
Ensuring the Security of PyPI Packages

Master’s thesis in Computer science and engineering

David Shakoori Gustafsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023





Master’s thesis 2023

Ensuring the Security of PyPI Packages

David Shakoori Gustafsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023



Ensuring the Security of PyPI Packages LATEX

David Shakoori Gustafsson

© David Shakoori Gustafsson, 2023.

Supervisor: Morten Fjeld, Computer Science and Engineering
Examiner: Alejandro Russo, Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iii



Ensuring the Security of PyPI Packages LATEX

David Shakoori Gustafsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Developers often use open-source code libraries in order to achieve desired function-
alities without needing to re-implement existing code. Python developers are no
exceptions here, and frequently use the Python Package Index, PyPI, to download
the specific code packages they want to use. However, PyPI has few restrictions
on what can be uploaded, making certain attacks on its ecosystem relatively sim-
ple. This thesis seeks to analyse potential vulnerabilities of PyPI, discuss threats
posed to the system and its users, and propose potential countermeasures. Counter-
measures can be looked at from two sides; the side of PyPI service providers, and
the side of PyPI users. In this thesis work, a threat model of PyPI is created, in
which different entry points, assets, and potential threats are identified, ranked and
categorised. Also, a number of different user-side tools for discovering malicious
packages are discussed, and a small proof-of-concept program utilising those tools
is created, after which the tools are evaluated. These are tools related to, for exam-
ple, information gathering (e.g. the GitHub API or Safety DB), pattern-matching
(regular expressions), and containerisation (Docker).

While the threat model is limited, several potential threats, as well as a number
of respective countermeasures, are found and discussed. One example is the easy-to-
perform typosquatting attack; there currently is no protection against such attacks
in the PyPI system. Implementing some sort of community reporting feature could
make the discovery of such packages easier. As for the user-side tools that we
evaluate, they probably cannot detect malicious packages on their own. However,
using a combination of multiple tools would likely decrease the chances of installing
malicious code packages.

Keywords: Computer science, Security, Python, PyPI, Typosquatting.

iv





Acknowledgements
I would like to thank my supervisor Morten Fjeld, as well as my examiner Alejandro
Russo, for help and valuable feedback on my thesis. Furthermore, I would like to
thank my friends Rasmus and Filip for their unwavering support during the thesis
writing period and beyond. Finally, I would like to thank my sister Freia for being
the best.

David Shakoori Gustafsson, Gothenburg, 2023-06-18

vi





Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Packages, Modules, and Libraries . . . . . . . . . . . . . . . . 3
1.2.2 The Python Package Index . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Project Legitimacy . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Potential Security Threats . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Typosquatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Possible Attacker Actions . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 The Package Upload Process . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Threat Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Decomposing The Application . . . . . . . . . . . . . . . . . . 8
2.2.2 Threat Categorisation . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Threat Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 String Comparison Algorithms . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Malicious Setup Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Potential Package Security Tools . . . . . . . . . . . . . . . . . . . . 12

3 Methods 14
3.1 Threat Modelling PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Scanning Program . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 The Package Scanner . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 The Typosquat Scanner . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 The Web Scanner . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Containerisation . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Program Evaluation . . . . . . . . . . . . . . . . . . . . . . . 18

4 PyPI Threat Model 19
4.1 Decomposition of PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Threat Categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Threat Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Countermeasures and Mitigation . . . . . . . . . . . . . . . . . . . . 27

5 The Scanning Program 29

viii



Contents

5.1 Scanner Program Test Results . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 35
6.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

ix



1
Introduction

The use of packages in the world of Python is commonplace, mostly due to the over-
head of implementing the functionality that such packages can offer. Why would you
create your own functionality for scientific computing or graph visualisation, when
packages such as NumPy and Matplotlib already exist in the Python Package Index
(PyPI)? However, PyPI does little explicit administration of its uploaded packages,
relegating responsibility for potential security concerns to the user installing the
packages. Given the open-source nature of Python and other similar languages,
anyone can upload their packages to the respective repository, giving malicious ac-
tors an easy way of spreading potentially compromising code.

Ruohonen et al. [1] ran a static analysis on a majority of PyPI’s available pack-
ages, and found that almost half of them had at least one security issue. The issues
mostly consisted of generic vulnerabilities, such as hard-coded passwords in the
source files, and injection vulnerabilities, which may allow for SQL injection attacks.
Furthermore, the lack of administration in PyPI allows for so-called typosquatting
attacks, where malicious packages with names similar to commonly used packages
are uploaded to the index.

Given the widespread usage of code repositories by developers coding in program-
ming languages such as Python, Ruby, JavaScript, etc., there are many reasons for
keeping these packages free of malicious code. Reaching an adequate level of security
is difficult, but with cooperation between the owner of the repository, and the user
downloading the package, the risks can be reduced.

This thesis will focus on establishing a few ways of ensuring the safety of PyPI’s
Python packages. As such, the purpose of the thesis is twofold:

1. Analyse the current operation of PyPI administration and discuss potential
solutions to detected security concerns.

2. Study how secure transactions with PyPI can be achieved from the user’s side,
e.g. through some proof-of-concept software implementation.

The first part entails a thorough analysis of PyPI, followed by presenting some alter-
native administrative ways of increasing its security. PyPI is hosted by the Python
Software Foundation, a non-profit organisation. As such, the organisation does not
have the resources of, for example, the Microsoft-owned GitHub when it comes to

1



1. Introduction

administration. With that in mind, it is quite easy to see how typosquatting attacks,
among other security threats, have become large issues in the PyPI ecosystem [2].

For the second part, apart from theoretical reasoning, a program will be designed to
detect possibly malicious packages, or at least help users make informed decisions
about installing a package, or not. The program should be able to, based on in-
formation from PyPI and other resources, decide if a package’s name is legit or a
potential case of typosquatting. Furthermore, the program should check if a package
is safe to install and run on a user’s device. Some alternative tools for this purpose
will be discussed and tested.

The listed items above can be condensed into three research questions, with the
first two (RQ1 and RQ2) being related to the administrative side of PyPI, and the
last one (RQ3) to the user side. They are as follows:

• RQ1 – From a threat modelling perspective, what is the current state of
PyPI’s security?

• RQ2 – What safety measures can the service providers at PyPI take to ensure
the security of its users?

• RQ3 – For Python developers to detect questionable packages, which tools
are effective and why?

1.1 Related Work
RQ1/RQ2 – A number of studies of the PyPI service, such as Ruohonen et al. [1]
and Alfadel et al. [3], using static and empirical analysis respectively, have detected
security issues in the repository’s packages. The latter study states that vulnera-
bilities in the PyPI ecosystem take approximately three years to be discovered. A
similar problem was found in the JavaScript equivalent of PyPI, the Node Package
Manager (NPM). However, Alfadel et al. found that a majority of PyPI vulnerabili-
ties were fixed only after being publicly announced, which was not an issue in NPM.
They pose that this is likely due to the fact that NPM gives package developers 45
days to fix a vulnerability before it is published.

Bagmar et al. [4] performed an overarching study of security threats in PyPI’s
ecosystem, and found numerous possible exploits, such as arbitrary code execution
via package setup files, or the previously mentioned typosquatting attacks. They
even noted that some package owners uploaded the same package under variations
of the original name, in order to prevent typosquatting attacks from occurring. The
paper also mentions how many packages wrongfully use a more open, less protective,
license, than the license specified by many of the packages imported by them. That
is, if package x has a less protective license than that of y, it should not import
package y.

RQ3 – A study by Vu et al. [2] reviewed possible strategies used by attackers to de-

2



1. Introduction

ploy malicious code in the PyPI repository. They suggested a couple of approaches
for detecting packages of a malicious nature, such as using string comparison al-
gorithms to discover typosquatting attacks. Notably, they did not find it to be a
flawless technique, as the chance of a false positive is high given the large number of
packages that exist in PyPI (currently over 450,000). They also suggested looking
at the package’s linked GitHub repository, and comparing names between the two.
However, the false positive rate is relevant here as well, as some packages share the
same GitHub repository, and some legit packages use different names between the
GitHub and PyPI repositories.

A similar study was performed by Kaplan et al. [5], where common threats in both
PyPI and JavaScript’s NPM were surveyed. The conclusions they reach are compa-
rable to the previously mentioned paper, but they proposed some further solutions
to the issues. Firstly, they recommend a sort of reviewing system for users of the
service, where users (or at least, some privileged members) of the service can vote
on the validity of packages. Secondly, they proposed that everyone that maintains
a popular library should be required to use some sort of multi-factor authentication.
Finally, Machine Learning (ML) is put forward as a potential deterrent to typosquat-
ting and similar attacks related to malicious package code. ML would remove the
need for a large moderation team but has other difficulties involved with it.

