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CNN-LSTM architecture for predicting hazardous driving situations
Using vehicle and weather data
NOOMI LINDBLAD
STEFANI PLATAKIDOU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This study aims to investigate how a CNN-LSTM model can be used together with
recorded vehicle data from trucks and external weather data in order to predict
a hazardous driving situation. The dataset consists of three-second-long driving
snippets from customer and development trucks registered within Europe. The
combination of a CNN and LSTM was implemented using two different architectures,
one parallel and one sequential. The models were compared to a Random Forest
classifier, as well as to a CNN and an LSTM individually. All models were evaluated
with the complete dataset, data without weather features, and noisy data. The
results from the complete dataset revealed that the Random Forest classifier achieved
the highest accuracy of 92%, followed by the parallel CNN-LSTM with an accuracy
of 81%. All models except the Random Forest classifier performed better with noisy
data. The outcome of the thesis challenges the initial hypothesis that a CNN-LSTM
is the optimal model given the context.

Keywords: Data science, Machine learning, LSTM, CNN, Vehicle data, Hazardous
driving situation, Deep learning.
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1
Introduction

Road traffic accidents are today one of the leading causes of death, and according to
the Centers for Disease Control and Prevention, around 1.35 million people are killed
every year around the world in road-related accidents (Centers for Disease Control
and Prevention 2020). Road safety can be increased by using Advanced Driver
Assistance Systems (ADAS) that predict hazardous traffic situations (Tigadi et al.
2016). ADAS include both active and passive safety systems, serving as aids to the
driver in the course of driving. Together with the Human Machine Interface (HMI),
ADAS not only react to vehicle sensors but also proactively communicate with the
driver, thereby enhancing overall road safety.

During driving, the vehicle sensors of the Volvo trucks record sequences of data a few
seconds before a function intervention. A function intervention is automatic braking
that gets activated if a crash is predicted to occur. Information that is recorded
includes the movement and speed of the truck. The hypothesis is that a machine
learning model can utilize this information, together with weather data, to classify
a situation as hazardous or not. Exploring what parameters are active prior to a
function intervention and searching for trends and patterns is a way to identify a
hazardous driving situation. In this context, a hazardous situation is represented
either by automatic braking of the vehicle and no crash, or automatic braking and a
crash. Implementing the final model so that it provides a message to the HMI, could
help the driver make safer choices.

1.1 Project Aim
The objective of the thesis is to identify hazardous and non-hazardous driving
situations, in the hopes of implementing this to increase road safety. Additionally,
informing the driver of such a situation can help decrease road accidents. The
problem at hand is modeled as a Time Series Classification (TSC) task, where the
aim is to classify a given driving situation as either hazardous or non-hazardous.
The available data is labeled and consists of time series data representing the values
of vehicle sensors, for example speed and acceleration, at different moments of time.
By investigating if there are any patterns or trends in the vehicle data together with
external weather data a hazardous situation might be identified. Using a machine
learning algorithm, the model can detect the necessary patterns to identify these
situations.
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1. Introduction

The overall aim of the thesis is to explore if a combination of two machine learning
classification models can be used to predict hazardous driving situations. The
machine learning model will utilize recorded vehicle data together with external data
about the weather. More precisely, this research aims to investigate whether a neural
network architecture using a CNN combined with a LSTM network can improve the
prediction of hazardous situations or not. Both a parallel and sequential version
of a CNN-LSTM will be explored. To justify the use of a deep learning model, a
comparison to a less complex machine learning model will be done. The less complex
model of choice is a Random Forest (RF) classifier since it is suitable for time series
data. Three baseline models will be compared to the hybrid CNN-LSTM models.
The three baseline models are an RF classifier, a CNN, and an LSTM.

Several previous research papers about accident prediction and classification using
vehicle data and weather data separately and together have been conducted, further
discussed in Chapter 2. Similarly, research exists about how the combined CNN-
LSTM model performs better than the individual models. Prior studies on accident
prediction have not incorporated the CNN-LSTM model using vehicle and weather
datasets for the specific purpose of accident prediction, whereas the thesis attempts
to address this research gap.

The final goal of the thesis is to investigate how machine learning models can predict
hazardous situations using vehicle and external weather data. In order to evaluate the
performance of the models two additional experiments will be conducted. First, the
models will be trained and tested without weather data in order to investigate whether
the additional data improves the models or not. Second, the models will be trained
and tested with noisy data to evaluate the models’ robustness and generalization.
The following questions can contribute to the goal of this research:

(a) How does a hybrid CNN-LSTM approach compare to the two separate models
in this context?

(b) How well does the classifier perform with weather data versus without weather
data?

(c) Can the classifier improve its performance when noisy sensor data is introduced?

1.2 Ethical Considerations
The main ethical consideration to take into account in this project is the privacy
and consent of the driver. All data used from customer trucks were collected with
consent from the customer. Further, every truck has a unique ID, if this is combined
with the GPS information, a driver can potentially be identified together with their
location. To avoid this, the ID and GPS location will be removed after merging the
data to make it anonymous. Another ethical concern is whether the model can be
biased. This can happen as a result of the constraints on the training data, as will
be mentioned in Section 1.3. However, subject to these constraints, the model does
not incorporate any personal information about the drivers. During the project, all
data will be handled in a secure way that is protected from unauthorized access.
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1. Introduction

After using the collected data for this thesis’ research and purpose, the data will be
deleted to bypass unintended consequences.

1.3 Limitations
In this project, there are three primary constraints, with the initial one being the
geographical origin of the gathered vehicle data. The provided dataset is limited to
the European region, with the underlying assumption that these trucks are only driven
within Europe. Other regions and countries might have different traffic conditions
and regulations which in turn complicates the classification task. This constraint
will affect the generalizability of the results and proposed model considering different
countries have different cultures around traffic behavior.

The second limitation stems from the difference in how the data about hazardous and
non-hazardous situations is collected. The data labeled as hazardous situations is
collected from customer trucks with a great variation of vehicles and drivers. On the
other hand, the data of the non-hazardous situations is collected from development
trucks with less variation in terms of vehicles and drivers. This implies that the data
from the non-hazardous situations differs from real-life driving since some of the
active safety functions are turned off. The features representing the functions that
are turned off will simply be removed from the dataset. This limitation might affect
the generalization of the model considering the dataset might not fully represent the
range of real-world driving scenarios and drivers. In addition, removing features may
lead to a loss of information that might be relevant to the classification of the model.

The last limitation is the fact that the recorded vehicle data is only three seconds
long, more described in Section 3.1.1. Thus, the number of data points for each
driving instance is limited and might have some effect on the classification model.

3
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2
Theory

The following sections introduce previous research within the field of accident pre-
diction and TSC. Previous studies about crash prediction and their challenges are
presented in Section 2.1, and previous studies about TSC and the three baseline
models are presented in Section 2.2. Further, two different CNN-LSTM architectures
are displayed in Section 2.3. Lastly, a brief discussion about the evaluation metrics
is presented in Section 2.4.

