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Abstract—The HTTP protocol is widely used for communi-
cation and data transfer on the internet. HTTP requests are
sent from clients to servers, and the servers respond with the
requested data. HTTP is not limited to web pages, but can be
used for any service that provides resources when requested. The
most recent version of HTTP, HTTP/3, uses a new transport
protocol called QUIC, which provides increased performance
by improving on the connection handshake and multiplexing
processes. This paper aims to perform a performance analysis
of HTTP/3 in an interservice communication system, focusing
on latency and throughput. The research will compare HTTP/3
to HTTP/2, and also explore the practical implications of the
performance analysis. To gain real-world insight, the study will
partner with WirelessCar, an automotive software company that
maintains high throughput services built on HTTP.

I. INTRODUCTION

A large amount of services on the internet use the HTTP
protocol as a means of communication and data transfer. For
a common user of the internet, the HTTP protocol is not
something that can be visually perceived, however it serves
as the foundation of content accessibility. The most common
scenario where an internet user would encounter HTTP is
when visiting a web page. When we enter a URL into a web
browser, an HTTP request is created and sent to a server. After
receiving the request, the server creates an HTTP response and
sends it back to the web browser. In this case, the response is
the web page we see after visiting the URL.

The use of HTTP goes far beyond the retrieval of a web
page. In a software engineering context, web page retrieval
is an example of a client-server model, for which the HTTP
protocol is, more often than not, used. To put the client-server
model in simple terms - a client sends requests to a server, the
server sends responses to received requests back to the client.
In our web page scenario, the web browser would be the client
and the server containing the web page would be the server.
However, the client isn’t always a web browser and the server
doesn’t always contain web pages.

To generalize the client-server model, we can define the
server as any service that can provide resources when they’re
requested and the client as any service that can request
resources and receive them. In many cases, a service can
simultaneously be a client and a server. This is a very com-

mon occurrence when dealing with systems that implement
interservice communication over HTTP.

The HTTP protocol has had several major revisions over
the years, the most notable being HTTP/1.1 and HTTP/2.
HTTP/1.1 suffers from several issues on the application layer,
the most prominent being head-of-line blocking [1] as a
side effect of request pipelining [1]. Client implementations
mitigate this issue by opening multiple TCP connections to
a server. However, opening and maintaining multiple TCP
connections can be resource intensive. HTTP/2 solves this
issue by multiplexing requests over a single TCP connection
[1]. With multiplexing in place, resource intensive requests
no longer block subsequent requests. However, multiplexing
introduced its own set of issues. If a packet is lost during a
request/response transaction, all active transactions across all
streams on the same connection are stalled. This occurs due to
the fact that TCP’s loss recovery mechanism doesn’t take into
account the parallelism introduced with multiplexing [2]. This
is yet another case of head-of-line blocking, only this time on
the connection level.

In June 2022, HTTP/3 has become a proposed standard
and it offers features designed to overcome the shortcomings
of HTTP/2. Instead of TCP, HTTP/3 uses a new transport
protocol in the form of QUIC. QUIC is UDP-based and it
implements stream multiplexing [3], as opposed to connection
multiplexing introduced with HTTP/2. This means that if a
packet is lost on one stream, only that stream is stalled, instead
of the entire connection. This redesigned transport layer is
supposed to provide an increase in performance compared to
its TCP counterpart. HTTP/3 uses the same HTTP semantics
as HTTP/2 and HTTP/1.1, leaving the means of interaction
between a client and a server unchanged, even though the
transport layer is completely different.

For this research paper, we will be performing a perfor-
mance analysis of HTTP/3 in a system where communication
between two or more services is conducted over HTTP. Since
the HTTP/3 protocol is quite new, there is limited research
exploring its performance. The majority of research [6]–[9]
at this point in time focuses on the protocol’s performance
in the browser. Thus, leaving a research gap for studying
potential performance benefits of HTTP/3 in an interservice
communication system. In an interservice communication sys-



tem, the focus primarily lies on the number of request/response
transactions conducted over a period of time, rather than the
amount of data transferred (in the case of the browser). With
this in mind, the focus of the performance analysis will be on
latency and throughput. As a reference point, we will be using
an equivalent system built on top of HTTP/2.

Apart from performance, we are also interested in whether
or not these potential performance benefits have enough value
for HTTP/3 to be considered a viable option at this point in
time, as well as the real-life implications of the performance
analysis. While the performance analysis may provide great
results in theory, it is difficult to draw a conclusion on
the practical application of HTTP/3 based on a performance
analysis alone. To get an accurate, real world understanding,
we’ve partnered up with WirelessCar, an automotive software
company. WirelessCar develops and maintains a large number
of high throughput services during its daily operations and
a lot of them are built on top of HTTP. We hope to get
valuable insight about the problems we are tackling from the
very people that work with these types of services in their
everyday work.

II. BACKGROUND

In this research paper, we conduct a computational experi-
ment to determine whether or not HTTP/3 presents significant
performance advantages over its predecessor. In order to
understand what the origin of these potential advantages might
be, it is important to understand the fundamental design of
both HTTP/3 and HTTP/2, and where they differ. According
to Thomson et al. [1], there is a link between application
performance and the underlying transport of each HTTP
version. With this in mind, this section will strongly focus on
the underlying transport layers for both HTTP/3 and HTTP/2,
how they are used within the protocol implementation and
how they differ from one another. Additionally, the HTTP
semantics, as well as the HTTP/3 and HTTP/2 application
layers will be covered to gain an understanding of how these
different layers are integrated.

