
Z

Z

X

ZX

X

X

X

Z

Z

Z

X

ZX

X

X

X

Z

Decoding the surface code
using graph neural networks
Master’s thesis in Master’s Programme in Physics

MORITZ LANGE

DEPARTMENT OF PHYSICS

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023
www.gu.se

www.gu.se

Master’s thesis 2023

Decoding the surface code
using graph neural networks

MORITZ LANGE

Department of Physics
Quantum Computing and Quantum Machine Learning

University of Gothenburg
Gothenburg, Sweden 2023

Decoding the surface code using graph neural networks
MORITZ LANGE

© MORITZ LANGE, 2023.

Supervisor: Basudha Srivastava, Department of Physics, University of Gothenburg
Examiner: Mats Granath, Department of Physics, University of Gothenburg

Master’s Thesis 2023
Department of Physics
University of Gothenburg
SE-412 96 Gothenburg

Cover: Mapping of surface code detection events to a graph representation.

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Abstract
Quantum error correction is essential to achieve fault-tolerant quantum computation
in the presence of noisy qubits. Among the most promising approaches to quantum
error correction is the surface code, thanks to a scalable two-dimensional architec-
ture, only nearest-neighbor interactions, and a high error threshold. Decoding the
surface code, i.e. finding the most likely error chain given a syndrome measurement
outcome is a computationally complex task. Traditional decoders rely on classical
algorithms, which, especially for larger systems, can be slow and may not always
converge to the optimal solution. This thesis presents a novel approach to decoding
the surface code using graph neural networks. By mapping the syndrome measure-
ments to a graph and performing graph classification, we find that the graph neural
networks can predict the most likely error configuration with high accuracy. Our
results show that the GNN-based decoder outperforms the classic minimum weight
perfect matching (MWPM) decoder in terms of accuracy. With a phenomenological
noise model with depolarizing noise and perfect syndrome measurements, our net-
works beat MWPM up to code-size 15 across all relevant error rates. Furthermore,
the GNN is capable of surpassing MWPM under circuit-level noise up to code size
7. We also show that training the network on repetition code data from a recent
experiment [Google Quantum AI, Nature 614, 676 (2023)] produces per-step error
rates comparable to those achieved with a matching decoder specifically adapted
to the error rates of the physical qubits. This indicates that graph neural network
decoders are capable of learning the underlying error distribution on the qubits. Our
findings advance the field of quantum error correction and provide a promising new
direction for the development of efficient decoding algorithms.

Keywords: Quantum error correction, surface code, graph neural networks.

v

Acknowledgements

First and foremost, I want to express my gratitude towards Mats Granath who
supported me throughout the project. I also thank Pontus Havström for explaining
the details about his decoder. Furthermore, I am grateful for the discussions with
Basudha Srivastava and Evert van Nieuwenburg as well as for the technical support
from Hampus Linander and Viktor Rehnberg.

Computations were enabled by resources provided by the National Academic In-
frastructure for Supercomputing in Sweden (NAISS) and the Swedish National In-
frastructure for Computing (SNIC) at Chalmers Centre for Computational Science
and Engineering (C3SE), partially funded by the Swedish Research Council through
grant agreements no. 2022-06725 and no. 2018-05973.

Moritz Lange, Gothenburg, June 2023

vii

Contents

List of Figures xi

1 Introduction 1

2 Theory 3
2.1 Quantum computation . 3
2.2 Quantum error correction . 4

2.2.1 The three-qubit code . 5
2.2.2 The stabilizer formalism . 7
2.2.3 The surface code . 9

2.3 Graph neural networks . 12
2.4 Artificial neurons and neural networks 13

2.4.1 Graph convolutional layers . 14

3 Methods 15
3.1 From syndrome to graph . 15

3.1.1 Perfect stabilizer measurements 15
3.1.2 Surface code under circuit-level noise 15
3.1.3 Experimental repetition code data 16

3.2 Graph neural network architecture 18
3.3 Training setup . 19

4 Results 21
4.1 Time scaling of the GNN decoder . 21
4.2 Perfect stabilizer measurements . 21
4.3 Circuit-level noise . 24
4.4 Experimental repetition code data . 25

5 Conclusion 27

Bibliography 32

ix

Contents

x

List of Figures

2.1 Surface code: stabilizer circuit diagrams 10
2.2 Surface code: logical operators . 11
2.3 Surface code: logical cosets . 11

3.1 Mapping from syndrome to graph: perfect stabilizers 16
3.2 Mapping from syndrome to graph: circuit-level noise 17
3.3 Repetition code under circuit-level noise: surface code diagram 17
3.4 Graph neural network architecture 18
3.5 Influence of replacing data during training 20

4.1 Decoding time scaling with the code size 22
4.2 Training history: perfect stabilizer measurements 22
4.3 Decoding accuracy vs p: perfect stabilizers 23
4.4 Decoding accuracy vs p: circuit-level noise 24
4.5 Decoding accuracy vs dt: circuit-level noise 25
4.6 Experimental repetition code data . 26

xi

List of Figures

xii

1
Introduction

Quantum computing is a rapidly evolving field with the potential to revolutionize the
way we solve complex problems. In contrast to classical computing, which relies on
bits that can either be 0 or 1, quantum computing uses quantum bits (qubits), which
exist in a superposition of both 0 and 1. Quantum effects such as superposition,
entanglement and interference give quantum computers an advantage over classical
computers for certain types of problems, the most famous of those being Shor’s
algorithm that promises an exponential speedup for integer factorization [1] and
simulating quantum systems [2]. However, this advantage is offset by the fragility
of the qubits which are highly sensitive to their environment. Running algorithms
on a quantum computer thus requires some sort of error correction technique.

Quantum error correction (QEC) is a technique used to counteract the effects
of noise and other errors that occur during the operation of a quantum computer.
Quantum error correction involves encoding the information of one logical qubit
into multiple physical qubits in a way that allows for the detection and correction
of errors. One of the most promising approaches to quantum error correction is
the surface code. It is a practical implementation of a topological code, a class of
error correction schemes that were introduced by Aleksei Kitaev and collaborators
more than 20 years ago [3]. The surface code comprises a two-dimensional array of
qubits to encode one logical qubit. Incomplete, so-called stabilizer measurements
of the system are performed to detect errors. A decoding algorithm then finds the
most likely error based on the measurement outcomes. The surface code has the
advantage of being both fault-tolerant and scalable. It has recently been realized
experimentally [4, 5], a promising proof of concept and an important milestone
towards fault-tolerant quantum computation.

However, decoding the surface code is a computationally complex task that has
to be solved fast and with high accuracy. Traditional decoding methods rely on
approximate algorithms, such as minimum weight perfect matching (MWPM), which
may not always converge to the optimal solution [6]. On the other hand, maximum-
likelihood decoders achieve optimal accuracies but come at the expense of slow
execution time [7–10]. A variety of machine learning-assisted decoding algorithms
have been explored in the last decade [11–24], all displaying different strengths and
weaknesses. In this thesis, we present a novel, data-driven approach to decoding
the surface code using graph neural networks (GNNs). GNNs have been proven
to be effective in a variety of tasks, including node classification, link prediction,
and graph classification. The benefit of decoding the surface code with a neural
network is that the prediction is fast after training, involving only a forward pass
through the network. GNNs in particular scale favorably with the code size, i.e.

1

1. Introduction

they are, in principle, suitable to decode surface codes of arbitrary size. By mapping
surface measurement outcomes to a graph representation, the GNN can learn the
underlying structure and patterns in the code and make more accurate predictions
compared to traditional decoding methods. Our research shows that the GNN-based
decoder outperforms MWPM in terms of accuracy for both perfect and imperfect
stabilizer measurements. Our research advances the field of quantum error correction
and provides a promising new direction for the development of efficient decoding
algorithms. The use of GNNs for decoding the surface code represents a step towards
the integration of quantum computing and deep learning, two of the most exciting
and rapidly developing fields in physics and computer science.

This thesis is organized as follows: In Chapter 2, the principles of quantum error
correction with stabilizer codes and the surface code are introduced. Furthermore,
the basic concept of neural networks in general and graph neural networks, in partic-
ular, is described. Chapter 3 explains the architecture of the graph neural network
explored in this thesis, defines the mapping from stabilizer measurements to a graph
representation, and illudes the data generation and training setup. The decoding
time and accuracy under the assumption of both perfect and imperfect stabilizer
measurements are presented in Chapter 4. Chapter 5 concludes with a discussion
and an outlook.