2.1 Crash Prediction
Crash prediction is a well studied problem that has received significant attention
in recent years. One of the first papers that attempted to predict crashes in traffic
proposed using linear regression and Poisson regression in order to predict vehicle
crashes on highways based on information about the number of vehicles from the
Indian Toll Road and weather data (Jovanis & Chang 1986). The authors came
to the conclusion that accidents increase with the number of vehicles on the road
and snowfall. Further, Chen et al. (2012) studied the risk factors that increase
intersection accidents. The authors used logistic regression and looked at data from
previous intersection accidents in Australia between the years 2000 and 2009. They
concluded that seven factors increase the intensity of the crash including the driver’s
age and gender.

More recently, Fu et al. (2022) hypothesized that data about the behavior of the
driver can be used to predict the risk of a traffic accident. The study revealed that
it is possible to predict traffic risks using an LSTM architecture. Although human
error is often the main reason for accidents occurring, there can also be external
factors that contribute to the risk of a specific situation. Yuan et al. (2018) created a
Convolutional LSTM model to predict traffic accidents based on data from historical
traffic crashes, weather, and road networks. Similarly, Kashifi et al. (2022) used
different sources of data, such as weather, traffic information, and information about
holidays to implement a hybrid of CNN and LSTM. The authors compared the
hybrid CNN-LSTM to a logistic regression model and various deep neural networks
like CNN and LSTM. The CNN-LSTM outperformed the baseline models and
achieved an accuracy of 72 % and False Positive Rate (FPR) of 28%. In another
study, Li et al. (2020) built a CNN-LSTM model for real-time crash risk prediction
using traffic data, signal timing data, and weather data. The authors compared the

5



2. Theory

CNN-LSTM to five baseline models including an LSTM, XGBoost, and Bayesian
Logistic Regression.

Furthermore, Osman & Hajij (2021) investigated how vehicle data can be used to
predict crashes. The main objective of the study was to predict crashes using pattern
recognition from observed driving behavior data. The authors compared three
different DL algorithms, namely a Multilayer Perceptron Neural Network (MLP-NN),
a CNN, and an LSTM to evaluate the predictions. Osman & Hajij (2021) hypothesis
was that the driving pattern changes during and before a crash, measured by the
motion of the vehicle. The dataset used included vehicle kinematics where every
vehicle in the dataset either crashed, had a near-crash event, or had no crash or
near-crash event. Vehicle kinematics refers to the motion and behavior of the vehicle
without considering the forces that cause the motion. The study showed that both
the LSTM and CNN models had 100% accuracy, whereas the MLP-NN had an
accuracy of 96%.

2.2 Time Series Classification
Previous research showed that LSTM and CNN were successful at TSC tasks (Osman
& Hajij 2021, Fullah Kamara et al. 2020). Fullah Kamara et al. (2020) used a
combination of Contextual CNN and Contextual LSTM to classify both univariate
and multivariate time series data. In this paper, contextual referred to long-term
feature dependencies. The combined model was called CNTC and was tested on 44
different time series datasets provided by the University of California Riverside for
benchmarking. Some examples of data used in this study were medical images, word
synonyms, and symbols. The presented CNTC model indicated an improved result
compared to the benchmark models.

Zhao et al. (2017) showed how a CNN can be used for time series classification
using multivariate data. They claimed that CNNs can be a better approach when
extracting features, compared to human-designed features. There has also been
research combining LSTM with CNN to achieve higher accuracy for multivariate
TSC. Karim et al. (2019) compared the combined model with other state-of-the-art
models and an RF and two Support Vector Machines with different kernels. The
authors used 35 different multivariate time series datasets. However, to the best of
our knowledge, the CNN-LSTM model has never been applied to vehicle and weather
data in order to predict hazardous driving situations.

2.2.1 Random Forest
As mentioned, one of the models that will be explored is the machine learning
model called RF, which was first presented in a study by Breiman (2001). RF is an
ensemble algorithm that contains multiple decision tree classifiers trained on subsets
of the dataset. The algorithm uses bagging to select a random subset of the features
for each decision tree to help increase the diversity of the classifier. The predicted
results of each decision tree are averaged in order to achieve a higher accuracy of the

6



2. Theory

Figure 2.1: Sketch of the architecture of an LSTM-NN with a memory block containing
one memory cell. Source: (Ma et al. 2015).

model. RF is known to be effective, robust to overfitting data, and achieving high
performance. Further, RF is simple to implement and understand (Breiman 2001).

2.2.2 Long Short-Term Memory
The purpose of the LSTM is to predict sequential data in a more efficient way
compared to the traditional Recurrent Neural Network (RNN). LSTM is based on
the idea of the recurrent network, the difference is that LSTM uses a short-term
memory based on the previous value in the time series together with a long-term
memory that is represented by a weight based on all values in the time series
(Hochreiter & Schmidhuber 1997). One issue with using RNNs is that during back
propagation, the gradient is based not only on the previous layer but also on all the
previous neurons. As a result, the recurring weight tends to increase beyond one
during deep back propagation. This is problematic because a large recurring weight
causes the gradient to become very small, which means it has little impact on the
weights. This is known as the vanishing gradient problem (Bengio et al. 1994).

An LSTM Neural Network consists of three layers where the only hidden layer is a
recurrent layer consisting of memory blocks, illustrated in Figure 2.1. The traditional
memory blocks consist of memory cells, which is the unit where the computations
take place. The memory cell has a core unit called Constant Error Carousel (CEC),
and the activation of the CEC is the state of the cell (Hochreiter & Schmidhuber 1997,
Ma et al. 2015, Gers 2001). The CEC will receive the long- and short-term memory
from the previous cell and the input from the time series. Based on these, together
with the weights and biases, the output will consist of the short- and long-term
memory (Hochreiter & Schmidhuber 1997). As a result of the CEC that controls
a constant error flow, the gradient will be less affected compared to a traditional
RNN. Therefore, the LSTM is less susceptible to the vanishing gradient problem
(Gers 2001).

The memory cell contains three gates: a forget, an input, and an output gate. Firstly,
the forget gate generates a value that represents the recurrent connection in the

7
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CEC state. This value is based on the output of the previous cell, together with the
current input. These values will go through a sigmoid layer and the generated value
between zero and one will be used in the CEC state as recurring weight. The weight
from the forget gate is controlling the gradient. The purpose of the input gate is
to determine what information that will be input to the CEC. The input will pass
through a sigmoid function, accompanied by the activation function of the input
gate. The value from the input gate will be one of the variables used in the CEC
state. Subsequently, the previous state of the CEC is multiplied by the forget weight
and added to the values from the input gate. When the cell state is updated the
value will be filtered through a sigmoid function, followed by the activation function
of the output gate which determines the final output of the memory cell (Abidogun
2005).

