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Risk-Averse Multi-Armed Bandit Problem with Multiple Plays
A Markovian Bandit Solution
SIRI DAHLGREN
NICHOLAS MARRIOTT
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This study aims to construct an efficient heuristic, referred to as RA, for a risk-
averse Markovian multi-armed bandit problem (MAB) with multiple plays. The RA
incorporates risk-aversion and multiple plays by modifying the Gittins index strategy.
The performance of RA is compared to a risk-neutral version of the Gittins index
strategy (RN) on a risk-averse MAB, using Markov Decision Process (MDP) policies
as references for optimality. The results demonstrate that RA outperforms RN in
the majority of the tested cases, showcasing its effectiveness in a risk-averse setting
for multiple plays. Notably, RA exhibits a substantial performance improvement,
with up to a 120.86% better performance than RN for MAB instances with rewards
generated from a normal distribution, and a remarkable 270.55% better performance
for MAB using exponential distributions.

Furthermore, the runtime of RA exhibits a linear growth pattern as the problem
size increases, which is in contrast to the exponential growth observed in MDP ap-
proaches. The study’s findings provide strong evidence of the RA heuristics efficacy
in solving risk-averse MAB problems with multiple plays.

Keywords: MAB, Gittins, Markovian bandit, risk-aversion, policy iteration, multiple
plays.
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1
Introduction

The aim of this study is to construct an efficient heuristic for a specific variant of
the multi-armed bandit problem (MAB). In short, the MAB is a decision-making
problem where an agent must choose from a finite set of actions that yields varying
rewards. The goal is typically to maximise the cumulative rewards over time. There
are several real-life applications that can be modelled as MABs, such as recommender
systems, portfolio selections and dialogue systems [1]. Another well mentioned ap-
plication in the literature for MABs is clinical trials, even if the MAB has yet to
be implemented in this setting in real life [2]. In a clinical trial the possible actions
could be to try one of several drugs, and the solution to the MAB would show the
most efficient drug to try.

In this study, a new heuristic is developed to solve a specific variant of the problem,
namely a risk-averse Markovian MAB with multiple plays. This type of MAB has
to the best of the author’s knowledge not yet been studied. The newly developed
heuristic will be referred to as RA for its risk-averse characteristics. To create the RA,
some modifications are made to a previously known heuristic for the MAB problem,
called the Gittins index strategy. The modifications incorporate the component of
risk-aversion as well as multiple plays into the heuristic. Incorporating risk-aversion
into the MAB means that the objective of the problem changes from being one of
maximising the total expected reward, to also including the aim of minimising the
risk of getting any relatively low rewards. The incorporation of multiple plays means
that instead of making only one action in every time instance, several actions will be
made simultaneously. Taking the example of a clinical trial, this would mean that
the new heuristic, RA, could propose two or more drugs for each patient. The drugs
would be chosen to both maximise the health improvement of the patients but also
to minimise the risk of severe side-effects.

The RA heuristic is evaluated by comparing its results to two other standard heuris-
tics. One of these heuristics, referred to as RN, is a generalised risk-neutral version
of the Gittins index for multiple plays. The RA and RN are applied to the same
risk-averse MAB. The policies generated by RA and RN are compared to benchmark
policies, which are considered optimal. The degree of deviation from the optimal
policies, determines the performance of the algorithms. In addition to assessing
how well RA achieves the goal of the risk-averse MAB with multiple plays, its time
complexity is also evaluated.
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1. Introduction

The structure of this thesis is as follows: The Background explains the different com-
ponents which this study relies on in greater depth and gives an overview of relevant
prior research. The Methodology section provides an explanation of the design of
the heuristics utilised in this study, as well as the experimental setup. The Results
show numerical results from the evaluation of RA and the Discussion discusses both
the results and the limitations of this thesis. The Conclusion summarises the most
important findings.
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2
Background

This section presents both MAB in general and the specific type of MAB focused
on in this thesis. Various approaches for solving the Markovian MAB are explained,
namely as an MDP (via policy or value iteration) or with the use of the Gittins Index.
An overview is given of prior research for risk-averse MAB, MAB with multiple plays,
and possible practical application for the risk-averse MAB with multiple plays.

2.1 Multi-Armed Bandit Problem
MAB is a classic problem within the reinforcement learning framework. The prob-
lem is commonly described as an individual instructed to choose to pull an arm on
a slot machine at a casino. As there are multiple machines, and thereby multiple
arms available at the casino to choose from, this leads to the name multi-armed
bandit, with bandit referring to the machine taking money from the losing players.
The chosen machine will offer a reward depending on an underlying distribution
corresponding to that machine. The player will make a stepwise choice of playing
the same or another arm. This individual playing on the machine wishes to out-
smart the machines, leaving the casino with the highest possible reward. The MAB
problem can take on a variety of restrictions, which will result in different variations
of the problem. Each variation calls for a different approach, which results in differ-
ent optimal strategies for maximising the potential reward from the available slot
machines.

When studying the MAB, known rewards and unlimited time horizons are sometimes
used to evaluate new heuristics for the exploration phase. Controlled experiments
with these settings can be performed to assess the performance of various exploration
algorithms in a more controlled environment. Often in practical settings the under-
lying reward distributions of the MAB are unknown and the allocation resources
are limited. This would mean that the individual in the example could only choose
an arm to pull a certain number of times. This leads to a balancing act between
exploration vs exploitation. This definition refers to how much time and resources
does the individual invest in discovering the extent of profitability of the available
machines. Exploration is when the individual tests different actions, to try and
find the highest rewards. Exploitation is when the individual uses the remaining
resources on the machine they believe will result in the maximum rewards. With
finite resources, an extensive exploration would result in less time for exploitation.

3



2. Background

With a limited exploration, the individual may choose worse actions leading to lower
potential rewards.

There are several variants of the MAB problem. Bubeck and Bianchi suggest that
these may be divided into three core categories: Stochastic bandits, Adversarial ban-
dits and the focus of this thesis, Markovian bandits [3]. There are several subtypes
for each of these categories, however the distinguishing factor between them is their
reward structure.

Stochastic bandits have a statistical nature. In this MAB each arm is associated
with a fixed reward distribution. The rewards from each arm may vary between
time steps, but are always randomly drawn from the same distribution.

Adversarial bandits on the other hand do not rely on statistical assumption nor
potential probabilities. The rewards are instead decided by an omniscient adversary,
who fully understands the players tactic and has control over the payouts. As such,
the adversary would select a certain reward structure with the goal of minimising
the players rewards.

Markovian bandits also rely on statistics to determine the rewards, but in a
different way than Stochastic bandits. In Markovian bandits, each arm can be seen
as a Markov chain, where every arm has a certain number of states. Each state of
each arm is associated with a fixed reward and fixed transition probabilities to the
other states of that arm.

This thesis focuses on the aforementioned Markovian multi-armed bandit problem,
which shall continue being referenced as MAB. The specific subtype incorporates
risk-aversion and multiple plays. It is investigated in a setting with known rewards
and an unlimited time horizon. The arms of the MAB will be independent from each
other and its rewards and transition probabilities stay fixed over time. Each arm
of the MAB will have an equal number of states, and there will be no termination
states.

