
Thesis for The Degree of Doctor of Philosophy

Towards Next-Gen Machine Learning Asset
Management Tools

Idowu O. Samuel

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering

University of Gothenburg
Gothenburg, Sweden, 2023

Towards Next-Gen Machine Learning Asset Management Tools

Idowu O. Samuel

Copyright ©2023 Idowu O. Samuel
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Interaction Design and Software Engineering
University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2023.

ii

“To know, is to know that you know nothing. That is the meaning
of true knowledge.”

- Socrates

iv

Abstract

Context: The proficiency of machine learning (ML) systems in solving many real-
world problems effectively has enabled a paradigm shift toward ML-enabled systems.
In ML-enabled software, significant software code artifacts (i.e., assets) are replaced
by ML-related assets, introducing multiple system development and production chal-
lenges. In particular, the need to manage extended asset types introduced by ML
systems and the non-deterministic nature of ML make using traditional software
engineering (SE) tools ineffective. The lack of supporting tools makes it demanding
to address the concerns of specific aspects of ML-enabled system development, such
as model experimentation. Consequently, new tool classes are being introduced
to address these challenges. ML experiment management tools (ExMT) are exam-
ples of such tools aiming to mitigate the challenges and users’ burden of managing
ML-specific assets. Although these tools have recently become available, they are,
unfortunately, not fully mature and have the potential for several improvements. For
instance, many practitioners still consider ExMTs costly, restrictive, and ineffective.
These challenges imply the need for improvements in many areas and raise research
questions about the appropriate characteristics of a useful and effective ExMT for
managing the development assets of ML-enabled systems.
Objective: This PhD research aims to contribute to the rapidly evolving space of new
and improved ExMTs to facilitate the development of improved tools targeting com-
bined SE and data science use cases. Consequently, we contributed to the knowledge
and extended insights on ML experiment, their assets, the ExMT’s landscape, and
their benefits and effectiveness. We later proposed steps towards integrated ExMTs
and artifacts based on the obtained insights.
Method: We addressed our objectives by adopting 1) knowledge-seeking research,
including exploratory studies, literature reviews, feature surveys, practitioner surveys,
and controlled experiments, and 2) solution-seeking research, including design science
proposing unified concepts from multiple tools. The former was used to understand
ML experiments, the challenges of managing experiment assets, the state of practice
and landscape of existing ExMTs, and their effectiveness, benefits, and limitations.
The acquired insights are then leveraged to propose research steps in the later part
toward integrated ExMTs using design science to develop a blueprint for unified
management tools.
Results: This thesis presents seven significant results. First, it provides an empirically
informed overview of the challenges in ML experiment management. Second, it
presents insights into the types of ML-based projects, their development activities,
and evolution patterns. Third, it offers an overview of existing tools, shedding light
on the state of practice and research on asset management tools for ML experiments.
Fourth, it presents an empirical-based report on the benefits and challenges of ExMTs.
Fifth, it establishes the effectiveness of ExMTs in improving user performance. Sixth,
it proposes a step-by-step guide toward integrated ML tools for SE and data science.
Seventh, it presents a prototype and blueprint for a unified ExMT.
Conclusion: This thesis highlights the significance of ML asset management as an
essential discipline in facilitating experiments and asset management for ML-enabled
software systems. It provides empirical data that offers crucial insights into the
tooling landscape for managing ML experiment assets, including their features, ben-
efits, limitations, and effectiveness. Additionally, the research proposes a guide and
prototype to facilitate the design of new ExMTs.

Keywords

Machine Learning, Workflow, Experiment, Management, Model Life-cycle, Asset,
Artifact, Management, Tools, Systems, Taxonomy, Assessment, SE4ML

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor,
Prof. Thorsten Berger, for providing me with the opportunity to pursue my
Ph.D. studies and for his continuous support throughout my research journey.
His unwavering guidance, patience, motivation, enthusiasm, and vast knowledge
have been invaluable to me. I am truly grateful for his mentorship and expertise.

I would also like to extend my heartfelt thanks to my co-supervisor, Daniel
Strüber, for his invaluable support, guidance, and encouragement. His expertise
and insights have greatly contributed to the success of my research and the
completion of this thesis. I am fortunate to have had such a dedicated and
supportive co-supervisor.

I am grateful to my supervisors for my Licentiate studies and research,
Christer Åhlund, Saguna Saguna, and Olov Schélen of the Pervasive Computing
research group at Lule̊a University of Technology, Sweden.

I would like to acknowledge the EASELab Group and my fellow researchers
for their stimulating discussions, insightful comments, collaboration, encourage-
ment, and guidance. I express my gratitude to Mukelabai Mukelabai, Dragule
Swaib, Razan Ghzouli, Wardah Mahmood, Ricardo Caldas, Jacob Kruger, and
Yorick Sens for their valuable contributions. I also extend my thanks to my
colleagues Weixing Zhang, Afonso Fontes, and Peter Hazem Samoaa for their
camaraderie and engaging conversations.

I am indebted to my managers at Aptiv for their support in various capacities
and for granting me study leave to complete my Ph.D. studies.

To my caring, loving, and supportive wife, Mobolaji, I offer my deepest and
sincerest gratitude. Your unwavering encouragement, prayers, and sacrifices
during challenging times are immensely appreciated and cherished. I would
also like to express my love and gratitude to my adorable boys, Fola and Folu,
who have been a constant source of inspiration for me.

To my parents and siblings, I extend my heartfelt thanks for their unwavering
belief in me and their continuous encouragement to strive for excellence.

Lastly, I would like to thank God for granting me the grace and strength to
complete this thesis. I extend my gratitude to all those who have supported me
throughout this journey in various ways—whether by answering my questions,
offering encouragement, or simply being good friends and colleagues.

Samuel, O. Idowu

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] S. Idowu, C. Åhlund, and O. Schelén “Machine Learning in District
Heating System Energy Optimization”
in PerCom Workshops, pp. 224–227, 2014.

[B] S. Idowu, S. Saguna, C. Ahlund, and O. Schelen “Applied Machine
Learning: Forecasting Heat load in District Heating System”
Elsevier Energy and Buildings, vol. 133, pp. 478–488, 2016.

[C] S. Idowu, O. Osman, D. Struber and T. Berger “On the Effectiveness
of Machine Learning Experiment Management Tools”
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice (SEIP), pp. 207-208, 2022.

[D] S. Idowu, D. Strüber, and T. Berger “Asset Management in Machine
Learning: State-of-research and State-of-practice.”
ACM Computing Surveys (CSUR), 55(7): 144:1-144:35, 2022.

[E] S. Idowu, O. Osman, D. Struber, and T. Berger “Machine Learning
Experiment Management Tools: A Mixed-Method Empirical Study”
Empirical Software Engineering (EMSE), 2023, [Under minor revision].

[F] S. Idowu, Y. Sens, T. Berger, M. Vierhauser, and J. Kruger “A Large-
Scale Study of ML-Related Python Projects”
2024, [Under review].

[G] S. Idowu, D. Strüber, and T. Berger “EMMM: A Unified Meta-Model
for Tracking Machine Learning Experiments”
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), 2022.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] S. Idowu, S. Saguna, C. Åhlund, and O. Schelén “Forecasting heat load
for smart district heating systems: A machine learning approach”
IEEE International Conference on Smart Grid Communications, pp.
554–559, 2014.

[b] S. Idowu, D. Struber, and T. Berger “Asset Management in Machine
Learning: A Survey”
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice (SEIP), pp. 51–60, 2021.

[c] M. Ahmed, K. Bassuday, S. Idowu, W. Leeson, D. Struber, T. Berger
“Designing and Deploying Software Defect Prediction in Industry: Experi-
ences from the Infotainment Domain”
[Unpublished].

Research Contribution

I contributed to several papers, and my contributions are listed below according
to the Contributor Roles Taxonomy (CRediT)1. The degree of my contribution
is specified as ’lead,’ ’equal,’ or ’supporting’ where necessary.

Papers A and B report exploratory studies on Machine Learning (ML)
in the District Heating System (DHS) domain. I equally participated in
conceptualizing the study, data curation, and formulating the methodology.
However, I led the formal analysis and implementation of the study. I conducted
extensive investigations on the subject systems by reviewing state-of-the-art
literature on energy prediction methods and acquiring ML and DHS domain
knowledge. I led the experimentations and visualization of the research results.
I also led the writing process for the original draft, as well as the reviewing
and editing of the papers.

Paper C proposes a research agenda towards integrated ML and software
engineering tools. Although I equally participated in the conceptualization, I led
the investigation of the subject area and the visualization of the research result.
I took charge of the writing process for the original paper and contributed
equally to the review and editing of the paper.

Paper D presents the report of a literature review and feature model analysis,
which is an extension of Paper b with the same authors. While I equally
participated in conceptualizing the original research paper, I led the data
curation and collection of relevant resources such as subject literature and
tools. I also led the formal analysis and investigation of the subject tools. I
equally participated in the methodology design and led the implementation of
the study. I also led the visualization and presentation of the result data. I
took charge of the writing process for both Paper D and Paper b and led the
review and editing of the papers.

Paper E reports two empirical studies. For the first empirical study using
a controlled experiment, I led the conceptualization of the research idea and
equally participated in designing the controlled experiment and questionnaire.
I also equally participated in the methodology design and the data curation by
disseminating the experiment information and instructions to participants. I
led the analysis of participants’ responses and the result presentation. I equally
participated in conceptualizing the research idea for the practitioners’ survey
and led the survey questionnaire design. I also equally participated in the data
collection by disseminating survey instruments to potential participants. I led
the analysis of participants’ responses and the result presentation. Moreover, I
led the writing of the original drafts and had a hand in reviewing and editing
the final paper.

Paper F reports on a large-scale study adopting repository mining on ML-
related Python projects. Although I equally participated in conceptualizing
the research idea, I supported the data curation and collection. I also equally
participated in the methodology design and analysis of the subject projects,
led the visualization of the result data, and contributed to writing the original
drafts and final paper.

Paper G adopts design science to propose artifacts unifying multiple tools’
versioning structures and concepts. Although I equally participated in the

1https://credit.niso.org/

xii

conceptualization of the paper, I led the formal analysis and modeling of the
resulting metamodel and led the validation of the metamodel. I took charge of
the writing process for the original draft, review, and editing of the paper.

Table 1: Summary of personal contributions per paper according to the Con-
tributor Roles Taxonomy (CRediT)

C
o
n
c
e
p
tu

a
li
z
a
ti
o
n

D
a
ta

C
u
ra

ti
o
n

F
o
rm

a
l
A
n
a
ly
si
s

F
u
n
d
in
g
A
c
q
u
is
it
io
n

In
v
e
st
ig
a
ti
o
n

M
e
th

o
d
o
lo
g
y

P
ro

je
c
t
A
d
m
in
is
tr
a
ti
o
n

R
e
so

u
rc
e
s

S
o
ft
w
a
re

S
u
p
e
rv

is
io
n

V
a
li
d
a
ti
o
n

V
is
u
a
li
z
a
ti
o
n

W
ri
ti
n
g
-
O
ri
g
in
a
l
D
ra

ft

W
ri
ti
n
g
-
R
e
v
ie
w

&
E
d
it
in
g

Paper A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper B ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper C ✓ ✓ ✓ ✓ ✓
Paper D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper E ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper G ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background . 4

1.1.1 ML Development Workflow 4
1.1.2 ML Experiments & Model Prototyping 7
1.1.3 ML Asset Management 8
1.1.4 ML Asset Management Tools 9

1.2 Research Goal & Scope . 13
1.2.1 RQ1: What are the unique characteristics of ML experi-

ments . 14
1.2.2 RQ2: What are the Overview Attributes of ML ExMTs 15
1.2.3 RQ3: How can we unify ML experiment management

and traditional tools? 16
1.3 Methodology . 17

1.3.1 Exploratory Studies . 17
1.3.2 SLR & Feature-based Survey 19
1.3.3 Practitioners Survey . 19
1.3.4 Controlled Experiments 20
1.3.5 Design Science . 21

1.4 Contributions . 22
1.4.1 Contribution 1: Overview of the Challenges of Managing

ML Experiments . 23
1.4.2 Contribution 2: Insights on ML-related Projects, Devel-

opment Stages, and Evolving Patterns 27
1.4.3 Contribution 3: Overview of existing ExMTs: the State

of Practice and Research 32
1.4.4 Contribution 4: Report on Challenges and Benefits of

ExMTs . 37
1.4.5 Contribution 5: The Effectiveness of ML ExMTs 40
1.4.6 Contribution 6: Research agenda towards unified and

effective SE and ExMTs. 42

xiii

xiv CONTENTS

1.4.7 Contribution 7: Blueprint to a unified ExMTs 44
1.5 Summary of Publications . 48
1.6 Conclusion . 53

Bibliography 57

Chapter 1

Introduction

Machine Learning (ML) has proven effective in solving many present and future
issues. To take advantage of its benefits, ML components must be integrated
into new and existing software systems. For instance, modern email clients
are now equipped with intelligent capabilities to classify emails by type and
urgency and generate new emails based on the target audience and context.
As a result, an increasing number of ML-enabled software systems are being
developed, signaling a shift towards ML-enabled software systems [1–3]. This
shift is evident in the willingness of companies to embrace ML. More and more
businesses are now eager to incorporate ML into their software products and
services, transforming themselves into companies that utilize ML as a natural
component [1, 4]. We refer to these software systems with ML capability as
ML-enabled systems (also known as ML-based software systems or Software
2.0 systems).

There are various implications of the emergence of ML-enabled software
systems on software engineering (SE) and development [5–10]. One of such
noteworthy challenges is the complexity associated with the collaboration
between two different disciplines—SE and Data Science—with differing cultures
and mindsets regarding goals and focus. For example, software engineers are
typically concerned about system performance, costs, stability, release time, and
balancing trade-offs. However, data scientists often work on a fixed dataset for
training and evaluation, with an experimentation and prototyping perspective.
They tend to focus more on model accuracy as primary performance and less
on model size constraints, latency, or the ability to update models, which are
significant considerations for software engineers. Also, while traditional software
engineers think of requirements and specifications in terms of interfaces and
contracts, which helps define systems’ expectations, such a concept is missing
in data science. In contrast, specifications are often observed as goals (e.g.,
maximizing a specific objective) since ML components are primarily black
boxes [11].

In addition, ML’s non-deterministic nature complicates ML systems’ en-
gineering [12,13]. For example, testing ML software introduces several engi-
neering complexities, making applying traditional software methods directly
impractical.

Various complications and challenges resulting from the emergence of ML-

1

2 CHAPTER 1. INTRODUCTION

enabled systems discussed in the literature can be grouped into three areas—
Development, Production, and Organizational [4]. Development challenges
affect the engineering practices when building ML systems and components
and often apply from the system requirement stage to deployment. Production
challenges affect the practical operation of ML-based systems during and after
deployment. Some issues that arise during the production stages are variability
in the data affecting ML system reliability, improper pre-processing of the data
leading to prediction inaccuracy, and algorithmic bias due to data drifting.

The development and production-related challenges have led to a rapidly
growing research interest in addressing challenges to improve the engineering
practices of ML-based systems. Although early reports on the challenges of
engineering ML systems were commonly reported as lessons from industrial
practices [14,15], growing research communities under the term SE4ML and
AI Engineering [16–18] are interested in exploring the different facets of SE
transformation with its paradigm shift. The interest of these research com-
munities includes interdisciplinary collaboration between SE and data science
disciplines, quality assurance, system-level thinking, safety, and improved or
new development tools. They seek to answer relevant questions such as How do
we effectively build and maintain systems that have an ML component in them?
How do we integrate ML as a component in systems where such components
are either core or a small part of an extended system?

Due to the paradigm shift toward ML-enabled systems, it becomes essential
to improve existing tools and develop new ones accommodating their uniqueness.
While traditional SE tools have evolved over several years to handle traditional
software artifacts (i.e., assets) effectively, studies have established that they
are inefficient for broader asset types required by ML systems [19–21]. Such
studies have highlighted the challenges of applying traditional SE methods and
tools to facilitate the creation of ML-enabled systems [4, 8, 22–24]. Notably,
they have reported using traditional SE tools, such as version control systems,
in the ML component context as ineffective for different reasons. Hence, a need
for new and dedicated methods and tools [9, 19–21,25].

There are several reasons why it is important to have new and improved
tooling support for developing ML-based software systems. Firstly, the variety
of asset types has increased, which means that tools must provide support and
operations on the appropriate level of abstraction. Additionally, ML component
development is often experimental due to the non-deterministic nature of these
systems. Furthermore, effectively addressing development concerns unique to
ML systems, such as reproducibility, is difficult. Lastly, with practitioners
increasingly performing both SE and data science roles, there is a need for
better tooling support that meets existing SE standards to manage ML assets
effectively.

To address these tooling gaps, new asset management tools have emerged,
targeting the development of ML-based systems. Most of these have been
championed by the industrial need to address critical development concerns such
as ML-specific asset versioning, provenance, and reproducibility [26–31]. For
example, there has been a surge of various ML-specific asset management tools
with key features such as workflow management, pipeline management, model
management, dataset & feature management, and experiment management tools
(ExMT) [32]. When comparing the granularity of their offered management

3

support to traditional tools such as version control systems, we identify the ML
experiment management features as fundamental to adequately address several
development challenges of ML-enabled systems. Also, the explicit management
of ML experiments and their associated assets is significant in reducing the
complexity and time overhead of managing assets in multiple projects [19–21],
hence facilitating ML-driven software development. Consequently, this thesis
focuses on the scope of ML ExMTs as a subset of ML asset management.

Although new ExMTs have recently become available, they are not fully
matured. ML asset management tools with experiment management features,
such as MLFlow, Neptune, and DVC, offer practical ways to maintain an account
of asset provenance during ML experiments to support different development
concerns. However, as these tools have become available recently, they are
potentially not fully grown, and practitioners face several challenges and
limitations when using them. Mora-Cantallops et al. [31] highlight the lack of
interoperability across different tools, lack of explicit representation of domain
knowledge, and friction or overhead incurred during usage as factors hindering
the adoption of these tools. Other limitations include a lack of flexibility or
customization to meet varying use cases; limited integration support, especially
for standard SE tools; limited collaboration, making it challenging to use in
large-scale industry settings; lack of robustness and constant availability.

New and improved tools should address these limitations in existing tools
by incorporating the domain knowledge about ML experiments obtained from
investigating the existing tool landscape. Also, there is a strong potential
for integrating ML experiment management support into existing traditional
software tools. For example, new and improved version control tools, building on
traditional ones and extending them with domain-specific operations tailored
to ML assets. Such tools would address ML-specific challenges from the
perspective of software engineers, who routinely use standard traditional tools
such as Git.

The objective of this thesis is to enhance the development of next-generation
tools that can support both traditional software assets and ML. The tools
should also integrate seamlessly with existing tools like Integrated Development
Environments (IDEs) and Version Control Systems (VCS) and cater to various
development use cases and modalities. To achieve this goal, we propose using
research techniques like systematic literature, features and practitioner surveys,
controlled experiments, exploratory studies, and design science. Specifically,
the concrete contributions of this thesis are:

C1: Empirically informed overview of the challenges of managing ML experi-
ment assets without specialized tools.

C2: Insights and empirical data on the types of ML-based projects, their
development stages, and evolving patterns in ML experiment projects.

C3: Overview of existing ExMTs, shedding light on variability/commonalities
and features of state-of-the-art tools.

C4: Empirical-based report on the benefits and limitations of ExMTs.

C5: Establishment of the effectiveness of ML ExMTs on user performance.

4 CHAPTER 1. INTRODUCTION

C6: Research guide toward integrating ML experiment management into
traditional SE tools.

C7: Blueprint on how to unify and integrate multiple ML ExMTs.

In addition to these main contributions, this thesis provides an overarching
contribution of positioning ML asset management as an essential discipline to
facilitate experiment and asset management for ML-enabled software systems
[33]. The overall thesis contributions will provide insights and inspire follow-up
work to researchers and tool builders on assessing, improving, and developing
new asset management tools for developing ML-based systems while increasing
values for ML and software engineers.