2.2.3 1D Convolutional Neural Networks
A CNN is a combination of three different ideas: convolution, pooling, and spatial
sub-sampling (LeCun et al. 1995). Convolution and pooling are used to generate
features of the raw data. The basic architecture of a 1D CNN consists of convolutional
layers, pooling layers, and fully-connected layers, that are stacked upon each other.
The convolutional layer consists of filters, also called kernels, that produce activation
maps that extract features from the input. The filter and the kernel size must be
specified as an integer. The width of the kernel is always the same size as the
width of the time series in 1D CNNs. The kernel size that is specified is the length,
illustrated as "k" in Figure 2.2. The kernel will always move in the same direction
in 1D CNNs, from the beginning of the time series to the end. The pooling layer
reduces the dimensionality of the activation maps by summarizing them using a
pooling operation, usually taking the average or maximum value within a small
window size. Finally, the fully-connected layer connects all neurons of the previous
layer to all neurons in the next. The fully connected layer is implemented before the
output layer that predicts the label of the input (O’Shea & Nash 2015). An example
of a simple 1D CNN architecture can be seen in Figure 2.2.

8



2. Theory

Figure 2.2: Sketch of the architecture of a simple 1D CNN with one convolutional layer
consisting of four filters and a kernel size of three, represented as k in the figure. The input
is time series data and the output is one of the two labels "hazardous" and "non-hazardous".

CNNs are mostly used for applications in image and speech recognition. However,
in recent years the use of CNNs for both univariate and multivariate time series
classification has been explored (LeCun et al. 1995, Zhao et al. 2017). When having
multivariate time series, Zhao et al. (2017) suggested that the input layer consists
of N × m neurons, where m represent the number of instances and N represent the
number of features in each time series. Further, Zhao et al. (2017) showed that
the number of filters, the size of the filters, and the size of the pooling layers can
drastically affect the performance of the model.

2.3 CNN-LSTM architecture
Osman & Hajij (2021) showed that both the CNN and LSTM models separately
performed well when it came to predicting vehicle crashes. In order to improve the
result even more, some researchers explored a combination of a CNN and an LSTM.
Their results showed that a combined architecture improved the result of TSC tasks
(Fullah Kamara et al. 2020, Karim et al. 2019). The advantage of the combined
model was that the LSTM was better at learning based on both long- and short-term
memory whereas the CNN was better at handling time-invariant features (Li et al.
2020).

In the literature, multiple different architectures of CNN-LSTM combined models
have been used for TSC tasks. One possible architecture is to create a model where
the input is processed by a CNN and an LSTM model simultaneously (Fullah Kamara
et al. 2020, Karim et al. 2019). The architecture of the Parallel CNN-LSTM is
illustrated in Figure 2.3 (a). Each model will get the time series as input and both of
the outputs will be concatenated after each model has been performed. Subsequently,
both values will be processed in an output layer consisting of a softmax function.
This process will return a prediction of the classification (Fullah Kamara et al. 2020,
Karim et al. 2019, Li et al. 2020).

9



2. Theory

(a) (b)

Figure 2.3: Parallel and Sequential CNN-LSTM architecture.

Another approach is to apply the different models after each other, the Sequential
CNN-LSTM is illustrated in Figure 2.3 (b). This architecture is a sequential model
where the input first is processed by a CNN network and its output will be the input
to the LSTM model. The output from the CNN maintains the same dimensions as
the input, allowing it to serve as the input to the LSTM. The LSTM is followed
by a fully connected layer before the output layer. By applying a CNN before
an LSTM and not the other way around, the CNN can act as a feature extractor,
identifying local patterns and high-level abstractions. The output from the CNN is
then processed by an LSTM, which are known to be good at capturing temporal
dependencies (He et al. 2022, Livieris et al. 2020, Kim & Cho 2019, Barzegar et al.
2020).

2.4 Evaluation Metrics
There are various methods available to evaluate the performance of supervised
classification models. When using binary classification models, there are four different
outcomes:

• True Positive (TP): label is positive, predicted as positive.

• False Negative (FN): label is positive, predicted as negative.

• True Negative (TN): label is negative, predicted as negative.

• False Positive (FP): label is negative, predicted as positive.

From this the True Positive Rate (TPR) and the FPR can be computed. These
metrics are then used to produce the Receiver Operating Characteristics (ROC)
curve at varying thresholds (Bradley 1997). In the ROC curve, the TPR is plotted
on the y-axis and the FPR on the x-axis. Calculating the Area Under the ROC
Curve (AUC) provides a way to measure the performance of the classification across
all thresholds (Bradley 1997, Ferrer 2022). An AUC score of 1.0 indicates that
the model is perfect at distinguishing between the two classes. The formulas for
calculating the TPR and FPR for the ROC curve are shown below.
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2. Theory

FPR = FP

FP + TN
.

TPR = TP

TP + FN
.

The aim of the thesis is to classify a situation as hazardous or not in hopes of notifying
the driver in time. It is important that the model does not falsely notify the driver,
therefore a low FPR rate is preferred. In contrast to the automatic braking function
where the False Negative Rate (FNR) is more important considering no hazardous
situations should be missed, the proposed model aims to notify the driver further in
advance. A commonly used threshold for the FPR is 10%. This threshold will be
used during the evaluation of the models. Another widely used evaluation metric for
classification models is accuracy. The metric tends to be biased if the classes are
unbalanced. Calculated by the positives and the negatives the formula is as follows.

Accuracy = TN + TP

TP + FP + TN + FN
.

The F1-score is another popular metric for the evaluation of classification models and
it represents the average of the precision and recall (Ferrer 2022). The F1-score can
tell if there is a good balance between how often the predicted hazardous situations
are actual hazardous situations (precision), and the correct predictions of actual
hazardous situations (recall), where

Precision = TP

TP + FP
,

Recall = TP

TP + FN
,

F1 − score = 2 · Precision · Recall

Precision + Recall
.
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3
Methods

This chapter introduces the datasets and the pre-processing steps. In Section 3.1
the description of the data is presented. Data pre-processing steps are discussed in
Section 3.2 which include the data cleaning, feature selection, transformation of data,
and fine-tuning techniques. Lastly, in Section 3.3 the architectures of the machine
learning models are presented.

3.1 Data Description
The recorded vehicle data can be described as multivariate time series data since
there were multiple features varying over time. The features were of mixed data
types consisting of both numerical and nominal categorical variables. The dataset
was divided into two main parts, one which will be referred to as the hazardous
driving dataset, and the other non-hazardous driving dataset. In addition, external
weather data was added to the model. As mentioned previously, the hazardous
driving dataset was collected from customer trucks, and the non-hazardous driving
dataset was collected from development trucks. Since these two datasets differ in the
way they were collected, subsections have been created to better describe them.

