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ABSTRACT 
As the global population is projected to reach approximately 10 billion people by 2050, it is 
estimated that we will need to produce up to 60% more food compared to 2010. Although the 
current food production system contributes to 25% of greenhouse gas emissions worldwide, 
accounts for 70-80% of eutrophication and freshwater usage, and occupies half of all ice- and 
desert-free land, it fails to meet the global nutritional needs. Furthermore, with extreme weather 
events and heat waves affecting terrestrial food production systems, it is evident that we need 
to look elsewhere to produce sustainable, protein-rich, and nutritious food. Recently, seaweeds 
have emerged as a promising part of this solution. Cultivating seaweeds requires no arable 
land, freshwater supply, or high nutrient input. Furthermore, seaweeds have high productivity 
that outperforms many terrestrial crops such as wheat, seeds, and soybeans. The protein often 
contains all the essential amino acids, making seaweeds a favorable protein source for human 
consumption. However, even though seaweeds often have protein contents in the range of some 
beans and pulses, it is lower than in soybeans. Therefore, their protein content needs to be 
increased if seaweeds are to become a competitive protein source in the future.  
 
This thesis aims to explore the potential of seaweeds as a sustainable future protein source. It 
specifically focuses on optimizing seaweed cultivation to boost both growth rates and protein 
content. To achieve this, the effects of different cultivation conditions and the potential of one 
kelp and three green seaweed species are investigated. A novel nutrient loop is explored, 
wherein industrial food production process waters (FPPWs) are used as seaweed growth media. 
By conducting a meta-analysis, as well as land-based experiments that combine physiological, 
biochemical, chemical, and sensory analyses, the thesis aims to establish the potential for 
seaweed cultivation in nutrient-rich process waters.  
 
The findings from this thesis show that seaweeds can become a promising alternative food 
source in the ongoing dietary protein shift. The results show that all groups of seaweeds (brown, 
green, and red) can be cultivated in various nutrient-rich process waters; but green seaweeds 
have the highest potential. After identifying the green seaweed species Ulva fenestrata, which 
usually has a crude protein content of 10-20% dry weight, as a promising candidate, its 
cultivation in FPPWs yielded protein content of up to 37% dry weight. Furthermore, the 
biomass yield was up to six times higher compared to when grown in seawater. The safety 
aspects of consuming the biomass were confirmed by showing that large quantities of the 
biomass can be consumed every day without exceeding health-based reference points for heavy 
metals. Also, no sensory attributes regarded as negative were found after cultivation in the 
FPPWs. In conclusion, this thesis illustrates a novel nutrient loop, where the disposal of 
industrial food production process waters can be turned into nutrient-rich and valuable biomass 
through seaweed cultivation.  
 
Keywords: Macroalgae, Saccharina latissima, Ulva fenestrata, Ulva intestinalis, 
Chaetomorpha linum, cultivation conditions, nitrogen content, amino acids, heavy metals, food 
safety, wastewater, process water, circularity, blue economy 
  

  

POPULÄRVETENSKAPLIG SAMMANFATTNING 
Vi beräknas vara cirka 10 miljarder människor på jorden år 2050. Uppskattningsvis kommer 
vi behöva producera upp till 60% mer mat än vad vi gjorde år 2010. Trots att 
livsmedelsproduktionen idag står för 25% av de globala växthusgasutsläppen, 70-80% av den 
globala övergödningen och vattenanvändningen, samtidigt som den upptar hälften av all is- 
och ökenfri mark, är den otillräcklig för att tillgodose världens näringsbehov. Dessutom 
kommer ökade extremväder och värmeböljor negativt påverka produktionen av livsmedel på 
land. Det är tydligt att vi behöver hitta nya odlingssystem för att producera hållbar, proteinrik 
och näringsrik mat. Makroalger (tång) har uppmärksammats som en lovande gröda i detta 
skifte. Odling av makroalger kräver ingen odlingsbar mark, färskvattenanvändning eller 
gödsling. Dessutom har makroalger en hög produktivitet, som ofta överträffar landbaserade 
grödor såsom vete, baljväxter och sojabönor. Proteiner i makroalger innehåller därtill alla de 
essentiella aminosyrorna som människor behöver. Men även om proteininnehållet i makroalger 
är jämförbar med t.ex. vissa bönor och andra baljväxter, är det lägre än i sojabönor. För att 
makroalger ska bli en konkurrenskraftig proteinkälla i framtiden är det därför viktigt att försöka 
öka dess proteininnehåll. 
 
Syftet med denna avhandling är att utforska makroalgers potential som en hållbar framtida 
proteinkälla. Avhandlingens fokus är på att optimera odling av makroalger för att öka 
makroalgernas tillväxt och proteininnehåll. För att uppnå detta undersöktes effekterna av olika 
odlingsförhållanden samt potentialen hos en kelpart (brunalg) och tre grönalger. En ny 
”näringsloop” utforskades, där industriellt livsmedelsproduktionsvatten (FPPWs) användes 
som tillväxtmedium för makroalger. Genom en meta-analys samt landbaserade experiment 
kombinerades fysiologiska, biokemiska, kemiska och sensoriska analyser, med syftet att 
undersöka potentialen för makroalgsodling i näringsrika produktionsvatten. 
 
Resultaten från denna avhandling visar att makroalger har en lovande potential att bli en 
framtida proteinkälla i det pågående skiftet mot nya proteinkällor. Resultaten visar att alla 
grupper av makroalger (bruna, gröna och röda) kan odlas i näringsrikt produktionsvatten, men 
att gröna makroalger har högst potential. Den gröna algarten Ulva fenestrata identifierades som 
en speciellt lovande kandidat, och genom odling i FPPWs lyckades proteinhalten höjas till 37% 
torrvikt från dess genomsnittliga 10-20%. Dessutom producerades upp till sex gånger mer 
biomassa när U. fenestrata odlades i FPPWs jämfört med i vanligt havsvatten. Resultaten visar 
dessutom att biomassan kan konsumeras i stora mängder varje dag utan några problem för att 
överskrida referensvärden för tungmetaller, och efter en sensorisk analys av biomassan 
påträffades inga egenskaper som kunde uppfattas som negativa för konsumenten. 
Sammanfattningsvis presenterar denna avhandling en effektiv näringsloop där outnyttjat 
produktionsvatten från livsmedelsindustrin omvandlas till näringsrik och värdefull biomassa 
genom odling av makroalger.  
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BACKGROUND 
 
THE PROTEIN SHIFT 
As the global population continues to grow, so does the demand for protein-rich and nutritious 
food. Current food production practices fail to meet global nutritional needs while degrading 
terrestrial and aquatic ecosystems (Poore and Nemecek, 2018). Global food production 
practices contribute to a quarter of the total global greenhouse gas emissions, occupy almost 
half of all ice-free and desert-free land, and are responsible for 80% of eutrophication and 70% 
of global water use (Poore and Nemecek, 2018; Gephart et al., 2021). Furthermore, agriculture 
systems are being severely impacted by extreme weather events and heat waves, resulting in 
reduced yields and increased pests and diseases (Skendžić et al., 2021). Still, it is projected that 
global food production will need to increase by 60-70% by 2050 to feed the growing population 
(Alexandratos and Bruisnma, 2012; van Dijk et al., 2021). Strikingly, even though the world's 
surface is 70% water, aquaculture production is only 1% of the agriculture production (around 
100 million and 10 billion tonnes year-1, respectively) (FAO, 2021a, 2022).  
 
Growing competition for land, water, and energy will affect our ability to produce food, as will 
the urgent need to reduce the environmental impacts of current food systems, such as red meat 
production and overexploitation of fish stocks (Godfray et al., 2010; Crona et al., 2023). As a 
result, the impact on, and resilience of natural resources, ecosystems, and climate could be 
significantly reduced by addressing how we produce food (FOLU, 2019). It is evident that we 
need to produce more sustainable, protein-rich, and nutritious food with a lower environmental 
footprint. In Europe, the plant-based food industry grew by almost 50% between 2018 and 
2020, underlining the shift towards more sustainable food choices (Smart Protein Project, 
2021). By including 10% of seaweeds in our food, it is possible to save 110 million hectares 
of cropland and grassland currently used for growing food (Spillias et al., 2023), an area 
roughly equivalent to the total arable land in China.  
 
Food from aquatic environments is often nutrient-rich (Golden et al., 2021) while having lower 
emissions and impacts on land and water than their terrestrial counterparts (Gephart et al., 
2021) (Figure 1). In particular, non-fed species produce the lowest emissions during 
production. For example, seaweeds extract more nitrogen (N) and phosphorus (P) during their 
growth than what is emitted during their production (Figure 1). Furthermore, many seaweeds 
have high productivity compared to terrestrial crops (Mata et al., 2016), while also having 
proteins with favorable amino acid profiles for human consumption (Fleurence, 2004; Mæhre 
et al., 2014). This has led to an interest in cultivating seaweeds as a way of producing protein-
rich and nutritious food with low environmental impact (Duarte et al., 2022).  
 

 3 

 
Figure 1. Impact of farmed aquatic food. Chicken production which is often considered the 
most efficient terrestrial animal-source food production system is represented by the beige 
band. Reproduced and adapted with permission from Springer Nature: License number 
5544801478146 from Gephart et al., 2021. 
 
