist, or retired from the medical profession. The
years of work experience post medical school among participants varied from 1 to 35
years (Figure 5.7). As expected, most had some experience with echocardiograms,
but greater experience with ultrasound images in general. A breakdown is visible in
Figure 5.7 and 5.8.

Figure 5.6: Current occupation.

Figure 5.7: Work experience post medical school.
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(a) Ultrasounds (b) Echocardiograms

Figure 5.8: Survey questions about the level of experience with ultrasounds and
echocardiograms.

Since real and synthetic images were presented in pairs there was a 50% chance of
answering each question correctly when guessing at random. The expectation was
that overall performance would be higher than 25/50. Both average and median of
our small sample was 21. Figure 5.9 depicts a break down of participant’s scores.
It is noteworthy to mention that low resolution images (112x12 pixels) used in this
project, and presented in the survey, are not what medical experts would be exposed
to and have experience of during medical practices.

Figure 5.9: Survey performance breakdown.

When asked prior to seeing any image pairs, a majority of participants anticipated
that it would be difficult to distinguish real from synthetic echocardiograms. Post
answering the 50 image pair questions, participants were asked to rate their general
level of confidence in their answers. Participating cardiologists were both "Not so
confident", along with the majority as seen in Figure 5.10.
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(a) Before (b) After

Figure 5.10: Survey questions asked before and after looking at the 50 image pairs

A question about what the general strategy was to distinguish real echocardiograms
from fake ones was asked as part of the survey to gain some intuition behind features
that may have stood out as identifiers. Examples are given here:

• "I tried do see which one was most anatomically correct."

• "Difficult to distinguish since it depends on depth on screen, the cut through
the heart, the movement of the heart is important to understand the picture
and the contrast can be made high or low manually and hence affecting the
picture."

• "Difficult to tell without movement"

• "Anatomy relative to angle and resolution/grayscale relative to angle/anatomy.
But really hard to decide.."

• "Image quality in the periphery, tissue smoothness"

A full outline of all questions asked in the survey is found in the Appendix A.3.

5.2 View Classification

This section provides a comprehensive account and analysis of the results obtained
from our different experiments on view classification. The evaluation encompasses
the examination of multiple state-of-the-art architectures, utilizing subsets of both
real and synthetic data, followed by feature visualizations of these datasets. More-
over, an assessment regarding the impact of synthetic data on minority class perfor-
mance is provided, along with the performance of real data augmented to varying
degrees with synthetic data. Furthermore, an exploration is undertaken to assess
the performance of the selected model on final test sets derived from known and un-
known distributions (seen and unseen during training). Finally, certain limitations
of the study and results are acknowledged.
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5.2.1 Initial architecture exploration
Initial classification results range from 0.843 to 0.988 AUPRC with VGG16, ResNet18,
DenseNet121 and InceptionV3 architectures. These were all trained on the full 32k
training dataset of real images (including A2C, A4C, PLAX, & PSAX views) and
evaluated on a validation set coming from the same distribution.

Table 5.3 details the results per model. Training times across the different archi-
tectures vary considerably. When trained from scratch (Pretrained=False), both
DenseNet121 and InceptionV3 take significantly longer to train than VGG16 and
ResNet18.

Table 5.3: Initial analysis of classification architectures when trained on the largest
subset of real data (32k).

Architecture Pretrained AUPRC F1 Loss Time
VGG16 True 0.892 0.829 0.250 18m
DenseNet121 True 0.895 0.840 0.251 20m
ResNet18 True 0.890 0.818 0.267 14m
InceptionV3 True 0.843 0.787 0.325 36m
VGG16 False 0.988 0.960 0.091 28m
DenseNet121 False 0.982 0.958 0.077 51m
ResNet18 False 0.983 0.951 0.086 23m
InceptionV3 False 0.978 0.940 0.092 57m

Based on these results, it seems more promising to train networks from scratch as
opposed to using pretrained weights, with greater performance across AUPRC and
F1-Score. Due to the additional resources needed to train, along with the lack of
performance increase, InceptionV3 is ruled out from further analysis.

Performance across the remaining model architectures was similar when trained on
the full training set. We conduct further experiments on the different subsets of real
data, as well as on their corresponding synthetic datasets (see Figure 4.5), in order
to decide on a model of choice for final testing.

5.2.2 Experiments with real and synthetic subsets
Shown in Table 5.4 are the results of training the different classifiers from scratch
on the real and synthetic subsets. All models were evaluated on the same fixed
validation set, and the table reports the resulting validation AUPRC, F1-score, and
training time (measured in minutes). It is worth noting that the validation set was
not seen during training of either diffusion or classifier models.
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Table 5.4: Results of initial classification architecture exploration when trained from
scratch. For synthetic data, the "Size" column refers to the size of the real subset
used for training the diffusion model from which the synthetic data was sampled.