2

2
Theory

2.1 Quantum computation
The fundamental building block of each quantum computing device is the quantum
bit, which is a two-level quantum system |Ψ〉 = α |0〉 + β |1〉 defined on a two-
dimensional Hilbert space with computational basis vectors:

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
. (2.1)

One then defines a set of unitary, hermitian and self-inverse qubit operators (or
quantum gates) X = σx, Y = σy and Z = σz in terms of the Pauli operators σi
acting on the two-level system:

X |Ψ〉 =
[
0 1
1 0

]
|Ψ〉 = α |1〉+ β |0〉 (2.2)

Y |Ψ〉 =
[
0 −i
i 0

]
|Ψ〉 = iα |1〉 − iβ |0〉 (2.3)

Z |Ψ〉 =
[
1 0
0 −1

]
|Ψ〉 = α |0〉 − β |1〉 (2.4)

Including prefactors ±1 and ±i, the Pauli operators a group, usually referred to as
the Pauli-group:

P = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}, (2.5)

generated by X, Z and iI. Furthermore, any two Pauli operators either commute
or anti-commute:

[σi, σj] = 2iεijkσk and {σi, σj} = 2δijI. (2.6)

The actions of those operators are visualized in so-called quantum circuits, where
time flows from left to right, horizontal wires stand for individual qubits and oper-
ators are indicated with boxes [25]. The following example applies an X operation
to the ground state, thus exciting the state:

|0〉 X |1〉 . (2.7)

3

2. Theory

Two qubits interact with each other via the CNOT gate. Similar to the classical
controlled-NOT, it flips the target qubit |b〉 if the control qubit |a〉 is in the excited
state |1〉. This action is summarised by |a〉 |b〉 → |a〉 |(a+ b) mod 2〉 and enables
the entangling of two qubits. For instance, the first Bell state may be created by
applying the CNOT gate to 1√

2(|0〉+|1〉) |0〉 → 1√
2(|00〉+|11〉). In the computational

basis, the CNOT gate has the following matrix and circuit representation, with the
top and bottom line representing the control and target qubit, respectively:

CNOT = 1√
2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |a〉 |a〉

|b〉 |(a+ b) mod 2〉
(2.8)

One further defines the Hadamard gate H and the π/8-gate T which are related to
the Pauli operators by X = HZH and T 4 = Z:

H = 1√
2

[
1 1
1 −1

]
and T =

[
1 0
0 expiπ/4

]
. (2.9)

Together with the entangling CNOT gate, the Hadamard and the T-gate form a
universal set of gates, meaning that any unitary operation on a quantum computer
can be written as an infinite sequence of gates from this set. The Solovay-Kitaev
theorem guarantees that for a finite number of qubits, the unitary operation can be
efficiently approximated with arbitrary precision and only a finite number of gates
[26].

In the last two decades, different physical implementations of qubits have been
explored, such as superconducting circuits [27], trapped ions [28], and spins in semi-
conductors [29]. After many years of substantial efforts, all those technologies still
have a fundamental shortcoming: The qubits are highly sensitive to their environ-
ment. Even preserving their state for several milliseconds is challenging, not to
mention performing quantum gates or measuring them flawlessly. For this reason,
any future quantum computation device will require quantum error correction.

2.2 Quantum error correction
Whenever processing information on a computer, may it be classical or quantum,
one has to deal with noise. The aim is to protect the computational state such
that it can be restored correctly, even after an error occurs. The basic idea is to
encode the piece of information into a (larger) block of information by introducing
additional bits [25]. The simplest example is the classical repetition code. Here,
each bit is repeated n times, i.e. a logical bit 0 or 1 is encoded by a repetition of
several physical bits: 0 → 00...0 and 1 → 11...1. After the encoded bit has been
corrupted by noise, i.e. several of the physical bits have been flipped, one simply
performs a majority vote to retrieve the correct logical bit. One can hereby correct
up to n−1

2 errors on the physical bits. This technique is familiar to us from our daily
experience: If your dialog partner doesn’t get what you were just saying, you simply
repeat the phrase.

4

2. Theory

In a quantum computer, there are, however, three major obstacles that prevent
one from simply adopting classical error correction schemes like the repetition code
[25]: Firstly, according to the no-cloning theorem, it is impossible to copy an un-
known quantum state. Secondly, observation (measurement) of the quantum state
collapses it to a basis state of the measured observable. Thirdly, a qubit is defined
on a continuous Hilbert space over the complex numbers, implying that an error
acting on it, in general, is continuous as well. Even if the error was known, it would
take infinite precision to keep track of it. Luckily, quantum error correction can deal
with all of those problems.

2.2.1 The three-qubit code
The smallest possible quantum error correction code that can detect and correct a
bitflip error (i.e. an action of the Pauli operator X) is the three-qubit code [30].
Here, the information stored in a single-qubit state |Ψ〉 = α |0〉+β |1〉 is distributed
across an entangled three-qubit state, the logical state |Ψ〉L:

|Ψ〉 −→ |Ψ〉L = α |000〉+ β |111〉 . (2.10)

It is important to note that this is not a threefold cloning of state |Ψ〉, instead, the
information is stored in the fully entangled state |Ψ〉L with code words |0〉L = |000〉
and |1〉L = |111〉. After encoding, the two-dimensional Hilbert space of the encoded
physical qubit is promoted to an eight-dimensional Hilbert space. It is instructive
to divide this space into four mutually orthogonal, two-dimensional subspaces:

C = span{|000〉, |111〉}, F1 = span{|100〉, |011〉},
F2 = span{|010〉, |101〉}, F3 = span{|001〉, |110〉}.

(2.11)

The logical state |Ψ〉L lies within the codespace C spanned by the two code words
|0〉L and |1〉L. Suppose one of the qubits is prone to a bitflip error Xi. This will
rotate the state into one of the so-called error spaces Fi: Xi|Ψ〉L ∈ Fi. Because
the code and error subspaces are mutually orthogonal, one can distinguish between
those by performing a projective measurement that does not destroy the quantum
information stored in the logical state. The measurement outcome of such a projec-
tive measurement is called the syndrome; a string of classical bits from which one can
deduce which error occurred. For the three-qubit repetition code, the two projective
measurements are the operators Z1Z2 and Z2Z3. Both of them have eigenvalue +1
when acting on the logical state:

Z1Z2|Ψ〉L = Z1Z2(α|000〉+ β|111〉) = (+1)|Ψ〉L = Z2Z3|Ψ〉L. (2.12)

Because the logical state remains unchanged under the action of Z1Z2 and Z2Z3,
the two operators are said to stabilize the logical state [31]. If, for instance, a bitflip
error on the first qubit occurs, measurement of the first stabilizer Z1Z2 projects the
state onto a different eigenspace (F1) with eigenvalue -1:

Z1Z2(X1|Ψ〉L) = Z1Z2(α|100〉+ β|011〉) = (−1)X1|Ψ〉L (2.13)

5

2. Theory

The measurement outcome of the stabilizer Z2Z3 does not change, the corrupted
state is projected onto the +1 eigenspace of this stabilizer:

Z2Z3(X1|Ψ〉L) = Z2Z3(α|100〉+ β|011〉) = (+1)X1|Ψ〉L (2.14)

Each single-qubit bitflip error produces a unique syndrome (i.e. one classical bit from
each of the stabilizers), from which one can deduce a suitable recovery operation.
The three-qubit repetition code is displayed in the following circuit diagram:

|Ψ〉1

E

Z1Z2

|0〉2
Z2Z3

|0〉3

|0〉S1 H H

|0〉S2 H H

In the encoding phase, the information contained in qubit |Ψ〉1 is distributed into the
logical three-qubit state |Ψ〉L by entangling with the two qubits |0〉2 and |0〉3. After
an error from the set E = {X1, X2, X3}, the syndrome is extracted by measuring the
stabilizers Z1Z2 and Z2Z3 with the help of two ancilla qubits |0〉S1

and |0〉S2
. The

action of the stabilizer Z1Z2 controlled by the first ancilla qubit |0〉S1
transforms the

corrupted state E |Ψ〉L to:

E |Ψ〉L −→
1√
2
(
I1I2(E |Ψ〉L) |0〉S1

+ Z1Z2(E |Ψ〉L) |1〉S1

)
(2.15)

If a bitflip error on one of the first two qubits occurs, the Hadamard gate after the
controlled Z1Z2 projects the first ancilla qubit onto the excited state |1〉S1

. The
subsequent measurement of the eigenvalue -1 then indicates that the logical state
was corrupted. Note that the action of the controlled Z1Z2 is in practice realized by
two subsequent controlled Z gates with the ancilla qubit |0〉Sl

as the control qubit.
This is equivalent to applying a CNOT gate with the ancilla qubit as the target bit
omitting the Hadamard gate:

Z1

Z2

|0〉Sl H H

=

|0〉Sl

The logical operators acting on the logical state have to capture the commutation
relations and actions of the unencoded single-qubit operators they stand for. For the

6

2. Theory

three-qubit repetition code, the logical XL is a tensor product of three single-qubit
bitflips XL = X1X2X3, mapping the code words |0〉L and |1〉L to each other. The
action of the Pauli operator Z is captured by its transformation of the basis vectors
|+〉 = 1√