2.2 Markov Decision Process
Just as Markovian bandits, Markov Decision Processes (MDPs) can be seen as a
framework where there are certain states, and certain actions can be taken in each
state. When an action is taken, the process moves to another or the same state with
a certain probability, and presents a certain reward depending on which state it
reaches, and/or moves from. These probabilities are called transition probabilities
and show the chance of moving from a state to another. They must adhere to
the constraint that the sum of all transition probabilities from a given state to
its reachable states equals one. This process is stochastic because the transition
probabilities will determine the outcome of each action for each timestep. The
optimal solution to an MDP is presented as a policy, which shows the best action
to play for each state, to reach the maximum expected total reward.

Algorithms such as value iteration and policy iteration can be used for solving the
MDP. This can be done by applying Markov Decision theory, as presented in Put-
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2. Background

erman [4]. Formulating the MAB as an MDP means that the number of states of
the MDP will grow exponentially when the number of arms or the number of states
per arm increases. This will result in the curse of dimensionality. Gittins index
gives a less computationally expensive way of finding a high reward giving policy for
the MAB. However, using Gittins indices might result in a suboptimal policy, for
different subtypes of the MAB.

The solutions for the MDP can be found with the help of Bellman’s equation which is
incorporated in algorithms such as the value iteration and policy iteration. Bellmans
equation is described as follows:

V (x)← argmaxa

∑
y,xP (y|x, a) [r(y|x, a) + V (y)] (2.1)

where V (x) is the assigned value for each state,

a is an action,

x is the current state and y the state to which the process transits next,

P (y|x, a) is the probability of moving from x to y when taking action a,

r(y|x, a) is the reward that the player receives for transitioning from state x to state
y when taking action a,

γ is the discount factor. It determines the weight of immediate rewards relative to
future rewards and plays a crucial role in dynamic programming for infinite time
horizons, enabling convergence through the discounting of future rewards.

Bellman’s equation includes a recursive element since the values of a state (x) depend
on the value of the neighbouring states (y). When Bellman’s equation is used in
value iteration or policy iteration, the values can be calculated iteratively until an
optimal policy (*) for the MDP is found.

2.3 MAB as an MDP
This section shows how a small-scaled version of a MAB would be constructed as
an MDP in this study.

Figure 2.1: A small MAB example consisting of two arms, three states per arm

5



2. Background

Figure 2.1 shows two arms with three states each. Each arm functions like a Markov
Process, with their own fixed transitional probabilities. Each state gives a fixed
reward when the process transitions from it. To construct the MAB as an MDP,
each state of Arm 1 needs to be combined with each state of Arm 2, and together
work as a state of the MDP. This leads to the number of states of the MDP to be the
states per arm to the power of the number of arms. For this small MAB example
the following states are created for the MDP, see Table 2.1.

Table 2.1: States of MDP, generated from Arm 1 and Arm 2

State in MDP State of [Arm 1 & Arm 2]
1 [1, 4]
2 [2, 4]
3 [3, 4]
4 [1, 5]
5 [2, 5]
6 [3, 5]
7 [1, 6]
8 [2, 6]
9 [3, 6]

Table 2.2: Example of transition probabilities for Arm 1.

State 1 2 3
1 0.55 0.25 0.2
2 0.71 0.14 0.15
3 0.35 0.61 0.05

Table 2.3: Example of rewards for Arm 1

State 1 2 3
1 5.44 5.44 5.44
2 5.57 5.57 5.57
3 5.79 5.79 5.79

Table 2.2 provides the transition probabilities for Arm 1, with each row representing
the current state and the columns indicating the probabilities of transitioning to the
next states. For instance, Arm 1 has a transition probability of 0.25 for moving from
state 1 to state 2. Similarly, the probability of Arm 1 transitioning from state 2 to
state 1 is 0.71.

Table 2.3 shows the rewards associated with Arm 1, following the same structure as
the transition probabilities. Thus, if arm 1 transitions from state 1 to state 2, the

6



2. Background

corresponding reward is 5.44. Likewise, if arm 1 transitions from state 2 to state 1,
the reward value is 5.57.

Table 2.4: Example of transition probabilities for Arm 2.

State 4 5 6
4 0.50 0.40 0.10
5 0.70 0.15 0.15
6 0.30 0.60 0.10

Table 2.5: Example of rewards for Arm 2.

State 4 5 6
4 5.21 5.21 5.21
5 5.89 5.89 5.89
6 5.08 5.08 5.08

Table 2.4 and 2.5 show the transition probabilities and rewards of Arm 2. The
matrices operate in a similar manner to the rewards and transitional probabilities
of Arm 1, but they possess distinct values specific to Arm 2.

Table 2.6: Example of transition probabilities for action 1.

State 1 2 3 4 5 6 7 8 9
1 0.55 0.25 0.2 0 0 0 0 0 0
2 0.71 0.14 0.15 0 0 0 0 0 0
3 0.35 0.61 0.05 0 0 0 0 0 0
4 0 0 0 0.55 0.25 0.2 0 0 0
5 0 0 0 0.71 0.14 0.15 0 0 0
6 0 0 0 0.35 0.61 0.05 0 0 0
7 0 0 0 0 0 0 0.55 0.25 0.2
8 0 0 0 0 0 0 0.35 0.61 0.05
9 0 0 0 0 0 0 0.35 0.61 0.05

7



2. Background

Table 2.7: Example of rewards for action 1.

State 1 2 3 4 5 6 7 8 9
1 5.44 5.44 5.44 0 0 0 0 0 0
2 5.57 5.57 5.57 0 0 0 0 0 0
3 5.79 5.79 5.79 0 0 0 0 0 0
4 0 0 0 5.44 5.44 5.44 0 0 0
5 0 0 0 5.57 5.57 5.57 0 0 0
6 0 0 0 5.79 5.79 5.79 0 0 0
7 0 0 0 0 0 0 5.44 5.44 5.44
8 0 0 0 0 0 0 5.57 5.57 5.57
9 0 0 0 0 0 0 5.79 5.79 5.79

Table 2.6 and Table 2.7 display the rewards and transition probability matrices
specifically for action 1 (pulling Arm 1) in the example of a two armed MAB with
three states per arm. In these matrices, zeros indicate the impossibility of transi-
tioning between the corresponding states when performing action 1. For instance,
if there is a zero in the entry representing a transition from state 1 to state 4 when
action 1 is taken, it signifies that such a transition is not achievable. This is because
when action 1 (pulling Arm 1) is performed, only the part of the MDP state cor-
responding to Arm 1 can change, and thus transitioning into state 4, which would
require a change in the second part of the MDP state (from state 4 to 5) is not
possible.

2.4 Value Iteration

Value iteration is a dynamic programming algorithm used to determine optimal
policies for MDPs. It works by iterating over the states and uses Bellman’s equation
to update the value of each state. Its an example of backward induction. For every
state and in every iteration, the algorithm evaluates what action that maximises
the state’s value. When no value improves much more between the iterations, the
equation converges and breaks. The actions that give the highest values at this point
will be extracted and saved as the optimal policy. Value iteration is guaranteed to
converge to the optimal policy for an MDP with a finite time horizon. For an MDP
with infinite time horizon, the difference between the obtained policy and the true
optimal policy is bound by 2ϵ

1−γ
.

8



2. Background

Algorithm 1: Value Iteration
Initialize vold, v and π arbitrary for all x ∈ X
Find optimal values while ∆ is less than ϵ:
while ∆ < ϵ do

Vold ← V
∆← 0
for all x ∈ X do

V (x)← maxa
∑

y,xP (y, x|x, a) [r + γVold(y)]
∆← max (∆, V (x)− Vold(x))

Extract the optimal policy:
for all x ∈ X do

π(x)← argmaxa
∑

y,xP (y, x|x, a) [r + γVold(y)]

Value iteration can be computationally expensive for MDPs with a large number of
states and actions, and alternative algorithms such as policy iteration may be more
efficient.