3.1.1 Hazardous Driving Dataset
The hazardous driving dataset consisted of short sequences of recorded Controller
Area Network (CAN) data a few seconds around the time of a function intervention.
Specifically, the sequences were 3 seconds long, with a frequency of 5 Hz. The
information stored was about the truck’s movement, for example, its speed, angle, and
brake pedal position. Some information about the object that triggered the function
intervention was also recorded. An object can be a car, truck, or pedestrian. Example
of information stored about the object is the speed of the object, longitude position,
and latitude position. The hazardous driving dataset was collected throughout 2022
from customer trucks registered in Europe. Each vehicle recorded roughly 90 features
and the number of events in the hazardous driving dataset were tens of thousands. All
events in the hazardous driving dataset were triggered by a function intervention and
therefore were considered hazardous situations. As mentioned earlier, a hazardous
situation is represented either by automatic braking of the vehicle and no crash, or
automatic braking and a crash. Automatic braking includes both pre-brakes and
full-brakes, and the distribution between them is unknown. When the driver does not
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react to a risk of collision, moderate braking will occur, namely the pre-braking. A
full-brake, on the other hand, happens when the collision risk is not reduced and full
emergency braking gets activated. All instances of automatic braking are considered
hazardous situations.

3.1.2 Non-Hazardous Driving Dataset
In addition to the hazardous driving dataset, a dataset with continuous CAN data
was used. The non-hazardous dataset was collected from a few development trucks
registered in Europe consisting of tens of thousands of events. The data is recorded
from development trucks, with the assumption that the dataset does not contain
any hazardous situations. Therefore, all events in the dataset were regarded as
non-hazardous situations. Similarly to the hazardous driving dataset, the data was
collected in 2022. Three-second long snippets were extracted from each driving
instance with a maximum of seven driving sessions from each truck-date combination,
which resulted in a reduction in the number of events, more described in Section
3.2.2.

3.1.3 Weather Dataset
Furthermore, it was of interest to explore if information about the weather could
enhance the accuracy of the predictions. Open-meteo is a free open-source API that
includes data about temperature, precipitation, cloud cover, humidity, and wind
speed. Data from open-meteo’s Historical Weather API was extracted for every
instance in the hazardous and non-hazardous driving dataset. The weather data was
available every hour and had an average resolution of 11 km (Open-Meteo n.d.).

3.2 Data Pre-processing
Before the data was used in the machine learning models some pre-processing steps
had been carried out. These steps included a few ways to make sure that the data
was as meaningful as possible for the purpose of the thesis.

3.2.1 Combination of Different Data Sources
The first step was to combine data from different data sources. The data from the
different datasets required matching columns, data types, and names. The hazardous,
non-hazardous, and weather datasets were merged together into one dataset. In
this step, the choice of the distribution for the labeled data was necessary, given
that the non-hazardous and hazardous driving datasets were of different sizes. The
non-hazardous driving dataset consisted of considerably fewer instances than the
hazardous driving dataset. To avoid bias during the training of the models, half of
the dataset consisted of "hazardous situations" and the other half of "non-hazardous
situations". This was done by removing events in the hazardous driving dataset. The
distribution of some features for each data label is illustrated in Figures 3.1, 3.2,
and 3.3. As seen in Figure 3.3, the distribution of the geographical location differ
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Figure 3.1: Distribution of the two
classes between rush hour (5-9 & 16-21)
and not rush hour.

Figure 3.2: Distribution of the two
classes between months.

Figure 3.3: Geographical distribution
of the two classes. Figure 3.4: Distribution of tempera-

ture between the two classes.

between the hazardous and non-hazardous instances. When analyzing the weather
features, a balanced distribution of the features across both classes can be seen. This
suggests that the absence of some non-hazardous instances in some countries should
not impact the models.

The second step was to choose the length of the time series. As mentioned previously,
the hazardous driving situations only had three seconds of data prior to the function
intervention, and in total 16 time logs, since the truck recorded data with a frequency
of 5 Hz. An example of a time series can be seen in Figure 3.5. The second before
the intervention occurs, time log -1.0 to 0.0 in Figure 3.5, a change in the pattern
can be distinguished. As a consequence, there was a risk that the last second differed
greatly compared to non-hazardous driving. The time logs between -1.0 and 0.0
were excluded to mitigate overfitting. Hence, each driving instance consisted of 11
time logs. In Figure 3.5, the dotted line is excluded from the time series. For the
non-hazardous driving dataset, two second long snippets were randomly extracted
to match the dimensions of the hazardous driving dataset. When extracting these
snippets, a condition was applied to ensure that the truck was in motion and not
stationary.
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Figure 3.5: Line plots of brake pedal position and speed of the truck prior to the function
intervention. At time log 0.0 the function intervention occurs. The last second (dotted
lines) is excluded from the dataset.

3.2.2 Data Cleaning
When the dataset was combined into one source, some cleaning of the data for
inconsistent values was necessary. This included investigating if the dataset contained
incorrect or missing data. Instances where missing data occurred were excluded from
the dataset. For all features, a range of valid values was identified, either from the
information from the different sensors or based on domain knowledge. This range
was used to exclude incorrect data. For instance, the valid range for brake pedal
position is 0-100, any data points with values outside of this range were removed.

The next data cleaning step was to decide the size of the dataset. Having in mind that
the non-hazardous driving dataset was collected from only a few development trucks
in a limited geographical area, using all the data points would create underlying
patterns and affect the generalization of the model in a negative way. Therefore,
a maximum of seven driving sessions from each truck-date combination was used
to help minimize underlying driving patterns from the same driving session. The
outcome was 2426 data points from non-hazardous situations and 2402 data points
from hazardous situations. In total, the final dataset consisted of 4828 instances,
each with 11 time logs.

After cleaning, the final dataset was divided into a training and test set with an
80/20 split. The test set was set aside and not used until the final evaluation of the
models. The remaining dataset was used during the training and optimization of the
models as well as for the feature selection step.

3.2.3 Feature Selection
Having in mind that the features of the datasets included mixed data types, the
standard correlation metrics do not work well. Therefore, a different approach was
used. The feature selection process was only performed using the training set to
avoid bias. The dataset included over 100 different features. The first exclusion
of features was automatically done when combining the hazardous, non-hazardous,
and weather datasets since some features in the hazardous driving dataset did not
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exist in the non-hazardous driving dataset. The second exclusion occurred when the
distribution of the labels between the features was investigated. If the distribution
was skewed because of the way the non-hazardous and hazardous driving datasets
were collected, that feature was excluded. One example of a skewed feature is the
collision warning feature which was never activated for the non-hazardous driving
dataset. In addition, some features were always equal for both labels and over all
time stamps. These features were excluded to minimize the dimensions of the dataset,
thus making the training process for the models shorter. Further, when analyzing
the features, it was found that some functions of the trucks were disabled when
collecting the non-hazardous data. These features were removed in order to most
accurately reflect real driving. Additionally, the GPS features were excluded from
the models to mitigate overfitting and focus on the weather features.

3.2.4 Transformation of Data
The data needed to be transformed into a correct format so that it could be used as
input for the models. The original structure of the dataset can be seen in Table 3.1.
Each instance in the dataset had 11 rows, representing 11 different time logs, and the
features were organized into columns. For the RF classifier, the input shape needed
to be one-dimensional. The data was transformed into a dataframe where each row
was a driving instance, and the columns were the features during the 11 different
time logs, see Table 3.3. The unique ID that identified each driving instance was
deleted in this step. The features were handled differently depending on if they were
static or time-variant. The shape of the dataframe was therefore (3863, 151) where
3863 was the number of driving instances and 151 was the number of time-variant
columns times the number of time logs plus the static features (13 × 11 + 8 = 151).
Static features were the ones about the weather and if it was rush hour or not. The
static features had the same values throughout all time logs.

