
Leveraging CNN for Automated
Peak Picking in Untargeted Metabolomics
without Parameter Dependencies
Master’s thesis in Applied Data Science

Vivian Wang and Lidia Yalew

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se




Master’s thesis 2023

Leveraging CNN for Automated Peak Picking in
Untargeted Metabolomics without Parameter

Dependencies

Vivian Wang, Lidia Yalew

Department of Computer Science and Engineering
Division of Data Science and AI

Chalmers University of Technology
Gothenburg, Sweden 2023



Leveraging CNN for Automated Peak Picking in Untargeted Metabolomics without
Parameter Dependencies
VIVIAN WANG, LIDIA YALEW

© VIVIAN WANG, LIDIA YALEW, 2023.

Supervisors:
Carl Brunius, Department of Life Sciences
Gabriel Reder, Department of Computer Science and Engineering
Examiner: Peter Damaschke, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Division of Data Science and AI
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv



Leveraging CNN for Automated Peak Picking in Untargeted Metabolomics without
Parameter Dependencies
Vivian Wang, Lidia Yalew
Department of Computer Science and Engineering
Chalmers University of Technology

0.1 Abstract
Metabolomics is a scientific discipline that involves the thorough analysis of small
molecules, known as metabolites, found within a biological system. Furthermore,
liquid chromatography-mass spectrometry (LC-MS) is a commonly used analytical
technique in metabolomics for analysing biological samples due to its broad coverage
of the measurable metabolome. The technique is widely used and generates a large
amount of raw data, covering a broad spectrum of metabolites. Consequently, there
is a need to transform this raw data into a structured, tabular format that can be
readily utilised for further analysis. Despite the existence of software tools offering
automated peak detection, the necessity for visual inspection and manual corrections
frequently arises, a process that is both time-consuming and demands specialised
knowledge in the respective domain. In order to enhance data processing efficiency
and automation, this project establishes, optimises, and evaluates a deep learning
approach to perform regions of interest (ROI) detection utilising faster Region-based
Convolutional Neural Network (R-CNN). The integration of deep learning within
LC-MS analysis has the potential to enhance the overall efficiency and accuracy
of metabolomic studies. Moreover, it can assist in constructing reliable predictive
models for diverse LC-MS applications.

The ROI detection was performed on reversed-phased positive liquid chromatog-
raphy provided by the Chalmers Mass Spectrometry Infrastructure (CMSI). The
model underwent training using a dataset comprising 524 chromatograms, followed
by evaluation using a separate set of 151 chromatograms. The model takes seg-
ments of a chromatogram as inputs and generates predicted coordinates as outputs,
indicating the locations of the ROIs. The evaluation of the results was conducted
through both quantitative and qualitative analyses, using precision and recall, F1-
score, Intersection over Union as well as manual inspection. The results were an
average precision of 0.591, an average recall of 0.648, an F1-score of 0.617 and a
mean IoU of 0.558. The findings demonstrate promising outcomes with substantial
potential.

Keywords: Deep learning, Convolutional neural network, LC-MS, Peak Detection,
Metabolomics, Faster R-CNN.

v





Acknowledgements
We would like to express our sincere gratitude to our supervisors, Carl Brunius
and Gabe Reder, for their invaluable guidance, expertise, and continuous support
throughout the process of conducting this research and writing this thesis. Their
insightful feedback, patience, and encouragement have been instrumental in shaping
the direction and quality of this work. Lastly, we would like to acknowledge Peter
Damaschke, our examiner, for his careful evaluation of our thesis and for providing
valuable comments and suggestions that helped improve the final version.

Vivian Wang, Lidia Yalew, Gothenburg, June 2023

vii





List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ANN Artificial Neural Networks
AP Average Precision
CMSI Chalmers Mass Spectrometry Infrastructure
CNN Convolutional Neural Networks
FC Fully Connected
GC-MS Gas Chromatography-Mass Spectrometry
GDPR General Data Protection Regulation
IoU Intersection over Union
LC-MS Liquid Chromatography-Mass Spectrometry
MAE Mean Absolute Error
mAP mean Average Precision
MRE Mean Relative Error
m/z mass-to-charge-ratio
NMS Non-Maximum Suppression
QC Quality Control
qTOF quadrupole Time-Of-Flight
R-CNN Region-based Convolutional Neural Network
RPLC Reversed-Phase Liquid Chromatography
RPN Region Proposal Network
YOLO You Only Look Once
ROC-AUC Area Under The Curve-Receiver Operating Characteristics
rt retention time
UHPLC Ultra-High-Performance Liquid Chromatography
XIC Extracted Ion Chromatograms

ix





Contents

0.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Acronyms ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Raw Data Pre-Processing and Filtering . . . . . . . . . . . . . 6
2.1.2 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Existing Peak Picking Software . . . . . . . . . . . . . . . . . . . . . 14

3 Previous related Work 19
3.1 Deep Neural Networks for Classification of LC-MS Spectral Peaks . . 19
3.2 Deep Learning for Precise Peak Detection in High-Resolution LC-MS

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Deep Learning-Assisted Peak Curation for Large-Scale LC-MS

Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Convolutional Neural Network for Automated Peak Detection in

Reversed-Phase Liquid Chromatography . . . . . . . . . . . . . . . . 23

xi



Contents

4 Methods 27
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation 29
5.1 Pre-Processing Data for ROI Detection Using Faster R-CNN . . . . . 29
5.2 Faster R-CNN Package . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results 41
6.1 Importance of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Limitations of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Potential Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 47

Bibliography 49

xii



List of Figures

2.1 General steps of nontargeted data pre-processing [15]. . . . . . . . . . 5
2.2 Summary of metabolomic data processing workflow [13]. . . . . . . . 6
2.3 Examples of peak detection strategies [13]. . . . . . . . . . . . . . . . 7
2.4 Alignment of peaks in 2d (A) and 3d (B). The Figure presents a set

of stacked peak plots, which were generated using peak information
extracted from 63 samples where the candidate peak exhibited the
highest intensity. The stacked peak plots are used to represent the
structure of each extracted feature, whereas, in the right graph, a 3D
isometric representation is used for clearer representation [6]. . . . . . 8

2.5 The architecture of a CNN [28]. . . . . . . . . . . . . . . . . . . . . . 10
2.6 Zero padding. A matrix representation of the input data with zero

padding = 1, which refers to the placement of outer zeros surround-
ing the matrix. The application of the kernel with a stride of one is
demonstrated by the dark blue square, computing a singular numer-
ical value within the right square shaded in green [31]. . . . . . . . . 11

2.7 Different types of pooling [28]. . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Cars with bounding boxes [34]. . . . . . . . . . . . . . . . . . . . . . 13

3.1 A comparison of true positive and false positive peaks retained com-
paring MZmine 2 vs the CNN. The Figure depicts, that regardless
of settings, The term "Conv" denotes the process of peak extraction
utilising conventional MZmine 2 workflows, while "ML" represents the
count of peaks that were preserved following the implementation of
the CNN [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Examples of ROIs. The Figure illustrates examples of ROIs from
each class. Class 1 corresponds to ROIs identified as noise, Class
2 corresponds to ROIs classified as one or more peaks, and Class 3
corresponds to uncertain peaks. The regions for peak integration are
visually distinguished through the use of blue and orange fillings. The
ROIs were taken from the training set [9]. . . . . . . . . . . . . . . . 21

3.3 (a) shows the Integration of NeatMS (red) into an existing workflow
(blue). (b) shows the architecture of the CNN. Figure (a) show-
cases the integration of NeatMS (in red) with an already established
workflow (in blue). (b) depicts the architecture of the CNN which
comprises a two-dimensional (2D) convolutional base for feature ex-
traction and a classifier consisting of two fully connected layers [10]. . 22

xiii



List of Figures

3.4 Labelling of a chromatogram. The Figure depicts a clear illustra-
tion of the labelling procedure employed for the chromatograms is
presented. Initially, the chromatogram is divided into 256 segments.
Subsequently, each segment is assigned the peak probability (p), the
relative location of the peak (i.e., relative to the segment, loc), and
the area of the peak (area). It is worth noting that the location and
area of the peak are only assigned if a peak exists in the given seg-
ment, i.e., if its apex is contained within the segment. It is important
to emphasize that the chromatogram used in this illustration is not
representative of a realistic case [50]. . . . . . . . . . . . . . . . . . . 23

3.5 The architecture of the CNN. The CNN takes a raw chromatogram of
8192 (x 1) data points as an input and gives out a 256 × 3 array with
predictions as the output. The CNN takes an 8192 (x 1) raw chro-
matogram as input and produces a 256 × 3 array with predictions
as output. The output includes peak probability (p), relative peak
location (loc), and peak area (area) for each segment. The dimension
of the data is denoted next to the blocks, while the dimensions indi-
cated next to the arrows between the convolutional blocks represent
the filter size [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Distribution of peak widths (RTmax-RTmin) for the detected peaks in
the training material. The vast majority of the peaks were less than
30 seconds wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Distribution of peak widths (MZmax-MZmin) for the detected peaks
in the training material. The majority of mz minimum and maximum
values were found to be nearly identical, differing only by 0.01 or less.
This finding points out the importance of handling these ranges with
much care. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Extraction of subsections from LC-MS raw data. The Figure depicts
the process of creating windows with uniform size along the rt axis (a),
as demonstrated by the full rectangle indicating the initial window.
Subsequently, the step size is parameterized, and the newly created
window is shown with dashed lines. Notably, the size of each window
along the rt axis remains constant. After creating the first retention
time window (b), the mz windows are established with fixed window
and step sizes, while the rt values remain unchanged until all possible
mz windows have been generated. . . . . . . . . . . . . . . . . . . . . 31

5.4 Peak visualized in 2D as a graph (upper) and in 3D as a heatmap
(lower). The Figure displays the peak’s two-dimensional projection
on the upper, with the mz values omitted, plotting only the retention
time and the corresponding intensity values. On the lower, the heat
map illustrates the intended visual appearance of the images, where
intensity is on the z-axis. Notably, the figure showcases the results of
ROI detection, with a single peak selected to show a more detailed
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv



List of Figures

5.5 The Intersection over Union is calculated by dividing the shared area
between a detection and ground-truth box by the combined area of
both the detection and ground-truth boxes [60]. . . . . . . . . . . . . 35

5.6 Loss as a function of training epochs for the ResNet50 model employed
in this project. It refers to the discrepancy between the predicted
and the actual output, serving as a measure of how well the model
is performing during the training of epochs. Over the course of 20
epochs, the losses gradually decrease as the model learns to make
better predictions, reducing the gap between predicted outputs and
ground truth labels. Fast improvement is observed in earlier epochs,
converging to around 0.972 after the 16th epoch, suggesting the model
approaching optimal performance. . . . . . . . . . . . . . . . . . . . . 36

5.7 Adjusting the learning rate as a function of 2100 iterations during
the training process for the ResNet50 model utilized in this project.
Initially, for the first 10 iterations, the learning rate remains steady at
0.001. Subsequently, the values gradually decrease, indicating a finer
adjustment towards convergence. The model proceeds with smaller
steps, signifying its approach towards a relatively flat region in the loss
landscape. The learning rate continues to decrease until it ultimately
reaches a value around the two hundred decimal. . . . . . . . . . . . . 36

5.8 The distribution of Intersection over Union values in the test set show-
cases the number of bounding box pairs that represent the level of
overlap between predicted and ground truth boxes. The model’s pre-
dictions exhibit good alignment with ground truth ROIs, with a ma-
jority falling within the range of 0.2 to 0.8. The distribution reaches
its peak around 0.6, signifying good performance in capturing ROIs.
However, the model encounters difficulties in accurately predicting
bounding boxes with high overlap, as the number of such pairs de-
creases significantly beyond 0.8. The average IoU was 0.579, while
the validation score was 0.558, suggesting comparable performance
on unseen data compared to test data. . . . . . . . . . . . . . . . . . 38

5.9 Two examples are displayed where an ROI was detected by the model
but was not matched with a ground truth bounding box. The first
represents a true peak undetected by the XCMS/CPC procedure used
for ground truth data, while the second represents noise. By excluding
the mz-axis and plotting exclusively the retention times and intensity
values, a clearer visualization of the raw data’s shape is achieved. . . 39

xv



List of Figures

xvi



List of Tables

2.1 Comparison Between R-CNN [39], Fast R-CNN [35] and Faster R-
CNN [37]. The mAP is a performance metric that evaluates the
accuracy of object detection models across all object classes in a given
dataset. It is calculated as the average of the individual average
precision (AP) values for each object class, where the AP is a measure
of the precision-recall tradeoff for that particular class. Essentially,
the mAP provides an overall indication of how well an object detection
model performs across all object classes in a dataset [40]. VOC 2007,
VOC 2012, and COCO are three datasets that have been used in
object detection challenges (COCO Detection Challenge, 2023) [41]. 14

2.2 Feature identification from the benchmark dataset [45]. . . . . . . . . 16
2.3 Feature quantification and discriminating marker selection from the

benchmark dataset [45]. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Freely available software for metabolomic data processing. The table

summarises the key features of each tool, including its capabilities for
peak detection and alignment, as well as their primary application,
licensing type, and programming language [13] [46] [47]. . . . . . . . . 17

5.1 Summary of the scores of each evaluation metric performed on the
test set and validation set. . . . . . . . . . . . . . . . . . . . . . . . . 39

xvii



List of Tables

xviii



1
Introduction

1.1 Background

Metabolomics refers to the systematic investigation and appraisal of metabolite
profiles, reflecting biochemical processes associated with e.g., exposures (e.g.,
diet, physical activity, or medication) and/or health (e.g., disease conditions
or intermediate risk markers such as cholesterol or blood pressure) [1]. This is
achieved through the measurement and quantitation of molecules involved in
metabolic reactions. The field of metabolomics has grown steadily in the last
two decades mainly due to advances in analytical instrumentation as well as
tools and algorithms suitable for pre-processing and analysis of high-dimensional
data [2]. Nationally and globally, infrastructure units such as the Chalmers
Mass Spectrometry Infrastructure (CMSI) perform liquid chromatography-mass
spectrometry (LC-MS) based metabolomics analyses of tens of thousands of
samples per year, projected to increase steadily. There is thus a continuous
need for the development of adequate computational tools for robust, accurate,
and automatable processing of instrument data into actionable (tabularised) format.