2.5 Policy Iteration

Policy iteration is another type of dynamic programming algorithm used to deter-
mine optimal policies for MDPs. This algorithm consists of two steps and alternates
between these until the optimal policy is found, being policy evaluation and policy
improvement. Before starting, an arbitrary policy is set. It then runs the policy eval-
uation step where it iterates over all states and uses Bellman’s equation to update
the value of each state. Instead of calculating the values based on the best possible
action for every state, as in value iteration, it only uses the action determined by
the policy. It continues iterating over the first step of the algorithm until the values
for all states have converged. It then moves to the second step of the algorithm,
policy improvement.

In policy improvement Bellman’s equation is used once again to calculate the value
for each state, now considering all possible actions. If the value of a state can be
improved with any other action than the one previously suggested by the policy,
the policy is updated to the action that maximises the value. The optimal policy is
found when the policy stops updating.

9



2. Background

Algorithm 2: Policy Iteration
Initialize vold, v and π arbitrary for all x ∈ X
Repeat until optimal policy is found:
1. Policy evaluation:
while ∆ < ϵ do

∆← 0
for all x ∈ X do

Vold(x)← V (x)
V (x)← maxa

∑
y,rP (y, r|x, π(x)) [r + γVold(y)]

π(x)← argmaxa
∑

y,rP (y, r|x, π(x)) [r + γVold(y)]
∆← max (∆, V (x)− Vold(x))

2. Policy Improvement:
for all x ∈ X do

a← π(x)
π(x)← argmaxa

∑
y,rP (y, x|s, a) [r + γVold(y)]

if a ̸= π(x) then optimal policy is not found

Policy iteration, just as value iteration, is guaranteed to converge to the optimal
policy for a MDP with a finite time horizon. For an MDP with infinite time horizon,
the difference between the obtained policy and the true optimal policy will also be
bounded in the same fashion as value iteration, by 2ϵ

1−γ
.

2.6 Gittins Index

A more computationally efficient way of solving the Markovian MAB problem than
using Markov Decision theory is via the Gittins index strategy. Gittins proposed the
concept of “dynamic allocation indices” in his paper from 1979, which later became
known as Gittins indices [5]. In his paper he also showed the optimality of this
approach. Another proof of the optimality was shown by Whittle in 1980, with the
help of dynamic programming [6]. The Gittins index works by giving every state
of every arm an index using forward induction. The optimal strategy is to always
play the arm whose current state has the highest index value. The calculations of
the indices are based on rewards and probabilities of exclusively the considered arm.
Only considering the maths of one single arm at the time makes the Gittins index
more computationally efficient to use than to solve the problem as an MDP.

To explain the Gittins index mathematically, let an arm i be a Markov Process with
a finite state space X i. X i

t is the state of arm i at time t, where i = 1, 2, . . . , K.
Let ut =

(
u1

t , . . . , uK
t

)
denote the decision that the individual/player takes at time

t. Then ui
t is equal to:

ui
t =

1 if the individual plays bandit i

0 otherwise
(2.2)

10



2. Background

If ui
t takes a value of 0, this means the individual does not choose to play that arm

and the arm will remain frozen. If it takes that value of 1, the individual decides to
play the arm, resulting in X i

t progressing in a Markovian manner.

When playing an arm, the individual will receive a reward ri (X i
t), with ri represent-

ing the reward of arm i, for the state X of that arm i and for the time t. Future
rewards are seen as less meaningful than present rewards. Due to the problem’s
stochastic nature the aim is to maximise the expected total discounted reward:

Eπ =
[ ∞∑

t=0
γt

∞∑
i=1

ri
(
X i

t

)
ui

t

∣∣∣X0 = x0

]
(2.3)

π is the playing strategy/function that denotes which action/arm to play,

x0 = (x1
0, . . . xn

0 ) are the initial starting state of all arms,

E is the expected total reward,

γ is the discount factor,

To find the function π that maximises the total expected discounted reward, Gittins
uses an equation for giving every state of every arm a value,

vi
(
xi

)
= max

τ>0
=

E
[

τ∑
t=0

γtri (X i
t)

∣∣∣X i
0 = xi

]
E

[
τ∑

t=0
γt

∣∣∣ (X i
0) X i

0 = xi

] (2.4)

Here, τ is the stopping time.

There are multiple algorithms to select from within the scope of Gittins [7]. They
can be classified into two groups, “offlin” and “onlin”. Offline algorithms use the fact
that the optimal playing time will depend on which states the arms are in, rather
than a certain amount of time steps. Taking this into account the equation can be
rewritten as follows:

vi
(
xi

)
= max

S(a)∈X
=

E
[

τ(S(a))∑
t=0

γtri (X i
t)

∣∣∣X i
0 = xi

]

E
[

τ(S(a))∑
t=0

γt
∣∣∣ (X i

0) X i
0 = xi

] (2.5)

Offline algorithms introduce two sets C(a) and S(a). C(a), known as the continua-
tion set, contains all states with higher valued indices than the current state of the
arm. S(a), known as the stopping set, includes all the states which have the same
or lower valued indices.

C(a) = {b ∈ X : b ≻ a} (2.6)
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S(a) = {b ∈ X : a ⪰ b} (2.7)

a and b are states of an arm.

The chosen algorithm for this study is a modified version of a well-known method
referred to as the largest-remaining-index algorithm. It identifies the values of the
states for one arm at a time according to decreasing order [8]. This means the
continuation set will start as empty and for every iteration of the algorithm one
more state will be added to C(a).

Algorithm 3: Largest-remaining-index algorithm
Initialize as empty; C for continuation set, G for Gittins indices set and S for
stopping set

for all arm ∈ ARMS do
G (x1)← maxr

C (x1)← argmaxr

S ← x ∈ X\x1
for k in range(S) do

P (k)
y,x ← Py,x1 [x ∈ C (Xk)]

dk ←
(
I − γP (k)

)−1
r

bk ←
(
I − γP (k)

)−1
1

V k ← dk/bk

C (xk)← argmaxvk

G (xk)← maxvk

S ← x ∈ X\x1

Extract policy

The optimality of the Gittins index relies on some assumptions of the MAB problem.
For example, the decisions of the process need to be irrevocable [9]. This means that
no decisions throughout the process should change the underlying structure of the
problem. This is for example true for stationary MABs which is the focus of this
study. The term "stationary" implies that the rewards and probabilities associated
with each arm remain constant throughout the decision process.

2.7 Multiple Plays
In the standard form of MAB, that is the MAB with single plays, only one arm is
played at each time step. In MAB with multiple plays, the player will play a certain
number of arms simultaneously at each timestep. Each individual arm can at most
be played one time for each time step. The objective is still generally to maximise
the cumulative rewards. The solutions for a MAB with multiple plays could be
applied in various fields where resources have the possibility of being located to
more than one instance at a time. The paper by Song and Teneketzis shows how a
search problem with multiple sensors can be modelled as a multi-armed bandit with
multiple plays [10].
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Pandelis and Teneketzis defined certain conditions under which the Gittins index
is known to be optimal for the MAB with multiple plays [11]. They state that
if a current state’s value of an arm is greater than that of the next best playable
state, it must also be greater or equal to the next best state when multiplied by
(1 − γ). When this condition is satisfied, it is conclusive that playing these two
arms together will yield the optimal result, for a problem where two arms should
be played simultaneously. The result may still be optimal even when the condition
does not hold, but it is no longer guaranteed.

