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Machine learning for molecular property prediction and drug safety
A broad perspective on using deep learning to predict acid dissociation constants
KINGA JENEI
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Utilizing machine learning methods for the prediction of acid dissociation (pKa )
values of compounds holds great significance, as pKa is an important parameter,
optimized frequently in drug discovery. Accurate prediction of pKa values could
potentially provide valuable insights on other molecular properties and thereby sup-
port compound design. In an attempt to extend the scope of pKa prediction, we
have created several machine learning models utilizing internal AstraZeneca data.
We explored both classical ML approaches with different molecular descriptors, and
deep learning methods. The results showed that graph neural network based models
outperform tree based methods and yielded reasonable predictions for both acidic
and basic pKa values. Through the implementation of several data splitting strate-
gies, we have substantiated that the models hold the potential to generalize well
to novel compounds and outperform state of the art methods. Besides evaluating
the models on different splits of the internal data, their performance was also as-
sessed on public datasets. This yielded comparatively lower accuracies which can be
attributed to the collation of data from diverse sources and the high experimental
variability of the publicly available data.

Keywords: Molecular property prediction, Acid dissociation constant, pKa, Machine
learning, Graph Neural Networks, Molecular descriptors, Drug Discovery.
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1
Introduction

1.1 Background
Drug discovery and development is vital in order to treat diseases and clinical condi-
tions, however, it is a complex, expensive and time-consuming process [1]. In order
to accelerate the process and reduce high costs, various machine learning (ML) meth-
ods have been utilised at different stages in recent years [2], [3]. Machine learning
has been used, for example, to help identify potential drug targets during the target
identification phase, and to generate compounds that can interact with the target
in the lead discovery and optimization phase.
A primary use of ML in drug development is molecular property prediction, since
molecular properties can influence how the drug is absorbed, distributed, and ex-
creted by the body. Such properties include lipophilicity, the ability of a chemical
compound to dissolve in fats and oils; hydrogen-bonding capability, the ability of a
molecule to form hydrogen bonds with other molecules; and polarity, the separation
of electric charge within a molecule.

Molecular properties are highly influenced by the acid dissociation equilibrium con-
stant Ka, also called the ionization constant. Ka = [A−][H+]

[HA] , where quantities in
square brackets represent the concentrations of the species at equilibrium [4]. It is a
measure of the extent to which an acid dissociates in solution, therefore indicating
the strength of an acid.
Ka is most often represented as the negative logarithm pKa (pKa = −log10Ka). pKa

influences most aspects of drug discovery, and is especially influential in the aqueous
solubility of a drug as it indicates the strength of an acid. pKa values affect for exam-
ple, the stability, permeability, and ADMET (absorption, distribution, metabolism,
excretion and toxicity) profiles of a compound, making it one of the most important
parameters in drug discovery [5]. However, experimentally measuring the pKa of
compounds is a time-consuming and limited procedure, therefore, it is of utmost
importance to use predictive methods to obtain required pKa values.

The Hammett equation has been one of the most widely used empirical methods for
pKa prediction [6]. It consists of two parameters, a substituent constant σ and an
equilibrium constant ρ which form the following equation: pKa = A−ρ(∑

σ), where
A is the pKa of the unsubstituted acid or base [7]. Despite the popularity there are
several disadvantages to this method, such as, it’s limited scope and high reliance
on experimental data.

1



1. Introduction

With the evolution of artificial intelligence and different machine learning methods,
and more extensive data collection and digitalization, pKa prediction became faster
and more accurate over the last decades. Besides using classical machine learning
approaches including Support Vector Machines and Random Forests, the focus in
recent years has been shifted towards deep machine learning methods, such as, Graph
Neural Networks.

Quantitative structure-activity relationship (QSAR) models have been used for
decades to predict different physicochemical parameters, including pKa [5]. These
models are highly dependent on the quality and quantity of data, therefore the
growing amount of publicly available datasets have helped to develop new in silico1

methods. One such public dataset [8] was used by Mansouri et al. to create three
pKa prediction models with the machine learning methods of (1) support vector
machines (SVM) combined with k-nearest neighbors (kNN), (2) extreme gradient
boosting (XGB), and (3) deep neural networks (DNN). Even though the perfor-
mance of these models were defined as reasonably good, they lack the ability to
simultaneously predict acidic and basic pKa values of a compound.

Message Passing Neural Networks (MPNNs) provide a generalised framework for the
task of supervised learning with Graph Neural Networks (GNNs) [9]. By abstracting
common features of existing GNNs, Gilmer et al. developed novel variations which
feed on the topology of the molecules. They achieved state of the art results and
chemical accuracy with several models, without the need of complicated feature
engineering. These MPNNs, however, do not generalize well to large graphs in
which further improvements are needed.

Accurately predicting the value of pKa is highly relevant and thus has been the
subject of multiple blind predictive challenges held in recent years, such as the Sta-
tistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges [10],
[11]. SAMPL physical property challenges concentrate on computational modeling
areas in need of improvement and thereby provide appropriate guidelines to design
drugs with optimal properties. The SAMPL7 challenge focused on predicting the
molecular properties logP and pKa for 22 molecules [11]. There were 9 submitted
models, and the two best performing methods were both Quantum mechanics (QM)
based. Even though, QM based approaches provide reasonable prediction accura-
cies, the computational costs involved with using these methods always remain a
challenge.

1experimentation performed by computer
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1. Introduction

1.2 Goals and challenges
pKa plays a particularly important role in molecular design and drug discovery.
Nevertheless, predicting this property remains a challenge, owing to the various
ionization states a molecule can adopt at a specific pH range. Even though, multi-
ple models currently exist and show promising results for predicting pKa on small
molecules, they often fail and can be slow for larger molecules.

The aim of this thesis is to, through exploring a wide-array of chemical features
and machine learning approaches, extend the scope of pKa prediction using both
internal and publicly available datasets. We achieve this by building a predictive
model using an internal dataset and evaluate it with both internal and publicly
available datasets. Additionally, we investigate the potential of the model to predict
the pKa values of large molecules.