2(|0〉+ |1〉) and |−〉 = 1√
2(|0〉−|1〉): Z|+〉 = |−〉 and Z|−〉 = |+〉. Following

this definition, any single-qubit operator Zi is sufficient to flip the encoded logical
|+〉L and |−〉L:

Zi|+〉L = Zi
1√
2

(|000〉+ |111〉) = 1√
2

(|000〉 − |111〉) = |−〉L. (2.16)

The code distance of a quantum code is the minimum weight of all logical operators,
or in other words, the length of the smallest undetectable error. For the three-qubit
repetition code, the weight of the logical XL is three, but the weight of the logical ZL
is one, meaning that the three-qubit bitflip X1X2X3 or any single-qubit phase flip
Zi remain undetected. This implies that the three-qubit repetition code has a code
distance of one, and so it merely protects the information stored in the logical qubit
from a bitflip on one of the physical qubits. The three-qubit repetition code can be
extended to n qubits on a one-dimensional lattice, where n qubits together encode
one logical qubit which is stabilized by n− 1 operators ZiZj acting on neighboring
qubits:

|Ψ〉 −→ |Ψ〉L = α |00...0〉︸ ︷︷ ︸
n

+β |11...1〉︸ ︷︷ ︸
n

. (2.17)

This code can detect and correct up to n − 1 and n−1
2 bitflip errors, respectively.

However, it fails to detect a single-qubit phase flip Zi. The following section extends
the ideas gathered so far and explains how to protect a qubit from an arbitrary error.

2.2.2 The stabilizer formalism
The stabilizer formalism is a technique that allows the compact description of quan-
tum error correction codes in terms of operators from the n-qubit Pauli group Pn
instead of the state vector of the ensemble of qubits [31]. The Pauli group on n
qubits is hereby defined as the set of all n-fold tensor products of members of the
single qubit Pauli group, i.e. it contains operators of type X1⊗I2⊗ ...⊗Zj⊗ ...⊗Yn.
Just like the operators from the single-qubit Pauli group, members of the n-qubit
Pauli group are unitary, hermitian, and self-inverse and have eigenvalues ±1 or ±i.
Furthermore, any two operators either commute or anti-commute: two operators
acting on different qubits naturally commute, whereas two operators acting on the
same qubit obey the usual (anti-) commutation relations. One then studies a subset
of operators with a special property: A stabilizer group S is a subgroup of Pn, each
element of which leaves any state in the vector space C (the codespace) invariant:

S = {S ∈ Pn | S |Ψ〉L = |Ψ〉L , ∀ |Ψ〉L ∈ C} . (2.18)

From this definition follow immediately two important properties: Firstly, any
two stabilizers P and P ′ commute (if P |Ψ〉L = |Ψ〉L and P ′ |Ψ〉L = |Ψ〉L, then
PP ′ |Ψ〉L = P |Ψ〉L = |Ψ〉L = P ′P |Ψ〉L, thus PP ′ = P ′P), implicating that
the stabilizer group is Abelian. Secondly, −I is not part of the stabilizer group

7

2. Theory

(−I |Ψ〉L = |Ψ〉L only holds for |Ψ〉L = 0). One then constructs a stabilizer code
as follows: By selecting n − k commuting and independent generators generating
the stabilizer group S ⊂ Pn, the codespace is defined as the space stabilized by
this group. The following circuit displays the structure of an [[n, k, d]] stabilizer
code, where n denotes the number of physical qubits that together encode k logical
qubits with code distance d. A group of k qubits carrying the quantum informa-
tion |Ψ〉 is encoded together with n-k redundancy qubits |0〉⊗n−k to form the logical
qubit |Ψ〉L. The qubits encoding the logical state are usually referred to as data
qubits. The logical state lies within the k-dimensional codespace (a subspace of the
expanded n-dimensional Hilbert space H⊗n) and contains the full information of the
unencoded state |Ψ〉. After an error E occurs, the state is rotated onto one of the
error spaces Fi ⊂ H⊗n of dimension k. Measurement of n-k independent genera-
tors Si of the stabilizer group gives a syndrome of n-k bits, from which a so-called
decoder infers the best recovery operation R which rotates the state back onto the
code space:

. . .

. . .

... ...

|Ψ〉 ∈ H⊗k
Encoding E S1 S2 Sn−k

|0〉⊗n−k

|0〉S1 H H

|0〉S2 H H

|0〉Sn−k H H

Note that it is possible to define the codespace as any of the ±1 eigenspaces of
the stabilizers by storing the measured eigenvalue of each stabilizer. For simplicity,
the codespace is defined as the +1 eigenspace of all the stabilizers in the following
discussion. The dimension of the codespace is determined by the number of stabilizer
generators. One can show, that the vector space stabilized by the stabilizer group S
generated by n-k commuting and independent operators from Pn is of dimension 2k
[25]. There is a total number of 2k logical operators acting on the codespace: one
Pauli Xj

L operator and one Pauli Zj
L operator for each logical qubit j ∈ 1, ..., k. Each

logical operator L must commute with all stabilizers (if it were to anti-commute with
one of the stabilizers Si, then L |Ψ〉 would lie in the -1 eigenspace of this stabilizer:
L |Ψ〉 = LSi |Ψ〉 = −SiL |Ψ〉). Furthermore, Xj

L and Zj
L anti-commute just like

their single-qubit analogs. The task of the decoder is to find the most likely error
configuration giving a certain syndrome. From this information, a recovery operation
R is applied to rotate the corrupted state back onto the codespace: RE |Ψ〉L =
|Ψ〉L. If the recovery operation is such that a logical operator acts additionally,
the resulting state is prone to a logical error: RE |Ψ〉L = L |Ψ〉L. The number of
correctable errors c is related to the code distance as c = d−1

2 .

8

2. Theory

A stabilizer code solves the three major problems stated in the introduction to this
section: Without cloning the state one wishes to protect, the information is encoded
in an entangled state of multiple physical qubits. Instead of measuring the state
completely, incomplete observations of the system (the stabilizer measurements)
reveal a suitable recovery operation. Lastly, any continuous error acting on each
qubit can be corrected by discretizing it in terms of bitflip and phase flip errors,
because the Pauli operators form a basis over all single-qubit unitaries. Note that
the stabilizer formalism fails to protect from leakage, i.e. the transition into higher
energy levels. Additionally, this quantum error correction scheme comes at the cost
of a large overhead in the number of qubits needed to represent one logical qubit.
In the next section, the surface code, one of the most promising stabilizer codes, is
defined.

2.2.3 The surface code
The surface code is a topological stabilizer code which originally was defined on
a torus [3]. It was realized that the periodic boundaries of the torus architecture
can be realized by placing the qubits in a grid-like two-dimensional structure with
two different types of boundaries [32]. Throughout this thesis, we work with the
rotated surface code, which uses a minimal amount of physical qubits to encode and
stabilize the logical qubit. We refer to this simply as the surface code. The surface
code is a [[d2, 1, d]] code: It consists of a d times d grid of data qubits (white dots in
fig. 2.1a) surrounded by d2− 1 ancilla qubits (black and red squares and half-circles
in fig. 2.1a). The code space is stabilized by d2−1 four-qubit (squares) and two-qubit
(half-circles) X and Z stabilizers measured by the ancilla qubits. The weight-four
stabilizers are products of single qubit X (Z) operators acting on four data qubits
surrounding a black (red) square and are measured by the ancilla qubit in the center
of the square. The weight-two stabilizers are products of X (Z) operators acting
on pairs of data qubits on the boundaries of the surface code, measured by ancilla
qubits in the neighboring black (red) half-circles. It is easy to check that any two
stabilizers commute: If they act on different qubits, they commute trivially. Any
two X or Z stabilizers also commute trivially. And finally, adjacent stabilizers Zijkl
and Xklmn commute because they act on two joint qubits:

ZijklXklmn = ZiZjZkZlXkXlXmXn = −ZiZjXkZkZlXlXmXn

= ZiZjXkXlZkZlXmXn = XkXlXmXnZiZjZkZl = XklmnZijkl.

Figure 2.1b shows the implementation of the stabilizer operator Zabcd acting on the
data qubits a, b, c and d. Similarly, the stabilizer Xefgh acting on qubits e, f, g and
h is displayed in fig. 2.1c. By measuring all d2 − 1 stabilizers (a so-called surface
code cycle), the d2 data qubits are projected onto the simultaneous eigenstate of all
stabilizers, implying that they together encode one logical qubit.