2.8 Risk-Aversion
In the standard form of MAB, that is the risk-neutral MAB, the goal is usually to
maximise the cumulative rewards. In a risk-averse MAB the goal is to both reach a
high amount of cumulative rewards, but to also avoid any individual reward to be
particularly low. Another way of explaining the risk-averse MAB is to say that the
objective is not only to maximise the total rewards but to also minimise variability
in the rewards.

The importance of the risk-averse MAB shines when evaluating scenarios where risks
can be detrimental. One popular example of application is when introducing a new
drug within the healthcare sector; if a drug has a very positive effect on 95% of the
patients but greatly harms or kills 5%, the standard MAB might still choose this
drug prior to a safer but less effective option. A risk-averse MAB however would take
the risk into consideration and likely propose a less risky option. Another example of
where it is important to incorporate risk-aversion into the model is within financial
applications. This is especially true for investors who have a tight budget and who
cant afford to gamble with its money.

There have been different proposals of how risk can be incorporated into the MAB.
Denardo, Park and Rothblum proposed the use of utility functions [12]. By increas-
ing the values of the rewards obtained from the environment according to an expo-
nential utility-function, they made their risk-averse approach into one that favoured
higher rewards and thereby penalised low ones. They showed that their algorithm
can be preferable to the risk-neutral heuristic in some risk-averse settings of the
MAB.

Malekipirbazari and Cavus showed how risk can be incorporated into MAB with
the help of dynamic coherent risk measures [13]. They argue that a downside of
using utility functions is that such functions that correspond to the player’s risk-
aversion can be hard to find, and the resulting solutions may be difficult to interpret.
Malekipirbazari and Cavus work relies on the work of Ruszczyski who showed how
risk-aversion can be included into a Markov Decision Process [14]. The risk mea-
sures they use are the first-order mean-semideviation and the mean-CVaR. Their
paper shows that their algorithm gives optimal or near optimal results depending
on the MABs settings. In this study, the first-order mean-semideviation will be in-
corporated into the MAB in a similar fashion as in Malekipirbazari and Cavus [13].
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2.9 Risk-Aversion and Multiple Plays
The combination of both risk-aversion and multiple plays in a Markovian MAB, to
the authors knowledge, has not yet been researched. When applying a model that
takes risk-aversion and multiple plays into account, to real-world applications, this
may resolve optimality issues within, but not limited to, the following scenarios:
Natural disaster rescues, ambulance redeployments, stock-portfolio selections, and
clinical trials.

In a natural disaster rescue operation, the aim would be to optimally allocate multi-
ple rescue services to certain locations to reduce the risk of mortality. To model the
problem with multiple plays is intuitive as there would usually be more than one
service working simultaneously in such an operation. Incorporating risk-aversion to
this model, could help the allocating decision maker to not make too risky decisions.
A riskful allocation decision may lead to a larger variance of people being rescued,
which might not be preferable if the timeframe is limited. After a natural disaster,
the priority might be to find fewer people with a higher certainty, than to risk not
finding anyone.

As for ambulance redeployments, the aim would be to optimally allocate ambulances
in certain areas, to be as close to people in emergencies as possible. Multiple plays in
this model would represent the possibility of allocating several ambulances at once.
Incorporating risk-aversion in the model could give the benefit of fewer transporta-
tions being too long for the patient’s to survive. A MAB with multiple plays and
risk-aversion has earlier been proposed as a model for this use case. This model has
been investigated by Sahin et al., [15], yet in their application the use of stochastic
MAB was chosen instead of Markovian MAB. For the scenario of stock-portfolio
selection, a MAB with multiple plays and risk-aversion could potentially reduce an
investors risk, while having numerous stock options to select from. The model would
strive for choosing both secure and high-yielding stock options.

When using MAB solutions for clinical trials, these should intuitively be risk-averse,
as the selected drug directly impacts an individuals health and wellbeing and could
potentially have severe side-effects. When adding multiple plays to the MAB, this
opens up for new possibilities. One model could propose for one patient to take
several medicines at once. This could allow a person to get the best medicines
available, also when it is preferable to use more than one treatment simultaneously.
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This section presents the heuristics employed in this study and discusses the incor-
poration of risk-aversion and multiple plays. The optimal policy of the MAB was
chosen from three different algorithms: value iteration and two methods of policy
iteration. An overview of these algorithms along with their respective time complex-
ities are provided.

3.1 Algorithms
The objective of this study is to assess the effectiveness of a new heuristic called
RA. To evaluate RA, which aims to find optimal or near optimal policies for the
risk-averse MAB with multiple plays, two more algorithms are created, specifically
RN and a Benchmark. RN follows a similar approach as RA but lacks the risk-
averse component, focusing on finding optimal or nearly optimal policies for the
risk-neutral MAB with multiple plays. Both RA and RN are generalisations of the
Gittins index. The Benchmark is created by utilising Markov Decision Theory and
aims to identify optimal policies for the risk-averse MAB with multiple plays.

Table 3.1: Algorithms Employed in the Study

Algorithms Risk-attitude Based on
RA Risk-averse Gittins Index
RN Risk-neutral Gittins Index

Benchmark Risk-averse MDP

All the algorithms are implemented using the Python 3.10 programming language.
For an overview of the three algorithms see Table 3.1.

3.2 Incorporating Risk-Aversion
To incorporate risk into the algorithms and thereby into the MAB, a dynamic coher-
ent risk measure, namely first-order mean-semi deviation, was used. Incorporation
of this risk measure into an MDP is described by Ruszczynski [14]. Additionally,
Malekipirbazari and Cavus [13] generalises the same measure to be used in a mod-
ified algorithm for Gittins indices. The risk measure works by penalising rewards
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that are below average. The formula of first-order mean-semi deviation is provided
below.

ρ(Y ) = E(Y )− κE(E(Y )− Y ) κ ∈ [0, 1] (3.1)

Y is a random reward,

E(Y ) is the expected reward,

κ represents the weight of the risk-averse component of the equation.

Expected reward E(Y ) subtracted by random reward Y results in either a positive
value or 0, as all negative values are set 0.

The equation above can be added to the benchmarks to add risk-aversion.

3.2.1 Risk-Aversion in Benchmark
For risk-aversion in the benchmark, the value iteration or policy iteration, values
are now calculated as:

u(X) =
∑
x∈X

P (y|x, π(x)) [r(x, y, π(x)) + βv(y)] (3.2)

v(X) = .axa∈Au(x)− κ
∑
u∈X

P (y|x, π(x)) [u(x)− r(x, y, π(x)) + βvπ(y)] x ∈ X

(3.3)

u(x) is the expected reward,

v(x) is the maximum value of a state x,

x, y ∈ X are states.

In this new formula, for calculating the values, first-order mean-semi-deviation has
been added to the equation. Just as before, the aim of the algorithm is to find the
action that maximises this value for each state.