1.2 Background
This section gives a short overview of the important concepts involved with PyPI, as
well as the index itself. Furthermore, some comments on ensuring package legitimacy
are given.

1.2.1 Packages, Modules, and Libraries
There are three main ways of describing code or code bases in Python: as packages,
modules or libraries [6]. A module refers to any single Python .py file, which may
include related functions, classes, variables, and the like. A package is often a larger
collection of related modules or smaller subpackages, which can be imported into
other modules to make use of their functionality. Packages are explained in further
detail in Section 2.1. The term library refers to a large collection of packages, but
can be used interchangeably with package, as the PyPI service does not differentiate
between the two. As such, this thesis will refer to libraries as packages.

However, there are also built-in functionalities in Python, such as basic mathemat-
ics and operating system control, that do not require installation from an external
resource. These are known as the standard libraries, and will be referred to as such.

1.2.2 The Python Package Index
PyPI is Python’s main code repository for sharing software packages used in Python
programs. As mentioned, it is owned by the Python Software Foundation, and is

3



1. Introduction

developed and maintained by the Python community. At the time of writing, there
is a calculated 15.6 TB of package data in the index [7], and the number of packages
continues to increase. PyPI’s functionality is similar to that of JavaScript’s NPM or
Ruby’s RubyGems repository, and packages are usually downloaded via the Python
package installer program, pip.

The community in charge of PyPI is a group of developers called the Python Pack-
aging Authority (PyPA) [2]. They are the moderators and administrators of the
repository. Notably, they are a relatively small group when compared to the men-
tioned continually growing size of PyPI, meaning that administration of new and
old packages is severely limited.

Uploaded packages on the PyPI website often link to their respective source code
on GitHub, but there is no inherent requirement to do so.

1.2.3 Project Legitimacy
Recognising an illegitimate package is not a trivial problem. However, there are some
aspects that are often shared by established Python packages, which can likely be
used to distinguish them from malicious ones. For example, Vu et al [2] observed
that an established package often keeps the same package name as the respective
name for the related GitHub page, which contains the package source code. As
mentioned, the GitHub link is not a requirement in PyPI, but it is a convention
used by most established packages.

Given this fact, some information on project legitimacy could likely be gleaned from
looking at the GitHub page of a given project. Is the name the same? Are there
many users (GitHub stars, forks)? Does the description list expected functionality?

To avoid malicious packages, especially of the typosquatting variety, looking at the
available information could help greatly. The project’s PyPI page, in conjunction
with the mentioned GitHub details, grants some information, but other statistics
could also be useful. Some tools for this information are discussed in Section 2.5
below.

1.3 Potential Security Threats
Aside from the issue of vulnerabilities as a consequence of poor coding and the like,
this thesis focuses on how malicious actors might utilise PyPI. Ohm et al. [8] de-
scribe two main strategies used to inject malicious code into a PyPI-like ecosystem:
infecting an existing package, or submitting a new package. For the first strategy,
the malicious actor has to somehow gain access to an already established, legitimate
project, in order to inject their code into the package. In PyPI’s case, this could be
done by gaining access to a package’s managing PyPI account, and uploading an
altered version of that package.

4



1. Introduction

The second strategy is easier to perform, but makes it harder to effectively spread
the malicious code, compared to taking over an established code base. A common
attack based on this strategy is the previously mentioned typosquatting attack. The
concept is discussed further below.

1.3.1 Typosquatting
Typosquatting is a malicious activity with the goal of tricking users into downloading
potentially malicious code. They are similar to spoofing attacks, i.e. attacks where
data or some access points are disguised as legitimate sources. Typosquatting works
by using names and titles derived from established, trusted sources, relying on either
the user making a typo while accessing the source (looking for the trusted source,
but finding the malicious one), or tricking the user by hoping that they do not dis-
cover the name discrepancy in, for example, the list of imported packages in some
source code.

Vu et al. [2] performed an analysis of PyPI with the purpose of detecting poten-
tial typosquatting attacks, and found 67,000 packages that could not be confirmed
safe without further investigation. That is, the packages had a name in close prox-
imity to the name of another package on PyPI. Their paper identified a number
of different methods that can be employed in typosquatting attacks. For example,
a package pretending to be the numpy package, could be named mumpy. The alter-
ation strategies include swapping characters, adding new characters, using similar
characters, etc.

1.3.2 Possible Attacker Actions
A number of threats are viable when it comes to compromised or malicious packages.
These packages can, for example:

• steal user credentials, such as SSH keys or passwords [9],

• swap out the infected user’s Bitcoin address for the attackers, rerouting pay-
ments or transfers [10],

• install dependencies to take control of the user’s mouse and keyboard, and
take screenshots [11],

• install a trojan, such as the W4SP Stealer [12], or

• install a crypto miner on an infected user’s device [13].

These attacker actions can be applied to potential typosquatting packages, as well
as already established packages that have been breached through other means.

Furthermore, while the vulnerabilities of a package x of course affect package x
itself, it could also affect package y, if x is a dependency of y. Using this fact to
perform attacks on packages further up a chain is called a supply chain attack [8].
No matter how secure the main package is, guaranteeing the safety of every single

5



1. Introduction

one of its dependencies (as well as their dependencies, and so on) is very difficult.
This makes supply chain attacks a common problem in software ecosystems such as
PyPI or NPM.

6



2
Theory

This chapter focuses on the paper’s most important theoretical and technical aspects,
such as the threat modelling process, string comparison algorithms, and potential
security tools.

2.1 The Package Upload Process
While the package installation procedure is quite fast, simply run the pip install
command to install a specified package along with the package’s listed dependencies,
the package upload process is a bit more advanced. It is done using the two Python
tools, build and twine, that respectively builds and uploads the package [14]. The
initial package creation and uploading process is summarised in the following steps:

1. Create a folder containing a src folder, pyproject file, a license file and a
readme file.

2. Generate a distribution package using the build module.

3. Upload the distribution package to PyPI, or to TestPyPI for testing purposes,
using the twine module. A PyPI account is required, as login credentials will
be prompted.

The src folder contains the actual package code (another name can be used for
it), and pyproject is a configuration file for the metadata of the package (package
name, authors, version, build library to use, etc). Furthermore, the src folder must
contain an __init__.py file, recommended to be empty, for the directory to be
recognised as a package.

When a package is uploaded, it is called a release, and the only way to update
the code is to upload a new release. Each notable event, such as project creation
or the upload of a new release, is recorded in the “security history” log of the package.

While the above-mentioned process can be used, package creators oftentimes want
to create more advanced configurations. To do this, many developers utilise the
setuptools build library, as provided by PyPA. Using setuptools, metadata, de-
pendencies, and the like can be placed either in the mentioned pyproject file, or
alternatively in a separate setup.cfg or setup.py file [15]. The latter option can

7



2. Theory

potentially be used to introduce malicious code into the package installation proce-
dure, which is discussed further in Section 2.4.

There are two roles that PyPI users can take when associated with a package: pack-
age owner and package maintainer. The latter is not allowed to delete files, releases
or the entire package, nor are they allowed to invite new collaborators.

2.2 Threat Modelling
The act of threat modelling is mainly a structured method of identifying and clas-
sifying threats against an application or service. Threat modelling often looks at
a system from the point of view of an attacker, rather than a defender, with the
goal of building an understanding of the system and the solutions needed to stop
potential threats [16].

While there are many different takes on threat modelling, the method used in this
thesis is based on the OWASP foundation’s guide on the subject [17]. The guide
describes a three-step process, which begins by decomposing the application in ques-
tion, then determines and ranks potential threats. Finally, possible countermeasures
for the discovered threats are listed and reviewed.

2.2.1 Decomposing The Application
The first step of the threat modelling process is the decomposition of the applica-
tion, which is done to achieve an understanding of the application, along with its
possible interactions with users. This is done by creating a number of use cases
to describe the interactions with the application of choice, identifying entry points
and assets that would be of interest to an attacker, and describing how the access
rights are distributed between related entities. The information gathered can then
be used to create a Data Flow Diagram (DFD) to get an overview of the applica-
tion’s composition. In short, the decomposition tries to extract the following from
the system:

• Use Cases – What is the application used for?

• External Dependencies – Items that lie outside of the actual application,
but could still pose a threat if compromised, e.g. database servers, physical
servers. They are external, but are still controlled by the organisation owning
the system.

