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RISK MANAGEMENT OF STOCK PORTFOLIOS WITH JUMPS AT EXOGENOUS

DEFAULT EVENTS

ALEXANDER HERBERTSSON

Abstract. In this paper we study equity risk management of stock portfolios where the individual stock
prices have downward jumps at the defaults of an exogenous group of defaultable entities. The default
times can come from any type of credit portfolio model. In this setting we derive computational tractable
formulas for several stock-related quantizes, such as loss distributions of equity portfolios and apply it
to Value-at-Risk computations. We start with individual stock prices and then extend the setting to a
portfolio framework. In the portfolio case our studies considers both small-time expansions of the loss-
distribution for a heterogeneous portfolio via a linearization of the loss, but also for general time points
when the stock portfolio is large and homogeneous and where we use a conditional version of the law of
large numbers. Most of the derived formulas will heavily rely on the ability to efficiently compute the
number of defaults distribution of the entities in the exogenous group of corporates negative affecting the
stock prices in our equity portfolio. If the stock prices are unaffected by the exogenous defaults then our
framework collapses into the traditional Black-Scholes model under the real probability measure. Finally,
we give several numerical applications. For example, in a setting where the jumps in the stock prices are at
default times which are generated by a one-factor Gaussian copula model, we study the time evolution of
Value-at-Risk (i.e. VaR as function of time) for stock portfolios, both for a 20-day period and for a two-year
period. We also perform similar numerical VaR-studies in a setting where the individual default intensities
follow a CIR process. Our results are compared with the corresponding VaR-values in the Black-Scholes
case with same drift and volatilises as in the jump models. Not surprisingly, we show that the VaR-values
in stock portfolios with downward jumps at defaults of external entities, will have substantially higher VaR-
values compared to the corresponding Black-Scholes cases. The numerical computations of the number of
default distribution will in all our studies use fast and efficient saddlepoint methods.

Keywords: equity portfolio risk; stock price modelling; credit portfolio risk; risk management; Value-at-
Risk, intensity-based models; credit copula models, numerical methods.

JEL Classification: G33; G13; C02; C63; G32 .

1. Introduction

Simultaneous downward jumps in multiple stock prices at defaults of large companies is a very realistic
feature. For example, at the default of Lehman Brothers in September 2008 there were downward jumps
in most of the stock prices traded on financial markets all over the world.

In this paper we study equity risk management of stock portfolios where the individual stock prices have
simultaneous downward jumps at the defaults of an exogenous group of defaultable entities, for example
corporates or sovereign states. By ”exogenous” we here mean that the entities, for example companies,
will not be represented in the stock portfolio, that is stocks issued by the defaultable corporates are not
present in the stock portfolio in our studies. The default times can come from any type of credit portfolio
model. In this setting we derive computational tractable formulas to several stock-related quantizes, for
example the loss distributions of equity portfolios and apply it to risk management computations such
as Value-at-Risk of portfolios. We start with modelling an individual stock price and derive expressions
for the expected value, conditional expected value, density and distribution for the stock. In the stock
portfolio case our studies considers both small-time expansions of the loss-distribution to a heterogeneous
portfolio via a linearization of the loss, but also for general time points when the stock portfolio is large
and homogeneous, where we utilize a conditional version of the law of large numbers for a homogeneous
stock portfolio. Most of the formulas in this paper will heavily rely on the ability to efficiently compute
the number of defaults distribution of the entities in the exogenous group which are negative affecting the
stock prices in our equity portfolio. In the case when the stock prices are unaffected by the exogenous
defaults our stock price model collapses into the traditional Black-Scholes model under the real probability
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measure. Finally, we give several numerical applications. For example, in a setting where the jumps in the
stock prices are at default times which are generated by one-factor Gaussian copula model, we study the
time evolution of Value-at-Risk (i.e. VaR as function of time) for stock portfolios, both for a 20-day period
with one-day steps and for a two-year period with one-month steps. In the 20-day period we use the linear
approximation for the loss-process, while for the two-year period we utilize a large portfolio approximation
formula for the loss-process to a large homogeneous stock portfolio. Furthermore, in a setting where the
jumps in the stock price are at default times which have CIR-intensities, we also study the time evolution
of Value-at-Risk for one stock over a two-year period. In all our numerical computations we also compare
our results with the corresponding VaR-values in the Black-Scholes case with same drift and volatilises
as in the jump models. Not surprisingly, we show that the VaR-values in stock portfolios with stock that
jump downward at defaults of external companies will have substantially higer VaR-values compared to
the corresponding Black-Scholes cases. The numerical computations of the number of default distribution
will in all our VaR-studies use fast and efficient saddlepoint methods developed in Herbertsson (2022).

There exists a huge amount of academic papers that models stock prices with jumps and a vast majority
of these articles which contains numerical/practical examples consider the case where jump times are
driven by some sort of Poisson process. Furthermore, most of the jump-related equity papers model
the stock price directly under the risk neutral probability measure and then apply the model for option
pricing, such as e.g the original paper Merton (1976). An example of an article that actually models the
stock price under the real (physical) probability measure is the seminal paper Kou (2002) where the stock
price jump either up or down at random times driven by a Poisson process with constant intensity. Kou
(2002) mainly studies option pricing directly under the real probability measure by using asset pricing
theory, consumption utilizes and the Euler equation where both the endowment process and the stock
price follows the type of jump diffusion as defined in Kou (2002). More about option pricing models for
stocks with jumps driven by Poisson processes (such as Levy processes) can be found in e.g. the books
Schoutens (2003) or Cont & Tankov (2004).

In this paper all jumps in the stock prices are downward jumps occurring at the defaults in an exogenous
group of defaultable entities. Hence, in this paper we have explicitly inserted ”external” credit risk (from
the external group of defaultable entities) into the equity dynamics or our stock price, effectively creating
a type of hybrid risk model. Thus, the stock price model in this paper involves both equity and credit

risk, although the credit risk comes from an external group of defaultable entities which can be corporate
or sovereign states. Furthermore, we work under the real (physical) probability measure and focus on
risk management such as VaR-computations of e.g. stock portfolios. To the best of our knowledge,
this is the first paper that numerically computes VaR and related risk management quantities for stock
portfolios where all the stock prices have simultaneous jumps at defaults in an external group of arbitrary
many defaultable entities. Numerical studies of densities to the stock price, log-asset returns and related
quantities in a model as in this paper are done in Herbertsson (2023).

Assuming only negative jumps in the stock prices will lead to a more conservative or prudent equity
portfolio model which implies larger Value-at-Risk losses compared to a model which also includes positive
jumps. Including only negative jumps in stock prices for e.g. VaR-models should therefore be more
favourable among financial regulators (such as e.g. SEC, FCA, BaFin etc. ) compared with frameworks
that also contains positive jumps in equity prices. In our model it is possible to add another jump process
in the dynamics of the stock price, for example a Poisson process with constant intensity and with positive
jumps, e.g. as in Kou (2002). However, in this paper we are only interested in studying the effect of
external credit risk on stock prices, coming from the external group of defaultable entities and therefore
our jump-part in the dynamics of the stock will only include negative jumps occurring at the external
default times. Furthermore, if the defaultable entities used in our stock price model have issued bonds
(or stocks) which are publicly traded on major financial markets, then typically their default times are
exogenously observed, as for example the default of Lehmann Brothers in 2008. On the other hand, if
a Poisson process drives the times when the stock price jumps then these jump times can be difficult to
observe exogenously and also difficult to assign to a specific financial event.

The rest of the paper is organized as follows. First, in Section 2 we consider one stock where the stock
price can jump at default times belonging to an exogenous group of defaultable entities and then derive
all relevant quantities such as the expected value, conditional expected value, density and distribution
both for the stock and its loss process. Next, in Section 3 we generalize the single-stock dynamics
in Section 2 to a heterogeneous portfolio of stocks and define the loss process for the stock portfolio.
Furthermore, for small time points we make a linearization of the portfolio loss process and then derive a
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computationally tractable expression for distribution of the linearized loss. For larger time points t, the
linear approximations to the stock portfolio in Section 2 will fail but in Section 4 we outline a method
that will work for arbitrary time points for large homogeneous stock portfolios, and derive a convenient
expression for the distribution of the portfolio loss in such settings by using large portfolio approximations.
In the numerical part of the paper covered in Section 5-6, we give several practical applications of our
developed stock price model. First, in Section 5 we study Value-at-Risk over a two-year period for the loss
of one single stock when the stock price is defined as in Section 2 in a model where the default times are
exchangeable, conditional independent and have CIR-intensities. Finally, in Section 6 we repeat similar
VaR-studies as in Section 5 but now for a portfolio of stocks in a setting with jumps in all stock prices
occurring at default times driven by a one-factor copula model, and by using the small-time expansion
formulas for the loss process derived in Section 3. In the Gaussian copula model we also in Section 6 do
VaR-computations for large stock portfolios by using the large portfolio approximation formulas derived
in Section 4, both for a 20-day period in time steps of one trading day, but also over a two-year period
in time steps of one month. All computations done in Section 5 and Section 6 heavily rely on efficient
numerical methods developed in Herbertsson (2022) for computing the distribution of number of defaults
among the defaultable entities creating the jumps in the stock prices.

2. The one-dimensional case

In this subsection we consider one stock where the stock price can jump at default times belonging to
an exogenous group of defaultable entities. We first define the dynamics of the stock price under the real
(physical) probability measure P that will be used throughout the first sections of the paper. Furthermore,
we also derive all relevant quantities for the single stock, such as the expected value, conditional expected
value, density and distribution both for the stock and its loss process. We start with the following
definition of the stock price.

Definition 2.1. Consider a group of m defaultable entities C1, . . . ,Cm with individual default times
τ1, τ2 . . . , τm and let Ṽ1, . . . , Ṽm be random variables which have bounded expected values and satisfy
Ṽi ≥ −1, and are independent of τ1, τ2 . . . , τm. Let company A be an entity which does not belong to
the group C1, . . . ,Cm and let St denote the price of the stock to company A at time t. The dynamics of
St under the real probability measure P is defined as

dSt = St−dYt− (2.1)

where Yt is given by

Yt = µt+ σWt +

m
∑

i=1

Ṽi1{τi≤t} (2.2)

and Wt is Brownian motion independent of the default times τ1, τ2 . . . , τm and Ṽ1, . . . , Ṽm. Finally, σ ≥ 0
is the so called volatility and µ is denoted as the drift of the stock price St.