3.2.2 Risk-Aversion in RA
Some modifications are made to the largest-remaining-index algorithm to incorpo-
rate risk-aversion. An iterative approach is added to find the values for d and b.
These updated values rely on the first-order mean-semi deviation.
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Algorithm 4: Modified risk-averse largest-remaining-index algorithm
Initialize as empty; C for continuation set, G for Gittins indices set and S for
stopping set

ones← vector of ones
for all arm ∈ ARMS do

G (x1)← maxr

C (x1)← argmaxr

S ← x ∈ X\x1
for k in range(S) do

P (k)
y,x ← Py,x1 [x ∈ C (Xk)]

while ∆ < ϵ do
∆← 0
dold(x)← d(x)
bold(x)← b(x)
for all x ∈ X do

dn
(k)
oldx,y

← doldy,x1 [x ∈ C (Xk)]
bn

(k)
oldx,y

← boldy,x1 [x ∈ C (Xk)]
ud(x)← maxa

∑
y,xP (y, r|x, π(x)) [r + γdold(y)]

ub(x)← maxa
∑

y,xP (y, r|x, π(x)) [ones + γbold(y)]
vd(x) = ud(x)−
κ

∑
u∈X

P (y|x, π(x)) [u(x)− r(x, y, π(x)) + βdnπ
old(y)]+ , x ∈ X

vb(x) =
ub(x)− κ

∑
u∈X

P (y|x, π(x)) [u(x)− ones + βbnπ
old(y)]+ , x ∈ X

∆← max (∆, d(x)− dold(x), b(x)− bold(x))
V k ← dk/bk

C (xk)← argmaxvk

G (xk)← maxvk

S ← x ∈ X\x1

Extract policy

In the new heuristic, the algorithm updates the values iteratively until it converges.

3.3 Incorporating Multiple Plays
In MAB with multiple plays, a defined number of actions are taken simultaneously at
each timestep. How to incorporate the component of multiple plays differs between
the MDP approach and the Gittins algorithms.

3.3.1 Multiple plays in MDP Benchmark
When incorporating multiple plays into the MDP, adjustments need to be made to
the transition probabilities and reward structure. Each action must now consider
the effects of playing multiple arms simultaneously. Each possible combination of
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an arbitrary number of arms should now be a possible action. To achieve this, both
the reward structure and the probabilities need to be modified.

Initially, the rewards and transitions are generated as if it were a MAB problem
with single plays, maintaining the underlying problem’s functionality. The transi-
tion probabilities are then altered by multiplying the transition probabilities of the
different possible combinations of arms, using matrix multiplication to determine
the transition probability matrices for the new actions. For example, if the number
of simultaneously pulled arms is 2, then pulling arm 1 and 2 together is an action,
and the transition probabilities for this action will be the same as multiplying the
transition probability matrix of action 1 with the matrix of action 2. Similarly, the
rewards are adjusted mathematically by going through the same steps as in a ma-
trix multiplication, but instead of multiplying the values, summing them. However,
if any of the values being summed is zero, the sum is also set to zero. With the
updated rewards and transition probabilities, value iteration or policy iteration can
be applied just as in the MAB problem with single plays.

3.3.2 Multiple Plays in RA and RN

To incorporate multiple plays into the largest-remaining-index algorithm, the algo-
rithm stays the same until the step of extracting the policy. Instead of only saving
the action giving the highest value of each state as the policy, the n highest value-
giving actions are saved, where n represents the number of multiple plays.

3.4 The Benchmark

Markov Decision Theory was employed to determine the benchmark policy. Both
value iteration and policy iteration algorithms were evaluated to find these optimal
policies. For policy iteration, two distinct approaches were considered; the standard
iterative method and convex optimization. The time complexity of each approach
was assessed, and the most efficient algorithm was selected to be used for the com-
putational experiment.

3.4.1 Convex Optimization

For the Convex optimization approach, the following optimization problem is solved:
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Minimize :
∑
u∈X

v(x)

Subject to :
u(x) =

∑
y∈X

P
(
y|x, πk(x)

) [
βv(x)− r(x, y, πk(x))

]
, x ∈ X

v(x) ≥ u(x) + κ
∑
y∈X

ρ(x, y)P
(
y|x, πk(x)

)
, x ∈ X (3.4)

ρ(x, y) ≥ βv(y)− r
(
x, y, πk(x)− u(x)

)
, x ∈ X

ρ(x, y) ≥ 0, x ∈ X

In general, when working with dynamic risk-measures for MDPs, the optimisation
problem is convex. However, when utilising first-order mean-semideviation, the
problem can be represented as a linear program.

Thus, as seen with the optimization equation above, several restrictions need to
be set up before solving the linear programming problem. This requires multiple
matrices, vectors and bounds. The time taken for setting up the restrictions of policy
iteration convex (policy iteration with convex optimization) grows exponentially to
the problem size of the MAB.

3.4.2 Time Complexity

The benchmark algorithm was selected based on the results of an experiment that
evaluated the time efficiency of each considered algorithm. The experiment involved
running the algorithms on the same environment for that iteration for each of the
100 repetitions. For the MAB problem with two-arm plays and varying complexity,
the mean and maximum number of iterations, as well as the mean and maximum
runtime, were assessed for three algorithms: value iteration, policy iteration, and
policy iteration based on convex optimization. The experiment utilised a random
seed of 123 to ensure consistent comparisons. The results of this experiment are
presented visually in Table 3.2.
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Table 3.2: Number of plays 2, 100 repetitions of value iteration, iterative and convex-
optimization-based policy iteration. Discount 0.5.

Table 3.2. presents the runtime results obtained from performing value iteration,
policy iteration (with iterative approach), and policy iteration based on convex
optimization for a total of 100 repetitions with a κ value of 1 and a discount value
of 0.5. Additionally, Table 3.2 includes the max and median number of iterations
required by each algorithm to discover an optimal policy.

Table 3.3: Number of plays 2, 100 repetitions of value iteration, iterative and convex-
optimization-based policy iteration Discount 0.9.

Table 3.3 shows how much time and number of iterations is needed to complete value
iteration, iterative policy iteration and convex-optimization-based policy iteration
with a number of 100 repetitions with a κ value of 1 and a discount factor of 0.9.

Seen in both Table 3.2 and 3.3, increasing the complexity of the MAB also increases
the total runtime. The varying algorithms have different numbers of iterations
needed to find optimal policies. A higher discount (see Table 3.3) results in a larger
number of iterations needed before finding optimal policies (see Table 3.2). However,
the total number of states does not seem to affect the number of iterations.

For the smallest MAB example, with three arms and two states per arm, convex-
optimization-based policy iteration is the fastest algorithm. This changes drastically
when increasing the complexity of the MAB, making convex-optimization-based pol-

20



3. Methodology

icy iteration considerably slower than its counterparts. For larger examples, policy
iteration is the fastest, with value iteration being around 40% slower.

The reason behind convex-optimization-based policy iteration taking the longest for
larger problems is the way the algorithm calculates the states values. As mentioned
previously, several matrices need to be created to solve the linear programming
problem. The size of these matrices grows exponentially as the problem size of the
MAB increases. The focus of this thesis is to study a MAB with three arms and
four states per arm while applying the RA heuristic and comparing it to one of
the benchmarks presented in tables 5 and 6. The lowest runtime of this specific
MAB was achieved by policy iteration, which is hereafter chosen as the benchmark
algorithm for this thesis.

3.5 Value Function from Gittins
After performing the RA or RN, a value has been calculated for each state in each
arm. According to the definition of the Gittins index, the optimal action is to pull
the arm whose current state possesses the highest value. To compare these values
with the value function obtained through policy iteration, two steps are required.
First, a policy of the RA/RN needs to be arranged in the same structure as of the
states in the MDP. This means that if a state in the MDP is a combination of for
example state 1 of arm 1, and state 4 of arm 2, choosing the arm which corresponds
to the highest valued state of these two options, should be seen as the RA/RN-policy
for this combined MDP-state.