• Entry Points – Refers to the interfaces which could be potentially used by
attackers to interact with the system, or supply it with data. E.g. login pages,
upload commands.

• Exit Points – Instead refers to the use of data outputs, which are often related
to some entry point. For example, abusing a cross-site-scripting vulnerability
by using some forum posting functionality. The ability to write the post is the
entry point, while the output is the exit point.

8



2. Theory

• Assets – Physical or abstract entities that are potential targets for an outside
attacker. It could refer to something simple like personal details or login
information, or something more abstract like the ability to access a web page.

• Trust Levels – Represents levels of access rights granted to entities and
actors by the system. These are used to establish which users have adequate
rights to access the entry points and assets of the system. Some examples are
administrators, or users with valid login credentials.

• Data Flow Diagrams – A visual presentation of how the data flows through
the system, with the entities and processes involved.

Notably, the threat model process is usually done by the organization that owns
the system being analyzed, but the model done in this thesis is instead made from
a PyPI user’s point of view. In short, this means that some internal entry points,
external dependencies, and similar facts might be unknown to us, such as how
PyPI’s web servers or databases function. But, such information is also unknown to
potential attackers, meaning there is still merit in using the model from an outside
perspective.

2.2.2 Threat Categorisation
The Microsoft-developed STRIDE is one of the main threat categorisation models
recommended by the OWASP guide. It is based on the confidentiality, integrity, and
availability (CIA) triad, with the addition of three more elements: authentication,
nonrepudiation, and authorisation [16]. STRIDE focuses on security threats in six
main categories, each associated with one of the mentioned elements of the extended
CIA triad:

• Spoofing – Attempts to access and use another user’s data, usually usernames
and passwords, by utilising faked information.

• Tampering – Attempts to maliciously alter data in an application.

• Repudiation – Performing potentially prohibited actions in a system, where
those actions cannot be traced to their origin.

• Information Disclosure – Attempts to read data without required clearance.

• Denial of Service (DoS) – Deny the users of the application access to some or
all of its resources.

• Elevation of privilege – Attempts to gain a more privileged access to a system,
to reach what was previously unauthorized data.

2.2.3 Threat Ranking
Following the identification of threats within the above-mentioned categories, a
threat classification model called DREAD is used to determine the different threats’
ranks. DREAD is a value-based risk-rating model focusing on five evaluation cate-
gories [16]:

9



2. Theory

• Damage – What degree of damage can the threat achieve? A higher value
represents a greater potential degree of damage.

• Reproducibility – Can the threat be easily reproduced? A higher value repre-
sents an easily reproducible attack.

• Exploitability – How easy is it to exploit the vulnerability? A higher value
represents an easier exploit to perform.

• Affected Users – How many users are affected? A higher value represents a
larger number of affected users.

• Discoverability – How likely is the vulnerability to be discovered by a potential
attacker? A higher value represents a threat that is easier to discover.

For every identified threat, a score is given for each of the mentioned categories, after
which the average of the scores becomes the overall DREAD score for that threat.
Importantly, the DREAD model is subjective, meaning that its scoring depends
highly on the individual using the model. However, DREAD can still be used to
create an approximate risk evaluation, which could help with prioritisation in the
coming threat modelling steps about countermeasures and mitigation [16].

2.3 String Comparison Algorithms
There exist a number of possible string comparison algorithms. The following four
are the most commonly used ones [18]:

• Levenshtein Distance – Counts the number of substitutions, deletions, and
insertions needed to convert one string to the other.

• Hamming Distance – Counts only substitutions, and can thus only be used
on strings of equal length.

• Episode Distance – Looks only at insertions, and is thus not symmetrical,
meaning string x might not always be convertible to string y.

• Longest Common Subsequence Distance – Counts only insertions and
deletions, i.e. the resulting distance is the number of unpaired characters.

In all of the algorithms above, each operation needed has a cost of 1 for calculating
the distance between strings.

The Levenshtein Distance is the most widely used, and the one utilized in the
analysis of PyPI by Vu et al. [2] to identify packages with similar names in the
repository, i.e. to discover potential typosquatting attacks. The Levenshtein dis-
tance is, in short, the minimum number of single-character edits needed to convert
one of the strings to the other [19]. These edits can, as mentioned, be insertions,
deletions, or substitutions, which gives it a wider reach than the other algorithms.
The Levenshtein distance algorithm looks as follows:

10



2. Theory

lev(a, b) =



|a|, if |b| = 0,

|b|, if |a| = 0,

lev(tail(a), tail(b)), if a[0] = b[0],

1 + min


lev(tail(a), b)
lev(a, tail(b))
lev(tail(a), tail(b))

otherwise,

where (a,b) refers to the strings, and tail is a function that omits the first char-
acter of the given string.

Given two strings a and b, the lev-function first checks if either string has a length
of 0, in which case the length of the other string is the current distance between
them. If the first character of each string is equal, the lev-function is called re-
cursively with the tails of both strings. Otherwise, recursively check which of the
possible string configurations (tail(a), tail(b) or both) grants the lowest possible
distance.

2.4 Malicious Setup Scripts
While the usage of malicious package code is dangerous on its own, even the act of
downloading or installing the package could cause potential harm. This is largely
due to the previously mentioned setup.py files that are often found in packages,
and are used to list dependencies and other metadata. The problem lies in the fact
that the setup.py file is a regular Python file, and can thus contain any code the
creator wants to put in [20]. Many of the attacks mentioned in Section 1.3.2 are
possible to perform here, such as installing trojans or stealing data.

The setup.py file usually contains some import lines (to import the necessary setup
functionality) and a setup() function, where the latter contains the mentioned meta-
data [21]. As such, this file is meant to run on installation to setup the package.
Notably, PyPI has introduced a way of packaging the build of the package within
a .whl file, or wheel file. In a wheel file, the setup.py file’s effects are already
recorded, and will therefore not actually run on a user’s device upon installation.

However, the old way of packaging, using .tar.gz files, have not been phased out.
New packages are not required to use the wheel file format, and old packages might
not yet have been updated to it. As such, there is nothing stopping a potentially
malicious actor from uploading a package using the old format, where the setup.py
is guaranteed to be executed on some user’s device.

11



2. Theory

2.5 Potential Package Security Tools
There are a large number of tools available to decrease the risk of security threats
from Python packages. They can do this through means of information gather-
ing, vulnerability scanning, vulnerability databases, etc. A few possible tools are
described in this section.

Safety DB – Safety DB is a database of currently known vulnerabilities of Python
packages, which is synced with the data of cybersecurity company PyUp once a
month [22]. It contains a list of historically or currently vulnerable packages, what
CVE id (Common Vulnerabilities and Exposures) the vulnerability has, and what
versions of the package are affected. Using the CVE id, the exact details of the
vulnerability can be found.

Importantly, Safety DB also states that the list is not a “hall of shame”, i.e. the
list should not necessarily be used to exclude packages for having had historical
vulnerabilities. Instead, the list should be used for information gathering purposes.

PyPI Stats – Another way of information gathering is the PyPI Stats service,
which grants download statistics for every PyPI package [23]. It provides daily,
weekly, and monthly download rates for packages, that are sourced from download
stats at Google BigQuery. While this seems like redundant information, it could
possibly be used to determine the legitimacy of some packages, especially in cases
of potential typosquatting attacks. If a package is trying to imitate, say, the con-
temporary NumPy package, seeing a low download rate should be a clear warning
sign.

Regular Expressions – A way of matching patterns in text, used by word pro-
cessors, search engines, password/e-mail input fields, and many other applications.
Regular Expressions (Regex) could likely also be used to pattern match source files,
such as the mentioned setup.py file. It could be used to detect anything outside
the standard setup.py file of the PyPI documentation [21]. However, the Regex
will have to be quite long to catch every possible case, and the chance of a false
positive/negative is always present.

Docker – To avoid the mentioned hazards involved with installing potentially ma-
licious packages, some sort of containerisation is needed. The Docker platform
could be a suitable choice for this, as it can be used to run software in a limited
environment, called a container [24]. The enveloping environment, i.e. the operat-
ing systems and the configurations, of the container is based on a pre-built image.
Docker containers work similarly to virtual machines, but take up less space, both
in memory and in computational needs.