Remark 2.2. We remark that the default times τ1, τ2 . . . , τm in Definition 2.1 can come from any credit
portfolio model as long as the jumps Ṽ1, . . . , Ṽm in the stock prices at the default times τ1, τ2 . . . , τm
are independent of these defaults and also independent of the Brownian motion. We can for example
work with heterogeneous or homogeneous copula based models studied in e.g. Li (2000), Gregory & Lau-
rent (2005), Gregory & Laurent (2003), Andersen & Sidenius (2004), Crépey, Jeanblanc & Wu (2013),
Burtschell, Gregory & Laurent (2009), Hofert & Scherer (2011) or heterogeneous or homogeneous con-
ditional independent intensity based models such as in Bielecki, Cousin, Crépey & Herbertsson (2014b),
Bielecki, Cousin, Crépey & Herbertsson (2014c) and Bielecki, Cousin, Crépey & Herbertsson (2014a) as
well as heterogeneous or homogeneous contagion models studied in e.g. Herbertsson (2005), Herbertsson
(2007), Herbertsson & Rootzén (2008), Herbertsson (2008b), Herbertsson (2008a), Herbertsson (2011),
Cont, Deguest & Kan (2010), Cont & Kan (2011), Laurent, Cousin & Fermanian (2011), Frey & Backhaus
(2008) and Frey & Backhaus (2010).

Remark 2.3. Relation to the model Kou (2002). Note that the stock price St in Definition 2.1 is
related to the seminal paper Kou (2002). The main difference between Kou (2002) and Definition 2.1 is
that Kou (2002) considers jumps coming from a Poisson process with constant intensity implying possible
infinity many jumps, while the jumps in Definition 2.1 are due to the default times τ1, τ2 . . . , τm which
comes from a finite group of m defaultable entities C1, . . . ,Cm. Hence, Definition 2.1 implies that at each
default time τi among the m entities C1, . . . ,Cm, the stock price St will jump so that ∆Sτi 6= 0 and the
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jump-times of St therefore have a direct financial interpretation, namely the default times τi among the
firmsC1, . . . ,Cm. Hence, the major difference between St in Definition 2.1 in this paper and the model by
Kou (2002), is that we in Definition 2.1 have explicitly inserted ”external” credit risk (from the external
group C1, . . . ,Cm) into the equity dynamics for St, effectively creating a type of hybrid risk model, that
is the stock price model St involves both equity and credit risk, although the credit risk comes from an
external group of m entities C1, . . . ,Cm. In Definition 2.1 it is possible to add another jump process in the
dynamics of St, for example a Poisson process with constant intensity which jumps just as in Kou (2002).
However, in this paper we are only interested in studying the effect of external credit risk on St coming
from the external group of defaultable entities C1, . . . ,Cm and therefore our jump-part in the dynamics
of St will only include the jumps coming from the default times τ1, τ2 . . . , τm of C1, . . . ,Cm. Another
remark is that Kou (2002) mainly studies option pricing directly under the real measure P, by using the
Euler equation where both the endowment process and the stock price follows the type of jump diffusion
as given in Section 2 of Kou (2002) and where the utility function has the special form U(c, t) = e−θt cα

α
for

0 < α < 1 or U(c, t) = e−θt ln c for α = 0. In this paper we will focus on equity risk management of stock
portfolios (such as Value-at-Risk) where the individual stock prices have downward jumps down at the
defaults of an exogenous group of defaultable entities C1, . . . ,Cm, as given in Definition 2.1, and we will
consider both univariate and multivariate stock portfolios, as well as the case where the number of stocks
in the portfolio is large. In our Value-at-Risk studies of the stock portfolios we are in particular interested
in studying the effect of external credit risk coming from the external defaultable group of entities.

Finally we remark that if the defaultable entities C1, . . . ,Cm have issued bonds and/or stocks which
are publicly traded on major financial markets, then typically the default times τ1, τ2 . . . , τm are directly

observable on the market and the observations are exogenously observed regardless if the stock price model
for St includes these defaults or not. This has to be compared with if a Poisson process drives the jumps
which can be difficult to observe exogenously and also difficult to assign to specific financial events.

Remark 2.4. On the possiblity to include company A in the group C1, . . . ,Cm. We remark that
in Definition 2.1 it is possible to let company A be one of the entities C1, . . . ,Cm, for example A = Cm

where we then set Ṽm = −1 so that St = 0 for τm ≤ t where τm is the default time of A. Including A in
the group C1, . . . ,Cm where e.g. A = Cm will create an extra complexity in the stock-related formulas,
in particular if the default time of A will be correlated with the default times of C1, . . . ,Cm−1. However,
in this paper we are only interested in studying the effect of external credit risk coming from the external
defaultable group of entities C1, . . . ,Cm (for example when studying how the external credit risk affect
Value-at-Risk for St), and we will therefore in this paper always assume that company A will not belong
to the defaultable group C1, . . . ,Cm.

We now state the following useful proposition.

Proposition 2.5. Let St be a stock price given by Definition 2.1 under the real probability measure P.

Then, with notation as above, we have

St = S0 exp

((

µ− 1

2
σ2
)

t+ σWt

) m
∏

i=1

(

1 + Ṽi1{τi≤t}
)

. (2.3)

Proof. Let FW
t = σ(Ws; s ≤ t) be the filtration generated by the Brownian motion Wt and let Hi

t =
σ
(

1{τi≤s}; s ≤ t
)

be the filtration generated by each default time τi and define the sigma-algebra V as

V = σ
(

Ṽ1, . . . , Ṽm

)

. Next we define the full filtration Ft as

Ft = FW
t ∨

m
∨

i=1

Hi
t ∨ V . (2.4)

Then Yt in Definition 2.1 is a semimartingale with respect to the filtration Ft. To see this, first note
that since Wt is a Brownian motion, it is a martingale with respect to its own filtration FW

t . But

due to Definition 2.1 the process Wt is independent of τ1, τ2 . . . , τm and Ṽ1, . . . , Ṽm so Wt will also be a
martingale with respect to the full filtration Ft given by (2.4). Hence, from (2.2) we see that Yt can be
written as a sum of local martingale with respect to Ft, that is σWt and a finite variation process, i.e.
µt+

∑m
i=1 Ṽi1{τi≤t} since Ṽi have bounded expected values. From Theorem 1 on p.102 in Protter (2003)

we therefore conclude that Yt is a semimartingale with respect to the filtration Ft defined as in (2.4).
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Next, we note that the differential form (2.1) can be rewritten as

St = S0 +

∫ t

0
Ss−dYs− (2.5)

and letting St be given by St = S0S̃t then (2.5) can be rewritten as

S0S̃t = S0

(

1 +

∫ t

0
S̃s−dYs−

)

that is

S̃t = 1 +

∫ t

0
S̃s−dYs− . (2.6)

Hence, if we can find a solution to S̃t in the SDE (2.6) then a solution to St in (2.5) is obtained from

the relation St = S0S̃t. Thus, for notational convenience we will without loss of generality assume that
S0 = 1 and drop the tilde notation in (2.6) so that we have

St = 1 +

∫ t

0
Ss−dYs− . (2.7)

Next, from Theorem 37 on p.84 in Protter (2003) we conclude that St in (2.7) is a semimartingale given
by

St = exp

(

Yt −
1

2
[Y, Y ]ct

)

∏

0<s≤t

(1 + ∆Ys) exp (−∆Ys) (2.8)

where as usual [Y, Y ]ct denotes the path-by-path continuous part of the quadratic variation [Y, Y ]t, see
p.70 in Protter (2003). Since µt+ σWt is a continuous process, we have

Yt = µt+ σWt +

m
∑

i=1

Ṽi1{τi≤t} = µt+ σWt +
∑

0<s≤t

∆Ys (2.9)

so that

exp

(

Yt −
1

2
[Y, Y ]ct

)

= exp



µt+ σWt −
1

2
[Y, Y ]ct +

∑

0<s≤t

∆Ys



 . (2.10)

Furthermore, note that

∏

0<s≤t

(1 + ∆Ys) exp (−∆Ys) = exp



−
∑

0<s≤t

∆Ys





∏

0<s≤t

(1 + ∆Ys) (2.11)

and from the definition of a Brownian motion and since [Y, Y ]ct is the continuous part of the quadratic
variation [Y, Y ]t, we get

[Y, Y ]ct = σ2t . (2.12)

So (2.10)-(2.12) in (2.8) then gives

St = exp

((

µ− 1

2
σ2
)

t+ σWt

)

∏

0<s≤t

(1 + ∆Ys) (2.13)

and in view of (2.2) we have
∏

0<s≤t

(1 + ∆Ys) =

m
∏

i=1

(

1 + Ṽi1{τi≤t}
)

so that (2.13) can be rewritten as

St = exp

((

µ− 1

2
σ2
)

t+ σWt

) m
∏

i=1

(

1 + Ṽi1{τi≤t}
)

. (2.14)

Recall that we set S0 = 1 but from the arguments leading to (2.6) we can let S0 be an arbitrary positive
constant and this in (2.14) finally gives

St = S0 exp

((

µ− 1

2
σ2
)

t+ σWt

) m
∏

i=1

(

1 + Ṽi1{τi≤t}
)
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which proves (2.3) and this concludes the proposition. �

Let Ṽi be the non-negative random variable in Definition 2.1 connected to default of company Ci at
the random default time τi in Definition 2.1. Then, Proposition 2.5 implies that for any default time τi
among the m entities C1, . . . ,Cm we have that

Sτi = Sτi−
(

1 + Ṽi

)

or equivalently
Sτi − Sτi−
Sτi−

= Ṽi

i.e., there is a relative jump of random size Ṽi of the stock price St to company A at the default time τi
of entity Ci where we remind that Ṽi ≥ −1.