1.3 Thesis outline
The remainder of the thesis is organized as follows. Chapter 2 presents a theoretical
overview discussing the representation of molecules, different models utilized, the
process of model training including the different splits used, and the evaluation
metrics employed to assess performance.

In Chapter 3, the methods utilized in the thesis are described in detail. It provides
insights into the workflow followed throughout the work, including the datasets
used, data preprocessing techniques applied, and the model training and evaluation
process.

Chapter 4 presents the results obtained from the experiments. First, it showcases
the outcomes of the single task models, discussing the initial models, optimized
models, models with a temporal split, and the acid and base 2 models. Following
that, the next section describes the performance of the different multitask models.
Additionally, a comparison with the state of the art is presented, highlighting the
strengths and potential of the developed models. Furthermore, the potential of the
models to predict new modalities is discussed.

In Chapter 5, the thesis concludes with a comprehensive discussion and conclusion.
This section provides a thorough analysis and interpretation of the results obtained,
with a comparison of the different models. It also summarizes the main contributions
of the thesis.

Lastly, Chapter 6 offers insights into future research directions and potential im-
provements.

3
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2
Theory

2.1 Representing Molecules
Molecules can be represented, for instance, as chemical or structural formulas. These
are easily understandable by humans but much harder to interpret for computers.
Therefore, the more widespread use of machine learning methods in drug discovery
has led to the development of chemical representations that can be processed by com-
puters [12]. On a computer, molecular data can be represented, for example, in the
form of graphs, line notations, descriptors, and molecular fingerprints. While some
of the representations encode the exact structure of a compound, others capture
different properties of the molecules.

One of the most widely used line notations is the Simplified Molecular Input Line
Entry System (SMILES) [13]. SMILES describe the two-dimensional structure of
molecules in a compact way, as a linear string of characters.

Figure 2.1: Different chemical representations of aspirin [14].

5



2. Theory

Molecular fingerprints represent chemical structures by encoding the structure and
properties of a molecule. These descriptors can be calculated from one-, two-, or
three-dimensional representations of a structure incorporating different properties
of the molecule [15]. Some of the most commonly used two-dimensional molecular
fingerprints are the Extended-Connectivity Fingerprint (ECFP, also known as the
Morgan fingerprint) [16], and the Maccs (Molecular ACCess System) fingerprint
[17].

ECFP is a circular fingerprint that represents molecules as a bit vector, by capturing
features of the molecular graph. These features refer to the presence or absence of
certain substructures in a molecule. The ECFP generation process is based on the
Morgan algorithm and includes three stages: identifier assignment to atoms, iterative
updating based on each atoms neighbors, and duplicate identifier removal. Different
ECFPs can be generated by specifying the diameter of the largest feature. This is
reflected by the appended number which is equal to twice the number of iterations
performed. For example, if 2 iterations are performed, the largest possible fragment
will have a width of 4 bonds, and the fingerprint name will end in 4, e.g., ECFP4.

Maccs keys are commonly used structural fingerprints with 166 bit keys where each
bit encodes a pre-defined substructure pattern, such as functional groups, ring sys-
tems, and other molecular features. The result is a list of binary values where
bits can either be 1, meaning the given substructure is present or 0, absent in the
molecule.

RDKit 2D descriptors [18] are calculated based on the two dimensional structure of a
molecule encoding it’s physicochemical properties. These include for example, phys-
ical properties, atom and bond counts, partial charge, and adjacency and distance
matrix descriptors.

2.2 Models
Random forests [19] are ensembles of decision trees, where each tree is trained on
its own sampled training set. The splitting of the nodes is also done using a random
subset of the features, thus introducing more randomness into the models. Random
forests can be used for both regression and classification problems. The trees indi-
vidually vote for what the most probable class, and a decision is made based on the
votes. For classification, the final class is determined by majority voting, and for
regression by averaging.

Boosted trees [20] are ensembles which sequentially combine multiple weak trees to
create a stronger model. Different approaches for boosting are, for example, adaptive
boosting and gradient boosting.
Adaptive boosting aims to improve the performance of a weak classifier by focusing
on previously misclassified data points. At each iteration, the algorithm assigns
weights to the data points in the training set based on their classification accuracy,
and then trains a new classifier. The weight of misclassified data points is increased
and the weight of correctly classified data points is decreased. Finally, the output
of the weak classifiers is combined using a weighted sum.

6



2. Theory

Figure 2.2: Random forest.

In gradient boosting, the objective is to minimize the loss function of the model by
adding weak learners using gradient descent. The algorithm starts by training a base
model and then each subsequent tree is trying to correct the errors of the previous
one, thus improving the predictive power of the ensemble. A weight is assigned to
each tree based on their performance, and then all trees are combined creating a
boosted model.

Graph Neural Networks (GNNs) [21] are deep learning models that can handle graph
structured data. They can be used for node, edge, and graph-level predictions, in
both supervised and unsupervised tasks. Through a message passing process, GNNs
embed information into each node about its neighbours. This can then be used to
find patterns and make predictions. GNNs can be divided into different categories,
such as Recurrent GNNs which aim to learn node representations with recurrent
neural architectures, and Convolutional GNNs which generalize the convolution op-
eration from grid to graph data.

Directed MPNN (D-MPNN) [22] is a Convolutional GNN specifically designed for
molecular property prediction. It is a variation of the MPNN architecture that
operates on undirected graphs using a message passing mechanism. The D-MPNN
model consists of two phases, a message passing phase that uses an encoder, and
a readout phase with feed-forward layers. In the message passing phase, a neural
representation is built of the molecule by processing the molecular graph. Nodes of

7



2. Theory

the graph represent atoms, and directed edges represent bonds between two atoms.
Different to MPNN, D-MPNN uses messages associated with directed bonds rather
than atoms to avoid adding noise to the graph representation. In the readout phase,
the final representation of the molecule is used to predict the properties of interest.