Bandit – Vulnerability scanning of code is not a trivial problem, but it can be
done to some degree using the Bandit security scanner [25]. Bandit uses the so-
called AST module (Abstract Syntax Trees) to convert Python code into syntax

12



2. Theory

trees, that can be statically scanned for particular patterns. The Bandit scanner
looks for patterns that can lead to potential vulnerabilities, such as the code execut-
ing a new process with a shell, or hardcoded passwords [26]. Each vulnerability is
connected to a particular test, and new ones can be added to Bandit at the user’s
discretion.

13



3
Methods

The focus of this chapter is to describe how the threat modelling of PyPI will be
done, i.e. the steps taken to create the model. Furthermore, this section describes
how the scanning program will be designed, its main components, and the tools
it uses. The first section is focused on RQ1 and RQ2, while the second section
describing the scanner program is related to RQ3.

3.1 Threat Modelling PyPI
This section describes how the OWASP threat model, as presented in Section 2.2,
is used to model the PyPI repository.

Decomposing PyPI – The use cases of PyPI are listed, possible entry points
for external threats are pinpointed, the involved assets and entities are identified,
and the distribution of access rights among those entities is explored. The informa-
tion gained is then used to create a DFD of the system, to show an overview of the
repository and its functionality.

Decomposition begins with a list of PyPI’s different use cases, after which a ta-
ble of trust levels, i.e. the roles of actors within the system, is created. Then, the
possible entry points of PyPI are listed, i.e. interfaces of the application where poten-
tial attackers can interact with the system or supply it with data. Finally, the assets
of the system are listed. The OWASP guide also mentions external dependencies,
but they are mostly omitted as we have little information about those aspects of
PyPI’s workings, seeing that we are making the model from a user’s perspective.

Threat Categorisation – The STRIDE framework is used to classify the dis-
covered threats in accordance with Section 2.2.2. They are listed in a table under
each relevant STRIDE category.

Threat Ranking – For each threat, each of the five DREAD categories is given a
point from 1–10 depending on their severity, after which they can be ranked accord-
ingly. As mentioned, these are subjective ratings, but it is a helpful way of creating
an approximate ranking system.

Countermeasures and Mitigation – When threats have been established, classi-

14



3. Methods

fied, and ranked, they can be mapped to possible countermeasures. These mappings
are presented in a table, after which they are to be analysed regarding their plausi-
bility in the PyPI system, i.e. are the solutions tenable?

3.2 The Scanning Program
The scanning program features three main components, which are all to be run
within a containerised application, using Docker. It takes a single package’s name
as an input, and will output a report based on findings from the three components.
Other than the main package itself, the scanner will also gather some informa-
tion on the package’s dependencies, i.e. its list of required packages. As this is a
proof-of-concept program, it will only look at the first level of dependencies, i.e. the
dependencies of the main package. Notably, the program itself is implemented in
the Python programming language.

The components are:

• The Package Scanner – A component with a focus on downloading and
installing the main package as well as its dependencies, and then using some
tools to gather information on them locally.

• The Typosquat Scanner – This component focuses entirely on comparing
the similarity between the names of the packages with a list of contemporary
packages’ names, as well as names of Python standard libraries.

• The Web Scanner – A component with the purpose of collecting information
from web resources.

Below, each of the main components, as well as the containerisation itself, is ex-
plained.

3.2.1 The Package Scanner
As mentioned, the package scanner looks at downloading, installing, and analysing
the files locally. For this, a number of tools are used:

pip install/download/show – Other than the mentioned pip install command,
there are plenty more pip-related commands. The two relevant ones (other than the
installation command) are pip download and pip show, where the first downloads
the package (along with dependencies) rather than installing it, and the latter gives
some information about an installed package. The information gained through pip
show includes name, current version, homepage, author, license, a list of required
packages, and more.

These three commands are used to gain more insight into the main package. Initially,
pip install is used to install the main package, as having the package installed is a
requirement for the pip show command. Using the latter command, we can extract
some package information, which is an important part of the information gathering

15



3. Methods

process, as well as the main way of getting the package’s list of dependencies.

For the final part of the package scanner’s functionality, the purpose is to look
for potentially malicious setup.py files. Thus, we use the pip download command
to download the main package, along with its required packages, to a local folder for
convenience. After a successful download, the folder now contains some compressed
packages, either in the form of the newer .whl wheel files, or the older tar.gz files.
As the .whl files are supposedly safe from the dangers of setup scripts, the scanner
will unpack and analyse only the non-wheel tar.gz files.

Regular Expressions – After extraction, each relevant package is scanned for
its setup.py file, which is then sent to a Regex pattern that accepts files in accor-
dance with PyPI’s guidelines on setup scripts, as explained in Section 2.4. If the
files contain anything outside of the expected pattern, this is noted by the scanner.

Thus, the results of the package scanner contain gathered information on the main
package, lists of which packages were wheel or non-wheel files, and information on
which of the non-wheel packages contained a non-standard setup.py file.

3.2.2 The Typosquat Scanner
The typosquat scanner has one purpose, looking at if the given package or its de-
pendencies may be part of a typosquatting attack. In order to do this, it has to
compare the names of the packages with names of commonly used packages, or the
names of standard libraries.

Names of common packages are gathered using a list of the 5000 most downloaded
packages over the last 30 days, collected online monthly by Kemenade et al. [27].
The names of Python standard libraries come from the stdlib-list package, which
lists each standard library for a given Python version.

The string comparison itself is done using the Levensthein distance, as explained
in Section 2.3. Thus, the distance function of the Levensthein package is used on
each pair of main package/required package and common package name/standard
library. Two names are considered similar if the Levenshtein distance between them
is less than or equal to two. A higher distance threshold could drastically increase
the risks of false positives (as discussed by Vu et al. [2]).

When the typosquat scanner is finished, it returns a report listing the names of
the main package/dependencies as well as a list of found similar package names.

3.2.3 The Web Scanner
The final component of the scanner program looks at information gathering using
web-based resources. The following tools are utilised:

16



3. Methods

PyPI Stats – As mentioned in Section 2.5, PyPI Stats grants download statis-
tics for a given package. Through the PyPIStats package we get access to those
download rates, so we collect the monthly download rate for each relevant package,
i.e. the main package and its required packages.

Safety DB – The scanner looks up each relevant package in the vulnerability
database, and extracts information on previous vulnerabilities, i.e. their CVE id
and which versions were affected.

Web Scraping/Github API – For more information gathering, we turn to the
related Github page of each relevant package (if there exists one). However, the
package name on PyPI does not always correspond to the package name in Github,
so the web scraping BeautifulSoup4 package is used to scan a package’s PyPI web
page for their Github API link. When the link has been retrieved, a lot of informa-
tion can be obtained, such as the size of the project, when it was created, when it
was updated last, the current number of Github stars, etc. Not all packages have a
linked Github, but as that is usually the convention, the lack of a link is also useful
information. When finished, the web scanner returns the collected information on
download rates, vulnerabilities, and Github-based data.

3.2.4 Containerisation
As mentioned, the scanner program is made to be run in a Docker container to avoid
contamination of the main device. Docker offers many different images, but the scan-
ner program image is based on the Python image [28], which essentially is a Linux
Debian operating system with Python tools installed. From the Python image, we
build the scanner program image, where the main difference is the installation of
the mentioned packages used by the scanner program (such as the Levenshtein and
Beautifulsoup4 packages).

With the image complete, a new Docker container based on the image can easily be
supplied with a package to scan, and be started. Using the Docker Python package,
this is simple to set up, and the resulting output of the container is collected for
the user. Afterwards, the container can be removed, and the possible side-effects
of any of the package’s installed packages will likely not affect the device outside.
Figure 3.1 shows this containerisation visually.

17



3. Methods

Figure 3.1: Containerisation of the scanner program. The interface’s input is the
name of a package, which is handed to the program within the Docker container. In
the container, each part performs its functions, after which the resulting report is
sent back as the program’s output.

3.2.5 Program Evaluation
The scanner program will be evaluated by running it on a number of packages, and
looking at the level of information gathering achieved. 100 of the most recently
updated packages (as of writing), which are compatible with Python version 3 were
chosen as the testing dataset. The resulting data is then evaluated in order to see
if the metrics used are viable for testing package legitimacy.

18



4
PyPI Threat Model

This chapter documents the PyPI threat model, listing the results of each of its
separate steps. That is, the PyPI decomposition, threat categorisation and ranking,
and finally the listing of potential countermeasures.

4.1 Decomposition of PyPI
Here, the use cases, tables and diagrams related to the decomposition of PyPI are
presented. While some of these tables, the assets table especially, can be extended
to great proportions, they have been limited to the most relevant entries for a thesis
of this scale.