Data Size Architecture AUPRC F1 Time

Real

1k
VGG16 0.6409 0.3894 4m
DenseNet121 0.7411 0.5478 3m
ResNet18 0.7784 0.6514 2m

2k
VGG16 0.8590 0.7802 5m
DenseNet121 0.8469 0.7517 5m
ResNet18 0.8807 0.8013 4m

4k
VGG16 0.9278 0.8717 6m
DenseNet121 0.9139 0.8522 8m
ResNet18 0.9298 0.8723 4m

8k
VGG16 0.9682 0.9302 9m
DenseNet121 0.9507 0.9094 16m
ResNet18 0.9584 0.9194 6m

16k
VGG16 0.9835 0.9449 15m
DenseNet121 0.9716 0.9367 29m
ResNet18 0.9742 0.9423 14m

32k
VGG16 0.9881 0.9596 28m
DenseNet121 0.9817 0.9576 51m
ResNet18 0.9829 0.9510 23m

Synth

1k
VGG16 0.9307 0.8731 29m
DenseNet121 0.9120 0.8666 51m
ResNet18 0.9046 0.8399 23m

2k
VGG16 0.9528 0.8987 29m
DenseNet121 0.9525 0.9005 54m
ResNet18 0.9333 0.8712 26m

4k
VGG16 0.9600 0.9080 29m
DenseNet121 0.9553 0.9127 52m
ResNet18 0.9549 0.8986 23m

8k
VGG16 0.9746 0.9231 29m
DenseNet121 0.9574 0.9089 53m
ResNet18 0.9671 0.9190 21m

16k
VGG16 0.9840 0.9484 29m
DenseNet121 0.9703 0.9314 54m
ResNet18 0.9791 0.9534 20m

32k
VGG16 0.9860 0.9532 29m
DenseNet121 0.9784 0.9531 51m
ResNet18 0.9805 0.9520 23m
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Results shown in Table 5.4 are further visualized in Figure 5.11, showing classi-
fier performance as we increase the size of the real data available. Dashed lines
correspond to classifiers trained on the different sizes of real subsets. Solid lines
correspond to the classifiers trained on synthetic subsets (all of size 32k images),
which themselves are sampled from diffusion models trained on the different sizes of
real subsets.

Figure 5.11: Classification results: on real (dashed lines) and synthetic (solid lines)
data, for varying sizes of real data available.

As expected, classifiers trained on real data see significant performance gains as the
size of the real data available grows larger. While this is also true for classifiers
trained on synthetic data, these start off already performing quite well when the
size of available real data is limited, exhibiting less dramatic performance gains
from increasing the quantity of real data available.

A crucial observation that emerges from this experiment is that the use of synthetic
data for training purposes appears to offer the greatest advantages when the amount
of real data is severely limited. In cases where sufficient real data is available, it
is more reasonable to train on it directly rather than resorting to the generation of
synthetic data for training purposes. On the other hand, our findings suggest that
when real data is scarce a viable strategy would be to employ the limited available
real data to train a diffusion model, which can then be leveraged to generate a
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comparatively large dataset of synthetic images for subsequent classifier training.
This approach has the potential to yield substantial gains in classifier performance.

Another noteworthy observation we can draw from these results is how the rela-
tive performance of different architectures on small datasets may not be indicative
of their performance on larger datasets. Specifically, when examining the models
trained on real data, the graph indicates that ResNet18 performs the best on the
smallest dataset, while VGG16 performs considerably worse. However, at the right
end of the graph, VGG16 delivers the best performance when trained on the largest
real subset. In contrast, when looking at the models trained on synthetic data, we
see that even under the smallest real subset, the corresponding synthetic data is
sufficient to demonstrate that VGG16 outperforms the other architectures. This
pattern persists across the various increases in real subset sizes. One potential ap-
plication of synthetic data might thus be as an early form of architecture selection
in situations where very limited real data is initially available, but more is expected
to be obtained in the future.

Figure 5.12: Classification results: on real (dashed lines) and synthetic (solid lines)
data, for varying sizes of real data available.