LC-MS is an instrument analytical technique widely applied in metabolomics
to analyse biological samples, since it provides wide coverage of the measurable
metabolome, i.e., the comprehensive pool of measurable metabolites. The technique
has gained popularity due to high sample throughput, high sensitivity, and broad
coverage of metabolites [3]. For each sample, this technique generates raw instru-
ment data in a 3D topological map structure consisting of retention time (from
chromatographic separation), the mass-to-charge ratio (from mass spectrometric
analysis), and signal intensity [4], where the mass-to-charge ratio is an inherent
property of a molecule’s chemical structure. Post-acquisition raw data processing
analysis thus generates an abundance of complex data that is rich in chemical
information.

A crucial aspect of this process is to process the data in a manner that allows for the
efficient extraction of relevant information. To automate the pre-processing of the
raw data into tabular format, there have been several algorithms developed. These
algorithms commonly consist of two steps, (1) peak picking and (2) alignment.
In the process of peak picking, a comprehensive inventory of peaks identified by
their corresponding mass and retention time is generated. A peak refers to a
three-dimensional (m/z, retention time, and intensity) LC-MS signal. Each entry

1



1. Introduction

in the list is assigned a signal intensity value, which signifies the area (or sometimes
height) of the peak. To maintain consistency across samples, alignment techniques
are employed to correct for differences in retention time and mass values, resulting
in the representation of each peak, as a single chemical compound, by uniform mass
and retention time values across all samples. This commonly found analyte after
aligning peaks to a common grid across all samples is called a feature. The result
of the peak detection and the alignment is represented in a table presenting the
common features [5].

However, there are some limitations to current peak picking algorithms such as man-
ual algorithm parameterisation of several mostly non-intuitive (black box) parame-
ters which can lead to uncertain impacts on data quality [6]. Furthermore, parameter
tuning is both time-consuming and requires domain knowledge expertise [7]. This
presents the opportunity for further development of peak-picking algorithms which
address these limitations. This thesis focuses on addressing current issues in peak
picking, by aiming to develop an algorithm capable of accurately detecting regions
of interests (ROIs) while requiring little-to-no parameter optimisation.

1.2 Problem
To achieve optimal efficiency in peak picking, currently employed software tools
such as XCMS and MZmine require appropriate parameter configurations that
align with the structure of the given dataset. In practice, this requires visual
inspection and manual corrections, although computer-assisted optimization
algorithms can aid in this procedure [8]. The optimisation of this parametrisation
is a complex task that requires balancing the need to identify as many true
features as possible with the need to minimise false positives [7]. These false
peaks are neither contaminants nor low-quality peaks and their differentiation
from true positive features via conventional filtering methods or control samples
is difficult. Therefore, they typically have to be removed through manual review
[6]. Approaches to eliminate the need for manual parameter tuning have been
made, of which some attempts include CNN-based peak detection [9] and peak
qualification [10]. Despite the promising results yielded by these approaches, they
were also found to have certain limitations. These limitations lie in the sensitivity
and general applicability as well as in the narrow training material, i.e., the high
degree of manual curation of the training material. In addition, several of these
approaches suffer from a lack of computational power, requiring up to one hour per
sample, effectively rendering algorithms impractical for large-scale operations [9].
These drawbacks offer an opportunity to enhance the peak identification algorithms.

Peak detection is one of the defining steps in the LC-MS data processing pipeline.
The algorithms used for peak detection are, however, primarily designed to be highly
sensitive to detect peaks, i.e., to mitigate false-negative peak detection. Further-
more, this high sensitivity can lead to a high inclusion of false-positive, normally
low-intensity peaks. This inclusion of false-positive peaks will complicate down-
stream data processing and analysis [2] [7]. An additional concern about the effi-

2



1. Introduction

ciency of peak picking algorithms is that they usually operate on the premise that
the parameters remain constant within the 3D topological map of a single sample
as well as across multiple samples within the same analytical batch. Nevertheless,
this assumption is often not reflected in practice. Furthermore, conventional peak-
picking algorithms operate by dividing the m/z axis into discrete intervals, known
as bins, and identify peak shapes in the resulting two-dimensional chromatograms
with retention time on the x-axis and bin intensity on the y-axis [11]. Nonetheless,
binning can have possible disadvantages. If the bin divisions are not chosen with
precision, the detection of a particular analyte may be distributed across two ad-
jacent bins. Moreover, the presence of multiple distinct analytes may combine to
result in a single bin’s measurement, hindering the ability to distinguish significant
variations among individual analytes [12].

1.3 Aim

1.3.1 Research Question
Within the context of LC-MS data pre-processing for metabolomics purposes, this
thesis focuses on the identification of peaks in a complex 3D data structure. More
specifically, on the issue of ROI detection with little-to-no pre-determined param-
eters. ROIs are defined by their respective coordinates, related to distinct peaks
located on the mass-to-charge ratio (m/z) and retention time (rt) axes.

1.3.2 Objectives
The main aim of this project is to train a convolutional neural network (CNN)
to identify distinctive chromatographic peak patterns directly from 3D data, thus
reducing or even eliminating the need for manual parameter adjustments. This
deep learning algorithm should circumvent the issue of assuming parameter stabil-
ity within and between injections, which should greatly simplify the pre-processing
of LC-MS data. Such a parameter-free peak selection approach thus has vast poten-
tial to significantly reduce resource requirements in terms of domain expertise and
time, thereby improving the automation of bioinformatics pipelines to accelerate
the delivery of metabolomics data to end users. Finally, the goal is to contribute to
open science.

3



1. Introduction

4



2
Theory

The primary objective of this chapter is to establish a foundational comprehension
of the subject matter and the underlying models employed in the project. This is
accomplished by introducing essential concepts that are crucial for interpreting the
outcomes presented in the thesis.

2.1 Pre-processing
Methods and tools used in metabolomics generate large quantities of data. Handling
this complex metabolomic data is of crucial importance as it has an impact on the
extent and quality at which the identification and quantification of the metabolite
can be made [13]. An LC-MS data file consists of sequentially recorded histograms,
commonly referred to as scans, where each histogram represents hits of ionized
molecules (a collection of m/z and intensity data points) on the detector during a
short time frame [14]. The main purpose of the pre-processing step is to transform
the raw data into formats (typically tabularised) that are easy to use in the
consecutive data analysis steps. While approaches that enable data pre-processing
of untargeted metabolomics keep being improved, the general steps have persisted
across the different tools, see Figure 2.1 [15].

Figure 2.1: General steps of nontargeted data pre-processing [15].

Data management in metabolomics is often divided into two steps: data pre-
processing and data analysis as seen in Figure 2.2. For this project, the focus is
on the data pre-processing part. The data pre-processing part consists of filter-
ing, feature detection, alignment, and normalisation. Downstream data analysis
includes both statistical as well as machine learning-based analyses for the discov-
ery of features differentiating between sample groups or clustering of individuals
into metabolite profiles [13]. The subsequent sections about the pre-processing of
LC-MS data will be explained based on the structure and references provided by
Katajamaa and Orešič’s paper from 2007 [13].

5



2. Theory

Figure 2.2: Summary of metabolomic data processing workflow [13].

2.1.1 Raw Data Pre-Processing and Filtering
Raw instrument data at the point of detection has complete coverage of intensities
across the entire m/z range. However, this takes a lot of space, therefore, centroiding
is frequently performed, such that Gaussian shapes in each scan are represented
only by the peak m/z and not the entire data. Centroided data is frequently used
in the data pre-processing step as it allows for the creation of smaller and easily
manageable data files. However, centroiding may also attribute to complications
pertaining to noise level estimation [16]. This centroiding effectively makes the data
much sparser and can be applied already at data generation or in later processing
steps, e.g., when converting raw instrument files in vendor format to open file
formats, such as mzML [13]. This thesis project is geared toward the processing
of centroided data, which is the data type employed at CMSI and used within the
project.

Filtering methods are used to process the raw measurement signals with the aim
of removing measurement noise or baseline. LC-MS data has both random noise
and chemical noise. Random noise is most often created by the detector whereas
chemical noise usually is caused by molecules in buffers and solvents that may be
particularly strong at the beginning and the end of the elution [14]. To counteract
the presence of noise, noise reduction methods are used. Common practice is to
implement traditional signal processing techniques. Some of these techniques are
wavelet transformation [17] and polynomial smoothing filter, e.g. based on the
Savitsky-Golay algorithm [18]. Baseline removal is often conducted in a two-step

6



2. Theory

process: (1) finding the baseline shape and; (2) subtracting the shape from the raw
signal [13].

2.1.2 Feature Detection
The main aim of the feature detection step is to identify all measurable true peaks
while minimising false positives. Furthermore, the objective is also to offer as quan-
titively accurate information about the ion concentrations as possible. There are
three main strategies for performing feature detection: (1) detection in two direc-
tions (i.e., in rt and m/z), (2) detection through XIC slices (i.e., in rt only through
binning of the m/z axis), and (3) detection through model fitting [13], see Figure 2.3.

The method of detection in two directions means that peaks are detected indepen-
dently in both the retention time direction as well as the m/z direction. The peaks
are detected if their intensities are above a certain threshold [16] [18]. Additionally,
Bellew et al. [19] developed another two-direction method that operates in three
steps: (1) Using wavelet additive decomposition to find local maxima within each
scan, (2) identify peaks that are sustained over multiple scans as well as smooth
peaks over time, (3) assemble all the peaks into different isotope groups which
appear, maximises and disappears at the same time [13].

Figure 2.3: Examples of peak detection strategies [13].

The second strategy, detection through XIC slices, operates by slicing the data
into extracted ion chromatograms (XIC), where each slice covers a narrow m/z
range and thus avoids the issue of searching for peaks in the m/z direction. The
chromatograms can further be processed using a second-order Gaussian filter to
identify peak inflections points for integration [12] or by using the mean or median
of the chromatogram to calculate a threshold level and thereafter search for areas
in the chromatogram above the threshold level [20].

The third and last strategy is detection through model fitting against the raw signal.
One example is by fitting a three-dimensional model of a generic isotope pattern to
the highest peak in raw signal and deducting the fit from signal [21]. This method
may be advantageous as it could improve detection results by reducing the amount
of detected false positives [13].

7



2. Theory

2.1.3 Alignment
The purpose of the alignment step is to correct any differences in retention time
across the varied sample runs as well as combine the data from the different samples.

Figure 2.4: Alignment of peaks in 2d (A) and 3d (B). The Figure presents a set
of stacked peak plots, which were generated using peak information extracted from
63 samples where the candidate peak exhibited the highest intensity. The stacked
peak plots are used to represent the structure of each extracted feature, whereas, in
the right graph, a 3D isometric representation is used for clearer representation [6].

There are a few alignment methods but the majority of them operate in a pairwise
manner. Either through aligning pairs of samples or by aligning several samples
against a chosen reference sample or a pattern and typically, the selection of the
reference sample affects the alignment results. There are two categories of methods:
(1) inputting raw data and generating a collection of mappings that transform the
retention time axis of the different runs into one common retention time axis or
(2) clustering detected features and producing a matrix where every row match
to a cluster and the columns contains a measurement for every sample, e.g., peak
area. Some alignment methods combine both categories 1 and 2. Furthermore, the
decision on which alignment method to use typically has a direct effect on what
kind of downstream data analysis that is required. If the first category is chosen, it
would be required to compare the raw aligned signals to find differences among the
samples. However, if the second category is chosen, multivariate analysis is needed
[13].

2.1.4 Normalisation
Normalisation is used to eliminate undesired systematic bias in ion intensities among
measurements while also preserving the interesting biological variation. There are
two categories of strategies for normalisation: derive optimal scaling factors for each
sample based on the complete dataset using statistical models and normalisation by
a single or multiple internal or external standard compounds according to empirically
derived guidelines, such as specific retention time intervals [13]. Normalisation is
required as the signal intensity fluctuates between injections within an analytical
batch (e.g., due to the build-up of contaminations in the ion source) as well as

8



2. Theory

between batches (e.g., that cleaning procedures between batches are not equally
effective in returning the instrument to a similar status). In addition, there is wear
and tear on instrumentation contributing to a combination of random and systematic
drift in sensitivity over time.