SEAWEED AQUACULTURE 
Controlled, large-scale seaweed cultivation has been practiced in Asia for decades but has only 
recently gained interest in Europe and the Western world (FAO, 2018; Araújo et al., 2021). 
Today, countries in Asia produce 99.9% of the global seaweed production (Figure 2).  Global 
seaweed production is increasing at a rate of 6-8% year-1, and the annual production is currently 
estimated at 35 million tonnes with a market value of around USD 15 billion (Cai et al., 2021; 
Duarte et al., 2022; FAO, 2022). Compared to Asian production, where the majority of 
seaweeds are cultivated, harvesting from wild stocks still dominates production in Europe 
(FAO, 2018; Araújo et al., 2021). If seaweed production in Europe is to increase from 270,000 
tonnes in 2019 to 8 million tonnes in 2030 (European Commission, 2022b), Europe needs to 
develop environmentally friendly seaweed aquaculture, rather than overexploiting wild stocks 
(Araújo et al., 2021). In addition to being environmentally friendly and more sustainable than 
wild harvest, seaweed aquaculture can help meet the processing industry’s need for traceable, 
high-quality, and predictable biomass yields.  
 
Despite seaweeds constituting over 12,000 described species worldwide, five species account 
for nearly 90% of the commercial production (Hafting et al., 2015; FAO, 2022) (Figure 2). In 
terms of biomass, red seaweeds constitute the major part of cultivated seaweeds (61%), 
followed by brown seaweeds (39%). Green seaweeds, on the other hand, only account for a 
very small proportion (<0.2%) of the worldwide cultivation (FAO, 2020). Brown seaweeds are 
produced primarily for human food, while red seaweeds are also extracted for hydrocolloids 
like carrageenan and agar, which are used for cosmetics, pharmaceuticals, animal feed, 
fertilizers, and as vegan thickener and stabilizer to substitute gelatin (Bixler and Porse, 2011; 
Buschmann et al., 2017).  
 
Each seaweed species has specific environmental requirements to grow, but in general, they all 
need enough nutrients and light, as well as appropriate salinity and temperature conditions 
(Campbell et al., 2019). The cultivation usually occurs in sea farms in coastal areas close to the 
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shore or offshore (Araújo et al., 2021). Although these systems are practical and cost-effective 
for large-scale farming, they are limited by seasonal changes (Roleda and Hurd, 2019; Araújo 
et al., 2021; Forbord et al., 2021; Steinhagen et al., 2022). Land-based cultivation is a promising 
alternative for cultivating seaweeds that are not suitable for sea-based cultivation. With land-
based cultivation, it is also possible to control the production cycle and biomass composition 
of the seaweeds independent of the season, allowing traceable, high-quality, and predictable 
biomass yields (Hafting et al., 2012; Mata et al., 2016). However, the commercial interest in 
land-based cultivation is slowed down by high costs due to sophisticated infrastructure and 
maintenance requirements (Hafting et al., 2012; Mata et al., 2016). 

Figure 2. Global seaweed production between 2000 and 2020 for the main producers and 
cultivated species (reproduced data from FAO (2022)). 

SEAWEEDS AS A SOURCE OF PROTEIN 
Despite covering 70% of the Earth’s surface, only about 15% of human protein intake comes 
from the ocean (Costello et al., 2020). Seaweeds have been consumed as food all over the world 
for thousands of years, however, outside of Asia, it is not commonly included in people's diets 
nowadays (Peñalver et al., 2020). However, seaweeds are becoming increasingly recognized 
as an interesting food source worldwide, largely due to the rising popularity of Asian cuisine, 
and the nutritional benefits often associated with seaweed consumption (Mouritsen et al., 
2018). Furthermore, the European Union has recognized seaweeds as an essential source of 
alternative proteins to help establish sustainable food systems and global food security 
(European Commission, 2020). 

Seaweeds are generally classified into three major groups by their pigmentation of brown 
(Phaeophyta), green (Chlorophyta), and red (Rhodophyta), however, it is important to 
recognize that, just like terrestrial crops, seaweeds are a highly diverse group of organisms. 
Consequently, they also differ in their biochemical composition, growth, and environmental 
requirements, both within and between groups (Table 1). In general, seaweeds have many 
nutritional properties interesting for consumers, such as low fat content, while being rich in 
high-quality proteins, carbohydrates, minerals, antioxidants, vitamins, and other essential 
micronutrients (Holdt and Kraan, 2011; Fleurence et al., 2012; Mæhre et al., 2014; Bjerregaard 
et al., 2016; Machado et al., 2020). Furthermore, they generally have high productivity 
compared to terrestrial crops (Mata et al., 2016). Their protein content depends on both 
environmental conditions and taxonomy, and is generally highest in red, followed by green, 
and brown species (Černá, 2011; Fleurence, 2016). Even though some red seaweed species are 
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often cited at protein contents up to 47% of dry weight (dw), more commonly reported levels 
for seaweeds fall within 5-25% protein dw (Fleurence, 2004; Černá, 2011). Hence, seaweed 
protein content is relatively high compared to most vegetable staple foods, but still not as high 
as in, for example, soybean biomass (33-45% dw; Grieshop and Fahey, 2001; Thakur and 
Hurburgh, 2007; Henchion et al., 2017).  

Table 1. Biochemical composition of brown, green, and red seaweeds, as well as pulses 
(lentils, chickpeas, and beans), and soybeans. 

% dw Brown 
seaweeds 

Green 
seaweeds 

Red 
seaweeds 

Pulses Soybeans 

Protein 3-19* [1-3, 5-8,

13]
3-23* [2, 3, 5-10,

12]
3-38* [1-8] 17-35 [14, 15] 33-45 [6, 16-

19]

Lipids 0.5-9 [1, 3, 5, 6,

8, 11]
0.8-5 [3, 5, 6, 8-

11]
0.1-13 [1, 3-6,

11]
0.8-7 [15] 15-22 [17,

18]

Ash 14-51 [1, 3, 5-8,

13]
14-78 [3, 5-10] 7-84 [1, 3-8, 11] 1-5 [15] 3-6 [17, 18]

Carbohydrates 20-62 [1, 5, 8,

13]
33-63 [5, 7-9] 31-73 [1, 5, 7, 8] 55-65 [15] 9-39 [18, 19]

*Seaweed protein content originally estimated using the 6.25 conversion factor from nitrogen has been
recalculated with the more conservative conversion factor of five for more accurate comparisons.

1Tibbetts et al. (2016), 2Fujiwara-Arasaki et al. (1984), 3Véliz et al. (2023), 4Cian et al. (2014), 5Rodrigues et al. 
(2015), 6Mæhre et al. (2014), 7Nunes et al. (2017), 8Fleurence (2016), 9Steinhagen et al. (2022), 10Toth et al. 
(2020), 11Fleurence et al. (1994), 12Shuuluka et al. (2013), 13Vilg et al. (2015), 14Ahuja et al. (2017), 15Boye et al. 
(2010, and references therein), 16Thakur and Hurburgh (2007), 17Grieshop and Fahey (2001), 18Redondo-Cuenca 
et al. (2007), 19Karr-Lilienthal et al. (2005) 

To assess the quality of protein in food, it is essential to determine the amino acid (AA) profile 
(Machado et al., 2020). Since humans cannot produce all AAs on their own, it is necessary to 
consume the essential amino acids (EAA) through food. The nine EAA include phenylalanine, 
histidine, isoleucine, lysine, leucine, methionine, threonine, valine, and tryptophan 
(WHO/FAO/UNU, 2007). Interestingly, the protein in most seaweed species contains all the 
EAA, and many species have a high content of methionine, which is often lacking in plant-
based proteins like soybeans and other pulses (Fleurence, 2004; Mæhre et al., 2014; Henchion 
et al., 2017). Seaweed protein is therefore often considered a high-quality protein (Fleurence, 
2004; Henchion et al., 2017). However, despite seaweeds’ relatively high protein content, the 
protein’s digestibility in its unprocessed form is often poor due to tough polysaccharide-rich 
cell walls of the seaweeds (Tibbetts et al., 2016; Trigo et al., 2021; Thiviya et al., 2022). To 
increase the digestibility and to market seaweeds as an interesting protein ingredient, the 
proteins could be concentrated and extracted, similar to what is done with soybean (Preece et 
al., 2017; Trigo et al., 2021).  

CULTIVATION IN PROCESS WATERS 
Seaweeds are known to grow faster and accumulate nitrogen when cultivated in nutrient-rich 
waters (Ryther et al., 1981; Habig et al., 1984). Integrating seaweed cultivation with industries 
that produce nutrient-rich process waters could therefore enhance the protein content in 
seaweeds while creating a circular system that recycles nutrients. Although the idea of using 
seaweeds as biofilters for water treatment has been around for some time (Huguenin, 1976), it 
has received newfound interest since the introduction of integrated multitrophic aquaculture 
(IMTA) (Neori et al., 2004). In IMTA systems seaweeds are usually cultivated in integration 
with fed aquaculture to utilize the considerable amounts of nutrients leaking from aquaculture 
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farms (Chopin et al., 2001; Neori et al., 2004; Ridler et al., 2007; Troell et al., 2009; Abreu et 
al., 2011; Handå et al., 2013; Fossberg et al., 2018; Nardelli et al., 2019; Nederlof et al., 2022). 
These studies have shown the positive effects of cultivating seaweeds close to fish farms 
through the remediation of nutrients from the water, and increased growth and protein content 
of the seaweed biomass.  
 