In the following chapters, we discuss the background of ML development
workflow, ML assets, and management tools in Section 1.1, followed by the
thesis’s research scope and goals in Section 1.2. We present the methodologies
adopted to address our research goal in Section 1.3, followed by our contributions
and their discussions in Section 1.4. We summarize the seven papers comprising
this thesis in Section 1.5, and conclude with thesis conclusion in Section 1.6

1.1 Background

In this section, we will cover the fundamentals of developing ML components,
including model prototyping through ML experiments, and tools for managing
ML assets.

1.1.1 ML Development Workflow

The traditional SE process [34] includes requirements analysis, planning, archi-
tecture design, coding, testing, deployment, and maintenance stages. Similarly,
supervised ML follows well-defined processes grounded in workflows designed in
the data science and data mining context. Examples include CRISP-DM [35],
KDD [36], and TDSP [37]. Figure 1.1 shows a simplified supervised ML devel-
opment workflow structured along different development stages. The workflow
consists of four primary stages: i) requirements analysis, ii) data-oriented works,
iii) model-oriented works, and iv) DevOps works [4,8,9]. Figure 1.1 also shows
that ML projects can either be production-focused or non-production-focused.
For example, ML projects for research papers are often non-production focused
and do not require DevOps operations. In contrast, ML-enabled software sys-
tems are production-focused because they usually integrate and operationalize
models.

Requirement analysis stages

The requirements analysis stages are the first development steps involving the
analysis of the system requirements and resources, such as data availability.
The involved steps include the following:

System requirements. The ML component requirements are established
at the start of ML-enabled software projects. While non-production often
focuses on metrics such as prediction accuracies, production-focused systems

1.1. BACKGROUND 5

Training

Modeling

Model deployment

Data acquisition

Data preparation

System requirements
analysis

Storage

Prediction

Evaluation

Data analysis

Feature engineering

Model monitoring & control DevOps
stages

Data-oriented
stages

Model-oriented
stages

Requirements
analysis stages

Pr
od

uc
tio

n
fo

cu
se

d
N

on
-P

ro
du

ct
io

n
fo

cu
se

d

Figure 1.1: Development workflow stages of production-focused and non-
production-focused ML components.

have extended requirements, such as learning type (e.g., online vs. offline) and
model serving latency.

Data analysis. Initial exploratory data analyses are performed to derive
useful information and insights that impact the project decision. For example,
this may involve analyzing the application domain, data availability, sources,
and appropriate domain and data features.

Data-oriented stages.

Based on the outcome of the system requirement stages, data-related activities
to collect, pre-process, and prepare data for model training are carried out
next. The involved steps include the following:

Data acquisition. Involves practical actions to collect raw data from identified
sources. This stage often involves a vast amount of unstructured data to derive
actionable insights. The primary focus in this stage includes data quality,
completeness, consistency, and relevance. Example tasks under this stage
include Load, Collect, Obtain, Capture, and Survey.

Data preparation. Data preparation is a tedious and time-consuming pro-
cess, often requiring substantial resources, including human expertise and
computational resources, to process the acquired raw data into presentable or
usable structures. Some processes can be performed automatically using ETL
(Extract-Transform-Load) tools. These tools perform different data processing
steps, from data loading to formatting for analysis and output to data ware-
house. Examples of tasks under this stage include explore, wrangle, clean, filter,
organize, standardize, and de-duplicate.

Storage. ML development activities center around data processing; hence,
for effective data processing, it is essential to find the right hardware/software
combination for data persistence. For example, newly extracted features must
be stored for further development activities such as modeling and training.
Example tasks under this stage include preserve, archive, log, and recycle.

Feature engineering. Feature engineering involves selecting and extracting

6 CHAPTER 1. INTRODUCTION

data features or variables appropriate for building specific ML models. It often
requires the creation of new data features from the raw data to improve model
performance towards specific requirements (e.g., accuracy or training/inference
speed). Common tasks under this stage include feature-select or construct,
label, and annotate.

Model-oriented stages.

These stages are essential to ML model development, where ML learning
methods and algorithms are used to learn patterns from input pre-processed
datasets. The involved steps include the following:

Modeling. The modeling stage includes model planning and selection and
data mining to discover essential properties of data concerning specific ML
tasks. This stage also involves selecting suitable data processing techniques and
ideal ML algorithms. Common tasks under this stage include classify, cluster,
mine, analyze, and process

Training. The modeling step is often followed by a training model using
selected features and labeled data. The focus of this stage is on the optimization
of model performance via multiple training iterations on hyperparameter search.
Common tasks under this stage include tune and optimize.

Evaluation. Trained models are tested on various metrics, such as accuracy
and latency performance. The testing stage should be performed on real-world
data to assess the model’s performance under production and non-production
conditions. Several evaluation metrics include classification accuracy, confusion
matrix, loss function, and error rates. Common tasks under this stage include
validate, test, verify, and review.

Prediction. Prediction involves using a trained model on unseen examples (i.e.,
unlabeled data). The prediction capability of a model can also be evaluated by
comparing its performance across validation, test, and training datasets.

DevOps stages.

The DevOps (or MLOps) stages include integrating and deploying ML models as
software components with other ML or software components. These stages also
involve the management of infrastructure and operations of ML components—
monitoring and controlling—in production. The involved steps include the
following:

Model deployment. ML model deployment is critical for production-focused
projects, such as customer churn prediction or product recommendation. It
concerns using an ML model that has met specific requirements in offline
training to perform the same task on production data. This step also concerns
effective ways to make the predictions robust and scalable for large datasets
and effectively update models as required.

Model monitoring & control. Beyond deployment methods, monitoring
and controlling models’ behavior is essential to ensure that in-production
models produce accurate and actionable results over time. This is particularly
important if the model is used in production environments with large volumes
of data where high predictive accuracy and reliability are essential to ensure
business value.

1.1. BACKGROUND 7

1.1.2 ML Experiments & Model Prototyping

In practice, much development time goes into establishing viable ML models
through ML experiments and model prototyping [20,21]. These are often per-
formed ahead of establishing a production-ready development pipeline. In some
settings, multiple practitioners experiment on data features provided through
feature stores to obtain the best-performing models. ML experiments are mul-
tiple incremental iterations performed over the development workflow stages
as experiment runs or trials. The required exploratory and experimentation
approaches to ML experiment and model prototyping are the primary factors
in the different development nature of ML-enabled systems to traditional SE
ones. As shown in Fig. 1.1, the ML workflow contains a linear progression
from requirements analysis to DevOps stages; however, ML workflows are
typically non-linear and include multiple feedback loops (indicated by the
upward arrows) [9]. These feedback loops reflect the multiple experiment runs.
We describe a run as a one-time cycle through the relevant workflow stages,
often resulting in a trained model. Each run employs specific assets’ versions
(e.g., datasets, hyperparameters, source code) within the solution space of a
particular ML task. The solution space includes required assets such as datasets
from the application domain presenting relevant features for the learning task,
a slice or subset of the initial dataset as training data, learning algorithms, and
their (hyper)-parameters. A completed run’s outcome often includes a trained
model, the model performance measurement based on test data, and obtained
predictions from an unseen slice or subset of the initial dataset. To find well-
performing models, practitioners rely on multiple instances of trial-and-error
steps due to the unpredictable nature of ML model performance [9, 38,39].

Consequently, experiment runs are repeatedly performed while modifying or
using new assets until the process results in a model that meets a specific target
objective [4]. Such modification includes adding, removing, or engineering
features, changing learning algorithms, testing different hyperparameters, and
using various performance evaluation metrics. The decision to perform new
runs is usually based on the result analysis of a current run and its model. Also,
during the DevOps works (deployment, monitoring, and control of models),
there is often a need to modify and make new experiment runs based on newly
available data or drift corrections to ensure models stay within the target
objective’s course.

Figure 1.2 illustrates different asset types modified within a specific run’s
solution space. Model training involves training datasets, features, learning
algorithms, and hyperparameters. In contrast, the model evaluation involves
test datasets, models, predictions, and performance measures. The need to
carry out multiple runs is often based on the analysis Yx of model requirements
and resulting model performance Mx when tested with dataset Ex; however, a
user may use other requirement metrics to decide if a new run is required.

A manual or automatic approach may be employed to find the best-
performing combinations of the asset versions over several runs. The man-
ual approach follows experts’ decisions on necessary step-by-step modifica-
tions within the solution space for new runs. In contrast, the automatic
approach—AutoML [40–43]— systematically searches a pre-defined portion
of the solution space (e.g., a set of hyper-parameters range) for each run. For

8 CHAPTER 1. INTRODUCTION

Run, rx

Dataset, Dx

Feature, Fx

Training, Tx Algorithm, Ax

(Hyper)-
parameter, Hx

Model, Mx

Testing, Ex

Prediction, Px

Performance
measure, Mx

Pre-model phase Post-model phase

Analysis, Yx

Run, r(x-1)

Run, r(x+1)

Figure 1.2: A representation of an ML experiment run

example, ML models can be automatically selected and parameterized through
training loops. Regardless of the employed approach, several experiment runs
are often performed before finding optimal models. The need for asset man-
agement support is often attributed to the complexity and time overhead that
arises with manually managing the large number of asset versions resulting
from the multiple exploratory runs [19–21].

1.1.3 ML Asset Management

Conventionally, the term asset is used for an item that has been designed for use
in multiple contexts [44], such as a design, a specification, source code, a piece of
documentation, or a test suite. ML practitioners often use the term artifact to
describe different required resources during model development. Because of their
experimental nature, these artifacts qualify as assets in the ML development
context, which requires keeping artifacts for future use. Conventional SE
primarily deals with source code artifacts and, therefore, often has fewer asset
types compared to the engineering of ML-enabled systems. In contrast, ML
includes additional artifact types, such as datasets, models, hyperparameters,
and model evaluation metrics [45]. Consequently, we describe ML assets
as individually storable units serving specific purposes in the development
workflow of ML components.

When following the ML development workflow, a variety of assets are created,
utilized, and modified. In the Data-oriented stages, datasets and features are
used as input assets, and new feature sets, labels, or annotations are created.
This process often requires software assets such as source code and environment
dependencies and generates outputs like execution logs. During the Model-
oriented stages, the outputs of the Data-oriented stages are used to develop and
train models, and additional assets such as hyperparameters, metrics, model
training-related source code, logs, and environment dependencies are generated
or used. In the DevOps-related stages, trained ML models, their metadata,
training execution logs, and dependencies (like libraries and environment

1.1. BACKGROUND 9

runtimes) are utilized. Other assets created or used in these stages include
software for model deployment and monitoring, such as wrapping trained
models into web services API endpoints for on-demand or batched execution.
During the operation of ML components in production, assets monitoring
the inference execution and model performance (like metrics, statistics, and
execution logs) are generated.

Consequent to the multiple versions of assets created, modified, and utilized
during typical ML workflow, it is essential to employ efficient asset management
measures to address development concerns such as traceability, reproduction,
and collaboration throughout the development workflow stages. In the current
state of practice, it is tempting to adopt traditional SE techniques such as VCS
(e.g., Git) to address some of the highlighted asset management challenges.
However, such tools were not designed to manage ML-specific assets nor
support the intuitive and exploratory development approach of developing ML
components. Consequently, to address the asset management challenges, there
is a need for explicit management tools and methods that offer systematic ways
to track, collect, organize, and manage assets used during model development
and post-model creation.

In this light, we define asset management as an essential discipline to
facilitate the engineering of ML-enabled systems:
Definition 1 (Asset Management). The discipline of asset management
comprises methods and tools for managing ML assets to facilitate activities
involved in the development, deployment, and operation of ML-enabled systems.
It offers structures for tracking and storing detailed ML assets of different types,
as well as operations that practitioners can use to address practical management
concerns.

This definition emphasizes that establishing effective asset management
requires efficient storage and tracking structures (e.g., data schemas, types,
modular and composable units, and interfaces) as well as properly defined
operations, which can be of different modalities (e.g., command-line tools
or APIs allowing IDE integration). Asset management extends to activities
in practice and management areas covering different development aspects of
ML-enabled systems.

1.1.4 ML Asset Management Tools

To provide adequate ML asset management, several tools and platforms support
the systematic tracking, collection, storage, and management of ML assets
over the various development stages of ML components, their deployment,
and integration into software systems. We collectively refer to such systems
as ML asset management tools (AMTs). The increasing popularity of such
systems implies the growing need for effective asset management for ML-enabled
software systems. Several categories currently exist to support the development
activities of ML-enabled systems. Following previous work [32, 46], we classify
them into five non-exclusive categories based on their functionality: i) Workflow
management, ii) Pipeline management, iii) Model management, iv) Dataset
and feature management, and v) Experiment management.

The non-exclusivity of the group indicates overlapping asset management
functionalities across the different categories. For instance, tools such as

10 CHAPTER 1. INTRODUCTION

MLFlow can be described as model management tools or ExMTs.
The following paragraphs briefly explain these categories and discuss their

asset management capabilities.

ML Workflow management.

This category focuses on the complete ML development workflow and provides
management capabilities for all possible asset types under all development
workflow stages. Such tools are often available as cloud-based platforms or
standalone software tools. The cloud-based platform offers complete ML as
a service (MLaaS) platforms. Examples include Microsoft Azure ML [47,48],
Amazon SageMaker [48, 49], Google Vertex AI [48, 50], and DataRobot AI
Platform [51]. This class of tools provides numerous ML services through
the public cloud infrastructure, offering computing and memory resources
subject to payments. The other class of workflow management tools comes
as standalone software tools (or hybrid) that can be deployed on-premise.
Examples of such tools include MLflow [52], Polyaxon [53], DVC [54] and
Hopsworks [55]. A key aspect of workflow management tools is that they often
offer management functionalities found in other management tool classes. For
instance, MLFlow offers MLflow tracking, which essentially offers experiment
management functionalities (described later). At the same time, it also provides
an MLflow Model registry (model management), a specific tool for storing
models, their metadata, dependencies, and lineage. MLFlow also offers MLFlow
projects a standard format for packaging reusable development assets. DVC is
another popular asset management tool that offers broad asset management
functionality across its ecosystem. DVC asset versioning capability is built on
traditional Git VCS, offering similar commands that effectively version ML-
specific assets. Recently, the DVC ecosystem has grown to include the following
tools: DVC Studio, an ExMT for tracking and sharing experiment assets; CML,
an open-source CI/CD tool for ML projects; MLEM, an open-source model
registry and deployment tool.

Pipeline management.

ML pipelines are abstractions that offer comprehensive views of the devel-
opment stages of ML, including data processing, model development, and
model deployment processes. The concrete presentations of ML pipelines are
often implemented as direct acyclic graphs (DAGs) following ML workflow and
its stages. Consequently, this class of management tools supports ML asset
management through the defined pipelines and their related assets. Some work-
flow management tools offer pipeline-based management options (e.g., DVC);
however, the pipeline management tools themselves typically lack support for
DevOps-oriented stages of ML workflow. Examples of tools under this cate-
gory providing similar pipeline-based asset management for different use cases
include Velox [56], Vasma [57], and ArangoML [58]. Velox offers management
of model training pipelines for predeclared models and model performance
evaluation. Vasma offers support to automatically track the provenance of ML
pipelines using static analyses of Python scripts, while ArangoML offers pipeline
management to track lineage, audit, reproduce, and monitor models. Tools
under this management class also include Apache SystemDS [59], MLtrace [60],

1.1. BACKGROUND 11

ProvDB [61]. The Apache SystemDS is a declarative ML pipeline system
offering abstraction for different ML workflow tasks. MLtrace and ProvDB
offer support for tracking the lineage and provenance of ML pipeline assets.

Model management.

This class treats models and their metadata as central abstractions while
providing focused support for managing the lifecycle of trained ML models.
Their support is often limited to the Model- and DevOp-oriented stages of the
ML workflow, with less support for data-related assets. Tools under this class
have close or intersecting functionalities with the tools under the experiment
management class (described below). In general, this class of tools offers efficient
storage and retrieval of models, model selection, model comparison, monitoring,
and model serving. They provide information on the lineage of model-related
assets and various evaluation performances of models. Examples of tools
under this class include ModelDB [20], and ModelHub [62], which focus on
supporting model development, deployment, and monitoring. ModelDB stores
and versions ML assets using a relational database, while ModelHub extends
Git as an ML-specific version control system. ModelHub offers management
CLI commands with native support for ML assets and unique ML development
use cases. For example, discovering asset versions based on model qualities.

Tools focusing on efficient model storage include ModelKB [63], MMP, [64],
and MISTIQUE [65]. ModelKB uses custom callbacks in native ML frameworks
to collect metadata about ML experiments and automatically generate source
code for deployment, sharing, and reproducibility. MMP is a unique model
management platform for Industry 4.0 systems that integrates the business
domain with the model metadata. MISTIQUE accelerates model training,
evaluation, and interpretability by efficiently storing and managing model
intermediates (e.g., hidden representation in deep neural networks) targeting
big data and large-sized deep learning models.

Tools focusing on model serving include Clipper [66], BentoML [67] and
TensorFlow-serving [68], and Cortex [69]. They offer ways to turn trained
models into production API endpoints with few lines of code. While tools such
as TensorFlow-serving only support TensorFlow-based models, other tools such
as BentoML, Clipper, and Cortex offer multi-framework (Tensorflow, PyTorch,
Scikit-Learn, XGBoost, FastAI, and more) support. Tools such as BentoML
supports practitioners to deploy and test model in a few steps and provide
operations support through scalable microservices.

Data-set & feature management.

The quality of datasets used in an ML model development plays a crucial role in
the quality of generated models. Therefore, data-related development activities
are crucial aspects of ML engineering. Tools under this class focus on the data-
oriented stages of ML workflow. They often offer dataset, label, and feature
storage and management functionalities with interfaces for data pre-processing,
feature selection, and feature engineering. While their functionalities are
often not found in other classes, they are often complementary tools in other
management classes. Examples of tools in this class include MLdp [70], ExDra
[71], and Pachyderm [72]. MLdp is a purpose-built data asset management tool

12 CHAPTER 1. INTRODUCTION

that offers a flexible data model integrating various data types and supports
large-volume data storage with data versioning, provenance, and integration
with ML development frameworks. ExDra offers data acquisition, integration,
and pre-processing support from federated and diverse raw data sources. In
contrast, Pachyderm offers data-focused pipeline management with automated
data versioning, containerized pipeline execution, and data provenance.

Experiment management.

Experiment management tools treat ML experiment runs as their central ab-
straction. Tools in this class aim to offer management support during the
experimentation and model prototyping stage to reduce the cost, time, and
complexities that burden manual or ad hoc asset management. Experiment
management tools primarily offer reproducibility and post-experiment analysis
for exploratory model development, training, and optimization. The oper-
ations offered by ExMTs complement model development frameworks (e.g.,
SciKitLearn and TensorFlow) and other management tool classes. ML ExMTs
primarily offer functionalities to track asset states over multiple experiment
runs in a structured and organized manner during model development workflow,
focusing less on the Data-oriented and DevOps-oriented stages.

Figure 1.3: Illustration of how a typical API-based ExMT work

Figure 1.3 illustrates the workflow of ExMTs. For the user, they eliminate
the risk of forgetting to track or commit important experiment milestones.
Most tools capture and record a new version of modified assets when users
execute an experiment run—indicating a complete run. For example, DVC
offers the command dvc exp run, which executes a preconfigured experiment
pipeline and simultaneously captures the versions of associated assets. Users
can later access prior runs and their associated assets.

Examples of tools that fall under this class include MLFlow tracking [52],
Neptune.ai [73], Studio ML [74], DVC, Sacred, and Weights & Biases (W&B)

1.2. RESEARCH GOAL & SCOPE 13

[75], Comet [76]. MLflow tracking focuses on capturing, storing, and managing
ML artifacts: MLflow Tracking is an API for logging experiment runs, including
code and data dependencies, via automatic or manual instrumenting application
code. These runs can be viewed, compared, and searched through an API or
the Web dashboard UI. DVC For instance, with the help of its experiment
management CLI commands, a snapshot of all supported assets is taken for each
completed experiment run. StudioML supports non-intrusive asset collection,
requiring no modification of existing experiment code. Other tools, such as
Guild AI, Datmo, and Deepkit, provide experiment reproducibility-focused
functionalities capturing all required assets (including source code, dependencies,
execution environment, and logs) to rerun or reproduce an experiment.