Recall that the logical operators acting on the logical qubit have to commute with
all the stabilizers as well as resembling the commutation relations of their single-
qubit analogs. One constructs the logical XL by a chain of single-qubit X operators
running along the western edge of the grid. The logical ZL is defined as the product
of single-qubit Z operators on the northern edge. The logical YL is then the product

9

2. Theory

(a)

a
b
c
d

|0〉

(b)
e

f
g

h

|0〉 H H

(c)

Figure 2.1: Distance 5 circuit code. (a) The white dots, black (red) squares and
black (red) half-circles represent the data qubits, weight-four X (Z) stabilizers
and weight-two X (Z) stabilizers, respectively. Exemplary quantum circuits to
measure the stabilizers Xac, Zabcd, Xefgh and Zgh are shown schemetically. (b),
(c) Quantum circuit for measuring the stabilizers Zabcd and Xefgh.

of XL and ZL. The logical operators of the surface code are displayed in fig. 2.2.
Because the logical operators commute with the stabilizers by definition, they can
be distorted and shifted around the code by multiplication with stabilizer operators.
As long as there is an uneven number of chains of X (Z) operators running from
north to south (west to east), the logical qubit is rotated by XL (ZL).

Any configuration of errors that does not commute with the stabilizers, changes
the outcome of the stabilizer measurements (syndrome). The purpose of a decoder
is to find the most likely chain of errors that caused the syndrome. A suitable cor-
rection operation is then applied to bring the state back into the codespace without
introducing a logical error. This is a computationally complex task because each
syndrome can be caused by many different error configurations. Furthermore, the
number of possible syndromes grows exponentially with the number of stabilizers,
implying that a look-up table with the most likely error chain for each syndrome is
practically impossible. Note that the errors are corrected in the classical control unit
because applying the corresponding gates on the data qubits would be an additional
source of errors.

10

2. Theory

X

X

X

X

X

(a)

Z Z Z Z Z

(b)

X

X

X

X

Y Z Z Z Z

(c)

Figure 2.2: Logical operators XL, ZL and YL in (a), (b) and (c), respectively.

Z

Z Z

(a)

Z Z

(b)

Z Z Z

(c)

Figure 2.3: (a) Error chain from the logical coset Z. Correction comprised of
different single-qubit operators producing the same syndrome as the error chain,
but from the logical coset I (b) and Z (c).

11

2. Theory

The correction operation is split into two parts. Firstly, one needs to find a chain
of Pauli operators that rotates the state back into the codespace, i.e. reproduces
the anticipated stabilizer measurement outcomes of an error-free cycle. Secondly, an
algorithm computes the most likely logical operator of the product of the correction
and the underlying error chain. For the latter task, one defines four logical cosets
capturing the commutation relations of the error chain and the logical operators:
errors with an uneven parity of X (Z) operators on the northern (western) edge
fall into coset X (Z), errors with both uneven parities of X on the northern and
Z on the western edge belong to coset Y and errors with an even parity of X (Z)
operators on the northern (western) edge fall into coset I. If the correction belongs
to a different logical coset than the error, one needs to apply the corresponding
logical operator mapping between the two cosets. Consider the following example:
The chain of errors in fig. 2.3a falls into the logical coset Z. If one corrects for the
error with the correction displayed in fig. 2.3b from coset I, the state is brought
back into the codespace, but a logical ZL acts on the logical qubit. In contrast, the
product of the underlying error and the correction displayed in fig. 2.3c leaves the
logical state unchanged.

So far, we only considered a simplified model by assuming that the stabilizers
can be measured perfectly. In reality, however, the ancilla qubits are prone to
measurement errors, yielding a wrong measurement outcome with a certain proba-
bility. Furthermore, errors can act before and after any gate of the stabilizer circuits
fig. 2.1c and fig. 2.1b, usually referred to as circuit-level noise. The solution to this
problem is to repeat the stabilizer cycle dt times. The syndrome is then constructed
from each measurement cycle and the decoder infers a suitable recovery operation
by taking the information from all time steps into account.

2.3 Graph neural networks

Graphs are widely used to model and represent complex relationships and inter-
actions among entities. However, traditional neural networks struggle to handle
graph-structured data directly. Graph neural networks, a class of neural networks
specifically designed for graph data, offer a promising solution to this problem, en-
abling effective analysis, prediction, and understanding of graph-structured data.
GNNs find applications in diverse domains: In social network analysis, they can
identify community structures, detect influential nodes, and predict missing links.
In chemistry and bioinformatics, GNNs can predict molecular properties, drug-
target interactions, and protein functions by leveraging the graph representation
of molecules or biological networks [33]. In physics, they find application in nearly
all disciplines, from the efficient representation of quantum many-body states [34],
over materials science [35], to tasks at the Large Hadron Collider [36]. After intro-
ducing the basic principles of neural networks, the function and structure of graph
convolutional neural networks are explained.

12

2. Theory

2.4 Artificial neurons and neural networks
The basic building block of neural networks is the artificial neuron. It aims at mim-
icking the function of biological neurons in brains: Incoming signals are accumulated
and weighted according to their importance. If a certain activation threshold is
reached, the neuron gives a non-zero output [37]. One can describe this relationship
with a simple mathematical model:

y = f

(
n∑
i=1

wixi + b

)
. (2.19)

The output y of the neuron is determined by its activation function f of the weighted
sum of incoming signals xi from neighboring neurons plus a bias b. The activation
function typically is continuous and monotonically increasing. In an artificial neural
network (ANN) multiple neurons are stacked in subsequent layers. Signals can be
sent between the neurons in the same or different layers. Most ANNs consist of a
so-called input layer, the incoming signal of which is a numerical representation of
the data one wants to analyze, an output layer giving the result of the analysis, and
hidden layers between those. The feed-forward neural network is the simplest type
of ANNs. Here, information moves only forward through the layers. If each neuron
in one layer k−1 is connected to every neuron in the subsequent layer k, the network
is called dense or fully connected. By concatenating the inputs and outputs of each
node in layer k to vectors y(k−1) and y(k), one arrives at the following expression:

y(k) = f
(
W (k)y(k−1) + b(k)

)
. (2.20)

Because the input to each neuron only depends on the output from each neuron in
the preceding layer, the output vector y(l) of the neural network can be computed
from the input vector y(0) and the weights W (k) and biases b(k) from each layer k:

y(l) = f
[
W (l)f

(
W (l−1)

(
. . . f

(
W (1)y(0) + b(1)

)
. . .
)

+ b(l−1)
)

+ b(l)
]
. (2.21)

This means that a fully connected feed-forward neural network is just a map between
real-valued vectors. This map is nothing more than a nested sum of activation
functions with weights and biases as parameters. The flexibility of the network
comes from adjusting these parameters [38]. NNs are trained using gradient descent
optimization algorithms, combined with backpropagation based on the chain rule.
Backpropagation computes the gradients of the loss function (a measure for the
distance between the true value and output of the network) with respect to the
network parameters. These gradients are then used to update the parameters in the
opposite direction of the gradient, iteratively optimizing the model’s performance
(gradient descent). This procedure is repeated to get through multiple epochs of
training.

13

2. Theory

2.4.1 Graph convolutional layers
A graph convolutional layer is a key component in the graph neural networks ex-
plored in this thesis. It aims to extract meaningful features from nodes in a graph
by leveraging the underlying graph structure. In the graph convolutional layer, each
node in the graph is represented by a node feature vector. The layer performs con-
volutional operations on these node features by considering the local neighborhood
around each node. This is in contrast to traditional convolutional layers, which
operate on grid-like structures. To achieve this, a weight matrix learns the relation-
ships and importance between nodes. The aggregation process combines the feature
vectors of neighboring nodes with their corresponding weights. Different aggrega-
tion methods can be employed, such as summing, averaging, or concatenating the
neighbor features. The resulting aggregated vector captures information from the
local neighborhood of each node.

After aggregation, the feature vector is transformed by applying an activation
function. By applying the aggregation and transformation steps to all nodes in
the graph, the graph convolutional layer produces a set of new feature vectors that
encode local structural information. This enables the utilization of the learned
representations for tasks such as node classification, link prediction, or graph clas-
sification.

At the heart of the networks used throughout this work lies the following graph
convolutional layer. The purpose of this layer is to map the node features xi of
all nodes of the graph to a representation with different dimension x′i by collecting
information from neighboring nodes [39]:

x′i = f

W1 · xi +W2 ·
∑

j∈N (i)
eji · xj

 . (2.22)

After that, an activation function f is applied. Note that this layer doesn’t change
the structure of the graph (i.e. number of nodes and connections between them),
it merely evolves the node features to a new representation, possibly of different
dimensions. Because the number of nodes varies from graph to graph, the high-
dimensional graph embedding obtained after multiple graph convolutional layers is
pooled to get a single vector of known dimension (section 3.2).