However, many industries produce process water that cannot be used as cultivation media in 
the ocean. These waters can be the result of many different processes and activities, such as 
land-based aquaculture farming, industrial food processing, and municipal wastewater 
management (Sode et al., 2013; Neveux et al., 2016; Arumugam et al., 2018; Forghani et al., 
2020). Thanks to their high nutrient concentration, there is a great potential to integrate many 
of these activities with land-based seaweed cultivation, which could create circular systems 
where nutrients are not wasted but used to produce sustainable protein-rich biomass of 
seaweeds.   
 
For many food companies, disposing of process water constitutes a significant cost. However, 
by integrating land-based seaweed cultivation with these waters, they could possibly be utilized 
instead of being treated as waste. Land-based cultivation also creates an opportunity to cultivate 
high-value species with morphologies unsuitable for sea-based cultivation (Hafting et al., 
2012). Furthermore, by integrating seaweed cultivation with industries that generate large 
quantities of nutrient-rich process waters, some major challenges for land-based seaweed 
cultivation, such as seawater intake and costly infrastructure, are addressed. Until the studies 
included in this thesis, there were, to my knowledge, no reports on seaweed cultivation in outlet 
waters from the food processing industry, even though these provide a wide range of nutrients 
in a food-grade state.  
 
CONSUMING SEAWEEDS CULTIVATED IN PROCESS WATERS 
Seaweeds may accumulate toxic elements (commonly grouped as “heavy metals”) from their 
surrounding environment (Gaudry et al., 2007; Ortiz-Calderon et al., 2017). The 
bioaccumulation of heavy metals in seaweeds is largely attributed to polysaccharides in their 
cell walls, which have metal-binding characteristics (Duinker et al., 2016; Ortiz-Calderon et 
al., 2017; Roleda et al., 2019). Different species have different types of polysaccharides, which 
bind heavy metals to various degrees (Ortiz-Calderon et al., 2017; Roleda et al., 2019). 
Furthermore, the levels of heavy metals in seaweed biomass can be affected by several factors, 
including the age and shape of the seaweeds, as well as the environmental conditions in which 
they are grown (Ortiz-Calderon et al., 2017; Roleda et al., 2019; Véliz et al., 2023). This results 
in highly variable accumulation of heavy metals both between and within species. To date, 
there are no general regulations from the European Commission regarding maximum levels of 
heavy metals in seaweeds intended as food (European Commission, 2018). However, with the 
increasing interest in consuming seaweeds, it is important to determine possible toxic elements 
in the seaweed biomass to help estimate potential health risks associated with its consumption.  
 
Another important factor in successfully introducing seaweeds to the market is the sensory 
quality of the biomass. The appearance, odor, flavor, taste, and texture, play a significant role 
in the public acceptance of novel food (Lawless and Heymann, 2010; Moerdijk-Poortvliet et 
al., 2022; Young et al., 2022). Consumer attitudes toward seaweeds as food are predominantly 
positive (Wendin and Undeland, 2020; Young et al., 2022). However, to increase the 
understanding and recognition of seaweeds as a protein source and their gastronomic potential, 
their sensory attributes need to be further investigated. This is especially important when 
cultivating seaweeds in media that might impact the sensory qualities of the seaweed.   

 7 

AIMS OF THE THESIS 
The overall aim of this thesis was to explore seaweeds as a future protein source using industrial 
food production process waters (FPPWs) as growth media. The main goals were to identify 
seaweed species suitable for cultivation in FPPWs, as well as to improve their growth and 
increase their protein content. More specifically, I investigated how different FPPWs could be 
used as growth media for the green seaweed sea lettuce (Ulva fenestrata), and to a lesser extent 
for two other green seaweeds (Ulva intestinalis, and Chaetomorpha linum), and for the brown 
seaweed sugar kelp (Saccharina latissima). I did this by conducting a meta-analysis, as well as 
land- and sea-based experiments combining physiological, biochemical, heavy metal, and 
sensory analyses.  
 
The specific aims of each study completed, or in progress, are detailed below: 
 
Paper I:  Meta-analysis: The aim of this study was to synthesize the current literature to 

assess the effect that different types of process water have on seaweed growth 
and nitrogen content. The objective was to determine which types of process 
water and seaweed can be used for seaweed cultivation. 

 
Paper II:  Screening of FPPWs and seaweed species: The aim of this study was to 

investigate growth and crude protein content in S. latissima, U. fenestrata, U. 
intestinalis, and C. linum when cultivated in dilutions of eight different FPPWs. 

 
Paper III:  Upscaling of selected herring production process waters (HPPWs): The aim of 

this study was to investigate how upscaling of the system, using two promising 
HPPWs, affects the growth and crude protein content of U. fenestrata. The 
amino acid composition and heavy metal content of the U. fenestrata were 
measured to determine if biomass grown in the two HPPWs is a nutritious and 
safe source of protein. 

 
Paper IV:  Post-harvest cultivation in HPPWs: The aim of this study was to investigate if 

the HPPWs can be used as a short-term, post-harvest treatment to boost the 
protein content of seafarm cultivated U. fenestrata, harvested at a suboptimal 
condition (based on protein content). Growth, crude protein content, amino acid 
composition, and heavy metal content were measured. In addition, a sensory 
analysis of the biomass was carried out to assess if its sensory attributes were 
affected by the cultivation in the HPPWs.  

 
Paper V:  Boost of high protein content further: The aim of this study was to investigate 

if HPPW can be used as a short-term, post-harvest treatment to further boost the 
protein content of seafarm cultivated U. fenestrata, harvested at its natural peak 
protein content. In addition to growth, crude protein content, and amino acid 
composition, the biomass was also analyzed for fish allergens. 

 
 
Paper VI:  Using color to estimate protein content: The aim of this study was to develop 

models that estimate the nitrogen content (crude protein content) in U. 
fenestrata based on color image analysis. From the models, the aim was to 
develop a web-based application that reports nitrogen content based on 
uploaded images, and to develop a printed color guide for quick, in-field 
estimations of nitrogen content.   
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METHODS 
This section provides an overview of the main methods used in the thesis. It starts with a brief 
explanation of the meta-analysis, followed by descriptions of the different methods used in the 
experimental part of the thesis. More detailed descriptions can be found in the specific papers. 
 
META-ANALYSIS 
In paper I, the effect of different process waters (referred to as wastewaters in paper I) on 
seaweed growth and nitrogen content was quantitatively explored using a systematic review. 
In the systematic review, a literature search was conducted based on specific criteria to ensure 
reproducibility. Web of Science, Google Scholar, and Scopus were searched using a defined 
search term, which resulted in 1649 relevant papers. After screening the titles and abstracts, as 
well as applying a set of well-defined inclusion criteria, 40 papers remained (see paper I). The 
systematic review was then followed by two meta-analyses (effect on growth, and nitrogen 
content) to statistically analyze and compare the results from the primary studies (Figure 3). 
To compare the different studies, their outcome was summarized using a metric that puts all 
studies on the same scale. This measure is called the effect size, and the magnitude and 
direction of the effect size are weighted by the study sample size and variance. The effect size 
from the individual studies can then be combined to calculate a single numerical value of the 
overall treatment effect across all studies. In this study, data from the 40 different previously 
published papers were normalized by calculating their effect sizes using the Hedges’ d method. 
Furthermore, moderators (seaweed group, experimental method, and types of process water) 
were included to categorize data into different subgroups and compare their group means.  

 

 
Figure 3. Schematic image of the process of the meta-analysis in paper I. 
 
SEAWEEDS FOR EXPERIMENTS 
Sporophytes of S. latissima (paper II) and clonal foliose-shaped gametophytes of U. fenestrata 
(papers II-III) were collected from indoor tank cultivation systems at Tjärnö Marine 
Laboratory (TML, 58°52′33.7′′ N, 11° 08′44.9′′ E). The U. intestinalis (paper II) was collected 
at Rossö, located on the Swedish west coast (58°50′33.9′′ N, 11°09′06.6′′ E), while C. linum 
(paper II) was collected in intertidal rock ponds at Ursholmen (58°49′57.6′′ N, 10°59′19.2′′ 
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E), also located on the Swedish west coast. Taxonomic identification of Ulva strains was based 
on molecular identification of the tufA marker gene (papers II-VI), while S. latissima and C. 
linum were identified by their morphological characters (paper II). The seaweeds were kept 
in tank cultivations at TML until used in the experiments. The reason these species were chosen 
for this thesis was because they are economically important, have been grown successfully in 
similar settings, or are known as opportunistic species that grow quickly and easily incorporate 
nitrogen. 
 
In papers IV-VI, clonal foliose-shaped gametophytes of U. fenestrata were collected from 
sea-based seaweed farms (2 ha, 100 x 200 m) located in the Koster archipelago (Skagerrak), 
Sweden (58°51′34.0′′ N, 11°04′06.2′′ E), and the Bohuslän coastline (Skagerrak), Sweden 
(58°38′34.0′′ N, 11°12′59.0′′ E). The gametophytes, which had grown between six and nine 
months at the sea-based farms, originated from the offspring of gametophytes from the long-
term indoor tank cultivation at TML and were out-planted after hatchery. 
 
As the main focus of this thesis is on the crop U. fenestrata, its life cycle is shortly described 
(Figure 4). Ulva has an isomorphic biphasic life cycle, meaning that the two phases of haploid 
gametophytes and diploid sporophytes are morphologically identical. While the sporophytes 
originate from gametes from gametophytes, the gametophytes can originate from either haploid 
zoids from sporophytes or from clonal unmated gametes (parthenogenetic gamete 
propagation). In papers II-VI, gametophytes of U. fenestrata from clonal unmated gametes 
are used. This is mainly because long-term tank cultivations through parthenogenetic gamete 
propagation are easier to maintain, but also because differences observed between clonal 
gametophytes in the experiments will likely be due to the treatment effect rather than genetic 
differences between individuals.  