Note that if there are no jumps at the defaults of C1, . . . ,Cm, that is, if Ṽn = 0 for all k in Definition
2.1, then (2.3) in Proposition 2.5 implies that we are back in the classical Black-Scholes model under the
real (physical) probability measure P, with drift µ and volatility σ, that is

St = S0 exp

((

µ− 1

2
σ2
)

t+ σWt

)

. (2.15)

In the paper Kou (2002), the jumps Ṽi can be both positive or negative, where the jumps occur at the
arrivals of a Poission process, implying that the stock price can jump both up and down. In this paper
we will consider all defaults among the m entities C1, . . . ,Cm in Definition 2.1 as negative news for
company A, implying that the relative jumps Ṽi of the stock price St to company A at each default of
C1, . . . ,Cm will be negative. Hence, in this paper the stock price St will jump downwards at the default
times τ1, τ2 . . . , τm. Furthermore, we define Ṽi as follows.

Definition 2.6. Let Ũ1, . . . , Ũm be arbitrary non-negative random variables which have bounded expected
values and are independent of the default times τ1, τ2 . . . , τm and also independent of Wt in Definition
2.6. Then, we define the non-negative random variables Ṽ1, . . . , Ṽm as

Ṽi = e−Ũi − 1 (2.16)

for each defaultable entity C1, . . . ,Cm.

From (2.16) it is easy to see that

Ṽi1{τi≤t} = exp
(

−Ũi1{τi≤t}
)

− 1 for all t ≥ 0

so that
m
∏

i=1

(

1 + Ṽi1{τi≤t}
)

= exp

(

−
m
∑

i=1

Ũi1{τi≤t}

)

. (2.17)

Hence, in view of Definition 2.9 and Equation (2.17) we state the following corollary to Proposition 2.5.

Corollary 2.7. Let St be a stock price given by Definition 2.1 under the real probability measure P and

where the jumps Ṽ1, . . . , Ṽm are distributed as in Definition 2.6 via the arbitrary non-negative random

variables Ũ1, . . . , Ũm ∈ L1. Then, with notation as above, we have

St = S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
m
∑

i=1

Ũi1{τi≤t}

)

. (2.18)

In this paper we are primary interested in finding computationally tractable expressions for the distri-
bution of the stock price St and use this distribution in various risk management applications under the
real probability measure P. Under Definition 2.1 and Definition 2.6 with heterogeneous distributions for
Ũ1, . . . , Ũm, then it is clear from Corollary 2.7 that the distribution of the stock price St will be a sum
containing up to 2m different terms. Furthermore, to find P [St ≤ x] we need, for each set of defaultable
entitles ik = (i1, . . . , ik), ik ⊆ {1, . . . ,m} among the group C1, . . . ,Cm, be able to find expressions for the

distribution of
∑k

n=1 Ũin . Note that there are
(

m
k

)

different ways to pick out a subset ik ⊆ {1, . . . ,m} such
that ik = (i1, . . . , ik) which represents the defaults of the k entities Ci1 , . . . ,Cik among the m entities
C1, . . . ,Cm and where the ordering of i1, . . . , ik is ignored. The ordering of how the group Ci1 , . . . ,Cik

defaults is not important, explaining the term
(

m
k

)

compared to the case where ordering matters, which

leads to k!
(

m
k

)

different ways to pick out ik. The reason why we can ignore the ordering of the defaults
follows from the structure of the jumps in (2.18) in Corollary 2.7 where we only need to keep track of if
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an entity Ci have defaulted or not. Thus, the total number of possible distinct terms in the expression
for P [St ≤ x] will be

m
∑

k=0

(

m

k

)

= 2m .

For example, if m = 15 with m different distributions of Ũ1, . . . , Ũm will then lead up to possibly 215 =
32768 different terms in the distribution P [St ≤ x]. These observations makes the definition of the stock

price St in Definition 2.1 and Definition 2.6 with heterogeneous distributions for Ũ1, . . . , Ũm, unusable
from a practical point of view, even for moderate sizes m of the group of entities C1, . . . ,Cm that affect
the stock price.

However, if Ũ1, . . . , Ũm are exchangeable, for example if Ũ1, . . . , Ũm is an i.i.d sequence and thus are
homogeneous in their distributions, then the number of terms in the sums for P [St ≤ x] will reduce from
2m to just m terms, which will be practically to handle also for very large m-values, such as e.g. m > 100

entities in the group C1, . . . ,Cm. To see why the terms reduce from 2m to m, let N
(m)
t be a point

process that counts the number of defaults among the m defaultable entities C1, . . . ,Cm with default
times τ1, τ2 . . . , τm, that is

N
(m)
t =

m
∑

i=1

1{τi≤t} . (2.19)

Furthermore, if Ũ1, . . . , Ũm is an i.i.d sequence and if U1, . . . , Um is another i.i.d sequence with same
distribution as Ũ1, . . . , Ũm then we have that

m
∑

i=1

Ũi1{τi≤t}
d
=

Nm
t
∑

n=1

Un (2.20)

where N
(m)
t is defined as in (2.19), so Corollary 2.7 and (2.20) therefore implies that

St
d
= S0 exp







(

µ− 1

2
σ2
)

t+ σWt −
N

(m)
t
∑

n=1

Un






(2.21)

where we remind that for two random variables X and Y , the notation X
d
= Y means that X and Y

have same distribution. In view of Equation (2.20)-(2.21) we will sometimes use the notation U1, . . . , Um

and V1, . . . , Vm instead of Ũ1, . . . , Ũm and Ṽ1, . . . , Ṽm and sometimes write St = ... instead of St
d
= ... in

Equation (2.21).

Remark 2.8. The reason why the exchangeability of the jumps Ũ1, . . . , Ũm are important is that if this is
not true, we have to keep track of which of the companies C1, . . . ,Cm that have defaulted up to time t,
while in the exchangeability case for Ũ1, . . . , Ũm we only need to keep track of how many of C1, . . . ,Cm

that have defaulted up to time t, i.e. we only need to model N
(m)
t defined as in (2.19).

Next, we make following assumption on U1, . . . , Um and V1, . . . , Vm.

Definition 2.9. Let U1, . . . , Um be an i.i.d sequence of exponentially distributed random variables which
are independent of Wt and also independent of the default times τ1, τ2 . . . , τm. Then, we define the i.i.d
sequence V1, . . . , Vm as

Vn = e−Un − 1 where Un
d
= Exp(η) with E [Un] =

1

η
. (2.22)

From (2.22) in Definition 2.1 we see that Un is exponentially distributed with density ηe−ηu for u ≥ 0
and that Vn ≥ −1 for each n.

Remark 2.10. Note that if η → ∞ then Un → 0 almost surely under P, so with a slight abuse of notation,
we can identify Un = 0 with ”η = ∞”.

The definition in (2.22) is similar to the one on p.1087 in Kou (2002), but where we here restrict
ourselves to only negative jumps in stock price while Kou (2002) allows for both positive and negative
stock price jumps. Assuming only negative jumps as in our model will lead to a more conservative or
prudent stock price model which in particular will lead to larger Value-at-Risk losses, and should therefore
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be more favourable among financial regulators (such as e.g. SEC, FCA, BaFin etc. ) compared with
models that also includes positive jumps in stock prices.

In view of Definition 2.9 and Equation (2.21) we state the following corollary to Proposition 2.5.

Corollary 2.11. Let St be a stock price given by Definition 2.1 under the real probability measure P

and where the jumps Ṽ1, . . . , Ṽm are distributed as V1, . . . , Vm in Definition 2.9 with η > 0. Then, with

notation as above,

St
d
= S0 exp







(

µ− 1

2
σ2
)

t+ σWt −
N

(m)
t
∑

n=1

Un






. (2.23)

Next, define the loss process L
(S)
t for the stock St at time t with reference to the starting time 0, as

L
(S)
t = − (St − S0) (2.24)

where we note that a gain implies that the loss L
(S)
t is negative. We are interested to compute Value-at-

Risk for L
(S)
t in our model for a stock price with jumps at defaults, that is, we want to compute

VaRα

(

L
(S)
t

)

= inf
{

y ∈ R : P
[

L
(S)
t > y

]

≤ 1− α
}

= inf
{

y ∈ R : F
L
(S)
t

(y) ≥ α
}

(2.25)

where F
L
(S)
t

(x) is the distribution of L
(S)
t and α is the confidence level, typically given by 95%, 99 or

99.9%, that is α = 0.95, α = 0.99 or α = 0.999. So, if St is given as in Definition 2.1 with jumps as in

Definition 2.9, then in view of Corollary 2.11 the loss L
(S)
t in (3.9) can be reformulated as

L
(S)
t

d
= S0






1− exp







(

µ− 1

2
σ2
)

t+ σWt −
N

(m)
t
∑

n=1

Un












(2.26)

where for any t > 0 we have supL
(S)
t = S0, since St ≥ 0 almost surely. Next, we state the following useful

theorem.

Theorem 2.12. Let St be a stock price under the real probability measure P defined as in Corollary 2.11.