Lastly, it is worth noting that for all three evaluated classifier architectures, their
respective performances on real versus synthetic data are strikingly similar once we
reach the larger real subsets. In the scenario where there are 32,000 real images
available, the performances of any given architecture on real and synthetic data
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are almost identical, with real data consistently displaying only a slight advantage.
Figure 5.18 provides a zoomed-in view of the results under these conditions. While
it starts off with the lowest AUPRC on the smallest real subsets, VGG16 surpasses
the other architectures on real subsets above 4k. Most importantly, it outperforms
the other architectures on all synthetic sets. Based on these results, the preferred
architecture of choice is VGG16. This is the model we move forward with for
subsequent experiments, unless otherwise stated.

5.2.3 Cluster visualization of image features
In this section we display how images of different views and coming from different
datasets cluster together. To that end, we extract features from both real and
synthetic images by running them through our VGG16 view classifier, trained on
the full training set of real images. We extract the activations of the second to
last layer, and perform t-SNE dimensionality reduction on them to reduce them to
two components. Throughout this process, each input image is reduced from 12,544
dimensions (pixel values: 112x112 resolution, 1 color channel) to 4,096 dimensions
(features extracted from our trained classifier), and subsequently to 2 dimensions
(output of t-SNE algorithm).

Figure 5.13: Image clustering by dataset and view. Real and synthetic images are
passed through our VGG16 model trained on the full training set of real images.

The activations of the second to last layer are extracted and reduced to 2
dimensions by running t-SNE. Full sized versions of these plots can be found in

Appendix A.4.

Figure 5.13 displays the results for real and synthetic images, color-coded by dataset
(for real images only) and by view. The left-most plot shows that real images can
be well separated by their dataset of origin (Dynamic, LVH, TMED2). In the
center plot, we further see that real images also form well defined clusters according
to view. The right-most plot shows that the generated synthetic images mimic the
view clusters evidenced in real images quite well. This indicates the synthetic images
do indeed exhibit view-specific characteristics present in the real data. This finding
goes in line with our survey results, where participants had a difficult time telling
real from synthetic echocardiogram images apart.

From Figure 5.13, it is evident that real images are clustered not only on a view
basis, but actually on a dataset-view basis. For instance, PLAX images do not form
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one unique cluster, but instead form separate clusters for PLAX images belonging to
the LVH dataset and PLAX images belonging to the TMED2. This is evidence that
the classifier, and more importantly also the diffusion model, are both learning not
only view-specific features but additionally dataset-specific features as well. This
raises the question of whether by conditioning the diffusion model on both view and
dataset it could learn to separate view-features from dataset-features. We return to
this point when we discuss interesting avenues for future research.

Figure 5.14: 2D-Histograms showing the distribution of real and synthetic images
per view. Full sized versions of these plots can be found in Appendix A.4.

Figure 5.14 evidences the rebalancing effect achieved through the use of our synthetic
data. The minority classes (A2C and PSAX), coming only from one source dataset
(TMED-2), each have a single cluster. Looking at synthetic images (right plot), since
we generate a balanced synthetic dataset, 50% of all synthetic images belong either
in the blue or red clusters. Having a smaller area to cover, the distribution density
in those minority clusters is higher than in the majority clusters (seen as darker blue
and red spots). We see a similar, but opposite situation in the real data (left plot).
A vast majority of real images are either A4C or PLAX view, and therefore their
respective clusters exhibit a higher density than that in the minority clusters.

5.2.4 Impact of synthetic data on minority classes
Figure 5.15 shows the confusion matrices (unnormalized & normalized) of our ResNet18
model trained on real and synthetic data. Both models were evaluated on the same
validation set. It is worth noting that both the real training set and the validation
set exhibit the same degree of class imbalance. One of the key advantages of using
a diffusion model to generate synthetic data is that it enables us to construct a bal-
anced dataset of synthetic images. This helps address the imbalance in the original
dataset, as the classifier is now allowed to train on a balanced dataset, which results
in significantly improved performance across the minority classes (A2C & PSAX).
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(a) Confusion Matrix:
ResNet18 trained on real data.

(b) Normalized Confusion Matrix:
ResNet18 trained on real data.

(c) Confusion Matrix:
ResNet18 trained on synthetic data.

(d) Normalized Confusion Matrix:
ResNet18 trained on synthetic data.

Figure 5.15: ResNet18 confusion matrices under real (top row) and synthetic
(bottom row) training data, evaluated on the same validation set. A darker blue

color indicate greater performance where minority classes A2C and PSAX are
much darker on the diagonal for synthetic training data.

When trained solely on real data, a substantial number of examples from the minority
classes are often misclassified, resulting in poor overall performance. However, by
training on a balanced dataset of synthetic images, we can alleviate this problem
to a considerable extent. Although the results are not perfect, they demonstrate
a significant improvement in the accurate classification of the minority classes, as
evidenced by the confusion matrices.