Use Cases – PyPI has a number of relevant use cases for its functionality as a
service, which mirrors the functionality of similar code repositories:

• Prospective users should be able to create a PyPI account using PyPI’s web
service.

• Python developers with a PyPI account should be able to upload Python code
packages to the repository, for sharing.

• Prospective developers should be able to download packaged code from the
repository to use for themselves.

• Package owners should be able to manage their packages via the web interface.

Trust Levels – Table 4.1 features the essential trust levels of the PyPI service.
The anonymous user entry refers to the conventional user of PyPI, i.e. a Python
developer that installs some needed package via pip. A PyPI user, i.e. a user with
no uploaded packages, largely has the same capabilities as the anonymous user, until
they upload a package and become a package owner, as the main point of a PyPI
account is to upload and manage packages. The PyPA administrator can reasonably
remove any package, which they are to do if it is deemed malicious, while a package
owner can only remove their own packages.

19



4. PyPI Threat Model

Table 4.1: The different entity trust levels of PyPI.

Trust Levels
Name Description
Anonymous User Any user with a device able to

connect to PyPI
PyPI User A User with a PyPI account
Package Maintainer PyPI account with upload permis-

sions for a package
Package Owner PyPI account owning a pack-

age/packages uploaded to the in-
dex

PyPA Administrator PyPA member with administra-
tive powers

Entry Points – The essential entry points of PyPI have been listed in Table 4.2.
Each table entry contains a related trust level, i.e. which entities of the trust level
table (Table 4.1) have potential access to that specific entry point. Uploaded pack-
age contents is an entry point both to the PyPI system itself, and to the users
downloading the package.

Table 4.2: Entry points of PyPI, with a short description and relevant trust levels.

Entry Points
Name Description Trust Levels
PyPI Login Page PyPI’s web-based login page All
twine Upload
Command

Command used to upload a pack-
age to the index

PyPI User,
Package Owner,
Package Maintainer,
PyPA Administrator

Uploaded Pack-
age Contents

The content of an uploaded pack-
age

Package Owner,
Package Maintainer,
PyPA Administrator

Exit Points – The main exit point that exists in PyPI is the login prompt, which
can return some informative error messages, i.e. “No user found with that name”
when using a nonexistent username, or “The password is invalid” when the account
exists, but the password is wrong. The same return messages are not given upon
using the twine upload command, which only states “Invalid or non-existent au-
thentication information”.

Assets – The assets, i.e. the areas of interest for attackers of the system, are listed
in Table 4.3. Like the entry points table, the entries of this table also contain the
relevant trust level entities with access to the particular asset. As mentioned in Sec-
tion 2.1, the ability to upload releases is shared between package owner and package
maintainer, but only the former can remove packages or releases from a project.

20



4. PyPI Threat Model

It is important to note that release or full project deletion is irreversible accord-
ing to the PyPI package management page. After project deletion, the name of
the project is made available to any other PyPI users, and reuploading the same
package again (containing the same filenames) is not allowed. Thus, if a package is
accidentally or maliciously deleted, undoing the damage is quite difficult.

Table 4.3: The assets of PyPI with a short description and relevant trust levels.

Assets
Name Description Trust Levels
User Details Account details related to some

user
PyPI User,
Package Owner,
PyPA Administrator

Package Contents Access to the content of some
package on PyPI

All

Ability to Upload
Releases

The ability to upload a new re-
lease of some package

Package Owner,
Package Maintainer

Ability to Remove
Package

The ability to remove a pack-
age/release

PyPA Administrator,
Package Owner

Ability to Upload
Package

The ability to upload a new pack-
age to the repository

PyPI User,
Package Owner,
Package Maintainer

Data Flow Diagram – The DFD in Figure 4.1 shows an overview of the interac-
tions between the PyPI service and its users. The dotted lines represent privilege
boundaries where a change of trust level is needed to perform the interaction.

21



4. PyPI Threat Model

Figure 4.1: DFD over interactions with the PyPI service. Trust level boundaries are
marked by dotted lines.

4.2 Threat Categorisation
As for the STRIDE threat categorisation part of the model, Table 4.4 states the
categories and the most related element from the PyPI decomposition. For each
category, the possible threats against the selected elements will be explained further
below.

22



4. PyPI Threat Model

Table 4.4: STRIDE categories and their related elements from the PyPI decomposi-
tion above.

STRIDE–Related Elements
STRIDE Category Entry Points Assets
Spoofing PyPI Login Page User Details,

Ability to Upload Pack-
age

Tampering - Ability to Alter Package
Repudiation - Ability to Upload Re-

leases,
Ability to Remove Pack-
age,
Ability to Upload Pack-
age

Information Disclosure PyPI Login Page User Details
Denial of Service twine Upload Command Ability to Upload Re-

leases,
Ability to Remove Pack-
age,
Ability to Upload Pack-
age

Elevation of Privilege PyPI Login Page All

Spoofing – There are many avenues for spoofing attacks to take. The previously
mentioned typosquatting attacks are an example of a sort of spoofing. Spoofing
user details is another option, and using them to try to bargain for access to some
package contents. A potentially more successful version of that is to somehow steal
credentials belonging to some PyPI user, or package owner, and use the new trust
level for malicious means.

Tampering – Tampering attacks can come in many different forms in the PyPI
service, and are mainly connected to the contents of packages. For example, a
compromised package owner account could have their packages tampered with for
malicious means, such as data extraction from users of the package (by uploading a
new release containing the manipulated code). Tampering with the package code to
introduce security bugs, such as an SQL injection vulnerability, is another possible
risk.

Repudiation – As mentioned in Section 2.1, each PyPI package logs potential
security events in the security history of the project. This makes repudiation on a
package-based level difficult, as alteration can be traced by time, collaborator, and
IP address of whoever caused the change. However, if a package owner’s or main-
tainer’s account is breached, impersonation is possible.

Assuming that manipulation of logs is possible for PyPA administrators, a breach

23



4. PyPI Threat Model

of such an account could lead to even greater risks for the system, as the attacker
could easily hide their tracks.

Information Disclosure – As a result of, for example, a tampering attack, in-
formation disclosure becomes a major threat. A tampered package could be used
to gain access to users’ data, such as files and passwords. Information disclosure is
also a risk in typosquatting attacks, with the same potential threat to user data.

The previously mentioned exit point in the PyPI login page can be used to gain
information on whether or not a username exists in the PyPI userbase. With this
information, a potential attacker can look up that username in the many lists of pre-
viously breached passwords found online, and potentially gain access to that account.

Denial of Service – From the perspective of the PyPI service, a denial of ser-
vice attack could potentially disrupt or severely limit all user interaction with the
system. Doing something at that scale likely requires a high trust level (PyPA ad-
ministrator or even higher), and is thus potentially a difficult attack to perform.

An easier option for malicious actors is to make the denial of service attack a part
of, for example, a previous spoofing or tampering attack of some package’s content.
I.e. they could insert some disruptive code into the package, which upon activation
would interfere with the device the code is running on. This latter method is a
threat from the perspective of PyPI’s users, rather than the service itself. Notably,
as the removal of a package is deemed irreversible, maliciously removing a package
would be considered denial of service as well.

Elevation of Privilege – Any attack with the goal of reaching a trust level with
more access than before, e.g. package owner from anonymous user, is an elevation of
privilege. With a new trust level, the attacker may gains access to new functionality,
such as the ability to remove files or entire packages.

A summary of the main discovered threats is listed in Table 4.5.

24



4. PyPI Threat Model

Table 4.5: Discovered threats, a short description of them, and their related STRIDE
categories.

Potential PyPI Threats
Threats Description STRIDE Category
Typosquatting A malicious package imperson-

ating a commonly used one
Spoofing,
Information Disclo-
sure,
Denial Of Service

Denial of Service An attack with the purpose
of preventing access to some
resource, e.g. by removing a
package

Denial of Service,
Tampering

Repudiation Performing an activity without
leaving tracks

Repudiation,
Tampering

Package Tampering Upload a tampered release,
with potential vulnerabilities
or malicious code

Tampering,
Denial of Service,
Information Disclo-
sure

Breached User Password Breaching or using a previ-
ously breached account pass-
word to gain access to a pack-
age or user details

Elevation of Privi-
lege,
Information Disclo-
sure,
Denial of Service,
Repudiation, Tam-
pering

4.3 Threat Ranking

Table 4.6: The DREAD scoring from 1 to 10, and DREAD score average for each
threat.