 
 

Figure 4. The isomorphic biphasic life cycle of Ulva fenestrata. 
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PROCESS WATERS AND EXPERIMENTAL SETUPS 
In paper II, eight different FPPWs from seafood industries and an oat processing industry 
were tested as cultivation media (Table 2). For papers III-V, two types of water from herring 
production (HPPW), namely TUB and SAL, were identified as promising waters to proceed 
with. TUB refers to water emerging from the industrial storage of herring in plastic tubs with 
saltwater (3% NaCl) for up to four days, prior to the herring being filleted. SAL refers to water 
emerging from the maturation of herring fillets stored in barrels with saturated salt brine for up 
to two years. 
 
The FPPWs were characterized for pH, total nitrogen (TotN), ammonium (NH4+), nitrate   
(NO3-), nitrite (NO2-), and inorganic phosphorus/orthophosphate (P) at Chalmers University of 
Technology. The pH measurements were performed with a pH meter (PHM 210, Meterlab, 
Hach, USA). Total nitrogen was analyzed with a LECO Nitrogen Analyzer (TruMac N, LECO 
Corporation, USA) using EDTA 9.56 as standard. Inorganic nitrogen was quantified using 
commercial enzymatic kits (AA0100, Sigma, USA, and Cat. No. 11746081001, Roche 
Diagnostics, Germany), while P was measured with a standard curve made with 
monopotassium phosphate, as reported by Qvirist et al. (2015).  
 
After collection of the FPPWs, the waters were filtrated to remove coarse particles (>300 μm) 
and then stored at -60°C. For paper II, the waters were sterilized by autoclaving for 20 min at 
1200 kPa. The waters were analyzed before and after this thermal treatment to ensure no 
influence on the NH4+ concentration. Autoclaving was not performed on the waters for papers 
III-V as it was not considered a realistic scenario for upscaling. When used in an experiment, 
the FPPWs were thawed, and diluted with filtered (0.2 μm+UV-light treated) deep-sea (40 m) 
seawater to reach the desired concentration of NH4+ for the specific experiment (see below). In 
all experiments, the FPPWs were renewed every second day to avoid nutrient depletion. 
 
Since NH4+ is the preferred nitrogen source for most seaweeds, and the main nitrogen found in 
the FPPWs, the FPPWs were diluted based on their NH4+ concentration. The NH4+ 
concentration was normalized to 20 and 200 μM NH4+ in paper II, and 25 μM NH4+ in papers 
III-V. These final concentrations were chosen to include optimal growth and nitrogen content 
of seaweeds based on previous work (Waite and Mitchell, 1972; Cohen and Neori, 1991; 
Nielsen et al., 2012; Rugiu et al., 2020), as well as personal experience and insight from 
preparing paper I. Examples of the different experimental setups used in this thesis are shown 
in Figure 5. 
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Table 2. Description of the different process waters used in this thesis (papers II-V), and their characterization of inorganic nutrients. Different 
batches of TUB and SAL were used in the different papers, and the min-max values from these batches are shown. 

 

Type of 
water 

Acronym Origin Provider Water description NH4+ 

(μM) 
NO3- 
(μM) 

NO2- 

(μM) 
P 
(μM) 

Refrigerated 
seawater 

RSW Herring Sweden 
Pelagic AB 

From on board refrigerated 
seawater tanks 

1160 6 n.d 3500 

Tub water TUB 
 

Herring Sweden 
Pelagic AB 

From storage tubs with 
herring in 3% NaCl 

1400-2300 9-20 3 5700-22100 

Salt brine I SBI 
 

Herring Sweden 
Pelagic AB 

From pre-salting of 
headed/gutted herring in 
5% NaCl 

3600 16 n.d 33600 

Salt brine II SAL 
 

Herring Klädesholmen 
Seafood AB 

From maturation of 
herring fillets in saturated 
salt brine 

8000-21800 n.d n.d 15400-27300 

Spice brine SPI 
 

Herring Klädesholmen 
Seafood AB 

From maturation of 
herring fillets in spice 
brine 

6300 12 n.d 21200 

Shrimp 
boiling water 

SBW 
 

Shrimp Bua Shellfish 
AB 

From steaming of shrimps 8900 11 n.d 410 

Oat 
processing 
water 

OAT Oat Oatly AB From processing of oat to 
oat milk 

30 6800 330 300 

Recirculated 
aquaculture 
system 
(RAS) water 

RAS Salmon Nordic 
Aquafarms AS 

Salmon RAS water after 
biofiltration-nitrification 
process 

40 3100 17 40 
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PROCESS WATERS AND EXPERIMENTAL SETUPS 
In paper II, eight different FPPWs from seafood industries and an oat processing industry 
were tested as cultivation media (Table 2). For papers III-V, two types of water from herring 
production (HPPW), namely TUB and SAL, were identified as promising waters to proceed 
with. TUB refers to water emerging from the industrial storage of herring in plastic tubs with 
saltwater (3% NaCl) for up to four days, prior to the herring being filleted. SAL refers to water 
emerging from the maturation of herring fillets stored in barrels with saturated salt brine for up 
to two years. 
 
The FPPWs were characterized for pH, total nitrogen (TotN), ammonium (NH4+), nitrate   
(NO3-), nitrite (NO2-), and inorganic phosphorus/orthophosphate (P) at Chalmers University of 
Technology. The pH measurements were performed with a pH meter (PHM 210, Meterlab, 
Hach, USA). Total nitrogen was analyzed with a LECO Nitrogen Analyzer (TruMac N, LECO 
Corporation, USA) using EDTA 9.56 as standard. Inorganic nitrogen was quantified using 
commercial enzymatic kits (AA0100, Sigma, USA, and Cat. No. 11746081001, Roche 
Diagnostics, Germany), while P was measured with a standard curve made with 
monopotassium phosphate, as reported by Qvirist et al. (2015).  
 
After collection of the FPPWs, the waters were filtrated to remove coarse particles (>300 μm) 
and then stored at -60°C. For paper II, the waters were sterilized by autoclaving for 20 min at 
1200 kPa. The waters were analyzed before and after this thermal treatment to ensure no 
influence on the NH4+ concentration. Autoclaving was not performed on the waters for papers 
III-V as it was not considered a realistic scenario for upscaling. When used in an experiment, 
the FPPWs were thawed, and diluted with filtered (0.2 μm+UV-light treated) deep-sea (40 m) 
seawater to reach the desired concentration of NH4+ for the specific experiment (see below). In 
all experiments, the FPPWs were renewed every second day to avoid nutrient depletion. 
 
Since NH4+ is the preferred nitrogen source for most seaweeds, and the main nitrogen found in 
the FPPWs, the FPPWs were diluted based on their NH4+ concentration. The NH4+ 
concentration was normalized to 20 and 200 μM NH4+ in paper II, and 25 μM NH4+ in papers 
III-V. These final concentrations were chosen to include optimal growth and nitrogen content 
of seaweeds based on previous work (Waite and Mitchell, 1972; Cohen and Neori, 1991; 
Nielsen et al., 2012; Rugiu et al., 2020), as well as personal experience and insight from 
preparing paper I. Examples of the different experimental setups used in this thesis are shown 
in Figure 5. 
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Table 2. Description of the different process waters used in this thesis (papers II-V), and their characterization of inorganic nutrients. Different 
batches of TUB and SAL were used in the different papers, and the min-max values from these batches are shown. 

 

Type of 
water 

Acronym Origin Provider Water description NH4+ 

(μM) 
NO3- 
(μM) 

NO2- 

(μM) 
P 
(μM) 

Refrigerated 
seawater 

RSW Herring Sweden 
Pelagic AB 

From on board refrigerated 
seawater tanks 

1160 6 n.d 3500 

Tub water TUB 
 

Herring Sweden 
Pelagic AB 

From storage tubs with 
herring in 3% NaCl 

1400-2300 9-20 3 5700-22100 

Salt brine I SBI 
 

Herring Sweden 
Pelagic AB 

From pre-salting of 
headed/gutted herring in 
5% NaCl 

3600 16 n.d 33600 

Salt brine II SAL 
 

Herring Klädesholmen 
Seafood AB 

From maturation of 
herring fillets in saturated 
salt brine 

8000-21800 n.d n.d 15400-27300 

Spice brine SPI 
 

Herring Klädesholmen 
Seafood AB 

From maturation of 
herring fillets in spice 
brine 

6300 12 n.d 21200 

Shrimp 
boiling water 

SBW 
 

Shrimp Bua Shellfish 
AB 

From steaming of shrimps 8900 11 n.d 410 

Oat 
processing 
water 

OAT Oat Oatly AB From processing of oat to 
oat milk 

30 6800 330 300 

Recirculated 
aquaculture 
system 
(RAS) water 

RAS Salmon Nordic 
Aquafarms AS 

Salmon RAS water after 
biofiltration-nitrification 
process 

40 3100 17 40 
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Figure 5. (A) Example of the experimental setups scaled up from (B) 100 mL Petri dishes in 
paper II, (C) 14 L tanks in papers III-IV, and (D) 45 L tanks in paper V, as well as (E) the 
sea-based farm in papers IV-VI.  
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PHYSIOLOGICAL AND BIOCHEMICAL MEASUREMENTS 
 
Growth 
Growth was measured either by weight or area in this thesis. In paper II, the growth was 
measured by the specific growth rate (SGR) for area for S. latissima and U. fenestrata, by 
analyzing images taken at the start and end of the experiments in ImageJ (ImageJ V. 2.0.0-rc-
69/1.52p). Due to the filamentous morphological characteristics of U. intestinalis and C. linum, 
the SGR for these species was measured by fresh weight (fw). The SGR was calculated using 
the formula SGR=((Ln(At)-Ln(A0))/t)x100, where At is the area/weight after t days and A0 is 
the initial area/weight. In papers III-V, the biomass yield was measured by the increase in fw. 
When using fw, standardized methods were used to remove excess water.  
 