Recent studies have presented taxonomies and surveys on ML ExMTs
[77,78]. These studies identify the access modality (the approach for tracking
assets and how they can be queried for later use) as an essential paradigm of
these tools. The tools’ tracking approach is often API-based and/or CLI-based.
API-based tools, such as Neptune.ai and MLFlow, collect assets intrusively,
where users instruct the tools to track assets via provided APIs. In contrast,
CLI-based tools, such as DVC and Datmo, require users to track experiment
assets using the CLI. To query and retrieve stored assets for further analysis,
the common methods offered by ExMTs are either GUI-based (dedicated web
dashboard) or CLI-based paradigms.

It is important to note that the ML workflow, experiments, and asset
management described also apply to Deep Learning, a type of ML that uses
artificial neural networks [79].

1.2 Research Goal & Scope

This thesis aims to facilitate the development of asset management tools for
ML-enabled software systems, specifically those in the experiment management
category. We, therefore, carried out a number of knowledge-seeking research
activities where we: i) Established the challenges faced when managing ML
experiments without specialized tools. ii) Investigated development activities
and evolution patterns in ML-related repositories for insight into ML experi-
ments. iii) Investigated state-of-practice and state-of-research for ExMTs and
the variabilities and commonalities of their features. iv) Performed a survey
to elicit information on the benefits and limitations of ExMTs. v) Investi-
gated the effectiveness of ExMTs on user performance. In addition to the
knowledge-seeking research, we performed solution-seeking research where we:
i) proposed a research guide on steps towards integrating existing ML ExMTs
into traditional SE tools. ii) Proposed how researchers and tool developers
can unify the structures and concepts of existing ML ExMTs into a common
reusable artifact. Figure 1.4 summarizes how the thesis’s aggregated papers
contribute to fulfilling each contribution.

Based on our thesis goal, we formulate three main research questions: 1)
What are the unique characteristics of ML experiments? 2) What are the
overview attributes of ML ExMTs? 3) How can we unify ExMTs and traditional
SE tools?

In the following sections, we list and describe our research questions together

14 CHAPTER 1. INTRODUCTION

with sub-questions focusing on specific aspects of interest.

1.2.1 RQ1: What are the unique characteristics of ML
experiments

To enable an understanding of the ML experiment and its associated challenges,
as well as the common ML project types, their development activities, and
evolution patterns, we defined the following sub-questions.

Challenges of ML Experiment Management

RQ1.1: What are the challenges associated with ML experiment asset manage-
ment?

With this question, we seek to understand practitioners’ challenges when
performing ML experiments without using specialized management tools. Since
there are several aspects and activities of ML development, the scope of this
question is specifically related to the management of assets such as models,
datasets, and metadata during model experimentation or prototyping. For
instance, we are interested in the challenges and pain points of using manual or
ad hoc approaches to manage experiment assets. Previous work has established
and presented technical challenges such as data management, integration, and
organizational issues resulting from a disconnect between software engineers and
data scientists [4, 8, 9, 22, 80, 81]. In particular, our interest is in the challenges
experienced due to ML experiments’ unique development characteristics and
nature (i.e., the exploratory nature of ML experiments) and how they complicate
development tasks. For example, when running long-term experiments, what
are the challenges of handling assets as new versions are created with the
increasing number of experimental runs?

This question provides empirical evidence of experiment management chal-
lenges and highlights the need for better tooling support. It also investigates and
provides knowledge on specific challenges that researchers and tool developers
should address.

Insights into ML-Related Projects: Their Types, Development Stages,
and Evolving Patterns

RQ1.2:What are the ML project types, their development stages, and evolving
patterns?

In order to develop more effective tools and innovative ideas for managing
ML development artifacts and processes, it is crucial to have a clear under-
standing of the different types of projects, the development activities involved,
and the patterns that emerge during the transition between workflow stages.
With this question, we identify common ML-related project types, and the
most frequently performed activities during development, as this can provide
insight into the composition and usage frequency of different assets and their
respective usage patterns. By answering this research question, we can identify
common practices and issues in organizing ML experiments, guide future tool

1.2. RESEARCH GOAL & SCOPE 15

development, and conduct further research. Additionally, this research ques-
tion aims to track the evolution of development stages through source-code
repository commits. This can offer insight into typical developer activities and
project evolution patterns, such as whether projects tend to have a short-term
or long-term sequence of development activities. Answering this research ques-
tion will help us better understand and improve ML experiment development
processes.

1.2.2 RQ2: What are the Overview Attributes of ML
ExMTs

To gain empirical-based knowledge on the features of ExMTs, their benefits
and challenges, and their effect on user performance, we proposed the following
sub-questions.

Features of ML ExMTs

RQ2.1: What are the commonalities and variabilities of the features found in
existing ML ExMTs?

As indicated previously, several existing tools aim to support practitioners
in asset management when performing ML experimentation. While many
tools have a strong target for data science practitioners, it is essential to
establish the existing tooling landscape and leverage their support toward
new and improved asset management tools with native support for SE and
data science practitioners. This research question aims to identify the features
found in existing ML ExMTs. For instance, the research question seeks to
identify the ML-specific asset types supported by the tools, the asset collection
methods, asset storage, and the asset operation adopted by the tools. In
addition, this question also explored and compared the features found in
the tools sampled from two specializations—i) proposed tools and prototypes
from research, and ii) tools used in practice. This question increases our
empirical knowledge and understanding of the current solution space for ML
asset management, specifically ML experiment asset management. It also
provides an understanding of tools’ features and the support themes in ML
experiment asset management.

Benefits and Limitations of ExMTs

RQ2.2: What are the benefits and limitations of ExMTs?

To further increase our knowledge in this subject area, we investigate
the gaps in existing tools. This research question seeks to establish why
practitioners adopt ExMTs as we elicit the tools’ perceived benefits. Similar
to the established empirical data on the challenges of managing assets of ML
experiments without specialized tools (RQ1.1), we investigate the limitations
and challenges of ExMTs as experienced by practitioners. In addition, we
explore the barriers limiting the adoption of ExMTs from practitioners who
perform ML experiment but fails to employ these specialized tools. With this

16 CHAPTER 1. INTRODUCTION

Towards Next-Gen Machine Learning Asset
Management Tools

RQ1.1 — Papers A,
B, and E RQ2.1 — Paper D RQ2.2 — Paper ERQ1.2 — Paper F

RQ3.2 — Paper G

Overview of ML
experiment challenges Overview of ML ExMTs Report on benefits and

challenges of ExMTs

Insights on ML-related
projects, dev. stages &

evolving patterns

Blueprint representing
unified concepts from

multiple ExMTs

Solution seeking

Knowledge seeking

Research guide toward
integrated ExMTs RQ3.1 — Paper C

Evidence on effect of
ExMTs on user
performance

RQ2.3 — Paper E

Figure 1.4: Summary of paper contributions towards the goal of the thesis.

question, we establish and provide insight into the limitations and challenges
of managing experiments with existing tools and potential adoption barriers.
Improving our empirical understanding through this question is essential in
providing additional requirements for researchers and tool developers.

Effectiveness of Experiment Management Tools

RQ2.3: How effective are ExMTs on user performance?

Existing studies have compared the features found in ExMTs [27,32,82,83];
however, none has investigated the effectiveness of ExMTs concerning the
impact on user performance when performing ML tasks. To facilitate the
improvement of new and improved tools, it is essential to establish the efficacy
of existing ones in improving overall development performance. With this
question, we establish whether the ExMTs’ assistance is valuable enough to
motivate their adoption. For instance, this research question probes how asset
management via ExMTs differs from the baseline of manual or ad hoc approach.
The question investigates the ability to correctly track and fetch assets based on
fact-based questions commonly associated with post-ML experiment analysis.
The findings based on this question provide empirical proof of why ML ExMTs
are essential to improving the development of ML-enabled systems.

1.2.3 RQ3: How can we unify ML experiment manage-
ment and traditional tools?

To guide the use of relevant empirical findings in ML experiments and ExMTs
toward developing new and improved integrated data science and SE tools, we
defined the following sub-questions.

Research Steps Toward Integrating ML ExMTs into traditional SE
tools

RQ3.1: What are the necessary research steps toward integrated ML ExMTs?

1.3. METHODOLOGY 17

Towards a long-term goal of building novel tools that uniformly and natively
support software and ML assets management, this research question helps us
compile the essential research steps and methodologies for integrating ML
ExMTs into traditional SE tools. We conceive and present practical methods
for researchers to adopt for tool assessment. For example, the appropriate
assessment and the supported operations of management tools that such
evaluations should target. Answering this question offers a formal research
plan that tools developers and researchers can utilize to improve ML ExMTs
towards increasing their value for both ML and software engineers.

Unifying Concepts from Multiple ExMTs

RQ3.2: How can we unify concepts of multiple ExMTs?

Our final research question involves effectively representing blueprint and
prototype artifacts for new and improved ExMTs. As a further step towards
integrating ExMT features with traditional software tools, we seek to explore
ways to unify concepts found in multiple existing tools while abstracting their
standard features. With this question, we explored how we can represent the
structures and concepts supported by existing tools in a common reusable
artifact. Answering this question offers the foundation for the unified treatment
of ML experiment management and its tools.

1.3 Methodology

We employed five primary research methods to address our research questions
as follows.

1.3.1 Exploratory Studies

We performed two types of exploratory studies. i) An exploratory study on
performing supervised ML experiments to gain experience in the ML domain
and acquire insight into ML experiment challenges and pain points. ii) A
large-scale exploratory case study where we adopted mining software repository
(MSR) methods [84–88] to analyze ML-related projects. We describe these
exploratory studies below.

Exploratory experiments. Our research began with seeking ML experi-
ment hands-on experience on applied ML in the context of pervasive comput-
ing [89,90]. This step provides single-point empirical data on the challenges
associated with ML experiment management without specialized tools (RQ1.1:
What are the challenges associated with ML experiment asset management?).
Specifically, our first exploratory study involves the application of supervised
ML to forecast building energy consumption in a DHS. While our forecast
method presents a new approach for forecasting time series data in building
energy [91], the goal of the exploratory study concerning this thesis is to gain
practical experience with ML model experiments and identify encountered
pain points. We used ML methods through data analysis and modeling for
the exploration study. The data analysis and exploration were preceded by
domain—district heating systems [92,93]—knowledge acquisition, followed by

18 CHAPTER 1. INTRODUCTION

data design and collection from ten district heating substations. Employing
suitable sensing devices, we continuously and unintrusively collected data from
each substation over seven months. The data attributes defining features from
the applied domain include the thermal load values, flow rate, supply tempera-
ture, return temperature, and weather temperature. With the exploratory data
analysis— a critical aspect of data science and model experimentation—, we
identified the data features to consider during the ML model experimentation.
The objective of the experiment was to accurately forecast the combined space
and water heat load used in commercial and residential buildings. Consequently,
we performed model experiments over four months involving feature engineer-
ing and modeling supervised algorithms to investigate their resulting model
prediction accuracy. We experimented with various parameter combinations,
algorithms, data partition, and forecast horizons. We performed these modeling
experiments in iterations over a long period without supporting asset manage-
ment tools. Therefore, we encountered several asset management challenges,
leading to our single-point empirical data on the challenges associated with
ML experiment management without specialized tools.

Exploratory case study. An exploratory case study is a vital empirical
methodology to investigate or gain insight into target phenomena in their
context [94]. Consequently, we used an exploratory study methodology to
perform a large-scale study on the ML-related project types, development stages,
and evolution (RQ1.2: What are the ML project types, their development stages,
and evolving patterns?).

To address this research question, we systematically selected and explored
ML projects hosted on GitHub to analyze their types, development stages,
and evolution patterns. Our final subjects are GitHub projects dependent on
and using one of the top ML Python libraries—Scikit Learn and TensorFlow.
We considered i) projects implemented in Python, ii) projects dependent on
either SciKit Learn or TensorFlow library, iii) projects with a minimum of 50
commits, and iv) original projects that are not forked from another project.
We excluded projects with cloning errors and those with no identifiable or
established stages of the ML development workflow. We obtained 31,066 final
projects, which we considered as subjects in our large-scale study.

We performed the study in three different aspects based on our goals.
First, we were interested to learn about the types of ML-related projects. For
this, we manually analyzed a smaller, random sample of the whole dataset,
to identify and define the different types of projects we found and to learn
about their prevalence. Second, we aimed to better understand which stages of
ML development [33, 95] are maintained in repositories. For example, some
repositories may involve data processing or modeling stages only, while others
may build on pre-trained models to focus only on the prediction stage. We
created and used an API dictionary to map ML-predetermined library APIs to
development stages. For example, we parsed the code contents into abstract
syntax trees for a specific system and its files. We extract the ML stages
available in each project from the obtained tree and map its API calls to
our dictionary. Third, we quantitatively analyzed how typical ML-enabled
projects evolve, focusing on the different stages identified. We observed the
delta between successive commits for each project to investigate how each
changes over time. Precisely, we assigned respective ML stages to successive

1.3. METHODOLOGY 19

commits by labeling them according to API mappings of relevant calls in the
commit deltas.

1.3.2 SLR & Feature-based Survey

Systematic literature reviews (SLRs) are valuable for synthesizing scientific
literature on specific topics [96, 97]. Similarly, feature-based surveys are
domain analyses carried out to identify the characteristics of specific application
domains [98,99]. Consequently, we employed these two methods to understand
the landscape of existing ML ExMTs and the features they offer (RQ2.1:What
are the commonalities and variabilities of the features found in existing ML
ExMTs?).

We aim to understand how ML ExMTs work and their standard features.
In addition, we also investigated how tools from the literature compare with
those used in practice. To this end, we systematically selected tools proposed
in literature and tools used in practice. Our subject selection sources include
knowledge (i.e., known research papers from our experience), snowballing,
literature database search, and Google search. Using our defined selection
criteria, we obtained 12 tools from literature representing state-of-research and
18 tools from grey literature representing state-of-practice tools. Our analysis
resulted in feature models representing the variabilities and commonalities
across these subject tools. The analyses were primarily based on literature
and tool documentation for respective tools. First, we analyzed a single state-
of-practice tool to identify its supported ML asset types, collection methods,
storage options, and supported asset operations. This step resulted in a baseline
version of our feature model. We then iteratively evaluated additional subject
tools while modifying terminologies and the model structure to accommodate
variations from the new tools being assessed.

1.3.3 Practitioners Survey

Practitioner surveys are valuable for eliciting information about the user
experience with software tools or products. We adopted the practitioner survey
method to i) elicit information on the challenges of ML experiments (RQ1.1:
What are the challenges associated with ML experiment asset management?)
and ii) gather information on practitioner experience with existing ML ExMTs.
For example, what are their perceived benefits and limitations? (RQ2.2: What
are the benefits and limitations of ExMTs?). With this method, we aim to
provide a comprehensive expert survey report on this subject’s state of the
art and identify areas where improvements are needed. Consequently, for our
survey design, we used open-ended, Likert-scale, and multiple-choice survey
questionnaires to answer questions on i) the kinds of experiments conducted
and what ExMTs and features are used. ii) the perceived benefits of using
ExMTs, iii) the limitations and adoption barriers of ExMTs.

We recruited 81 participants in three different batches. First, we recruited
practitioners during a regional industrial ML conference and followed up with
an email invitation to participate in the survey three weeks after the conference.
From this batch, we obtained 24 total participants. Second, participants
were recruited via GitHub and identified by filtering for recent projects with

20 CHAPTER 1. INTRODUCTION

dependencies on the top two ML libraries. We ensured relevance of projects
by only selecting ones that utilize a defined set of library methods at least
once. After that, we randomly fetch contributors to projects with commits
lower than 60 to potentially obtain users who are not entirely reliant on Git
for asset management. We sent invitation emails to the contributors and got
25 participants, with a response rate of about 1%. Third, participants were
recruited via a freelancing service website. To ensure quality, we accepted
participation only after reviewing their profiles and asking controlled questions
to establish their qualifications. We accepted participation from roughly 60% of
the interested freelancers, giving us 32 participants. We employed descriptive
statistics and thematic encoding to analyze the obtained quantitative and
qualitative responses. For the thematic encoding, we identified recurring and
essential themes in the participants’ responses and organized these themes in a
hierarchy.

1.3.4 Controlled Experiments

Empirical studies, often in the form of controlled experiments, have been
widely adopted in SE research to evaluate the values of new SE tools. [100,
101]. In controlled experiments, researchers establish specific conditions (e.g.,
treatments) under which certain outcomes of interest are observed. There are
three important considerations when conducting a controlled experiment: i)
the selection of experimental conditions, ii) the assignment of participants to
treatments, and iii) the monitoring and measurement of outcomes. In this thesis,
we adopt controlled experiments to test the hypothesis of the effectiveness
of ML ExMTs on users’ ability to improve asset management (RQ2.3: How
effective are ExMTs on user performance?). Specifically, we wanted to know
how adopting ML ExMTs affects user performance. To this end, we recruited
fifteen undergraduate student developers majoring in SE to participate in the
experiment. Our choice of students as experiment participants was based on
several studies [102–107] that suggest that students are adequate stand-ins for
practitioners in SE-based studies. We selected participants familiar with ML
and using popular ML frameworks and those without experience with ExMTs.
Since there is a wide range of ExMTs, it is impractical to consider them
all in a single experiment; consequently, we carefully chose two mature and
representative example tools with different approaches to tracking, querying,
and retrieving assets. We chose a tool representing (i) the intrusive API-based
paradigm of tracking assets and the Web dashboard (GUI) paradigm for post-
experiment analysis, ii) We chose a different tool representing the CLI-based
paradigm of asset tracking and CLI-based post-experiment analysis. As a
baseline for comparison, we consider the No-Tool setup, that is, the case of
adopting ad hoc strategies without special management assistance from a tool.

We designed a comprehensive experiment to collect participants’ experiences
using the two described subject tools and ad hoc strategies. Our experiment
is based on supervised ML tasks, such as feature selection and engineering,
parameter tuning, and evaluation with different learning algorithms. After
performing the tasks, participants were asked factual questions based on the
generated assets during the experiments. To this end, they used the subject
tools to query and retrieve specific data from previous runs (a.k.a. post-

1.3. METHODOLOGY 21

experiment analysis). For the No-Tool setup, users were free to adopt any
manual or ad hoc strategy but were not allowed to redo or cheat to answer.

We improved the validity of our experiment by adopting a cross-over design,
where we divided our participants into three groups with varying orders of
treatment. The independent variables in our experiment are the subject tools
and the datasets. The dependent variables are the error rate and completion
rate of the factual questions posed to the participants. The error rate indicates
the number of wrong answers for each subject tool, and the completion rate
indicates how many questions were answered for each subject approach. We
used the dependent variables to determine the effectiveness of the tools on user
performance. The additional dependent variables used under this methodology
are the participant’s opinions on using the tools and tool paradigms. These
variables captured various quantitative and qualitative data based on follow-up
questions on the experiment.

1.3.5 Design Science

When seeking new ideas or techniques that drive research development, design
science methods are commonly adopted to operationalize research toward new
artifacts or recommendations. The process begins with identifying a problem
or need and evaluating potential solutions. A design plan is developed to
produce an artifact based on the ideal solution. Finally, the artifact is tested
and modified as needed. For this thesis, we employed design methodology in
three stages: i) Initial design, ii) refinement, and iii) validation. We adopted
the design research methodology [108,109] to address our research question on
how to unify concepts found in multiple ExMTs (RQ3.2: How can we unify
the concepts of multiple ExMTs?).

We aim to establish a reusable artifact representing concepts from various
analyzed ML ExMTs. We explored the versioning support offered by 17 ExMTs
based on the selection from previous work. We observed and extracted the ML
asset types (structures) they support and their versioning relationship. We
then unify their conceptual structures and relationships using a metamodel.

Our analysis focused on persistence and versioning support from the tools.
We carried out a domain analysis, which resulted in a metamodel, EMMM,
representing all structure and versioning relationships found in the subject
of the tools. The concepts and relationships were formulated based on a
detailed manual analysis of the subject tools and their supported features for
asset management. In line with meta-modeling in model-driven engineering
[110]—reducing information complexity by abstraction, when we observed
conflicts between observations in multiple tools, we chose a higher-level concept
that encapsulates them.