14

3
Methods

3.1 From syndrome to graph

3.1.1 Perfect stabilizer measurements
To determine the most likely logical coset of the underlying error chain, we map
the syndrome measurement outcomes to an undirected graph. A graph is defined
as a pair of a set of nodes N and a set of edges E, which connect between pairs of
nodes. Each stabilizer measurement that differs from the error-free case sets off a so-
called detection event. A set of detection events produces the syndrome displayed in
fig. 3.1b. Each detection event is mapped to a node in a graph (fig. 3.1c). All nodes
are connected with their six nearest neighbors by starting from a fully connected
graph and removing the most distant neighbors of each node. Consequently, the
number of edges connecting to (and from) each node is constant and so the number of
operations in each network layer scales linearly with the number of detection events
(eq. (2.22)). Furthermore, the key feature of the graph neural network architecture
is that the total number of trainable weights is independent of the size of the graph
(i.e. the number of nodes). That implies that the GNN is in principle capable of
decoding syndromes from surface codes of arbitrary size. The nodes are labeled with
node features indicating the stabilizer type and the distance from the northern and
western boundary: [X?, Z?, dNorth, dWest]. The edges connecting two nodes i and j
with coordinates (di(j)North, d

i(j)
West) are labeled with the square of the inverse supremum

norm of the two nodes, as pictured in fig. 3.1c:

eij =
(
max{|diNorth − d

j
North|, |diWest − d

j
West|}

)−2
. (3.1)

3.1.2 Surface code under circuit-level noise
If circuit-level noise acts on all qubits in the surface code, the stabilizer measure-
ment cycles are repeated multiple times. Here, each change in detection events is
added as a new node to the graph (fig. 3.2). The temporal distance from the first
measurement round, i.e. the time-wise boundary is added as a fifth node feature:
[X?, Z?, dNorth, dWest, dtime]. The edges connecting two nodes i and j with coordi-
nates (di(j)North, d

i(j)
West, d

i(j)
time) are now labeled with the square of the inverse supremum

norm of the two nodes with respect to both time and space:

eij =
(
max{|diNorth − d

j
North|, |diWest − d

j
West|, |ditime − d

j
time|}

)−2
. (3.2)

15

3. Methods

X X

Z Z

Z Z

(a)

X X

Z Z

Z Z

(b)

1/22

1/32 1/32

1/22 1/22

1/42

[1 0 1 3]

[1 0 3 3]

[0 1 4 1] [0 1 4 5]

(c)

Figure 3.1: Distance 5 surface code: Mapping from syndrome to graph. (a)
Underlying error chain that causes the syndrome in (b). (c) Graph representa-
tion of the syndrome, annotated with node features and edge weights.

3.1.3 Experimental repetition code data

To test if the GNN decoder is capable of learning the underlying error distribution
of real and imperfect physical qubits of varying quality, networks were trained on
real experimental data [4]. Because data for the surface code was limited (105 data
points), this test was conducted only for the repetition code. The Google Quantum
AI team ran a distance-25 repetition code experiment with 50 stabilizer cycles on
their sycamore processor, publishing data from 5·105 shots. By subsampling smaller
code sizes from the full chain of qubits, 1.15 · 107, 1.05 · 107 and 9.5 · 106 data points
for code size 3, 5 and 7, respectively, were distilled. Changes in detection events
are mapped to a node in a graph, yielding an effective two-dimensional structure
similar to the surface code with perfect stabilizer measurements. Figure 3.3 displays
the circuit diagram of a repetition code of distance 3 with 10 measurement cycles,
including circuit-level noise acting on the qubits.

In contrast to the surface code, a single measurement of (any) single data qubit
is sufficient to define the logical coset. The logical coset is just a binary label
with respect to the logical X (Z) operator because the repetition code only can
detect either bitflip (phase flip) errors, depending on which basis the stabilizers are
measured in. Now, the nodes in the graph are annotated with three node features:
the commutation relation of the final state of the first qubit with the logical operator,
the temporal distance from the first measurement round, and the spatial distance
from the first qubit: [X?, dtime, dspace]. The square of the inverse supremum norm
between two nodes i and j labeling the edge between those nodes is now computed
with respect to the time and space coordinates:

eij =
(
max{|ditime − d

j
time|, |dispace − djspace|}

)−2
. (3.3)

16

3. Methods

Z

Z

X

ZX

X

X

X

Z

Z

Z

X

ZX

X

X

X

Z

Figure 3.2: Distance 5 surface code under circuit-level noise, 4 stabilizer cy-
cles with time progressing from left to right. Errors acting on the data qubits
(indicated with the corresponding Pauli operator) cause a change in the mea-
surement outcome of the neighboring stabilizer (black: X-type, red: Z-type).
Measurement errors on the ancilla qubits also cause a change in the stabilizer
measurement. Each change in stabilizer measurements is mapped to a node in
a graph, which is displayed with only a few edges for clarity.

Figure 3.3: Distance 3 repetition code with 10 stabilizer cycles: Circuit diagram
including circuit-level noise. The gate block in brackets is repeated 9 times.
Figure generated with stim [40].

17

3. Methods

N
um

be
r

of
 n

od
e

fe
at

ur
es

Number of nodes

node feature vector

after mean pooling

after dense layer + ReLu

after dense layer + softmax

. . .
GraphConv

. . .

Number of nodes

GraphConv

. . .

Number of nodes

. . .

GraphConv
Pooling

. . .

Number of nodes
Clone

Dense

X ∈ {0, 1}1

Dense

Dense

Dense

Dense

1

Dense

Dense

Dense
Z ∈ {0, 1}

Figure 3.4: Architecture of the GNN: The node features of a graph with a given
number of nodes are sent through multiple graph convolutional layers (blue).
Then, they are pooled into one high-dimensional vector (red). This vector is
cloned and propagated through two different sets of dense layers (green), each
of which gives a binary output (purple) for logical coset X and Z.

3.2 Graph neural network architecture
The graphs are fed through a graph neural network which classifies them according to
the most likely logical coset of their underlying error configuration. The architecture
of the GNN is displayed in fig. 3.4. The node features are mapped to a representation
of higher dimension by several subsequent graph convolutional layers according to
eq. (2.22). After each layer, the node features are processed by the rectified linear
unit activation function which has the following form:

f(z) = max (0, z). (3.4)

After the transformation through the graph convolutional layers, the node features
xi from all nodes are pooled into one high-dimensional vector X by computing the
mean across all nodes:

X = 1
N

N∑
i=1

xi. (3.5)

This vector is then cloned and sent to two architecturally identical dense neural
networks (eq. (2.21)). Both networks (heads) map the pooled node feature vector
down to one real-valued number which is normalized to a probability P for logical
coset X and Z via a sigmoid function: [PX , PZ]. Rounding those probabilities to one
or zero finally gives a prediction for the logical coset of the underlying error chain
encoded in the following way: I ↔ [0, 0],X ↔ [1, 0],Z ↔ [0, 1] and Y ↔ [1, 1].

18

3. Methods

3.3 Training setup
For simulating perfect stabilizer measurements surface code experiments, samples
are generated by randomly drawing a tensor product of Pauli operators acting on
the data qubits. Next, the stabilizer measurement outcomes are computed and
compared to the error-free case, which gives the syndrome. The syndrome is then
mapped to a graph as described in section 3.1.1. Circuit-level noise was simulated
using the stim Python library, a fast stabilizer circuit simulator [40]. Because stim
simulates a real experiment, the data qubits can only be measured in the Z or X
basis, implying that either the logical coset Z or X can be determined. One of
the heads is then shut down and the cost function defined below is computed with
respect to just one of the two binary labels Z or X. Furthermore, with the final
measurement of all data qubits, one not only infers the logical coset of the chain of
errors but also constructs a last round of "perfect" (up to measurement errors on
the data qubits, that is) stabilizer measurements by computing their parities. This
additional set of detection events at time step dt + 1 is also included in the graph.

Error chains are sampled according to the depolarizing noise model, where the
probabilities of X, Y and Z errors are equal and a third part of the total error
probability p of a single qubit:

px = py = pz = p

3 and px + py + pz = p. (3.6)

In the case of circuit-level noise, errors act with error rate p after all gates, after
resetting and before each measurement on all qubits and before each new surface
code cycle on the data qubits (fig. 3.3).

For each training sample, the prediction of the network [PX , PZ] is compared to
the true label [yx, yz] via the binary cross entropy cost function:

Cx(PX , yx) = − [yx · logPX + (1− yx) · log (1− PX)] (3.7)
Cz(PZ , yz) = − [yz · logPZ + (1− yz) · log (1− PZ)] (3.8)

Note that a fraction of the data is labeled wrongly: given a chain of errors (which is
drawn at random according to a certain error rate), the syndrome is computed and
labeled with the logical coset of this error chain. Because the mapping from error
chains to syndromes is a mapping of many to one, the syndrome may also be caused
by a different error chain with higher probability and possibly a different logical
coset. However, we argue that in the limit of small error rates and large numbers of
samples, this effect is neglectable.