Color (RGB) 
In papers II and VI, images of the seaweeds were analyzed for the three band colors red (R), 
green (G), and blue (B), (RGB), using either ImageJ (paper II) or a web-based image color 
summarizer (paper VI). The RGB values were used in paper II to indicate the physiological 
status of the seaweeds, while in paper VI they were correlated to nitrogen tissue content and 
used to estimate the nitrogen tissue content of U. fenestrata.  
	
Nitrogen and crude protein content 
In this thesis, nitrogen content was used to estimate crude protein content. This approach was 
chosen over direct protein extraction methods, as it is simple, reproducible, and a widely 
preferred method in experimental studies. Direct protein extraction methods on the other hand 
are not standardized and prone to inaccuracies in both extraction and quantification of the 
protein, leading to underestimations in protein content and making comparisons between 
studies more difficult (Angell et al., 2016; Biancarosa et al., 2017).  
 
For papers II-VI, the seaweed tissues were freeze-dried and homogenized to a fine powder 
before performing the desired biochemical analyses. The total nitrogen content was analyzed 
using an elemental analyzer in paper II. Due to technical issues with this machine, C. linum 
was analyzed using a LECO Nitrogen Analyzer. In papers III-VI, the nitrogen content was 
analyzed using an elemental analyzer coupled to an isotope-ratio mass spectrometer. The 
nitrogen was converted to crude protein using a conversion factor of five, as opposed to the 
traditionally used factor of 6.25. The reason being that the latter inaccurately assumes that the 
total protein in seaweeds constitutes 16% nitrogen and that all nitrogen is in the form of protein 
(Angell et al., 2016). 
 
Amino acid composition 
The quality of the proteins was assessed by the AA profile, with respect to the content and 
composition of EAA. In papers III-IV, high-performance liquid chromatography coupled with 
mass spectrometry detector (HPLC-MS) was used to analyze the total amino acids (TAA) at 
Chalmers University of Technology. In paper V, the TAA were analyzed at Eurofins Food & 
Feed Testing Sweden AB, using ion chromatography coupled with ultraviolet detector (IC-
UV). These methods are not able to recover tryptophan, and the HPLC-MS method is not able 
to recover cysteine. For both methods, glutamine and asparagine are co-determined with 
glutamic and aspartic acid, respectively. 
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Heavy metal content 
The toxic elements arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) were analyzed in 
papers III-IV, as they are considered elements of major health concern. These elements are 
referred to as “heavy metals”, even though arsenic is strictly speaking a metalloid. The heavy 
metals were analyzed at the Swedish Food Agency, using inductively coupled plasma mass 
spectrometry (ICP-MS, Agilent 7700x) following standard procedures of NMKL no. 186 and 
EN 15763:2009, while inorganic arsenic (iAs) was analyzed using HPLC-ICP-MS (Agilent 
1260 Infinity Quaternary LC and Agilent 7700x) according to the EN 16802:2016.  
 
There are no regulations from the European Commission on the maximum levels of these heavy 
metals in seaweeds for food purposes, other than for food supplements. Therefore, the heavy 
metal contents were compared to the maximum allowed levels (MLs) in general foodstuffs set 
by the European Union’s Commission Regulation (EC) No. 1881/2006 (version 03/05/2022). 
Furthermore, simple exposure assessments were performed to indicate if consuming the 
cultivated biomass posed risks concerning heavy metal exposure.  
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MAIN RESULTS AND DISCUSSION 
 
OVERVIEW OF KEY FINDINGS 
The main results from the different papers in relation to their defined aims are summarized 
below: 
 
Paper I:  The meta-analyses show that all groups of seaweed (brown, green, and red) can 

be cultivated in a wide range of process waters, in both ocean- and land-based 
settings, to produce biomass with enhanced growth and nitrogen content. It also 
identifies a gap in the literature, showing that very few studies have explored 
the cultivation of seaweeds in process waters from sources outside the 
aquaculture industry.  

 
Paper II:  The results show that there is a high potential for all the tested FPPWs as growth 

media for the green seaweeds, but not for the kelp. In general, 20 μM NH4+ 
treatments performed better or similar to the 200 μM NH4+ treatments. In the 
most promising cases, growth rates were up to 64% higher, and crude protein 
content was almost four-fold higher in FPPWs compared to seawater controls.  

 
Paper III:  The key finding from this study is that after only 14 days, the crude protein 

content of U. fenestrata was three times higher in the HPPWs compared to the 
seawater control. Reaching protein content over 30% dw, the protein content is 
comparable to soybeans and pulses. Additionally, the potential health risks 
(related to heavy metal content) of consuming the biomass were very low.  

 
Paper IV:  The results show that it is possible to extend the sea-based cultivation season of 

U. fenestrata when aiming for high protein levels, by post-harvest treatment in 
HPPWs. By cultivating seaweeds harvested late in the season (high biomass 
yield but low protein content) in HPPWs, it was possible to rapidly increase the 
protein content to similar levels as early in the season when the protein content 
is at its peak. The biomass cultivated in HPPWs could be consumed as food 
based on the documented levels of heavy metals, and its sensory attributes were 
not regarded as negative. 

 
Paper V: The results show that the natural peak protein content of U. fenestrata can be 

boosted through short-term post-harvest treatment with HPPW. The crude 
protein content was increased by over 70% and reached an average of 37% dw 
when cultivated in the HPPW. Additionally, no fish-related allergenic effects 
were detected in the biomass. 

 
Paper VI:  The results show that the color of U. fenestrata can be used to accurately 

estimate the nitrogen content of the biomass. Based on the produced models, a 
web-based application was developed that automatically analyzes the nitrogen 
content from uploaded images. Furthermore, a color guide was produced that 
can easily be brought to the field to estimate the nitrogen content of U. 
fenestrata.    
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META-ANALYSIS 
When synthesizing the literature in paper I, it was found that both the growth and nitrogen 
content of seaweeds are increased when cultivated in process waters. Green seaweeds benefit 
more in terms of growth and nitrogen content compared to brown and red seaweeds (Figure 
6). This is not surprising as green seaweed species are often characterized as opportunistic 
species that grow fast (Taylor et al., 2001). Being able to tolerate large fluctuations in 
environmental parameters (Bäck et al., 2000; Ye et al., 2011), they are ideal candidates for 
cultivation in process waters. In the case of brown seaweeds, almost all studies were from 
IMTA settings with the kelp S. latissima. The effect of process water is, therefore, harder to 
assess since this group is not well represented by different species of seaweed or process 
waters.  
 

 
 
Figure 6. The effect of process water on growth (blue) and nitrogen content (yellow). A 
significant positive effect is identified by a Hedges’ d value greater than zero.  
 
The results further show that the benefits of cultivating seaweeds in process waters are applied 
to both land-based and ocean-based cultivation. There is a strong tendency for nitrogen content 
to be more positively affected when cultivated in land-based settings, which can possibly be 
explained by seaweeds grown in ocean-based settings often being at some distance from the 
nutrient source. Cultivation in process waters has the potential to advance land-based 
cultivation, which has thus far been slowed down by costly infrastructure and maintenance 
(Hafting et al., 2012; Mata et al., 2016). Land-based cultivation also makes it possible to 
cultivate various seaweed species with morphologies unsuitable for ocean-based cultivation in 
a range of unexplored process waters, such as from industrial food processing industries.  
 
The meta-analysis also clearly reveals a gap in the literature, where the focus is on a few 
selected seaweed species and types of process waters. However, the studies included beyond 
traditional fish aquaculture process waters indicate that using alternative process waters has the 
potential to yield fast-growing and nitrogen-rich seaweed biomass. This concept was further 
explored throughout this thesis.  
 
GROWTH AND CRUDE PROTEIN CONTENT 
It has long been known that seaweeds grow faster and accumulate nitrogen when cultivated in 
nutrient-rich waters (Ryther et al., 1981; Habig et al., 1984). Accordingly, this thesis clearly 
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shows the potential of using FPPWs to increase both the growth and protein content of 
seaweeds. After cultivation in eight different FPPWs emerging from recirculated salmon 
aquaculture systems, as well as from herring, shrimp, and oat processing, the green seaweed 
species (U. fenestrata, U. intestinalis, and C. linum) increased in both growth and crude protein 
content, as compared to when cultivated in seawater controls (paper II, Figure 7). Growth 
rates of the green seaweeds were up to 64% higher, and crude protein content was almost up 
to four times higher when cultivated in the FPPWs, compared to seawater controls.  
 
The brown species, S. latissima, had negative growth rates in all the tested FPPWs, which 
resulted in no biomass to perform crude protein content analysis on. The negative growth may 
be attributed to the inherent characteristics of kelps, which are not opportunistic species and 
usually grow in much lower inorganic nitrogen and phosphorus concentrations (Forbord et al., 
2012; Bruhn et al., 2016; Roleda and Hurd, 2019). It is important to note that the dilution in 
the experiment is based on NH4+, but other species of nitrogen and phosphorus are also present. 
It is possible that the total nitrogen and/or phosphorus concentrations in the waters were a shock 
for S. latissima, or alternatively, there were some other unidentified compounds in the water 
that inhibited the growth (Tegner et al., 1995; Coelho et al., 2000). Regardless, S. latissima 
was not considered a promising species for cultivation in these settings.  