2.2 Deep Learning

Artificial Neural Networks (ANN) have their name and architecture inspired by
the human brain. An ANN emulates a biological neural network however they use
a smaller group of principles derived from the biological neural systems. ANNs
simulate the electrical activity of the nervous system and the brain. Processing
entities such as nodes or perceptrons are connected with other processing elements.
Nodes are usually organized in a layer or vector. The output from one-layer acts as
input to the next layer, as well as potentially to other layers. A node may be linked
to all or some of the nodes in the subsequent layer where each such connection has
an associated threshold and weight, mimicing the synaptic connections in the brain.
Furthermore, a node is said to be activated when the output of this node is above
its specific threshold, thus sending the data to the next layer within the network.
It imitates the electrical excitation of a nerve cell, which leads to the transfer of
information within the network, or in the brain [22]. If the output doesn’t reach its
threshold value, no data is passed along [23].

Convolutional neural networks (CNN) are a class of ANNs often used for classifi-
cation and computer vision tasks. ANNs are one of the simpler variants of neural
networks where information is passed in one direction through various input nodes
until the output nodes are reached. CNNs on the other hand use variations of mul-
tilayer perceptron and they contain one or more convolutional layers [24]. CNNs are
distinguished from other ANNs by their outstanding performance with speech, audio
signals, and image inputs (IBM 2, n.d.). This is because the network specialises in
processing data that has grid-like data [25]. Furthermore, their use has been proven
successful in other medical research areas such as diabetes and skin cancer research
[26] [27]. The network typically has three main types of layers: convolutional layers,
pooling layers, and fully connected (FC) layers. The first two-layer types, conduct
feature extraction, whereas the FC layer maps these extracted (latent) features into
a final output, such as classification. Whilst one layer’s output is being fed to the
next layer, the extracted features can gradationally become increasingly complex
[24]. A typical CNN architecture can consist of several convolutional and pooling
layers followed by one or more FC layers as seen in Figure 2.5.

9



2. Theory

Figure 2.5: The architecture of a CNN [28].

2.2.1 Convolutional Layer

The convolutional layer has a central role in the network as it carries the main
portion of the computational load. Its most common use is for detecting features by
using a filter to scan the input image and outputting a feature map that classifies
such discovered features. The feature extraction is done using two operations, i.e.,
convolution and activation [29].

In this layer, an element-wise multiplication between two matrices is performed:
One of the matrices consists of a restricted portion of the image as an input. The
other is the kernel, i.e., a filter of weights used to extract the features of the input.
The kernel is passed through the entire image, each time performing the elementwise
multiplication between each element of the kernel and the input matrix. Thereafter,
the values are summed to acquire the output value of the corresponding position of
the output, creating a feature map. The procedure can be repeated using several
kernels representing different feature extractors, which in turn results in several
feature maps. A feature map is a mapping of where certain features are found in
the image. A CNN will look for features such as edges, objects, or straight lines [30].

The size of the kernel will prevent it from fully overlapping with the entire input
matrix and zero padding is usually applied to address this issue. This consists
in adding on all the sides of the input matrix, thus allowing the centre of the
kernel to fit the outermost element of the input matrix as seen in Figure 2.6 [25].
Furthermore, the stride refers to the distance between two consecutive positions of
kernels. The stride is commonly set to 1, however, a bigger stride is possible. Lastly,
the output of the convolutional layer is passed through an activation function, most
commonly the rectified linear unit [24].

10



2. Theory

Figure 2.6: Zero padding. A matrix representation of the input data with zero
padding = 1, which refers to the placement of outer zeros surrounding the matrix.
The application of the kernel with a stride of one is demonstrated by the dark blue
square, computing a singular numerical value within the right square shaded in green
[31].

Hyperparameters are parameters that play a pivotal role in controlling the learning
process of a machine learning algorithm, ultimately determining the model param-
eters that are acquired by the algorithm. The use of the prefix “hyper“ indicates
that these parameters are considered to be at a higher level of abstraction, exerting
direct control over the learning process and the resulting model parameters [32].
The most important hyperparameters to tune are the size of the kernel and which
should be smaller than the input [25], the number of kernels[24], the stride length
as well as the padding.

2.2.2 Pooling Layer

Pooling layers are responsible for reducing the spatial extent of the convolved
features and have the purpose of decreasing the computational power that is
required to process the data through dimensionality reduction [28]. The hyper-
parameters of the pooling layer are kernel size, stride length, and padding (as above).

Max pooling is one of the more popular operations for pooling. In this operation,
each maximum value of the input feature map that the kernel covers are extracted
and returned. Average pooling can otherwise be applied, which returns the average
value which the kernel covers as visualised in Figure 2.7.

11



2. Theory

Figure 2.7: Different types of pooling [28].

2.2.3 Fully Connected Layer

The resulting features after the convolutional and pooling layers are then typically
flattened into a vector and connected to one or several fully connected (FC), which
maps them to the final outputs of the neural network, including class probabilities
for classification tasks. The final fully connected layer usually has output nodes
equal to the number of classes being classified. Nodes in these layers are fully
connected to neurons in both the preceding and succeeding layers, and each fully
connected layer is followed by a nonlinear function [24].

The hyperparameters to tune in this layer are the activation function, number of
neurons, and dropout [29].

2.2.4 Faster R-CNN

In the domain of image classification, the Region-based Convolutional Neural
Network (R-CNN) architecture was developed as a solution for identifying and
classifying multiple objects in an image, where the standard CNN falls short. The
R-CNN architecture is designed to detect the presence and location of different
classes of objects in an image by utilising the concept of bounding boxes [33].

12



2. Theory

Figure 2.8: Cars with bounding boxes [34].

The basic workflow of R-CNN involves two major steps. Initially, the candidate
regions of an image where objects may be located are determined through a selective
search process (described below). Following the identification of regions, they are
each passed through a CNN model, and predictions are made for both the object
classes and their respective bounding boxes [35].

In 2014, Ross Girshick et al. [35] proposed the R-CNN to address the issue of
efficient object localisation in object detection. Traditional methods employ the
Exhaustive Search technique, which employs sliding windows of various scales on
the image to suggest region proposals. In contrast, Girshick proposed using a
Selective Search algorithm, which exploits object segmentation and Exhaustive
Search to efficiently identify region proposals. The selective search algorithm
proposes around 2000 region proposals for each image, which are then fed into the
CNN model. Nonetheless, the selective search algorithm can be a time-consuming
process. In addition, the R-CNN suffers from various drawbacks, including the
requirement for multiple stages of training requiring prolonged training time,
complex procedures, and significant amounts of disk space [36].

Strategies have been devised to improve its speed, such as the use of Region
Proposal Networks (RPNs) in Faster R-CNN [37]. This method eliminates the
requirement for a selective search algorithm by enabling the network to learn
the region proposals on its own. The architecture of Faster R-CNN contains 2
networks, the Region Proposal Network (RPN) and the Object Detection Network.
As in the standard R-CNN architecture, an input image is fed into a convolutional
network, called “backbone”, which generates a convolutional feature map. When
utilising a faster R-CNN, it is possible to incorporate a pre-trained model as
the underlying backbone. Consequently, the principle of transfer learning can be
effectively employed within this model. The goal of transfer learning is to enhance
the performance of target learners in specific domains by transferring knowledge

13



2. Theory

from related but distinct source domains [38].

Thereafter, a distinct network, called “RPN”, is employed to forecast the region
proposals. The projected region proposals are then reshaped utilising an RoI pool-
ing layer, which is further used to classify the image within the suggested regions
and estimate the offset values for the bounding boxes[37]. A comparison between
the different R-CNN types is shown in Table 2.1, highlighting that Faster R-CNN
outperforms its predecessor.

R-CNN Fast R-CNN Faster R-CNN

The mAP on
Pascal VOC
2007 test
dataset (%)

58.5

66.9 (when
trained with
VOC 2007
only) 70.0
(when trained
with VOC 2007
and 2012 both)

69.9(when trained
with VOC 2007
only) 73.2 (when
trained with VOC
2007 and 2012
both) 78.8(when
trained with VOC
2007 and 2012
and COCO)

The mAP on
Pascal VOC
2012 test
dataset (%)

53.3

65.7 (when
trained with
VOC 2012
only) 68.4
(when trained
with VOC 2007
and 2012 both)

67.0(when trained
with VOC 2012
only) 70.4 (when
trained with VOC
2007 and 2012
both) 75.9(when
trained with VOC
2007 and 2012
and COCO)

Table 2.1: Comparison Between R-CNN [39], Fast R-CNN [35] and Faster R-
CNN [37]. The mAP is a performance metric that evaluates the accuracy of object
detection models across all object classes in a given dataset. It is calculated as
the average of the individual average precision (AP) values for each object class,
where the AP is a measure of the precision-recall tradeoff for that particular class.
Essentially, the mAP provides an overall indication of how well an object detection
model performs across all object classes in a dataset [40]. VOC 2007, VOC 2012,
and COCO are three datasets that have been used in object detection challenges
(COCO Detection Challenge, 2023) [41].

2.3 Existing Peak Picking Software
At present, several pre-processing tools and packages are available for handling
and processing LC-MS data. New tools are being released and existing tools are
being updated as the demand for improved tools and packages is increasing [13].
However, research results show that current algorithms generate an abundance
of false positives [42]. Despite the attempts to increase the level of automation

14



2. Theory

in pre-processing and reduce the incidence of false positives and false negatives,
these algorithms still necessitate significant manual parameter tuning and are
prone to generating inaccurate results [43]. The outputs of peak detection can
vary significantly based on the degree of restrictiveness applied when adjusting
the parameters within the workflow. When less restrictive settings are used, the
total number of features produced tends to increase, but so does the number
of false positive peaks. Consequently, a larger fraction of the total spectral
signals is comprised of false peaks. Conversely, if highly restrictive settings
for parameter tuning are chosen, a smaller feature list is generated, consisting
mostly of high-quality features. However, this approach may result in the ex-
clusion of many good features due to a higher rate of false negative categorization [6].

The peak picking tool XCMS was selected as the benchmarking tool for this project
as it was identified as one of the most cited tools out of 21 pre-processing tools in
metabolomics papers published between 1995-2013 [44] and since it is employed at
the Chalmers Mass Spectrometry Infrastructure and is availability as open-source
software in the R environment.

A comparison was conducted by Coble JB et al. [44] to evaluate the performance
of MetAlign, MZmine 2, and XCMS software tools using nominal mass GC-MS and
accurate mass LC-MS data. According to the outcomes, all three tools generated
an excessive number of false positives ranging from 10.4%- 33.8%. Higher detection
accuracies were achieved when two software were combined. The study by Li
C. et al. [45] shows an evaluation of the detection and quantification of true
features by the different software XCMS, MZmine 2, MS-DIAL, MarkerView, and
compound discovery. The authors used a real-case metabolomics dataset and a
benchmark dataset consisting of 1100 compounds with specified concentration
ratios between two standard mixtures, including 130 discriminating. The analysis
reveals that all software had similar performance when detecting true features,
however, XCMS’ identification slightly surpassed the other four software (Table
2.2). Furthermore, in terms of quantification of true features, XCMS had the
second-highest quantification accuracy for the QE HF dataset (Table 2.3).

[H]

15



2. Theory

Total
features

Consensus
features

True fea-
tures

True
fea-
ture
ID
rate
(%)

TripleTOF
6600
dataset

Targeted - - 970 -

Untargeted MarkerView 20.000 9718 833 85.9
MS-Dial 26.185 15,582 871 89.8
MZmine 2 24,472 23,677 876 90.3
XCMS 28,168 25,386 896 92.4

QE
HF
dataset

Targeted - - 836 -

Untargeted Compound
Discoverer 10,525 10,525 748 89.5

MS-Dial 21,545 17,726 799 95.6
MZmine 2 20,021 18,871 769 92.0
XCMS 35,215 30,680 820 98.1

Table 2.2: Feature identification from the benchmark dataset [45].

Accurately
quantified
true fea-
tures

Quantification
accuracy rate
(%)

True
discrim-
inating
markers

False
dis-
crimi-
nating
mark-
ers(%)

TripleTOF
6600
dataset

Targeted 970 100 68 0

Untargeted MarkerView 737 88.5 41 17
MS-Dial 683 78.4 47 60
MZmine 2 798 91.1 59 4
XCMS 588 65.6 55 191

QE
HF
dataset

Targeted 836 100 50 0

Untargeted Compound
Discoverer 482 64.4 41 111

MS-Dial 654 81.9 42 42
MZmine 2 761 99.0 48 3
XCMS 731 89.2 45 51

Table 2.3: Feature quantification and discriminating marker selection from the
benchmark dataset [45].
16



2. Theory

In a study by Gürdeniz G. et al. [5], the three software XCMS, MZmine and Mark-
erLynx were compared. The overlap between features extracted by each software
ranged from 37%-46%. Similarly, Tautenhahn et al [7] found that 46%-52% of the
extracted features were common between MZmine and XCMS (Centwave). In fact,
the Centwave algorithm is available within both XCMS and MZmine, and employs
the continuous wavelet transformation to fit spectral peaks into a Gaussian shape [6].
Gürdeniz G. et al. [5] used a dataset consisting of rat plasma whereas Tautenhahn
et al [7] made use of leaf and seed extracts. The different in the results could possi-
bly be to the different natures of plasma samples in comparison to plant extracts [5].