Up next, the values of the two cost functions Cx and Cz are added and the
gradients with respect to the parameters of the graph convolutional and dense layers
are evaluated by using back-propagation. Those steps are repeated for all samples
in a batch of size 1,000 thus yielding gradients for 1,000 samples. The parameters
of the network are finally updated considering all samples from one batch with
the Adam (short for Adaptive Moment Estimation) optimizer, a computationally
efficient implementation of stochastic gradient descent [41]. The amplitude with
which the parameters are updated is controlled by the learning rate, which was set
to 10−4 in this thesis. This procedure is repeated for all batches of the dataset to form

19

3. Methods

25 50 75 100 125 150 175 200

Training epoch

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000
L

og
ic

a
l

a
cc

u
ra

cy

Training

Validation

Replacing 25% each epoch

Fixed dataset

Figure 3.5: Comparison of the influence of replacing data during training.
Perfect syndrome measurements, code size d = 9, error rate p = 0.05. Logical
accuracy for training and validation data as a function of the training epochs.
Green: fixed dataset. Blue: replacing 25% of the dataset after each epoch.

one training epoch. Training the networks involves many training epochs, such that
the network processes each sample multiple times. The proportion of the number
of correctly classified samples to the total number of samples defines the logical
accuracy, a quantity that is evaluated on a training, validation and test dataset.
The graph neural network and the training loop were implemented in the Python
programming language using the PyTorch and PyTorch Geometric libraries [42, 43].
The RAM capacity limits the number of samples in the dataset to several million.
However, this is not sufficient to train networks to high accuracy without overfitting,
i.e. capable of generalizing on unseen data. To circumvent this bottleneck, a part of
the dataset is replaced after each epoch with new samples generated on the fly. An
optimal rate of replacement was found to be 25%, where the networks reach high
accuracies without overfitting (see fig. 3.5).

For each code size, one network is trained on samples generated from different
error rates. This is to ensure that the networks reach high logical accuracies when
tested across a range of different error rates. The logical accuracy of the graph
neural network decoder is benchmarked against the minimum weight perfect match-
ing (MWPM) algorithm. MWPM is based on the Blossom algorithm [6], which
matches pairs of nodes (detection events) by minimizing the total weight of the
edges (weighted with the inverse error rates) between those nodes. The algorithm
was implemented with the PyMatching library [44].

20

4
Results

4.1 Time scaling of the GNN decoder
The motivation for this work is not only to improve upon the decoding accuracy
of existing decoders but also the inference time. Because the logical state must
be protected in real-time during a quantum computation, the decoder must be as
fast as possible. Here, we give an estimate of the scaling of the inference time
of our GNN decoder with the code size in comparison to minimum weight perfect
matching. Figure 4.1 displays the average decoding time T of a syndrome from
perfect stabilizer measurements sampled at p = 0.05 as a function of the code size
for MWPM and the GNN. The dotted lines show a linear regression of the data
points over the log-log scale, assuming a polynomial scaling of the inference time
with the code size: T = C ·dα. The scaling exponents α were found at 1.89±0.04 for
the GNN and 2.16± 0.05 for MWPM. This is expected as the number of operations
in the networks scales linearly with the number of nodes, i.e. quadratically in the
code size at a fixed error rate, given that the number of edges to each node is kept
constant. Note that to correct for the temporal overhead when distributing the
samples to the GPU, multiple samples were collected in one batch in this analysis.
In a real application, however, one wishes to decode one sample, i.e. one logical
qubit at a time.

In addition to the fact that the GNN yields no significant improvement in terms
of decoding time compared to MWPM, the time it takes to construct the graphs
from a syndrome measurement scales with α = 3.81 ± 0.11 with the code size.
However, this time could be substantially improved by implementing this part of the
computation in C and by choosing a more sophisticated algorithm to remove edges
between distant nodes. Furthermore, we argue that the scaling of the decoding time
does not pose a constraint on the practicality of our decoder. In a real quantum
computing device, the network could be implemented in hardware once trained,
allowing for fast inference times [45].

4.2 Perfect stabilizer measurements
First, we test the capabilities of the graph neural network decoder to decode syn-
dromes under the assumption of perfect stabilizer measurements. For each code size,
networks with the same architecture are trained on a dataset containing 4 million
samples from error rates p = 0.01, 0.05, 0.01, 0.15 (1 million samples per error rate).
After each training epoch, 25% of the dataset is replaced with new samples gener-

21

4. Results

11 21 31 51 101 201 301

Code distance

10−5

10−4

10−3

10−2

10−1

100

T
im

e
p

er
sa

m
p

le
in

se
co

n
d

s

Linear Regression

Graph construction: α = 3.81± 0.11

GNN decoding: α = 1.89± 0.04

MWPM decoding: α = 2.16± 0.05

Figure 4.1: Average decoding time per syndrome from perfect stabilizer mea-
surements sampled at p = 0.05 vs code size. Dotted lines show a linear regression
according to the ansatz: T = C · dα. Blue: graph construction time.

50 100 150 200 250 300 350 400 450 500

Training epoch

0.925

0.930

0.935

0.940

0.945

0.950

0.955

L
og

ic
al

ac
cu

ra
cy

Training

Validation

d = 5

d = 7

d = 9

d = 11

d = 13

d = 15

Figure 4.2: Training history of networks trained on different code sizes.

22

4. Results

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Error rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
L

o
g
ic

a
l

fa
il

u
re

ra
te

0.02 0.04 0.06
10−5

10−4

10−3

10−2

GNN

MWPM

d = 5

d = 7

d = 9

d = 11

d = 13

d = 15

Figure 4.3: Comparison of decoding accuracy of the GNN decoder (solid lines)
and MWPM (dotted lines). Logical failure rate as a function of the error rates
of the data qubits. The inset shows a magnification of the range of low error
rates on a logarithmic y-scale. Error bars indicate confidence intervals of one
standard deviation.

ated from the same mix of error rates. Training is terminated whenever the network
approaches convergence, i.e. when the validation accuracy does not improve signif-
icantly throughout several epochs. Given the fact that the number of nodes in the
graphs grows with the code size given a certain error rate and because the networks
have the same number of trainable parameters across all code sizes, the number of
epochs needed for convergence grows with the code size. This behavior is evident
from fig. 4.2, where the networks trained at code sizes five and seven seem to have
reached convergence at around 300 epochs, whereas larger code sizes still seem to
improve, i.e. need more training. The network used to decode syndromes from a
surface code of size 15 for instance was trained for 103 epochs, meaning that the
total number of unique samples was at the order of billions.

After training, the logical accuracy of the networks is tested as a function of
the error rate (fig. 4.3). The performance of the GNNs is benchmarked against the
MWPM algorithm. Networks were trained up to code size 21. However, for code
sizes larger than 15, the logical accuracies of the GNNs do not improve with the
code size and are lower than MWPM. This is because convergence gets increasingly
difficult and with the size of the networks kept constant. For this reason, only
networks up to code size 15 are displayed in fig. 4.3. It is difficult to define a clear
threshold (the error rate at which the logical failure rates intersect, i.e. the error rate
where it pays off to increase the code size). This is because the level of convergence

23

4. Results

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050

Error rate

10−5

10−4

10−3

10−2

L
og

ic
a
l

fa
il

u
re

ra
te

GNN

MWPM

d = 3

d = 5

d = 7

Figure 4.4: Decoding accuracy under circuit level noise. GNN decoder (solid
lines) and MWPM (dotted lines). Logical failure rate as a function of the error
rates of the data qubits on a logarithmic y-scale. Error bars indicate confidence
intervals of one standard deviation.

of the networks influences the decoding accuracy. As discussed above, convergence
is harder to achieve the higher the code size, implying that the real potential of the
GNN might not be reached yet for larger code sizes.

4.3 Circuit-level noise
Next, networks with the very same architecture (up to an additional temporal node
feature as described in section 3.1.2 at the input layer) are trained on syndromes gen-
erated from surface code simulations under circuit level noise with the stim library.
Here, two different scenarios are considered: Firstly, the surface code measurements
are repeated dt = d times, yielding detection events from d + 1 time steps as ex-
plained in the last paragraph of section 2.2.3. Similar to the previous section, one
network per code size is trained on a dataset containing 5 million samples from a
range of different error rates p = 0.001, 0.002, 0.003, 0.004 and 0.005. Again, 25% of
the samples are replaced after each training epoch. The results show that the net-
works reach higher accuracies than the minimum weight perfect matching algorithm
up to code size d = 7 (fig. 4.4). For larger code sizes and considering d cycles, graphs
grow cubically with d, thus limiting the accuracy achievable with our architecture.