The three main stages followed under this methodology are: i) An author
performed the initial design of the metamodel to establish its classes and
their relationships. ii) We adopted an iterative process to refine the class
relationships from the initial design. iii) We performed a validation phase
where we populated our metamodel with concrete experiment information
from actual experimental revision histories to reveal design flaws and identify
improvement opportunities. From the validation phase, we fixed identified
design flaws by refining the metamodel from step ii.

22 CHAPTER 1. INTRODUCTION

1.4 Contributions

This section summarizes the contributions of this research arising from the
three primary research questions we described in Section 1.2. In addition, we
indicate how our contributions are related to the appended publications of this
thesis. Table 1.4 shows the overview of our contributions and their respective
research questions and publications.

Our research aims to facilitate the development of next-generation tools for
managing development assets for ML-enabled systems. The core of our research
centers on ML experiment management—an asset management category for
ML-enabled systems. Consequently, we addressed the research aim in two
major stages: 1) by establishing and improving the empirical understanding of
the state of research and practice concerning ML experiments and ExMTs; and
secondly, 2) by proposing research direction and artifacts towards integrating
ML ExMTs with traditional SE tools. To this end, the thesis completes the
following seven research contributions: i) Presents the challenges of managing
ML experiments without specialized tools. ii) Present insights into development
stages and evolving development patterns in ML experiment projects. iii)
Presents an overview of the state of practice and research on ML experiment
asset management tools and the variabilities/commonalities of their features. iv)
Provide an empirical-based report on the benefits and limitations of ML ExMTs.
v) Present evidence of the effectiveness of ML ExMTs on user performance. vi)
Propose a research guide toward integrating ML experiment management into
traditional SE tools. vii) Propose a blueprint to unify and represent concepts
from multiple ML ExMTs.

Table 1.1: Overview research contribution of this thesis

Contribution RQ Method Paper

Knowledge-Seeking Contributions

Contribution 1: Overview on the
challenges of managing ML experi-
ments

RQ1.1 Exploratory study +
Practitioner survey

Paper A,B & E

Contribution 2: Insight on ML-
related project types, their develop-
ment stages and evolving patterns

RQ1.2 Exploratory Study Paper F

Contribution 3: Overview of exist-
ing ExMTs

RQ2.1 SLR + Feature-
based survey

Paper D

Contribution 4: Report on chal-
lenges, benefits of ML experiments
tools

RQ2.2 Practitioner survey Paper E

Contribution 5: Report on the ef-
fectiveness of ML experiment tools

RQ2.3 Controlled Experi-
ments

Paper E

Solution-Seeking Contributions

Contribution 6: Research agenda
towards unified and effective soft-
ware engineering and ExMTs.

RQ3.1 — Paper C

Contribution 7: Blueprint to a uni-
fied ML ExMTs

RQ3.2 Design Science Paper G

1.4. CONTRIBUTIONS 23

Our first thesis contribution provides the foundation for the rest of our
research, where we established the challenges of managing non-traditional assets
during and after ML experiments. Our second contribution investigates the
characteristics of ML experiments, with details on how they are structured,
the predominant activities involved, and how such projects evolve during
development. The outcome of our first and second contributions led to our
third contribution, where we investigated existing tools and their features
aimed at supporting developers during ML experimentations. As our fourth
contribution, we elicited empirical data on the benefits and limitations of
existing tools from users’ perspectives to understand the current gaps that
should be addressed in future tools. For our fifth contribution, we investigate
the effectiveness of ExMTs regarding how well they support experiment tasks.
Our sixth contribution provides a research roadmap toward integrating ExMTs
into traditional SE tools. In our last contribution towards integrating ML
ExMTs into traditional SE tools, we proposed a meta-model artifact of a unified
ML ExMT, which can be used as a blueprint for new tools.

The following part of this section summarizes our contributions extracted
from their respective research work and publications.

1.4.1 Contribution 1: Overview of the Challenges of Man-
aging ML Experiments

The development of ML-enabled systems relies on experimentation to optimize
algorithms’ performance and design. However, managing ML experiments can
be challenging, primarily when performed without specialized asset management
tools. Challenges are development aspects that make asset (i.e., artifact and
metadata) management difficult. To provide empirical data on the challenges
of ML experiments, we began with a single empirical data point from our
experience (Paper A & B), then broadened the empirical data points using a
practitioner survey eliciting data from multiple participants (Paper E).

We addressed this contribution by answering the following research question:
RQ1.1: What are the common challenges associated with asset management

during ML experiments?
In papers A and B, we conducted an exploratory study with hands-on

experience in ML experiments. Here, we experimented with different supervised
learning algorithms, including SVM, Linear Regression, FFNN, and Regression
Trees, to forecast heat energy consumption at building substations for a DHS
network. The study provided a single data point of response to our research
question (RQ1.1). The ML experiments were managed without specialized asset
management tools and handled by a developer responsible for the experiment
tasks, from data preprocessing to model evaluations using ad hoc and manual
methods. The datasets for the experiments were obtained non-intrusively from
ten building substations—five commercial and five residential buildings—over
seven months. The experiment aimed to find the optimal heat-load forecasting
models for each building substation.

In the research paper titled E, we conducted a survey with a total of 81
practitioners, out of which 75 perform ML experiments. The survey questions
were designed to gather information about the nature of the ML experiments
they conduct and the challenges they face while conducting the experiments,

24 CHAPTER 1. INTRODUCTION

with the aim of expanding our understanding of management challenges. We
obtained information about the nature of the ML experiment performed from
participants who conduct experiments, while the questions on management
challenges of ML experiment were directed towards those who do not use
specialized tools. Specifically, we requested 23 participants who do not use
specialized asset management tools to share their challenges in data preprocess-
ing, model building, and evaluation. In addition, we introduced and described
ExMTs to the practitioner and asked them if they thought specialized ExMTs
could improve their development process. Using thematic analysis, we analyzed
common themes from the responses and compiled them into a report that
provides insights into the challenges faced when managing ML experiments.
This contribution also provides insight into the nature of the ML experiments
practitioners perform.

Results. The challenges of ML experiments are multifaceted and can span
many aspects of ML development stages, prominently areas such as data
preprocessing, modeling training, and evaluation. The challenges are often
non-trivial and compound as experiments grow in size and complexity. We
briefly describe the identified challenges established under each of the studied
scenarios.

The practical challenges from our exploratory study include the following: i)
Difficulty in maintaining consistent project organization and structure: Due to
the exploratory nature of ML experiments, it took a lot of work to adequately
anticipate an ML experiment’s evolution. For instance, we could not pre-
determine how many experiments runs it would take to yield the models with
the desired performance. Consequently, the experiment process lacks consistent
structure or asset organization for the data and asset types used during our
experiments. ii) Difficulty performing domain-specific operations: Although
it was sometimes possible to navigate and find specific assets or experiment
information based on ongoing development needs, it often requires tedious and
several extra steps. For example, typical domain-specific operations during
ML experiments are concerned with finding assets based on the state of a
specific run (e.g., model performance). This was a significant challenge since
manual management approaches do not offer such asset-specific operations.
iii) Difficulty effectively addressing experiment concerns: Similar to domain-
specific operations, there are common experiment concerns typical for ML
experiments. These include reproducibility, traceability, and replicability. We
were constantly faced with challenges addressing these concerns because there
was no consistent tracking or storage of asset versions as the ML experiment
evolved. iv) Difficulty in collaboration and asset sharing: Similar to how
version control tools support collaboration in traditional SE, the lack of similar
support for ML-specific assets such as learning models introduces a challenge
for multiple developers to collaborate on ML projects. v) Difficulty analyzing,
interpreting, and comparing the performance of multiple experiment runs. All
post-experiment analyses had to be done manually and were time-consuming
and error-prone.

From our practitioner survey, we elicit information about the nature of ML
experiments practitioners perform; 41% of respondents indicate they perform
only manual experiments, where the outputs of each experiment run (model

1.4. CONTRIBUTIONS 25

> 100

41.3% 41.3%17.3% 8.0% 24.0% 14.7% 30.7% 22.7%

69.3%

Use tool

Figure 1.5: Nature of ML experiments.

training) were analyzed and evaluated before deciding on the necessary modifi-
cations for the next experiment run. In contrast, 17% indicate they perform
only automated experiments using training loops to find optimal results, while
41% of the respondents perform both automated and manual experiments. On
the largest count of experiment runs ever performed, 8% of the respondents
reported having performed 1–10 runs, 24% reported between 10–25 runs, 15%
reported 25–50 runs, 31% reported between 50–100 runs, while 23% reported
more than 100 runs. The majority, 69%, of participants in fact use ExMTs to
manage assets. Figure 1.5 summarizes the nature of ML experiments conducted
by survey participants.

Regarding ML asset management challenges when conducting ML experi-
ments, the common challenges they face when managing ML assets without
using the specialized tools are: i) inability to ensure essential experiment
outputs and their version are consistently and correctly stored, leading to
unknowingly overwriting essential assets. ii) difficulty retrieving multiple mod-
els and corresponding asset versions from previous runs for reuse, especially
in projects with many experiments. iii) difficulty tracking all changes and
operations performed on specific assets over an extended period. iv) difficulty
interpreting results due to the lack of visualization to correlate dynamic assets
to model performance or generate reports to compare different experiment runs.
For the question eliciting practitioners’ opinion on ExMTs, 80% strongly agreed
or agreed that specialized ExMTs can improve asset management, while only
17% were neutral.

In summary:

26 CHAPTER 1. INTRODUCTION

Challenges make artifacts and metadata management difficult during and
after ML experiments. Using an exploratory study based on applied ML in
DHS and responses from 23 practitioners, we investigated the challenging
aspect of asset management during ML experiments or model prototyping
without specialized tools. Our investigation indicates that practitioners face
the following challenges:

• Difficulty carrying out domain-specific operations and maintaining
consistent project structure & organization.

• Inability to capture all critical state of experiment assets at critical
milestones.

• Difficulty retrieving multiple models and their linked assets from
earlier runs for reuse

• Inability to correctly and effectively analyze or interpret results from
multiple experiment runs

• Difficulty in tracking modifications affecting specific assets over time.

• Difficulty in collaboration and sharing of experiment assets.

• Inability to effectively address typical experiment concerns such as
reproducibility and traceability.

Based on the nature of the ML experiment conducted, it was observed
that over 80% of the participants conducted manual experiments. The
majority of the participants conducted between 50 to 100 experiment runs
per project. Additionally, almost 70% of the participants used specialized
ExMTs to mitigate asset management challenges. Interestingly, 80% of the
participants who did not use specialized tools believed that such tools could
address the limitations they faced and improve their development process.

RQ1.1: Challenges of ML Experiment Management

Discussion.

In ML experimentation, the persistent challenge revolves around the intri-
cate and time-consuming nature of manually overseeing an expanding array
of asset versions stemming from numerous experiments or experiment runs.
This challenge often manifests in the form of complexities and substantial time
overhead.

Surprisingly, some ML practitioners have yet to embrace the adoption of
dedicated asset management tools during the ML experimental or prototyping
phases. However, our research findings unequivocally demonstrate that the
absence of such support systems introduces a host of noteworthy difficulties.
Notably, the prevalence of manual ML experimentation persists, emphasizing
the critical need for specialized management tools as a means to enhance both
development cost-efficiency and development timelines.

It is worth noting that while conventional tools like VCS find widespread
usage as substitutes for specialized ExMTs, there is significant untapped poten-
tial for them to effectively address the complexities of ML asset management.

1.4. CONTRIBUTIONS 27

One promising avenue for improvement involves capturing comprehensive asset
snapshots, operations, and decision-making processes on a per-experiment-run
basis. This approach ensures the holistic traceability and management of ML
assets, offering a potential solution to the identified challenges.

1.4.2 Contribution 2: Insights on ML-related Projects,
Development Stages, and Evolving Patterns

To build better tools for managing ML assets, we need to improve our empirical
understanding of ML-related project development and the common properties,
asset types, development stages, and transitions between these stages that are
involved. Recent studies have investigated the features and support offered
by emerging ML asset management tools [27,32, 77,78,82,83] and attempted
to characterize ML projects and experimentation activities (i.e., workflow)
empirically [88,111–113]. However, the body of knowledge on the characteristics
and practices related to real ML-related projects is sparse. Early studies exist on
specific aspects, such as code styles, on collaboration practices, often using small
datasets of real projects. Large-scale studies on larger datasets, investigating
general characteristics, identifying the exact stages, and also the history of
changes, are still missing. For instance, what types of projects are currently
developed? What are the predominant development activities? How do these
projects and their assets evolve? We addressed this gap with the following
research question:

RQ1.2: What are the ML project types, their development stages, and
evolving patterns?

In paper F, we contribute in this direction and present a large-scale mining
study. We contribute a dataset of 31,066 ML-related projects on GitHub and
collected insights on their types, development characteristics, and evolution.
Our focus was on Python as the most popular language for ML-related projects,
as well as on projects relying on the two most popular ML libraries TensorFlow
and/or scikit-learn. We formulated the following research questions to cover this
contribution: i) What types of ML-related projects are maintained on GitHub?
ii) Which development stages can be found in ML-related projects on GitHub?
iii) How do ML projects on GitHub evolve and which practices are applied?
We selected projects implemented in Python, dependent on established ML
libraries—SciKit Learn and TensorFlow, original (i.e., not forked from another
project), and has at least 50 revision history. We excluded projects with
errors when cloning, not based on SciKit Learn and TensorFlow, and those
without identifiable or established stages of the ML workflow when mapped
with our library API dictionary. Our selection process resulted in 21,318 Scikit
Learn-based and 13,644 TensorFlow-based projects, with 3,896 projects using
both libraries. Consequently, we obtained 36,066 unique GitHub projects as
subjects for our empirical analysis.

To understand what types of projects are ML-related, we manually analyzed
a randomly selected sample of 100 repositories. We defined the categories
during this process as we observed recurring project types. Because it is
hard to differentiate these categories, we assigned some projects to multiple
categories. We manually reviewed the projects, documenting what strategy
and parts of the projects we used to identify the project types. To identify

28 CHAPTER 1. INTRODUCTION

concrete ML development stages in our subject projects, we used the API
dictionary defined by Biswas et al. [95], which maps popular ML library calls
from source code to the development stages. The API dictionary includes
functions from core ML libraries—Scikit-learn and TensorFlow—, and other
libraries such as pandas, numpy, keras, theano, and caffee to cover the most
popular ML libraries studied in prior work [114–116]. We extracted a list of ML
stages implemented in each project file. Based on the extracted development
stage information, we investigated which stages are present in each project
and how many files are associated with them. We also counted how often
multiple stages were combined in a single file and which stages frequently occur
together. For insights into the evolution of our subject projects, we observed
the delta between successive commits for each project to investigate how each
system changes over time. Here, we identify the ML stages modified through
each commit of our subject systems, and this process is repeated for the other
commits of the system to understand its evolution. We grouped our subject
systems into five groups based on commit count to observe evolution patterns
across different project sizes.

Results.

In our manual project analysis, we observed that the most helpful assets
were the project documentation, but also the project structure and types of files
present. In total, we identified 7 distinct categories of projects in our random
sample of 100 repositories. i) Experiment : This ML project type refers to
projects that aim to develop a suitable ML model for a specific application by
conducting multiple runs of training, testing, and validation using variations of
the hyperparameters, data features, and training procedure. The results of each
run usually contain a trained model, its performance metrics, and its predictions
on the dataset. Incidentally, we noticed that most experiments appear not to
store the results from multiple experiment runs, only committing the latest
version of the trained model and associated source code. ii) Education: This ML
project type includes all content that supports education, like practical examples
for university courses, homework solutions, or student projects. It is usually
explicitly stated in the project description for which course they were developed.
iii) Tutorial : This project category is designed to facilitate understanding a
specific ML topic. This category shares similarities with education, but with
the difference that tutorials are not restricted to formal types of education (e.g.,
university education) but are often less formal and target practitioners. iv)
Research: This type refers to projects that accompany research papers. The aim
is usually the development of new ML models, training methods, optimization
techniques, or applications of ML. Experiments are often conducted as part
of these projects, leading to most research projects also being classified as
experiments. Some research projects could also be called “system prototypes.”
We distinguish them from systems by the fact that the main goal of research
projects is the accompanying scientific publication, not a possible usage by an
end user. v) System: This type refers to executable applications designed to
provide end-user-oriented functionality. We distinguish systems from libraries,
which target developers instead of end-users. ML-enabled systems incorporate
a variety of different software assets, both ML-related, such as model files,
and non-ML-related, such as configuration files or GUI resources. ML-enabled

1.4. CONTRIBUTIONS 29

Experiment Education Tutorial System Research Library Toolset
Project type

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f p
ro

je
ct

s

41%

31%

15% 14%
12%

10%
8%

Figure 1.6: Number of projects of each type found in a random sample of 100
repositories.

systems are among the largest and most complex projects in our dataset.
vi) Library : This category refers to ML libraries, i.e., packaged code to be
integrated into other projects—especially ML-enabled systems—via an API.
These libraries range from specialized toolkits for ML-related purposes, such
as deep learning, computer vision, or natural language processing, to more
general-purpose libraries that offer a wide array of algorithms and utilities.
The libraries in our sample are often well-maintained with active collaborators.
Toolset : This type refers to ML-related projects that are intended for practical
use but are very limited in their applicability. In contrast to systems, they lack
the property of interconnected components and functionalities. Instead, they
consist of a set of isolated functionalities. Figure 1.6 shows the prevalence of
the different categories found in our sample.

The ML workflow stage identified within our subjects include data

acquisition, data preparation, modeling, training, evaluation, and
prediction. In particular, their prevalence is as follows: we found the data
acquisition (30,063) and preparation (31,008) stages in over 96% and 99%,
respectively. The modeling stage occurred fewer times in 26,808 projects,
the training stage in 27,140 projects, the prediction stage in 26,136 projects,
and the evaluation stage in 21,894 projects. This shows that most projects
involve data acquisition and preparation, while the evaluation stage is the least
observed ML stage. We note that the prevalence of these stages is very similar
to the results of Biswas et al. [95] obtained on a set of 105 data science projects
from Kaggle. For unique combinations of development stages found in each
project, we found 17,333 projects (over 55%) implement all of the six ML
development stages. Overall, we identified 51 unique combinations of these
ML stages, ranging from projects with only one stage to those including all.
Figure 1.7 shows an overview of the most common combinations (i.e., those
with at least 100 occurrences). As we can see, there is a larger gap between
projects implementing all ML stages (17,333) and every other combination,
with the next largest one missing the evaluation (4,196 projects, 13.51%).
Interestingly, only the data preparation stage is present in all combinations,
while the evaluation stage is often missing.

30 CHAPTER 1. INTRODUCTION

Data
Acq.

Data
Prep Modeling Training Evaluation Prediction

17,333

4,196

1,718

815

804

774

722

714

619

435

424

424

340

267

265

224

209

200

No of projects ML workflow stages

Figure 1.7: Combination of ML workflow stages (freq > 100)

Figure 1.8 presents the proportion of our subjects affecting different ML
development stages throughout their lifecycle as observed in their commits,
showing their evolution pattern. Our findings show that most project changes
predominantly impact the data acquisition and preparation stages. Specifically,
approximately 50% of the projects consistently make changes to the Data
Preparation stage over time. We observed that aside from the initial few com-
mits, modifications related to data preparation remain consistent throughout
the lifecycle of the projects. As for the Data Acquisition stage, on average,
over 30% of the projects introduce changes to this stage over time. However,
this activity has a slight downward trend as the number of commits increases.

1.4. CONTRIBUTIONS 31

0 200 400 600 800 1000
Commits

0.1

0.2

0.3

0.4

0.5

Sh
ar

e
of

 p
ro

je
ct

s

Acquisition
Preparation
Modeling
Training
Evaluation
Prediction

Figure 1.8: Share of all subject projects changing a specific ML stage at a
certain point in development.

Using a large-scale exploratory study, where we explored 36,019 ML-related
projects for insights into their types, development stages and evolution
patterns, and we observe the following:

• ML projects on GitHub are diverse. Majority are non-production-
focused, including experiments/research or tutorials/education. Li-
braries, toolsets, and ML-enabled systems are minorities. Bound-
aries between types are not always clear, particularly between ed-
ucation/tutorials and toolsets/systems. We relied on a subjective
evaluation to categorize the latter.

• Most ML-related projects cover all typical development stages. Varia-
tions in the covered stages may imply different practices and goals,
but the low ratio for evaluations indicates that many projects are
exploratory and not focused on training models to be used in practice.