Figure 2.3: Architecture of D-MPNN.

2.3 Model training
In order to train the machine learning models, we will first divide the dataset into
a train and test set which can be done in multiple ways. The most commonly used
method is a random split, where a portion of the data is randomly selected and set
aside for testing. Although, a model trained on such data might perform good on
the randomly selected test set, it often fails for new data collected in a different
context than the initial dataset. For example at a later point in time, or by a dif-
ferent company or lab. This could be due to the new dataset being from a different
distribution than the one the model was trained on. Therefore it is important to
also try out methods that generalize better to unseen data.
One such approach is a scaffold-based split [23], a method of splitting a molecular
dataset based on molecular scaffolds of the chemical structures. A scaffold reduces
the structure of a compound to its core components meaning that multiple com-
pounds can have the same scaffold. The dataset is split in a way that compounds
with different scaffolds are in the test set than in the train set making them as dis-
tinct as possible.
Another method that can better generalize to unseen data is the time-based (tem-
poral) split, where the data is split based on a timestamp. In this case, the model
is trained on older samples and tested on newer ones ensuring that no future data
is used to predict previous data. It is especially useful for tasks where the data
changes over time as it considers the changing distributions over time.

Besides splitting the data into a train and test set, cross-validation (CV) will be
implemented [24]. In a k-fold CV the training set is further split into k sets (folds).
For each fold a model is trained using k-1 folds and validated on 1 fold, see Figure
2.4. During temporal CV, the model is trained on the initial n folds and assessed
on fold n+1, guaranteeing that the training data precedes the testing data in each
fold. The error metrics of the k models are then averaged to determine how well the
model can generalize to unseen data.

8



2. Theory

Figure 2.4: 5-fold cross validation [25].

To find the optimal model and further increase accuracy, hyperparameter optimiza-
tion will be implemented. To do this we will use Optuna, an open-source optimiza-
tion software [26] for the single-task models, and Chemprop’s built-in optimizer,
using Bayesian optimization, for the multitask models.

2.4 Evaluation metrics
To evaluate the models, the following error metrics have been used in previous studies
[5], [11], [27]: root mean square error (RMSE), mean (signed) error (ME), mean
absolute error (MAE), coefficient of determination (R2), linear regression slope (m),
and Kendalls Tau rank correlation coefficient (τ). Given xi as the actual and yi as
the predicted value of an observation, these error metrics can be calculated as follows
[28], [29].

The root mean square error is the square root of the variance of the residuals (pre-
diction errors), RMSE =

√
1
n

∑n
i=1(xi − yi)2.

The mean (signed) error is the average of all the errors, ME = 1
n

∑n
i=1(xi −yi), while

the mean absolute error is the average of the absolute errors,
MAE = 1

n

∑n
i=1 |xi − yi|.

The coefficient of determination measures how well the model predicts an outcome,
R2 = 1 −

∑n

i=1(yi−xi)2∑n

i=1(xi−x̄)2 , where x̄ = 1
n

∑n
i=1(xi).

The linear regression slope indicates the rate of change in y relative to x,
m = ∆y

∆x
.

Kendalls Tau rank correlation coefficient can be determined as τ = C−D
C+D

, where C
denotes the number of concordant pairs, and D denotes the number of discordant
pairs.

9
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3
Methods

3.1 Workflow
The workflow of creating the models consists of the following steps: data prepara-
tion, train-test set split, molecular descriptor calculation, model training, and model
evaluation. These steps will be discussed in more detail in the next sections.

Figure 3.1: Model training and analysis workflow used in this work.
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3. Methods

3.2 Data

3.2.1 Datasets
For benchmarking, the data provided for the SAMPL6 [10] and SAMPL7 [11] blind
predictive challenges, and QSAR models [5] will be used.

The SAMPL6 and SAMPL7 datasets consist of 24 and 22 molecules, respectively.
In the SAMPL6 dataset each compound has one, two or three pKa , whereas the
SAMPL7 dataset only lists one pKa for each molecule. The molecules are repre-
sented in SMILES strings, and can be downloaded from the corresponding SAMPL
challenge website [30], [31].

The dataset from the QSAR models (Opera dataset) contains pKa data measured
for 7912 chemicals and their corresponding SMILES strings [32]. Among these, 436
compounds have both an acidic and basic pKa , for the rest only one is provided.
The data was originally obtained from multiple sources from literature, however, no
references are supporting the pKa values. The authors of the paper also note a high
diversity in the data and the different methods used to measure pKa .
Based on this data, three different datasets were created and are publicly available:
1) Option 1: all chemicals with replicates removed, 2) Option 2: low variability
replicates included, and 3) Option 3: all data included.

Apart from the publicly available datasets, we will also use a high quality internal
dataset with known experimental acidic and basic pKa values of approximately 20k-
25k compounds. As show in Figure 3.2, most compounds have 1 or 2 ionic centers,
therefore we will limit our experiments to the first and second most acidic and basic
pKa values.

Throughout the report, we will refer to the most acidic and basic pKa as acid / base
1, and to the second most acidic and basic pKa as acid / base 2.

Figure 3.2: Distribution of ionic centers in the internal dataset.
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In Figure 3.3 the distribution of molecular weights in the internal dataset is presented.
It shows that most compounds have a low molecular weight ...

Figure 3.3: Distribution of molecular weights in the internal dataset.

Figure 3.4 presents the distribution of acid 1 and base 1 pKa in the internal and
public (Opera) datasets. As shown, the internal and public datasets have similar
distributions within similar ranges, however there is significantly more internal than
public data available.

Figure 3.5 presents the distribution of acid 2 and base 2 pKa in the internal dataset.
As we can see, there is much less data available for the second most acidic and basic
pKa than the first ones, moreover, the values are distributed in a smaller range.
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Figure 3.4: Distribution of most acidic and basic pKa in the internal and public
(Opera) datasets.