For the neural networks, the input shape needed to be three-dimensional. The
data was transformed into an array that consisted of dataframes. Each dataframe
represented one instance with the features as columns and the time logs as rows, see
Table 3.2. Hence, the input shape was (3863, 11, 28) where 3863 was the number
of instances, 11 was the number of different time logs and 28 was the number of
features. The grouping of time logs was based on a unique ID that was deleted
in this step to remove driver traceability. The numerical features were normalized
using min-max scaling within the range of zero to one. To avoid bias, the mean
and variance for the normalization were only calculated from the training set. For
the non-binary categorical variables, one-hot encoding was performed. In one-hot
encoding, the categorical features are transformed into a vector that only has binary
values of zero and one. Initially, the feature "rush hour" was a temporal feature that
included all hours. However, in line with the objective of the thesis, a transformation
of this feature into the binary options "rush hour" and "not rush hour" was made.
Rush hour was considered the times between 5:00-9:00 and 16:00-21:00 (Wikipedia
2023). The transformation aligned more closely with the research questions of the
thesis and reduced the complexity of the feature space.
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Table 3.1: Example of the original data
structure before the transformation. Only
one instance is shown and a subset of the
features. The values for the features are
dummy values.

Table 3.2: Example of the data structure
for the DLs. Three instances are shown and
a subset of the features. The last and first
time logs are shown. The values for the
features are dummy values.

Table 3.3: Example of the data structure for the RF classifier. Three instances are
shown and only a subset of the features. All time logs are not included in the table and
the values for the features are dummy values.

3.2.5 Fine-tuning

10-fold cross validation was used for all five models when fine-tuning. 10-fold cross
validation splits the dataset into ten sub-groups and in the first fold trains on the
first nine of the sub-groups and evaluates on the tenth. In the second fold, training
is done on another subset of nine sub-groups and evaluated on the last sub-group.
This is then repeated 10 times and the average of the results of each fold is used to
evaluate the performance of the model.

Random search was used during hyperparameter tuning. Random search is a method
that searches randomly through a specified range of hyperparameters trying to find
the combination that yields the highest accuracy. To find the optimal combination,
1000 combinations of hyperparameters were tried out. When the random search was
finished, the optimal values for the hyperparameters were used to re-train the models
using the whole training set. The models were then evaluated on the test set.
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3.2.6 Adding Noise
To address the research question (c) - Can the classifier improve its performance when
noisy sensor data is introduced? - noise was introduced into both the training and test
sets. It was of interest to examine this setting because, in real-world scenarios, sensors
can malfunction or deteriorate over time, leading to imprecise values. Investigating
if the noisy data could obtain a high accuracy for classifying hazardous and non-
hazardous situations is what this scenario reflects. For the numerical features in the
training and test sets, gaussian noise was added with a mean of 0 and a standard
deviation of 0.01. The tuning process involved adjusting the value of the standard
deviation, which is a hyperparameter. Regarding the categorical features, noise was
introduced by flipping the categories with a certain probability. The probability was
set to 40%, meaning that there was a 40% chance of flipping the label. In a binary
case this would mean that there was a 60% chance of keeping its original label and a
40% chance of flipping to the other label. In a multi-label scenario, if a flip occurred,
the remaining labels had an equal probability distribution. The probability value
was tuned with different values, considering it was a hyperparameter.

3.3 Model Architecture
As mentioned previously, an RF classifier was used as one of the baseline models. In
addition to the simpler machine learning model, a CNN and an LSTM were used
separately for comparison to the hybrid model. Therefore, the baseline models were
an RF, a CNN, and an LSTM.

3.3.1 Baseline models
As mentioned previously, a random search with 1000 combinations of hyperparameters
was performed. The input shape for the RF classifier was (3863 × 151), where
3863 was the number of driving instances and 151 was the number of features. The
number of trees in the forest was 120 with the maximum amount of depth in each
tree being 10. The weights between the two classes were balanced for each sample
for every tree. The number of instances required to split a node was set to 10. The
limit of how many features to consider when looking for the optimal split was the
fraction 0.1.

After performing cross validation to optimize the CNN, a three-layer network was
implemented. The input and output layers were not included when counting the
layers. The CNN consisted of two convolutional layers and one fully connected layer.
The input shape of the time series was (3863 × 11 × 28), where 3863 was the number
of instances, 11 was the number of time logs, and 28 was the number of features. The
learning rate was 0.001 and the batch size was 32. The Adam optimizer was used
during training. The training ran for 100 epochs and the chosen hyperparameters
from the random search 10-fold cross validation can be seen in Table 3.4.
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Table 3.4: Hyperparameter tuning results for the CNN. The column Range represents
the values randomly tested whereas the column Value presents the final value for each
hyperparameter.

Hyperparameter Range Value
Number of convolutional layers 2, 3 2
Filter size 32, 64, 128 64
Kernel size 3, 5, 7 3
Pool size 2, 3, 4 2
Number of nodes for dense layer 16, 32, 64 64
Dropout 0.1, 0.2, 0.3 0.2
Learning rate 0.0001, 0.001, 0.01 0.001
Batch size 16, 32, 64, 128 32
Epochs 50, 100, 150 100
Patience for early stopping 10 10

The LSTM model consisted of two recurrent LSTM layers. The input shape of the
LSTM model was (3863 × 11 × 28) and the LSTM layer used tanh as the activation
function and sigmoid as the recurrent activation function. Both of the hidden layers
consisted of 64 units and after both layers, a dropout was applied. The dropout
was initially 0.2 and for each layer, the value was reduced by 0.1. The network
was compiled with the Adam optimizer and a learning rate of 0.01. The best result
for the LSTM was reached with a batch size of 16 and 100 epochs. The chosen
hyperparameter values from the cross validation can be seen in Table 3.5.

3.3.2 CNN-LSTM
The input of both of the hybrid CNN-LSTM models was a (3863 × 11 × 28) matrix,
similar to the individual CNN and LSTM models. The parallel CNN-LSTM was
implemented using the Keras functional API, which is a way to create more complex
models that can be processed in parallel. With this API models with multiple inputs,
outputs, and shared layers can be created. In the parallel CNN-LSTM, the CNN
model consisted of two convolutional and pooling layers followed by a flattening
layer. The last step of the CNN model is a Dense layer with 64 nodes. The LSTM

Table 3.5: Hyperparameter tuning results for the LSTM. The column Range represents
the values randomly tested whereas the column Value presents the final value for each
hyperparameter.