• Finally, Data acquisition and preparation remain continuously rel-
evant ML development stages throughout such projects’ evolution,
requiring corresponding tool support for developers.

RQ1.2: Insights on ML Projects, Dev. Stages, and Evolving Patterns

Discussion. We found that ML projects on GitHub span a wide array of
different types, with the majority being non-production focused. This indicates
a need for further research into how the development of open-source ML projects
can transition from prototypes and experiments to mature software systems.

The small fraction of these projects being actual ML-enabled systems raises
the following considerations. A reason could be diverse tool dependencies (i):
One possible explanation for the limited presence is the complex nature of such
systems, which mostly requires developers to rely on an array of specialized
tools serving a unique purpose. It is plausible that Git repositories are used to
manage a subset of all assets, such as documentation and code, while other
assets, such as data, trained models, and so on, are managed through alternative
tools. Another reason could be the isolation of ML experiments and software

32 CHAPTER 1. INTRODUCTION

systems (ii): Our findings could also be interpreted to support the theory
that ML experiments and software system development are often conducted
in isolation rather than as an integrated project. This separation may arise
from the historical division between data science and SE teams, resulting in
disjoint workflows and project structures. For example, there could be separate
teams or developers working on different aspects of ML-based systems. For
instance, the ML component could be managed as a Git project by a team
while a separate team develops the software systems utilizing the model.

These findings illustrate a need for novel studies that specifically identify ML-
enabled systems on a large scale. This, however, requires designing automated
project-type identification techniques that can be used to drive future studies.
In addition, identifying the reasons behind the limited presence of systems
requires exploratory studies, relying on interviews or surveys with developers,
also confirming or refuting our results.

Our results also show that the most important aspects of the development
of ML-enabled software are related to data acquisition and preparation. This
finding confirms that data management is typically identified as the biggest
challenge when building software with ML models, such as ML-enabled sys-
tems [117–119]. These findings demand improved tool support for DataOps,
specifically for making changes to the data-related parts of ML pipelines.

1.4.3 Contribution 3: Overview of existing ExMTs: the
State of Practice and Research

Many ExMTs, described in Section 1.1.4, aim to address the challenges of man-
aging ML-specific assets reported in Section 1.4.1. These tools target practical
experiment concerns, including reproducibility [26–28] and traceability [31],
by providing functionalities to store, track, and version assets from different
experiment runs. While these tools have become available recently, they have
yet to fully mature, especially compared to their traditional SE counterparts. It
is, therefore, essential to assess the support found in the current tool landscape
to facilitate further research toward improving them, developing new ones,
and consequently improving the engineering processes of ML-enabled software
systems. While related works have compared the features of the tools, we
present a formal representation of their commonalities and variabilities with
the following research question:

RQ2.1: What are the commonalities and variabilities of ML ExMTs?
In Paper D, We survey asset management support found in state-of-research

and state-of-practice in existing and proposed management tools for ML exper-
iments, identifying the types of assets supported and the operations offered to
users for managing ML assets. Specifically, we conducted a feature-based survey
to identify the characteristics of ExMTs, then modeled the characteristics as
features in a feature model [98, 99]. For state-of-research, we conducted a
Systematic Literature Review (SLR, [97]) to select the relevant literature and
qualitatively analyze it to answer our research questions. For state-of-practice,
most tools do not have related scientific publications; consequently, we col-
lected the relevant tools from the grey literature. For both cases, we specified
relevant inclusion and exclusion criteria to filter and define the scope of tools
we analyzed.

1.4. CONTRIBUTIONS 33

Represented in

State-of-practice

State-of-research

AllSome

Figure 1.9: Asset Types: A representation of the data types tracked by the
subjects under study.

Overall, our contribution comprises:

• Feature models representing the variabilities and commonalities of asset
types, collection methods, storage methods, and the operations found in
subject tools.

• A comparison between tools features found in state-of-research and state-
of-practice.

Result As our contribution, we proposed feature models to characterize and
describe the ML asset types and the management support found in our subjects.
The top-level features—Asset Type, Collection, Storage, and Operation—
are discovered as the core features of the subjects in our study. Asset Type

outlines the data types that are tracked by our subjects; Collection describes
how the assets are collected; Storage explains how the assets are stored and
versioned; Operation specifies what operation types are supported.

Asset Type: Compared to traditional software development, ML develop-
ment involves diversified asset types, and the supported types vary across our
subject tools, with different levels of support. We define Asset Type s as the
set of data types recognized or tracked by our subjects. Particular asset types
can be supported either explicitly or implicitly. Our analysis identifies features
Resources, Software, Metadata, and ExecutionData as the sub-features of
Asset Type. Resources represent the core asset types of the ML workflow. In
contrast, Software refers to the implementation responsible for changing the

34 CHAPTER 1. INTRODUCTION

Represented in

State-of-practice

State-of-research

AllSome

Figure 1.10: Collection feature model:
A representation of collection features
used to track asset types.

Represented in

State-of-practice

State-of-research

AllSome

Figure 1.11: Storage feature model: A
representation of the storage feature
identified in the subjects under study.

states of these assets. The metadata are structured descriptive information
about Resource and Software, providing context and details for effective asset
management. The feature Executiondata represents information about the
execution of ML runs and the outcome of such runs. Figure 1.9 shows the
feature model representing Asset Type

Collection: The feature Collection, shown in Fig. 1.10, represents the op-
tions provided by our subjects to track their supported asset types. The feature
Intrusiveness shows the level of the explicit declaration required to collect
the assets. The feature Location represents the point where the subject tools
collect the assets. Intrusiveness describes the amount of instrumentation
required by users to track assets.

The feature Storage describes how the assets are stored and the versioning
type supported by the subject tools. Figure 1.11 shows the sub-features of
Storage. Under Storage Type, we identify File System, Database, and
Repository as the storage types of our subjects. The File System type is
the simplest storage type provided by our subjects: tools store collected or
tracked assets as objects on file systems. Storage placement indicating the
location of stored assets relative to the tool can either be Internal or External.
Versioning indicates how asset versioning is supported by the tools, which
can be supported by: i) storing copies of assets each time they are modified
(Asset copies), ii) storing the deltas between assets for space efficiency (Asset
delta), or iii) versioning pipeline metadata to reproduce assets (Pipelines).

The feature Operation represents the operations supported by our subject
tools. The Track and Explore operations are common features supported by
all subjects. The Track operation is the core feature offered by the subject tools.
Our subject tools track either assets or metadata about them. The version

operation feature indicates support for versioning-related operations similar to
the conventional VCS like Git. The feature explore represents operations that
help derive insight or analyze assets collected from completed ML experiments.
Our subject tools support users in various ways to Query assets, from simply
listing all experiment assets to advanced selection based on model performance
to compare different experiment iterations or runs. Visualize indicates the

1.4. CONTRIBUTIONS 35

use of graphical presentations (e.g., charts and graphs) of experiments and
their associated assets, such as performance metrics at different points in
time. The feature Retrieve represents the means to retrieve assets from the
tools. Feature Execute indicates operation support that allows subject tools
to manage the execution of ML experiments. Sub-features under this include
Run, Reproduce, Multistage and Distributed. We represent the following
management operations with feature Manage: Modify, Archive, parameter
search, and model registry. Lastly, we identify feature Collaborate indi-
cating the presence of collaboration features such as Share, Publish, Export,
Import, and Discover.

For the comparison between state-of-research and state-of-practice, we find
that state-of-practice subjects support more asset types than the observed state
of research subjects. All the state-of-practice subjects support the tracking
of generic resources, which implies that they can track arbitrary files. Both
state-of-practice and state-of-research subjects provide the option to track
parameters or hyperparameters used during ML experiments. While 41% of the
state-of-practice tools recognize and support tracking computation notebooks
as an asset type, none of our state-of-research subjects provides dedicated
support for tracking computational notebooks. Both groups of our subjects
rely heavily on metadata describing ML experiments and their associated
assets. Although all subject tools support static metadata assets, we observe
more metadata types for the state-of-practice subjects. Roughly half of the
subjects in each group support the pipeline management features (Section 1.1.4)
through the representation of workflows as stages and pipelines. Execution
results are supported and tracked by 58% of state-of-practice tools and 50%
of state-of-research tools, while fewer subjects track execution metadata. The
collection points for both groups are primarily through source code using
programming APIs provided by the subjects. In addition, the state-of-practice
subjects notably provide alternative asset collection from the command line
or instrumented configuration files. A few subjects from both categories also
support versioning operations similar to conventional VCS operations. Subjects
in both categories offer support to query and visualize assets, with most subjects
providing access via web-based dashboards.

In summary:

36 CHAPTER 1. INTRODUCTION

Using SLR and the feature survey method, where we analyzed data from 18
tools used in practice and 12 tools described or proposed in the literature,
our investigation indicates the following:

• The commonly supported asset types are generic files, parameters,
experiment metadata, and execution results.

• Assets are collected intrusively, primarily through source code APIs,
CLI arguments, and configuration files.

• The assets are either stored internally or externally (e.g., cloud stor-
age) in file systems, databases, or repositories.

• All tools offer asset tracking operation, while 93% allow exploration
of assets via queries and visualization.

• The tools used in practice and those proposed in the literature support
similar asset types, collection methods, storage methods, and opera-
tions. A notable difference between them is that the state-of-practice
tools predominantly support features associated with other manage-
ment tool categories, such as pipeline management, execution-related
operations (e.g., multistage and distributed execution operations), and
collaboration.

RQ2.1: Empirical data on ML ExMTs’ features

Discussion We found domain-specific operations tailored to ML asset types
in those tools that explicitly manage specific asset types. For example, Model-
Hub [62,120] offers a domain-specific language to assist users in performing
experiment operations (e.g., evaluating a model with a given dataset as input).
Domain-specific operations are not widely supported across the subject tools.
Similarly, reproducibility is the most addressed experiment concern across all
the subject tools. While most subject tools support tracking assets required to
reproduce current or previous experiment runs, only about half offer explicit re-
producibility operations. Having a domain-specific language that is specifically
designed for ML is crucial in providing users with helpful support.

We observe that most subjects’ asset collection methods are intrusive,
i.e., they require users to instrument or modify their source code to track asset
information. This method is tedious and error-prone and can also deter the
adoption of ExMTs due to the associated overhead cost. Some tools such as
ModelKB, MLFlow, and Weights & Biases support automatic asset collection
in non-intrusive ways to address these drawbacks. However, many tools still
only support automatic asset collection for a limited number of popular ML
frameworks, such as TensorFlow and SciKit Learn. We believe that further
effort on automatic asset collection will assist users significantly by eliminating
error risk and reducing development time.

1.4. CONTRIBUTIONS 37

1.4.4 Contribution 4: Report on Challenges and Benefits
of ExMTs

The increasing popularity of ML ExMTs has been reflected in the growing
number of studies on the subject matter [32, 77]. However, our interactions
with practitioners, esp. at an industrial ML conference, reveal that many
practitioners who are aware of them are reluctant to adopt them for various
reasons. For example, some found them unfit for their way of working—a
typical problem for tools. To the best of our knowledge, there are no user-
based empirical studies on ML ExMTs, specifically on their actual benefits
and challenges. Improving our empirical understanding from this perspective
is essential to improve these tools, providing requirements for researchers, tool
vendors, and educators.

We addressed this gap with the following research question:

RQ2.2: What are the benefits and challenges of ExMTs?

In paper E, we surveyed 81 ML practitioners who i) attended an industry-
focused ML conference, ii) made recent contributions to ML-based projects
on GitHub, and iii) are relevant practitioners from an online freelancing ser-
vice. The survey elicits information about the ExMTs used, their perceived
benefits, and their challenges and limitations. We also elicit information from
practitioners who do not use the ExMTs to understand common adoption
barriers.

The following statistics describe the participants of the survey. 35.6%
described their role as data scientists, 31.7% as ML engineers, and 12.5%
as software engineers, while other indicated roles include data engineers and
researchers. The average experience is 4.4 years. 32.2% of the participants
indicated technology as their current domain, 17.8% education, 13.6% health,
and 11.9% consumer retail. Other domains include consumer retail, telecoms,
transport, gaming, and agriculture.

Results.

Perceived Tool Benefits: Most participants perceived ML ExMTs as highly
beneficial. 72% of the responses strongly agreed or agreed that tools facilitate
their ML tasks, while 18% were neutral. 39% were neutral on the ease of
learning and using the tools, while 45% either agreed or strongly agreed to
ease of use. 76% strongly agreed or agreed that ExMTs make them perform
experiments efficiently, while 12% were neutral. 48% agreed or strongly agreed
that using ExMTs helped improve their model performance, while 30% were
neutral. 74% agreed or strongly agreed they obtain management benefits
when using the tools compared to when not using them, while 20% were
neutral. 33% disagreed that simple command-line interfaces similar to Git
are sufficient for querying and analyzing tracked experiment assets, while 29%
were neutral, with 23% agreed or strongly agreed. 69% agreed or strongly
agreed that GUI dashboards are essential for efficient querying and analyses
of experiment assets and metadata, while 20% were neutral. 63% prefer
or strongly prefer dedicated tools over multi-purpose tools with extended
features, 22% do not prefer such, while 16% are neutral. Responses were
almost uniform for the benefits and values concerning specific experiment
challenges addressed by management tools. In order of popularity, the benefits

38 CHAPTER 1. INTRODUCTION

Strongly Disagree Strongly AgreeDisagree Neutral Agree

BQ1.f

BQ1.a

BQ1.b

BQ1.c

BQ1.d

BQ1.e

BQ1.g

BQ1.h

617205

5 9 16 20

241565

816159

2413103

391517

1520105

1121811

1.a: Exp. mgmt. tools facilitate my ML/DL tasks well. 1.b: Easy to learn and use. 1.c: Make me perform exp. more efficiently.

1.d: Improve the performance of my models. 1.e: Provide a benefits. 1.f: Cmd-line interface is sufficient for querying and analyzing assets

1.g: GUI dashboards are essential for querying and analysis assets 1.h: Prefer dedicated tools over multi-purpose tools.

No Answer

2

4

2

4

2

2

1

8

Figure 1.12: Result: questions related to perceived benefits (BQ1)

are time savings, experiment result analyses and comparison, traceability,
reproducibility, result and model optimization, collaboration, and applicability.
Figure 1.12 summarizes the outcome of questions related to the perceived
benefits of ExMTs.

Limitation and Challenges: When asked if participants experience limita-
tions with ExMTs, 6.7% of our respondents strongly agreed, and 29.3% agreed
to experience limitations with the tools affecting their experiments. 50% of the
responses were neutral, while 14% either disagreed or strongly disagreed.

The specific issues reported about the tools are technical restrictions, vendor
lock-in, computing resource limitations, missing features, usage costs, and a
steep learning curve. Our participants reported various technical issues. For
example, 15% of the code count from the thematic analysis indicates tool
support for a few asset types, while 8% indicates a preference for more flexible
and non-restrictive tools with extended support for custom asset types. By
design, some tools track assets as immutable objects to ensure persistence;
however, some participants indicate this as a limitation. Data accessibility
problems were also reported, as some tools do not interface with custom data
stores. Our participants also indicated that tools primarily target data scientists
and ML engineers and do not fit perfectly into SE workflows. Some tools’
visualization features are also reported to be too simple and limiting.

On missing features, participants experienced limitations due to a lack of:
automatic parameter search, direct integration with databases, custom ML
pipelines support, authorization and authentication support, VCS (especially
Git) integration, and integration with post-deployment operations and existing
visualization tools. On the cost and computing resources issue, since many
tools offer cloud-based SaaS. The services often offer free services with limited
computing resources, leaving freemium users with storage, memory, and com-
puting resource limitations. Consequently, practitioners find the service usage
cost as a limitation. Another related limitation is the vendor lock-in issue,
which makes it difficult for practitioners to adopt tools or services different

1.4. CONTRIBUTIONS 39

from their current vendors. For standalone-tool users, some see the restriction
to a local machine as a limitation since they cannot take advantage of faster
computing resources.

Furthermore, regarding challenges experienced when using the tools, 34%
of the thematic code count indicates poor documentation or a steep learning
curve as a challenge. 14% indicate the tools lack robustness and consistent
availability, making them immature and buggy. For example, a participant
reported experiencing strange tool behavior after reaching hundreds of iterations.
14% indicate challenges in tool setup or usage in development team settings
where strong collaboration is required.

In summary:

Using a survey with 81 practitioners as participants, where we elicited
information on the perceived benefits, limitations, and challenges of ML
ExMTs, we obtained the following:

• Most of our survey respondents find experiment management highly
beneficial as they indicate that: i) they facilitate their ML experiment
tasks, ii) are easy to use, iii) help them perform experiments efficiently,
and iv) help them obtain performing models faster. Overall, 74% of
obtained responses indicate the tools offer management benefits when
using them compared to when not.

• As reported by our participants, the limitations of ML ExMTs include
technical restrictions, vendor lock-in, computing resource limitations,
missing features, usage costs, and a steep learning curve. The chal-
lenges associated with using the tools include poor documentation,
lack of robustness, inconsistent availability, making them immature
and buggy, and usage complications in team settings where strong
collaboration is required.

RQ2.2: Benefits and Limitations of ExMTs.

Discussion The benefits of using ExMTs are evident among tool and non-tool
users. Thus, addressing the highlighted challenges and limitations associated
with adopting and using the tools can lead to their uptake among practitioners.
Additionally, successful and effective implementation of such tools can help
users fully utilize the potential benefits of such tools. We propose the following
recommendations for actionable solutions. To address steep learning curves, we
propose comprehensive documentation and user-friendly tutorials to facilitate
user onboarding. Additionally, intuitive interfaces can empower users to navi-
gate and utilize the ExMTs more effectively, boosting their overall experience.
Tool maturity should be a focus for tool developers, enhancing reliability and
stability. Ensuring robustness should involve rigorous testing, bug fixing, and
robust error-handling mechanisms. We also recommend that ExMTs offer
customizable workflows and compatibility with diverse ML frameworks and
libraries. Tailoring tools to individual user needs can foster adaptability and
seamless integration within existing toolchains. For cloud-based tools, empha-
sizing open standards and compatibility can reduce the risk of vendor lock-in
and empower users with flexibility and control.

40 CHAPTER 1. INTRODUCTION

1.4.5 Contribution 5: The Effectiveness of ML ExMTs

While related studies have compared the features of ML ExMTs [27,32,77,82,83],
none have evaluated the effectiveness of the tools on how they impact user
performance. To further improve our understanding of our research’s subject,
we present the first empirical study on the effects of using ML ExMTs. We
investigate these, along with users’ preferences on the essential tools’ paradigm.

We contribute this additional empirical insight on ML ExMTs with the
following research question:

RQ2.3: How effective are ExMTs on user performance?

In paper E, we conducted a comprehensive controlled experiment where
we guided fifteen student developers with a background in SE to perform
typical supervised ML tasks. To improve the validity, we adopted a cross-over
design [121], where we divided our participants into three different study
groups with 5 participants per group. This design enhances statistical power
by abolishing individual subject differences and generating more data points
[122]—in our case, it increases the number of data points by a factor of
3. We applied two selection criteria for our recruitment of participants: i)
familiarity with ML and popular ML frameworks, such as SciKit Learn, and
ii) Participants must not have prior experience with ML ExMTs. We decided
to compare the tools’ paradigms rather than the tools themselves because
i) the outcome of the study can be applied to other tools, and ii) tools for
experiment management are currently evolving; thus, the subject tools and
their principles and paradigms may evolve quickly. Consequently, we measured
the effectiveness of two tools that offer different usage paradigms and compared
them to a baseline of not using any such tool and to each other. First, we
chose Neptune.ai, representing i) the intrusive API-based paradigm of tracking
assets and ii) the Web dashboard (GUI) paradigm for post-experiment analysis.
Second, we chose DVC, representing i) the CLI-based paradigm of asset tracking
and ii) CLI-based post-experiment analysis.