Figure 3.5: Distribution of second most acidic and basic pKa in the internal dataset.
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3.2.2 Data preprocessing
As part of the data preparation process, we first performed data cleaning on the
datasets. From the internal dataset, we excluded all acid 2 / base 2 values without
an acid 1 / base 1 pKa and then removed all compounds without experimental
values. From the public (Opera) dataset, we chose the Option 1: all chemicals with
replicates removed [5] refined dataset and only kept compounds with a pKa between
0 and 14.
In the next step, all internal and public SMILES were standardized, and invalid ones
were removed. Then, since multiple molecules can share the same standardized
SMILES, we removed the ones where the standard deviation of the overlaps was
greater than 1, and averaged the others. Lastly, we removed all compounds from
the public dataset that were also present in the internal dataset. This resulted the
following number of compounds for the different categories, presented in Table 3.1.

Dataset Acid 1 Acid 2 Base 1 Base 2
internal 7787 840 16504 5362
public 2823 - 2979 -

Table 3.1: Number of compounds in the clean internal and public (Opera) dataset.

For each dataset (internal and public) different molecular descriptors, namely Mor-
gan fingerprint (ECFP4), Maccs fingerprint and RDKit 2D descriptors have been
calculated, resulting in a total of six descriptor datasets. Following the computa-
tion of the descriptors, we removed descriptors with a low variance (less than 2%)
and correlated features (with a correlation greater than 0.95). The resulting de-
scriptors were then used for creating and testing the single-task models, while the
standardised SMILES strings for creating and testing the multitask models.

3.3 Model training and evaluation
For training and testing the models, the data was split into a train and test set
consisting of 80% and 20% of the data. Three different approaches were utilized for
the split: random split, scaffold-based split, and temporal split. The training sets
were utilized for (5-fold) cross-validation and hyperparameter optimization, while
the test sets were used to assess the final performance of the model. For models
with a temporal split, the cross validation was also carried out in a temporal way.
For model evaluation, the main metrics used were the RMSE score and the coefficient
of determination (R2).

During the experiments we explored both single-task and multitask models. Since
single-task models can only predict one value, separate models were built for acidic
and basic pKa . Multitask models, on the other hand, can predict multiple values,
therefore a single model was sufficient to predict all pKa values of a compound.
To create the single-task models, the implementations of Scikit-learn’s RandomFore-
stRegressor [33] and LightGBM [34] were used. For the multitask models, a message
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passing neural network created for molecular property prediction called Chemprop
[22] was utilized.
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4
Results

4.1 Single task models

4.1.1 Initial models
To create baseline models, we first used a Random Forest and a LightGBM regressor
model with each descriptor to predict the most acidic and basic pKa . For all models
the same random split was used in the dataset. Besides the previously mentioned
data preparation process, for the Random Forest model we also had to remove all
compounds containing NaN values in the descriptors as RF models cannot handle
missing values.

In Table 4.1 and 4.2 the 5-fold cross-validation scores and test set scores of the
baseline models trained on the internal dataset are presented. It can be seen that
the performance of the two models is really similar, however, we observed that the
training of LightGBM is much faster than the training of Random Forest models.
Therefore, in case of equal performance, the LightGBM model is preferred. Regard-
ing the different descriptors, the best performance could be achieved with RDKit’s
2D descriptors, and the ECFP4 fingerprint. Highlighted are the best achieved met-
rics for the most acidic and basic pKa .

Acid Base
Descriptor Model R2 RMSE R2 RMSE

ECFP4 Random Forest 0.72 1.40 0.67 1.28
LightGBM 0.70 1.44 0.65 1.32

RDKit2D Random Forest 0.71 1.42 0.64 1.34
LightGBM 0.72 1.40 0.67 1.27

Maccs Random Forest 0.72 1.40 0.66 1.30
LightGBM 0.70 1.45 0.61 1.38

Table 4.1: 5-fold cross-validation scores of baseline models trained on the internal
dataset.
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Acid Base
Descriptor Model R2 RMSE R2 RMSE

ECFP4 Random Forest 0.72 1.34 0.67 1.30
LightGBM 0.70 1.39 0.64 1.37

RDKit2D Random Forest 0.72 1.36 0.64 1.36
LightGBM 0.72 1.34 0.66 1.32

Maccs Random Forest 0.71 1.36 0.66 1.33
LightGBM 0.71 1.36 0.61 1.42

Table 4.2: Test set scores of baseline models trained on the internal dataset.

Figure 4.1 shows the performance of the best models, on the internal test set. The
models were selected based on the CV results, and were trained with the RDKit2D
descriptors using the LightGBM model. In each plot, the x axis corresponds to the
experimental, and the y axis to the predicted pKa value of the compounds. The line
of best fit is also shown.
The plots show that the predictions lie in a similar range as the experimental values,
however, there are a number of outliers for both acidic and basic pKa .

Figure 4.1: Predicted and experimental acid 1 (left) and base 1 (right) pKa values
of the internal test set using the best models.

Besides training and testing the models on the internal dataset, we also used the
public (Opera) dataset as a validation set to evaluate the models. Table 4.3 presents
the R2 and RMSE scores of the internal models tested on the public dataset. As
shown, all models perform worse on the public test set than on the internal one. We
observe a 17-27% drop in R2 for acidic and basic pKa for the best models.
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Acid Base
Descriptor Model R2 RMSE R2 RMSE

ECFP4 Random Forest 0.37 2.50 0.39 2.25
LightGBM 0.40 2.43 0.41 2.22

RDKit2D Random Forest 0.42 2.39 0.40 2.23
LightGBM 0.45 2.32 0.49 2.06

Maccs Random Forest 0.39 2.45 0.41 2.21
LightGBM 0.39 2.44 0.47 2.10

Table 4.3: Validation scores on the public dataset of baseline models trained on the
internal dataset.
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4.1.2 Optimized models
To optimize the models, we implemented hyperparameter tuning using Optuna for
the ECFP4 and RDKit descriptors. The hyperparameters tuned were the number of
estimators in the range of 10 and 1000, and the maximum depth of the tree between
2 and 32.