A comprehensive overview of three software tools i.e., MZmine, XCMS, and MS-
DIAL, commonly used for handling and processing LC-MS data is presented in
Table 2.4.

Name Features Main applica-
tion field License Type Platform

MZmine

Noise filtering,
peak detection,
alignment, nor-
malisation and
visualisation.
Distributed
computing
noise filter,
centroiding,
peak detection,
alignment and
visualisation

Metabolomics
with LC-MS
and GC-MS
data

GNU Gen-
eral Public
License

Implemented
in Java

XCMS
Noise filtering,
peak detection,
alignment

Metabolomics
with LC-MS
and GC-MS
data

GNU Gen-
eral Public
License

Implemented
in R statisti-
cal language

MS-Dial

Noise estima-
tion, Spectral
deconvolution,
peak identifica-
tion, allignment

Metabolomics
with GC/MS,
GC/MS/MS,
LC/MS, and
LC/MS/MS)
data

GNU Gen-
eral Public
License

mplemented
in C# lan-
guage

Table 2.4: Freely available software for metabolomic data processing. The table
summarises the key features of each tool, including its capabilities for peak detection
and alignment, as well as their primary application, licensing type, and programming
language [13] [46] [47].

.

17



2. Theory

18



3
Previous related Work

3.1 Deep Neural Networks for Classification of
LC-MS Spectral Peaks

Kantz et al. [6] developed a machine learning pipeline that utilises a CNN for
the classification of spectral characteristics observed in ROIs detected using other
mechanisms. The dataset obtained by applying the MZmine 2 workflow to 78 raw
data files consisted of 2770 features, which the authors referred to as peak groups.
A subsequent manual inspection and labelling of the peak groups was carried out
by an expert, who classified them as either "good" or "bad". The CNN was trained
using complete peak shapes extracted from the LCMS data and windows were
defined based on the upper and lower limits in m/z and retention time to enable
the extraction of peak shapes.

The CNN was built using Python and Keras [48]. Furthermore, the CNN underwent
training using 1304 instances of manually classified true and false peaks. These
instances consisted of an equal number of false and true peaks, with 652 instances
each. The model was further calibrated using 740 additional instances and was
subsequently evaluated on independent 726 instances.

The performance of the deep learning algorithm was subsequently evaluated on
3000 candidate peaks using both “more restrictive” and “less restrictive” settings.
The dissimilarities between these settings primarily pertain to the Chromatogram
deconvolution segment of MZmine2. For instance, the more restrictive configu-
ration necessitated a minimum absolute height value of 4.00E+05, while the less
restrictive configuration required a minimum absolute height value of 1.50E+05.
An evaluation of true and false peaks identified using conventional peak selection
(MZmine 2) vs the CNN (Figure 3.1) showed that the CNN drastically reduced the
occurrence of false peaks, at the expense of also reducing true peaks, albeit to a
much lower extent [6].

19



3. Previous related Work

Figure 3.1: A comparison of true positive and false positive peaks retained com-
paring MZmine 2 vs the CNN. The Figure depicts, that regardless of settings, The
term "Conv" denotes the process of peak extraction utilising conventional MZmine
2 workflows, while "ML" represents the count of peaks that were preserved following
the implementation of the CNN [6].

Through the creation, refinement, and implementation of an image-based deep
neural network model for peak classification, the researchers determined that this
method has the potential to significantly enhance existing peak selection workflows,
with a reduction in false peaks of around 90%.

3.2 Deep Learning for Precise Peak Detection in
High-Resolution LC-MS Data

Melnikov et al. [9] employed a dual CNN approach to enhance the peak detection
and peak integration step of the data analysis pipeline in metabolomics. The
initial CNN classified time intervals from a specific chromatogram obtained using
a modified centwave algorithm into three potential categories: (1) ROI does not
include peaks, only noise, (2) ROI contains one or more peaks (3) ROI contains
somewhat of a peak however special attention from a specialist is required. The
subsequent CNN was responsible for peak integration. To build a dataset for
their project, the authors manually annotated more than 4000 ROIs. In addition,
the authors accentuated that distinguishing between indistinct peaks with low
intensities (class 2) and noises or minute signals that cannot be accredited to a
peak (class 3) was challenging. As a result, the boundary between these two classes
is unclear, and it is possible that similar peaks in the resulting dataset could be
classified differently. This underscores the challenge of accurately categorising
peaks (Figure 3.2).

20



3. Previous related Work

Figure 3.2: Examples of ROIs. The Figure illustrates examples of ROIs from each
class. Class 1 corresponds to ROIs identified as noise, Class 2 corresponds to ROIs
classified as one or more peaks, and Class 3 corresponds to uncertain peaks. The
regions for peak integration are visually distinguished through the use of blue and
orange fillings. The ROIs were taken from the training set [9].

To standardise the size of each ROI, linear interpolation was applied, resulting in
a uniform size of 256 points. Furthermore, the signal intensities in the ROIs were
normalised to a maximum value of unity. This approach ensured that the neural
network made predictions solely based on the shape of the peak, as it was not
influenced by variations in signal intensity. The output of the CNN is a set of
probabilities (ranging from 0 to 1) that represent the assigned class for each ROI.
These probabilities are calculated for each of the three classes and the sum of the
probabilities for all three classes always adds up to 1.

The performance of the final model was evaluated on a hold-out test set, showing
an accuracy of 87%. It was further shown that the model rarely misclassified peaks
as noise, since only 0.5% of manually labelled peaks were misclassified. However,
the majority of model errors involved incorrect ROI assignments to class 3 [9].

3.3 Deep Learning-Assisted Peak Curation for
Large-Scale LC-MS Metabolomics

Gloaguen et al. [10] designed an independent deep learning-based peak filter tool,
NeatMS, to integrate it into existing analysis pipelines (Figure 2.10(a)). NeatMS
utilises a CNN to classify peaks according to their quality. Specifically, the CNN
was trained to differentiate between peaks characterized as high quality, acceptable
quality, or poor quality (i.e., noise), similar to the two above algorithms. These
authors also utilised third-party tools (centWave and MZmine) to perform peak
detection. Furthermore, similarly to the two above algorithms, they also emphasised
that the full signal was retrieved from the raw data and used for the classification

21



3. Previous related Work

to prevent any possible bias applied by the different peak detection tools.

Before any data transformation, NeatMS excludes any unacceptable peaks, i.e.,
peaks that did not have at least 5 scans (configurable minimum scan number input
filter). Furthermore, during the pre-processing step, the raw signal was subjected
to a min-max normalisation and linear interpolation.

Figure 3.3: (a) shows the Integration of NeatMS (red) into an existing workflow
(blue). (b) shows the architecture of the CNN. Figure (a) showcases the integration
of NeatMS (in red) with an already established workflow (in blue). (b) depicts the
architecture of the CNN which comprises a two-dimensional (2D) convolutional base
for feature extraction and a classifier consisting of two fully connected layers [10].

NeatMS was written using Python 3.6 and the CNN was constructed using Keras
and TensorFlow [49]. The architecture of the CNN is displayed in Figure 2.10 (b).
During the training of the CNN Gloaguen et al., [10] utilised transfer learning.

The ROC-AUC is a performance measure that quantifies the ability of the model to
distinguish between positive and negative samples. The ROC curves were generated
for three distinct group separations in NeatMS, and the results demonstrate that the
model closely aligns with the expert knowledge of the trainer. These findings suggest
that NeatMS can serve as a faster, more consistent, and reproducible alternative to
human expert evaluation, particularly for large-scale studies. The AUC scores for
the ROC curves were 0.991 for high quality vs noise, 0.971 for high quality vs
acceptable quality vs noise, and 0.940 for high quality vs acceptable quality.

22



3. Previous related Work

3.4 Convolutional Neural Network for Auto-
mated Peak Detection in Reversed-Phase Liq-
uid Chromatography

Contrary to the previously mentioned algorithms, Kensert et al. [50] implemented a
CNN to perform automatic peak detection in reversed-phase liquid chromatography
(RPLC). The model receives a complete chromatogram as input and subsequently
generates outputs that include predicted locations, probabilities, and areas of the
peaks. The CNN was exclusively trained on simulated chromatograms, constituting
a training dataset comprising 1,000,000 chromatograms.

Regarding label encoding, the authors partitioned the chromatogram into 256
segments and assigned each segment a label of either peak or no-peak (i.e., 1 or 0),
based on whether a peak apex was situated within the segment. Furthermore, if a
peak was detected within a given segment, two additional labels were assigned: the
relative position of the peak within that segment (a value between 0 and 1) and
the overall peak area as seen in Figure 3.4.

Figure 3.4: Labelling of a chromatogram. The Figure depicts a clear illustration
of the labelling procedure employed for the chromatograms is presented. Initially,
the chromatogram is divided into 256 segments. Subsequently, each segment is
assigned the peak probability (p), the relative location of the peak (i.e., relative
to the segment, loc), and the area of the peak (area). It is worth noting that the
location and area of the peak are only assigned if a peak exists in the given segment,
i.e., if its apex is contained within the segment. It is important to emphasize that
the chromatogram used in this illustration is not representative of a realistic case
[50].

For the CNN, the authors used TensorFlow (version 2.4) to implement a one-
dimensional CNN model based on YOLO (Figure 2.12), a computationally fast
approach to detecting objects in natural images, by giving a whole image as the

23



3. Previous related Work

input and predicting bounding boxes and associated class probabilities [51].

Figure 3.5: The architecture of the CNN. The CNN takes a raw chromatogram of
8192 (x 1) data points as an input and gives out a 256 × 3 array with predictions as
the output. The CNN takes an 8192 (x 1) raw chromatogram as input and produces a
256 × 3 array with predictions as output. The output includes peak probability (p),
relative peak location (loc), and peak area (area) for each segment. The dimension
of the data is denoted next to the blocks, while the dimensions indicated next to
the arrows between the convolutional blocks represent the filter size [50].

To evaluate the performance of the CNN, a validation set containing 10,000
simulated chromatograms was used. This resulted in a ROC-AUC at 0.996,
indicating that the model has a high ability to correctly classify true peaks from
false peaks. Furthermore, the mean relative error (MRE) between true peak areas
and predicted peak areas was calculated at 0.1445; and the mean average error
(MAE) between true peak locations and predicted peak locations was calculated
at 0.062. Additionally, the MRE measures the average relative deviation between
the predicted and observed values of a variable. In this case, the MRE of 0.1445
between the true and predicted peak areas indicates that on average, the predicted
peak areas are 14.45% different from the true peak areas. Moreover, the MAE
measures the average absolute difference between the predicted and actual values
of a variable. In this case, the MAE of 0.062 between the true and predicted peak
locations indicates that on average, the predicted peak locations differ from the
true peak locations by 0.062 units (in the same units as the variable being measured).

Lastly, the authors mention that a possible drawback of using simulated chro-
matograms is the risk of not capturing the actual "chromatogram space" and it may

24



3. Previous related Work

therefore compromise the precision of peak detection in authentic chromatograms.
Nonetheless, the clear advantage of employing simulated data is that the absolute
(ground) truth is readily available, and there is no need to devote effort towards
gathering and labelling chromatograms [50].

25



3. Previous related Work

26



4
Methods

This chapter describes the process of acquiring the LC-MS dataset, while also high-
lighting the ethical considerations that require careful consideration.

4.1 Dataset
The Chalmers Mass Spectrometry Infrastructure (CMSI) has over the years gener-
ated roughly 1e6 injections (3D topological maps), of which approximately 10% are
quality control (QC) samples. All QC samples are obtained from pooling aliquots
of blood plasma from several individuals, thereby breaking the traceability to
discrete individuals. These samples are used at the instrument platform to monitor
instrument performance and to correct data for intensity drift. Furthermore, the
samples are also used to detect metabolites that show up consistently across indi-
vidual samples. At CMSI, there is thus available data from approximately 10.000
QC injections, each containing approximately 5.000 peaks, thereby constituting
a training material of 107-108 data points that can be used for bulk training of
automatically generated labels (ground truth).

All QC injections used in this project (for both training and testing purposes) were
analysed at CMSI and were generated from three different QC samples that were
available at CMSI for long-term reference purposes at the time (October 2017).
The three different QC samples were prepared as technical replicates and analysed
repeatedly, one after another, for a total of 527 injections over 6 batches by liquid
chromatography-mass spectrometry (LC-MS).

Before injection on the LC-MS system, samples were prepared by precipitation of
proteins with acetonitrile followed by centrifugation and filtering, in order to move
the higher mass components (proteins) in the samples.

The LC-MS system (Agilent Technologies) consisted of a 1290 Ultra-High-
Performance Liquid Chromatography (UHPLC) coupled to a 6550 quadrupole
time-of-flight (qTOF) mass spectrometer. Centroided MS data were acquired with
Mass Hunter vB.08.00. Study samples were injected on a C18 column (Waters
Acquity UPLC HSS T3, 100 x 2.1 mm, 1.8 µm). Raw data files were converted
from Agilent (.d) data format to .mzML format using the Proteowizard MSconvert
software [52].