A. Protocol stack overview

Before going into the specifics of how each version of HTTP
protocol works, we should get familiar with the protocol stack
that is common across all versions of HTTP. The protocol stack
shared by all current HTTP versions consists of 5 parts:

1) HTTP Semantics
2) Application Layer
3) Security Layer
4) Transport Layer
5) Network Layer

Figure 1 is a visual representation of this stack for HTTP/2
and HTTP/3.

B. HTTP Semantics

Over the years, the implementation of the HTTP protocol
has changed in numerous ways, but one part that has remained
consistent are the HTTP semantics. This immutable nature

Fig. 1: HTTP stack

of HTTP semantics provides the benefit of hiding underlying
details of the protocol implementation while providing clients
with a uniform way of accessing resources on a server [12].

Previously, we have discussed the client-server model that
HTTP is based on. The concept of clients and servers are a
fundamental part of HTTP, but that is only a small fraction
of concepts covered by HTTP semantics. To get a better
understanding of the core functionality that HTTP provides,
we need to examine various core HTTP concepts in greater
detail.

Clients and servers exchange data through messages. How
these messages are transferred over a connection largely
depends on the version of HTTP that is being used. Previ-
ously we have mentioned that HTTP semantics abstract the
underlying details. One of these abstractions comes in the
form of a version independent message format that conveys
the same meaning and characteristics of a message over all
major HTTP versions, regardless of the underlying transport
[12]. A message defined by this format contains:

• control data
• content
• headers
• trailers
When a message is sent over a connection, framing data

is sent along with it. Framing data describes the beginning
and the end of a message. In versions prior to HTTP/1.1,
the framing of a message was linked to the lifecycle of a
connection. A connection closure indicated a message end.
With HTTP/2 and HTTP/3, connection bound framing is not
possible due to the fact that multiple messages can be sent over
the same connection. Because of this, the message length is
used as a framing mechanism [12].

This message format is consistent across all versions of
HTTP, however the syntax for constructing these messages
can vary from version to version. For instance, in HTTP/1.1
messages are expressed in raw text, while in HTTP/2 and
HTTP/3 binary communication units called frames are used
to express messages.

C. Application Layer

When talking about HTTP semantics, we mentioned how
every version of HTTP has a syntax defined for constructing



messages. In HTTP/1.1 this syntax was expressed through raw
text, in HTTP/2 and HTTP/3 a concept of frames is used. Our
main focus in this research is the performance of HTTP/3
and how it compares to HTTP/2. With this in mind, in this
section we will primarily focus on how messages are created
in those two protocols and how those messages are mapped
to the underlying transport.

HTTP/2 and HTTP/3 share a very similar frame model. Both
protocols support a variety of different frame types that support
different aspects of the protocol. When a request/response
transaction occurs, the most common frame types we will
observe are HEADER and DATA frames. If we were to map
these two frame types to the message model described earlier,
HEADER frames are meant for transmission of control data,
headers and trailers, and DATA frames transmit the content of
the request/response.

When a request/response is sent over a connection, they
can be seen as a sequence of frames. For instance, a server
might receive one or more HEADER frames and a DATA frame
after that. This sequence of frames that is exchanged between
a client and a server is called a stream. Frames and streams
serve as a basis for multiplexing. Multiplexing is a feature that
is present in both HTTP/2 and HTTP/3, but its implementation
is quite different in both protocols.

Prior to HTTP/2, an HTTP connection could only handle
a single request/response at a given moment. This means that
if multiple requests were needed to be executed in parallel,
multiple connections needed to be opened. In HTTP/1.1 this
was partially solved with the introduction of request pipelin-
ing, but this introduced an issue of head-of-line blocking in
case there was a sufficiently large request at the front of the
pipeline blocking execution of requests further down the line.
Multiplexing solves this problem by allowing multiple requests
to be sent over a single connection in a non-blocking manner.
Earlier we mentioned that multiplexing is implemented differ-
ently in HTTP/2 and HTTP/3. More specifically, in HTTP/2
multiplexing occurs on the application layer, while in HTTP/3
it occurs on the transport.

HTTP/2 uses TCP as its underlying transport protocol, in
which a connection can be seen as a single stream of data. To
optimally map multiple streams onto this connections, frames
from different streams are interleaved/multiplexed. Figure 2
shows how multiple requests/responses are multiplexed over a
single TCP connection.

Fig. 2: HTTP/2 Multiplexing

Because HTTP/2 multiplexing is managed on the applica-
tion layer, HTTP/2 frames contain more data than HTTP/3

frames, for the purpose of managing the stream information
of a request.

Another key area where HTTP/2 and HTTP/3 differentiate
is the field compression algorithm that they use. Before an
HTTP message ends up on the underlying transport, the
headers and trailers of that message are compressed to reduce
bandwidth usage over the network. HTTP/2 uses a compressor
called HPACK [13]. One of the assumptions that HPACK
makes during the compression process is that frames across
all streams will retain their order. QUIC, the transport used
by HTTP/3, does not guarantee this order retention [3]. Using
HPACK on an out of order stream would cause head-of-line
blocking. To circumvent this, HTTP/3 uses a variation of the
HPACK compressor called QPACK [14]. QPACK retains a lot
of the core design from HPACK, while introducing support
for our of order delivery.

D. Transport Layer

The transport layer is responsible for keeping an open
connection between the client and server and transferring data
between them. HTTP/3’s transport layer uses QUIC while all
previous versions of HTTP uses TCP. While TCP and QUIC
are both responsible for data transfer over a connection, they
offer different properties.

Before a connection between a client and server can be
established they undergo an initial handshake process that
verifies each party. One of the key differences between TCP
and QUIC, is that QUIC has structured that handshake process
in a way that allows data to be streamed as soon as possible.
QUIC’s structure allows clients to cache information about the
origin that can be used later to achieve a 0-RTT handshake.