The best model for each descriptor was a LightGBM model with the parameters
presented in Table 4.4.

Acid Base
Descriptor n_estimators max_depth n_estimators max_depth

ECFP4 423 25 1000 32
RDKit2D 843 9 983 29

Table 4.4: Best parameters for single-task LightGBM models trained on internal
dataset.

Using the best hyperparameters, the performance of the models could be improved
on the internal dataset, as shown in Table 4.5 and 4.6.
For acidic pKa we observe a 3%, and for basic pKa a 5% improvement in R2 on the
test set. On the public test set, the optimized models show similar performance as
the initial ones.

Acid Base
Descriptor R2 RMSE R2 RMSE

ECFP4 0.72 1.39 0.72 1.18
RDKit2D 0.74 1.35 0.72 1.17

Table 4.5: 5-fold cross-validation scores of tuned models trained on the internal
dataset.

Acid Base
Descriptor Test set R2 RMSE R2 RMSE

ECFP4 internal 0.74 1.31 0.71 1.23
public 0.39 2.44 0.43 2.17

RDKit2D internal 0.75 1.28 0.71 1.23
public 0.43 2.37 0.48 2.07

Table 4.6: Validation scores on the internal test set and public dataset of tuned
models trained on the internal dataset.
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In Figure 4.2, the performance of the best models can be seen on the internal test
set. Comparing to the initial best models, the optimized models show slightly better
results with less outliers.

Figure 4.2: Predicted and experimental acid 1 (left) and base 1 (right) pKa values
of the internal test set using the best optimized models.
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4.1.3 Models with temporal split
On the internal dataset, we performed a time-based split where the newest 20% of
the compounds were used as a test set and the remaining compounds as a training
set. For the experiments, we only used LightGBM models both with the initial
model parameters and optimized parameters based on the previous hyperparameter
tuning.

As shown in Table 4.7, 4.8 and 4.9, using a time-based split yielded worse results
than randomly splitting the data into a train and test set. In the CV scores, we
observed a drop of more than 20% in R2 and an increase of around 30% in RMSE for
both acidic and basic pKa . This is also reflected on the internal test set. However,
models trained with a temporal split performed similarly to models with a random
split in the data on the public test set.

Acid Base
Descriptor Parameters R2 RMSE R2 RMSE

ECFP4 initial 0.50 1.75 0.47 1.56
optimized 0.50 1.75 0.48 1.54

RDKit2D initial 0.51 1.73 0.50 1.51
optimized 0.51 1.73 0.53 1.47

Table 4.7: 5-fold cross-validation scores of temporal models trained on the internal
dataset.

Acid Base
Descriptor Parameters R2 RMSE R2 RMSE

ECFP4 initial 0.53 1.99 0.43 1.65
optimized 0.50 2.04 0.47 1.59

RDKit2D initial 0.57 1.90 0.51 1.54
optimized 0.57 1.89 0.53 1.50

Table 4.8: Test set scores of temporal models trained on the internal dataset.

Acid Base
Descriptor Parameters R2 RMSE R2 RMSE

ECFP4 initial 0.38 2.46 0.42 2.19
optimized 0.38 2.47 0.44 2.16

RDKit2D initial 0.43 2.36 0.49 2.06
optimized 0.44 2.34 0.48 2.08

Table 4.9: Validation scores on the public dataset of temporal models trained on
the internal dataset.
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Figure 4.3 shows the performance of the best temporal models on the internal test
set. Comparing to the plots of the models with a random split, the points on these
plots are more scattered and show greater deviation from the experimental values.

Figure 4.3: Predicted and experimental acid 1 (left) and base 1 (right) pKa values
of the internal test set using the best temporal models.
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4.1.4 Acid and base 2 models
The models presented earlier only predict the most acidic and basic pKa of the
compounds. To establish a basis for comparison with the multitask models, we
created baseline models for the second most acidic and basic pKa values as well. To
do this, we used a LightGBM model with the RDKit descriptors as this combination
yielded the best result in previous experiments. Hyperparameter optimization was
also performed, with the best parameters presented in Table 4.10.

n_estimators max_depth
Acid 2 186 2
Base 2 231 8

Table 4.10: Best parameters for the second most acidic and basic single-task Light-
GBM models trained on internal dataset.

Table 4.11 and 4.12 present the 5-fold CV and test set scores of the models trained
using a random and temporal split in the data, initialized with the initial (default)
and optimized hyperparameters. As shown, models trained on the second most
acidic and basic pKa of compounds have significantly lower performance than models
trained with the most acidic and basic pKa .

Acid 2 Base 2
Split Parameters R2 RMSE R2 RMSE

Random initial 0.47 1.51 0.56 1.05
optimized 0.47 1.52 0.58 1.02

Temporal initial -0.10 1.86 0.19 1.28
optimized -0.01 1.81 0.17 1.29

Table 4.11: 5-fold cross-validation scores of acid and base 2 models trained on the
internal dataset.

Acid 2 Base 2
Split Parameters R2 RMSE R2 RMSE

Random initial 0.74 1.09 0.61 1.01
optimized 0.73 1.11 0.62 1.00

Temporal initial 0.09 1.63 0.22 1.44
optimized 0.19 1.54 0.20 1.46

Table 4.12: Test set scores of acid and base 2 models trained on the internal dataset.
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4.2 Multitask models
To simultaneously predict all pKa values of the compounds, we created different
multitask models utilizing the D-MPNN introduced in Section 2.2. We generated
models with a random, scaffold-based and time-based split in the internal data,
running each model for 50 epochs.

In Table 4.13 the number of compounds in the train and test set of different splits
for the internal dataset is presented.

Acid 1 Acid 2 Base 1 Base 2
Split train test train test train test train test

Random 6201 1586 682 158 13230 3274 4285 1077
Scaffold 6251 1536 668 172 13259 3245 4397 965

Temporal 6251 1536 676 164 12983 3521 3630 1732

Table 4.13: Number of compounds in the train and test set of different splits in the
internal dataset.