As a second scenario, we vary the number of surface code cycles at a fixed code
size, training one network per number of cycles and code size. Each network is
trained on a dataset with 5 million samples from a range of different error rates

24

4. Results

3 4 5 6 7 8 9 10 11

Number of surface code cycles dt

10−5

10−4

10−3

L
o
gi

ca
l

fa
il

u
re

ra
te

GNN

MWPM

Figure 4.5: Decoding accuracy under circuit level noise (p = 10−3): Logical
failure rate as a function of the number of stabilizer measurement cycles. GNN
decoder (solid lines) and MWPM (dotted lines). Code sizes d = 3 (blue), d = 5
(green) and d = 7 (orange). Error bars indicate confidence intervals of one
standard deviation.

p = 0.001, 0.002, 0.003, 0.004 and 0.005, replacing 25% of the data each epoch. The
networks are then tested on samples generated with an error rate of 10−3. Assuming
a constant error probability per surface code cycle ε, the failure rate after dt surface
code cycles grows exponentially with the number of cycles. Again, since the graphs
do not only grow with the code size but also with the number of cycles dt, the
convergence of the networks gets increasingly difficult with increasing d and dt.
Nevertheless, the networks can beat MWPM in terms of decoding accuracy up to
code size 7 with up to 11 cycles.

4.4 Experimental repetition code data
For code sizes 3, 5, and 7, a network was trained on experimental repetition code data
from [4]. Training was conducted over 100 epochs for the datasets of size 1.15 · 107,
1.05 · 107 and 9.5 · 106, respectively, with 1% of the datasets reserved for testing
(fig. 4.6a). The logical accuracy of the networks tested on the test data reached
70%, 84% and 90% for code sizes 3, 5 and 7, respectively. From the logical error
rate Plogical(dt) after dt = 50 stabilizer measurement cycles, one can determine the
logical error rate per cycle ε from an expression satisfying the properties Plogical → 0.5
for dt →∞ and Plogical = ε for dt = 1 [46]. Furthermore, the probability of a logical

25

4. Results

20 40 60 80 100

Training epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

L
og

ic
a
l

ac
cu

ra
cy

Training

Validation

d = 3

d = 5

d = 7

(a)

3 5 7

Code size d

10−3

10−2

L
og

ic
al

er
ro

r
p

er
cy

cl
e
ε

Uninformed MWPM

Graph Neural Network

Device-informed MWPM

(b)

Figure 4.6: Training on experimental repetition code data [4]. (a) Training
(solid lines) and validation (dotted lines) accuracy as a function of the training
epoch. (b) Logical error per cycle calculated from eq. (4.2) against the code
size: Uninformed minimum weight perfect matching with unit edge weights,
graph neural network and device-informed MWPM with edge weights according
to the error rates of the individual qubits.

error after dt + 1 cycles is the sum of two channels describing a logical failure after
dt cycles but a success at cycle dt + 1 or a logical success after dt cycles but a failure
at cycle dt + 1:

Plogical(dt + 1) = (1− ε)Plogical(dt) + ε (1− Plogical(dt)) . (4.1)

It follows that the logical error rate is exponential in the number of cycles [4]:

Plogical = 1
2
[
1− (1− 2ε)dt

]
. (4.2)

The logical error per cycle as a function of the code size is displayed in fig. 4.6b.
Here, we compare the performance of the GNN decoder with two MWPM decoders:
The "uninformed" MWPM has no information about the underlying error rates of
the physical qubits, i.e. its edge weights are set to one. The "device-informed"
MWPM incorporates information about the error rates of data and stabilizer qubits
and was specifically tailored to the device of the Google Quantum AI team. The
numerical values of its logical error per cycle are taken from fig. 4.b in [4].

Strikingly, the GNN reaches higher logical error rates per cycle than the unin-
formed MWPM decoder. Even though samples were subsampled from a distance-25
experiment, i.e. the physical qubits and hence the error rates vary between samples,
the GNN learns device-specific properties that are only incorporated in the "device-
informed" MWPM. This promises a particular practical advantage of a GNN-based
decoder: Instead of benchmarking all the qubits and building that information into
a decoder, the GNN simply learns the error distribution from experiments without
any prior assumptions about the noise model.

26

5
Conclusion

In this work, we explored the capabilities of a machine-learning-assisted decoder
for topological stabilizer codes. A graph neural network was trained on billions of
samples of surface code simulations under the assumption of both perfect stabilizer
measurements and circuit-level noise and on experimental data from a repetition
code experiment. This approach is model-free, i.e. no information about the un-
derlying qubits is incorporated into the network and purely data-driven, i.e. fully
leveraged (and limited) by training on large datasets. Decoding the stabilizer codes
was brought down to a graph classification problem of finding the most likely logical
coset of the underlying error chain. A set of violated stabilizer measurements was
mapped to a graph labeled with node features including stabilizer type and position
and edge weights capturing distances between two detection events.

First, the surface code with perfect stabilizer measurements was simulated by
drawing random depolarizing noise and computing the corresponding syndrome.
Graph classification of this syndrome measurements achieved accuracies higher than
the minimum weight perfect matching decoder for code sizes up to d = 15. In prin-
ciple, the graph neural networks of fixed architecture (size) are capable of decoding
surface codes of any size. However, it became evident that decoding larger code
sizes at a given error rate requires larger networks to process the larger graphs.
This upscaling also influences the decoding time, as discussed below.

Second, surface code experiments with circuit-level noise were simulated with
stim. Training was limited to code size 7 due to the limitations in the complexity
of our networks. For those small code sizes, our networks reached logical accuracies
higher than MWPM, both as a function of low error rates with dt = d surface code
cycles, but also as a function of the number of surface code cycles at a fixed error
rate of p = 10−3. These results show that the machine-learning-based, data-driven
approach is a possible option for practical quantum error correction under realistic
noise scenarios.

Third, experimental repetition code data was used to train networks for code
sizes 3, 5 and 7. Compared to an uninformed MWPM decoder, the GNN was able
to achieve lower logical error rates per cycle when tested on the test data. Only
a device-specific MWPM decoder optimized for the error rates of the qubits can
reach higher accuracies. This marks an interesting strength of GNN-based decoders:
Instead of investing time and resources to fine-tune the error model and the decoder,
one simply trains with a sufficient amount of data and lets the network learn the
underlying error model. This method, however, is limited by the amount of available
data, limiting this work to small code sizes. It remains an interesting challenge to
train a graph neural network on experimental surface code data.

27

5. Conclusion

Lastly, the analysis of the inference time shows that the decoding time per sam-
ple scales approximately quadratically with the code size, comparable to MWPM. A
further overhead from the mapping from stabilizer measurements to a graph is added
to the total inference time. However, the latter algorithm could be sped up signif-
icantly. Additionally, the GNN-based decoder could potentially be implemented in
hardware to allow for fast inference times.

Apart from extending our work to larger code sizes, another future direction
of research could be the decoding of different noise models such as biased or non-
independent and non-identically distributed noise. Furthermore, one could explore
decoding different stabilizer architectures as the XZZX or the XY Z2 code [47, 48].

28

Bibliography

[1] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of Com-
puter Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[2] Richard P. Feynman. “Simulating physics with computers, 1981”. In: Interna-
tional Journal of Theoretical Physics 21.6/7 (1981).

[3] Eric Dennis et al. “Topological quantum memory”. In: J. Math. Phys. 43
(2001). doi: 10.1063/1.1499754.

[4] Google Quantum AI. “Suppressing quantum errors by scaling a surface code
logical qubit”. In: Nature 614.7949 (Feb. 2023), pp. 676–681. doi: 10.1038/
s41586-022-05434-1.

[5] Sebastian Krinner et al. “Realizing repeated quantum error correction in a
distance-three surface code”. In: Nature 605.7911 (May 2022), pp. 669–674.
doi: 10.1038/s41586-022-04566-8.

[6] Jack Edmonds. “Paths, Trees, and Flowers”. In: Canadian Journal of Mathe-
matics (1965). doi: 10.4153/CJM-1965-045-4.

[7] James R. Wootton and Daniel Loss. “High Threshold Error Correction for
the Surface Code”. In: Physical Review Letters 109.16 (Oct. 2012), p. 160503.
issn: 0031-9007. doi: 10.1103/PhysRevLett.109.160503.

[8] Adrian Hutter, James R. Wootton, and Daniel Loss. “Efficient Markov chain
Monte Carlo algorithm for the surface code”. In: Physical Review A 89.2 (Feb.
2014), p. 022326. issn: 1050-2947. doi: 10.1103/PhysRevA.89.022326.

[9] Sergey Bravyi, Martin Suchara, and Alexander Vargo. “Efficient algorithms for
maximum likelihood decoding in the surface code”. In: Physical Review A 90.3
(Sept. 2014), p. 032326. issn: 1050-2947. doi: 10.1103/PhysRevA.90.032326.

[10] Karl Hammar et al. “Error-rate-agnostic decoding of topological stabilizer
codes”. In: Phys. Rev. A 105 (4 Apr. 2022), p. 042616. doi: 10.1103/PhysRevA.
105.042616.

[11] Giacomo Torlai and Roger G. Melko. “Neural Decoder for Topological Codes”.
In: Physical Review Letters 119 (3 July 2017), p. 030501. doi: 10 . 1103 /
PhysRevLett.119.030501.