27



4. Methods

The raw data files were converted into mzML file format and subsequent extraction
of chromatographic features was performed using XCMS and later assessed for peak
quality using the CPC algorithm. The QC control data were converted into CSV
format to extract the required attributes (rt, rtmin, rtmax, mz, mzmin, mzmax,
TruePeak) for evaluation. Among all available data, they were organised based on
their chromatography (H/R for HILIC and Reversed phase, respectively) as well
as their polarity or ionization (P/N for Positive and Negative, respectively) for six
batches each. Given the large availability of raw data the focus was narrowed down
to one analytical batch of mzML raw data files (96 injections, collectively containing
around 1 million peaks) from one chromatography (Reversed Phase), and one mode
(Positive ionization). The data set for training and testing consisted of data from the
first batch of RP, while data on peaks from the sixth batch were used for validation.

4.2 Ethical Considerations
Ethical considerations are of paramount importance when it comes to omics data,
particularly when the data contains phenotypic information that can be traced
back to individuals. One of the most pressing concerns is the issue of privacy and
the potential for the data to be misused. This is particularly concerning in light of
the General Data Protection Regulation (GDPR) laws, which came into effect 25th
of May 2018 enforced by the European Parliament [53].

The quality control data utilised in this project, which was supplied by the Chalmers
Mass Spectrometry Infrastructure, is not subject to GDPR. While quality control
data comprises of phenotypic data, it cannot be linked to particular individuals.

28



5
Implementation

This chapter offers a thorough account of the project’s implementation, encompass-
ing the diverse stages involved in pre-processing the LC-MS data and establishing
the requisite framework for evaluating the models.

5.1 Pre-Processing Data for ROI Detection Using
Faster R-CNN

The primary aim of this step is to pre-process raw input data and convert it into
a format suitable for training a Faster RC-NN model for ROI detection. This
involves processing two distinct data sources: i.e., raw LC-MS data in the open
mzML format, combined with information on peak location and quality assessment
generated with the XCMS and CPC R packages on the same raw data.

The Pyteomics package was employed to manage mzML files to read files and con-
vert spectra into a dictionary, allowing for fast accessibility to specific information
for further pre-processing. The peaks were collected and made available as a CSV
file, which was created outside the scope of this thesis. The table contained the
peaks’ location in the rt-mz-region for each mzML file. The last column denoted
whether the peak passed certain criteria, labelling it as a peak or not by the CPC
algorithm, whereby 95% of the XCMS peaks were identified as of sufficient quality.

The distributions of the most critical attributes of detected peaks in the QC
data, namely retention time (rt) and mass-to-charge ratio (mz), were visualized
and analysed (Figure 5.1). This showed that CPC and XCMS computed slightly
different minimum and maximum values for rt, which describe where a peak starts
and ends, respectively. CPC in general showed tighter RT intervals and was
therefore chosen to represent ground truth for peak bounds. As a consequence,
the rt characteristics from the CPC distribution will be denoted as rt in further
references.

29



5. Implementation

Figure 5.1: Distribution of peak widths (RTmax-RTmin) for the detected peaks in
the training material. The vast majority of the peaks were less than 30 seconds
wide.

Figure 5.2: Distribution of peak widths (MZmax-MZmin) for the detected peaks
in the training material. The majority of mz minimum and maximum values were
found to be nearly identical, differing only by 0.01 or less. This finding points out
the importance of handling these ranges with much care.

The sub-sectioning process involved scanning through the raw data along the
retention time axis and, for each retention time window, along the mz axis. The
aim was to extract smaller parts of an mzML file where one specific window would
contain one or more peaks. To achieve this goal, the minimum and maximum
retention time of each file, as well as each window’s minimum and maximum mz
values, were extracted, and windows were created between them. The parameters

30



5. Implementation

for window size, as well as step size in both directions, required careful tuning
based on a trial-and-error approach and orientating by the distributions analysed
above. Taking time for parameterisation is necessary to ensure that each peak was
captured entirely on both axes without being split. Moreover, after visualising
the peak shapes in the early (0.044 – 0.146 min) and late (10.895 - 10.997 min)
retention times of a sample (total original range 0.044 - 10.997 min), these were
excluded since they did not produce satisfactory peak shapes as input.

Figure 5.3: Extraction of subsections from LC-MS raw data. The Figure depicts
the process of creating windows with uniform size along the rt axis (a), as demon-
strated by the full rectangle indicating the initial window. Subsequently, the step
size is parameterized, and the newly created window is shown with dashed lines.
Notably, the size of each window along the rt axis remains constant. After creat-
ing the first retention time window (b), the mz windows are established with fixed
window and step sizes, while the rt values remain unchanged until all possible mz
windows have been generated.

The choice of an optimal window size was based on the consideration that the
last 5% of the peak width distribution (Figure 5.1) largely consists of outliers,
thus ending up with a window size of 0.64845 min. This ensured that the rt
window size was sufficiently small as to limit the exponential increase in peaks
included with increasing window size. Given that the total range of mz values
within an rt window was much larger compared to the mz width for actual peaks,
the creation of mz windows had to be halted by setting a parameter, “max it-
eration", to ensure the generation of enough windows throughout all retention times.

After extracting peak shape information from the quality control data and matching
it with the corresponding raw data file, the spectral data were transformed into

31



5. Implementation

heatmaps by undergoing a binning process.

Figure 5.4: Peak visualized in 2D as a graph (upper) and in 3D as a heatmap
(lower). The Figure displays the peak’s two-dimensional projection on the upper,
with the mz values omitted, plotting only the retention time and the corresponding
intensity values. On the lower, the heat map illustrates the intended visual appear-
ance of the images, where intensity is on the z-axis. Notably, the figure showcases
the results of ROI detection, with a single peak selected to show a more detailed
visualization.

Following that, the quality control peaks associated with each window were isolated.
This isolation aimed to enable the conversion of the peak shape data from the
extracted peak lists into images that can be interpreted by both machines and
humans to train the faster R-CNN. The process involves converting the rt and mz
values of peaks into the corresponding bin index within the specified rt/mz window.
This scaling procedure facilitates the organisation and categorisation of the peaks
based on their position within the designated window. Furthermore, each window
may contain thousands of peaks, thus necessitating the use of binning. This entails
binning both the raw data and the peak rt and mz values, and normalising the
values to pixel values. Static binning is employed in this approach, whereby the
number of bins in the rt and mz axes remains constant across all windows. Using
the numpy digitize function, the length of each ROI is linearly interpolated by their

32



5. Implementation

bin indices. Intensities are summed when multiple intensities fall within the same
bin.

Bins in the rt dimensions were estimated from the distribution of the number of
scans per peak. Peaks obtained from the XCMS/CPC procedure were typically
covered by no more than 25 scans. Thus, a multiple of this value should suffice to
cover most peaks from start to finish. The width of the mz bins must correspond
to the analysis of the deltas between the minimum and maximum mz values of the
QC peaks. A larger mz window would result in all peaks falling within a single bin,
as they would reside within the extended range of mz values, therefore rendering
them indistinguishable from each other. After experimenting with different values,
the final images were a size of 128 by 128 bins.

Once the peaks and corresponding raw data values were obtained, they were
inserted into a heatmap by converting their raw data values into bin indices. The
resulting heatmap was saved as an image, with the heatmap intensity (z-axis)
represented as 1D grayscale intensity. Each saved image was assigned a unique
traceable id, by combining rt and mz indices.

In summary, the ROI detection process involved iterating over the raw data with
a set window size in both the rt and mz directions, creating heatmaps of occurring
peaks and saving those images for the subsequent training process. Overall, this
pre-processing methodology enabled the conversion of raw input data into a suitable
format for ROI detection using Faster R-CNN in an efficient manner.

5.2 Faster R-CNN Package

In this project, a faster R-CNN model based on Ren et al.[37] was implemented
with the fasterR-CNN_resnet50_fpn package from Pytorch [54]. This package
requires the input to be a list of tensors. Each tensor should have a shape of
[C, H, W], and correspond to a single image, with tensor values standardized
within the range of 0 to 1. C refers to the number of channels or feature maps
in the tensor, H denotes the height of the tensor, and W signifies the width
of the tensor. During training, the expected input is the list of tensors as
well as a target, which includes the coordinates for the ground truth bounding
boxes along with the class label for each ground truth box. The model then
outputs a dictionary of tensors that include the classification and regression losses
for both the RPN and R-CNN. When used for prediction, the expected input
is the list of tensors alone. Thereafter, a list containing dictionaries containing
predicted bounding boxes, predicted labels, and scores of each detection is produced.

The package uses the ResNet-50-FPN [55] [56] backbone. However, a newer ver-
sion called fasterR-CNN_resnet50_fpn_v2 is implemented in PyTorch. This model
works similarly to fasterR-CNN_resnet50_fpn, although its backbone is instead
based on Xie et al. [57]. In this project, we used the fasterR-CNN_resnet50_fpn

33



5. Implementation

implementation since it has been more extensively employed, and there is a consid-
erable amount of online documentation available.

5.3 Training
During the pre-processing stage, a data frame was generated where each row
contains a unique image ID and peak ID, which are necessary for tracing back
to the original QC peak and its corresponding image. Additionally, the peak’s
pixel coordinate retention time and mass-to-charge ratio values were included,
representing the bounding boxes. All boxes were structured as (x0, y0, x1, y1),
where x denotes the retention time and y represents the mass-to-charge ratio.
Another requirement is that the boxes must have a length and width greater than
zero. This means that the minimum and maximum values of an axis cannot have
the same bin index. If this occurs, those peaks will be excluded from the training,
testing and validation processes. This exclusion has the advantage of removing
very small peaks that would otherwise be displayed as a single pixel and do not
provide meaningful insight. However, it also implies that potentially perfect peaks
where no variation in mz values is observed (i.e., ideal scenario) are removed.

In the final step before training, the data frame was processed within a class
designed to meet the specific requirements of the PyTorch framework’s Faster
R-CNN package. This class is defined as a subclass of torch.utils.data.Dataset,
encompassing the necessary functionality to efficiently load and process the dataset.
Within this class, there are two customized methods. The first method retrieves and
loads the images from the dataset generated during pre-processing and transforms
the images, bounding box coordinates, and labels into tensor format. The second
method returns the total number of images, which is later used by the PyTorch
DataLoader to split the data into training and test sets.

To train the Faster R-CNN model, 524 subsections extracted from chromatograms
were generated as grayscale images and used as input. The labelled dataset was
divided into an 80/20 training/test split. For the final validation step, a new
set of images was created from the validation batch, resulting in 151 images.
The deep learning model consisted solely of images that contained at least one
peak and utilized the ResNet50 backbone. Alternative backbone models, such as
MobileNetV3-Large, were subjected to training. However, their performance did
not match that of ResNet50 and thus were not included.

To optimize the model, a learning rate scheduler was used, which controls and
adjusts the learning rate during training, with the aim to improve the model’s
convergence [58]. Within this project, the model’s hyperparameter was set to the
default values [37]. Thus, the actual modelling can be performed "parameter-free,"
as ultimately desired in the research proposal. The only parameters that required
tuning occurred while creating the ROI images during pre-processing in the previous
step. Nevertheless, fine-tuning the Faster R-CNN model may improve the overall
performance.

34



5. Implementation

The method of non-maximum suppression (NMS) was initially applied to the
resulting bounding boxes to focus the results on the smallest set of relevant ones.
NMS makes use of Intersection over Union (IoU) as a measure of similarity (Figure
5.5), with values closer to 1 representing more similar boxes. After sorting, the
box with the highest confidence was included in the output, effectively eliminating
overlapping boxes [59]. Since many peaks are close to each other in an image, it
could not be guaranteed that two bounding boxes belonged to the same object
or correctly referred to different peaks. Rather than employing NMS, which
introduced ambiguity in distinguishing the relationship between bounding boxes,
an alternative approach was implemented instead. In this method, any predicted
bounding boxes with a confidence level below 0.3 were excluded from the results.
This ensured that less reliable predictions were eliminated from the output.

Figure 5.5: The Intersection over Union is calculated by dividing the shared area
between a detection and ground-truth box by the combined area of both the detec-
tion and ground-truth boxes [60].

The Faster R-CNN of this project was trained on a GPU (Nvidia Tesla K80) using
Google Colab [61]. Preserving the already trained weights and biases offer to reload
them at a different time, which saves computational time and benefits to the aspect
of reproducibility. The code was written in Python (V.3.10.11). The pre-processing
of the raw data was done outside the scope of the thesis, though it was achieved using
R [62] (V.4.3.0), XCMS [12] and CPC [2]. Furthermore, the data pre-processing for
the model was performed using the libraries NumPy [63] (V.1.22.4), pandas [64] (V.
1.5.3), matplotlib [65] (V.3.7.1), Pyteomics [66] [67] (V.4.6.1a1).

5.4 Evaluation
In the field of Machine Learning, evaluating the performance of a model is a
fundamental task. One important aspect during training is tracking the loss for
each iteration, which provides insights into how the model’s predictions deviate
from the ground truth labels. To assess the model’s performance, an instance of the
Averager Class was used to compute the average loss for each epoch (Figure 5.6).
An epoch refers to a complete pass through the entire training dataset during the
training process of a machine learning model, signifying that the model has seen
and processed all examples once [68].

35



5. Implementation

Figure 5.6: Loss as a function of training epochs for the ResNet50 model employed
in this project. It refers to the discrepancy between the predicted and the actual
output, serving as a measure of how well the model is performing during the training
of epochs. Over the course of 20 epochs, the losses gradually decrease as the model
learns to make better predictions, reducing the gap between predicted outputs and
ground truth labels. Fast improvement is observed in earlier epochs, converging
to around 0.972 after the 16th epoch, suggesting the model approaching optimal
performance.