To create the models, we used both the initial parameters of the network and per-
formed hyperparameter optimization. The hyperparameters optimized were the
hidden size, depth, dropout, and number of feed-forward layers of the network.

The best parameters found during optimization were the following:

• depth: 3

• dropout: 0.3

• hidden size: 2100

• number of feed-forward layers: 3

These parameters were used for all models created with different splits in the data,
referred to as optimized.

4.2.1 Internal data results
Tables 4.14 and 4.15 present the 5-fold cross-validation and test set scores of the
multitask models trained on the internal dataset. The results show that the most
acidic and basic pKa (acid and base 1) can be predicted with higher accuracy than
the second most acidic and basic pKa (acid and base 2) of the compounds. It can
also be seen that the optimized models generally perform better than the initial ones
for all split types.

We also observe, that models created with a scaffold-based split yield similar CV
results as models using a random split, even outperforming it in most categories.
Models created using a temporal split have slightly lower performance in acid and
base 1, and much worse performance in acid and base 2 compared to using random
or scaffold-based splits.
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Acid 1 Acid 2 Base 1 Base 2
Split Parameters R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Random initial 0.78 1.22 0.50 1.39 0.81 0.98 0.66 0.96
optimized 0.80 1.16 0.48 1.39 0.82 0.96 0.67 0.95

Scaffold initial 0.81 1.14 0.44 1.47 0.82 0.95 0.64 0.96
optimized 0.83 1.09 0.55 1.33 0.82 0.94 0.67 0.92

Temporal initial 0.62 1.53 -0.75 1.95 0.73 1.11 0.36 1.17
optimized 0.63 1.52 -0.35 1.82 0.74 1.08 0.32 1.20

Table 4.14: 5-fold cross-validation scores of Chemprop models trained on the internal
dataset.

Acid 1 Acid 2 Base 1 Base 2
Split Parameters R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Random initial 0.79 1.16 0.66 1.26 0.79 1.05 0.66 0.95
optimized 0.81 1.12 0.72 1.13 0.81 0.99 0.67 0.94

Scaffold initial 0.76 1.28 0.39 1.62 0.83 0.92 0.64 1.00
optimized 0.79 1.20 0.45 1.53 0.84 0.87 0.62 1.02

Temporal initial 0.76 1.42 0.25 1.49 0.74 1.12 0.31 1.35
optimized 0.74 1.48 0.18 1.56 0.76 1.08 0.32 1.34

Table 4.15: Test set scores of Chemprop models trained on the internal dataset.

Figure 4.4 shows the test set performance of the best performing model based on the
CV results. The presented plots correspond to the optimized scaffold-split model as
this model achieved the best CV scores. As shown, for the most acidic and basic
pKa the predictions are quite accurate with 77% of acidic and 86% of basic pKa

predictions being within 1 pKa unit. Compared to this, on the second most acidic
and basic pKa we observe a higher deviation in predictions and more outliers with
68% of acidic and 78% of basic pKa predictions being within 1 pKa unit.
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Figure 4.4: Predicted and experimental pKa values on the test set of the optimized
Chemprop model built using a scaffold-based split.

4.2.2 Public data results
In Table 4.16 the results of the Chemprop models tested on the public dataset are
presented. As shown, models with the optimized hyperparameters perform better
than models trained with the initial parameters for all splits. Compared to the
internal test set results, we observe a 30% drop in R2. We also note that different
to the internal test set, on the public test set the temporal model yields the best
results.

Acid 1 Base 1
Split Parameters R2 RMSE R2 RMSE

Random initial 0.34 2.55 0.47 2.10
optimized 0.46 2.30 0.51 2.02

Scaffold initial 0.36 2.50 0.47 2.09
optimized 0.47 2.27 0.51 2.01

Temporal initial 0.35 2.53 0.43 2.17
optimized 0.49 2.23 0.52 1.99

Table 4.16: Validation scores on the public dataset of Chemprop models trained on
the internal dataset.
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Besides testing the multitask models on the OPERA data, referred to as public
through the report, we also analyzed the models’ predictive performance on the
SAMPL7 data. This dataset only consisted of one pKa per compound without
specifying whether its an acidic or basic value. Therefore, based on expert knowledge
we assigned them into the most acidic pKa category. The results of this experiment
are presented in Table 4.17. As shown, the models can predict the Acid1 pKa of
these compounds better than for the OPERA dataset. However, it has to be noted
that there is significantly less data in the SAMPL7 dataset.

Acid 1
Split Parameters R2 RMSE

Random initial 0.75 1.24
optimized 0.65 1.46

Scaffold initial 0.47 1.79
optimized 0.84 0.98

Temporal initial 0.68 1.39
optimized 0.78 1.15

Table 4.17: Validation scores on the SAMPL7 dataset of Chemprop models trained
on the internal dataset.
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4.3 Comparison to state of the art
In addition to evaluating the models on both internal and public datasets, we also
compared the multitask model to existing software for pKa prediction. In this
comparison, we opted for the temporal model over the model trained on a random
split of the data despite its lower accuracy. The decision was driven by the fact that
the model’s primary purpose is to predict the pKa of novel compounds, such that
the temporal model generates more relevant results for real-life applications. For
comparison, the temporal test set was used which contains the newest 20% of the
compounds from the internal dataset. The multitask model used for the comparison
is the temporal model with the initial parameters. We chose to use this model as it
performed better on the test set than the model with the optimized hyperparameters.

Figure 4.5 and 4.6 present the R2 and RMSE values of the software and our tem-
poral multitask model on the temporal test set. Here, commercial method x refers
to different software, and multitask model refers to our temporal multitask model.
The plots show that our model is better at predicting the most acidic and basic
pKa of compounds than all commercial methods, however, it has lower accuracy in
predicting the second most acidic and basic pKa than some methods.