DREAD Scoring
Threats D R E A D Average
Typosquatting 7 10 7 5 9 7.6
Denial of Service 9 6 3 8 4 6.0
Repudiation 3 4 3 5 3 3.6
Package Tampering 8 6 3 7 3 5.4
Breached User Password 7 3 5 3 5 4.6

The DREAD scores and their average are shown in Table 4.6, where the columns
refer to the DREAD categories described in Section 2.2.3 (Damage, Reproducibility,
Exploitability, Affected Users, Discoverability). A visualisation of the same data in
stacked chart form is found in Figure 4.2.

25



4. PyPI Threat Model

Figure 4.2: Stacked bar chart over DREAD values for each threat.

Typosquatting – The typosquatting threat has been given the highest score,
mostly because of how easy the attack is to perform. All an attacker has to do
is pick a previously established package name, change it slightly, and upload some
malicious code under that name. Since the imitated package is as open-source as
the rest of the available packages in PyPI, the attacker can even copy its code, and
hide their alterations within.

Denial of Service – These attacks have a great potential for damage, as loss
of access to a certain package, or even access to PyPI itself, would be a major
detriment to most Python developers. However, such an attack is hard to pull off
successfully. Deleting a package or release can only be done with at least a package
owner trust level, and hindering access to PyPI itself is likely only available to PyPA
administrators or higher.

Repudiation – As mentioned, the security history (logs) of each package makes
it difficult to perform operations without it being logged. The most viable way of
repudiation is by impersonating some package collaborator, owner or maintainer,
and performing the malicious actions via their account. To avoid detection via the
recorded IP address, an attacker can easily use Virtual Private Network software
(VPN). A hijacked PyPA administrator can likely perform even more dangerous ac-
tions, but we cannot speak as to how difficult breaching such an account would be,
as we are not privy to the internal workings of the PyPI system.

Package Tampering – As mentioned in Section 1.3.2, there are many possible

26



4. PyPI Threat Model

variations of tampering that can take place in compromised packages, such as data
harvesting or the installation of trojans. While tampering can cause a lot of damage,
these attacks require package access to work. Thus, whether it is through social engi-
neering (i.e. getting user credentials through social convincing/coercion) or account
takeover, there are many steps to perform before tampering can ensue.

Breached User Password – A compromised account has the potential to lead
to some of the other threats discussed, like denial of service or package tampering,
but relies on the attacker successfully breaching the account. Bruteforcing an ac-
count password is difficult, as the PyPI login page disallows login attempts for a
while after five unsuccessful attempts (this can be bypassed by VPN, but the process
is slowed). Furthermore, the failed login attempts are logged in the profile, which
could alert the user to the attempts.

An easier avenue of attack, is to look for external user database leaks (from other
websites and services), where usernames and password combinations can be found,
and test them out in the PyPI service in a sort of dictionary attack. This might not
give access to a specific account, but chances are high that some other user reused
a password.

4.4 Countermeasures and Mitigation

Table 4.7: The discovered threats, and their relevant countermeasures.

Mitigation Mapping
Threat Countermeasure
Typosquatting Naming Limitations,

Community Reporting Features
Denial of Service SSH key Signature,

Multi-Factor Authentication
Repudiation Logging
Package Tampering SSH key Signature,

Multi-Factor Authentication,
Package Code Scanning

Breached User Password Multi-Factor Authentication

Typosquatting – The current naming conventions of PyPI allow any name that
is not currently used by some other project, hence why typosquatting attacks are
so easy to perform. Implementing some sort of naming limitation on very similar
names is a possible countermeasure. Furthermore, there is currently no way of re-
porting possibly malicious packages directly from the package project’s PyPI web
page. The main way to report a security issue, as advertised on the PyPI web site,
is to send an email to PyPI’s security team with the necessary details. Adding such
a feature to the web site would likely make questionable packages easier to detect.

27



4. PyPI Threat Model

Denial of Service – While multi-factor authentication exists in PyPI, it is not
required for any account to activate it. Having it be mandatory for maintainers and
package owners of the larger, more contemporary packages, which have many users,
could minimise the chances of account breaches and the possible resulting attacks.
Another solution is to introduce a GitHub-like SSH key signature system, where
new releases of a package (that is, new updates) can only be uploaded from devices
with an approved private SSH key.

Repudiation – Logging is the main solution to repudiation threats, other than
using mentioned methods to keep user accounts safe. PyPI already features many
logging features, both in accounts and projects.

Package Tampering – The methods discussed regarding denial of service apply
here as well, with the possible addition of some methods for scanning uploaded pack-
age code for possible vulnerabilities.

Breached User Password – The main way of hindering user account breaches,
other than adequate password requirements, is the use of the mentioned multi-factor
authentication method.

28



5
The Scanning Program

The purpose of this chapter is to showcase some of the data gathered while using the
scanner program tool on a set of packages. While a lot of data is gathered by the
scanner program, only the central metrics, such as GitHub stars/forks and download
rates, are discussed here. If this was a larger project, connections and implications
from other data points could have been discussed more in-depth. Furthermore,
correlations between the found data could have been more thoroughly analysed.

5.1 Scanner Program Test Results
In the test, 100 packages were scanned using the scanner program. Including the
dependencies of each of the 100 packages, 312 packages in total were checked. Out
of those packages, 54 were non-wheel files, and 47 of those had a non-standard
setup.py file. Furthermore, 54 packages were found to have previous vulnerabili-
ties, and 71 packages lacked an accessible GitHub API via their PyPI project page.

The typosquat scanner found that for 179 packages there were no similarly named
packages in the lists used for comparison. As for the packages where similar names
were detected, Figure 5.1 shows that most packages had less than 20 similar package
names. Some outliers had over 40 similar package names. Narrowing the range to
packages with less than 20 similar names, as seen in Figure 5.2, shows that a ma-
jority of packages are named similarly to 2–3 common packages/libraries. Over the
results collected, the average number of similar names found for a given package was
around 5. The median amount of similarly named packages was 2, and the standard
deviation for the values was approximately 7.6.

29



5. The Scanning Program

Figure 5.1: Amount of similar package names per package, as found by the typosquat
scanner. This dataset does not include the packages which had no detected similarly
named package.

Figure 5.2: Amount of similar package names per package, using a more filtered
dataset. Outliers are left out by limiting the dataset to packages with less than 20
similar names.

As for the web scanner, the GitHub stars information gathered from the packages
with an accessible GitHub API, is shown in Figure 5.3. Once again, the graph is

30



5. The Scanning Program

widened by outliers with many stars, so filtering out those with more than 75,000
stars gives us Figure 5.4. It is clear that a majority of packages checked have fewer
than 10,000 stars. The average number of GitHub stars among checked packages
was approximately 10,675. The median was circa 1245, and the standard deviation
was roughly 21,355.

Figure 5.3: Amount of GitHub stars per package, as found by the web scanner. This
dataset only includes the packages where a GitHub API was detected.

31



5. The Scanning Program

Figure 5.4: Amount of GitHub stars per package, using a more filtered dataset.
Once again, outliers are excluded by limiting the dataset to packages with less than
75,000 stars.

A similar result is seen in the number of forks of a given package’s GitHub project,
shown in Figure 5.5. Filtering out the outliers with more than 15,000 forks, we
get Figure 5.6, where it is clear that most packages have less than 1000 forks. The
average amount of forks was approximately 3167, the median was circa 212, and the
standard deviation was around 8872.

32



5. The Scanning Program

Figure 5.5: Amount of GitHub forks per package, as found by the web scanner.
Similarly to Figure 5.3, this dataset only includes the packages where a GitHub
API was detected.

Figure 5.6: Amount of GitHub forks per package, with a filtered dataset. Outliers
are excluded by limiting the dataset to packages with less than 15,000 forks.

The monthly download rates for the checked packages follow the same trend of a few
outliers, and the majority having a comparatively low download rate. Figure 5.7 fea-
tures every packages, while Figure 5.8 is limited to those below 1,000,000 downloads.

33



5. The Scanning Program

The download rate average was found to be around 17,360,608, with a median of
125,900, and a massive standard deviation of circa 46,671,483.

Figure 5.7: Monthly download rates per package, as found by PyPI Stats in the web
scanner.

Figure 5.8: Monthly download rates per package, with a filtered dataset. Similarly
to the previous figures, outliers are excluded by limiting the dataset to packages
with less than 1,000,000 downloads.

34



6
Conclusion

This last chapter features a discussion of the results in regard to the research ques-
tions posed in the introductory chapter. The first one discusses the threat model of
PyPI (RQ1), the second one focuses on the mentioned countermeasures (RQ2), and
the third one looks at the viability of the scanner program tools (RQ3). Lastly, the
chapter features a final general conclusion, and some comments on potential future
work in the field.