Secondly, the correctly arranged policy is given as an input to the policy evaluation
step of the policy iteration. The policy evaluation outputs a value function based
on the RA or RN policy which can be compared to the value function obtained from
the policy iteration algorithm.

3.6 Computational Experiments
To evaluate the RA, both its efficacy in finding optimal policies and its time com-
plexity were assessed. The structure of the experiments is a generalisation of the
work of Malekipirbazari and Cavus [13]. The experiments were, just as the other
algorithms, coded in Python 3.10.

To evaluate the optimality of the RA, 1,000 test instances were generated for each
setup of the problem formulation. These experiments considered a problem of a
three-armed bandit with four states per arm and two arms played simultaneously.
The transition probabilities of each arm were randomly drawn from a uniform distri-
bution between 0 and 1. The resulting transition matrix was normalised such that
the sum of the probabilities of each row adds up to 1. The rewards for the first
experiment are drawn from a truncated normal distribution with a random mean
value generated from a uniform distribution between 5 and 6. The truncation en-
sures the rewards were non-negative. The rewards for the second experiment were
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drawn from an exponential distribution with a random β value generated from a
uniform distribution between 5 and 6.

For both experimental set ups, three policies were assessed for each test instance.
These consist of an optimal policy, one risk-averse index policy (RA) and one risk-
neutral index policy (RN). The experiments are conducted with standard deviations
σ ∈ {0.01, 0.5, 1, 2}, discount factors γ ∈ {0.5, 0.75, 0.9}. As risk measures first-
order mean-semideviation, with κ ∈ {0.0, 0.25, 0.50, 0.75, 1} were used. A visual
presentation of the varying variables can be seen in Table 3.3.

Table 3.4: Variable names and descriptions

Variable name Symbol Values Description
Number of arms 4 Number of arms

within the MAB
structure

Number of states per
arm

3 Number of states for
each arm within the
MAB structure

Distribution setup Normal and
exponential

Type of distribution
for initialising the
rewards

Standard deviation σ 0.01, 0.5, 1, 2 The standard devia-
tion for the distri-
butions from which
rewards are drawn

Discount factor γ 0.5, 0.75, 0.9 The discount factors
which determine the
importance of imme-
diate/future rewards

First-Order
Mean-Semideviation

κ 0, 0.25, 0.50, 0.75, 1 A weight that
determines the level
of risk-aversion in-
corporated in the
heuristic

For each test instance RA and RN policies are compared based on the performance
measure: suboptimality percentage. The suboptimality percentage of policy π ∈
{RA, RN} for each state x ∈ X is computed as:

100× R(x)−Rπ(x)
R(x)

= % Optimality Gap (3.5)

where Rπ(x) denotes the value of a state under policy π and R(x) denotes the value
of a state under the optimal policy. The equation above computes the difference be-
tween the value of RA or RN and the optimal value obtained through the benchmark

22



3. Methodology

algorithm. A zero optimality gap implies that the two policies produce the same
optimal value, whereas a non-zero optimality gap represents the deviation between
the two values obtained from the two policies. For each test instance, the maximum
and the median suboptimality percentage are calculated. The maximum and the
mean of the maximum suboptimality percentage over all the 1000 test instances
was calculated as well as the maximum and the mean of the median suboptimality
percentages.

Table 3.5: Evaluation measures and descriptions

Evaluation Measure Description
Max max Maximum of maximums, which

takes the maximum value from all
maximum values when compared
to the benchmark

Mean max Average of maximum, which takes
the mean of all maximum values
when compared to the benchmark

Max median Maximum of median, which takes
the max value from all the me-
dian values when compared to the
benchmark

Mean median Average of median, which takes
the mean of all median values
when compared to the benchmark

To evaluate the time complexity, the runtime of the RA heuristic was compared
to the risk-averse value iteration algorithm. Both algorithms were executed for 10
repetitions.
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Results

This section discusses the results obtained for the RA and RN in comparison to the
benchmark (the optimal policy). There have been two big experiments conducted
to evaluate the quality of the RAs performance, on MABs with three arms and four
states per arm. One of the experiments uses normal reward distributions and the
other uses exponential distributions. Both experiments are analysed separately and
in comparison. Lastly, results of a time complexity experiment are presented.

4.1 Efficacy Experiment

The efficacy of RA and RN is measured by the optimality gap between its values
and the values of the benchmark. All the experiments in this section are conducted
with σ = {0.01, 0.5, 1, 2}, γ = {0.5, 0.75, 0.90}, and κ = {0, 0.25, 0.5, 0.75, 1}.
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Table 4.1: Statistics of maximum suboptimality percentages, normal reward distri-
bution, varying κ, σ and γ

Table 4.1 summarises the statistics of maximum suboptimality percentages when
generating the rewards from a normal distribution. It shows both mean and maxi-
mum of maximum suboptimality percentages for both RA and RN. The mean values
for both the RN and RA, achieved near optimal policies. The highest mean value
for RA is 0.835%, which is paired with RNs 1.037% at a σ of 2, κ of 1 and γ of 0.75.

When considering the maximum, there were instances of higher error. The highest
optimality gaps were primarily observed for the highest values of σ. This indicates
that σ plays a noteworthy role in increasing the variability of the policies’ optimality
and potential deviations from the benchmark. The highest values for maximum
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suboptimality percentage for RN and RA are 58.49% and 55.49%, respectively, seen
at discount 0.5, σ 2, and a κ of 0.75. Nevertheless, albeit having these high values
of max RN and RA, the mean values for the same parameters are 0.686 and 0.680
respectively. With 1,000 instances in our experiment, this indicates that there are
a few high outliers where RN and RA result poorly against the benchmark.

In addition, Table 4.1 reveals a trend where increasing σ in general leads to higher
suboptimality percentages for both the RN and RA policies. Similarly, as κ in-
creases, more risk-aversion is incorporated, increasing the maximum suboptimality
percentages for both policies. The values of RA and RN in relationship to γ on the
other hand, demonstrates a concave pattern. Its concave in the sense that a low or
high discount value has a lower optimality gap compared to the middle case. It is
worth noting that when κ equals 0, values for RN and RA are identical, as expected
in a risk-neutral scenario. Overall, Table 4.1 shows that the RA performed slightly
better than RN.

When comparing the maximum optimality gaps observed in Table 4.1, with each
respective mean optimality gaps of the same set of parameters, the importance
of investigating a median optimality gap arises. In some outlying cases, the max
optimality gap was up to 10 times higher than the average. This indicates potential
inflation caused by a few high max optimality gaps affecting the overall average of
the values.
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Table 4.2: Statistics of median suboptimality percentages, normal reward distribu-
tion, varying κ, σ and γ

Table 4.2 displays the mean of medians and max of medians from the same under-
lying values displayed on Table 4.1. Similarly to Table 4.2, an increase in σ and κ
respectively leads to an increase in the optimality gap. The behaviour observed for
varying γ values does not follow the same concave pattern as seen in Table 4.1.