Figure 5.7: Adjusting the learning rate as a function of 2100 iterations during the
training process for the ResNet50 model utilized in this project. Initially, for the first
10 iterations, the learning rate remains steady at 0.001. Subsequently, the values
gradually decrease, indicating a finer adjustment towards convergence. The model
proceeds with smaller steps, signifying its approach towards a relatively flat region
in the loss landscape. The learning rate continues to decrease until it ultimately
reaches a value around the two hundred decimal.

The training required 9:41.77 minutes using a GPU V100, which highlights the
importance of utilizing powerful computational resources for training complex
models like Faster R-CNN (data not shown).

Modelling performance can then be assessed using a confusion matrix, which
contains counts of predicted and actual values, including true negatives (TN), true

36



5. Implementation

positives (TP), false positives (FP), and false negatives (FN) [69]. For assessing
bounding boxes, labels, and scores, we used a threshold-based matching approach,
which computes the Intersection over Union matrix between the ground truth
and predicted coordinates. For each ground truth box, the predicted box with
the highest IoU is selected if it exceeds a specified threshold (0.5 for this model).
An alternative approach to consider is the Hungarian algorithm, which finds the
assignment that minimizes the total cost by considering all possible pairings. It
can be advantageous in scenarios where multiple ground truth boxes and predicted
boxes need to be correctly matched, especially when the IoU values are close or
overlapping [70].

In this scenario, where the aim is not to classify non-object regions correctly but
rather to identify and locate objects within the image, true negatives are not
relevant. In addition, varying box counts were managed by padding the true
positives and false positives with zeros to match the maximum number of ground
truth and predicted boxes. This ensures that the precision and recall calculations
consider all boxes appropriately.

The average precision was 0.653 and the average recall was 0.728 for the test set,
suggesting a relatively low false positive rate, minimizing the chances of erroneously
identifying regions as ROIs. Furthermore, it demonstrated the ability to capture
a significant portion of the true peaks. For the validation data, precision and
recall decreased to 0.591 and 0.648, respectively. The F1 score, which provides a
balanced measure of the model’s accuracy, taking into account both the precision
and recall [71], was 0.688 during testing and 0.617 for validation. Taken together,
these metrics suggest that the model generalizes well and that the ROI detection
thus shows promising results in accurately identifying and localizing the ROIs in
LCMS chromatography.

Examining the distribution of Intersection over Union and computing the average
IoU score, valuable insights can be gained about the overall accuracy of the
ROI detection model during testing and validation, e.g., if the model achieves a
high-level localization precision [70].

37



5. Implementation

Figure 5.8: The distribution of Intersection over Union values in the test set show-
cases the number of bounding box pairs that represent the level of overlap between
predicted and ground truth boxes. The model’s predictions exhibit good alignment
with ground truth ROIs, with a majority falling within the range of 0.2 to 0.8. The
distribution reaches its peak around 0.6, signifying good performance in capturing
ROIs. However, the model encounters difficulties in accurately predicting bounding
boxes with high overlap, as the number of such pairs decreases significantly beyond
0.8. The average IoU was 0.579, while the validation score was 0.558, suggesting
comparable performance on unseen data compared to test data.

The classification accuracy was 100%, which is an artifact of the fact that the model
never encountered training images without peaks. However, since the primary
focus of this baseline model was on accurately predicting bounding boxes, it has no
influence on the project’s aims.

The model discovered several peaks that did not correspond to the labelled peaks
regions. There are various potential explanations for the occurrence of false peak
selection by the model. It is plausible that the model characterizes regions with
noise, low intensity, inadequate reproducibility, or imprecisely defined boundaries as
potential peaks [10]. Furthermore, occurrences of falsely identified peaks frequently
involve the presence of shoulder or double peaks, the emergence of spurious high
background peaks, and peaks exhibiting low signal-to-noise ratios [72]. The purpose
of an ROI detection algorithm is to find potential regions. This process can (and
should) be complemented by a peak qualification algorithm (such as XCMS/CPC)
to determine whether ROIs actually represent peaks. In order not to miss potential
true peaks, it may be necessary to allow for oversampling of false peaks. However,
it is important to note that while the occurrence of falsely identified peaks is
a problem, it is not necessarily a major issue for the overall analysis. Thus, a
randomized subset of predicted bounding boxes that could not be matched with
ground truth coordinates was inspected manually (Figure 5.9).

38



5. Implementation

Precision Recall F1 score mean IoU
Test set 0.653 0.728 0.688 0.579
Validation set 0.591 0.648 0.617 0.558

Table 5.1: Summary of the scores of each evaluation metric performed on the test
set and validation set.

Figure 5.9: Two examples are displayed where an ROI was detected by the model
but was not matched with a ground truth bounding box. The first represents a true
peak undetected by the XCMS/CPC procedure used for ground truth data, while
the second represents noise. By excluding the mz-axis and plotting exclusively the
retention times and intensity values, a clearer visualization of the raw data’s shape
is achieved.

In total, there were 374 unmatched bounding boxes out of the total 151 validation
images. A possible scenario could be that the model misaligned true peaks during
threshold-based matching due to multiple bounding boxes. This hypothesis could
be further examined by inspecting the five closest bounding boxes matching with
raw data. Detected regions looking like noise suggest a misclassified peak due to its
similar shape. Manual inspection showed that the data within the bounding boxes
often had arbitrary shapes, likely representing noise. Furthermore, there were also
empty images, indicating a lack of sufficient training. This could easily be remedied
by hardcoding a condition against empty images.

39



5. Implementation

40



6
Results

In the following chapter, the results of the project are discussed, including an ex-
amination of the significance of the results, an exploration of the limitations that
might have influenced the outcomes, suggestions for potential improvements, and
an exploration of future research possibilities within this particular field.

6.1 Importance of Results
Metabolomics has become a valuable tool in the life sciences, allowing for the
identification and quantification of small molecules within biological systems. The
detection of chromatographic peaks from raw spectral data is an essential element of
any untargeted metabolomics pipeline. However, due to the availability of various
techniques and analytical tools with adjustable input parameters, a single raw
dataset may yield vastly different peak lists, significantly impacting the accuracy
and reliability of outputs. Obtaining valid and reproducible results is, therefore,
critical. The elimination of false positive chromatographic peaks is a crucial aspect
that demands attention, as they impose a significant statistical burden and increase
the likelihood of incorrect identifications when comparing metabolite variations
among different biological groups [6]. This project emphasises the importance of
obtaining accurate results in metabolomics and the essential role of eliminating
false positives in extensive datasets.

Moreover, a limited number of machine learning models claim to be more efficient
and consistent than human expert evaluation, including the NeatMS model men-
tioned in the study by Kantz et al. [6]. Accordingly, the objective of this project is
to develop a machine learning model capable of providing an expert decision base
with accuracy, efficiency, and consistency for ROI detection, to be combined with
other approaches for final peak qualification.

6.2 Limitations of Results
The findings of this thesis were subject to certain limitations. Handling and
analysing the large quantity of raw data and quality control peaks required a
level of computational power that exceeded the available resources in this project.
Consequently, the model could only be trained on a selected portion of the data.
Additionally, the limited resources posed a challenge to train the model with
different batch sizes and an increasing number of epochs. This resulted in fewer

41



6. Results

opportunities during the tuning phase, and consequently, the model’s training
results and loss were impacted. These constraints highlight the need for increased
access and use of high-performance computing resources, such as GPU clusters.
This would allow for greater experimentation and training of the model, leading to
potentially more accurate and robust outputs. It should be noted, however, that
this issue is prevalent within the entire fields of machine learning and artificial
intelligence [73] and is not specific to this project.

Another factor that impacted the project are peaks with arbitrary shapes, unusual
retention times, or mass-to-charge values. Such data can affect the accuracy of the
model while training and, hence testing. Such peaks were commonly observed in
the initial and concluding scans of a file. One possible way to address this issue is to
adopt an outlier methodology that addresses these atypical peaks, such as removing
or flagging them while training, to enable the model to handle them efficiently. It’s
important to consider that determining the exact minimum and maximum values
can be difficult and may vary depending on subjective factors. Thus, it can affect
the accuracy of bounding box determination in the training material.

Furthermore, this project required to build domain knowledge concerning the
complex and specialised topic of metabolomics and LC-MS data. Similarly, all
models require domain competence and work plans frequently need to take height
to bridge the gap between domain knowledge and data analytical competence to
effectively achieve an accurate problem description and solution. Therefore, it was
necessary to dedicate sufficient time to comprehend the subject matter as well
as identify how to effectively translate it into a deep learning model. The scope
of the study was thus continually adapted to accommodate the new findings and
information that emerged during the course of the project.

Importantly, the final model may miss certain peaks in the raw data: The task
of identifying all peaks in the data requires a delicate balance between detecting
low-intensity peaks and filtering out noise. Nevertheless, the application of deep
learning brings the notable advantage of a high degree of flexibility. By integrating
additional training data or modifying the model’s architecture, it is possible to
further enhance the model’s performance [9].

Lastly, since this project was conducted as part of a master’s thesis spanning a single
semester, the modelling process had to be time-boxed to complete all tasks within
the allotted timeframe. Hence, with more time allocated to this project, superior
outcomes could have been achieved. Nonetheless, the current model serves as a good
foundation for future development in the field and was considered acceptable within
the constraints of the study.

6.3 Potential Improvement
An important consideration would be to incorporate augmented variations of
the original chromatogram as part of the training process. This could involve

42



6. Results

applying diverse transformations such as introducing random Gaussian noise or
performing random shifting, which are commonly employed in object detection
tasks. One example would be to use the Albumentations tool [74], a widely
used Python library within deep learning. Albumentations enables swift and
adaptable image augmentations and focus on performance optimisation and
efficiently incorporating a wide array of image transformations. These data
augmentations serve not only to virtually expand the size of the training dataset
but also as a regularisation technique, which enhances the model’s ability to han-
dle minor variations in the input data and thus improving its overall robustness [75].

Another development would be to conduct code refactoring to restructure and
optimise existing code. This would enhance the code’s readability and reusability,
while concurrently reducing its complexity and long-term maintenance costs [76].
In relation to this aspect, our model was developed specifically for the analysis
of LC-MS metabolomics data. However, an extension of the model would be
to apply it to other data types, such as GC-MS data. Additionally, through
collaborative engagement with metabolomics experts and acquiring deeper insights
into the various factors contributing to specific instances of peak misclassification,
modifications such as refining the input data or optimising model parameters could
help enhancing the model performance.

Lastly, training a CNN with simulated chromatograms, e.g., using generative models
to achieve realistic data, would help to reduce the laborious effort of collecting
and annotating chromatograms. Employing such data offers advantages, as the
absence of unwanted outliers and noise in the ground truth enhances hyperparameter
tuning and subsequent precision. Such as approach would also facilitate project
reproducibility. However, a potential shortcoming of this approach is the possibility
that the CNN may not adequately capture the true chromatogram space required
to accurately detect peaks in real-world chromatograms [50].

6.4 Future Work
Based on the results and limitations of this project, several recommendations
can be proposed for prospective research pursuits. First, instead of utilising the
pre-existing Faster R-CNN package provided by PyTorch, a viable improvement
would involve the development of a custom LC-MS data R-CNN architecture from
scratch, with a specific emphasis on capturing peak shapes. This approach would
enable the development of a tailored model specifically designed for the precise
objective of peak detection. Furthermore, this would allow for the inclusion of
negative images in the training and test set, which pertain to images that do not
include any peaks or bounding boxes. The inclusion of negative images would
facilitate an evaluation of the model’s capacity to effectively process a wider
spectrum of inputs, thereby enhancing their practical applicability in classification.
Moreover, it would be beneficial to evaluate the algorithm by benchmarking it
against state-of-the-art peak-picking algorithms such as XCMS and MS-DIAL with
optimised parameters.

43



6. Results

Second, it is worth noting that the optimal training set size for the model depends
on the specific LC methods employed. A higher degree of peak distinctiveness and
ease of human classification results in a reduced requirement for training peaks to
achieve optimal performance in the model. Conversely, LC-MS approaches that
involve numerous isobaric peaks eluting within a narrow retention time range or
entail a substantial number of peaks occurring close to the baseline noise level
would necessitate a larger set of training peaks to attain optimal performance
[6]. However, with a larger training dataset, the computational time required for
processing increases, and parallel computing techniques, particularly during the
pre-processing of input data and the training phase of the model, would be beneficial.

Third, another process to consider and explore in further research is the nor-
malisation of values. It is important to determine which specific values should
undergo normalisation and the rationale behind this decision. For instance,
Kensert et al. [50] normalised intensity values to a range of 0 to 1, thereby
making the intensity factor irrelevant to their CNN model. Normalising values
can help deep learning models converge faster during training, by bringing input
features to a similar scale, where the optimization process becomes more effi-
cient and stable. Additionally, normalisation improves how well deep learning
models can generalise. It ensures that no single feature dominates the learning
process just because of its magnitude, allowing all features to contribute equally [77].