6.1 Research Question 1
As can be seen in the threat model, there are many possible avenues of attack in
the PyPI system. While there are few entry points (PyPI login page, twine upload
command, contents of uploaded packages), there are many attacks that can be per-
formed with little effort. Furthermore, the mentioned exit point, the error messages
of the login prompt, can be used to some degree to determine the existence of some
account, making dictionary attacks easier. This design choice is of course meant to
be helpful to users who might have forgotten which username is used where, but can
have adverse effects.

While the security logging of PyPI is efficient, if an attacker gains access to a package
owner account, they are in ultimate control of the package. As mentioned, package
deletion is to some extent irreversible, so a version of a denial of service attack is
very possible from this position, not to mention uploading vulnerable or malicious
releases of the package code.

The typosquatting attack is overall one of the easiest attacks to perform, hence
why its DREAD score in the model was the highest. For example, given that most
large contemporary packages are open-source, with accessible code, anyone could
download the code, make some malicious adjustments, and upload it again under a
similar name. An even easier approach is to just add a malicious package as a depen-
dency before the upload, forcing a user to download it along with the typosquatting
package. There are no current countermeasures in PyPI against this.

35



6. Conclusion

6.2 Research Question 2
Several possible countermeasures and mitigation techniques were mentioned in Sec-
tion 4.4, which are each variably difficult to implement. The easiest one, as it already
exists on the PyPI website, is multi-factor authentication. Having it be mandatory,
at least for the powerful package owners, would greatly improve account and pack-
age security in general. We also proposed the usage of SSH keys which, similar to
GitHub, are used to authenticate the uploads of new releases. This would ensure
that uploads can only be done from accepted devices.

Repudiation is one of the smaller issues in PyPI, given their current robust log-
ging system. Package tampering is a more pressing concern, and applying some
sort of basic vulnerability scanning could prevent the uploading of some malicious
or poorly written package code. It could be possible to describe the scan status of
each package on the package’s project page, and in that way inform possible users.
Similarly, pip could present such information prior to the installation of packages.

Regarding the project pages, adding the ability for PyPI users to report poten-
tially harmful packages could decrease the time it takes for malicious packages to
be discovered (previously it could take up to 3 years [3]). This ability already exists
in both Ruby’s Rubygems and JavaScript’s NPM.

This community reporting countermeasure could also be used to prevent typosquat-
ting attacks, which are otherwise hard to avoid. There is the option of implementing
some sort of naming limitations, something that is relatively difficult to do effectively.
Especially when there are over 450,000 packages (and growing), and many are possi-
bly related to the same project or organisation, hence why their names are similar.

6.3 Research Question 3
As for the user’s side of things, there are many possible tools at their disposal. Some
can be effectively used for information gathering purposes, such as the vulnerabil-
ity database Safety DB, PyPI Stats, or the GitHub API. Looking at the results in
the figures of Chapter 5, it is apparent that most packages have a similar fork/star
amount and download rate. As such, it is difficult to make assumptions of legitimacy
based on those metrics alone, especially considering the large standard deviations
found for each metric, as well as the generally low median values.

However, using these resources to determine the legitimacy of a given package, e.g.
to avoid a typosquatting attack, is still a viable option. Furthermore, knowing the
previous vulnerabilities of a given package is important information, especially if a
package demands the usage of older releases of some required package. The vulner-
able release could still exist, and be possible to download. The same idea can be
applied to the download rate of a package; if one wants to use a commonplace, con-
temporary package, but finds that it or one of its dependencies has a low download

36



6. Conclusion

rate, some closer inspection could be warranted.

The package scanner quite easily found the packages that were of the older, non-
wheel format, which is an indicator of potentially malicious setup.py files. However,
many packages, especially old ones, use the non-wheel format, so detecting irregular
setup.py files has to be done separately. The Regex method used in the package
scanner found nearly all of the non-wheel packages to have non-standard setup.py
files, which is likely many false positives. The Regex method is quite inaccurate,
partly because it is hard to design an effective pattern, and partly because pro-
grammers oftentimes do not adhere to the standard set by the documentation, or
use some different version as a standard. That is to say, while many packages’
setup.py files are non-standard, they are not necessarily malicious. Another tool,
such as the Python AST module mentioned in Section 2.5, could be a viable option
for detecting irregular files.

It is important to note that the program only looked at the first level of depen-
dencies available, and could therefore easily miss a potential supply-chain attack
further down the chain of dependencies.

Of course, the fact that a package uses the non-wheel format is still of interest
to the prospecting user, and manual, or a different automatic control, could be ap-
plied to ensure security. Furthermore, unless the old format is absolutely necessary
for some packages’ functions, or backward compatibility, PyPI could phase it out in
favour of the new wheel format.

Using the Levenshtein distance for detecting similarly named packages was shown to
be an efficient method. However, there were some outliers in the results of the scan-
ner program test (as seen in Figure 5.1). These outliers are likely packages with very
short names, such as pip, as package names of that length are a very short string
distance from one another. Once again, it would be up to the user’s discretion to
recognise if a package name is clearly trying to imitate another, and using a combi-
nation of the information gathering tools mentioned could help with that distinction.

Finally, the Docker containerisation solution works well to containerise the testing
of the packages. However, Docker, like most virtual machines, is not really meant
to be used in a quarantining fashion, thus we cannot assume that there are no ways
for a malicious package to infect the outside device. The role of containerisation
instead becomes to make it increasingly difficult for a malicious actor to carry out
an attack using the package. There is likely some other containerisation software
that could have been used instead, but the result would reasonably have been sim-
ilar. Nonetheless, containerisation adds to the difficulty of the attack by forcing a
malicious package to somehow find a way out of the container.

37



6. Conclusion

6.4 Conclusion
As has been previously mentioned, security in PyPI-like software ecosystems is no
trivial matter, and reaching a totally secure state is practically impossible. Further-
more, PyPI being owned by a non-profit organisation makes it even more difficult
to develop a more secure system, as the work has to be done by select community
members (PyPA). For a limited group like them, keeping over 450,000 packages in
check is no easy task, and it gets increasingly harder as the repository grows.

There are many suggested solutions for PyPI to take, some from this paper, and
some from other related works. But regarding PyPI’s current state, a security-aware
Python developer should be advised to use some sort of scanner program or tool to
ensure that the package they want to use (or some of its dependencies) will not per-
form unwanted actions. Whether they use some of the tools mentioned and tested
here, or some of the many other ones (such as the previously mentioned Bandit
program), the main point and takeaway is to increase the overall security of our
programs.

6.5 Future Work
This paper has focused on the vulnerabilities of the PyPI software repository, but
similar methods can be used to analyse other repositories, such as JavaScript’s NPM
or Ruby’s Rubygems. While some of the same ideas can be applied, the threat mod-
els would likely be very different, and completely different tools might be considered.

The use of the different metrics, such as the GitHub API statistics or the PyPI
Stats download rates, could use some further research, to figure out which is the
most interesting to look at. E.g., is there some point in looking at the number of
GitHub stars a given package has, in order to decide its quality?

Furthermore, there could be some interest in creating some sort of wrapper for
Python’s pip installer, that uses the containerisation and tools mentioned in this
paper. This way, it can grant more information on the package a user is about to
download, by analysing it in a contained environment first. Such a program could
make it easier for prospective Python developers to make more informed decisions
about using some given package.

38



Bibliography

[1] J. Ruohonen, K. Hjerppe, and K. Rindell, “A large-scale security-oriented
static analysis of python packages in pypi,” in 2021 18th International Con-
ference on Privacy, Security and Trust (PST), 2021, pp. 1–10. doi: 10.1109/
PST52912.2021.9647791.

[2] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Typosquat-
ting and combosquatting attacks on the python ecosystem,” in 2020 IEEE
European Symposium on Security and Privacy Workshops, 2020, pp. 509–514.
doi: 10.1109/EuroSPW51379.2020.00074.

[3] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of security vul-
nerabilities in python packages,” in 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2021, pp. 446–457.
doi: 10.1109/SANER50967.2021.00048.

[4] A. Bagmar, J. Wedgwood, D. Levin, and J. Purtilo, “I know what you im-
ported last summer: A study of security threats in thepython ecosystem,”
CoRR, vol. abs/2102.06301, 2021. arXiv: 2102 . 06301. [Online]. Available:
https://arxiv.org/abs/2102.06301.