For completeness, we present the corresponding confusion matrices for VGG16 in Fig-
ure 5.16. In line with overall classification results displayed in Figure 5.11, VGG16
shows an even larger boost in classifier performance than ResNet18 when moving
from training on real data to training on synthetic data.
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(a) Confusion Matrix:
VGG16 trained on real data.

(b) Normalized Confusion Matrix:
VGG16 trained on real data.

(c) Confusion Matrix:
VGG16 trained on synthetic data.

(d) Normalized Confusion Matrix:
VGG16 trained on synthetic data.

Figure 5.16: VGG16 confusion matrices under real (top row) and synthetic
(bottom row) training data, evaluated on the same validation set.
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5.2.5 Synthetic augmentation of real data
Obtained results when augmenting real data with synthetic samples are illustrated
in Figure 5.17. The x-axis corresponds to the fraction of synthetic images added to
the real subset at each step, relative to the size of the real subset.

Figure 5.17: Classifier performance trained on real subsets augmented with
increasing fractions of synthetic images.

The figure once again highlights how synthetic data has the most impact under
conditions where real data is the most limited. Augmenting the smallest real subset
shows the highest increase in performance as it is augmented by synthetic data.
Conversely, the performance on the largest subsets is relatively unaffected by the
addition of synthetic data, at least up to the point of doubling the size of the training
set (augmentation fraction of 1.0).

For any given subset, once we reach an augmentation fraction of 1.0 the training set
has doubled in size. For example, the 1k real subset augmented with synthetic data
with an augmentation fraction of 1.0 results in a training set of 2,000 images. We
can then compare the performance of this mixed dataset of 2,000 images (50% real
and 50% synthetic) to the real subset of the same size (2k, augmentation fraction
0.0). Val AUPRC for the real subset is still above that for the mixed dataset, even
if only slightly. Figure 5.17 shows that this pattern holds for all pairs of the same
size (e.g. 2k with 1.0 vs 4k with 0.0, both of size 4,000 images). The conclusion we
can draw from this observation is that, while synthetic data holds the potential for
significant improvements in classifier performance under severe real data constraints,
real data seems to consistently outperform a mix of real and synthetic data of the
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same size. In other words, while synthetic data is a valid and especially cost-effective
alternative when real data is limited, acquiring more real data is preferable whenever
it is a realistic option.

Finally, out of all classifiers trained and evaluated, the one trained on a mixed dataset
of 32,000 real and 22,400 synthetic images (32k with 0.7 augmentation fraction)
performs the best, achieving a validation AUPRC of 0.990284. We therefore select
this particular trained classifier as our final model, and the one we will test on two
different holdout test sets in the next section.

5.2.6 Synthetic data compared to basic upsampling method
The comparisons of AUPRC performance for the four classifiers trained on the 1,000
real subset, the two upsampled real subsets containing 1,872 and 32,000 real images
each, and the 32,000 synthetic image dataset is visible in Figure 5.18. The real subset
of 1000 images is clearly underperforming, while a small effort in upsampling classes
to the same level as the most frequent class (PLAX) generated a great performance
boost from 0.64 to 0.86 AUPRC. Surprisingly, extending the dataset to 32,000 images
with the simple upsampling technique generates just as good performance as with
the synthetic dataset, both having 0.93 AUPRC.

Figure 5.18: Classification results when evaluated on the same validation set for
real, real upsampled and synthetic datasets.

Analysing the confusion matrices (Figure 5.19) support that a minimal effort in
upsampling the 1,000 real subset to 1,872 images result in a significant increase in
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performance driven by minority classes A2C and PSAX. These move from having
no correct predictions to 0.92 (A2C) and 0.89 (PSAX) percent predicted correctly.
Having multiple copies of images present in minority classes, as opposed to none
(PLAX), or few (A4C) seem to benefit the model predictions for minority classes
more than for majority classes. As seen in Figure 5.19 the percentages of correct
predictions are greater for minority classes than for majority classes.

On the contrary, when all classes were substantially upsampled to create a dataset
of 32,000 images, majority classes (A4C and PLAX), again had the most items
predicted correctly (0.93 and 0.95 respectively) as opposed to minority classes A2C
and PSAX. Finally, comparing the large upsampled dataset to the synthetic dataset
shows similar performance overall and across classes.

(a) Normalized Confusion Matrix:
1,000 real subset.

(b) Normalized Confusion Matrix:
1,000 real subset upsampled to a total of

1,872 images evenly balanced between
classes.

(c) Normalized Confusion Matrix:
1,000 real subset upsampled to a total of
32,000 images evenly balanced between

classes.