 

 
Figure 7. (A) Specific growth rate (SGR, % day-1), and (B) crude protein content (% dw) of 
Ulva fenestrata, Ulva intestinalis, Chaetomorpha linum, and Saccharina latissima in the 
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For the green seaweed species, growth rates were generally higher in FPPWs diluted to 20 μM 
compared to 200 μM NH4+, while crude protein content was similar in the two dilutions. For 
some seaweed species, a high NH4+ concentration can have an inhibitory effect on growth 
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META-ANALYSIS 
When synthesizing the literature in paper I, it was found that both the growth and nitrogen 
content of seaweeds are increased when cultivated in process waters. Green seaweeds benefit 
more in terms of growth and nitrogen content compared to brown and red seaweeds (Figure 
6). This is not surprising as green seaweed species are often characterized as opportunistic 
species that grow fast (Taylor et al., 2001). Being able to tolerate large fluctuations in 
environmental parameters (Bäck et al., 2000; Ye et al., 2011), they are ideal candidates for 
cultivation in process waters. In the case of brown seaweeds, almost all studies were from 
IMTA settings with the kelp S. latissima. The effect of process water is, therefore, harder to 
assess since this group is not well represented by different species of seaweed or process 
waters.  
 

 
 
Figure 6. The effect of process water on growth (blue) and nitrogen content (yellow). A 
significant positive effect is identified by a Hedges’ d value greater than zero.  
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shows the potential of using FPPWs to increase both the growth and protein content of 
seaweeds. After cultivation in eight different FPPWs emerging from recirculated salmon 
aquaculture systems, as well as from herring, shrimp, and oat processing, the green seaweed 
species (U. fenestrata, U. intestinalis, and C. linum) increased in both growth and crude protein 
content, as compared to when cultivated in seawater controls (paper II, Figure 7). Growth 
rates of the green seaweeds were up to 64% higher, and crude protein content was almost up 
to four times higher when cultivated in the FPPWs, compared to seawater controls.  
 
The brown species, S. latissima, had negative growth rates in all the tested FPPWs, which 
resulted in no biomass to perform crude protein content analysis on. The negative growth may 
be attributed to the inherent characteristics of kelps, which are not opportunistic species and 
usually grow in much lower inorganic nitrogen and phosphorus concentrations (Forbord et al., 
2012; Bruhn et al., 2016; Roleda and Hurd, 2019). It is important to note that the dilution in 
the experiment is based on NH4+, but other species of nitrogen and phosphorus are also present. 
It is possible that the total nitrogen and/or phosphorus concentrations in the waters were a shock 
for S. latissima, or alternatively, there were some other unidentified compounds in the water 
that inhibited the growth (Tegner et al., 1995; Coelho et al., 2000). Regardless, S. latissima 
was not considered a promising species for cultivation in these settings.  
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Even though the results from paper II were promising, the experiments were small-scale (100 
mL Petri dishes). In the next step, two promising FPPWs from the herring processing industry 
(HPPWs), namely SAL and TUB, were selected. These waters were selected based on the 
results from paper II, additional unpublished results, and considerations of the FPPWs’ 
characterization and availability. Furthermore, U. fenestrata was chosen as the most promising 
candidate for cultivation in these settings.  
 
In paper III, it is shown that the positive results of increased growth and crude protein content 
are maintained when the cultivation setting is scaled up. The results show that U. fenestrata 
cultivated in the HPPWs had four to six times higher biomass yields and three times higher 
crude protein content compared to when cultivated in seawater (Figure 8). After only 14 days, 
the crude protein content was over 30% dw. This crude protein content is comparable to 
soybeans (35-40% dw) (Grieshop and Fahey, 2001; Thakur and Hurburgh, 2007), and pulses 
such as lentils, chickpeas, and beans, in which crude protein makes up 17-30% dw (Boye et 
al., 2010). Extrapolating these results indicates a production of 14-19 t dw ha-1 year-1. By 
assuming a protein content of 30% dw this results in 4-6 t protein ha-1 year-1. This is over three 
times more productive than the average soybean protein production of 1.4 t protein ha-1 year-1 
(assuming production of 3 t ha-1 year-1 of soybean containing a protein content of 45% dw; 
Grieshop and Fahey, 2001; Ainsworth et al., 2012; FAO, 2021b). Although these 
extrapolations are rough and assume a stable year-round production, they are necessary to 
provide possible productivity scenarios. Furthermore, this system was not optimized for 
optimal biomass yields, and the start density used in the experiment was very low compared to 
possible cultivation densities.  
 

 
Figure 8. (A) Fresh weight (g) and (B) crude protein content (% dw) of Ulva fenestrata 
cultivated in seawater control (SW), and the two herring production process waters salt brine 
(SAL), and tub water (TUB). Error bars show standard error, and significant differences are 
denoted by asterisks. 
 
In paper IV, the HPPWs (SAL and TUB) were used to extend the sea-based cultivation seasons 
of U. fenestrata when aiming for high protein levels. Generally, harvesting U. fenestrata late 
in the season will allow for higher biomass yields. However, there is a trade-off as the protein 
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content drastically decreases during this period (Steinhagen et al., 2022). Paper IV 
demonstrates that it is possible to extend the sea-based cultivation season by post-harvest 
cultivation in the HPPWs for 7-14 days to reach similar levels of crude protein as those 
observed early in the season when the crude protein content is at its peak (March/April; 21% 
dw) (Steinhagen et al., 2022). This method can help sea-based farms maximize their output of 
proteins. 
 
In paper V, the HPPW (TUB) was instead used to further boost the protein content of the sea-
based cultivated U. fenestrata when harvested at its natural peak protein content (March/April; 
21% dw). By cultivating the U. fenestrata for 14 days in the TUB, the crude protein content 
was increased by over 70% reaching an average of 37% dw (Figure 9). Such high protein 
yields are important for the subsequent downstream application of biomass in the food value 
chain. To my knowledge, this is also the first time that such high crude protein contents have 
been achieved in green seaweed biomass when using the conversion factor of five. For 
example, the frequently cited protein content of 47% dw for red seaweeds (Fleurence, 2004), 
is calculated from a nitrogen content of 7.6% dw using the conversion factor of 6.25 (Fujiwara-
Arasaki et al., 1984). However, by applying the conversion factor of five, as used throughout 
this thesis, it instead results in a crude protein content of 38% dw.  

 
Figure 9. Crude protein content (% dw) of Ulva fenestrata at the start of the experiment and 
after 14 days post-harvest treatment in Provasoli Enriched Seawater (PES) and the herring 
production process water (TUB). Error bars show standard deviation, and significant 
differences are denoted by capital letters above bars. 
 
AMINO ACID COMPOSITION AND PROTEIN QUALITY 
The results of this thesis (papers III-V) show that cultivation of U. fenestrata in HPPWs 
strongly influences the AA composition of the biomass, resulting in high-quality protein 
biomass. All amino acids were present at 2-8 times higher levels in U. fenestrata cultivated in 
the HPPWs compared to seawater. As a result of the high levels of some non-essential AAs, 
the TEAA were generally lower in seaweed biomass from SAL (33.8-36.4%), and TUB (33.2-
37.2%) compared to from seawater (36.3-40.6%). Nevertheless, these TEAA values are higher 
than in many terrestrial plants, while being comparable to protein products such as eggs and 
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content drastically decreases during this period (Steinhagen et al., 2022). Paper IV 
demonstrates that it is possible to extend the sea-based cultivation season by post-harvest 
cultivation in the HPPWs for 7-14 days to reach similar levels of crude protein as those 
observed early in the season when the crude protein content is at its peak (March/April; 21% 
dw) (Steinhagen et al., 2022). This method can help sea-based farms maximize their output of 
proteins. 
 
In paper V, the HPPW (TUB) was instead used to further boost the protein content of the sea-
based cultivated U. fenestrata when harvested at its natural peak protein content (March/April; 
21% dw). By cultivating the U. fenestrata for 14 days in the TUB, the crude protein content 
was increased by over 70% reaching an average of 37% dw (Figure 9). Such high protein 
yields are important for the subsequent downstream application of biomass in the food value 
chain. To my knowledge, this is also the first time that such high crude protein contents have 
been achieved in green seaweed biomass when using the conversion factor of five. For 
example, the frequently cited protein content of 47% dw for red seaweeds (Fleurence, 2004), 
is calculated from a nitrogen content of 7.6% dw using the conversion factor of 6.25 (Fujiwara-
Arasaki et al., 1984). However, by applying the conversion factor of five, as used throughout 
this thesis, it instead results in a crude protein content of 38% dw.  
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strongly influences the AA composition of the biomass, resulting in high-quality protein 
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soybeans (Fleurence, 2004; Mæhre et al., 2014; Henchion et al., 2017). Furthermore, apart 
from tryptophan, which could not be recovered using this method, all the EAA were found in 
the biomass (Table 3).  
 
Table 3. Summarized profiles of essential amino acids (EAA) and total essential amino acids 
(TEAA) in Ulva fenestrata cultivated in seawater (SW), salt brine (SAL), and tub water (TUB) 
from papers III-V, as well as the amino acid (AA) profiles recommended by WHO/FAO/UNU 
(2007). 