To fully understand how the handshake process introduced
by QUIC improves upon the one of TCP, we need to an-
alyze TCP’s handshake in more detail. Every octet of data
transmitted over a TCP connection has a sequence number
[16]. A sequence number being attached to every octet of data
allows for every octet to be acknowledged when received. A
client and server exchanging data both have an initial sequence
number (ISN). For a TCP connection to be established, the
ISN of both client and server need to be synchronized. This
synchronization is done in a three-way handshake process by
exchanging SYN and ACK control bits along with the ISN
[16]. A three-way handshake would occur as following (Figure
3):

1) Client sends SYN control bit with ISN to server
2) Server sends ACK control bit with client’s ISN and SYN

control bit with its own ISN
3) Client sends ACK control bit with server’s ISN
With HTTP/2, this process is further extended with a TLS

handshake (Figure 3):
1) Client sends a ClientHello [17] message to server
2) Server sends a ServerHello [17] message and a certifi-

cate to client
3) Client sends ClientKeyExchange [17] and ChangeCi-

pherSpec [18] messages to server



Fig. 3: TCP + TLS Handshake

4) Server sends ChangeCipherSpec message to client

To improve on the number of roundtrips needed to establish
a connection, QUIC utilizes a 1-RTT to 0-RTT handshake
process. The handshake process is conducted by exchanging
ClientHello (CHLO) , ServerHello (SHLO) and Reject (REJ)
messages between the client and the server (Figure 4). If a
client and a server are interacting for the first time, the client
does not have the information necessary to initiate a successful
handshake. In this case, a 1-RTT handshake will be conducted
(Figure 4a). To retrieve this information, a client forces a REJ
message from the server by sending a partial CHLO message.
The REJ message retrieved from the server contains a server
config including the server’s long-term Diffie-Hellman [18]
public key, a certificate chain authenticating the server and
an authenticated-encryption block with the client’s public IP
[15]. The server’s long-term Diffie-Hellman public key and
the client’s short-term Diffie-Hellman private key are used to
calculate the initial keys for the connection. After the initial
keys are obtained, the client can initiate the handshake by
sending a complete CHLO message containing its short-term
Diffie-Hellman public key along with the data encrypted with
the initial keys. If the handshake is successful, the server
will respond with a SHLO message containing its short-term
Diffie-Hellman public key. Once both the client and the server
obtain each other’s short-term Diffie-Hellman public values,
both can calculate the final keys for the connection. To perform
a 0-RTT handshake, the client uses the calculated connection
keys in all subsequent requests (Figure 4b). When a 0-RTT
handshake is successfully performed, latency is inherently
reduced because an extra roundtrip is entirely avoided.

Earlier we discussed the process of multiplexing requests
and how it solves the problem of head-of-line blocking for
HTTP/2. However, what we did not discuss at that point is a
drawback of performing multiplexing on the application layer.
With HTTP/2, the request/response frames are multiplexed and
then sent onto the TCP connection as a stream of packets.
Once these packets reach the receiver, they are de-multiplexed
into individual requests/responses as shown by figure 2. This is
how an optimistic flow of a request/response transaction would

(a) 1-RTT Handshake

(b) 0-RTT Handshake

Fig. 4: QUIC Handshake

run its course. In a more pessimistic scenario, during a re-
quest/response transaction a packet would be lost. If this were
to happen, TCP’s loss recovery mechanism tries to recover the
lost packet by retransmitting it over the connection. When we
were talking about HTTP/2’s application layer, we mentioned
HPACK and how frame order retention is crucial to make it
work. This means that once the frames are on the connection,
they need to be received in the order they were sent. In the
case of a lost packet, the only way to retain the order in
which frames are received is to block all frames from being
processed until the lost packet is retransmitted and received.
Consequently, because TCP’s loss recovery mechanism is not
aware of the existence of multiple streams on the application
layer and it only observes a singular stream of data on the
connection, when a packet is lost on one stream, all streams
are stalled until that packet is retransmitted and received. This
is yet another case of head-of-line blocking, only this time on
the actual transport.

The multiplexing implementation in HTTP/3 retains a lot of
the core concepts introduced in HTTP/2, while tackling issues
created by the HTTP/2 implementation. As we mentioned
earlier, TCP’s loss recovery mechanism is not aware of the
existence of multiple streams, causing a stall of all streams in
case of a packet loss. HTTP/3 solves this issue by moving the
concept of streams to the connection level. QUIC provides
its own implementation of streams, meaning in case of a
packet loss, the connection is able to determine the stream
that is experiencing the loss. To retain stream information
across the connection, stream data containing HTTP frames is
transported by QUIC STREAM frames [3]. After STREAM
frames are created, they are interleaved into one or more QUIC
packets. Figure 5 shows how multiple requests/responses are
multiplexed over a single QUIC connection.

This implementation of multiplexing significantly reduces
the amount of blocking that occurs due to lost packets.



Fig. 5: HTTP/3 Multiplexing

However, it is important to mention that it is still possible
for multiple streams to be stalled. Because a QUIC packet
can contain STREAM frames from multiple streams, every
stream associated with that packet will be stalled in the case
of packet loss.

III. RELATED WORK

A. Interservice communication

Software systems are oftentimes composed of multiple
services that need to communicate and exchange data to
successfully perform operations. This data exchange process
is called interservice communication (ISC). Every system that
relies on interservice communication has a mechanism over
which data is exchanged [4]. Over the years plenty of ISC
mechanisms have been brought to the public eye, each with
its own set of benefits and drawbacks. However, we are
specifically interested in HTTP via REST [5] as an interservice
communication mechanism and its performance in that role.