(d) Normalized Confusion Matrix:
32,000 synthetic dataset (evely balanced)
generated from a diffusion model trained

on the 1,000 real subset.

Figure 5.19: Normalized confusion matrices showing the performance per dataset
train with VGG16 architecture and evaluated on the validation set. A darker blue

color indicate greater performance.
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These results highlight that a larger volume of images and balanced data per class
are beneficial to the classifier, despite seeing images copied multiple times. With
no difference between the larger 32,0000 upsampled and synthetic dataset, results
may also be indicative of that the diffusion model generate synthetic images with
small variations from the real images seen during training, meaning there is a risk
of seeing images that could be similar to the original images or even close copies.

5.2.7 Final Testing

5.2.7.1 Evaluation on Test Set

The model is evaluated on the primary test set, achieving an AUPRC of 0.9982.
Figure 5.20 below displays the corresponding unnormalized (left) and normalized
(right) confusion matrix. We see that the model performs well on each and every
class.

(a) Confusion Matrix (b) Normalized Confusion Matrix

Figure 5.20: Confusion matrices for final model as evaluated on the holdout test
set.

5.2.7.2 Domain Shift Analysis

Figure 5.21 below shows the unnormalized (left) and normalized (right) confusion
matrix after evaluating our final model on the secondary holdout test set (CAMUS-
Unity images), coming from a different distribution than the training data (LVH,
Dynamic, TMED2).

Although the classifier was trained on a dataset consisting of 4 classes, the test set
only contains 3. This means it is possible for the classifier to predict that an image
belongs to PSAX-class that is not present in the test set. While this indeed happens
for a few examples, it is not a major issue overall. Naturally, it would be ideal to
use a test set containing the same number of classes as the model was trained on
to evaluate its performance under domain shift. Due to the constrained availability
of source datasets, we are forced to utilize a domain shift test set that encompasses
solely three out of the four classes on which the classifier was trained.
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(a) Confusion Matrix (b) Normalized Confusion Matrix

Figure 5.21: Domain shift analysis: Confusion matrices for final model as
evaluated on the holdout CAMUS-Unity test set.

Figure 5.21 shows that the classifier does not generalize well to data from distribu-
tions different than the one it was trained on. We can analyze the performance on
each of the three classes present in this test set:

• A2C: An overwhelming majority of A2C images were misclassified as A4C,
and PLAX. We can hypothesize that this issue traces back to limitations
in the training set, wherein all A2C images were sourced exclusively from the
TMED2 dataset. Consequently, the model struggled to effectively differentiate
between genuine A2C features and features specific to the TMED2 dataset. As
a result, when the model encounters A2C images from other datasets during
evaluation, it does not recognize the features that it learned to relate to A2C,
as these were likely features more related to the TMED2 dataset itself, rather
than the A2C view. Some potential examples could be zoom level, cone width,
cone angle, brightness, etc.

• A4C: This view seems to perform best at first glance, a large majority pre-
dicted correctly. While it is true that the model seems to correctly identify
A4C images, it also produces a great many false positives for this class. A
large amount of A2C images are misclassified as A4C.

• PLAX: These images are in majority predicted to be PLAX, with few false
negatives. Interestingly, we can draw a parallel to the A2C case. The training
set contained PLAX images coming from 2 datasets, as opposed to just 1 for
A2C. Consequently, the issue of false negatives is low in PLAX than in A2C.

These results highlight the importance of having as varied a training set as possible,
ideally having an even distribution of classes sourced from different datasets. This
should allow the model to differentiate between view-specific and dataset-specific
features, and therefore generalize better. It would be interesting for future work to
explore how synthetic data generation might help address this point when an even
balance is not naturally present in the available real data. Potentially, a diffusion
model could be trained conditioned on both view and dataset, so it could then
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generate images of views in the overall style of a dataset that does not include them.
In order to be able to properly learn to differentiate between view and dataset
features, it is likely that the model would need to be trained on datasets containing
at least two views each, and view coming from at least two datasets each. If any
view comes from only a single dataset, or if any dataset contains only a single view,
then it would likely be impossible for the model to learn the distinction between
view-specific and dataset-specific features.

5.3 Limitations
The results from this study may not be applicable beyond the scope of the case
outlined in this report. This means that the model performance documented may
not be robust to generalize well to data collected in a setting different to the datasets
used. Additionally, the data used has been limited to still images coming from image
datasets and frames selected from video sequences. In routine clinical care, video
data is often used to go back and forth over a sequence to help in deciding the
accurate view.