Figure 4.5: R2 score of software and the temporal multitask model on the temporal
test set.
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Figure 4.6: RMSE scores for the various proprietary softwares and the temporal
multitask model using the temporal test set.
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4.4 Potential to predict new modalities
Besides testing the model’s general performance, another interesting aspect to ex-
plore is its ability to predict pKa in new modalities. This can provide an insight into
the model’s generalization capabilities, and potential for application in real-world
scenarios.

Modalities refer to different classes of molecules that are being used as drugs, with
the most common being small molecules. New modalities that are available in our
internal dataset include peptides, macrocycles and PROTACs.
First, we analyzed the temporally- and scaffold-split models’ potential to accurately
predict pKa in these new modalities. Then, we built a model using only small
molecules and utilized it to make predictions on new modalities, which are generally
larger than the average small molecule drug.

Table 4.18 presents the number of each modality in the training and test sets of
the temporal and scaffold splits as well as the total numbers. As shown, the data
consist of mostly small molecules and only 0.7% of it are new modalities. It can also
be seen that the temporal split contains most of the new modalities in the test set,
while in the scaffold split most macrocycles and PROTACs are in the training set.

Small Peptide Macrocycle PROTAC
Split Train Test Train Test Train Test Train Test

Temporal 16748 4122 60 17 6 29 1 36
Scaffold 16693 4177 63 14 29 6 29 8

20870 77 35 37

Table 4.18: Number of modalities in the different splits with the total numbers in
the bottom row.

The test set results of the multitask models trained with the optimized hyperpa-
rameters for the different splits are presented in Table 4.19 and 4.20. These show
the number of compounds in each modality with the corresponding R2 and RMSE
scores. As shown, the scaffold model performs better in predicting both the most
acidic and basic pKa than the temporal model. This can be attributed to the scaffold
model having more new modalities in the training set. For predicting the second
most acidic and basic pKa none of the models perform well.

In Table 4.21 the results of the model built using only small molecules is presented.
As shown, for acid 1 macrocycles and PROTACs can be predicted with high accuracy.
For base 1 peptides and PROTACs have acceptable scores, however, the prediction
of macrocycles lacks reliability.
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Acid 1 Acid 2
n R2 RMSE n R2 RMSE

peptide 7 -1.34 3.05 1
macrocycle 16 0.7 2.09 2
PROTAC 25 0.53 1.4 5 -0.34 1.05

Base 1 Base 2
n R2 RMSE n R2 RMSE

peptide 16 -2.29 2.61 6 -1.19 2.07
macrocycle 25 -0.05 1.02 19 -0.5 0.94
PROTAC 33 0.53 1.15 20 -0.12 1.39

Table 4.19: Test set metrics by modality of model trained using a temporal split.

Acid 1 Acid 2
n R2 RMSE n R2 RMSE

peptide 2 1
macrocycle 3 0.98 0.41 0
PROTAC 3 0.68 0.93 0

Base 1 Base 2
n R2 RMSE n R2 RMSE

peptide 13 0.62 0.59 2
macrocycle 5 0.33 0.97 3 -6.09 0.31
PROTAC 8 0.55 1.18 3 -0.9 0.92

Table 4.20: Test set metrics by modality of model trained using a scaffold split.

Acid 1 Acid 2
n R2 RMSE n R2 RMSE

peptide 24 0.43 1.86 4 0.48 3.06
macrocycle 19 0.73 2.02 2
PROTAC 25 0.8 0.9 5 -0.6 1.14

Base 1 Base 2
n R2 RMSE n R2 RMSE

peptide 70 0.48 1.35 18 -0.35 1.71
macrocycle 30 -0.04 0.97 20 -0.52 0.96
PROTAC 34 0.58 1.1 21 0.06 1.25

Table 4.21: Test set metrics of model trained on small molecules.
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In Figure 4.7 we present a comparison between the different models for predicting
new modalities. Here, the x-axis corresponds to the different categories (most acidic
and basic, 2nd most acidic and basic pKa ), the y-axis to the R2 / RMSE score
and the color to the different models: temporal: model trained using the temporal
split; scaffold: model trained using the scaffold split; and small: model trained on
small molecules.
The plots show that overall the models can predict PROTACs the most accurately,
and peptides the least accurately. The prediction of macrocycles is good in the case
of acid 1 but not as reliable for other categories.

Figure 4.7: R2 and RMSE scores of different models on predicting new modalities.
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Conclusion

5.1 Discussion
The results of the single-task models show that using the RDKit descriptors with
the LightGBM model yields the best performance for predicting both the acidic
and basic pKa of compounds. By implementing hyperparameter optimization, the
model’s performance can be improved up to an R2 of around 0.7 and RMSE of 1.2
for the most acidic and basic pKa on the test set with a random split in the data.
When building the models using a temporal split, the best achievable R2 score is
around 0.45 and the RMSE higher than 2 for the most acidic and basic pKa . The
metrics indicate slightly poorer results for the second most acidic and basic pKa

values in the random split, but their performance significantly deteriorates when
using the temporal split.

The results of the multitask models demonstrate that the best model built with a
random split in the data can predict both the most and second most acidic and
basic pKa of the compounds accurately. We observe an R2 greater than 0.8 for the
most acidic and basic, and around 0.7 for the second most acidic and basic pKa on
the test set of the model built with a random split in the data. With the scaffold
and temporal split models we can see a good performance on the most acidic and
basic pKa , but poorer performance when predicting the second most acidic and
basic pKa .

Comparing the multitask models to the single-task models, we observe better R2

and RMSE scores on the test sets with the multitask models. Even the initial mul-
titask models outperform the best single-task models. We can also see a significant
improvement in the prediction accuracy of the second most acidic and basic pKa in
the multitask models.

The results also show that the most acidic and basic pKa can be predicted with higher
accuracy than the second most acidic and basic pKa for all models and splits. This
can be attributed to the significantly lower number of experimental measurements
for these categories in the dataset.