Hyperparameter Range Value
Number of layers 1, 2, 3 2
Number of nodes in LSTM 16, 32, 64 64
Initializer glorot uniform, orthogonal, truncated normal orthogonal
Dropout 0.2, 0.3, 0.4, 0.5 0.2
Learning rate 0.0001, 0.001, 0.01 0.01
Batch size 16, 32, 64, 128 16
Epochs 50, 100, 150 100
Patience for early stopping 10 10
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Table 3.6: Hyperparameter tuning results for the Parallel and Sequential CNN-LSTM.
The column Range represents the values randomly tested whereas columns Parallel and
Sequential present the final value for each hyperparameter.

Hyperparameter Range Parallel Sequential
Number of LSTM layers 1, 2, 3 1 2
Number of nodes for LSTM 16, 32, 64 32 16
Initializer glorot uniform, orthogonal, orthogonal orthogonal

truncated normal
Dropout LSTM 0.2, 0.3, 0.4, 0.5 0.3 0.5
Number of convolutional layers 1, 2, 3 2 3
CNN filter size 32, 64, 128 32 64
CNN kernel size 3, 5, 7 7 5
CNN pool size 2, 3, 4 4 2
CNN dropout 0.1, 0.2, 0.3 0.3 0.1
CNN nodes for dense layer 32, 64, 128 64 NA
Number of nodes for dense layer 16, 32, 64, 128 64 32
Learning rate 0.0001, 0.001, 0.01 0.001 0.001
Batch size 16, 32, 64, 128 32 16
Epochs 50, 100, 150 150 100
Patience for early stopping 10 10 10

model was composed of one LSTM layer with a dropout of 0.3. The output from the
CNN and LSTM was concatenated and processed through a Dense layer with ReLu
function activation before the output layer.

The Sequential CNN-LSTM model was implemented using the Sequential class
in Keras. The model architecture consisted of three convolutional and pooling
layers, followed by two LSTM layers. After each LSTM layer, dropout layers were
implemented to help mitigate overfitting. No fully-connected layer was implemented
after the pooling layers in the CNN in order to have the output from the CNN layers
as input to the LSTM layers.

Both the parallel and sequential CNN-LSTM models were tuned by using random
search on the range displayed in Table 3.6. The hyperparameter values were chosen
from a 10-fold cross validation shown in the last two columns in the table. The final
architectures of the sequential and parallel CNN-LSTM are visualized in Appendix
B.
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4
Results

This chapter presents the results of the models. The performance of the models was
evaluated by testing them on data consisting of both hazardous and non-hazardous
situations. To evaluate the models an 80/20 train/test split was used. Section 4.1
presents and compares the results from all five models. In Section 4.2, the results
from all models when the weather data is excluded from the dataset are presented.
Lastly, in Section 4.3, the results from all models when the dataset includes noise
are presented.

4.1 Result from all models
In Table 4.1 the result from training the five models are presented. The result for
the training was retrieved by training the models with 10-fold cross validation. The
metrics in the table under column Train are the average over all folds. The results
when evaluating the models using the test set are seen under column Test in the
table.

As presented in Table 4.1, all models except for the LSTM attained a training set
accuracy of around 92%. When looking at the result from the test set, RF achieved
the highest accuracy score of 92% which was less than half a percentage point lower
than the training result. Moreover, the F1-score and AUC for the RF resulted in
a minor decrease in performance when evaluated on the test set. As for the CNN,
its testing set accuracy resulted in 79.5%, which was a decrease of 12.1 percentage
points compared to the training set accuracy. The F1-score and AUC metrics showed
similar behavior for the CNN on the test set. The parallel CNN-LSTM model
attained a testing set accuracy of 81.2% and an F1-score of 77.6%. The AUC score
for the testing set resulted in a value of 81.3%. Whereas the sequential CNN-LSTM
obtained a test accuracy and AUC score of 67% and an F1-score of 73.6%. The
average training accuracy for the LSTM resulted in a value of 82.7%, an F1-score of
81.7%, and an AUC of 91.5%. As for the test set, the LSTM attained an accuracy
of 68.5%, an F1-score of 55.3%, and an AUC of 68.6%.

As shown in Table 4.1, both hybrid CNN-LSTMs seem to have similar scores for
the training data as for the other models. However, when comparing the test result
among the models, the LSTM and sequential CNN-LSTM perform the poorest. The
RF performs the best with similar scores on the test set as the training set which is
an indication of neither under- or overfitting.
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Table 4.1: Accuracy, F1-score, and AUC for training and test set for each model.

Train Test
Model Accuracy F1-Score AUC Accuracy F1-Score AUC FPR
RF 0.924 0.922 0.981 0.920 0.919 0.920 0.060
CNN 0.916 0.912 0.961 0.795 0.792 0.795 0.191
LSTM 0.827 0.817 0.915 0.685 0.553 0.686 0.017
pCNN-LSTM 0.924 0.923 0.924 0.812 0.776 0.813 0.021
sCNN-LSTM 0.925 0.922 0.968 0.670 0.736 0.670 0.575

Moreover, the FPR scores are shown in Table 4.1. The FPR was of interest considering
an optimal model would not falsely notify the driver that a hazardous driving situation
will occur. When evaluating the performance of the models based on the FPR, a
value below 10% was considered good. As shown in the table the RF, LSTM, and the
parallel CNN-LSTM managed a FPR below 10%. The FPR scores were computed
based on the FPs and the TNs, which can be seen in the first row of the confusion
matrices in Figure 4.1. An interesting result that can be seen in Figure 4.1 (c) is that
the LSTM had the lowest FPR but achieved the lowest accuracy since it predicted
many instances to be false. The LSTM and sequential CNN-LSTM achieved similar
accuracies on the test set but different FPRs, this is due to the fact that the LSTM
predicts many instances as non-hazardous situations and the sequential CNN-LSTM
predicts many instances as hazardous situations.

(a) RF (b) CNN (c) LSTM

(d) Parallel CNN-LSTM (e) Sequential CNN-LSTM

Figure 4.1: Confusion matrices for each model.
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Table 4.2: Accuracy, F1-score, and AUC for training and test set for each model without
weather data.

Train Test
Model Accuracy F1-Score AUC Accuracy F1-Score AUC FPR
RF 0.911 0.910 0.976 0.733 0.785 0.732 0.511
CNN 0.936 0.932 0.973 0.708 0.737 0.707 0.401
LSTM 0.850 0.850 0.934 0.792 0.778 0.792 0.143
pCNN-LSTM 0.932 0.928 0.932 0.822 0.792 0.822 0.033
sCNN-LSTM 0.924 0.922 0.970 0.717 0.613 0.718 0.010

4.2 Result without weather data
The results from all models, trained and tested on data excluding the weather features,
are presented in Table 4.2. The training set metrics were obtained through 10-fold
cross validation using the hyperparameters that resulted in the highest validation
accuracy during the random search. As shown in the table, the RF obtained a
training set accuracy of 91.1% and a test set accuracy of 73.3%, a decrease of almost
18 percentage points. Similar behavior can be seen in the other models. The model
with the highest test set accuracy was the parallel CNN-LSTM with a FPR of 3.3%.
Out of all models, only the parallel and the sequential CNN-LSTM had an FPR
below 10%. The confusion matrices used to calculate the FPRs can be found in
Appendix A.