Then, with notation as above, we have that

E

[

St |N (m)
t

]

= S0e
µt

(

η

η + 1

)N
(m)
t

where E

[

St |N (m)
t = k

]

= S0e
µt

(

η

η + 1

)k

(2.27)

for k = 0, 1, 2, . . . ,m and

E [St] = S0e
µt
E





(

η

η + 1

)N
(m)
t



 = S0e
µt

m
∑

k=0

(

η

η + 1

)k

P

[

N
(m)
t = k

]

. (2.28)

Furthermore,

P [St ≤ x] =

m
∑

k=0

Ψk (x, t, µ, σ, S0, η) P
[

N
(m)
t = k

]

(2.29)

where the mappings Ψk (x, t, µ, σ, u, η) for u > 0 are defined as

Ψk (x, t, µ, σ, u, η) =

∫ ∞

0
Φ

(

ln x
u
−
(

µ− 1
2σ

2
)

t+ y

σ
√
t

)

ηe−ηy (ηy)k−1

(k − 1)!
dy for 0 < k ≤ m (2.30)

and Ψ0 (x, t, µ, σ, u, η) for u > 0 is given by

Ψ0 (x, t, µ, σ, u, η) = Φ

(

ln x
u
−
(

µ− 1
2σ

2
)

t

σ
√
t

)

(2.31)

where Φ(x) is the distribution function to a standard normal random variable. Furthermore,

F
L
(S)
t

(x) = P

[

L
(S)
t ≤ x

]

= 1−
m
∑

k=0

Ψk

(

1− x

S0
, t, µ, σ, 1, η

)

P

[

N
(m)
t = k

]

(2.32)
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where x ≤ S0 and for any t > 0 we have supL
(S)
t = S0. The density fSt (x) to St is given by

fSt (x) =

m
∑

k=0

ψk (x, t, µ, σ, S0, η) P
[

N
(m)
t = k

]

for x > 0, t > 0 (2.33)

where the mappings ψk (x, t, µ, σ, S0, η) for S0 > 0, x > 0, t > 0 are defined as

ψk (x, t, µ, σ, S0, η) =
1

xσ
√
t

∫ ∞

0
ϕ

(

ln x
S0

−
(

µ− 1
2σ

2
)

t+ y

σ
√
t

)

ηe−ηy (ηy)k−1

(k − 1)!
dy for 0 < k ≤ m (2.34)

and ψ0 (x, t, µ, σ, S0, η) for S0 > 0 is given by

ψ0 (x, t, µ, σ, S0, η) =
1

xσ
√
t
ϕ

(

ln x
S0

−
(

µ− 1
2σ

2
)

t

σ
√
t

)

(2.35)

where ϕ(x) = 1√
2π
e−

x2

2 is the density to a standard normal random variable.

Proof. We start with P [St ≤ x] and note that

P [St ≤ x] =

m
∑

k=0

P

[

St ≤ x |N (m)
t = k

]

P

[

N
(m)
t = k

]

(2.36)

where Corollary 2.11 implies that

P

[

St ≤ x |N (m)
t = k

]

= P

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)∣

∣

∣

∣

∣

N
(m)
t = k

]

. (2.37)

From Definition 2.1 we know thatWt is independent of the default times τ1, τ2 . . . , τm and from Definition

2.9 we also know that the sequence U1, . . . , Um is independent of τ1, τ2 . . . , τm. Thus, the process N
(m)
t is

independent of both Wt and U1, . . . , Um which in (2.37) gives

P

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)

≤ x

∣

∣

∣

∣

∣

N
(m)
t = k

]

= P

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)

≤ x

]
(2.38)

and the right hand side of (2.38) can be simplified to

P

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)

≤ x

]

= P

[

σWt −
k
∑

n=1

Un ≤ ln
x

S0
−
(

µ− 1

2
σ2
)

t

]

. (2.39)

Let X and Gk be independent random variables, where X is a standard normal random variable and Gk

is a gamma-distributed random variable so that Gk
d
= Gamma(k, η) where k ≥ 1 is an integer. Then we

note that

σWt
d
= σ

√
tX and

k
∑

n=1

Un
d
= Gk

d
= Gamma(k, η) (2.40)

where the last equality follows from the fact that a sum of k independent exponentially distributed
random variables all with parameter η has distribution Gamma(k, η). From Definition 2.9 we know that
U1, . . . , Um are independent of Wt, which motivates why X and Gk in (2.40) are independent random
variables. Next, let U and V be independent random variables with distributions FU (u) and FV (v). From
standard probability theory we know that

P [U + V ≤ z] =

∫

FU (z − v)dFV (v) (2.41)

see e.g. Theorem 2.1.1 on p.47 in Durrett (2010). If we define U and V as

U = σ
√
tX and V = −Gk (2.42)

where X and Gk are same as in (2.40) then we have that

FU (u) = Φ

(

u

σ
√
t

)

and FV (v) = 1− FGk
(−v) where v ∈ (−∞, 0] (2.43)
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so that

dFV (v) = fGk
(−v)dv for v ∈ (−∞, 0] (2.44)

where FGk
(x) and fGk

(x) are the distribution function and density function to Gk
d
= Gamma(k, η) and

as usual Φ(x) is the distribution function to a standard normal random variable. Now, (2.42), (2.43) and
(2.44) in (2.41) then renders

P

[

σ
√
tX −Gk ≤ z

]

=

∫ 0

−∞
Φ

(

z − v

σ
√
t

)

fGk
(−v)dv (2.45)

and by making the change of variables y = −v in (2.45) the integral in the right hand side of (2.45) can
be rewritten as

P

[

σ
√
tX −Gk ≤ z

]

=

∫ ∞

0
Φ

(

z + y

σ
√
t

)

fGk
(y)dy . (2.46)

By letting z = ln x
S0

−
(

µ− 1
2σ

2
)

and fGk
(y) = ηe−ηy(ηy)k−1

(k−1)! in (2.46), together with the relation (2.40),

we get for any integer k ≥ 1 that the right hand side of (2.39) can be written as

P

[

σWt −
k
∑

n=1

Un ≤ ln
x

S0
−
(

µ− 1

2
σ2
)

t

]

=

∫ ∞

0
Φ

(

ln x
S0

−
(

µ− 1
2σ

2
)

t+ y

σ
√
t

)

ηe−ηy (ηy)k−1

(k − 1)!
dy .

(2.47)
By combining (2.38), (2.39) with (2.47) we get for for any integer k ≥ 1 that

P

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)

≤ x

∣

∣

∣

∣

∣

N
(m)
t = k

]

= Ψk (x, t, µ, σ, S0, η) (2.48)

where the mappings Ψk (x, t, µ, σ, u, η) for u > 0 are defined as

Ψk (x, t, µ, σ, u, η) =

∫ ∞

0
Φ

(

ln x
u
−
(

µ− 1
2σ

2
)

t+ y

σ
√
t

)

ηe−ηy (ηy)k−1

(k − 1)!
dy for integers k ≥ 1 . (2.49)

When k = 0 we have no defaults so and thus no jump-terms in the exponential expression of (2.38)
implying that (2.38) reduces to

P

[

S0 exp

((

µ− 1

2
σ2
)

t+ σWt

)

≤ x

∣

∣

∣

∣

N
(m)
t = 0

]

= Ψ0 (x, t, µ, σ, S0, η) (2.50)

where Ψ0 (x, t, µ, σ, u, η) for u > 0 is defined as

Ψ0 (x, t, µ, σ, u, η) = P

[

u · exp
((

µ− 1

2
σ2
)

t+ σWt

)

≤ x

]

= Φ

(

ln x
u
−
(

µ− 1
2σ

2
)

t

σ
√
t

)

. (2.51)

Thus, (2.48) - (2.51) together with (2.36) and (2.37) implies that

P [St ≤ x] =
m
∑

k=0

Ψk (x, t, µ, σ, S0, η) P
[

N
(m)
t = k

]

which proves (2.29), (2.30) and (2.31). Next, consider the loss distribution F
L
(S)
t

(x) = P

[

L
(S)
t ≤ x

]

. From

the definition of L
(S)
t in (3.9) we get after some trivial computations that

F
L
(S)
t

(x) = P

[

L
(S)
t ≤ x

]

= 1− P

[

St

S0
≤ 1− x

S0

]

(2.52)

and we can therefore reuse the formula for P [St ≤ x] in (2.29), by letting S0 = 1 in (2.29) and replace x
in (2.29) with 1− x

S0
, rendering that

P

[

L
(S)
t ≤ x

]

= 1−
m
∑

k=0

Ψk

(

1− x

S0
, t, µ, σ, 1, η

)

P

[

N
(m)
t = k

]
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which proves (2.29). Next we prove the expressions for the density fSt (x) to St and first note that
fSt (x) =

d
dx
P [St ≤ x] so (2.29) then implies that

fSt (x) =

m
∑

k=0

∂

∂x
Ψk (x, t, µ, σ, S0, η)P

[

N
(m)
t = k

]

. (2.53)

Next, we define ψk (x, t, µ, σ, S0, η) as

ψk (x, t, µ, σ, S0, η) =
∂

∂x
Ψk (x, t, µ, σ, S0, η) (2.54)

and for k ≥ 1 with x > 0, t > 0 we then get from (2.49) and (2.54) and some elementary computations
that

ψk (x, t, µ, σ, S0, η) =
1

xσ
√
t

∫ ∞

0
ϕ

(

ln x
S0

−
(

µ− 1
2σ

2
)

t+ y

σ
√
t

)

ηe−ηy (ηy)k−1

(k − 1)!
dy for 0 < k ≤ m (2.55)

where ϕ(x) = 1√
2π
e−

x2

2 is the density to a standard normal random variable. In the same way, (2.51) and

(2.54) implies that ψ0 (x, t, µ, σ, S0, η) for S0 > 0, x > 0, t > 0 is given by

ψ0 (x, t, µ, σ, S0, η) =
1

xσ
√
t
ϕ

(

ln x
S0

−
(

µ− 1
2σ

2
)

t

σ
√
t

)

. (2.56)

Hence, (2.54) with (2.55)-(2.56) inserted into (2.53) proves (2.33) - (2.35). Finally, we note that

E [St] =

m
∑

k=0

E

[

St |N (m)
t = k

]

P

[

N
(m)
t = k

]

(2.57)

where Corollary 2.11 implies that

E

[

St |N (m)
t = k

]

= E

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)∣

∣

∣

∣

∣

N
(m)
t = k

]

. (2.58)

By using exactly the same arguments which led to the right hand side in (2.38) we have that

E

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)∣

∣

∣

∣

∣

N
(m)
t = k

]

= E

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)]

.

(2.59)
Furthermore, since Wt are independent of the jump terms U1, . . . , Um we get that the right hand side of
(2.58) can be rewritten as

E

[

S0 exp

(

(

µ− 1

2
σ2
)

t+ σWt −
k
∑

n=1

Un

)]

= E

[

S0 exp

((

µ− 1

2
σ2
)

t+ σWt

)]

E

[

e−
∑k

n=1 Un

]

.