We guided the controlled experiment participants through some ML tasks
with different tool setups. They were later asked factual questions and scored
on their ability to answer or complete the set of factual questions correctly. The
error and completion rate for questions reflects the effect of the support offered
by the subject tools when performing ML experiments. The tools provide users
with the option to organize their experiment assets. For instance, there are
greater chances of stating wrong answers to factual questions about completed
experiments when there is no structure for managing assets. To discuss the
value of the subject tools, we calculated the error and completion rate for each
tool across all study groups (Fig. 1.13 shows the mean values). The completion
rate describes the ratio of attempted questions, while the error rate implies the
fraction of wrongly answered to all attempted questions. Lastly, we asked the
participants about their opinions and experiences with the tools paradigms.

Results.

Completion and error rates : The responses for when participants were using
Neptune have an average completion rate of 98% and an average error rate of
7%. DVC obtains an average completion rate of 96% and an average error rate
of 29%. The No-Tool alternative has an average completion rate of 84% and

1.4. CONTRIBUTIONS 41

Neptune DVC No-Tool

Completion rate Error rate
0

50

100

25

75
Pe

rc
en

ta
ge

 (%
)

7%

84%

98%

29%

48%

96%

Figure 1.13: Results: Average completion and error rates

an error rate of 48%. The error rate was lowest when using Neptune, followed
by DVC, and participants made the most errors when using the ’No-Tool’
approach.

To evaluate whether the differences are significant enough, we conducted
a Kruskal-Wallis test together with post hoc comparisons with a Bonferroni-
corrected significant threshold. We conclude from the analysis that Neptune
differs significantly from No-Tool, but we do not find statistical significance
in the other cases. For the error rates, there is a highly significant difference
between Neptune vs. NoTool, and Neptune also shows a significant difference
vs. DVC. However, the error rates of DVC and No-Tools are not significantly
different. Interestingly, the perception of the participants was still different:
the overwhelming majority found it difficult to complete the tasks without the
use of any ExMT.

User’s perception of tools: On the ease of completing the tasks, the over-
whelming majority found completing the tasks very easy with Neptune. 93%
of the participants found it to be Easy or Very easy. For the same question
about DVC, the responses were mostly neutral, with 46% responding Neutral,
33% responding Easy, and 20% responding Difficult. Notably, 80% of the
participants found using ”No-Tool” Difficult. On querying and retrieving assets
to compare experimental runs, most participants (93%) found the web-based
dashboard of Neptune very helpful, and 53% of the participants were neutral
about DVC’s CLI paradigm, with 47% finding the CLI helpful. For ”No-Tool,”
53% thought the manual approach was not helpful, with 20% neutral responses.

On the importance of using ExMTs versus ”No-Tool,” all participants
agreed (80% Strongly agree, 20% Agree) that the subject tools provide significant
support for tracking and retrieving assets during model development. Regarding
users’ preference for tracking assets among Neptune and DVC, the response is
balanced, with 53.3% preferring Neptune and 47% DVC. For the best tool for
querying and retrieving previously tracked data, Neptune took the lead with
73% in its favor, while 27% prefer DVC. Also, 73% of the participants prefer
Neptune’s GUI dashboard for comparison over DVC’s CLI commands. For
ease of learning, most participants (73%) believe DVC was the easiest to learn.
We believe this reflects the experience with CLI-based tools, such as Git, for
managing assets in traditional SE. Lastly, 37% reported that Neptune provides
the best support for comparing experiment runs.

42 CHAPTER 1. INTRODUCTION

Using a controlled experiment with fifteen developer students, where they
performed ML experiments using three different setups, including specialized
tools and manual approaches, we obtained the following:

• The controlled experiment established that ML ExMTs improve user
performance compared to ad hoc approaches to managing ML assets.

• On the asset tracking modes, we did not observe an unequivocal
preference for either API-based instrumenting source code versus a
non-intrusive CLI-based approach. At the same time, participants pre-
fer a GUI-based tool over a CLI-based one for querying and retrieving
assets from the management tools.

RQ2.3: Tools’ effectiveness and User perception

Discussion. Tool Paradigm Comparison: The preferences regarding asset
tracking modalities (API- vs. CLI-based) were balanced. Observation con-
trasted our expectations because of the drawbacks often associated with the
intrusiveness of API-based tracking [55], in particular, the required manual
overhead and error-proneness [55, 78]. A possible explanation could be ex-
perience or familiarity with CLI-based tools; users who are less comfortable
with CLI commands may prefer an API, irrespective of its associated overhead.
Another explanation could be that the experiment participants did not consider
the extra lines of codes required for instrumenting and tracking assets as an
overhead but as part of the necessary tasks, given the experiment’s focus on
management tools.

Informal Asset Management. Hill et al. [19] found that practitioners
managing ML assets rely on informal methods, such as notes, spreadsheets, and
emails. In line with this, as an informal way of tracking assets, most participants
printed out asset values during the tasks. These informal means of managing
ML assets are the only option usually available to users when there is no tool
to offer a systematic way. These informal ways of tracking experiment assets
are considered expensive, time-consuming, and error-prone [19, 63]. While the
informal method of printing out the values might have helped some of the
participants answer our factual questions, we expect that the completion or
error rates for these questions would be much lower if the users were asked after
a week of completing the experiment. Common practical scenarios may take
several days or weeks after performing an experiment before such questions
arise. When they do, it is crucial to provide accurate answers, underlining the
need for a structured and tool-supported asset management approach.

1.4.6 Contribution 6: Research agenda towards unified
and effective SE and ExMTs.

ML ExMTs support developers and data scientists to track and retrieve ML ex-
periments and assets when building intelligent software systems. Unfortunately,
despite the availability of a large number of these tools, when engineering
intelligent, ML-based systems, these tools are not integrated with traditional
SE tooling. Hence, there need to be more novel tools providing native support
for managing software and ML assets uniformly. We recognize integrated tools

1.4. CONTRIBUTIONS 43

as a valid path to unifying the management of assets of ML experiments and
traditional software development. We provide the essential steps towards such
tools with the following research question.

RQ3.1: What are the necessary research steps toward integrated ML
ExMTs?

In paper C, we present a short research agenda toward unified and effective
SE and experiment management tools. We advocate for empirical assessments
of ExMTs and propose a research agenda that can inspire follow-up work by
researchers and tool builders on assessing and improving ExMTs to increase
their value for ML and software engineers. A core research challenge towards
such improvement is integrating experiment management supports into the
traditional SE tooling. To this end, identifying commonalities and differences
between the two tool landscapes among different dimensions, including process,
organization, technology, and architecture, is needed. The commonalities can
be unified into common tools, while differences remain separate or become add-
ons. Results from tool effectiveness studies can further steer such integration,
especially in identifying essential features and paradigms to support.

Result
The four proposed steps (See Fig. 1.14) are summarized in the following

paragraphs:

Figure 1.14: Proposed research steps towards integrated ML ExMTs.

1) Assess Usability and Effectiveness. To elicit practical empirical data
on ML ExMTs, we propose controlled experiments, addressing questions such
as: How do these tools affect user performance? How do users perceive them?
What are the effects of the different realizations (paradigms) of the tool features
on users? Tool candidates can be sampled from available tools based on
tools’ paradigms. For example, when investigating the effect of asset storage
paradigms on users, studies must select and classify subjects based on existing
storage options in tools. The experiments should consider a special control group
that performs the experiment without specialized ExMTs. Experiments focusing
on usability and learnability are also important, incorporating participants
with different backgrounds and expertise (e.g., experienced vs. non-experienced,
practitioner vs. researcher, software engineer vs. data scientist). Experiments
can target specific ML experiment concerns. We identifytracking, querying, and
retrieving as basic concerns operations to all respective tools [78]. Consequently,
experiments should exercise these base operations in the tasks. Participants
should be guided through ML tasks that mimic real ML experiments, which
involve multiple experiments and experiment runs evolving incrementally,
where participants modify ML assets resulting in new versions. Later in the

44 CHAPTER 1. INTRODUCTION

experiment, participants should be required to use the tools’ operations to (or
manually) track, explore, and retrieve experiment runs and assets.

Independent variables that can be used to assess tools under investigation
are (i) user performance and efficiency and (ii) user perception. For the former,
we propose to measure with the metrics completion rate and error rate of
tasks, as well as response time to answer factual questions. These can be
elicited with a questionnaire incorporated into the experiment guide. For the
independent variable based on user perception, essential for tool adoption
and elicits subjective user opinions on tools and their features, metrics should
measure participant ratings on the ease of completing the tasks with each
tool or the level of support offered for tracking, querying, and retrieving ML
assets. Results can indicate the essential tool features. In addition, qualitative,
open-ended questions complete the picture. Responses might report specific
tools or features that are difficult to use, indicating poor usability.

2) Compare with SE Tooling. Studies should determine commonalities and
differences between ML experiment management and traditional development
tooling, addressing, for instance: their common features or common workflows.
We advocate feature-based surveys, relying on a domain analysis technique,
often conducted for similar comparisons, including special kinds of VCS [123].
Studies need to focus on the problem space (required activities and workflows
of users) and the design space, architecture, and offered operations.

3) Design and Prototype Unified Tools. As a next step, relying on the
results of the prior ones, we propose creating meta-models representing the
tools’ conceptual structures (for example, assets, relationships, and versioning),
unifying the studied tools. Ideally, the meta-models are supersets, customizable
towards specialized tooling based on prospective users and usage context in
the future. For instance, add-ons can provide dataset-specific views or features
not required in other tool instances.

4) Evaluate Unified Tools. The resulting prototype should be evaluated with
user studies, including experiments, simulations, action research, or surveys.
Effectiveness and usability are important claims to evaluate, but also scalability
and learnability. Unified tools should not compromise compared to the stand-
alone ExMTs. The evaluations can reuse the methods from step 1 (Assess
Usability and Effectiveness) but should combine data science and SE activities
to evaluate the effectiveness of the unification. Users’ qualitative perceptions
of the new tools can also be elicited through surveys, but we believe action
research to be especially fruitful in understanding user interactions and tools’
benefits.

1.4.7 Contribution 7: Blueprint to a unified ExMTs

Our previous contribution identifies a path toward integrated ML management
tools that require them to be built on traditional ones and extended with
domain-specific operations tailored to ML assets. Such tools should ideally be
interoperable with existing ExMTs. Furthermore, developing such tools should
incorporate the domain knowledge about ML experiment management found
in existing management tools. Hence, it is essential to investigate how we can
represent a unified instance of existing tools. We contribute to this path by
answering the following research question.

1.4. CONTRIBUTIONS 45

RQ3.2 : How can we unify the concepts of multiple ExMTs?
In paper G, we propose the Experiment Management Meta-Model (EMMM),

a metamodel that unifies concepts and relationships extracted from systemati-
cally selected ExMTs, focused on the concept of experimental runs.

Our metamodel characterizes two main concerns: (i) ML asset structures
as concepts and their relationships as observed in the state-of-the-art tools; (ii)
conceptual version control structures that can hold ML and traditional assets.
For these concerns, we performed a domain analysis, in which we developed
EMMM, representing the superset of the concepts supported by considered
subject tools. The two main components of the metamodel are classes and
references showing the concrete concepts and relationships in ML ExMTs.

We formulated these concepts and relationships based on a detailed manual
analysis of the tools and how they support their features for asset management.
When we observed conflicts between observations in multiple tools, we chose
a higher-level concept that encapsulates them, in line with one of the main
intentions of meta-modeling—reducing information complexity by abstraction
[110]. We carried out the domain modeling in three phases: i) One author
performed the initial design of the metamodel to establish its classes and their
relationships in a single tool. ii) We adopted an iterative process to refine the
class relationships from the initial design while considering other tools. This
involved weekly meetings with all authors, where we reviewed and iteratively
improved the metamodel design until all authors approved the metamodel. iii)
We performed a validation phase where we populated our metamodel with
concrete experiment information from actual experimental revision histories to
reveal design flaws and identify improvement opportunities.

Results.
Figure 1.15 shows EMMM, a metamodel unifying the asset types from

seventeen tools and their relationships. EMMM is a ready-to-use software
artifact, formalized in Ecore, directly usable to facilitate tool development. Via
the EMF-generated code [124] that we provide with the metamodel, it provides
APIs and standard editors for manipulating its instances. We briefly describe
the concepts represented in the metamodel below.

The metamodel presents class Experiment as the top-level asset of the
metamodel and references multiple instances of the class Metadata to represent
such information such tags, requirements, and authors. Experiment Run
represents the asset type associated with other asset types used in a particular
run. EMMM supports bookkeeping the exact versions of the assets used in such
runs using the class Run with the attribute versionId. The class references
Metadata to support storing additional metadata. The class Run is related to
the following experiment assets through the abstract class Asset: i) Datasets
and features, ii) Implementation assets and their parameters, iii) Execution
results and performance data from a run. A specific version of an asset can be
shared by multiple instances of Run, or it can be unique to an instance of Run.

Asset is an abstract class modeling various concrete asset types used during
experiments. The attribute versionId tracks the different versions of assets
created as an experiment evolves. The snapshot version of assets inherited
from the abstract class has a one-to-one or one-to-many relationship with an
instance of Run. Following the Asset Types established in Contribution 2

46 CHAPTER 1. INTRODUCTION

Figure 1.15: EMMM : Metamodel unifying all asset types and their relationships
extracted from the 17 subject tools.

(Section 1.4.2), we represent the following observed asset types: resource,
software, metadata, and execution assets.

Resource: The Resource assets include dataset, models, dependency, and
generic assets. We introduce the class Dataset as a kind of Asset that repre-
sents the input data available for an experiment. The class Dataset contains
multiple DataFeature, which store features in a specific dataset. During an
experiment, data transformations or modifications create new instances of
Dataset while incrementing the value of its inherited versionId attribute.
Irrespective of the state of Dataset, the instances of DataFeature used during
a particular run may be a subset of or all the features contained in the latest
Dataset instance. This justifies the need for a separate representation of data
features as class DataFeature and their type.

Some subject tools support the storage and tracking of Model as an asset
type to support model-specific operations, such as model comparison across
different runs. The subclass Model, by inheriting from Asset, can store model-
related metadata. The class Model also references DataFeature to store infor-
mation on the features or schema that the model supports. Assets connected
to a model can be retrieved through the class Run, which contains all its as-
sociated assets. We include class Dependency, referenced by Implementation

assets, to store all dependency or environment-related files and metadata. Our
metamodel has a concrete class ArbitraryFile, which inherits the abstract
class GenericFile—a type of Asset— to store arbitrary files. The abstract
class GenericFile must be extended to store other custom files.

Software assets: Implementation related assets are supported through
the classes DataOriented, ModelTrain, ModelEval, GenericImpl, Parameter,
and Pipeline. We include the class Implementation, pointing to a sourceFile
taking other Assets as inputs or outputs. The classes DataOriented, ModelTrain,

1.4. CONTRIBUTIONS 47

and ModelEval are Implementation types based on the aspect of the ML
workflow they represent. Since these classes inherit from abstract class Asset,
the classes can store source code-related metadata. Classes DataOriented,
ModelTrain, and ModelEval vary based on specific asset inputs and outputs
they support. Class DataOriented represents implementation instances for
preprocessing, transformation, or engineering of datasets, and it references class
Dataset as input and output. The implementation of the training stage, where
ML algorithms use training datasets to generate a new model, is represented
by the class ModelTrain. Implementation of the performance evaluation of a
model is represented by the class ModelEval. The class GenericImpl repre-
sents other implementations such as model deployment or monitoring that are
not represented by DataOriented, ModelTrain, and ModelEval.

ExecutionData: The abstract class ExecutionData represents execution-
related information that the subject tools track explicitly or automatically when
executing experiment processes. It inherits from Asset and can be referenced as
output generated by the class Implementation. These include 1) ExecutionInfo:
which stores execution information generally tracked by the tools, e.g., terminal
outputs, logs, bookkeeping information, and live hardware consumption. 2)
ModelPerfomance, which stores the output of model evaluations. This is based
on evaluation metrics, as tracked in different forms based on the ML task
(e.g., sensitivity or ROC values for classification tasks; MSE, MAPE, or R2

for regression tasks). Our metamodel stores model performance using class
ModelPerformance, a subtype of ExecutionData.

Experiment Stores: Class ExperimentStore represents the storage of all
experiment-related information and assets. How subjects physically store
the actual Experiment information differs: some use file systems, others use
databases, clouds, or a combination of those. The storage of assets may differ
based on the asset types. For instance, the class Dataset can be stored in
separate storage specific to data. In contrast, the class Model can be stored in
another storage specific to models and their relevant metadata. Similarly, the
class GenericFile can also be stored separately.

Using domain analysis, we proposed EMMM, a unified metamodel rep-
resenting the asset types, their relationships, and their evolution history
among ML experiments as observed in 17 ML ExMTs. We propose EMMM
as a reference for tool developers and researchers seeking to improve existing
tools or develop next-generation tools with native support for ML. EMMM
presents a superset of conceptualized structures and their relationships ex-
tracted from our subject tools. Our metamodel can foster the improvement
of tools and the development of new tools with native support for ML assets.

RQ3.2: Unified experiment management meta-model

Discussion.

Use cases: EMMM can be utilized in different forms. EMMM can be
used to enable interoperability. Lack of interoperability is a weakness of
existing ExMTs [125]. Our metamodel provides a foundation for enabling
interoperability, offering an empirically informed representation of concepts
from 17 tools. Developers of such tools can write import and export functions
towards our metamodel; instead of one importer and exporter for each of the

48 CHAPTER 1. INTRODUCTION

other tools, which might be costly. EMMM can be used as a blueprint for
developing new tools. Extending available versioning tools such as Git towards
native support for ML requires conceptualizing ML projects. Our metamodel
provides such a conceptualization. Developers of tool extensions could represent
the ML-specific information of a revision history as instances of our metamodel.

Configurable Tools: The variety of existing tools [78] can be ascribed to
different user needs and scenarios. Even though we have presented a unified
metamodel, not all valid uses require the support of the metamodel in its
entirety. Instead, new tools might be desirable to implement support for a
subset of the metamodel based on their specific needs. This leads to the notion
of a configurable metamodel, in which a configuration can be described as views
representing subsets of all the concepts and their relationships. So, configuring
our metamodel with views on relevant assets can serve tools that require a
subset of the metamodel. A configurable meta-data also provides opportunities
for new kinds of tools. For example, tools with views on DatasetFeature can
be used to trace model features back to concrete concepts within the application
domain. Such information can be valuable knowledge for domain experts.

1.5 Summary of Publications

. This section presents the summary of publications appended to this thesis.
The complete versions of the papers are in respective chapters following this
introduction. We reformatted the papers to comply with the layout of this
thesis.

Paper A

Machine Learning in District Heating System Energy Op-
timization

S. Idowu, S. Saguna, C. Ahlund, and O. Schelen

IEEE International Conference on Pervasive Computing and Communication
Workshops, pp. 224-227. 2014

This paper presents a work in progress on applying ML to optimize energy in
a district heating system. Specifically, the paper proposed using reinforcement
learning and supervised ML on data collected from a district heating network.
The reinforcement learning method solves the control-optimization problems,
while the supervised learning method forecasts the heat load prediction as
input for the former. The complex nature of district heating systems, including
significant time delays and heat dissipation due to various factors, make ML
an ideal optimization solution, though non-trivial. The proposed work involves
acquiring relevant domain knowledge to facilitate decisions on data collection.
For instance, What are the essential domain data features to consider? What are
the appropriate data sampling rates? The paper proposes how ML methods can
enhance energy efficiency in district heating substations. The paper identified
and discussed a potential energy-saving strategy for district heating systems
based on acquired domain knowledge. The paper argues for the use of online

1.5. SUMMARY OF PUBLICATIONS 49

supervised machine learning methods to address data drift caused by changing
underlying factors that the initial training data from the heating substations
may not capture. For the proposed energy-saving strategy, the paper proposed
using heat accumulators in buildings to reduce the peak demand on the central
heating plants. Based on energy demand projection, the accumulators can store
heat energy locally and discharge it for use during high demand in buildings.
Online supervised learning methods forecast heat demand at each substation,
while reinforcement learning methods control the charge/discharge of heat
accumulators.