It can also be observed that better accuracy can be achieved with a random or
scaffold-based split compared to a temporal split in the data. With a temporal split
we observe a drop of around 5% in R2 for the most acidic and basic, and a drop of
more than 30% for the second most acidic and basic pKa for the best models. One
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possible explanation for this could be that compounds measured more recently tend
to be more complex compared to older ones. Consequently, the absence of recent
compounds in the training set poses a greater challenge for the model in effectively
predicting them. Moreover, in a real-life scenario a model built using a temporal
split is more significant as it gives more information about the models generalization
capabilities to new molecules. Despite the lower accuracy, the temporal multitask
model shows a great performance and outperforms single-task models built on a
temporal split.

We also note that testing the models on the public dataset yields a poor performance.
This could be explained by the public dataset containing data collected from multiple
sources for which various methods were used to measure pKa .

Upon comparing the temporal multitask model with the state of the art approaches,
it can be observed that our model not only competes with commercial methods but
also outperforms them in predicting the most acidic and basic pKa values.

When analyzing the models’ potential to predict new modalities, we observe that
reasonable accuracy can be achieved for the most acidic and basic pKa of the com-
pounds. However, the prediction of the second most acidic and basic pKa does not
yield good metrics. It is also notable that PROTACs can be generally predicted with
higher accuracy than other novel modalities. An explanation for this could be that
PROTACs are more similar in size to small molecules than for example macrocycles.
This experiment showed that there is a possibility to extrapolate from small to large
molecules. However, due to the limited data and high experimental variability in
larger molecules we should not draw definitive conclusions.

5.2 Conclusion
This thesis focused on utilizing various molecular descriptors and machine learning
models to predict the pKa value of compounds. First, we explored the pKa predic-
tion capabilities of classical ML approaches, including random forests and boosted
methods with various molecular descriptors, such as the Morgan and Maccs finger-
prints, as well as RDKit’s 2D descriptors. Then, we evaluated the performance of
a graph neural network to predict the first and second most acidic and basic pKa

values. We also applied different data splitting strategies to investigate the models’
generalization capabilities. Finally, we benchmarked our temporal model to commer-
cial methods and explored different models’ potential to predict the pKa in novel
modalities such as peptides, macrocycles and PROTACs.

Through thorough experimentation, we have demonstrated that the developed mod-
els can accurately and effectively predict the first and second most acidic and basic
pKa values. The models employed have also shown promising performance and
outperformed various existing commercial method in predicting newer compounds.
Finally, we have showed that the models have a great potential to predict the most
acidic and basic pKa of novel modalities, although the accuracy on new modalities
is significantly reduced relative to small molecules.
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In the future, several avenues can be explored to further enhance the prediction of
pKa values using machine learning models.

A potential next step could be to further optimize the multitask models by inves-
tigating and improving the model architecture and conducting a more extensive
hyperparameter optimization.

Another idea would be to incorporate additional molecular features, such as, molec-
ular descriptors in the graph neural network. These descriptors have demonstrated
promising performance when employed in classical machine learning approaches.
Therefore, incorporating them into the graph neural network architecture could po-
tentially further enhance the performance of the model.

Additionally, one could explore the possibility of using transfer learning to optimize
the model further and extrapolate from small to large molecules. This could be
done, for example, by using a model built on small molecules as a base model and
fine-tuning it on new modalities. Alternatively, refining a model trained on internal
data to more accurately predict public datasets would also be a potential next step.

An interesting area to explore is the application of active learning. Active learning
has the key idea that the model can achieve greater accuracy with fewer labeled
training data if it can choose which data it wants to learn from. The model may
ask queries during training for an annotator to label unlabeled instances. This ap-
proach holds great potential in the context of pKa prediction, where data availability
is limited, and experimental measurements are both time-consuming and costly. By
incorporating active learning, we can select the most informative and relevant data
points for labeling, effectively maximizing the model’s learning capacity while mini-
mizing the labeling effort.

Another avenue worth exploring is the integration of quantum mechanics-based
(QM) methods. QM methods combine principles from quantum mechanics and
machine learning to enhance the accuracy of ML models. These models have shown
promising results in previous pKa prediction challenges. However, it is important to
consider the high computational cost associated with QM methods due to the com-
plexity of quantum mechanical calculations. As an alternative, quantum chemistry-
augmented graph neural networks could be employed for more accurate prediction
of complex molecular properties like pKa from the incorporation of a few quantum
descriptors into the input molecular representations.
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A
Appendix

A.1 Hyperparameters used in the optimized mod-
els

n_estimators max_depth
Acid 1 843 9
Acid 2 186 2
Base 1 983 29
Base 2 231 8

Table A.1: Optimal hyperparameters for the single-task LightGBM models with
RDKit2D descriptors.

depth dropout hidden size feed-forward layers
3 0.3 2100 3

Table A.2: Optimal hyperparameters for the multitask Chemprop models.

I



A. Appendix

A.2 Scatter plots of single-task and multitask mod-
els on the internal test set

Figure A.1: Predicted and experimental acid 2 (left) and base 2 (right) pKa values
of the internal test set using the best random split models.

Figure A.2: Predicted and experimental acid 2 (left) and base 2 (right) pKa values
of the internal test set using the best temporal models.
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Figure A.3: Predicted and experimental pKa values on the test set of the optimized
Chemprop model built using a random split.

Figure A.4: Predicted and experimental pKa values on the test set of the optimized
Chemprop model built using a temporal split.
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Figure A.5: Predicted and experimental pKa values on the test set of the optimized
Chemprop model built on small molecules.
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A.3 Scatter plots of multitask models on the SAMPL7
dataset

Figure A.6: Predicted and experimental pKa values on the SAMPL7 test set of the
Chemprop models built on a random split of the data. Model created using initial
parameters on the left, optimized parameters on the right.

Figure A.7: Predicted and experimental pKa values on the SAMPL7 test set of the
Chemprop models built on a scaffold split of the data. Model created using initial
parameters on the left, optimized parameters on the right.
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Figure A.8: Predicted and experimental pKa values on the SAMPL7 test set of the
Chemprop models built on a temporal split of the data. Model created using initial
parameters on the left, optimized parameters on the right.
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