LVH and Dynamic datasets used have been limited to one view only, namely PLAX
and A4C respectively. This phenomenon suggests that a classifier may learn features
that are specific to a particular dataset, rather than capturing inherent character-
istics of the view itself. Consequently, this can have a detrimental effect on the
model’s robustness when confronted with the same view originating from a different
dataset.

It would be interesting to generate synthetic datasets that maintain the class imbal-
ance of the original data, and evaluate the impact on classifier performance, if any.
Leveraging synthetic data has at least two separate benefits: 1) increasing training
set size and 2) improving balance between classes. We have not studied these two
effects in isolation from each other.

Finally, the synthetic data that was generated was balanced by classes while the
data it was created from, when training a diffusion model, was imbalanced. This is
likely to result in a variability similar to the minority classes found in the original
data. This is partially seen in the clustering of synthetic images minority classes
being more dense within the same area as the fewer original images coming from
the minority classes.
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Conclusion

Based on the results gained from the experiments carried out and presented in
Section 4 and 5 we are now returning to answer our two defined research questions:

1. Can diffusion models generate synthetic echocardiograms that look realistic
enough to become indistinguishable from real echocardiograms to a human
expert?

The majority of medical experts who participated in the survey struggled to
distinguish between real and synthetic echocardiograms. Furthermore, this
difficulty in telling real and synthetic echocardiograms apart does not seem
to correlate with the years of experience among the experts. This finding
suggests that the inability to distinguish between real and synthetic images
is not solely influenced by the level of experience but rather by the fidelity
of the synthetic echocardiograms themselves. It is important to acknowledge,
however, that the survey responses were few, and predominantly obtained from
experts with specializations other than cardiology. Consequently, the overall
findings and conclusions drawn from the survey may not be fully representative
of cardiologists as a whole.

2. Is it possible to improve view classification performance of real echocardiogram
images with synthetic data?

Our work shows that synthetic data can in fact improve classification perfor-
mance over real data. In particular, we can draw two main conclusions on the
subject based on the results of our work:

• The extent of classification performance gained through the use of syn-
thetic data is inversely correlated with the size of the available real
dataset. In scenarios where the real dataset is relatively small, the gen-
eration and use of synthetic training data is particularly advantageous,
resulting in notable classification performance. This finding underscores
the potential of synthetic data as a valuable resource for compensating for
data scarcity issues and mitigating the limitations imposed by limited real
data availability. That said, further study into the circumstances under
which this use of synthetic data is preferable to other existing methods,
such as upsampling, is still required.

• When a large amount of real data is available, it is preferable to train
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a classifier directly on it rather than employing a generative model to
generate synthetic training data. In such cases, the direct use of the
available real data yields superior classification performance compared
to the use of synthetic data. This finding highlights the importance of
considering the quality and quantity of the available real data when deter-
mining the most effective approach for training a classifier, and suggests
that reliance on synthetic data generation may be less beneficial, or al-
together unnecessary, in situations where vast amounts of real data are
readily accessible.

6.1 Contributions
When applying machine learning to medical sciences, the two major concerns that
formed the basis for our work were the very common imbalance found in medical
datasets and the privacy concerns related to patient data. The former is related to
minority classes’ general representation of rare conditions that are of utmost impor-
tance to be detected. The latter is concerned with protecting private health data
that could harm or disclose private individuals if shared carelessly. The contribu-
tions of our work lie in the approach used to get around the shortcomings of medical
data. These contributions are four-fold:

1. Training a diffusion model: The generative models trained allowed us to gen-
erate samples that closely resemble real echocardiograms. Under the appro-
priate regulatory frameworks, this saved model could be shared to be sampled
from based on conditions similar to our application scenario yet with different
requirements on volume of images per class to be generated.

2. Development of a synthetic dataset: We introduce a synthetic dataset specif-
ically designed for our study. This dataset, created using recent generative
techniques, encompasses a wide range of realistic A2C, A4C, PLAX and PSAX
echocardiograms. It has the potential to be made available under appropri-
ate licensing agreements, enabling other researchers to leverage it for further
investigations and studies related to the field of echocardiography.

3. Addressing patient privacy concerns: Our proposed approach, novel to echocar-
diogram view classification, could mitigate patient privacy concerns by utiliz-
ing synthetic data, provided that no close copies are ensured. By employing
synthetic data, which then ensures anonymity, we would overcome the chal-
lenges associated with using real patient data, thus safeguarding privacy while
still enabling effective research.