Paper B

Applied Machine Learning: Forecasting Heat Load in Dis-
trict Heating System

S. Idowu, S. Saguna, C. Ahlund, and O. Schelen

Elsevier Energy and Buildings, 133, pp. 478-488. 2016

This paper presents our efforts to optimize energy production, distribution,
and consumption in district heating systems, building upon Paper A. Specif-
ically, this paper presents an ML approach to forecast space and domestic
water heating energy consumption in buildings. The work performed multiple
machine-learning experiments and model prototyping based on acquired domain
knowledge of district heating systems. The experiments are based on data
collected unintrusively from ten residential and commercial buildings connected
to our subject district heating system in Skellefte̊a, Sweden. We experiment
with various supervised learning methods: support vector machine, regression
tree, feed-forward neural network, and multiple linear regression. In addition,
the work considers external factors such as weather conditions and internal
factors such as physical parameters of heating substations as model input.
The experiment and evaluation iterations use various learning methods and
domain variables to identify the best-performing supervised learning methods
and important domain features to forecast heat load for up to a 48-hour horizon
effectively. In addition, we propose using a custom data feature engineering,
which transforms the sequential data with lagging variables to account for the
temporal relationship between the variables. This approach makes it possible
to directly apply the considered classical learning methods to sequential data.
The range of heat load forecast accuracy in substations obtained in this work
is comparable with those obtained in related work that uses sequential-data-
specific methods such as recurrent neural networks and adaptive time-series
models. The paper found support vector machine and feed-forward neural
network as the most efficient learning method, with regression tree as the
worst performing method, reinforcing the reason behind the widespread use of
such methods in related work. The paper also found that the internal factors
of district heating systems are not significant domain features in forecasting
energy consumption in buildings.

50 CHAPTER 1. INTRODUCTION

Paper C

On the Effectiveness of Machine Learning Experiment
Management Tools

S. Idowu, O. Osman, D. Strüber, T. Berger

IEEE/ACM 44th International Conference on Software Engineering: Software
Engineering in Practice (SEIP), pp. 207-208. 2022

This short paper highlights the importance of managing artifacts (i.e., assets)
when developing ML projects and ML-enabled systems. The paper proposes
new research to explore the advancements and integration of a new class of
tools—Experiment management tools—into established traditional SE tools.
Specifically, this paper presents a research agenda and early results toward
unified and practical SE and ML experiment management tools. The following
summarizes the proposed research steps: (i) Assess usability and effectiveness.
We propose using mixed-empirical methods, such as controlled experiments,
surveys, and questionnaires, to elicit empirical data on the tool landscape.
We also propose using controlled experiments to evaluate the effect of tools
on user performance. (ii) Compare with SE tools. Here, studies should
determine commonalities and differences across ExMTs and their equivalent
traditional development tools. We advocate for the use of feature-based surveys
relying on domain analysis techniques for such comparisons. (iii) Design and
prototype unified tools. Relying on the results and outcome of the previous
steps, we propose using meta-models in designing and presenting the conceptual
structures in a unified form. (iv) Evaluate unified tools. The resulting tool
prototypes should be evaluated with studies including controlled experiments,
simulations, and action research of surveys.

Paper D

Asset Management in Machine Learning: State-of-research
and State-of-practice

S. Idowu, D. Strüber, T. Berger

ACM Computing Surveys (CSUR), 55(7): 144:1-144:35. 2022

Based on the development challenges of ML-based software systems, this
paper positions machine-learning asset management as an essential discipline
that can provide improved methods and tools for operations on ML assets.
This paper also presents a feature-based survey to understand the support
that existing tools offer to facilitate research and practice on building new
and improved management tools with native supports for ML and SE assets.
Specifically, the paper answers the following research questions: What ML
assets are tracked and managed by state-of-research and state-of-practice tools?
What are the mechanisms offered for collecting the assets? How are the assets
stored and version-controlled? What are the management operations offered
to users by the tools? What are the commonalities and variations between the
state-of-research tools and the state-of-practice tools? To answer the research

1.5. SUMMARY OF PUBLICATIONS 51

questions, we present an overview of the features for managing assets used in ML
experiments through a systematic survey of 18 state-of-practice and 12 state-
of-research ExMTs. We identified their commonalities and variabilities and
reported our findings using feature models. We reported four top-level features
characterizing the tools as supported Asset types, Collection methods,
Storage methods, and supported Operations. The sub-features of asset
types as observed from our subjects are Resource (datasets, models, and
arbitrary files), Software assets (source code, notebook, and parameters),
Metadata (experiment, data, code, and model metadata), and Execution

asset (dependency, jobs, execution metadata, and results). Our study shows
that the state-of-practice and state-of-research tools support different asset
types, predominantly metadata information describing the experiment, generic
files, parameters, and results from experiment executions. Our subject’s
common asset collection methods are intrusive and require instrumentation
in source code. We found that more than half of the state-of-practice tools
delegate the storage of assets to third-party tools, and commonly supported
operations include tracking, exploring, and retrieving assets aimed at experiment
reproducibility.

Paper E

Machine Learning Experiment Management Tools: A Mixed-
Method Empirical Study

S. Idowu, O. Osman, D. Strüber, T. Berger

Empirical Software Engineering (EMSE), 2023, [Under minor revision]

This paper investigates ML ExMTs and their support for users in a mixed-
method empirical study. First, in a survey with 81 ML practitioners, we sought
to understand the benefits and challenges of ML experiment management
and the existing tool landscape. Second, we investigate the effectiveness of
ML ExMTs in a controlled experiment with 15 student developers with a SE
background. The paper addressed the following research questions: What
kinds of experiments are conducted, and what ExMTs and features are used?
What are the perceived benefits of using ExMTs? What are the challenges and
adoption barriers of ExMTs? How does the adoption of ML ExMTs affect user
performance? How are ML ExMTs, features, and paradigms perceived by users?
The survey addressed the first three research questions, while the controlled
experiment addressed the last two. Our survey results show that 80% of the
respondent practitioners perform manual supervised ML experiments using a
wide range of ExMTs since they reduced error and increased completion rates.
52% of our survey participants who do not use specialized management tools
are unaware of ExMTs or their benefits. Due to a lack of knowledge, experience,
or preference for custom solutions, others do not use ExMTs. The challenges
and limitations experienced with such tools range from technical issues such
as instability, vendor lock-in restriction, computing resource limitation, and
high cost for SaaS-based tools to a steep learning curve. Our controlled
experiment established that ExMTs improve user performance compared to ad
hoc approaches to managing ML assets. When comparing the asset tracking

52 CHAPTER 1. INTRODUCTION

mode from new users, we did not observe an unequivocal preference for either
of our considered alternatives, i.e., the API-based instrumenting source code
versus a non-intrusive CLI-based approach. However, survey respondents
(practitioners) have a clear preference for the API-based ExMTs. For querying
and retrieving assets from the management tools, our results from both groups
show a preference for a GUI-based tool over a CLI-based ExMTs.

Paper F

A Large-Scale Study of ML-Related Python Projects

S. Idowu, Y. Sens, T. Berger, M. Vierhauser, and J. Kruger

2024, [Under review]

The development of ML-enabled software systems is becoming increasingly
complex, and the standard toolchains for managing these projects are still
immature. This is primarily due to a lack of comprehensive understanding of
the properties and challenges associated with ML-enabled software projects.
This paper extensively studies over 31,066 ML projects hosted on GitHub,
focusing on Python and popular ML libraries—TensorFlow and SciKit-learn.
In this study, we aim to address three key research questions: i) What types
of ML-related projects are maintained on GitHub? ii) Which development
stages are commonly found in these ML-related projects? iii) How do these
ML projects evolve over time? We reveal that most ML-related projects hosted
on GitHub are geared toward research and education, indicating that ML
technology is not yet widely integrated into major open-source systems. The
study also shows that data-related development stages dominate these projects
and are the most frequently updated ML asset types. Interestingly, the model
evaluation stage is the least found activity in our subject projects, followed
by the model training and prediction stages. The evolution pattern observed
across all project commits indicates a consistent level of development activities
for most ML development stages. Unlike the assumptions based on the general
ML workflow, which indicate that data-related stages precede the model-related
stages, this study shows that data preparation stage activities increase while
data acquisition decreases in more projects as they evolve, offering insights into
the aspects of ML development that tool developers and researchers should
prioritize. This paper contributes a large-scale dataset and empirical data that
provide valuable insights into the types of projects, their properties, and how
they evolve. These findings are particularly useful for researchers, practitioners,
and tool developers aiming to improve SE practices for ML-enabled projects.

1.6. CONCLUSION 53

Paper G

Unified Meta-Model for Tracking Machine Learning Ex-
periments

S. Idowu, D. Strüber, T. Berger

Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2022

The current alternatives for improving the management of ML assets include
i) Adopting dedicated ML ExMTs, which are gaining popularity for support-
ing concerns such as versioning, traceability, auditability, collaboration, and
reproducibility; ii) Developing new and improved version control tools with
support for domain-specific operations tailored towards ML assets. This paper
contributes toward both improvement options: improving existing ML ExMTs
and developing next-generation versioning tools. We present the Experiment
Management Meta-Model (EMMM), a meta-model that unifies concepts and
relationships extracted from systematically selected ExMTs, focused on the
concept of experimental runs. Our meta-model characterizes two main con-
cerns: (i) ML asset structures as concepts and their relationship as observed
in the state-of-the-art tools; (ii) conceptual version control structures that
can hold ML and traditional assets. We explained the meta-model’s concepts
and relationships and proposed it based on the Eclipse Modeling Framework
(EMF) with its meta-modeling language, Ecore, to encode model structures.
We evaluate our meta-model on a real ML experiment scenario, validating its
usefulness and suitability for capturing actual revision histories of ML projects.
In addition, we discuss the improvements enabled by our meta-model in terms
of possible use cases. Our proposed model can be used as a blueprint for practi-
tioners to improve existing tools (targeting data scientists) and for researchers
to develop new tools (targeting software engineers) with capabilities to support
the identified concepts and relationships natively.

1.6 Conclusion

With the rise of ML-enabled software systems, modern systems have become
more diverse. Instead of traditional software code artifacts, ML-related assets
like datasets, features, and models are now additionally used, which has
introduced new challenges in the development and production of ML-enabled
systems. Traditional SE tools are no longer effective in managing the extended
asset types introduced by ML components and the non-deterministic nature of
ML. To tackle these challenges, a new class of tools called ExMTs has been
developed. These tools provide practitioners with ways to track and retrieve
development assets, ensuring reproducibility, traceability, and collaboration.
However, these tools are not yet fully matured, have limited integration with
SE tools, and are not primarily designed for software engineer users.

This thesis aims to facilitate next-generation management tools that natively
support ML and SE assets and their management operations, integrate with
existing SE tools, and aid software engineers. Through knowledge-seeking and
solution-seeking research, we present our results, which researchers and tool

54 CHAPTER 1. INTRODUCTION

developers can use to facilitate and guide the development of new and improved
tools: i) Through an exploratory study and practitioner survey, we present
the challenges of effectively managing ML experiments without specialized
management tools. ii) We report insights on ML experiment projects’ types
and development stages. Our results show that most ML projects stored in
GitHub are geared toward research and education, and most development
activity centers around data processing. iii) We present the landscape overview
of state-of-practice and state-of-research ExMTs and their features, including
supported asset types, the collection, storage method, and the supported
operations. The primary asset type classes they support are resources (data-
related assets & models), software (source code), metadata, and execution
data(pipelines, metrics, and execution logs). The collection methods are
either intrusive or non-intrusive, while assets are stored locally or externally
(e.g., cloud storage) in file systems, databases, and repositories. Their primary
operations allow users to log or track their assets’ versions and explore the stored
assets for experiment concerns such as analysis, traceability, reproducibility,
management, and collaboration. We found tools used in practice have extended
features covering different asset management classes, implying that multi-
purposed tools are commonly desired in practice. iv) We report practitioners’
perceived benefits and challenges of the existing ML ExMTs. We found that
practitioners find ExMTs highly beneficial as they facilitate their ML experiment
tasks and help them perform experiments efficiently. They also experience
vendor lock-in, computing resource limitations, costs, steep learning curves,
poor documentation, bugs, and poor collaboration features as limitations or
challenges. v) We present evidence of the effectiveness of ML ExMTs on
user performance. Our result established that ML experiment tools effectively
improve user performance during ML experiment development. vi) Following
the empirical results from the previous contributions, we propose a research
path to achieve integrated and practical SE tools and ExMTs. vii) Lastly, we
propose a blueprint of unified concepts and structure from multiple ML ExMTs
to facilitate the development of next-generation ExMTs.

For future work, we identify two primary directions: i) further empirical
investigations into ML asset management tools and ii) prototyping tools based
on findings of practical tools. Further empirical research is needed to examine
the commonalities and differences between traditional SE tools (e.g., VCS) and
ML ExMTs. We recommend such studies to investigate the supported assets,
operations, collection modes, interfaces, and user-interaction modes. Similarly,
further research can explore other asset management classes beyond ML ex-
periment management. We recommend new studies on conducting controlled
large-scale experiments with practitioners working on different categories of
real-world ML tasks.

Further research is also needed to act on our empirical findings by building
prototype tools and using them as guides on the areas for improvement and
features for new tools. Based on the findings of this thesis, we identify the
following as critical areas for improvement. We recommend new tools be
configurable tools. This thesis establishes that many ML ExMTs exist, and ML
projects have heterogeneous structures due to differing development purposes.
It follows that tools should not assume users’ workflow or restrict them on
how to manage assets. Instead, tools should offer configurable options. For

1.6. CONCLUSION 55

example, a common tool with several add-ons can be activated or deactivated
based on the user’s preference or development use case. Similarly, tools should
support multiple paradigms (i.e., multimodal) for asset collection and user
interaction. For example, the latest version of DVC (a formally CLI-based
tool) now supports Web UI. Also, new tools should strive for automatic asset
collection with low intrusion to reduce error or usage costs. Beyond the support
for reproducibility, which is the current focus of many ExMTs, new tools should
provide extended support for ML-specific use cases in exploring and managing
assets. Lastly, new tools should integrate experiment management features
into software development IDEs. Such integration has the potential to improve
user adoption, experience, and usage. Lastly, future research should improve
interoperability across existing tools, for instance, our EMMM tools can be
used to support importing and exporting experiment assets from existing tools
provided by different vendors.

56 CHAPTER 1. INTRODUCTION

Bibliography

[1] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning
in manufacturing: advantages, challenges, and applications,” Production
& Manufacturing Research, vol. 4, no. 1, pp. 23–45, 2016.

[2] T. Xie, “Intelligent Software Engineering: Synergy Between AI and
Software Engineering,” in Dependable Software Engineering. Theories,
Tools, and Applications, X. Feng, M. Müller-Olm, and Z. Yang, Eds.
Cham: Springer International Publishing, 2018, pp. 3–7.

[3] E. d. S. Nascimento, I. Ahmed, E. Oliveira, M. P. Palheta, I. Stein-
macher, and T. Conte, “Understanding development process of machine
learning systems: Challenges and solutions,” in 2019 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM), 2019, pp. 1–6.

[4] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software engi-
neering challenges of deep learning,” in 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE,
2018, pp. 50–59.

[5] F. Ishikawa and N. Yoshioka, “How do engineers perceive difficulties in
engineering of machine-learning systems? - questionnaire survey,” in 2019
IEEE/ACM Joint 7th International Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th International Workshop on Software
Engineering Research and Industrial Practice (SER&IP), 2019, pp. 2–9.

[6] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software engi-
neering challenges of deep learning,” in SEAA. IEEE, 2018, pp. 50–59.

[7] Y. Dang, Q. Lin, and P. Huang, “Aiops: Real-world challenges and
research innovations,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
2019, pp. 4–5.

[8] F. Kumeno, “Sofware engineering challenges for machine learning appli-
cations: A literature review,” Intelligent Decision Technologies, vol. 13,
no. 4, pp. 463–476, 2020.

[9] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for ma-
chine learning: A case study,” in 2019 IEEE/ACM 41st International

57

58 BIBLIOGRAPHY

Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 291–300.

[10] R. Ranawana and A. S. Karunananda, “An agile software development life
cycle model for machine learning application development,” in 2021 5th
SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI).
IEEE, 2021, pp. 1–6.

[11] H. Kuwajima, H. Yasuoka, and T. Nakae, “Engineering problems
in machine learning systems,” Machine Learning, vol. 109, no. 5,
pp. 1103–1126, 2020. [Online]. Available: https://doi.org/10.1007/
s10994-020-05872-w

[12] G. Giray, “A software engineering perspective on engineering machine
learning systems: State of the art and challenges,” Journal of
Systems and Software, vol. 180, p. 111031, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122100128X

[13] M. A. Al Alamin and G. Uddin, “Quality assurance challenges for machine
learning software applications during software development life cycle
phases,” in 2021 IEEE International Conference on Autonomous Systems
(ICAS), 2021, pp. 1–5.

[14] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine learning: The high interest
credit card of technical debt,” 2014.

[15] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
Technical Debt in Machine Learning Systems,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 2503–2511. [Online]. Available: http://papers.nips.cc/paper/
5656-hidden-technical-debt-in-machine-learning-systems.pdf

[16] J. Bosch, H. H. Olsson, B. Brinne, and I. Crnkovic, “Ai engineering:
Realizing the potential of ai,” IEEE Software, vol. 39, no. 6, pp. 23–27,
2022.

[17] J. Bosch, “Introduction to the ai engineering theme,” Accelerating Digital
Transformation: 10 Years of Software Center, p. 399, 2022.

[18] F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software
engineering for machine-learning applications: The road ahead,” IEEE
Software, vol. 35, no. 5, pp. 81–84, 2018.

[19] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations
of developers of intelligent systems: A field study,” in 2016 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
2016, pp. 162–170.

[20] M. Vartak, H. Subramanyam, W.-E. E. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, “ModelDB: a system for machine learning
model management,” in the Workshop. ACM Press, aug 2016, pp. 1–3.

https://doi.org/10.1007/s10994-020-05872-w
https://doi.org/10.1007/s10994-020-05872-w
https://www.sciencedirect.com/science/article/pii/S016412122100128X
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

BIBLIOGRAPHY 59

[21] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert, “Declara-
tive Metadata Management: A Missing Piece in End-To-End Machine
Learning,” SysML 2018, p. 3, 2018.

[22] A. Polyzotis, M. A. Zinkevich, S. Whang, and S. Roy, “Data Management
Challenges in Production Machine Learning,” in Proceedings of the 2017
ACM International Conference on Management of Data, 2017, pp. 1723–
1726.

[23] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic, “A
taxonomy of software engineering challenges for machine learning systems:
An empirical investigation,” in International Conference on Agile Software
Development. Springer, Cham, 2019, pp. 227–243.

[24] G. Giray, “A software engineering perspective on engineering machine
learning systems: State of the art and challenges,” Journal of Systems
and Software, vol. 180, p. 111031, 2021.

[25] V. Sridhar, S. Subramanian, D. Arteaga, S. Sundararaman, D. Roselli,
and N. Talagala, “Model governance: Reducing the anarchy of production
ML,” in 2018 USENIX Annual Technical Conference (USENIX ATC 18),
2018, pp. 351–358.

[26] R. Tatman, J. Vanderplas, and S. Dane, “A Practical Taxonomy of
Reproducibility for Machine Learning Research,” Reproducibility in ML
Workshop, ICML’18, no. Ml, 2018.

[27] R. Isdahl and O. E. Gundersen, “Out-of-the-Box Reproducibility: A
Survey of Machine Learning Platforms,” in eScience. IEEE, 2019.
[Online]. Available: https://dx.doi.org/10.1109/eScience.2019.00017

[28] A. L. Beam, A. K. Manrai, and M. Ghassemi, “Challenges to the repro-
ducibility of machine learning models in health care,” Jama, vol. 323,
no. 4, pp. 305–306, 2020.

[29] C. Drummond, “Replicability is not reproducibility: nor is it good science,”
2009.

[30] R. R. Bouckaert, “Estimating replicability of classifier learning exper-
iments,” in Proceedings of the twenty-first international conference on
Machine learning, 2004, p. 15.

[31] M. Mora-Cantallops, S. Sánchez-Alonso, E. Garćıa-Barriocanal, and M.-
A. Sicilia, “Traceability for trustworthy ai: A review of models and tools,”
Big Data and Cognitive Computing, vol. 5, no. 2, p. 20, 2021.

[32] M. Schlegel and K.-U. Sattler, “Management of machine learning lifecycle
artifacts: A survey,” arXiv preprint arXiv:2210.11831, 2022.