[5] B. Kaplan and J. Qian, “A survey on common threats in npm and pypi reg-
istries,” in Deployable Machine Learning for Security Defense, G. Wang, A.
Ciptadi, and A. Ahmadzadeh, Eds., Cham: Springer International Publishing,
2021, pp. 132–156, isbn: 978-3-030-87839-9.

[6] K. Koidan, “Difference between python modules, packages, libraries, and frame-
works,” LearnPython.com, 2021, (Accessed: 2023-06-18). [Online]. Available:
https://learnpython.com/blog/python-modules-packages-libraries-
frameworks/.

[7] Pypi statistics, https://pypi.org/stats/, (Accessed: 2023-03-18), 2023.
[8] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife collec-

tion: A review of open source software supply chain attacks,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, C. Maurice, L. Bilge,
G. Stringhini, and N. Neves, Eds., Cham: Springer International Publishing,
2020, pp. 23–43, isbn: 978-3-030-52683-2.

[9] B. Toulas, “10 malicious pypi packages found stealing developer’s credentials,”
BleepingComputer, 2022, (Accessed: 2023-06-18). [Online]. Available: https:
/ / www . bleepingcomputer . com / news / security / 10 - malicious - pypi -
packages-found-stealing-developers-credentials/.

[10] C. Cimpanu, “Twelve malicious python libraries found and removed from
pypi,” ZDNET, 2018, (Accessed: 2023-06-18). [Online]. Available: https://

39

https://doi.org/10.1109/PST52912.2021.9647791
https://doi.org/10.1109/PST52912.2021.9647791
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://doi.org/10.1109/SANER50967.2021.00048
https://arxiv.org/abs/2102.06301
https://arxiv.org/abs/2102.06301
https://learnpython.com/blog/python-modules-packages-libraries-frameworks/
https://learnpython.com/blog/python-modules-packages-libraries-frameworks/
https://pypi.org/stats/
https://www.bleepingcomputer.com/news/security/10-malicious-pypi-packages-found-stealing-developers-credentials/
https://www.bleepingcomputer.com/news/security/10-malicious-pypi-packages-found-stealing-developers-credentials/
https://www.bleepingcomputer.com/news/security/10-malicious-pypi-packages-found-stealing-developers-credentials/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/


Bibliography

www.zdnet.com/article/twelve-malicious-python-libraries-found-
and-removed-from-pypi/.

[11] R. Lakshmanan, “Malicious pypi packages using cloudflare tunnels to sneak
through firewalls,” The Hacker News, 2023, (Accessed: 2023-06-18). [Online].
Available: https://thehackernews.com/2023/01/malicious-pypi-packages-
using.html/.

[12] R. Lakshmanan, “Researchers uncover 29 malicious pypi packages targeted
developers with w4sp stealer,” The Hacker News, 2022, (Accessed: 2023-06-18).
[Online]. Available: https://thehackernews.com/2022/11/researchers-
uncover-29-malicious-pypi.html.

[13] R. Daws, “Pypi package installs cryptominer on linux systems,” Developer
Tech, 2022, (Accessed: 2023-06-18). [Online]. Available: https://www.developer-
tech.com/news/2023/feb/15/clipper-malware-found-in-over-451-
pypi-packages/.

[14] Packaging python projects, https://packaging.python.org/en/latest/
tutorials/packaging-projects/, (Accessed: 2023-06-18), 2023.

[15] Setuptools: Quickstart, https://setuptools.pypa.io/en/latest/userguide/
quickstart.html, (Accessed: 2023-06-18), 2023.

[16] K. H. Kim, K. Kim, and H. K. Kim, “Stride-based threat modeling and dread
evaluation for the distributed control system in the oil refinery,” ETRI Journal,
vol. 44, no. 6, pp. 991–1003, 2022. doi: https://doi.org/10.4218/etrij.
2021-0181. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.4218/
etrij.2021-0181. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.4218/etrij.2021-0181.

[17] L. Conklin, Threat modeling process, https://owasp.org/www-community/
Threat_Modeling_Process, (Accessed: 2023-06-18).

[18] G. Navarro, “A guided tour to approximate string matching,” ACM Computing
Surveys, vol. 33, pp. 32–88, Apr. 2000. doi: 10.1145/375360.375365.

[19] E. Nam, “Understanding the levenshtein distance equation for beginners,”
Medium, 2019, (Accessed: 2023-06-18). [Online]. Available: https://medium.
com/@ethannam/understanding-the-levenshtein-distance-equation-
for-beginners-c4285a5604f0.

[20] Y. Gelb, “Automatic execution of code upon package download on python
package manager,” Medium, 2022, (Accessed: 2023-06-18). [Online]. Available:
https://medium.com/checkmarx- security/automatic- execution- of-
code-upon-package-download-on-python-package-manager-cd6ed9e366a8.

[21] Writing the setup script, https://docs.python.org/3/distutils/setupscript.
html, (Accessed: 2023-06-18), 2023.

[22] Safety db, https://github.com/pyupio/safety-db, (Accessed: 2023-06-18),
2023.

[23] Pypi download stats, https://pypistats.org/about, (Accessed: 2023-06-18),
2023.

[24] What is a container? | docker, https://www.docker.com/resources/what-
container/, (Accessed: 2023-06-18), 2023.

40

https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://thehackernews.com/2023/01/malicious-pypi-packages-using.html/
https://thehackernews.com/2023/01/malicious-pypi-packages-using.html/
https://thehackernews.com/2022/11/researchers-uncover-29-malicious-pypi.html
https://thehackernews.com/2022/11/researchers-uncover-29-malicious-pypi.html
https://www.developer-tech.com/news/2023/feb/15/clipper-malware-found-in-over-451-pypi-packages/
https://www.developer-tech.com/news/2023/feb/15/clipper-malware-found-in-over-451-pypi-packages/
https://www.developer-tech.com/news/2023/feb/15/clipper-malware-found-in-over-451-pypi-packages/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://setuptools.pypa.io/en/latest/userguide/quickstart.html
https://setuptools.pypa.io/en/latest/userguide/quickstart.html
https://doi.org/https://doi.org/10.4218/etrij.2021-0181
https://doi.org/https://doi.org/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2021-0181
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://doi.org/10.1145/375360.375365
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/checkmarx-security/automatic-execution-of-code-upon-package-download-on-python-package-manager-cd6ed9e366a8
https://medium.com/checkmarx-security/automatic-execution-of-code-upon-package-download-on-python-package-manager-cd6ed9e366a8
https://docs.python.org/3/distutils/setupscript.html
https://docs.python.org/3/distutils/setupscript.html
https://github.com/pyupio/safety-db
https://pypistats.org/about
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/


Bibliography

[25] D. K. Konoor, R. Marathu, and P. Reddy, “Secure openstack cloud with ban-
dit,” in 2016 IEEE International Conference on Cloud Computing in Emerging
Markets (CCEM), 2016, pp. 178–181. doi: 10.1109/CCEM.2016.044.

[26] Welcome to bandit, https://bandit.readthedocs.io/en/latest/, (Ac-
cessed: 2023-06-18), 2022.

[27] H. van Kemenade, R. Si, and Z. Dollenstein, Hugovk/top-pypi-packages: Re-
lease 2023.04, version 2023.04, Apr. 2023. doi: 10.5281/zenodo.7790907.
[Online]. Available: https://doi.org/10.5281/zenodo.7790907.

[28] Python - official image | docker, https : / / hub . docker . com / _ / python,
(Accessed: 2023-06-18), 2023.

41

https://doi.org/10.1109/CCEM.2016.044
https://bandit.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.7790907
https://doi.org/10.5281/zenodo.7790907
https://hub.docker.com/_/python

	Introduction
	Related Work
	Background
	Packages, Modules, and Libraries
	The Python Package Index
	Project Legitimacy

	Potential Security Threats
	Typosquatting
	Possible Attacker Actions


	Theory
	The Package Upload Process
	Threat Modelling
	Decomposing The Application
	Threat Categorisation
	Threat Ranking

	String Comparison Algorithms
	Malicious Setup Scripts
	Potential Package Security Tools

	Methods
	Threat Modelling PyPI
	The Scanning Program
	The Package Scanner
	The Typosquat Scanner
	The Web Scanner
	Containerisation
	Program Evaluation


	PyPI Threat Model
	Decomposition of PyPI
	Threat Categorisation
	Threat Ranking
	Countermeasures and Mitigation

	The Scanning Program
	Scanner Program Test Results

	Conclusion
	Research Question 1
	Research Question 2
	Research Question 3
	Conclusion
	Future Work

	Bibliography