As highlighted above, extensive pre-processing was conducted on both the raw
data and the QC dataset for ROI detection using Faster R-CNN. However, post-
processing measures were not implemented, which are instrumental in enhancing the
ability to differentiate true signals from false ones [6]. Incorporating post-processing
techniques would be highly advantageous for the model’s performance, along with
expert-level tuning. For example, Melnikov et al. [9] performed post-processing
by removing peaks with the rt length of more than three minutes. Moreover,
considering the scope of the thesis, the model did not incorporate expert-level
tuning. Nonetheless, the future aspiration entails integrating a tuning layer whereby
an expert can examine the classification outcomes and subsequently provide their
own insights to retrain the model. Adding such a tuning layer could be useful for
transfer learning, to adapt a general peak-picking algorithm to instrument-specific
conditions.

Last, it would be of consideration to incorporate a second neural network within
the model, tasked with the classification of specific peaks. This additional neural
network would handle the identification of rt, m/z, and intensities for individual
peaks. Moreover, with additional time and resources, the optimal solution would
be to train specific models for different ionization modes (e.g., positive, negative)
and chromatography methods (e.g., RP, HILIC) and to incorporate them into a
single package capable of handling different dataset types. Thereafter, creating an
automated pipeline that integrates the entire process, including the identification
of ROIs, detection of chromatographic peaks, quantification of peaks, grouping or

44



6. Results

matching of peaks for batch or analysis samples, and clustering of peaks belonging
to the same compound [10]. This would eliminate the need for user intervention,
requiring only input data from the user.

45



6. Results

46



7
Conclusion

In this project, the potential for enhancing and automating the LC-MS pre-
processing pipeline was explored: The specific objective of this thesis was to
create a deep learning model to process raw data and generate identified re-
gions of interest, representing potential chromatographic peaks, along with their
corresponding coordinates. The developed model exhibited a certain degree of
proficiency in generating ROIs, characterised by an average precision of 0.652/value
and an average recall of 0.725/value during training/validation. This pilot
application demonstrates high potential to identify ROIs with no reliance on
predetermined parameters. Moreover, there is a strong conviction that allocating
more time and resources to further refine these models could yield substantial
improvements. However, several indicated avenues for model improvement could
not be pursued due to time limitations. Furthermore, during validation, it
was discovered that in addition to discovering several noise regions, the model
also discovered several actual peaks that were not reported in the ground truth data.

This study constitutes an important advancement towards the development of
a highly valuable tool that can automate LC-MS metabolomics data processing
with precision, efficacy, and consistency without depending exclusively on valuable
expert resources. Although the obtained results are of high value, there have also
been several practical limitations, the need for computing power as well as the
presence of arbitrarily shaped peaks. That should be taken into account in future
work.

To conclude, the findings of this thesis hold potential implications for open science
and academic contributions. The utilisation of deep learning models represents a
noteworthy initial step towards automating the pipeline and addressing a crucial
bottleneck, namely, the processing of raw data [9]. This advancement has yielded
promising outcomes with substantial potential.

47



7. Conclusion

48



Bibliography

[1] G.J. Patti, O. Yanes, and G. Siuzdak. Metabolomics: the apogee of the omics
trilogy. Nature Reviews Molecular Cell Biology, 13(4):263–269, March 2012.
doi:10.1038/nrm3314.

[2] K. Pirttilä, D. Balgoma, J. Rainer, C. Pettersson, M. Hedeland, and C. Brunius.
Comprehensive peak characterization (cpc) in untargeted lc-ms analysis.
Metabolites, 12(2):137, 2022. doi:10.3390/metabo12020137.

[3] B. Zhou, J.F. Xiao, L. Tuli, and H.W. Ressom. Lc-ms-based metabolomics.
Mol Biosyst, 8(2):470–481, 2012. doi:10.1039/c1mb05350g.

[4] J.C. Lindon, J.K. Nicholson, and E. Holmes. The Handbook of Metabonomics
and Metabolomics. Elsevier, Amsterdam, The Netherlands, 2007.

[5] G. Gürdeniz, M. Kristensen, T. Skov, and L.O. Dragsted. The effect of lc-ms
data preprocessing methods on the selection of plasma biomarkers in fed vs.
fasted rats. Metabolites, 2(1):77–99, 2012. doi:10.1021/ac051437y.

[6] E.D. Kantz, S. Tiwari, J.D. Watrous, S. Cheng, and M. Jain. Deep neu-
ral networks for classification of lc-ms spectral peaks. Analytical Chemistry,
91(19):12407–12413, 2019. doi:10.1021/acs.analchem.9b02983.

[7] R. Tautenhahn, C. Böttcher, and S. Neumann. Highly sensitive feature de-
tection for high resolution lc/ms. BMC Bioinformatics, 9(1), 2008. doi:
10.1186/1471-2105-9-504.

[8] G. Libiseller, M. Dvorzak, U. Kleb, E. Gander, T. Eisenberg, F. Madeo, S. Neu-
mann, G. Trausinger, F. Sinner, T. Pieber, and C. Magnes. Ipo: a tool for au-
tomated optimization of xcms parameters. BMC Bioinformatics, 16:118, 2015.
doi:10.1186/s12859-015-0562-8.

[9] A.D. Melnikov, Y.P. Tsentalovich, and V.V. Yanshole. Deep learning for the
precise peak detection in high-resolution lc-ms data. Analytical Chemistry,
92(7):588–592, 2020. doi:10.1021/acs.analchem.9b04811.

[10] Y. Gloaguen, J.A. Kirwan, and D. Beule. Deep learning-assisted peak curation
for large-scale lc-ms metabolomics. Analytical Chemistry, 94(12):4930–4937,
2022. doi:10.1021/acs.analchem.1c02220.

[11] S. Castillo, P. Gopalacharyulu, L. Yetukuri, and M. Orešič. Algorithms and
tools for the preprocessing of lc–ms metabolomics data. Chemometrics and

49

https://doi.org/10.1038/nrm3314
https://doi.org/10.3390/metabo12020137
https://doi.org/10.1039/c1mb05350g
https://doi.org/10.1021/ac051437y
https://doi.org/10.1021/acs.analchem.9b02983
https://doi.org/10.1186/1471-2105-9-504
https://doi.org/10.1186/1471-2105-9-504
https://doi.org/10.1186/s12859-015-0562-8
https://doi.org/10.1021/acs.analchem.9b04811
https://doi.org/10.1021/acs.analchem.1c02220


Bibliography

Intelligent Laboratory Systems, 108(1):23–32, 2011. doi:https://doi.org/
10.1016/j.chemolab.2011.03.010.

[12] C.A. Smith, E.J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. Xcms:
Processing mass spectrometry data for metabolite profiling using nonlinear peak
alignment, matching, and identification. Analytical Chemistry, 78(3):779–787,
2006. doi:10.1021/ac051437y.

[13] M. Katajamaa and M. Orešič. Data processing for mass spectrometry-based
metabolomics. Journal of Chromatography A, 1158(1):318–328, 2007. doi:
https://doi.org/10.1016/j.chroma.2007.04.021.

[14] M. Hilario, A. Kalousis, C. Pellegrini, and M. Müller. Processing and classifica-
tion of protein mass spectra. Mass spectrometry reviews, 25(3):409–449, 2006.
doi:https://doi.org/10.1002/mas.20072.

[15] E. Rampler, Y.E. Abiead, H. Schoeny, M. Rusz, F. Hildebrand, V. Fitz, and
G. Koellensperger. Recurrent topics in mass spectrometry-based metabolomics
and lipidomics—standardization, coverage, and throughput. Analytical Chem-
istry, 93(1):519–545, 2021. doi:10.1021/acs.analchem.0c04698.

[16] C.A. Hastings, S.M. Norton, and S. Roy. New algorithms for processing
and peak detection in liquid chromatography/mass spectrometry data. Rapid
Communications in Mass Spectrometry, 16(5):462–467, 2002. doi:https:
//doi.org/10.1002/rcm.600.

[17] X. Li, E.C. Yi, C.J. Kemp, H. Zhang, and R. Aebersold. A software suite for the
generation and comparison of peptide arrays from sets of data collected by liq-
uid chromatography-mass spectrometry*s. Molecular and Cellular Proteomics,
4(9):1328–1340, 2005. doi:https://doi.org/10.1074/mcp.M500141-MCP200.

[18] W. Wang, H. Zhou, H. Lin, S. Roy, T.A. Shaler, L.R. Hill, S. Norton, P. Kumar,
M. Anderle, and C.H. Becker. Quantification of proteins and metabolites by
mass spectrometry without isotopic labeling or spiked standards. Molecular
and Cellular Proteomics, 75(18):4818–4826, 2003. doi:10.1021/ac026468x.

[19] M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang, D. May,
J. Eng, R. Fang, C. Lin, J. Chen, D. Goodlett, J. Whiteaker, A. Paulovich, and
M. McIntosh. A suite of algorithms for the comprehensive analysis of complex
protein mixtures using high-resolution lc-ms. Bioinformatics, 22(15):1902–1909,
2006. doi:10.1093/bioinformatics/btl276.

[20] D. Radulovic, S. Jelveh, S. Ryu, T.G. Hamilton, E. Foss, Y. Mao, and A. Emili.
Informatics platform for global proteomic profiling and biomarker discovery us-
ing liquid chromatography-tandem mass spectrometry. Molecular and Cellular
Proteomics, 3(10):984–997, 2004. doi:10.1074/mcp.M400061-MCP200.

[21] K.C. Leptos, D.A. Sarracino, J.D. Jaffe, B. Krastins, and G.M. Church.
Mapquant: open-source software for large-scale protein quantification. Pro-
teomics, 6(6):1770–1782, 2006. doi:10.1002/pmic.200500201.

50

https://doi.org/https://doi.org/10.1016/j.chemolab.2011.03.010
https://doi.org/https://doi.org/10.1016/j.chemolab.2011.03.010
https://doi.org/10.1021/ac051437y
https://doi.org/https://doi.org/10.1016/j.chroma.2007.04.021
https://doi.org/https://doi.org/10.1016/j.chroma.2007.04.021
https://doi.org/https://doi.org/10.1002/mas.20072
https://doi.org/10.1021/acs.analchem.0c04698
https://doi.org/https://doi.org/10.1002/rcm.600
https://doi.org/https://doi.org/10.1002/rcm.600
https://doi.org/https://doi.org/10.1074/mcp.M500141-MCP200
https://doi.org/10.1021/ac026468x
https://doi.org/10.1093/bioinformatics/btl276
https://doi.org/10.1074/mcp.M400061-MCP200
https://doi.org/10.1002/pmic.200500201


Bibliography

[22] S. Walczak and N. Cerpa. Artificial Neural Networks. Academic Press, New
York, third edition edition, 2003.

[23] IBM. What is a neural network? URL: https://www.ibm.com/topics/neural-
networks.

[24] R. Yamashita, M. Nishio, R.K.G. Do, and K. Togashi. Convolutional neural
networks: An overview and application in radiology - insights into imaging.
SpringerOpen, 9(4):611–629, 2018. doi:https://doi.org/10.1007/s13244-
018-0639-9.

[25] M. Mishra. Convolutional neural networks, explained, 2020. URL:
https://towardsdatascience.com/convolutional-neural-networks-
explained-9cc5188c4939.

[26] V. Gulshan, L. Peng, M. Coram, M. Stumpe, D. Wu, A. Narayanaswamy,
S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman,
P. Nelson, J.L. Mega, and D.R. Webster. Development and validation of a
deep learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA, 316(22):2402–2410, 2016. doi:10.1001/jama.2016.17216.

[27] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and
S. Thrun. Dermatologist-level classification of skin cancer with deep neural
networks. Nature, 542(7639):115–118, 2017. doi:10.1038/nature21056.

[28] S. Saha. A comprehensive guide to convolutional neural networks — the
eli5 way, 2018. URL: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[29] M. Isaksson. Four common types of neural network layers, 2020.
URL: https://towardsdatascience.com/four-common-types-of-neural-
network-layers-c0d3bb2a966c.

[30] R. Khandelwal. Convolutional neural network: Feature map and filter vi-
sualization, 2020. URL: https://towardsdatascience.com/convolutional-
neural-network-feature-map-and-filter-visualization-f75012a5a49c.

[31] Dharmaraj. Zero-padding in convolutional neural networks, 2021.
URL: https://medium.com/@draj0718/zero-padding-in-convolutional-
neural-networks-bf1410438e99.

[32] K. Nyuytiymbiy. Parameters and hyperparameters in machine learning and
deep learning, 2020. URL: https://towardsdatascience.com/parameters-
and-hyperparameters-aa609601a9ac.

[33] R. Gandhi. R-cnn, fast r-cnn, faster r-cnn, yolo — object detection algorithms,
2018. URL: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-
r-cnn-yolo-object-detection-algorithms-36d53571365e.

[34] Infolks Group. How bounding box enables object detection?, 2019. URL:
https://infolksgroup.medium.com/how-bounding-box-enables-object-
detection-999b3059974e.

51

https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/neural-networks
https://doi.org/https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/https://doi.org/10.1007/s13244-018-0639-9
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1038/nature21056
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99
https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://infolksgroup.medium.com/how-bounding-box-enables-object-detection-999b3059974e
https://infolksgroup.medium.com/how-bounding-box-enables-object-detection-999b3059974e


Bibliography

[35] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceed-
ings of the 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR ’14, pages 580–587, USA, 2014. IEEE Computer Society. doi:
10.1109/CVPR.2014.81.