[33] S. Idowu, D. Strüber, and T. Berger, “Asset management in machine
learning: State-of-research and state-of-practice,” ACM Computing Sur-
veys (CSUR), 2022.

https://dx.doi.org/10.1109/eScience.2019.00017

60 BIBLIOGRAPHY

[34] I. H. Sarker, F. Faruque, U. Hossen, and A. Rahman, “A Survey
of Software Development Process Models in Software Engineering,”
International Journal of Software Engineering and Its Applications,
vol. 9, no. 11, pp. 55–70, 2015. [Online]. Available: http://10.0.55.177/
ijseia.2015.9.11.05https://dx.doi.org/10.14257/ijseia.2015.9.11.05

[35] R. Wirth, “CRISP-DM : Towards a Standard Process Model for Data
Mining,” Proceedings of the Fourth International Conference on the
Practical Application of Knowledge Discovery and Data Mining, vol. 1,
no. 24959, pp. 29–39, 2000.

[36] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD Process for
Extracting Useful Knowledge from Volumes of Data,” Commun. ACM,
vol. 39, no. 11, pp. 27–34, 1996.

[37] Microsoft, “Team Data Science Process Documentation,” 2017. [Online].
Available: https://docs.microsoft.com/en-us/azure/machine-learning/
team-data-science-process/

[38] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran,
“Accelerating human-in-the-loop machine learning: Challenges and
opportunities,” in Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, ser. DEEM’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3209889.3209897

[39] X. Bouthillier and G. Varoquaux, “Survey of machine-learning experi-
mental methods at neurips2019 and iclr2020,” Tech. Rep., 2020.

[40] J. Waring, C. Lindvall, and R. Umeton, “Automated machine learning:
Review of the state-of-the-art and opportunities for healthcare,” Artificial
Intelligence in Medicine, vol. 104, p. 101822, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0933365719310437

[41] L. Tuggener, M. Amirian, K. Rombach, S. Lörwald, A. Varlet, C. West-
ermann, and T. Stadelmann, “Automated machine learning in practice:
State of the art and recent results,” in 2019 6th Swiss Conference on
Data Science (SDS), 2019, pp. 31–36.

[42] D. Zhang, Y. Shen, Z. Huang, and X. Xie, “Auto machine
learning-based modelling and prediction of excavation-induced tunnel
displacement,” Journal of Rock Mechanics and Geotechnical Engineering,
vol. 14, no. 4, pp. 1100–1114, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1674775522000786

[43] H. H. Rashidi, N. Tran, S. Albahra, and L. T. Dang, “Machine
learning in health care and laboratory medicine: General overview of
supervised learning and Auto-ML,” International Journal of Laboratory
Hematology, vol. 43, no. S1, pp. 15–22, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijlh.13537

[44] ISO/IEC/IEEE, “IEEE Std 1517-2010 (Revision of IEEE Std 1517-1999)
IEEE Standard for Information Technology—System and Software Life

http://10.0.55.177/ijseia.2015.9.11.05 https://dx.doi.org/10.14257/ijseia.2015.9.11.05
http://10.0.55.177/ijseia.2015.9.11.05 https://dx.doi.org/10.14257/ijseia.2015.9.11.05
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://doi.org/10.1145/3209889.3209897
https://www.sciencedirect.com/science/article/pii/S0933365719310437
https://www.sciencedirect.com/science/article/pii/S1674775522000786
https://www.sciencedirect.com/science/article/pii/S1674775522000786
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijlh.13537

BIBLIOGRAPHY 61

Cycle Processes—Reuse Processes,” IEEE Std 1517-2010 (Revision of
IEEE Std 1517-1999), pp. 1–51, 2010.

[45] S. Gollapudi, Practical Machine Learning, ser. Community experience
distilled. Packt Publishing, 2016.

[46] D. N. da Silva, A. Simões, C. Cardoso, D. E. de Oliveira, J. N.
Rittmeyer, K. Wehmuth, H. Lustosa, R. S. Pereira, Y. Souto, L. E.
Vignoli, R. Salles, S. C. de Heleno, A. Ziviani, E. Ogasawara, F. C.
Delicato, P. F. de Pires, H. L. C. da Pinto, L. Maia, and F. Porto, “A
conceptual vision toward the management of machine learning models,”
in CEUR Workshop Proceedings, vol. 2469, 2019, pp. 15–27. [Online].
Available: http://www.master.iag.usp.br/lab/

[47] “Azure ai — microsoft cloud,” 2022. [Online]. Available: https:
//azure.microsoft.com/

[48] G. Berg, “Image classification with machine learning as a service:-a
comparison between azure, sagemaker, and vertex ai,” 2022.

[49] “Amazon SageMaker.” [Online]. Available: https://aws.amazon.com/
sagemaker/

[50] “Vertex ai — google cloud,” 2022. [Online]. Available: https:
//cloud.google.com/vertex-ai

[51] “Datarobot ai — microsoft cloud,” 2022. [Online]. Available:
https://www.datarobot.com/platform/

[52] L. Projects, “Mlflow,” https://mlflow.org/, 2021.

[53] “Polyaxon - machine learning at scale.” [Online]. Available: https:
//polyaxon.com/

[54] D. V. Control, “What is dvc?” [Online]. Available: https:
//dvc.org/doc/user-guide/what-is-dvc

[55] A. A. Ormenisan, M. Ismail, S. Haridi, and J. Dowling, “Implicit Prove-
nance for Machine Learning Artifacts,” MLSys’20, p. 3, 2020.

[56] R. Garcia, V. Sreekanti, N. Yadwadkar, and Others, “Context: The
missing piece in the machine learning lifecycle,” KDD CMI, 2018.
[Online]. Available: https://rlnsanz.github.io/dat/Flor{ }CMI{ }18{ }
CameraReady.pdf

[57] M. H. Namaki, A. Floratou, F. Psallidas, S. Krishnan, A. Agrawal, and
Y. Wu, “Vamsa: Tracking provenance in data science scripts,” 2020.

[58] J. Schad, R. Sambasivan, and C. Woodward, “Arangopipe, a tool for
machine learning meta-data management,” Data Science, no. Preprint,
pp. 1–15, 2021.

[59] M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. In-
nerebner, F. Klezin, S. Lindstaedt, A. Phani, B. Rath et al., “Systemds:
A declarative machine learning system for the end-to-end data science
lifecycle,” arXiv preprint arXiv:1909.02976, 2019.

http://www.master.iag.usp.br/lab/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://www.datarobot.com/platform/
https://mlflow.org/
https://polyaxon.com/
https://polyaxon.com/
https://dvc.org/doc/user-guide/what-is-dvc
https://dvc.org/doc/user-guide/what-is-dvc
https://rlnsanz.github.io/dat/Flor{_}CMI{_}18{_}CameraReady.pdf
https://rlnsanz.github.io/dat/Flor{_}CMI{_}18{_}CameraReady.pdf

62 BIBLIOGRAPHY

[60] S. Shankar and A. Parameswaran, “Towards observability for machine
learning pipelines,” arXiv preprint arXiv:2108.13557, 2021.

[61] H. Miao, A. Chavan, and A. Deshpande, “ProvDB: Lifecycle management
of collaborative analysis workflows,” Proceedings of the 2nd Workshop
on Human-In-the-Loop Data Analytics, HILDA 2017, no. d, 2017.

[62] H. Miao, A. Li, L. S. Davis, and A. Deshpande, “ModelHub : Lifecycle
Management for Deep Learning,” University of Maryland, vol. 0, 2016.

[63] G. Gharibi, V. Walunj, S. Rella, and Y. Lee, “ModelKB: Towards au-
tomated management of the modeling lifecycle in deep learning,” Pro-
ceedings - 2019 IEEE/ACM 7th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, RAISE 2019,
no. March, pp. 28–34, 2019.

[64] C. Weber, P. Hirmer, and P. Reimann, “A Model Management
Platform for Industry 4.0 – Enabling Management of Machine Learning
Models in Manufacturing Environments,” in Business Information
Systems. Springer International Publishing, 2020, pp. 403–417.
[Online]. Available: http://10.0.3.239/978-3-030-53337-3{ }30https:
//dx.doi.org/10.1007/978-3-030-53337-3{ }30

[65] M. Vartak, J. M. Da Trindade, S. Madden, and M. Zaharia, “MIS-
TIQUE: A system to store and query model intermediates for model
diagnosis,” Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 1285–1300, 2018.

[66] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A {Low-Latency} online prediction serving
system,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 2017, pp. 613–627.

[67] “Bento ml cloud,” 2022. [Online]. Available: https://www.bentoml.com/

[68] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

[69] “Cloud infrastructure for machine learning at scale,” 2022. [Online].
Available: https://www.cortex.dev/

[70] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja, J. Godlewski,
Y. Low, T. Muss, M. M. Paliwal, S. Raman, V. Shah, B. Shen, L. Sugden,
K. Zhao, and M.-C. a. Wu, “Data Platform for Machine Learning,” in
Proceedings of the 2019 International Conference on Management of Data.
ACM, 2019. [Online]. Available: http://10.0.4.121/3299869.3314050https:
//dx.doi.org/10.1145/3299869.3314050

[71] S. Baunsgaard, M. Boehm, A. Chaudhary, B. Derakhshan, S. Geißelsöder,
P. M. Grulich, M. Hildebrand, K. Innerebner, V. Markl, C. Neubauer
et al., “Exdra: Exploratory data science on federated raw data,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 2450–2463.

http://10.0.3.239/978-3-030-53337-3{_}30 https://dx.doi.org/10.1007/978-3-030-53337-3{_}30
http://10.0.3.239/978-3-030-53337-3{_}30 https://dx.doi.org/10.1007/978-3-030-53337-3{_}30
https://www.bentoml.com/
https://www.cortex.dev/
http://10.0.4.121/3299869.3314050 https://dx.doi.org/10.1145/3299869.3314050
http://10.0.4.121/3299869.3314050 https://dx.doi.org/10.1145/3299869.3314050

BIBLIOGRAPHY 63

[72] “Pachyderm — Version-controlled data science.” [Online]. Available:
https://www.pachyderm.com/

[73] Neptune, “Neptune.ai,” https://neptune.ai/, 2021.

[74] “StudioML A Python model management framework.” [Online].
Available: https://www.studio.ml/

[75] “Weights & Biases – Developer tools for ML.” [Online]. Available:
https://www.wandb.com/

[76] “Comet – Build better models faster!” 2022. [Online]. Available:
https://www.comet.ml/site/

[77] L. Quaranta, F. Calefato, and F. Lanubile, “A taxonomy of tools for
reproducible machine learning experiments,” 2021.

[78] S. Idowu, D. Strüber, and T. Berger, “Asset management in machine
learning: A survey,” in ICSE-SEIP. IEEE, 2021, pp. 51–60.

[79] Y. Bengio, I. Goodfellow, and A. Courville, Deep learning. MIT press
Massachusetts, USA:, 2017, vol. 1.

[80] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data Lifecycle
Challenges in Production Machine Learning: {A} Survey,” {SIGMOD}
Rec., vol. 47, no. 2, pp. 17–28, 2018.

[81] A. Kumar, M. Boehm, and J. Yang, “Data management in machine
learning: Challenges, techniques, and systems,” in Proceedings of the
2017 ACM International Conference on Management of Data, 2017, pp.
1717–1722.

[82] R. Ferenc, T. Viszkok, T. Aladics, J. Jász, and P. Hegedűs, “Deep-water
framework: The Swiss army knife of humans working with machine
learning models,” SoftwareX, vol. 12, p. 100551, 2020. [Online]. Available:
https://doi.org/10.1016/j.softx.2020.100551

[83] T. Weißgerber and M. Granitzer, “Mapping platforms into a
new open science model for machine learning,” it - Information
Technology, vol. 61, no. 4, pp. 197–208, 2019. [Online]. Available:
https://dx.doi.org/10.1515/itit-2018-0022

[84] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from github:
methods, datasets and limitations,” in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). IEEE, 2016, pp.
137–141.

[85] A. Bhatia, E. E. Eghan, M. Grichi, W. G. Cavanagh, Z. Ming, B. Adams
et al., “Towards a change taxonomy for machine learning systems,” arXiv
preprint arXiv:2203.11365, 2022.

[86] D. Gonzalez, T. Zimmermann, and N. Nagappan, “The state of the
ml-universe: 10 years of artificial intelligence & machine learning soft-
ware development on github,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 431–442.

https://www.pachyderm.com/
https://neptune.ai/
https://www.studio.ml/
https://www.wandb.com/
https://www.comet.ml/site/
https://doi.org/10.1016/j.softx.2020.100551
https://dx.doi.org/10.1515/itit-2018-0022

64 BIBLIOGRAPHY

[87] B. van Oort, L. Cruz, M. Aniche, and A. van Deursen, “The prevalence of
code smells in machine learning projects,” in 2021 IEEE/ACM 1st Work-
shop on AI Engineering-Software Engineering for AI (WAIN). IEEE,
2021, pp. 1–8.

[88] A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa,
“A large-scale comparative analysis of coding standard conformance in
open-source data science projects,” in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2020, pp. 1–11.

[89] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE
Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[90] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[91] S. Idowu, S. Saguna, C. Ahlund, O. Schelen, C. Åhlund, and O. Schelén,
“Applied machine learning: Forecasting heat load in district heating
system,” Energy and Buildings, vol. 133, pp. 478–488, dec 2016. [Online].
Available: http://dx.doi.org/10.1016/j.enbuild.2016.09.068

[92] L. Gao, X. Cui, J. Ni, W. Lei, T. Huang, C. Bai, and J. Yang, “Tech-
nologies in smart district heating system,” Energy Procedia, vol. 142, pp.
1829–1834, 2017.

[93] H. Gadd and S. Werner, “Heat load patterns in district heating substa-
tions,” Applied energy, vol. 108, pp. 176–183, 2013.

[94] W. Tellis, “Application of a case study methodology,” The qualitative
report, vol. 3, no. 3, pp. 1–19, 1997.

[95] S. Biswas, M. Wardat, and H. Rajan, “The art and practice of data
science pipelines: A comprehensive study of data science pipelines in
theory, in-the-small, and in-the-large,” arXiv preprint arXiv:2112.01590,
2021.

[96] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–a sys-
tematic literature review,” Information and software technology, vol. 51,
no. 1, pp. 7–15, 2009.

[97] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471

[98] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
Oriented Domain Analysis {(FODA)} Feasibility Study,” Carnegie-
Mellon University, Pittsburgh, PA, USA, Tech. Rep., 1990.

[99] D. Nešić, J. Krüger, S. Stănciulescu, and T. Berger, “Principles of Feature
Modeling,” in FSE, 2019.

http://dx.doi.org/10.1016/j.enbuild.2016.09.068
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471

BIBLIOGRAPHY 65

[100] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to
controlled experiments of software engineering tools with human par-
ticipants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–141,
2015.

[101] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled exper-
iments in software engineering,” in 2005 International Symposium on
Empirical Software Engineering, 2005. IEEE, 2005, pp. 10–pp.

[102] S. Counsell, “Do student developers differ from industrial developers?”
in ITI, 2008, pp. 477–482.

[103] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives
of professionals in software engineering experiments?” in ICSE, vol. 1,
2015, pp. 666–676.

[104] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a
comparative study of students and professionals in lead-time impact
assessment,” ESE, vol. 5, no. 3, pp. 201–214, 2000.

[105] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund,
“Efficiency of projectional editing: A controlled experiment,” in FSE, 2016,
p. 763–774.

[106] P. Runeson, “Using students as experiment subjects–an analysis on
graduate and freshmen student data,” in EASE, 2003, pp. 95–102.

[107] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments,” ESE, pp. 452–489, 2018.

[108] R. Wieringa, “Design science methodology: principles and practice,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, 2010, pp. 493–494.

[109] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

[110] A. Wasowski and T. Berger, Domain-Specific Languages: Effective
Modeling, Automation, and Reuse, 2022. [Online]. Available: http:
//dsl.design

[111] S. Biswas, M. J. Islam, Y. Huang, and H. Rajan, “Boa meets python:
a boa dataset of data science software in python language,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposito-
ries (MSR). IEEE, 2019, pp. 577–581.

[112] A. Barrak, E. E. Eghan, and B. Adams, “On the co-evolution of ml
pipelines and source code-empirical study of dvc projects,” in IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering. IEEE, 2021, pp. 422–433.

[113] D. Ramasamy, C. Sarasua, A. Bacchelli, and A. Bernstein, “Workflow
analysis of data science code in public github repositories,” Empirical
Software Engineering, vol. 28, no. 1, pp. 1–47, 2023.

http://dsl.design
http://dsl.design

66 BIBLIOGRAPHY

[114] Ml-Tooling, “Ml-tooling/best-of-ml-python: A ranked list of awesome
machine learning python libraries. updated weekly.” [Online]. Available:
https://github.com/ml-tooling/best-of-ml-python

[115] “Most popular machine learning libraries - 2014/2021,” Oct
2021. [Online]. Available: https://statisticsanddata.org/data/
most-popular-machine-learning-libraries

[116] S. Raschka and V. Mirjalili, Python machine learning: Machine learning
and deep learning with Python, scikit-learn, and TensorFlow 2. Packt
Publishing Ltd, 2019.

[117] A. R. Munappy, D. I. Mattos, J. Bosch, H. H. Olsson, and A. Dakkak,
“From ad-hoc data analytics to dataops,” in ICSSP, 2020.

[118] A. R. Munappy, J. Bosch, and H. H. Olsson, “Data pipeline management
in practice: Challenges and opportunities,” in PROFES, 2020.

[119] A. R. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data
management for production quality deep learning models: Challenges
and solutions,” Journal of Systems and Software, vol. 191, p. 111359,
2022.

[120] H. Miao, A. Li, L. S. Davis, and A. Deshpande, “Towards Unified
Data and Lifecycle Management for Deep Learning,” in 2017 IEEE
33rd International Conference on Data Engineering (ICDE), 2017, pp.
571–582. [Online]. Available: http://dx.doi.org/10.1109/ICDE.2017.112

[121] K.-J. Lui, “Sample size determination for a 3-treatment 3-period crossover
trial in frequency data,” Therapeutic innovation & regulatory science,
vol. 52, no. 4, pp. 407–415, 2018.

[122] J. R. Turner, Crossover Design. New York, NY: Springer New
York, 2013, pp. 521–521. [Online]. Available: https://doi.org/10.1007/
978-1-4419-1005-9 1009

[123] L. Linsbauer, F. Schwaegerl, T. Berger, and P. Gruenbacher, “Concepts
of variation control systems,” Journal of Systems and Software, vol. 171,
2021.

[124] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[125] M. Mora-Cantallops, S. Sánchez-Alonso, E. Garćıa-Barriocanal, and
M.-A. Sicilia, “Traceability for trustworthy ai: A review of models and
tools,” Big Data and Cognitive Computing, vol. 5, no. 2, 2021. [Online].
Available: https://www.mdpi.com/2504-2289/5/2/20

https://github.com/ml-tooling/best-of-ml-python
https://statisticsanddata.org/data/most-popular-machine-learning-libraries
https://statisticsanddata.org/data/most-popular-machine-learning-libraries
http://dx.doi.org/10.1109/ICDE.2017.112
https://doi.org/10.1007/978-1-4419-1005-9_1009
https://doi.org/10.1007/978-1-4419-1005-9_1009
https://www.mdpi.com/2504-2289/5/2/20

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Background
	ML Development Workflow
	ML Experiments & Model Prototyping
	ML Asset Management
	ML Asset Management Tools

	Research Goal & Scope
	RQ1: What are the unique characteristics of ML experiments
	RQ2: What are the Overview Attributes of ML ExMTs
	RQ3: How can we unify ML experiment management and traditional tools?

	Methodology
	Exploratory Studies
	SLR & Feature-based Survey
	Practitioners Survey
	Controlled Experiments
	Design Science

	Contributions
	Contribution 1: Overview of the Challenges of Managing ML Experiments
	Contribution 2: Insights on ML-related Projects, Development Stages, and Evolving Patterns
	Contribution 3: Overview of existing ExMTs: the State of Practice and Research
	Contribution 4: Report on Challenges and Benefits of ExMTs
	Contribution 5: The Effectiveness of ML ExMTs
	Contribution 6: Research agenda towards unified and effective SE and ExMTs.
	Contribution 7: Blueprint to a unified ExMTs

	Summary of Publications
	Conclusion

	Bibliography