B. Latency, bandwidth and throughput

When talking about services that communicate over a net-
work, it’s important to be familiar with the concepts of latency,
bandwidth and throughput in order to understand the potential
problems that might arise while data is exchanged between
services. Latency refers to the time it takes for a packet of data
to travel from its source to its destination. Bandwidth refers
to the maximum amount of data that can be transferred over a
network in a specific amount of time. Throughput refers to the
amount of data that was actually transferred over a network in
a specified amount of time. [19] An optimal network strives
to achieve low latency, high bandwidth and high throughput
as it maximizes its performance potential.

C. HTTP/3 in the browser

Even though HTTP/3 has become a proposed standard only
recently in 2022, there have been a number of early adopters
such as Google and Cloudflare [7] that have started integrating
the new revision of the protocol as early as 2020. This early
adoption has presented an opportunity for various studies [6]–
[9] to be conducted, which had a couple of key elements
in common. Firstly, the studies specifically focused on the
performance of HTTP/3 compared to its predecessors.

In a study conducted by Cloudflare [7], three key metrics
were used to evaluate and compare performance between
HTTP/3 and HTTP/2: time to first byte (TTFB), 15KB page
load time and 1MB page load time. The TTFB benchmark
favored HTTP/3, with a 12,4% average performance increase
(176 ms vs. 201 ms). The page load time benchmarks

had slightly different results. In the 15KB page benchmark,
HTTP/3 had a slightly lower average load time with 443 ms
compared to HTTP/2’s 458 ms (3.3% performance difference).
However, in the 1MB page benchmark, HTTP/2 came out
ahead with an average load time of 2.30s compared to 2.33s
with HTTP/3 (1.3% performance difference). These differ-
ences occur due to the different congestion control algorithms
Cloudflare used at the time of testing [7]. BBR v1 [10],
the HTTP/2 congestion control algorithm, seems to favor
larger transfers. On the other hand, CUBIC [11], the HTTP/3
congestion control algorithm, seems to perform better on
smaller transfers.

Cloudflare’s study [7] was conducted in 2020, at a time
when HTTP/3 was just introduced to the world. In 2022,
a study on a much larger scale was conducted by Perna
et al. [6]. Their dataset consisted of approximately 14,000
websites with approximately 2,600,000 performed visits over
the period of a month. Their experiment focused on two key
metrics: onLoad (the time when all elements of a page have
been downloaded and parsed), SpeedIndex (time at which
the visible parts of the page are displayed) and H3-Delta
(derived from onLoad and SpeedIndex) [6]. The experiment
was conducted under variable network conditions with latency,
bandwidth and packet loss as variables. The highest perfor-
mance gains that were observed during the experiment were
in an environment with medium to high latency (50-200ms).
In an environment with no additional latency, content served
over HTTP/3 performed better 50% of the time. However,
in a higher latency environment, that number jumps up to
71% for 50ms added latency and 77% for 100 and 200ms
added latency [6]. Environments with low bandwidth saw
limited improvements with regards to the onLoad time. At
1Mb/s bandwidth, approximately 57% of websites load faster
with HTTP/3 than with HTTP/2 [6]. Tests with higher packet
loss showed no clear trend and at times proved to be quite
unpredictable when HTTP/3 was enabled on the server.

Aside from performance, the previously conducted studies
[6]–[9] share another key element - they have a focus on
HTTP/3 performance in the browser. While the performance
analysis in the browser can help us form a hypothesis on how
HTTP/3 will perform as an ISC in a distributed system, there
are enough varying factors between the two that might prove
our hypothesis wrong. When accessing web pages through a
browser, the amount of transferred data can exceed several
MB due to the amount of content that is sent. In a distributed
system, the amount of data transferred between two services
over a single request/response transaction is a lot smaller,
usually in the range of several hundred bytes. Additionally, the
content received by the browser is typically delivered through a
content delivery network (CDN). The use of a CDN eliminates
the increased latency and lowered bandwidth that occur due
to the physical distance between the client and the server. In a
distributed system, for a number of reasons, the two services
exchanging data might be in two completely different geo-
graphical regions. As the last differentiating factor, throughput
needs to be highlighted. When we talk about content delivery



on a website, we are generally more concerned about the
amount of data that is transferred over a specific period of
time. On the other hand, with interservice communication
we are more concerned about the amount of operations that
are performed over a specific period of time. In the context
of request/response transactions, this is known as request
rate. With this in mind, the term request rate will be used
interchangeably with throughput.

D. Transport evaluation

A study by Kyratzis et al. [21] stepped out of the browser
and tested the performance of QUIC and TCP over LTE net-
works. In their study, they used the ns-3 network simulator to
simulate various transmission conditions under which the two
transport mechanism could be tested. Their study concludes
that under good or average conditions, QUIC achieves lower
file download times and a better throughput, while under poor
conditions, the two protocols perform very similar.

Apart from providing the results of their performance eval-
uation, they also discuss the effects of 0-RTT handshakes and
QUIC streams. When using 0-RTT handshakes in their evalu-
ation scenarios, they noted a quicker connection establishment
time compared to TCP handshakes. For TCP handshakes,
they recorded a 72 millisecond connection establishment time,
while for 0-RTT handshakes, they recorded a 22 millisecond
connection establishment time. Additionally, the study reports
that the introduction of QUIC streams did lead to higher
throughput, however the throughput gain decreases as the
number of streams gets higher.

This study demonstrates how QUIC’s 0-RTT handshake
can decrease the overall latency time for a request/response
transaction because of the quicker connection establishment
time. However, it is important to highlight that since only the
connection time is recorded, the study does not provide a full
understanding of how QUIC performs compared to TCP in
regards to latency.