The advantage of the RA algorithm becomes more pronounced in Table 4.2 compared
to Table 4.1, where statistics of median suboptimality percentages are presented.
The maximum median value for suboptimality percentage for RN is 22.62%, which
occurs at a κ of 1, σ of 2 and γ of 0.9. The RA for these same parameters has a
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maximum median value of 5.748%. As for the maximum median of RA, this occurs
at a κ of 0.75, σ of 2, and γ of 0.9 resulting in a suboptimality percentage of 17.19%
compared to an RN of 19.10% for the same settings. Overall, it is evident that RN
rises more than RA, with an increase in κ. However, there are a few exceptions, for
example at κ equal 1, γ of 0.5 and a σ of 2 or 0.01, RA has a value of 9.47% and
RN a value of 9.22%, and RA a value of 0.08% and RN 0.08% respectively.

To assess the effect of the γ over all the values presented in Table 4.1 and 4.2, the
means for all the presented evaluation measures, grouped by the γ, is presented.
This shows how well the RA and RN performs in general, disregarding the varying
σ and κ.

Table 4.3: Evaluation measures with regard to γ for normal reward distribution.

Table 4.3 categorises the average of different values of RA and RN by the γ . For
γ values of 0.5 and 0.75, the RA algorithm exhibits a lower suboptimality gap
compared to RN for the maximum of maximums, the maximum of medians, and
the mean of medians. However, the RA algorithm shows a higher mean maximum
value compared to RN for the mean of maximums. This indicates that for specific γ
values, the RA algorithm tends to achieve higher maximum values more frequently
than RN whilst still not reaching the most extreme maximums. Interestingly, this is
not the case for the median values, for which RA outperforms RN, and the margins
grow as the discount increases.

For γ values of 0.5 and 0.75 the mean max RN performed 6.53%, 2.15% better than
the mean median RA, respectively, whilst for γ of 0.9, the RA performed 5.27%
better than the RN. For γ values of 0.5, 0.75 and 0.9 the mean median RA performed
48.35%, 103.75% and 120.86% better than the mean median RN, respectively. As
for the max median, the suboptimality gap in RA compared to RN is not as large
as seen in the mean median, but has a large increase as γ increases. When γ has
values of 0.5, 0.75 and 0.9 the max median RA performs 3.39%, 35.96% and 42.86%
better than the mean median RN, respectively. Lastly, comparing the max max RN
and RA, when γ has values of 0.5, 0.75 and 0.9 the RA performs 0.55%, 17.04% and
25.38% better than the RN, respectively.

The γ has a different effect on each of the evaluation measures. The RA performs
increasingly better with respect to the performance of the RN, when γ rises. Both
RN and RA have a concave relationship to γ. The max max has a different pattern
than the other evaluation measures, where an increase in γ leads to a decrease in
suboptimality. For the remaining evaluations measures, an increase in γ increases
the suboptimality of both RA and RN from the benchmark, yet also improves the
performance of RA compared to the RN.
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Overall, these findings indicate that the RA heuristic is an improvement on the RN
for risk-averse settings. RA is overall better than RN at avoiding the most extreme
deviations from the benchmark and at the same time outperforms the RN for the
median values.

Table 4.4: Statistics of maximum suboptimality percentages, exponential reward
distribution, varying κ and γ

Table 4.4 shows what effect changing reward distributions from normal to exponen-
tial has on the results. In this table, when κ is less than 0.5, the RA performs equal
to or worse than RN throughout all parameters of γ. The highest maximum value of
RN and RA is 29.286 and 16.066 respectively. This happens for a γ value of 0.5 and
κ of 1. An increasing κ has the affect of increasing the suboptimality percentages,
while an increasing γ has the opposite effect. However, there are some slight incon-
sistencies to these patterns. The inconsistencies from the affect of γ occur exactly
at κ 0.25 and 0.75. When it comes to the affect of κ, the pattern for the means is
clear while for the maximums it is more subtle.

For the mean values, the RA take a concave pattern in relationship to the γ through-
out all values of κ. This is not the case for max values of RA, which decrease as
discount increases, with an exception for κ of 0.25.
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Table 4.5: Statistics of median suboptimality percentages, exponential reward dis-
tribution, varying κ and γ

Table 4.5 shows the median values of the exponential reward distributions. Com-
paring the suboptimality percentage of the RA to the RN in this table, the RA
performed equal to or better throughout the different values of κ and γ.

The highest value of RN and RA is located at the highest κ and γ, with the RN being
11.978 and the RA being 7.392. The best performing case of RA in comparison to
RN occurred at κ of 1 and γ of 0.5, where the RA performs 270.55% better than
the RN. RA performs better in all cases compared to the RN with the exception of
κ equal to 0.25 and γ equals to 0.9.

There is a clear pattern throughout the table, where the values of RA and RN rise
as the value of κ or γ increase.

Table 4.6: Evaluation measures with regard to γ for exponential reward distribution.

Table 4.6 is a replication of Table 4.3, but for exponential reward distributions. Sim-
ilarly to Table 4.3, the RA performs better than the RN on all evaluation measures
with the exception of mean max. For γ values of 0.75 and 0.9 the mean max RN
performed 14.09% and 18.16% better than the mean max RA, respectively. For γ
of 0.5, the RA performed 11.21% better than the RN.

As for the mean median, when γ has values of 0.5, 0.75 and 0.9 the RA performs
137.83%, 62.96% and 31.62% better than the RN, respectively. The max median RA
performs 114.84%, 100.89% and 45.29% better than the RN with respective γ values
of 0.5, 0.75 and 0.9. Lastly, for the max max when γ has values of 0.5, 0.75 and
0.9 the RA performs 27.01%, 26.29% and 27.82% better than the RN, respectively.
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An increase in γ for max median and mean median increases the suboptimality gap.
While an increase in γ for the mean max, results in RN decreasing in value while RA
takes a convex pattern. Once more, all the median values of RA are outperforming
RN.

4.2 Conclusions of Efficacy Experiment
Table 4.3 and Table 4.6 summaries that in most cases RA outperforms RN. The ex-
ception for this arises in the mean of maximums for both the normal and exponential
distribution.

For normal distributions, the maximum suboptimality percentages shown by Table
4.1 reveals a few cases for when the RN only slightly outperforms RA, with these
divergences occurring at different values of κ, σ and γ. As for the median subopti-
mality, the improved performance of RA over the RN is substantial. Seen in Table
4.2 at variables κ of 1, σ of 2 and 0.9, the highest value of RN was 22.62%, while
RA for the same parameters was 5.75%, a 293.39% improved performance by the
RA over the RN. Table 4.3 presents the average of all evaluation measures when cat-
egorised by the γ. It shows that the RA does not perform as well as the RN when
looking at the mean of maximums, yet it performs better on the other evaluation
measures.

The pattern seen for the normal distribution is dependent on γ. An increase in
γ leads to a concave pattern on the mean max suboptimality values for both RN
and RA, whilst an increasing γ decreases the suboptimality gap for mean max with
this decrease occurring faster within the RA than the RN. For the max median and
mean median, an increase in γ leads to an increased optimality gap. Importantly,
an increase in γ improves the performance of RA against RN within all evaluation
measures.

As for the exponential distribution, 4.5 illustrates a consistent pattern where the
median suboptimality gaps increases for both RA and RN as the values of κ or γ
rise. The same pattern of the affect of κ is visible in 4.4 over maximums while γ has
the opposite effect for the values of maximums than for medians.

Table 4.6 and Table 4.3, which both summarises the results categorised by γ, shows
the same patterns, for maximum of maximums as well as mean and maximum of
medians, the RA outperforms RN for each discount value. For the mean of maximum
the pattern is inconsistent, with RN performing better for some γ value but not
others.