4. Maximizing the utility of available real data: We explore the utilization of
imbalanced real datasets to generate synthetic data via diffusion models. By
incorporating these synthetic images into the classification training process, we
address the issue of imbalanced classes, specifically by enhancing the prediction
of minority classes. For underrepresented classes, the approach improved the
classification performance for smaller real datasets. Hence, making the most
of limited real data available.
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By contributing in these areas, our research aims to advance the field of medical
sciences where the standardization of Artificial Intelligence assisted tools is becom-
ing more common and natural part of daily life and work. Our work also aims
to contribute in the automation of echocardiogram view classification with an im-
proved accuracy and consistency, and especially in regards to minority classes. The
approach presented in this thesis could be implemented in clinical trials, such as As-
traZeneca’s, to enhance efficiency by saving resources and most importantly medical
experts’ time, allowing them to screen more patients.

6.2 Future Work
The field can further advance and refine the application of synthetic data generation
techniques, ultimately by exploring the protection of patient privacy and validating
diversity in synthetic data generated. Additionally, the work can be extended to
video formats and as a means of early model selection. Suggestions related to future
work are listed here:

1. Diffusion conditioned on dataset-view pairs: Our clustering analysis provided
some evidence that our diffusion model learned not only view-specific char-
acteristics to recreate, but also dataset-specific characteristics as well. This
suggests that it might be possible to train a diffusion model conditioning on
both views and datasets independently. If the diffusion model is able to learn
these features independently from one another, then it could be possible to
sample images with an arbitrary combination of view-dataset characteristics.
This could potentially enable generating synthetic images of an echocardio-
gram view in the style of a dataset that does not originally contain it (e.g.
A2C echocardiograms in a style similar to the LVH dataset). Consequently,
one could generate a dataset that is balanced across view and dataset styles,
likely aiding generalization.

2. Recreating original training data: An important direction for future work is
to investigate whether or not the original training data can be reconstructed
using the weights of the trained diffusion model, the synthetic data sampled
from it, or when combined. This investigation holds significant implications in
relation to patient privacy concerns. If successful, such reconstruction could
potentially compromise patient confidentiality and privacy.

3. Measuring variability of synthetic datasets: Future work should study the
amount of variation in synthetic image datasets, particularly when minority
classes are of high importance. This is crucial as minority classes may not ex-
hibit as much diversity as the majority classes. Understanding and quantifying
this variation could contribute to further improving the overall effectiveness
of the synthetic data generation process.

4. Extending studies to video sequence data: Another avenue for future research
is to expand the scope of the studies to include the generation and analysis
of video sequence data. By incorporating temporal information, the applica-
tion of synthetic data in video-based tasks can be explored, opening up new
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possibilities for improving classification and prediction results in dynamic en-
vironments.

5. Early model selection: Synthetic data holds promising potential as an early-
stage tool for architecture selection, particularly in scenarios where the avail-
ability of real data is initially scarce but anticipated to increase over time. By
leveraging synthetic data, model performance can be estimated with the usage
of larger synthetic datasets. This allows researchers to initiate the model devel-
opment process even with limited real data, accelerating the overall progress
of the project. It also mitigates the risk of making sub-optimal architecture
choices based solely on limited real data, thereby potentially avoiding costly
redesigns

6. Upsampling through synthetic data: We have shown that diffusion models can
be a powerful tool when working with imbalanced datasets. It would be useful
to conduct a more in-depth analysis on how synthetic data generation through
diffusion models compares to other existing approaches, such as Synthetic
Minority Oversampling Technique (SMOTE), and compare their respective
impacts on downstream classification tasks.
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A.1 View Classification Results

Feature Extractor Size Architecture AUPRC F1 Time

False

1k
VGG16 0.6409 0.3894 4m
DenseNet121 0.7411 0.5478 3m
ResNet18 0.7784 0.6514 2m

2k
VGG16 0.8590 0.7802 5m
DenseNet121 0.8469 0.7517 5m
ResNet18 0.8807 0.8013 4m

4k
VGG16 0.9278 0.8717 6m
DenseNet121 0.9139 0.8522 8m
ResNet18 0.9298 0.8723 4m

8k
VGG16 0.9682 0.9302 9m
DenseNet121 0.9507 0.9094 16m
ResNet18 0.9584 0.9194 6m

16k
VGG16 0.9835 0.9449 15m
DenseNet121 0.9716 0.9367 29m
ResNet18 0.9742 0.9423 14m

32k
VGG16 0.9881 0.9596 28m
DenseNet121 0.9817 0.9576 51m
ResNet18 0.9829 0.9510 23m