IV. RESEARCH METHODOLOGY

A. Goal

Our objective with this study is to identify and analyze the
performance differences between HTTP/3 and HTTP/2. As
previously discussed, the structure of HTTP/3 is advantageous
for improving performance in environments with high latency
and limited bandwidth, leading to better throughput. In
light of this, we have identified two following key research
questions:

RQ1: To what extent does the performance differ
between HTTP/3 and HTTP/2 in a system with interservice
communication over HTTP in regards to latency?

This research question aims to identify the key differences
between HTTP/3 and HTTP/2 with respect to latency. While
the majority of previous studies have only assessed the
performance of HTTP/3 in high-latency environments using
browsers, this question will examine its performance as

an Inter-Service Communication (ISC) mechanism under
varying latency conditions. Given the structural advantages
of HTTP/3, it can be hypothesized that it will outperform
HTTP/2 in environments with higher latency.

RQ2: To what extent does the performance differ
between HTTP/3 and HTTP/2 in a system with interservice
communication over HTTP in regards to throughput?

This research question aims to identify the key differences
between HTTP/3 and HTTP/2 with respect to throughput.
As previously mentioned, websites that support HTTP/3 have
been tested for their throughput in prior research. When we
talk about throughput when accessing websites, we think of
it as “how much data has been transferred”, whereas with
HTTP/3 as an ISC mechanism, the focus lies on the number of
requests completed in a specific amount of time. QUIC imple-
ments stream multiplexing, which allows for higher throughput
connections if an error were to occur on the connection. With
this in mind, we can assume that HTTP/3 will outperform
HTTP/2 in regards to throughput.

B. Research methodology to be used

For the purpose of this study, computational experiments
will be used to identify the performance differences between
HTTP/3 and HTTP/2. In order to answer RQ1 and RQ2,
we designed two separate experiments. The first experiment
benchmarks the latency and the second one benchmarks
throughput, each experiment tests for both HTTP/2 and
HTTP/3.

C. Latency Experiment

1) Hypothesis:

H1 : There is a performance difference between HTTP/3 and
HTTP/2 with higher latency.

H0: There is no performance difference between HTTP/3 and
HTTP/2 with higher latency.

2) Variables: The variables being manipulated in this
benchmarking experiment are protocol version, server location
and payload size. Protocol version has two variations: HTTP/3
and HTTP/2. Payload size is divided into three variations:
small (100 bytes), medium (600 bytes), and large (1KB). The
server location has two variations: same region as client and
a different region as client. These variables are independent
variables as they are being manipulated in order to observe
their effect on the dependent variable, which is latency.

Our experiment controls for several variables to ensure
accurate results. These control variables include the number of
open connections, connection reuse, total number of requests,
and benchmarking environment (machine hardware and soft-
ware configuration). To isolate the performance differences
that are affected by multiple connections being opened, we
limit our system to use only a single HTTP connection.



Additionally, we use a new connection for each request instead
of reusing an existing connection. This allows us to account
for the time required to establish a connection. The number
of requests is 15,000 requests per benchmark (resulting in
60,000 data points in total). Our extraneous variables include
the network and compute instance.

3) Implementation: The benchmarks that will be conducted
are the following:

• HTTP/2 with client and server in the same region
• HTTP/3 with client and server in the same region
• HTTP/2 with client and server in different regions
• HTTP/3 with client and server in different regions
Each benchmark will be run three times, with each run

sending a batch of 5,000 continuous requests for each payload
size (small, medium, or large). This means that the 15,000
requests will be sent in three separate batches, rather than
all at once. For each request/response transaction, we will
record and persist the time the connection was requested (in
milliseconds), the time the connection was established (in
milliseconds), the time the request was sent (in milliseconds),
the time a response was received (in milliseconds), and the
calculated roundtrip of the transaction.

The roundtrip of a transaction, Ri, is defined by the follow-
ing expression:

Ri = restimei − connreqi

where i is the index of the transaction, restimei is the
response time of the ith transaction and connreqi is the
connection request time of the ith transaction.

D. Throughput Experiment

1) Hypothesis:

H1 : There is a performance difference between HTTP/3 and
HTTP/2 with respect to throughput.

H0: There is no performance difference between HTTP/3 and
HTTP/2 with respect to throughput.

2) Variables: For this experiment, we manipulate two vari-
ables: protocol version and payload size. Protocol version has
two variations: HTTP/3 and HTTP/2. Identical to the latency
experiment, the payload size is varied across three levels:
small, medium, and large. The dependent variable in this
experiment is the number of processed requests per second,
also known as the request rate.

Our control variables for this experiment are the same
as in the latency experiment: number of open connections,
connection reuse, number of requests, and benchmarking en-
vironment. Similarly, we use a single HTTP connection in
order to isolate performance. However, since the focus of this
experiment is on throughput, we reuse the connection instead
of opening a new one for each request. This allows us to ob-
serve how the system processes a continuous flow of requests
without the overhead of opening and closing connections for

each individual request. The number of requests is 60,000
requests for each benchmark (resulting in 120,000 data points
in total). Our extraneous variables include the network and
compute instance.

3) Implementation: The benchmarks that will be conducted
are the following:

• HTTP/2 with client and server in the same region
• HTTP/3 with client and server in the same region
Each benchmark will be run three times, with each run

sending a batch of 20,000 continuous requests for each pay-
load size (small, medium, or large). For each request/response
transaction, we will record and persist the time the request was
sent (in milliseconds) and the time a response was received
(in milliseconds).

The current throughput, Ti, is defined by the expression:

Ti =
i

restimei − reqtime1

where i is the index of the current transaction, restimei is
the response time of the current transaction and reqtime1 is
the request time of the first transaction. This allows us to
determine and graph the progression of throughput for the
duration of the benchmark:

T = [T1, T2, T3, ..., Tn]

where n is the total number of requests made during the
experiment.