When comparing this result to the result including weather data in Table 4.1, the
training and test set results are quite similar between the models. The test result of
the RF seems to be the most affected by the removal of the weather data, where the
accuracy for the RF decreased from 91.6% to 73.3%. Similarly, the accuracy of CNN
decreased by almost 9 percentage points when the weather data was excluded. In
contrast, the accuracy for LSTM increased from 68.5% to 79.2%. The result from the
parallel and sequential CNN-LSTM was relatively stable regardless of the removal of
weather data.

4.3 Result when adding noise
In Table 4.3 the results from all five models when including noise to the training and
test sets are presented. The metrics from the training set were obtained from 10-fold
cross validation. The hyperparameters that achieved the highest validation accuracy
in the random search for the individual models were used for the cross validation. In
the table, we can see that the RF has the highest training set accuracy of almost
90%. As for the test set accuracies, the RF obtained the highest score, followed by
the parallel CNN. All models had lower FPRs, with only the RF achieving an FPR
below 10%. The confusion matrices used to calculate the FPRs can be found in
Appendix A.

25



4. Results

Table 4.3: Accuracy, F1-score, and AUC for noisy training and test sets for each model.

Train Test
Model Accuracy F1-Score AUC Accuracy F1-Score AUC FPR
RF 0.893 0.888 0.963 0.896 0.894 0.896 0.077
CNN 0.854 0.851 0.929 0.839 0.843 0.893 0.179
LSTM 0.837 0.837 0.921 0.809 0.815 0.809 0.216
pCNN-LSTM 0.875 0.872 0.876 0.815 0.807 0.816 0.135
sCNN-LSTM 0.859 0.855 0.929 0.825 0.830 0.825 0.202

From the results, we can see that when noise is added the difference between the
training and testing result is smaller compared to the previous tests with and without
weather data. Compared to the results in Table 4.1 and Table 4.2, the scoring values
are more even among the models. Further, we can observe that all models except
the RF performed better when noise was added.
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This chapter will include discussions around the performance of the models, the choice
of method, and its limitations. In Section 5.1 a summarization of the results obtained
in Chapter 4 will be presented and commented on. In Section 5.2 a discussion about
the different models will be presented, as well as some limitations of the thesis.

5.1 Model performance
The following section analyzes and discusses the performance of the models and their
relation to the research questions stated at the beginning of this thesis. The research
questions address how a CNN-LSTM model performs compared to the two separate
models and if the models improve when including data about the weather. The last
research question addresses how noisy sensor data affects the performance of the
models. As a justification for using Deep Learning (DL) models to solve the aim of
the thesis, an RF model was used for comparison.

5.1.1 Complete dataset
The result from the complete data set showed that the RF outperformed the rest of
the models when deployed on the test set. Moreover, RF is the only model that had
similar scoring values on the training and test sets compared to the other models that
decreased in performance when deployed on the test set. The DL models had high
scoring values on the training set, around 90%, however the test set scoring values
were close to 70% for the LSTM and sequential CNN-LSTM, and close to 80% for the
CNN and parallel CNN-LSTM. The decrease in performance from the training set to
the test set is a sign of overfitting. All DL models used dropout in between layers and
early stopping to omit overfitting as much as possible, but looking at the results it
seems that the regularization techniques used might not have been enough. Another
reason that might have caused overfitting is the complexity of the DL models. A
more complex model is prone to learning the training data too well, resulting in
lower test set results. A third reason that could be the cause of overfitting is the
size of the datasets. DL models are data hungry and can easily overfit if the dataset
is small, which is one of the limitations of this thesis. A combination of the three
reasons mentioned is what we believe have affected the results from the DL models
on the test sets.
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5.1.2 Without weather data

When excluding the weather data, we can see a similar behavior for all models when
it comes to overfitting. Without the weather data, even the RF overfits considering
the test set evaluation metrics are much lower than the training set metrics. Since
each decision tree in the RF only considers a subset of the features the exclusion
of the weather data might have affected the model to draw important connections
and patterns. Some DL models performed slightly worse without the weather data
and some better. This can be an effect of the natural randomness DL models have
when initiating the weights. For the RF and CNN, the accuracies were lower when
excluding weather data and the FPRs were higher. With this combination, we can
draw the conclusion that the two models perform worse without weather data. For
the LSTM, the model achieved an average of 10.7 percentage points higher accuracy
when excluding the weather data. On the other hand, the FPR was above 10%,
meaning that the model predicts many instances to be hazardous even though they
are not. In a scenario where the model is implemented in a vehicle in order to notify
the driver about the situation being hazardous, a model that has a lower FPR would
be preferable. However, when selecting the optimal model the metrics need to be
weighted differently depending on the context.

When comparing the results from Table 4.1 and Table 4.2, we can observe that the
test results of the parallel and sequential CNN-LSTMs are not fluctuating as much
as the other models. This might be an indicator that the hybrid models are better
at finding patterns without the need for additional weather data. From the results,
we can draw the conclusion that the RF, CNN, and LSTM perform worse when
excluding weather data, however, we cannot draw any conclusion about how it affects
the hybrid models.

5.1.3 Adding noise

When noise was added to the datasets the difference between training and testing
scores was reduced for all models. The training results were slightly lower when using
noise compared to using the complete dataset and excluding the weather features.
On the other hand, the testing results increased for all models except for the RF.
Further, the training and test results for all models were similar, which is a sign that
the models neither under- or overfitted the training data. The RF outperformed the
DL models, similar to the results from the complete data set. For the CNN and
sequential CNN-LSTM the accuracies were higher and the FPRs were lower, which
is an indication that the models performed better when noise was added. The LSTM
and parallel CNN-LSTM had higher accuracies but also higher FPRs. Despite the
fact that the RF resulted in superior performance compared to all other models, it is
noteworthy that the DL models achieved higher scores as well when noise was added.
The conclusion we can draw is that all DL models perform better and are more
robust when noise is added to the datasets when looking at the accuracy, F1-score,
and AUC.
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5. Discussion

5.2 Method discussion

The hybrid CNN-LSTM has been proven by previous studies to work better for
sequential data compared to the separate models, as discussed in Chapter 2. Most
of the previous research has compared their hybrid CNN-LSTM with various other
models, such as DL models, ensemble algorithms, and logistic regression. To achieve
the goal of the thesis, the performance of a parallel and sequential CNN-LSTM have
been evaluated and compared to an RF, a CNN, and an LSTM. Unlike previous
studies within crash prediction, we are comparing our DL models with an RF. The
RF is known to be a good ensemble algorithm that does not require as much data
as the DL models. As mentioned earlier, the RF turned out to be a better model
for the data in this specific project with its limitation. However, if the models were
trained on a larger dataset the results might have been different. Nevertheless, it is
important to consider that the DL models require more complex tuning and greater
computational resources. The initial hypothesis was that the hybrid CNN-LSTMs
would outperform the RF, which is why we chose it as one of our baseline models.
Therefore, including simpler baseline models, like a logistic regression model or a
decision tree, might have added value to the results of the thesis. Comparing DL
models with simple baseline models, unlike RF, might be a more fair comparison
considering the limitations of this study. Despite the fact that the RF outperformed
our proposed CNN-LSTMs, the simplicity of the RF should not be regarded as a
disadvantage. One advantage is the interpretability of an RF, which are easier to
understand and are more transparent in how the predictions are made, compared to
DL models.