[12] Stefan Krastanov and Liang Jiang. “Deep neural network probabilistic decoder
for stabilizer codes”. In: Scientific Reports 7.1 (2017), p. 11003. doi: 10.1038/
s41598-017-11266-1.

[13] Savvas Varsamopoulos, Ben Criger, and Koen Bertels. “Decoding small surface
codes with feedforward neural networks”. In: Quantum Science and Technology
3.1 (2017), p. 015004. doi: 10.1088/2058-9565/aa955a.

29

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1063/1.1499754
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1103/PhysRevA.89.022326
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.105.042616
https://doi.org/10.1103/PhysRevA.105.042616
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1088/2058-9565/aa955a

Bibliography

[14] Christopher Chamberland and Pooya Ronagh. “Deep neural decoders for near
term fault-tolerant experiments”. In:Quantum Science and Technology 3 (2018),
p. 044002. doi: 10.1088/2058-9565/aad1f7.

[15] Paul Baireuther et al. “Machine-learning-assisted correction of correlated qubit
errors in a topological code”. In: Quantum 2 (2018), p. 48. doi: 10.22331/q-
2018-01-29-48.

[16] Nikolas P Breuckmann and Xiaotong Ni. “Scalable Neural Network Decoders
for Higher Dimensional Quantum Codes”. In: Quantum 2 (2018), p. 68. doi:
10.22331/q-2018-05-24-68.

[17] Philip Andreasson et al. “Quantum error correction for the toric code using
deep reinforcement learning”. In: Quantum 3 (2019), p. 183. doi: 10.22331/q-
2019-09-02-183.

[18] Ryan Sweke et al. “Reinforcement learning decoders for fault-tolerant quan-
tum computation”. In: Machine Learning: Science and Technology 2.2 (2020),
p. 025005. doi: 10.1088/2632-2153/abc609.

[19] Xiaotong Ni. “Neural Network Decoders for Large-Distance 2D Toric Codes”.
In: Quantum 4 (Aug. 2020), p. 310. issn: 2521-327X. doi: 10.22331/q-2020-
08-24-310.

[20] Nishad Maskara, Aleksander Kubica, and Tomas Jochym-O’Connor. “Advan-
tages of versatile neural-network decoding for topological codes”. In: Physical
Review A 99.5 (2019), p. 052351. doi: 10.1103/PhysRevA.99.052351.

[21] David Fitzek et al. “Deep Q-learning decoder for depolarizing noise on the
toric code”. In: Physical Review Research 2 (2 May 2020), p. 023230. doi:
10.1103/PhysRevResearch.2.023230.

[22] Hugo Théveniaut and Evert van Nieuwenburg. “A NEAT Quantum Error De-
coder”. In: SciPost Physics 11 (1 2021), p. 5. doi: 10.21468/SciPostPhys.
11.1.005.

[23] Spiro Gicev, Lloyd CL Hollenberg, and Muhammad Usman. A scalable and
fast artificial neural network syndrome decoder for surface codes. 2021. arXiv:
2110.05854.

[24] Mengyu Zhang et al. A Scalable, Fast and Programmable Neural Decoder
for Fault-Tolerant Quantum Computation Using Surface Codes. 2023. arXiv:
2305.15767 [quant-ph].

[25] Michael A. Nielsen et al. Quantum computation and quantum information -
10. ed. Cambridge University Press, 2010. isbn: 9781107002173.

[26] A Yu Kitaev. “Quantum computations: algorithms and error correction”. In:
Russian Mathematical Surveys 52.6 (Dec. 1997), p. 1191. doi: 10 . 1070 /
RM1997v052n06ABEH002155.

[27] John Clarke and Frank K Wilhelm. “Superconducting quantum bits”. In: Na-
ture 453.7198 (2008), pp. 1031–1042.

[28] J. I. Cirac and P. Zoller. “Quantum Computations with Cold Trapped Ions”.
In: Phys. Rev. Lett. 74 (May 1995). doi: 10.1103/PhysRevLett.74.4091.

[29] Bruce E Kane. “A silicon-based nuclear spin quantum computer”. In: nature
393.6681 (1998), pp. 133–137.

30

https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.22331/q-2020-08-24-310
https://doi.org/10.22331/q-2020-08-24-310
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevResearch.2.023230
https://doi.org/10.21468/SciPostPhys.11.1.005
https://doi.org/10.21468/SciPostPhys.11.1.005
https://arxiv.org/abs/2110.05854
https://arxiv.org/abs/2305.15767
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevLett.74.4091

Bibliography

[30] Joschka Roffe. “Quantum error correction: an introductory guide”. In: Con-
temporary Physics 60.3 (July 2019), pp. 226–245. doi: 10.1080/00107514.
2019.1667078.

[31] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. 1997.
arXiv: quant-ph/9705052 [quant-ph].

[32] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quan-
tum computation”. In: Phys. Rev. A 86 (3 Sept. 2012), p. 032324. doi: 10.
1103/PhysRevA.86.032324. url: https://link.aps.org/doi/10.1103/
PhysRevA.86.032324.

[33] Lingfei Wu et al. Graph Neural Networks: Foundations, Frontiers, and Appli-
cations. Singapore: Springer Singapore, 2022, p. 725.

[34] Xun Gao and Lu-Ming Duan. “Efficient representation of quantum many-
body states with deep neural networks”. In: Nature Communications 8.1 (Sept.
2017). doi: 10.1038/s41467-017-00705-2.

[35] Patrick Reiser et al. “Graph neural networks for materials science and chem-
istry”. In: Communications Materials 3.1 (Nov. 2022). doi: 10.1038/s43246-
022-00315-6.

[36] Gage DeZoort et al. “Graph neural networks at the Large Hadron Collider”. In:
Nature Reviews Physics 5.5 (Apr. 2023), pp. 281–303. doi: 10.1038/s42254-
023-00569-0.

[37] Bernhard Mehlig. Machine Learning with Neural Networks: An Introduction
for Scientists and Engineers. Cambridge University Press, 2021. doi: 10.1017/
9781108860604.

[38] Christian Forssén. Learning from data. url: https://gitlab.com/cforssen/
tif285-book.

[39] Christopher Morris et al. “Weisfeiler and Leman Go Neural: Higher-order
Graph Neural Networks”. In: CoRR (2018). url: arxiv.org/abs/1810.
02244.

[40] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. In: Quantum 5 (July
2021), p. 497. issn: 2521-327X. doi: 10.22331/q-2021-07-06-497.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2017. doi: 10.48550/arXiv.1412.6980.

[42] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. 2019. arXiv: 1912.01703 [cs.LG].

[43] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with
PyTorch Geometric. 2019. arXiv: 1903.02428 [cs.LG].

[44] Oscar Higgott and Craig Gidney. PyMatching v2. https://github.com/
oscarhiggott/PyMatching. 2022.

[45] Ramon W. J. Overwater, Masoud Babaie, and Fabio Sebastiano. “Neural-
Network Decoders for Quantum Error Correction Using Surface Codes: A
Space Exploration of the Hardware Cost-Performance Tradeoffs”. In: IEEE
Transactions on Quantum Engineering 3 (Feb. 2022), pp. 1–19. doi: 10.1109/
tqe.2022.3174017.

[46] “Exponential suppression of bit or phase errors with cyclic error correction”.
In: Nature 595.7867 (2021), pp. 383–387.

31

https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s42254-023-00569-0
https://doi.org/10.1038/s42254-023-00569-0
https://doi.org/10.1017/9781108860604
https://doi.org/10.1017/9781108860604
https://gitlab.com/cforssen/tif285-book
https://gitlab.com/cforssen/tif285-book
arxiv.org/abs/1810.02244
arxiv.org/abs/1810.02244
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1903.02428
https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching
https://doi.org/10.1109/tqe.2022.3174017
https://doi.org/10.1109/tqe.2022.3174017

Bibliography

[47] J Pablo Bonilla Ataides et al. “The XZZX surface code”. In: Nature commu-
nications 12.1 (2021), p. 2172.

[48] Basudha Srivastava, Anton Frisk Kockum, and Mats Granath. “The XY Z2

hexagonal stabilizer code”. In: Quantum 6 (2022), p. 698.

32

DEPARTMENT OF PHYSICS
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden
www.gu.se

www.gu.se

	List of Figures
	Introduction
	Theory
	Quantum computation
	Quantum error correction
	The three-qubit code
	The stabilizer formalism
	The surface code

	Graph neural networks
	Artificial neurons and neural networks
	Graph convolutional layers

	Methods
	From syndrome to graph
	Perfect stabilizer measurements
	Surface code under circuit-level noise
	Experimental repetition code data

	Graph neural network architecture
	Training setup

	Results
	Time scaling of the GNN decoder
	Perfect stabilizer measurements
	Circuit-level noise
	Experimental repetition code data

	Conclusion
	Bibliography