When comparing the RAs performance over the RN, the mean median RA decreases
as γ increases. Specifically, when γ has values of 0.5, 0.75 and 0.9 the mean median
RA performs 137.83%, 62.96% and 31.62% better than the RN, respectively. A
similar pattern appears for the max median RA, where the RA performs 114.84%,
100.89% and 45.29% better than the RN for the γ values of 0.5, 0.75 and 0.9. How-
ever, this pattern does not stay consistent for the maximum of maximums of RA
As γ has values of 0.5, 0.75 and 0.9 the RA performs 27.01%, 26.29% and 27.82%
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better than the RN, showing no noticeable improvement from the RN as γ increases.
Furthermore, in the maximum of maximums, the increase in γ leads to a smaller
suboptimality gap, meaning that max max RA and RN both improve.

One major difference between the exponential distribution and the normal distri-
bution is that for higher γ values, the RA for the normal distributions performs
relatively better against the RN than for lower γ. For exponential rewards, when
the RAs effectiveness against the RN in percentage is calculated, a differentiating
pattern for different evaluation measures emerges than as seen in the normal distri-
bution. This is evident in the resulting percentage differences of RA against RN,
where the maximum of maximums remains constant and mean median decreases
in regards to γ respectively. A similarity between both distributions is that RA
performs better in almost all cases with the exception of mean maximums, where
certain γ values affect RAs performance more negatively than the RN.

In conclusion, the RA performs better than the RN in most scenarios. There are
a few exceptions, especially when assessing mean of maximums. For the normal
reward distribution, an increase in the γ value will raise the suboptimality gaps
overall, whilst also improving the relative performance of RA when compared to RN.
An exponential reward distribution on the other hand, will make the RA perform
decreasingly well in comparison to the RN as γ increases, for all the evaluation
measures except for the maximum of maximums.

4.3 Time Complexity Experiment
This experiment aimed to visualise the time efficiency of the RA algorithm in com-
parison to solving the MDP optimally. The experiment involved measuring the CPU
time of the algorithms for 11 different problem sizes. The problem sizes are used
as an index where the number of arms and the number of states per arm, leads to
different total state spaces in the MDP and different total state spaces in the RA
policy.

Table 4.7: Problem size table values. Time complexity of RA and policy iteration.

Table 4.7 displays the problem size with its corresponding number of arms, states
per arm, the total number of states in the MDP for that corresponding set up, and
lastly the state space for the RA.
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Figure 4.1: Time complexity comparison between RA and Policy interation.

Figure 4.1 presents the results of the time experiment, with the CPU time displayed
on a logarithmic scale to facilitate better comparison.

The results show that the computation time of the RA is substantially lower than
that of policy iteration. As the problem size increases, the computation time for the
RA appears to grow linearly, while the computation time for solving the risk-averse
MDP optimally exhibits exponential growth. This demonstrates the superior time
efficiency of the RA algorithm compared to the optimal solution.

The runtime of the RA is consistent with the state space seen in Table 4.7. An
increase in the total number of states leads to an increase of log time. The time
complexity of the policy iteration does not only increase with the state space (MDP).
It seems to increase with the number of arms and states, with a higher emphasis on
the number of states. Taking problem sizes 6 and 7 as examples as seen in Table 4.7,
problem size 6 has 4 arms, 3 states per arm leading to a total of 729 state spaces
while problem size 7 has 5 arms, 2 states per arm and 1024 state spaces. Figure 4.1
shows that problem size 6 takes a longer time for the policy iteration than the size
7. This pattern is consistent throughout the graph.
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Discussion

In this thesis, a risk-averse MAB with multiple plays is analysed. The model aims
to help decision makers with different extents of risk-aversion to make optimal risk-
adjusted actions. The proposed and evaluated algorithm, RA, demonstrates superior
performance compared to RN in the majority of tested cases, particularly when
considering median deviations from the optimal value functions or the absolute
maximum deviations. Furthermore, the time complexity of computing the RA is
less than the benchmark, especially so in larger MAB settings.

This thesis can be seen as an extension of the work by Malekipirbazari and Cavus [13].
They showed how their RA for single plays outperformed their RN for single plays
in a risk-averse setting. The findings of this thesis confirm the superiority of RA
over RN also for multiple plays, although less apparent. The reason for the RA of
this thesis performing worse is probably due to the incorporation of multiple plays
which adds complexity to the problem. When multiple plays are incorporated, the
RN is no longer guaranteed to be optimal even for the risk-neutral case.

5.1 Limitations

A drawback of this thesis is the lack of a mathematical proof to demonstrate the ef-
fectiveness of the RA. Instead, the thesis relies on experimental comparisons to show-
case the efficiency of the algorithms.While the current approach effectively demon-
strates the heuristic’s effectiveness within the specific tested environment, it may
not yield consistent results in different contexts, such as with varying sizes of the
MAB or different reward distributions, especially when the arms have distinct re-
ward distributions. With a more generous time frame allocated to the thesis project,
it would have been possible to conduct a greater number of experiments, to test var-
ious settings and gain a better understanding of the algorithm’s performance under
different conditions.

Furthermore, in real-life situations, time constraints are often present, which can
impact the algorithm’s performance. Assuming an unlimited time horizon as in this
thesis may not hold in practical applications, and the algorithm’s effectiveness may
be somewhat compromised when operating within finite time frames.
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5.2 Future Work
There are several potential extensions that can be explored based on this thesis. One
possibility is to incorporate different risk measures, such as the mean-CVaR, into
the problem formulation. This would provide a more comprehensive assessment of
risk in decision-making.

Furthermore, there are numerous plausible extensions to the risk-averse MAB prob-
lem with multiple plays. For instance, the MAB could be extended to include
restlessness, where the underlying probabilities and rewards change over time. Ad-
ditionally, linkages between the arms could be incorporated into the model.

An interesting extension would involve applying the model to practical scenarios
such as clinical trials, where it is desirable to select a variable number of treatments.
This would require the inclusion of dummy arms that always yield a reward of 0.
The number of dummy arms would be one less than the total number of possible
treatments. This setup would enable the achievement of optimality regardless of the
number of treatments selected. This means the number of multiple plays would not
have to be a fixed number for each action as in this thesis.

Another practical setting in which the RA would be interesting to study is the
problem of ambulance redeployment. A research study could explore RAs potential
in reducing fatal injuries during ambulance transportation. This would provide
insights into the real-world effectiveness of the algorithm.

36



6
Conclusion

This thesis presents an analysis of a risk-averse multi-armed bandit problem with
multiple plays. The proposed algorithm, RA, demonstrates superior performance
compared to RN in the majority of tested cases, particularly when considering me-
dian deviations from the optimal value functions or absolute maximum deviations.
In the most extreme cases of the normal distribution experiment, RA performed
120.86% better than the RN. In the most extreme case for the exponential distribu-
tion, RA performed 270.55% better than the RN. The overall obtained results extend
on the findings of relevant literature that RA outperforms RN in a risk-averse setting
for single plays.

Moving forward, future research can explore extensions such as incorporating dif-
ferent risk measures, restlessness, and linkages between arms into the risk-averse
MAB with multiple plays. Practical applications, such as clinical trials with varying
number of treatment selection and the problem of ambulance redeployment, offer
opportunities to assess the algorithm’s real-world effectiveness. These extensions
would provide valuable insights into the algorithm’s applicability and performance
in diverse scenarios.
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