E. Benchmarking Environment

When designing our benchmarking environment, an im-
portant design choice we wanted to satisfy was usage of
technologies that an everyday developer is likely to use. Addi-
tionally, we wanted our experiments to reflect the technology
stack that our partner company uses in their day-to-day work.
According to the 2022 developer survey conducted by Stack
Overflow [20], JavaScript/TypeScript, Python and Java make
up the majority of the most popular programming languages
in use. From the same survey, we know that AWS is the most
used cloud platform. WirelessCar uses AWS as their cloud
provider, with the majority of services written in either Java
or Python. At the time of writing, Python had a more mature
ecosystem in regards to HTTP/3. Our final technology stack
for the benchmarking environment has ended up being AWS
with a Python client and server.

The first two components we have in our benchmarking
system are two EC2 instances acting as a client and a server.
The client is a t2.small EC2 instance and it contains a Python
script that is responsible for generating requests for different
types of experiments that need to be conducted. The server
is a t3.small EC2 instance and it contains a Hypercorn server
with HTTP/2 and HTTP/3 support on separate ports (eg. 8000
for HTTP/2 and 4433 for HTTP/3). The two EC2 instances
communicate through a network load balancer that routes
TCP and UDP data generated by the client instance to the
correct port on the server instance. A benchmark is started by



tunneling to the client instance and executing the Python script
with parameters describing the experiment. These parameters
include the protocol version, number of requests, request
payload size, etc.

Fig. 6: Benchmarking system

F. Data Collection

We have two DynamoDB tables used for storing information
about the conducted experiment (benchmark-metadata) and
the data generated by the experiment (benchmark-data). When
an experiment is started, the client stores information about
that particular experiment in the benchmark-metadata table.
The stored information contains properties such as the time
the experiment was started, the number of requests performed
as a part of the experiment, and a unique identifier for that
experiment. After this information is stored, the client instance
starts generating request data and sends it to the server through
the NLB. When a request/response transaction is completed,
data collected from that transaction is stored in the benchmark-
data table. The data we collect includes the execution time
of the request/response transaction, the payload exchanged
through the transaction, the time the request was executed,
etc.

DynamoDB does not support aggregations, and scanning the
entire table to perform manual aggregations on the data can
become quite costly. Because of this, we export our collected
data into an S3 bucket. With this approach, we only need to
scan our DynamoDB tables once instead of every time we want
to perform an analysis. After the data is exported to the S3
bucket, it is stored in a JSON-like format called Ion. To make
it easier to process data in this format, we use Athena, an AWS
analytics service, to parse the exported data and create a SQL
data source. Using Athena, we are able to perform various
SQL queries on our collected data, perform data aggregation
and extract relevant statistics about the data.

Aside from analyzing our data using SQL queries, we use
Athena to create Jupyter Notebooks to help us further explore

our data. When a SQL query is executed in Athena, the results
of that query are stored in an S3 object as a CSV file. Because
of this, we are easily able to analyze the results of our queries
directly in the Notebooks. Athena integrates directly with
Apache Spark, which allows us to perform more advanced
analysis of our data. We also use Python packages such as
SciPy to perform statistical analysis, as well as Seaborn and
Matplotlib packages to visualise our data.

G. Data analysis

After the data collection process for each described experi-
ment, four major groups can be formed by using the protocol
version and the client-server distance as the discriminator. For
each of these groups, further subgroups can be formed by
using the request size as the discriminator. An example of a
major group is HTTP/3 with client and server in the same
region. A subgroup of this major group is HTTP/3 with client
and server in the same region, and only large requests. When
performing an analysis, we compare major groups against
major groups and subgroups against subgroups. To create a
valid group pair for comparison and analysis, the client-server
distance and request size must match for both groups, with
the protocol version being the variable. This approach allows
us to isolate the protocol version as the only factor that might
contribute to any differences we might see between the groups.

For every group pair that is identified, the key metric of
the experiment that the groups are associated to is used as a
basis for further analysis. For experiment 1, the key metric is
latency, and for experiment 2, the key metric is throughput.
When a group pair is analyzed, their minimum, maximum and
mean key metric values are calculated.

1) Pilot run: Before committing to a full experiment cycle,
we conducted a pilot run to gain confidence in the functionality
of our benchmarking system. The benchmarking system shown
in figure 6 is the system that was used to gather results for our
research. However, this system originally had a significantly
different design during our pilot run. The pilot run allowed
us to identify outstanding problems within our system and
remedy them before conducting the full set of experiments.

Fig. 7: Legacy benchmarking system



Figure 7 shows the benchmarking system we used during
our pilot run. Many parts of the system are identical to the cur-
rent system, such as the EC2 server instance, the DynamoDB
tables and the Athena instance for data analysis. A major part
of the system that is different are the components responsible
for orchestrating and executing different experiments.

Previously, the responsibilities of orchestrating and execut-
ing experiments were split between two AWS Lambda func-
tions that we refer to as Benchmark Orchestrator and Bench-
mark Worker. The Benchmark Orchestrator would receive
experiment parameters through an API Gateway, from which
experiment information would be stored in a DynamoDB table,
and request data would be generated and sent to a queue.
The Benchmark Worker would receive the request data from
the queue and proceed to execute the requests needed for the
experiment. With this design, we experienced several problems
that ranged from a minor inconvenience to a problem that
made it impossible to continue with the experiments.