(2.60)
From standard Black-Scholes theory we have

E

[

S0 exp

((

µ− 1

2
σ2
)

t+ σWt

)]

= S0e
µt (2.61)

and from (2.40) we also note that

E

[

e−
∑k

n=1 Un

]

= E
[

e−GK
]

= LGK
(1) =

(

η

η + 1

)k

(2.62)

where LGK
(s) is the Laplace transform to Gk

d
= Gamma(k, η) with k ≥ 1 and η > 0, obtained from

the moment generating function MGK
(s) via the relation LGK

(s) = MGK
(−s) and where standard

probability theory gives us that LGK
(s) =

(

η
η+s

)k

for s > −η. Hence, combining (2.59)-(2.62) and

inserting these relations in (2.58) for integers k = 1, 2, . . . ,m we get

E

[

St |N (m)
t = k

]

= S0e
µt

(

η

η + 1

)k

(2.63)
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and since
(

η
η+1

)0
= 1 then (2.63) will also hold for k = 0. Thus, (2.63) for k = 0, 1, . . . ,m in (2.57)

implies that

E [St] = S0e
µt

m
∑

k=0

(

η

η + 1

)k

P

[

N
(m)
t = k

]

= S0e
µt
E





(

η

η + 1

)N
(m)
t





which proves (2.28). Finally, by using (2.63), we have

E

[

St |N (m)
t

]

=

m
∑

k=0

E

[

St |N (m)
t = k

]

1{
N

(m)
t =k

} =

m
∑

k=0

S0e
µt

(

η

η + 1

)k

1{
N

(m)
t =k

} = S0e
µt

(

η

η + 1

)N
(m)
t

which together with (2.63) proves (2.27) and this concludes the theorem.
�

We now make some remarks connected to Theorem 2.12.

Remark 2.13. As pointed out in Remark 2.3, if the defaultable entities C1, . . . ,Cm have issued bonds
and/or stocks which are publicly traded on major financial markets, then typically the default times
τ1, τ2 . . . , τm are directly observable on the market at the defaults, and these observations are done ex-
ogenously without the knowledge of St, that is, regardless if the stock price model for St includes the

defaults or not. Hence, the point process N
(m)
t =

∑m
i=1 1{τi≤t} is in practice always observable making the

quantities E
[

St |N (m)
t

]

and E

[

St |N (m)
t = k

]

given by (2.27) in Theorem 2.12 realistic to compute under

the real probability measure P. If the default times τ1, τ2 . . . , τm would be unobservable on the market,

and therefore also making the counting process N
(m)
t unobservable, or if the jumps would come from a

Poisson process with arrival times that lack financial interpretation and therefore could not be observed

directly, then it less clear how to compute e.g. the quantity E

[

St |N (m)
t

]

in practice, since N
(m)
t would

not be known to us. Note however that E [St] in (2.28) will always be possible to compute, regardless

if N
(m)
t is observable or not, since to find E [St] we do not need the exact value of N

(m)
t , but only its

distribution.

Note that the η-parameter in the mapping Ψ0 (x, t, µ, σ, S0, ρS , η) in (2.31) for k = 0 will have no
impact, and is only present for notational convenience given the sum in the expression of (2.29) which
runs from k = 0 to k = m.

Some remarks on the expected stock price. Let S
(BS)
t be the stock price in the Black-Scholes model

under the real probability measure P given by (2.15), that is

S
(BS)
t = S0 exp

((

µ− 1

2
σ2
)

t+ σWt

)

(2.64)

so that

E

[

S
(BS)
t

]

= S0e
µt . (2.65)

Let St be a stock price given by Definition 2.1 under the real probability measure P and where the jumps
Ṽ1, . . . , Ṽm are distributed as V1, . . . , Vm in Definition 2.9 with η > 0. Then, Equation (2.28) in Theorem
2.12 together with (2.65) implies that

E [St] = E

[

S
(BS)
t

]

E





(

η

η + 1

)N
(m)
t



 . (2.66)

We clearly see that if 0 < η <∞ then E

[

(

η
η+1

)N
(m)
t

]

< 1 and therefore (2.66) implies the relationship

E [St] < E

[

S
(BS)
t

]

when 0 < η <∞ (2.67)

which is intuitive clear since the St will always have a negative relative jumps at any default time τi where

N
(m)
t =

∑m
i=1 1{τi≤t}, that is, for the same Wt in St given by Corollary (2.11) as in S

(BS)
t in (2.64) then

Corollary (2.11) implies that St ≤ S
(BS)
t almost surely under P. If Un = 0 for all n (that is if ”η = ∞”,

see in Remark 2.10) this means that there will be no jumps at the defaults τi and St will coincide with
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the Black-Scholes price S
(BS)
t , that is St = S

(BS)
t as stated in Equation (2.64), so E [St] = E

[

S
(BS)
t

]

. We

note that

∂

∂η
E





(

η

η + 1

)N
(m)
t



 = E

[

N
(m)
t

η(η + 1)

]

> 0 (2.68)

so E

[

(

η
η+1

)N
(m)
t

]

is strictly increasing in η > 0. Therefore, for a fixed time point t, and for any

0 < β < 1 the equation E

[

(

η
η+1

)N
(m)
t

]

= β will have a unique solution in η = η(β, t). This can be used

when calibrating η. For example, if we assume that the default counting process N
(m)
t will make the

expected value of the stock price St to be e.g. β = 90% of the corresponding expected value of the Black

stock price S
(BS)
t , up to time, say T , that is

E [ST ] = βE
[

S
(BS)
T

]

(2.69)

then, (2.66) and (2.69) implies for any 0 < β < 1 that

E





(

η

η + 1

)N
(m)
T



 = β (2.70)

which thus have a unique solution in η∗ = η(β, T ) > 0 and for most credit portfolio models this solution
η∗ has to be found numerically. Finally, we will often consider the equation E [ST ] = S0 so from (2.65),
(2.69) and (2.70) we see that

E [ST ] = S0 if and only if E





(

η

η + 1

)N
(m)
T



 = e−µT (2.71)

where we note that the condition E [ST ] = S0 implies that the defaults among the entities C1, . . . ,Cm

”wipes” out the expected log-growth for a corresponding Black-Scholes model with drift µ up to time T .
We will use condition (2.71) when calibrating η in our numerical studies presented in Section 5 and 6.

VaR-expressions and related quantities. Given the formula (2.32) for the distribution of the stock

price loss process F
L
(S)
t

(x) in Theorem 2.12 we will be able to find Value-at-Risk for L
(S)
t with confidence

level α, denoted by VaRα

(

L
(S)
t

)

, since from (2.25) and the fact that St is a continuous random variable,

then

VaRα

(

L
(S)
t

)

= F−1

L
(S)
t

(α) so that F
L
(S)
t

(

VaRα

(

L
(S)
t

))

= α (2.72)

where the second equation in (2.72) will be solved numerically to find VaRα

(

L
(S)
t

)

. In the case when

there are now jump at the defaults, i.e when Un = 0 for all n, or equivalently, in view of Remark 2.10, if

”η = ∞”, then St = S
(BS)
t with S

(BS)
t given by Equation (2.15), and the expression for VaRα

(

L
(S)
t

)

in

(2.72) can then be solved analytically, denoted by VaRBS
α

(

L
(S)
t

)

and given as

VaRBS
α

(

L
(S)
t

)

= S0

(

1− exp

(

σ
√
tΦ−1 (1− α) +

(

µ− 1

2
σ2
)

t

))

. (2.73)

We will later in the numerical section use VaRBS
α

(

L
(S)
t

)

in (2.73) for the Black-Scholes model when

comparing with VaRα

(

L
(S)
t

)

coming from a stock price St with jumps at the default arrivals in N
(m)
t

and where η > 0.
We finally remark that almost all formulas in Theorem 2.12 requires efficient and quick methods of

computing the number of default distribution P

[

N
(m)
t = k

]

.
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3. The multidimensional case: Small time approximations to loss distributions for
heterogeneous stock portfolios with jumps at exogenous defaults.

In this section we generalize the single-stock dynamics in Section 2 to a heterogeneous portfolio of
stocks. Furthermore, we also define the loss process for the stock portfolio. For small time points we
make a linearization of the portfolio loss process and derive a computationally tractable expression for
distribution of the linearized loss. We also consider the portfolio loss process and its linear approximation
for small time points in the classical Black-Scholes portfolio case, i.e. without any jumps in the stock
prices. In our numerical studies in Section 5 - 6 we will use the distribution of the linearized Black-Scholes
portfolio loss as benchmark to the distribution of the linearized loss when the stock prices have jumps at
defaults of some external defaultabe entities.

Inspired by dynamics of a single-stock price St discussed in Section 2, and in particular Corollary 2.11
we now make the following definition.

Definition 3.1. Consider a group of m defaultable entities C1, . . . ,Cm with individual default times

τ1, τ2 . . . , τm and let N
(m)
t =

∑m
i=1 1{τi≤t}. Let the companies A1, . . . ,AJ be J different exchangeable

entities which do not belong to the group C1, . . . ,Cm and let St,1, . . . , St,J denote the stock prices of the
companies A1, . . . ,AJ at time t under the real probability measure P. Then, for each entity Aj we define
the stock price St,j as

St,j = S0,j exp







(

µj −
1

2
σ2j

)

t+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

−
N

(m)
t
∑

n=1

Un,j






(3.1)

where Wt,0,Wt,1, . . . ,Wt,J are J +1 independent Brownian motions and ρS,j ∈ [−1, 1] are constants. Fur-
thermore, for each j = 1, 2, . . . , J the m random variables U1,j , . . . , Um,j are an i.i.d sequence distributed
as

Un,j
d
= Exp(η) with E [Un,j] =

1

η
(3.2)

where U1,j, . . . , Um,j are independent of the processes Wt,0,Wt,1, . . . ,Wt,J and also independent of the
default times τ1, τ2 . . . , τm. Furthermore, for each company Aj the parameters σj > 0 and µj are the
volatility and drift, same as in the one-dimensional case given in Definition 2.1 and Corollary 2.11.

We next make some remarks connected to Definition 3.1.

Remark 3.2. If we let Ũ1,j, . . . , Ũm,j be an i.i.d sequence with same distribution as U1,j , . . . , Um,j then the

jump term
∑N

(m)
t

n=1 Un,j in (3.1) can be replaced by the more intuitive expression
∑m

i=1 Ũn,j1{τi≤t}, just as

in the single-stock case in Section 2, since
∑N

(m)
t

n=1 Un,j
d
=
∑m

i=1 Ũn,j1{τi≤t}. However, in the derivations in
our proofs etc. it will be more convenient from a notational point of view to use the first version, that is

the term
∑N

(m)
t

n=1 Un,j in (3.1).