EAA 
SW 
(% of TAA) 

SAL 
(% of TAA) 

TUB 
(% of TAA) 

Recommended 
AA profile 
(% of protein) 

Valine 5.8-7.6 5.9-6.6 5.7-6.4 3.9 
Threonine 5.1-7.1 5.6-6.0 5.4-6.6 2.3 
Isoleucine 3.8-4.6 3.7-3.8 3.5-4.2 3.0 
Leucine 7.4-8.5 6.1-6.7 6.0-6.4 5.9 
Lysine 3.2-5.3 4.9-5.8 4.7-5.0 4.5 
Methionine 0.5-2.6 1.5-1.9 1.3-1.8 1.6 
Histidine 1.4-2.4 1.2-1.3 1.2-2.0 1.5 
Phenylalanine 5.0-5.4 4.6-5.0 4.6-5.1 3.8* 
TEAA 36.3-40.6 33.8-36.4 33.2-37.2  

*sum of phenylalanine and tyrosine. 
 
To achieve the recommended daily intake of all EAA from only consuming U. fenestrata, an 
adult needs to consume about 1200-1500g dw of U. fenestrata cultivated in SW and about 140-
300g dw of U. fenestrata cultivated in the HPPWs. These values can seem high but are 
comparable to the required amount for soybeans (170 g dw; Grieshop and Fahey, 2001). 
Furthermore, the seaweed proteins can be concentrated by different extraction processes, which 
also improves the protein’s digestibility (Harrysson et al., 2019; Trigo et al., 2021; Juul et al., 
2022a, b). Developing such extraction methods will be important if seaweeds are to play a 
significant role in transforming the food systems. 
 
The average nitrogen-to-protein conversion factor from papers III-V is 5.12, which 
corresponds well to the conversion factor of five that was adapted throughout this thesis 
(Angell et al., 2016). However, it should be noted that there was a variability in the conversion 
factor between the different studies and treatments. This is because not all of the nitrogen in 
seaweeds is in the form of protein, and some proteins are made up of more nitrogen-rich AAs 
than others (Shuuluka et al., 2013; Mæhre et al., 2014; Angell et al., 2016). A protein with high 
levels of nitrogen-rich AAs (such as arginine, histidine, and lysine), therefore, generally has a 
lower nitrogen-to-protein conversion factor (Sosulski and Imafidon, 1990; Shuuluka et al., 
2013). However, it is also important to note that the applied method for AA analysis may result 
in an underestimation of the conversion factor, as some AAs are not recovered while others 
may be destroyed during chemical analysis. Altogether, the results from this thesis support 
using nitrogen content as a reliable method to estimate crude protein content, facilitating easy 
comparisons between studies, when amino acid analysis is not possible.  
 
HEAVY METAL CONTENT AND FOOD SAFETY ASPECTS 
There is a concern that seaweeds may accumulate toxic elements, specifically the inorganic 
form of arsenic (iAs), which is known to be carcinogenic (Duinker et al., 2020; Blikra et al., 
2021). The results from papers III-IV show that the heavy metal content of U. fenestrata was 
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below the EU maximum levels (MLs) in foodstuffs (European Commission, 2006; 2022a; 
Table 4). Although the tAs content in TUB cultivated U. fenestrata in paper III was high, iAs 
only made up 0.02-0.72% of tAs throughout all the tested biomass, which resulted in a very 
low amount of iAs in the biomass. These results correspond well with the general assumption 
that the proportion of iAs in seaweeds is typically one percent of the tAs (Duinker et al., 2020; 
Blikra et al., 2021). 
 
As of today, there are no MLs established for As, Hg, Pb, or Cd in seaweeds. Instead, the MLs 
reflect the levels, size of consumption, and toxicity in foodstuffs occurring at the market. 
Therefore, the MLs are not permanent but constantly evaluated and adjusted as new foodstuffs 
are being added. It is currently being assessed if the MLs should be modified to include 
seaweeds (EFSA, 2023). It is important to consider that the levels of heavy metals can vary 
greatly both between and within seaweed species. For example, the levels can be affected by 
age, growing conditions, and processing methods, making it hard to categorize seaweeds into 
one group (Duinker et al., 2016, 2020; Anbazhagan et al., 2021; Véliz et al., 2023).  
 
Table 4. Summarized heavy metal content in Ulva fenestrata cultivated in seawater control 
(SW), salt brine (SAL), and tub water (TUB) from papers III-IV. The range of maximum 
allowed levels in foodstuffs (MLs) is set by the European Union’s Commission Regulation 
(EC) No. 1881/2006 (version 03/05/2022).   

Content in biomass 
μg g dw -1 

MLs in foodstuffs 
μg g-1 

 SW SAL TUB  
Total arsenic (tAs) 2.42 2.11-4.85 3.02-106.95 Not established 
Inorganic arsenic (iAs) 0.01 0.02 0.01-0.02 0.1*-0.3 
Mercury (Hg) <0.036 0.04-0.21 <0.036 0.1-1 
Lead (Pb) 0.13 0.34-1.45 0.35-0.97 0.02*-3** 
Cadmium (Cd) 0.03 0.13-0.21 0.14-0.39 0.01*-3** 

*Food destined for babies and young children (for iAs rice intended for baby food, Pb cereal based food, and for 
Cd young children formulae). 
**Food supplements as sold, consisting exclusively or mainly of dried seaweeds, products derived from seaweeds, 
or of dried bivalve mollusks. 
 
In papers III-IV, simple exposure assessments were used to estimate how much of the 
cultivated biomass that can be consumed per day before exceeding reference doses (RfDs) set 
by the US EPA (US EPA, 2007). These reference doses are more conservative than the values 
from the Joint FAO/WHO Expert Committee on Food Additives (JECFA., 2011), but less 
conservative than Pb and Cd values from EFSA (EFSA, 2009, 2010). The US EPA 
recommendations were chosen for easier comparisons with other publications within the field. 
The results show that a daily consumption of 90-450g dw from biomass cultivated in HPPWs 
can be consumed before exceeding the RfDs. This translates to a maximum of more than two 
kg fresh weight, given a dw:fw ratio of 20:80. Using the more restrictive reference dose for Pb 
from EFSA, around 30-120g dw can be consumed daily. These values can be considered 
conservative, as they are based on an adult body weight of 63.3kg, which is lower than the 
average weight of over 75kg in America, Australia, and Europe. It also assumes that all heavy 
metals in the biomass are bioavailable, which is probably not true. Heavy metals often bind to 
polysaccharides in seaweeds (Duinker et al., 2016; Ortiz-Calderon et al., 2017; Khandaker et 
al., 2021) which are typically not easily digestible for humans (Fleurence, 2016; Trigo et al., 
2021). Hence, the bioavailability of heavy metals needs to be investigated to establish how 
readily they are absorbed into the bloodstream during digestion. Furthermore, processing of 
biomass, such as blanching, washing, boiling, and protein extraction may reduce the content of 
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2013). However, it is also important to note that the applied method for AA analysis may result 
in an underestimation of the conversion factor, as some AAs are not recovered while others 
may be destroyed during chemical analysis. Altogether, the results from this thesis support 
using nitrogen content as a reliable method to estimate crude protein content, facilitating easy 
comparisons between studies, when amino acid analysis is not possible.  
 
HEAVY METAL CONTENT AND FOOD SAFETY ASPECTS 
There is a concern that seaweeds may accumulate toxic elements, specifically the inorganic 
form of arsenic (iAs), which is known to be carcinogenic (Duinker et al., 2020; Blikra et al., 
2021). The results from papers III-IV show that the heavy metal content of U. fenestrata was 
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below the EU maximum levels (MLs) in foodstuffs (European Commission, 2006; 2022a; 
Table 4). Although the tAs content in TUB cultivated U. fenestrata in paper III was high, iAs 
only made up 0.02-0.72% of tAs throughout all the tested biomass, which resulted in a very 
low amount of iAs in the biomass. These results correspond well with the general assumption 
that the proportion of iAs in seaweeds is typically one percent of the tAs (Duinker et al., 2020; 
Blikra et al., 2021). 
 
As of today, there are no MLs established for As, Hg, Pb, or Cd in seaweeds. Instead, the MLs 
reflect the levels, size of consumption, and toxicity in foodstuffs occurring at the market. 
Therefore, the MLs are not permanent but constantly evaluated and adjusted as new foodstuffs 
are being added. It is currently being assessed if the MLs should be modified to include 
seaweeds (EFSA, 2023). It is important to consider that the levels of heavy metals can vary 
greatly both between and within seaweed species. For example, the levels can be affected by 
age, growing conditions, and processing methods, making it hard to categorize seaweeds into 
one group (Duinker et al., 2016, 2020; Anbazhagan et al., 2021; Véliz et al., 2023).  
 
Table 4. Summarized heavy metal content in Ulva fenestrata cultivated in seawater control 
(SW), salt brine (SAL), and tub water (TUB) from papers III-IV. The range of maximum 
allowed levels in foodstuffs (MLs) is set by the European Union’s Commission Regulation 
(EC) No. 1881/2006 (version 03/05/2022).   

Content in biomass 
μg g dw -1 

MLs in foodstuffs 
μg g-1 

 SW SAL TUB  
Total arsenic (tAs) 2.42 2.11-4.85 3.02-106.95 Not established 
Inorganic arsenic (iAs) 0.01 0.02 0.01-0.02 0.1*-0.3 
Mercury (Hg) <0.036 0.04-0.21 <0.036 0.1-1 
Lead (Pb) 0.13 0.34-1.45 0.35-0.97 0.02*-3** 
Cadmium (Cd) 0.03 0.13-0.21 0.14-0.39 0.01*-3** 

*Food destined for babies and young children (for iAs rice intended for baby food, Pb cereal based food, and for 
Cd young children formulae). 
**Food supplements as sold, consisting exclusively or mainly of dried seaweeds, products derived from seaweeds, 
or of dried bivalve mollusks. 
 