The first problem we discovered early on is the API gateway
timeout when a large number of requests was being executed.
The orchestrator lambda is responsible for returning a response
to the API gateway within 30 seconds of it being called. If
we tried conducting an experiment with a sufficiently large
number of requests, the lambda would take longer than 30
seconds to generate those requests and send them to the queue.
This was a minor inconvenience as it only prevented us from
seeing when all of the requests were generated and did not
actually stop the execution of the experiment. This alone was
not enough to justify a redesign of the system at that point in
time.

The second problem we discovered much later into the
pilot run is the inability to execute HTTP/3 requests from an
AWS Lambda. Before trying to create HTTP/3 experiments,
we started off with HTTP/2 as it is a more established and
more familiar technology. This system design worked well
for HTTP/2 experiments, but was completely unusable for
HTTP/3. The Python package we are using to create HTTP/3
request, aioquic, requires the host to support IPv6, which AWS
Lambda at this point in time does not.

Because of this problem, the orchestrator and worker lamb-
das were replaced by a single EC2 instance which does support
IPv6. Because the orchestration and experiment execution
were contained within the same instance, the request queue
was removed as a consequence. To further simplify the system,
we also removed the API gateway and resorted to tunneling
into the instance via SSH.

After we were able to conduct the first set of HTTP/3
experiments, we noticed that the HTTP/3 server crashed from
time to time. We attributed these crashes to the limited amount
of processing resources on the EC2 instance used to host the
server. Originally, the server was hosted on a t2.small instance.
We resolved this issue by upgrading to a t3.small instance,
which provided us with enough processing resources to not
cause any more crashes.

H. Limitations

Our computational experiments are susceptible to threats
to external validity due to the nature of our isolated and
controlled benchmarking environment. By excluding real-life
factors such as network congestion and server load, our results
may not accurately reflect the performance and behavior of
a system in a practical, real-world setting. Furthermore, the
representativeness of our payload sizes may be limited as there
exists a virtually infinite number of possible payload variations
that are transmitted between services. Given the constraints
of time and cost, our experiments are restricted to a limited
number of requests. This limitation poses a risk to the external
validity of our findings, as we are unable to thoroughly test
the protocols to the same extent they are utilized in real-life
situations.

The architecture of our benchmarking environment will
inevitably influence performance, and due to its specific nature
in our test case, generalizing the results may pose challenges.
Furthermore, the regions selected for the latency experiment
cannot be easily generalized, considering the number of other
client/server region combinations.

Due to the variability of network conditions, there is a risk to
the reliability of the results when conducting the experiments.
However, by ensuring a large enough number of requests, the
risk of obtaining significantly skewed data due to extraneous
factors is mitigated.

Potential threats to conclusion validity include running an
insufficient number of experiment iterations, which may fail
to uncover cases contradicting the hypotheses. Additionally,
human error during data analysis is another concern, as it relies
on human handling.

V. RESULTS

This chapter presents the results obtained from the two ex-
periments conducted in this study. Firstly, the results pertaining
to the latency performance of both HTTP/3 and HTTP/2 are
presented. This will be followed by the presentation of the
throughput results for each respective protocol

A. Latency

Figure 8 is a histogram showing the distribution of all
recorded latencies for both HTTP/2 and HTTP/3 with client
and server in the same region (eu-west-1). The blue bins
show latencies for HTTP/2 requests and the orange bins show
latencies for HTTP/3 requests. Each set of bins shows the
latency range for a protocol version. Each individual bin shows
the number of requests that resulted in a specific latency.

The recorded HTTP/2 latencies range from 29 to 90 mil-
liseconds, with the majority of latencies ranging from 60 to
65 milliseconds. The recorded HTTP/3 latencies range from
22 to 65 milliseconds, with the majority of latencies ranging
from 24 to 36 milliseconds.

Figure 9 is a histogram showing the distribution of all
recorded latencies for both HTTP/2 and HTTP/3 with client
(eu-west-1) and server (us-east-1) in different regions. The
blue bins show latencies for HTTP/2 requests and the orange



Fig. 8: Latency - Server: eu-west-1

bins show latencies for HTTP/3 requests. Each set of bins
shows the latency range for a protocol version. Each individual
bin shows the number of requests that resulted in a specific
latency.

The recorded HTTP/2 latencies range from 285 to 392
milliseconds, with the majority of latencies ranging from 320
to 335 milliseconds. The recorded HTTP/3 latencies range
from 156 to 282 milliseconds, with the majority of latencies
ranging from 156 to 165 milliseconds.

Fig. 9: Latency - Server: us-east-1

B. Throughput

Figure 10 is a line graph showing the progression of
throughput for HTTP/2 over 20,000 requests. Each line in the
graph shows this progression for the payload size that was
used during the benchmark.

At the beginning of the benchmark, we observe very minor
oscillations in throughput for each payload size. After approx-
imately 3000 performed requests, the throughput stabilizes at
20 requests per second for each payload size.

Figure 11 is a line graph showing the progression of
throughput for HTTP/3 over 20,000 requests. Each line in the

Fig. 10: Throughput - HTTP/2

graph shows this progression for the payload size that was
used during the benchmark. We observe that each payload
size exhibited slightly different throughput behaviors.

For the 100-byte payload size, the request rate showed
fluctuations throughout the benchmark. Initially, the request
rate was observed to be 140 requests per second, which
declined rapidly to 100 requests per second for the next 2500
requests. Subsequently, an incline in the request rate was
noticed until 7500 requests, reaching 110 requests per second.
However, after this point, a drop to 100 requests per second
occurred, followed by a steady decline toward 85 requests per
second. The minimum and maximum request rates recorded
during the observation period were 85 requests per second and
141 requests per second, respectively. The average request rate
during the observation period was 102 requests per second.