Remark 3.3. Note that in Definition 3.1, all firms Aj have stock prices St,j with i.i.d jumps U1,j, . . . , Um,j ,
with same parameter η defined as in (3.2). We can of course also let the distributions for U1,j, . . . , Um,j ,
be different among different entities Aj , for example by letting

Un,j
d
= Exp(ηj) with E [Un,j] =

1

ηj
where ηj 6= ηi for Aj 6= Ai . (3.3)

However, allowing for heterogeneous jump parameters ηj among different firms Aj , as in (3.3), will
unfortunately make it difficult to find analytical formulas for the distribution of our stock portfolio losses.
Therefore we will in this paper always assume homogeneous jump parameters, that is η = η1 = η2 = . . . ηJ ,
which will lead to analytical formulas for our portfolio related quantities.

Remark 3.4. Note that ρS,j ∈ [−1, 1] and unless explicitly stated, we will throughout this paper always
assume that at least one company Aj has a correlation such that ρS,j 6= −1, 1 so that ρS,j ∈ (−1, 1).

Remark 3.5. Since the collection of i.i.d sequences U1,j, . . . , Um,j are exchangeable for all companies Aj

in Definition 3.1, that is Uk,j and Uk′,j′ have the same distribution for any pairs (k, j) and (k′, j′), then,
just as in Remark 2.2 we note that the default times τ1, τ2 . . . , τm in Definition 3.1 can come from any
type credit portfolio model.
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Remark 3.6. The stock prices St,1, St,2, . . . , St,J are correlated and have simultaneous jumps.
Since Wt,0 and Wt,j are independent Brownian motions for each j and ρS,j ∈ [−1, 1], then from standard

probability theory we know that ρS,jWt,0+
√

1− ρ2S,jWt,j used in (3.1) is also a Brownian motion. Hence,

in view of Definition 2.1, Definition 2.9 and Corollary 2.11, it is clear that the dynamics of the stock price
St,j for each firm Aj satisfies

dSt,j = St−,jdYt−,j (3.4)

where Yt,j is given by

Yt,j = µjt+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

+

N
(m)
t
∑

n=1

(

e−Un,j − 1
)

. (3.5)

Further, from the construction of St,j in (3.1) and Un,j in (3.2), stated in Definition 3.1, the stock
prices St,1, St,2, . . . , St,J will be ”correlated” via the factor process Wt,0 when ρS,j 6= 0, and also ”corre-

lated” via the default counting process N
(m)
t for the entities C1, . . . ,Cm. In particular, all stock prices

St,1, St,2, . . . , St,J will have a jump at the default times τ1, τ2 . . . , τm, where the relative jumps of St,j will
be different almost surely under P, although have same distribution, given by (3.2). Finally, each stock
price St,j will satisfy the results in Theorem 2.12.

Next, consider a weighted stock portfolio consisting of w1, w2, . . . , wJ stocks chosen for our portfolio at
time t = 0, where the stocks are issued by the J companies A1, . . . ,AJ with stock prices St,1, St,2, . . . , St,J
that satisfy Definition 3.1. Then we define the portfolio value Vt as

Vt =

J
∑

j=1

wjSt,j . (3.6)

We will in this paper define an equally value-weighted portfolio Vt as follows.

Definition 3.7. Equally value-weighted portfolio. Let S0 be a positive constant. We say that the
portfolio Vt in (3.6) is an equally value-weighted portfolio if the weights wj are chosen so that

wjS0,j = S0 for j = 1, 2, . . . , J (3.7)

and thus

V0 =

J
∑

j=1

wjS0,j =

J
∑

j=1

S0 = JS0 . (3.8)

The intuitive idea behind Definition 3.7 is that the portfolio weights wj are chosen so that the value
for the stock position in firm Aj at time t = 0 will have the same amount given by S0 for all companies
A1, . . . ,AJ that are contained in the portfolio Vt.

Next, we, define the portfolio loss process L
(V )
t for a general portfolio Vt at time t with reference to the

starting time 0, as

L
(V )
t = − (Vt − V0) (3.9)

where we note that a gain implies that the loss L
(V )
t is negative. We are interested to compute Value-at-

Risk for L
(V )
t in our model given by Definition 3.1, that is, we want to compute

VaRα

(

L
(V )
t

)

= inf
{

y ∈ R : P
[

L
(V )
t > y

]

≤ 1− α
}

= inf
{

y ∈ R : F
L
(V )
t

(y) ≥ α
}

(3.10)

where F
L
(V )
t

(x) is the distribution of L
(V )
t and α is the confidence level, just as in (2.25). Define Xt,j as

Xt,j =

(

µj −
1

2
σ2j

)

t+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

−
N

(m)
t
∑

n=1

Un,j (3.11)

where the right hand side of (3.11) is same as in (3.1) in Definition 3.1 which then implies that

St,j = S0,je
Xt,j . (3.12)
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Then, for an equally value-weighted portfolio Vt as in Definition 3.7, the portfolio loss L
(V )
t in (3.9) can

be restated as

L
(V )
t = S0



J −
J
∑

j=1

eXt,j



 . (3.13)

We want to find F
L
(V )
t

(x) = P

[

L
(V )
t ≤ x

]

so that we for example can compute VaRα

(

L
(V )
t

)

given by

(3.10). Unfortunately, finding analytical or semi-analytical expressions to F
L
(V )
t

(x) is a challenging task.

However, assuming that |Xt,j | will be small for small t, then we can use a first order Taylor expansion of
the term eXt,j , that is

eXt,j ≈ 1 +Xt,j when |Xt,j | is small (3.14)

which typically will hold for small t. So using (3.14) in (3.13) then implies that the loss L
(V )
t for an equally

value-weighted portfolio Vt as in Definition 3.7 is approximated by

L
(V )
t ≈ −S0

J
∑

j=1

Xt,j when |Xt,j | is small for all j . (3.15)

For Xt,j given by (3.11), we therefore define the linearized loss L∆V
t to the portfolio loss L

(V )
t in an equally

value-weighted portfolio, as

L∆V
t = −S0

J
∑

j=1

Xt,j (3.16)

so that (3.15) then implies that

P

[

L
(V )
t ≤ x

]

≈ P
[

L∆V
t ≤ x

]

when |Xt,j | is small for all j (3.17)

which typically will hold for small t. Next, we state a theorem which provides computationally tractable
semi-analytical expression to the distribution P

[

L∆V
t ≤ x

]

for the linearized loss L∆V
t defined as in (3.16),

which is equivalently of finding the distribution of
∑J

j=1Xt,j .

Theorem 3.8. Consider an equally value-weighted portfolio as in Definition 3.7 where the J stock prices

St,1, . . . , St,J are defined as in Definition 3.1 under the real probability measure P. Then, with notation as

above, we have that

P
[

L∆V
t ≤ x

]

= 1−
m
∑

k=0

ΨV
k (x, t, µ, σ, S0, ρS , η)P

[

N
(m)
t = k

]

(3.18)

where the mappings ΨV
k (x, t, µ, σ, S0, ρS , η) for k ≥ 1 are defined as

ΨV
k (x, t, µ, σ, S0, ρS , η) =

∫ ∞

0
Φ













y − x
S0

−
∑J

j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













ηe−ηy (ηy)Jk−1

(Jk − 1)!
dy

(3.19)
and for k = 0 the mapping ΨV

0 (x, t, µ, σ, S0, ρS , η) is defined by

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ













− x
S0

−∑J
j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













(3.20)

where Φ (x) and ϕ (x) are the distribution function and density to a standard normal random variable.

Proof. First, since S0 > 0, and in view of (3.16) we get after some rearranging

P
[

L∆V
t ≤ x

]

= 1− P





J
∑

j=1

Xt,j ≤ − x

S0



 (3.21)
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and we therefore seek the distribution of
∑J

j=1Xt,j . From Definition 3.1 and (3.11) we can rewrite Xt,j

as

Xt,j = Zt,j +

(

µj −
1

2
σ2j

)

t−
N

(m)
t
∑

n=1

Un,j (3.22)

where Zt,j is defined by

Zt,j = σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

(3.23)

and the terms in the right hand side of (3.23) is same as in Equation (3.1) in Definition 3.1. Then,

P





J
∑

j=1

Xt,j ≤ − x

S0



 = P







J
∑

j=1

Zt,j −
J
∑

j=1

N
(m)
t
∑

n=1

Un,j ≤ − x

S0
−

J
∑

j=1

(

µj −
1

2
σ2j

)

t






(3.24)

For notational convenience we define a(x) as

a(x) = − x

S0
−

J
∑

j=1

(

µj −
1

2
σ2j

)

t (3.25)

so that (3.24) can be rewritten as

P





J
∑

j=1

Xt,j ≤ − x

S0



 = P







J
∑

j=1

Zt,j −
J
∑

j=1

N
(m)
t
∑

n=1

Un,j ≤ a(x)






. (3.26)

Next we note that

P







J
∑

j=1

Zt,j −
J
∑

j=1

N
(m)
t
∑

n=1

Un,j ≤ a(x)






=

m
∑

k=0

P





J
∑

j=1

Zt,j −
J
∑

j=1

k
∑

n=1

Un,j ≤ a(x)

∣

∣

∣

∣

∣

∣

N
(m)
t = k



P

[

N
(m)
t = k

]

(3.27)

and since Wt,j and Un,j are independent of N
(m)
t for all j and n, then by using the same arguments which

led to the right hand side in (2.38) in Theorem 2.12 we get

P





J
∑

j=1

Zt,j −
J
∑

j=1

k
∑

n=1

Un,j ≤ a(x)

∣

∣

∣

∣

∣

∣

N
(m)
t = k



 = P





J
∑

j=1

Zt,j −
J
∑

j=1

k
∑

n=1

Un,j ≤ a(x)



 . (3.28)

From the definition of Zt,j in (3.23) we have that

J
∑

j=1

Zt,j =
J
∑

j=1

σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

=Wt,0

J
∑

j=1

σjρS,j +
J
∑

j=1

σj

√

1− ρ2S,jWt,j (3.29)

and since Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent Brownian motions then (3.29) and standard results
from probability theory together with some computations gives that

J
∑

j=1

Zt,j
d
=

√

√

√

√

√t









J
∑

j=1

σjρS,j





2

+

J
∑

j=1

σ2j

(

1− ρ2S,j

)



X (3.30)

where X is a standard normal random variable. Let GJk be random variables independent of X where

GJk is a gamma-distributed random variable such that GJk
d
= Gamma(Jk, η) where k ≥ 1 is an integer.