True

1k
VGG16 0.8013 0.7358 2m
DenseNet121 0.7733 0.7043 2m
ResNet18 0.7728 0.6747 1m

2k
VGG16 0.8265 0.7601 3m
DenseNet121 0.8204 0.7560 2m
ResNet18 0.8008 0.7246 2m

4k
VGG16 0.8503 0.7844 4m
DenseNet121 0.8554 0.7966 3m
ResNet18 0.8395 0.7638 3m

8k
VGG16 0.8692 0.8060 6m
DenseNet121 0.8742 0.8194 6m
ResNet18 0.8620 0.7860 4m

16k
VGG16 0.8845 0.8222 10m
DenseNet121 0.8924 0.8343 11m
ResNet18 0.8797 0.8157 6m

32k
VGG16 0.8918 0.8288 18m
DenseNet121 0.8949 0.8404 20m
ResNet18 0.8898 0.8182 14m

Table A.1: Results of classification training exploration on real data.
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Feature Extractor Size Architecture AUPRC F1 Time

False

1k
VGG16 0.9307 0.8731 29m
DenseNet121 0.9120 0.8666 51m
ResNet18 0.9046 0.8399 23m

2k
VGG16 0.9528 0.8987 29m
DenseNet121 0.9525 0.9005 54m
ResNet18 0.9333 0.8712 26m

4k
VGG16 0.9600 0.9080 29m
DenseNet121 0.9553 0.9127 52m
ResNet18 0.9549 0.8986 23m

8k
VGG16 0.9746 0.9231 29m
DenseNet121 0.9574 0.9089 53m
ResNet18 0.9671 0.9190 21m

16k
VGG16 0.9840 0.9484 29m
DenseNet121 0.9703 0.9314 54m
ResNet18 0.9791 0.9534 20m

32k
VGG16 0.9860 0.9532 29m
DenseNet121 0.9784 0.9531 51m
ResNet18 0.9805 0.9520 23m

True

1k
VGG16 0.8296 0.7785 17m
DenseNet121 0.8118 0.7666 16m
ResNet18 0.8074 0.7545 13m

2k
VGG16 0.8442 0.7802 18m
DenseNet121 0.8317 0.7762 18m
ResNet18 0.8035 0.7440 15m

4k
VGG16 0.8414 0.7559 19m
DenseNet121 0.8177 0.7279 18m
ResNet18 0.8001 0.7359 16m

8k
VGG16 0.8542 0.7853 19m
DenseNet121 0.8325 0.7582 19m
ResNet18 0.8186 0.7530 13m

16k
VGG16 0.8736 0.8005 18m
DenseNet121 0.8591 0.7924 18m
ResNet18 0.8428 0.7869 13m

32k
VGG16 0.8893 0.8095 19m
DenseNet121 0.8829 0.8123 17m
ResNet18 0.8667 0.7972 15m

Table A.2: Results of classification training exploration on synthetic data.
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A.2 Assessment Task

Figure A.1: Assessment task solution: synthetic echocardiograms enclosed in red
square boxes (view labels included).
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A.3 Survey Questions
Outlined here are the questions included in the survey, in the same order as they
were asked to participants:

• Current Occupation

• Medical Specialty

• How many years of experience do you have from working in the medical field
post medical school?

• What is your level of experience with ultrasound images in general?

• What is your level of experience with echocardiograms specifically?

• Generally, how challenging do you think it will be to spot the real echocardio-
grams

• 50 Questions with image pairs asking "Which image is real?"

• Generally, how confident were you with you answers about which images were
the real ones?

• Generally, how did you distinguish real echocardiograms from fake ones?

A.4 Clustering plots
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Figure A.2: Real image features by dataset. Real images are passed through our
VGG16 model trained on the full training set of real images. The activations of the
second to last layer are extracted and reduced to 2 dimensions by running t-SNE.

Figure A.3: Real image features by view. Real images are passed through our
VGG16 model trained on the full training set of real images. The activations of the
second to last layer are extracted and reduced to 2 dimensions by running t-SNE.
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Figure A.4: Synthetic image features by view. Synthetic images are passed through
our VGG16 model trained on the full training set of real images. The activations
of the second to last layer are extracted and reduced to 2 dimensions by running
t-SNE.
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Figure A.5: 2D-Histogram showing the distribution of real images per view. Real
images are passed through our VGG16 model trained on the full training set of real
images. The activations of the second to last layer are extracted and reduced to 2
dimensions by running t-SNE.
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Figure A.6: 2D-Histogram showing the distribution of synthetic images per view.
Synthetic images are passed through our VGG16 model trained on the full training
set of real images. The activations of the second to last layer are extracted and
reduced to 2 dimensions by running t-SNE.
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