For the 600-byte payload size, the request rate ranged from
120 to 130 requests per second for the first 7500 requests.
For the remainder of the benchmark, a steady decline was
observed, with a minimum request rate of 86 requests per
second. The minimum and maximum request rates recorded
during the observation period were 86 requests per second and
128 requests per second, respectively. The average request rate
during the observation period was 107 requests per second.

For the 1 kB payload size, the request rate showed a gradual
increase from 120 to 140 requests per second during the first
7500 requests. Until 17000 requests, the request rate gradually
decreased to approximately 120 requests per second. For the
remainder of the benchmark, a sharp decline to 80 requests per
second occurred. The minimum and maximum request rates
recorded during the observation period were 73 requests per
second and 138 requests per second, respectively. The average
request rate during the observation period was 118 requests per
second.

VI. DISCUSSION

The results of our experiment suggest that there is a
performance benefit when using HTTP/3, in regards to both
latency and throughput. While it is interesting to see the



Fig. 11: Throughput - HTTP/3

performance margin between the two protocols, the fact that
there is a performance difference is not surprising. Previously
conducted studies [6]–[9] found an increase in performance
when HTTP/3 and HTTP/2 were matched up in identical
scenarios. Said studies specifically focused on performance
in the browser, leaving a research gap that our study explored.

In our latency experiments, we noted an average 32 mil-
lisecond difference in transaction times when the client and
server are in the same region. When placing the client and
the server further apart, we noted an average 167 millisecond
difference in transaction times. The increase in transaction
time difference as the client and server are further apart is
inline with the 0-RTT handshake improvements introduced
in HTTP/3, as well as the results of a study conducted by
Perna et al. [6]. In their study, they observed an increase in
performance difference as latency got higher. While in their
experiment latency is introduced artificially, the same effect
is achieved by moving the client and server physically further
apart in our experiments.

Our throughput experiments show a very clear performance
difference between the two protocols. With HTTP/2, we were
not able to achieve a request rate higher than 20 requests per
second. On the other hand, when using HTTP/3 we are able
to achieve a request rate as high as 140 requests per second.
When we analyze the request rate progression for HTTP/3, we
notice a lot of fluctuations throughout the benchmark, unlike
HTTP/2 which keeps a stable request rate throughout the entire
benchmark. This however does not mean that HTTP/3 as a
protocol is unstable, but rather that our benchmark is CPU
bound. If we were to run our request rate benchmark on
hardware with more computational resources, we would see a
more stable request rate throughout the whole benchmark.

Our experiments show a clear difference between the two
protocols in regard to performance, but just looking at raw
performance is not enough to determine if HTTP/3 is a viable
option for practical use at this point in time. Our experiments
model a simplistic system with the sole purpose of measuring

performance. In reality, systems exhibit far more degrees
of complexity than the one used for our experiments. As
complexity increases, many more factors need to be considered
when committing to a new technology, especially if that
technology is as young as the one we explored in our research.
Before implementing HTTP/3 in a more complex system we
need to ask ourselves, does the benefit of more performance
outweigh the cost of implementation. Unfortunately, the an-
swer to this question is not universal. But what we can do
is discuss aspects of HTTP/3 and the ecosystem surrounding
it, which we have noticed while designing our experiments,
that might limit companies like WirelessCar in their efforts to
implement it in their systems.

A. Cloud limitations

At the time of writing, support for HTTP/3 on AWS is
quite limited. Amazon CloudFront does have native HTTP/3
support, however its functionality is not relevant for the use
case we’re exploring. Communication between two services
built on top of AWS infrastructure is most likely to occur
through a load balancer. The Application Load Balancer on
AWS does not have native HTTP/3 support, however it is
possible to route HTTP/3 traffic through a Network Load
Balancer with a UDP listener.

Support for HTTP/3 in Lambda applications is also very
limited. Most Python packages we have explored require IPv6
to be enabled on the system the package is being used on. For
the moment, Lambda environments do not support IPv6.

B. Ecosystem maturity

The HTTP/3 ecosystem within Python is at a very early
stage of maturity. From a client perspective, there is a lack of
packages with HTTP/3 as their primary focus. However, with
the use of QUIC packages, such as aioquic, it is possible to
implement a standalone HTTP/3 client or add HTTP/3 support
to already existing HTTP packages, such as httpx. From a
server perspective, support for HTTP/3 in existing packages
seems to be nonexistent at worst and experimental at best. For
our benchmarking environment, we used Hypercorn, a Python
web server with experimental HTTP/3 support.

VII. CONCLUSION

In this study, we conducted a performance analysis of
HTTP/3 in the role of an interservice communication mech-
anism. HTTP/3 is a relatively new technology, with a high
research potential. Studies prior to ours mainly focused on
its performance in the browser, with the results being quite
favourable for HTTP/3. With prior research being browser-
focused, we were curious if we would come to similar
results within a distributed system. To reach our goal, we
conducted a computational experiment designed to compare
the performance of HTTP/2 and HTTP/3 in identical envi-
ronments. Throughout the experiment, several variables, such
as the request payload size and the client-server distance,
were manipulated. This provided us with an overview of
how both protocols perform under different conditions. The



results of our experiment suggest that HTTP/3 has increased
performance in both short-distance and long-distance networks
across multiple request payload sizes. However, these results
should not be taken at face value, as they were obtained in a
controlled environment under perfect network conditions. This
is only a small step in discovering the true potential of HTTP/3
in a distributed system, but a lot remains to be researched.

The next step would be to conduct a case study by imple-
menting HTTP/3 within a production environment, allowing
for observation of its performance differences in a real-life
setting over an extended duration. This approach will consider
factors that were not accounted for in our experiments, leading
to more accurate and comprehensive results. By embracing
this method, we can gain deeper insights into the practical
implications and effectiveness of HTTP/3.
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