In papers III-IV, simple exposure assessments were used to estimate how much of the 
cultivated biomass that can be consumed per day before exceeding reference doses (RfDs) set 
by the US EPA (US EPA, 2007). These reference doses are more conservative than the values 
from the Joint FAO/WHO Expert Committee on Food Additives (JECFA., 2011), but less 
conservative than Pb and Cd values from EFSA (EFSA, 2009, 2010). The US EPA 
recommendations were chosen for easier comparisons with other publications within the field. 
The results show that a daily consumption of 90-450g dw from biomass cultivated in HPPWs 
can be consumed before exceeding the RfDs. This translates to a maximum of more than two 
kg fresh weight, given a dw:fw ratio of 20:80. Using the more restrictive reference dose for Pb 
from EFSA, around 30-120g dw can be consumed daily. These values can be considered 
conservative, as they are based on an adult body weight of 63.3kg, which is lower than the 
average weight of over 75kg in America, Australia, and Europe. It also assumes that all heavy 
metals in the biomass are bioavailable, which is probably not true. Heavy metals often bind to 
polysaccharides in seaweeds (Duinker et al., 2016; Ortiz-Calderon et al., 2017; Khandaker et 
al., 2021) which are typically not easily digestible for humans (Fleurence, 2016; Trigo et al., 
2021). Hence, the bioavailability of heavy metals needs to be investigated to establish how 
readily they are absorbed into the bloodstream during digestion. Furthermore, processing of 
biomass, such as blanching, washing, boiling, and protein extraction may reduce the content of 
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some heavy metals in seaweed biomass (Stévant et al., 2018; Blikra et al., 2021; Véliz et al., 
2023). This would further increase the possible amount of biomass that can safely be 
consumed.  
 
DETERMINATION OF NITROGEN CONTENT BY COLOR IMAGE ANALYSIS 
The composition of the seaweed biomass depends on seasonal growing conditions. Hence, the 
timing of harvesting is important for the quality of the seaweed crop (Steinhagen et al., 2022). 
Linear regression models based on color image analysis have been used to estimate the 
physiological status and nitrogen content of many terrestrial plants (Mercado-Luna et al., 2010; 
Tewari et al., 2013; Riccardi et al., 2014; Zhang et al., 2022). However, although it has been 
widely documented that the color of seaweed thallus can change due to variations in tissue 
nitrogen content (Nagler et al., 2003; Yu and Yang, 2008; Robertson-Andersson et al., 2009; 
Ashkenazi et al., 2022), prior to paper VI, no models had been developed to evaluate the 
nitrogen content of seaweeds based on their color. Therefore, in paper VI, non-destructive, 
labor- and cost-efficient models were developed to estimate the nitrogen content (and hence 
protein content) in the crop seaweed U. fenestrata by color image analysis. It was shown that 
the three band colors R, G, and B were highly correlated with nitrogen content (Figure 10) and 
that they can be used in both simple and multiple linear regression models to predict the 
nitrogen content of U. fenestrata. These results show that color can be a powerful tool for 
seaweed farmers to quickly and cost-efficiently assess the quality of their crop, without having 
to use time-consuming and expensive laboratory procedures. This could potentially help 
overcome some of the barriers farmers face in producing sustainable and high-quality 
seaweeds. 
 

 
Figure 10. Nitrogen content (% dw) as a function of the color variables (A) red, (B) green, (C) 
blue, and (D) intensity ((R+G+B)/3) for fresh tissue of Ulva fenestrata. 
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CONCLUSION 
This thesis shows that seaweeds are promising alternative food protein sources for the ongoing 
dietary protein shift. It provides insights into the different steps of seaweed cultivation, with a 
focus on enhancing the biomass yield and composition of the crop, while also ensuring its 
safety and evaluating its sensory aspects as food. The results show that green seaweed species 
are especially suitable to cultivate in a wide variety of industrial FPPWs, resulting in increased 
seaweed growth and protein content (papers I-V). After an initial screening of different 
seaweed species (paper II), this thesis focuses on the green seaweed species U. fenestrata. By 
cultivating U. fenestrata in HPPWs, this thesis provides what is, to my knowledge, the highest 
crude protein content (>37% dw) achieved in Ulva biomass when compared to previous studies 
(paper V). The HPPWs provided seaweeds with favorable amino acid profiles containing all 
the EAA, and the increased protein content also translates to a significantly higher content of 
EAA in the biomass (papers III-V). Furthermore, papers III-IV show that the biomass 
cultivated in HPPWs is safe to consume in large quantities without exceeding health-based 
reference points for the analyzed heavy metals. However, the iodine content of U. fenestrata 
should be investigated, as it has been identified in other studies as a potential limiting factor 
for safe intake levels. Additionally, cultivation in HPPWs did not negatively affect any sensory 
attributes, underscoring the potential of this method for safe and palatable biomass production.  
 
Even though the extraction process of proteins from seaweeds will most likely become more 
efficient in the near future, ensuring a high protein content in the input biomass will remain 
crucial for seaweeds to become a viable protein source moving forward. To increase seaweeds’ 
contribution to the ongoing dietary protein shift, the industry must expand, and cultivation in 
FPPWs can play a role, particularly when targeting crops with high protein content. Therefore, 
further upscaling of the concept, with for example year-round production in FPPWs, should be 
investigated to assess the annual protein output from these systems.  
 
In conclusion, this thesis clearly shows the possibility for a novel nutrient loop in which the 
costly disposal of food production process waters can be turned into economic revenue by 
sustainable production of protein-enriched seaweeds. This is an important step for the 
continued downstream application of the biomass in the food value chain. The process water 
offers a way to incorporate seaweeds into land-based cultivation, considering water quality and 
clean effluents as a bonus in a system where the main products are seaweed biomass yields 
with high protein content. 
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some heavy metals in seaweed biomass (Stévant et al., 2018; Blikra et al., 2021; Véliz et al., 
2023). This would further increase the possible amount of biomass that can safely be 
consumed.  
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The composition of the seaweed biomass depends on seasonal growing conditions. Hence, the 
timing of harvesting is important for the quality of the seaweed crop (Steinhagen et al., 2022). 
Linear regression models based on color image analysis have been used to estimate the 
physiological status and nitrogen content of many terrestrial plants (Mercado-Luna et al., 2010; 
Tewari et al., 2013; Riccardi et al., 2014; Zhang et al., 2022). However, although it has been 
widely documented that the color of seaweed thallus can change due to variations in tissue 
nitrogen content (Nagler et al., 2003; Yu and Yang, 2008; Robertson-Andersson et al., 2009; 
Ashkenazi et al., 2022), prior to paper VI, no models had been developed to evaluate the 
nitrogen content of seaweeds based on their color. Therefore, in paper VI, non-destructive, 
labor- and cost-efficient models were developed to estimate the nitrogen content (and hence 
protein content) in the crop seaweed U. fenestrata by color image analysis. It was shown that 
the three band colors R, G, and B were highly correlated with nitrogen content (Figure 10) and 
that they can be used in both simple and multiple linear regression models to predict the 
nitrogen content of U. fenestrata. These results show that color can be a powerful tool for 
seaweed farmers to quickly and cost-efficiently assess the quality of their crop, without having 
to use time-consuming and expensive laboratory procedures. This could potentially help 
overcome some of the barriers farmers face in producing sustainable and high-quality 
seaweeds. 
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safety and evaluating its sensory aspects as food. The results show that green seaweed species 
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cultivating U. fenestrata in HPPWs, this thesis provides what is, to my knowledge, the highest 
crude protein content (>37% dw) achieved in Ulva biomass when compared to previous studies 
(paper V). The HPPWs provided seaweeds with favorable amino acid profiles containing all 
the EAA, and the increased protein content also translates to a significantly higher content of 
EAA in the biomass (papers III-V). Furthermore, papers III-IV show that the biomass 
cultivated in HPPWs is safe to consume in large quantities without exceeding health-based 
reference points for the analyzed heavy metals. However, the iodine content of U. fenestrata 
should be investigated, as it has been identified in other studies as a potential limiting factor 
for safe intake levels. Additionally, cultivation in HPPWs did not negatively affect any sensory 
attributes, underscoring the potential of this method for safe and palatable biomass production.  
 
Even though the extraction process of proteins from seaweeds will most likely become more 
efficient in the near future, ensuring a high protein content in the input biomass will remain 
crucial for seaweeds to become a viable protein source moving forward. To increase seaweeds’ 
contribution to the ongoing dietary protein shift, the industry must expand, and cultivation in 
FPPWs can play a role, particularly when targeting crops with high protein content. Therefore, 
further upscaling of the concept, with for example year-round production in FPPWs, should be 
investigated to assess the annual protein output from these systems.  
 
In conclusion, this thesis clearly shows the possibility for a novel nutrient loop in which the 
costly disposal of food production process waters can be turned into economic revenue by 
sustainable production of protein-enriched seaweeds. This is an important step for the 
continued downstream application of the biomass in the food value chain. The process water 
offers a way to incorporate seaweeds into land-based cultivation, considering water quality and 
clean effluents as a bonus in a system where the main products are seaweed biomass yields 
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