Then, in view of Definition 3.1 and from standard probability theory and using the same arguments that
led to (2.40) in Theorem 2.12 we have that

J
∑

j=1

Zt,j −
J
∑

j=1

k
∑

n=1

Un,j
d
=

√

√

√

√

√t









J
∑

j=1

σjρS,j





2

+
J
∑

j=1

σ2j

(

1− ρ2S,j

)



X −GJk . (3.31)
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Next, by using (3.31) in a version of Equation (2.46) in Theorem 2.12, we obtain

P





J
∑

j=1

Zt,j −
J
∑

j=1

k
∑

n=1

Un,j ≤ a(x)



 =

∫ ∞

0
Φ













a(x) + y
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













fGJk
(y)dy

(3.32)

where fGJk
(y) = ηe−ηy(ηy)Jk−1

(Jk−1)! is the density to GJk and Φ (x) is the distribution function to a standard

normal random variable. If k = 0 there are no jump-terms so the right hand side of (3.28) reduces to

P





J
∑

j=1

Zt,j ≤ a(x)



 = Φ













a(x)
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













(3.33)

where we also used (3.30) for the distribution of
∑J

j=1 Zt,j . Hence, using (3.32) for k ≥ 1 and (3.33) for

k = 0 in the right hand side of (3.28), and then use (3.27) and (3.26) together with the definition of a(x)
in (3.25) finally imply that (3.21) can be rewritten as

P
[

L∆V
t ≤ x

]

= 1−
m
∑

k=0

ΨV
k (x, t, µ, σ, S0, ρS , η)P

[

N
(m)
t = k

]

where the mappings ΨV
k (x, t, µ, σ, S0, ρS , η) for k > 1 are defined by

ΨV
k (x, t, µ, σ, S0, ρS , η) =

∫ ∞

0
Φ













y − x
S0

−∑J
j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













ηe−ηy (ηy)Jk−1

(Jk − 1)!
dy

and for k = 0 the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) is defined as

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ













− x
S0

−∑J
j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













and this proves (3.18), (3.19) and (3.20) which concludes the theorem. �

We note that the η-parameter in the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) in (3.20) for k = 0 will have no

impact, and is only present for notational convenience given the sum in the expression of (3.18) which
runs from k = 0 to k = m.

Remark 3.9. Note that Theorem 3.8 is stated for a heterogeneous stock portfolio so that the parameters
µj, σj , ρS,j and S0,j can have different values for different firms Aj but where the weights wj in the
portfolio Vt are chosen so that wjS0,j = S0 for all companies where S0 is a positive constant. Sometimes
we want to study the case where the parameters for St,j are identical for all firms Aj, that is, when

S0,j = S0, µj = µ, σj = σ, and ρS,j = ρS for all firms A1, . . . ,AJ (3.34)

so that the stock prices St,1, St,2, . . . , St,J become exchangeable. Furthermore, by letting wj = 1 for
all companies we get an equally value-weighted portfolio as in Definition 3.7 and (3.34) together with
Theorem 3.8 then implies that the mappings ΨV

k (x, t, µ, σ, S0, ρS , η) in the loss distribution P
[

L∆V
t ≤ x

]

given by (3.18) will simplify a bit, where we for k ≥ 1 under (3.34) get

ΨV
k (x, t, µ, σ, S0, ρS , η) =

∫ ∞

0
Φ





y − x
S0

− J
(

µ− 1
2σ

2
)

t

σ
√

tJ
(

1 + (J − 1) ρ2S
)





ηe−ηy (ηy)Jk−1

(Jk − 1)!
dy (3.35)



RISK MANAGEMENT OF STOCK PORTFOLIOS WITH JUMPS AT EXOGENOUS DEFAULT EVENTS 19

and for k = 0 with condition (3.34), the mapping ΨV
0 (x, t, µ, σ, S0, ρS , η) is simplified to

ΨV
0 (x, t, µ, σ, S0, ρS , η) = Φ





− x
S0

− J
(

µ− 1
2σ

2
)

t

σ
√

tJ
(

1 + (J − 1) ρ2S
)



 (3.36)

where the rest of the notation is same as in Theorem 3.8.

Given the formulas (3.18)-(3.20) in Theorem 3.8 for the distribution FL∆V
t

(x) = P
[

L∆V
t ≤ x

]

where

L∆V
t is the linear approximation to the portfolio loss L

(V )
t , we can find Value-at-Risk for L∆V

t with
confidence level α, denoted by VaRα

(

L∆V
t

)

and given as

VaRα

(

L∆V
t

)

= F−1
L∆V
t

(α) so that FL∆V
t

(

VaRα

(

L∆V
t

))

= α (3.37)

since L∆V
t is a continuous random variable. The Equation (3.37) can for most credit portfolio models

only be solved numerically. Also, note that VaRα

(

L∆V
t

)

will for small time points t, be an approximation

to VaRα

(

L
(V )
t

)

defined in (3.10), that is

VaRα

(

L∆V
t

)

≈ VaRα

(

L
(V )
t

)

so F−1
L∆V
t

(α) ≈ F−1

L
(V )
t

(α) for small time points t. (3.38)

Just as in Theorem 2.12, we again remark that the formulas in Theorem 3.8 and related computations as in

(3.37) requires efficient and quick methods of computing the number of default distribution P

[

N
(m)
t = k

]

.

In our numerical studies in Section 5 - 6 we will use the results in Theorem 3.8 together with efficient

numerical methods for computing P

[

N
(m)
t = k

]

in an intensity based CIR model and also in a one-factor

Gaussian copula model.

Remark 3.10. In the case when there are no jump at the defaults in Definition 3.1, i.e when Un = 0 for

all n, then St,j = S
(BS)
t,j for all companies Aj with S

(BS)
t,j given by

S
(BS)
t,j = S0,j exp

((

µj −
1

2
σ2j

)

t+ σj

(

ρS,jWt,0 +
√

1− ρ2S,jWt,j

)

)

(3.39)

where Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent Brownian motions and the rest of the notation is same

as in Definition 3.1. Note that S
(BS)
t,1 , . . . , S

(BS)
t,J will under (3.39) still be correlated via the factor process

Wt,0 and recall that ρSWt,0 +
√

1− ρ2SWt,j is a Brownian motion for each stock price S
(BS)
t,j .

In view of Remark 3.10, we now state the following corollary to Theorem 3.8 in the case where there
are no jumps among the stock prices St,j .

Corollary 3.11. Consider an equally value-weighted portfolio as in Definition 3.7 where the J stock

prices S
(BS)
t,1 , . . . , S

(BS)
t,J are defined as in (3.39) under the real probability measure P. Then, with notation

as above,

P
[

L∆V
t ≤ x

]

= Φ













x
S0

+
∑J

j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













(3.40)

and

VaRα

(

L∆V
t

)

= S0







√

√

√

√

√t









J
∑

j=1

σjρS,j





2

+

J
∑

j=1

σ2j

(

1− ρ2S,j

)



Φ−1 (α)−
J
∑

j=1

(

µj −
1

2
σ2j

)

t






(3.41)

where Φ (x) is the distribution function to a standard normal random variable. Furthermore, if the stock

prices S
(BS)
t,1 , . . . , S

(BS)
t,J also satisfy (3.34) in Remark 3.9 then (3.40)-(3.41) simplify to

P
[

L∆V
t ≤ x

]

= Φ





x
S0

+ J
(

µ− 1
2σ

2
)

t

σ
√

tJ
(

1 + (J − 1) ρ2S
)



 (3.42)



20 ALEXANDER HERBERTSSON

and

VaRα

(

L∆V
t

)

= S0

(

σ

√

tJ
(

1 + (J − 1) ρ2S
)

Φ−1 (α)− J

(

µ− 1

2
σ2
)

t

)

. (3.43)

Proof. From (3.21) in Theorem 3.8 we have

FL∆V
t

(x) = P
[

L∆V
t ≤ x

]

= 1− P





J
∑

j=1

Xt,j ≤ − x

S0



 1− P





J
∑

j=1

Zt,j ≤ − x

S0



 (3.44)

since there are now jumps and where Zt,j is defined as in (3.23) in Theorem 3.8. Now, (3.33) and (3.25) in
Theorem 3.8 with some elementary computations together with the standard normal symmetry property
1− Φ(−y) = Φ(y) then imply that

P
[

L∆V
t ≤ x

]

= Φ













x
S0

+
∑J

j=1

(

µj − 1
2σ

2
j

)

t
√

t

(

(

∑J
j=1 σjρS,j

)2
+
∑J

j=1 σ
2
j

(

1− ρ2S,j

)

)













where Φ (x) is the distribution function to a standard normal random variable and this proves (3.40). Fur-
thermore, from the definition in (3.37) we know that VaRα

(

L∆V
t

)

= F−1
L∆V
t

(α) so this with the distribution

of FL∆V
t

(x) in (3.40) will then after some trivial computations yield that

VaRα

(

L∆V
t

)

= S0







√

√

√

√

√t









J
∑

j=1

σjρS,j





2

+

J
∑

j=1

σ2j

(

1− ρ2S,j

)



Φ−1 (α)−
J
∑

j=1

(

µj −
1

2
σ2j

)

t







which proves (3.41). Finally, if we set the portfolio weights to wj = 1 for all companies A1, . . . ,AJ and

if their stock prices S
(BS)
t,1 , . . . , S

(BS)
t,J also satisfy (3.34) in Remark 3.9, we get an equally value-weighted

portfolio where S0,j = S0, µj = µ, σj = σ and ρS,j = ρS for all firms A1, . . . ,AJ and using this in (3.40)-
(3.41) with some computations gives us the expressions (3.42)-(3.43) which concludes the corollary. �

In our numerical studies in Section 5 and 6 we will use the ”Black-Scholes” linear portfolio formulas in
Corollary 3.11 as benchmark to expressions for the stock prices with jumps at defaults given in Theorem
3.8.