The hazardous dataset includes both pre-brakes and full-brakes and, as mentioned
previously, the pre-brake is when the vehicle slightly brakes automatically and a
full-brake is when full braking power gets activated in order to bring the vehicle to a
stop. Considering the pre-braking function is used for alerting the driver to react to
a situation it can be discussed if it should be considered a hazardous situation or
not. Depending on the driving style of the driver, the pre-braking will occur more or
less often. One driver may prefer to keep a larger distance from other cars whereas
another driver does not and most likely would activate the pre-brake more often
than the first driver. In this context, some of the pre-brakes that were activated
may not necessarily be considered hazardous, they are just that driver’s driving style.
Therefore, it is hard to define a hazardous situation since it is subjective to each
driver. Including pre-brakes would mean that some situations we want to classify as
hazardous may not actually be hazardous. Here we needed to consider the trade-off
between including pre-brakes or not when training the models. Including pre-brakes
means that there is a risk that some of the instances are not actually hazardous
whereas others are. This would also mean that the training data is larger for the
models. On the other hand, by only considering full-brakes when training the models
we might eliminate the risk of including non-hazardous instances, however, we might
miss some situations where the driver manages to avoid the full-brake by intervening.
There are pros and cons to both decisions and therefore it might be of interest to
investigate both options when drawing any conclusion.
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5. Discussion

5.2.1 Limitations
There are a few limitations in the thesis that have influenced the results of the
chosen models. The first one is the dataset itself. As mentioned previously, the
hazardous dataset consists of data from customer trucks, whereas the data from the
non-hazardous dataset was from development trucks. This results in less variability
in terms of drivers and vehicles for the non-hazardous dataset. This limitation was
not considered when choosing the models. As known, DL models need lots of training
data in order to not overfit. In the preprocessing phase, a trade-off between a larger
dataset with underlying patterns or a smaller dataset with fewer underlying patterns
was made. Underlying patterns, in this context, would be that many instances were
from the same day and truck, and presumably from the same driver, which would
result in similar driving behaviors among the instances. The choice of reducing the
dataset was made in order to avoid the models from overfitting the data sample.

Since the training and test set included instances where the same driver and vehicle
were used, we believe that including all data points could have potentially improved
the results. However, evaluating the models on a test set where the non-hazardous
instances are not from development trucks the performance is not guaranteed. There-
fore, the assumption we are making is that the generalizability of the models is poor.
The optimal case would be to train the models on data from customer trucks, where
the hazardous and non-hazardous are both from real-life driving, unlike in our case.

Another limitation is the fact that the data was collected in Europe, with the
underlying assumption that the vehicles were only driven within Europe. Since the
GPS location was not included in the parameters for the models, the location itself
was not considered to be a limitation of the models. However, there are other factors
connected to the location that may affect the models, such as driving behavior, road
conditions, and the variation in weather. The purpose of the models was not to be
used outside of Europe, which is the reason for only including training instances
registered in Europe. Nevertheless, driving in countries within Europe differ and
including a more even spread among the countries can combat any bias and help the
generalizability of the models.
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6
Conclusion

Road traffic accidents can be prevented by using ADAS when a hazardous driving
situation occurs. The hypothesis of the thesis was that by using vehicle data together
with external weather data, trends and patterns can be identified in order to classify
a certain situation as hazardous or not. Finding these patterns early on would be
an alternative way of increasing road safety. Motivated by previous studies that
have used and achieved high performance on the hybrid CNN-LSTM model for
sequential data, the thesis investigated if the hybrid model could be applied in
accident prediction using time series data. Two different architectures of the CNN-
LSTM were implemented, one parallel and one sequential. These were compared to
an RF classifier, a CNN, and an LSTM. The models were trained and evaluated
on the complete dataset. Furthermore, the models were evaluated by excluding the
weather features in both training and testing. Lastly, the performance of the models
was explored when noise was added to the data.

From the results, a tendency to overfit can be observed for all DL models, even though
they obtained an accuracy close to 80%. The models that were overfitting on the
complete dataset were improved when noise was added. However, RF outperformed
the rest of the models in two out of three tests. The best performance achieved by the
RF classifier was on the complete dataset with an accuracy of 92%. By revisiting the
three research questions posed at the beginning of the thesis, the parallel CNN-LSTM
performed better than the CNN and LSTM in two out of three test cases. However,
the CNN and parallel CNN-LSTM achieved comparable levels of accuracy during the
testing phase. The LSTM performed worst in all cases, achieving the lowest accuracy.
Further, the RF, CNN, and LSTM performed worse when excluding the weather
features, however, no conclusion can be drawn about how the weather features affect
the hybrid models. This is because the hybrid models achieved a similar performance
with and without weather features. Lastly, all models except the RF performed
better on the test sets when including noise in the training and testing of the models.

The result challenges the hypothesis that a hybrid CNN-LSTM is the most suitable
model for predicting hazardous driving situations using recorded vehicle data together
with external weather data. One important factor that might have affected the result
is the insufficiency of real-world data for non-hazardous situations. Even though
the best performing model achieved an accuracy of 92%, it is not recommended to
apply the model in a real-world scenario at this stage, as it needs to be trained and
evaluated on a larger dataset from real-life driving.
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6. Conclusion

6.1 Future Work
As discussed in previous sections, testing the model on an out-of-sample dataset
where the data comes from customer trucks would be the first step to evaluating
the generalizability of the models. If the performance of the model after testing it
on an out-of-sample test set does not correspond to the one in the thesis, including
customer data in the training of the model can be an option. Another interesting
direction to take as a continuation of the thesis is to only include full-braking in
the hazardous dataset during training. By doing so, any situations that triggered
a function intervention but were not actually considered to be hazardous would be
eliminated.

Another direction for future work is to apply the models on longer time series in order
to predict a hazardous driving situation further in advance. This can be attainable
by collecting longer segments of vehicle data. In this thesis, some features had to
be discarded in the making of the models since they were closely connected to an
intervention. If longer segments are included these features can be included which
can help the performance of the model.
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Appendix 1

(a) RF (b) CNN (c) LSTM

(d) Parallel CNN-LSTM (e) Sequential CNN-LSTM

Figure A.1: Confusion matrices for each model without weather data.
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A. Appendix 1

(a) RF (b) CNN (c) LSTM

(d) Parallel CNN-LSTM (e) Sequential CNN-LSTM

Figure A.2: Confusion matrices for each model with noise added to data.
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Appendix 2

Figure B.1: Architecture of the sequential CNN-LSTM.
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B. Appendix 2

Figure B.2: Architecture of the parallel CNN-LSTM.
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