[36] B. Liu, W. Zhao, and Q. Sun. Study of object detection based on faster r-
cnn. In 2017 Chinese Automation Congress (CAC), pages 6233–6236, 2017.
doi:10.1109/CAC.2017.8243900.

[37] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Proceedings of the 28th In-
ternational Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, pages 91–99, Cambridge, MA, USA, 2015. MIT Press.

[38] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He.
A comprehensive survey on transfer learning. Computing Research Reposi-
tory, abs/1911.02685, 2019. URL: http://arxiv.org/abs/1911.02685, arXiv:
1911.02685.

[39] R. Girshick. Fast r-cnn. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1440–1448, 2015. doi:10.1109/ICCV.2015.169.

[40] R. Padilla, S.L. Netto, and E.A.B. da Silva. A survey on performance metrics
for object-detection algorithms. In 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP), pages 237–242, 2020. doi:10.1109/
IWSSIP48289.2020.9145130.

[41] M. Everingham, S.M. Ali Eslami, L. Van Gool, C.K.I. Williams, J. Winn, and
A. Zisserman. The PASCAL visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136, 2014. doi:10.1007/
s11263-014-0733-5.

[42] O.D. Myers, S.J. Sumner, S. Li, S. Barnes, and X. Du. Detailed investigation
and comparison of the XCMS and MZmine 2 chromatogram construction and
chromatographic peak detection methods for preprocessing mass spectrometry
metabolomics data. Analytical Chemistry, 89(17):8689–8695, August 2017.

[43] O. Owen, S. Sumner, S. Li, S. Barnes, and X. Du. One step forward for re-
ducing false positive and false negative compound identifications from mass
spectrometry metabolomics data: New algorithms for constructing extracted
ion chromatograms and detecting chromatographic peaks. Analytical Chem-
istry, 89(17):8696–8703, 2017. doi:10.1021/acs.analchem.7b00947.

[44] J. Coble and C.G. Fraga. Comparative evaluation of preprocessing freeware
on chromatography/mass spectrometry data for signature discovery. Journal
of Chromatography A, 1358:155–164, 2014. doi:https://doi.org/10.1016/
j.chroma.2014.06.100.

[45] Z. Li, Y. Lu, Y. Guo, H. Cao, Q. Wang, and W. Shui. Comprehensive evalua-
tion of untargeted metabolomics data processing software in feature detection,

52

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CAC.2017.8243900
http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1021/acs.analchem.7b00947
https://doi.org/https://doi.org/10.1016/j.chroma.2014.06.100
https://doi.org/https://doi.org/10.1016/j.chroma.2014.06.100


Bibliography

quantification and discriminating marker selection. Analytica Chimica Acta,
1029:50–57, 2018. doi:https://doi.org/10.1016/j.aca.2018.05.001.

[46] H. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa,
J. VanderGheynst, O. Fiehn, and M. Arita. Ms-dial: Data independent
ms/ms deconvolution for comprehensive metabolome analysis. Nature Meth-
ods, 12:523–526, 2015. doi:10.1038/nmeth.3393.

[47] O. Fiehn. Ms- dial (documentation), 2022. URL: http://prime.psc.riken.jp/
compms/msdial/main.html.

[48] F. Chollet et al. Keras: The python deep learning library. Astrophysics Source
Code Library, record ascl:1806.022, jun 2018. arXiv:1806.022.

[49] M. Abadi, P. Agarwal, A.and Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, U. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and Z. Zheng. Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems, 2016. arXiv:1603.04467.

[50] A. Kensert, E. Bosten, G. Collaerts, K. Efthymiadis, P. Van Broeck, G. Desmet,
and D. Cabooter. Convolutional neural network for automated peak detec-
tion in reversed-phase liquid chromatography. Journal of Chromatography A,
1672:463005, 2022. doi:10.1016/j.chroma.2022.463005.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[52] M.C. Chambers, B. Maclean, R. Burke, D. Amodei, D.L. Ruderman, S. Neu-
mann, L. Gatto, B. Fischer, B. Pratt, J. Egertson, K. Hoff, D. Kessner, N. Tas-
man, N. Shulman, B. Frewen, T.A. Baker, . Brusniak, C. Paulse, D. Creasy,
L. Flashner, K. Kani, C. Moulding, S.L. Seymour, L.M. Nuwaysir, B. Lefeb-
vre, F. Kuhlmann, J. Roark, P. Rainer, S. Detlev, T. Hemenway, A. Huhmer,
J. Langridge, B. Connolly, T. Chadick, K. Holly, J. Eckels, E.W. Deutsch, R.L.
Moritz, J.E. Katz, D.B. Agus, M. MacCoss, D.L. Tabb, and P. Mallick. A cross-
platform toolkit for mass spectrometry and proteomics. Nature Biotechnology,
30(10):918–920, 2012. doi:10.1038/nbt.2377.

[53] European Union. General data protection regulation, 2022. URL: https:
//gdpr-info.eu/.

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Curran Associates Inc., Red Hook, NY, USA, 2019.

53

https://doi.org/https://doi.org/10.1016/j.aca.2018.05.001
https://doi.org/10.1038/nmeth.3393
http://prime.psc.riken.jp/compms/msdial/main.html
http://prime.psc.riken.jp/compms/msdial/main.html
http://arxiv.org/abs/1806.022
http://arxiv.org/abs/1603.04467
https://doi.org/10.1016/j.chroma.2022.463005
https://doi.org/10.1038/nbt.2377
https://gdpr-info.eu/
https://gdpr-info.eu/


Bibliography

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. doi:10.1109/CVPR.2016.90.

[56] T.Y. Lin, P. Dollar, R.B. Girshick, K. He, B. Hariharan, and S.J. Belongie.
Feature pyramid networks for object detection. Computing Research Reposi-
tory, abs/1612.03144, 2016. URL: http://arxiv.org/abs/1612.03144, arXiv:
1612.03144.

[57] Y. Li, S. Xie, X. Chen, P. Dollar, K. He, and R.B. Girshick. Benchmark-
ing detection transfer learning with vision transformers. Computing Re-
search Repository, abs/2111.11429, 2021. doi:https://doi.org/10.48550/
arxiv.2111.11429.

[58] C. Kim, S. Kim, J. Kim, D. Lee, and S. Kim. Automated learning rate scheduler
for large-batch training. Computing Research Repository, abs/2107.05855, 2021.
URL: https://arxiv.org/abs/2107.05855.

[59] J.H Hosang, Benenson R., and Schiele. B. Learning non-maximum suppres-
sion. Computing Research Repository, abs/1705.02950, 2017. URL: http:
//arxiv.org/abs/1705.02950.

[60] I. Zafar, G. Tzanidou, R. Burton, N. Patel, and L. Araujo. Hands-On Convo-
lutional Neural Networks with TensorFlow: Solve Computer Vision Problems
with Modeling in TensorFlow and Python. Packt Publishing, 2018.

[61] V. Privalov. Hardware exploration on google colab and kaggle platforms,
2019. URL: https://vovaprivalov.medium.com/hardware-exploration-on-
google-colab-and-kaggle-platforms-576bf51c54e.

[62] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2021. URL: https:
//www.R-project.org/.

[63] S. van der Walt, S.C. Colbert, and G. Varoquaux. The numpy array: A struc-
ture for efficient numerical computation. Computing in Science and Engineer-
ing, 13(2):22–30, 2011. doi:10.1109/MCSE.2011.37.

[64] W. McKinney. Data structures for statistical computing in python. In S. van der
Walt and J. Millman, editors, Proceedings of the 9th Python in Science Con-
ference, pages 56–61, 2010. doi:10.25080/Majora-92bf1922-00a.

[65] J.D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
and Engineering, 9(3):90–95, 2007. doi:10.1109/MCSE.2007.55.

[66] A.A. Goloborodko, L.I. Levitsky, M.V. Ivanov, and M.V. Gorshkov. Py-
teomics—a python framework for exploratory data analysis and rapid software
prototyping in proteomics. Journal of the American Society for Mass Spectrom-
etry, 24(2):301–304, 2013. doi:10.1007/s13361-012-0516-6.

[67] L.I. Levitsky, J.A. Klein, M.V. Ivanov, and M.V. Gorshkov. Pyteomics 4.0:
Five years of development of a python proteomics framework. Journal of

54

https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://doi.org/https://doi.org/10.48550/arxiv.2111.11429
https://doi.org/https://doi.org/10.48550/arxiv.2111.11429
https://arxiv.org/abs/2107.05855
http://arxiv.org/abs/1705.02950
http://arxiv.org/abs/1705.02950
https://vovaprivalov.medium.com/hardware-exploration-on-google-colab-and-kaggle-platforms-576bf51c54e
https://vovaprivalov.medium.com/hardware-exploration-on-google-colab-and-kaggle-platforms-576bf51c54e
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s13361-012-0516-6


Bibliography

Proteome Research, 18(2):709–714, 2019. PMID: 30576148. doi:10.1021/
acs.jproteome.8b00717.

[68] E.R. Davies and M. Turk. Advanced Methods and Deep Learning in Computer
Vision. Computer Vision and Pattern Recognition. Elsevier Science, 2021. URL:
https://books.google.se/books?id=ZqYsEAAAQBAJ.

[69] K.M. Ting. Confusion Matrix, pages 209, 781. Springer US, Boston, MA, 2010.
doi:10.1007/978-0-387-30164-8_157.

[70] S.H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I.D. Reid, and S. Savarese.
Generalized intersection over union: A metric and A loss for bounding box
regression. Computing Research Repository, abs/1902.09630, 2019. URL: http:
//arxiv.org/abs/1902.09630.

[71] z.c Lipton, c. Elkan, and B. Narayanaswamy. Thresholding classifiers to maxi-
mize f1 score, 2014. arXiv:1402.1892.

[72] N. Borgsmüller, Y. Gloaguen, T. Opialla, E. Blanc, E. Sicard, A.L. Royer,
B. Le Bizec, S. Durand, C. Migné, M. Pétéra, E. Pujos-Guillot, F. Giacomoni,
Y. Guitton, D. Beule, and J. Kirwan. Wipp: Workflow for improved peak
picking for gas chromatography-mass spectrometry (gc-ms) data. Metabolites,
9(9), 2019. URL: https://www.mdpi.com/2218-1989/9/9/171, doi:10.3390/
metabo9090171.

[73] A.J. Lohn and M. Musser. Ai and compute: How much longer can comput-
ing power drive artificial intelligence progress, January 2022. doi:10.51593/
2021CA009.

[74] A. Buslaev, A. Parinov, E. Khvedchenya, A. Iglovikov, and A. Kalinin. Al-
bumentations: fast and flexible image augmentations. ArXiv e-prints, 2018.
arXiv:1809.06839.

[75] L. Perez and J. Wang. The effectiveness of data augmentation in image classi-
fication using deep learning. Computing Research Repository, abs/1712.04621,
2017. URL: http://arxiv.org/abs/1712.04621.

[76] C. Abid and M.and do Nascimento Ferreira T.and Dig D. Alizadeh,
V.and Kessentini. 30 years of software refactoring research: A systematic lit-
erature review. Computing Research Repository, abs/2007.02194, 2020. URL:
https://arxiv.org/abs/2007.02194.

[77] J.and Zhou Y. Huang, L.and Qin, F. Zhu, L. Liu, and L. Shao. Normalization
techniques in training dnns: Methodology, analysis and application. Computing
Research Repository, abs/2009.12836, 2020. URL: https://arxiv.org/abs/
2009.12836.

55

https://doi.org/10.1021/acs.jproteome.8b00717
https://doi.org/10.1021/acs.jproteome.8b00717
https://books.google.se/books?id=ZqYsEAAAQBAJ
https://doi.org/10.1007/978-0-387-30164-8_157
http://arxiv.org/abs/1902.09630
http://arxiv.org/abs/1902.09630
http://arxiv.org/abs/1402.1892
https://www.mdpi.com/2218-1989/9/9/171
https://doi.org/10.3390/metabo9090171
https://doi.org/10.3390/metabo9090171
https://doi.org/10.51593/2021CA009
https://doi.org/10.51593/2021CA009
http://arxiv.org/abs/1809.06839
http://arxiv.org/abs/1712.04621
https://arxiv.org/abs/2007.02194
https://arxiv.org/abs/2009.12836
https://arxiv.org/abs/2009.12836


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Problem
	Aim
	Research Question
	Objectives


	Theory
	Pre-processing
	Raw Data Pre-Processing and Filtering
	Feature Detection
	Alignment
	Normalisation

	Deep Learning
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Faster R-CNN

	Existing Peak Picking Software

	Previous related Work
	Deep Neural Networks for Classification of LC-MS Spectral Peaks
	Deep Learning for Precise Peak Detection in High-Resolution LC-MS Data
	Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics
	Convolutional Neural Network for Automated Peak Detection in Reversed-Phase Liquid Chromatography

	Methods
	Dataset
	Ethical Considerations

	Implementation
	Pre-Processing Data for ROI Detection Using Faster R-CNN
	Faster R-CNN Package 
	Training
	Evaluation

	Results
	Importance of Results
	Limitations of Results
	Potential Improvement
	Future Work

	Conclusion
	Bibliography