The results in Theorem 3.8 and Corollary 3.11 holds for heterogeneous stock portfolios which are
equally value-weighted and have arbitrary size J , that is the number of stocks J in the portfolio can
e.g. be small or large. The main drawback with the formulas in Theorem 3.8 and Corollary 3.11 is that
these expressions for the linearized loss L∆V

t only work somewhat accurately as an approximation to the

true loss L
(V )
t when the time t is small, and the expressions will fail as time t starts to increase. For

example, the linearized loss L∆V
t may produce VaR-values that are bigger than V0 which is impossible

since by construction it will hold that L
(V )
t ≤ V0 almost surely for all t ≥ 0 under the real probability

measure P. However, in certain cases we can still find highly analytical approximation formulas for the

loss distribution P

[

L
(V )
t ≤ x

]

at any time point t and where the loss will never exceed V0, as will be seen

in the next section.

4. The multidimensional case: approximation formulas to loss distributions for large
homogeneous stock portfolios with jumps at exogenous defaults.

For larger time points t, the linear approximations to the stock portfolio in Theorem 3.8 and Corollary
3.11 will fail. If we however assume that the stock prices St,j satisfy (3.34) in Remark 3.9, that is
S0,j = S0, µj = µ, σj = σ and ρS,j = ρS for all firms A1, . . . ,AJ so that the St,1, St,2, . . . , St,J are
exchangeable and the portfolio becomes homogeneous (given same weights), and if the number of stocks
J in the portfolio are ”large”, then we will in this section derive approximation formulas for the loss

distribution P

[

L
(V )
t ≤ x

]

which will work for arbitrary time points t, that is both for large and small time

points t and which will also guarantee that portfolio loss always will be smaller than V0 almost surely for
all t ≥ 0 under the measure P. Hence, in this section we will make two assumptions. First we assume
that (3.34) holds together with Definition 3.1 under the real probability measure P, with equal portfolio
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weights wj for all companies A1, . . . ,AJ in the portfolio Vt. Our second assumption is that the number
of stocks J in the portfolio are ”large”. Since the stock portfolio is equally weighted, and we are primary
interested in Value-at-Risk calculation of the portfolio, then due to linearity of VaR we can without loss of
generality let wj = 1 for each stock in the portfolio and thus define the portfolio value as Vt =

∑J
j=1 St,j .

Due to the condition (3.34) the portfolio Vt will then be equally value-weighted portfolio as in Definition
3.7.

Remark 4.1. Homogenization of a heterogeneous stock portfolio: Assuming a completely homoge-
neous stock portfolio so that the parameters for each stock are the same is of course an unrealistic feature.
Consider a heterogeneous stock portfolio with stocks defined as in Definition 3.1 and portfolio value V̂t
and define S0, µ, σ and ρS as the corresponding sample means of the parameters in this portfolio, that is

S0 =
1

J

J
∑

j=1

S0,j µ =
1

J

J
∑

j=1

µj σ =
1

J

J
∑

j=1

σj and ρS =
1

J

J
∑

j=1

ρS,j . (4.1)

Next create a homogeneous stock portfolio as in Section 3 with parameters S0, µ, σ and ρS as in (4.1)

with portfolio value Vt and whereWt,0,Wt,1, . . . ,Wt,J , N
(m)
t and Ui,j are the same as in the heterogeneous

portfolio. For such homogeneous portfolios Hofmann & Platen (2000) as well as Guan, Xiaoqing & Chong

(2003) proves that the value process V̂t for a large heterogeneous stock portfolio can be approximated
arbitrary well by Vt in L1-sense as J → ∞. Hofmann & Platen (2000) proves the result for portfolios with
only diffusions while Guan et al. (2003) extends the proof to the case where the stocks also can jump due
to Poisson processes. In view of the results of e.g. Hofmann & Platen (2000) and Guan et al. (2003) it
is therefore still relevant to consider homogeneous stock portfolios in particular if these portfolios comes
from doing a homogenization of a heterogeneous stock portfolio as in (4.1).

Given the assumption that (3.34) is satisfied, we now state the following theorem.

Theorem 4.2. Let St,1, . . . , St,J be stock prices defined as in Definition 3.1 which satisfies (3.34) under

the real probability measure P. Then, with notation as above, we have

lim
J→∞

1

J

J
∑

j=1

St,j = S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

a.s. under P

[

· |Wt,0, N
(m)
t

]

(4.2)

and

lim
J→∞

P





1

J

J
∑

j=1

St,j ≤ x



 = P



S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

≤ x



 . (4.3)

Furthermore, for large J we have

P

[

L
(V )
t ≤ x

]

≈ P



JS0



1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t



 ≤ x



 for large J (4.4)

and if ρS 6= 0 then for x ≤ JS0 = V0 it holds that

P

[

L
(V )
t ≤ x

]

≈ 1−
m
∑

k=0

Φ









ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−
(

µ− 1
2σ

2ρ2S
)

t

σρS
√
t









P

[

N
(m)
t = k

]

for large J (4.5)

where Φ (x) is the distribution function to a standard normal random variable.

Proof. From the construction in Definition 3.1 we know that Wt,0,Wt,1, . . . ,Wt,J are J + 1 independent
Brownian motions and for each j the jump terms where U1,j, . . . , Um,j are also independent of the processes

Wt,0,Wt,1, . . . ,Wt,J and the default counting process N
(m)
t . Hence, for a fixed t, and conditional on the

pair Wt,0, N
(m)
t , then St,1, . . . , St,J will be an i.i.d sequence and therefore a conditional version of the law

of large numbers implies that

lim
J→∞

1

J

J
∑

j=1

St,j = E

[

St,j |Wt,0, N
(m)
t

]

a.s. under the random measure P

[

· |Wt,0, N
(m)
t

]

(4.6)
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where the subindex j in E

[

St,j |Wt,0, N
(m)
t

]

in the right hand side of (4.6) could be any positive integer

due to the exchangeability of St,1, . . . , St,J . Next, by Definition 3.1 together with (3.34), we have that

E

[

St,j |Wt,0, N
(m)
t

]

= E






S0 exp







(

µ− 1

2
σ2
)

t+ σ

(

ρSWt,0 +
√

1− ρ2SWt,j

)

−
N

(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







= S0 exp

((

µ− 1

2
σ2
)

t+ σρSWt,0

)

E






exp






σ

√

1− ρ2SWt,j −
N

(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t






.

(4.7)

Furthermore,

E






exp






σ

√

1− ρ2SWt,j −
N

(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t






= exp

(

σ2
(

1− ρ2S
)

t

2

)

E






exp






−

N
(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

N
(m)
t







(4.8)

since

E






exp






σ

√

1− ρ2SWt,j −
N

(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







= E






E






exp






σ

√

1− ρ2SWt,j −
N

(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t , {Un,j}mn=1







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







= E






exp






−

N
(m)
t
∑

n=1

Un,j






E

[

exp

(

σ

√

1− ρ2SWt,j

) ∣

∣

∣

∣

Wt,0, N
(m)
t , {Un,j}mn=1

]

∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







= E

[

exp

(

σ

√

1− ρ2SWt,j

)]

E






exp






−

N
(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







= exp

(

σ2
(

1− ρ2S
)

t

2

)

E






exp






−

N
(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

N
(m)
t







(4.9)

where the third equality in (4.9) follows from the fact that Wt,j is independent of Wt,0, N
(m)
t , {Un,j}mn=1

and the fourth equality in (4.9) is due to that
∑N

(m)
t

n=1 Un,j is independent of Wt,0, see e.g. 9.7(k) on p.88

in Williams (2000), and due to standard computations of E
[

exp
(

σ
√

1− ρ2SWt,j

)]

, which proves (4.8).

Next, note that

E






exp






−

N
(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

N
(m)
t






=

(

η

η + 1

)N
(m)
t

(4.10)
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since

E






exp






−

N
(m)
t
∑

n=1

Un,j







∣

∣

∣

∣

∣

∣

∣

N
(m)
t






=

m
∑

k=0

E

[

exp

(

−
k
∑

n=1

Un,j

)∣

∣

∣

∣

∣

N
(m)
t = k

]

1{
N

(m)
t =k

}

=

m
∑

k=0

E

[

exp

(

−
k
∑

n=1

Un,j

)]

1{
N

(m)
t =k

}

=

m
∑

k=0

(

η

η + 1

)k

1{
N

(m)
t =k

}

=

(

η

η + 1

)N
(m)
t

(4.11)

where the second equality in (4.11) is due to that {Un,j}mn=1 are independent of N
(m)
t and the third equality

in (4.11) follows from (2.62) in Theorem 2.12. So combining (4.7), (4.8) and (4.10) together with some
computations then renders that

E

[

St,j |Wt,0, N
(m)
t

]

= S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

(4.12)

and (4.12) in (4.6) finally implies

lim
J→∞

1

J

J
∑

j=1

St,j = S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

a.s. under P

[

· |Wt,0, N
(m)
t

]

(4.13)

which proves (4.2). The random measure P

[

· |Wt,0, N
(m)
t

]

is constructed from the probability measure

P used in this paper, and in particular Definition 3.1, so (4.13) then implies that 1
J

∑J
j=1 St,j converges

weakly (i.e in distribution) to S0 exp
((

µ− 1
2σ

2ρ2S
)

t+ σρSWt,0

)

under the probability measure P when
J → ∞. To see this, note that

P





1

J

J
∑

j=1

St,j ≤ x



 = E



P





1

J

J
∑

j=1

St,j ≤ x

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t







 (4.14)

and (4.13) implies that

P





1

J

J
∑

j=1

St,j ≤ x

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t



→ P



S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

≤ x

∣

∣

∣

∣

∣

∣

Wt,0, N
(m)
t





(4.15)
as J → ∞. Hence, (4.14)-(4.15) together with the law of iterated expectations then renders

P





1

J

J
∑

j=1

St,j ≤ x



→ P



S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

≤ x



 as J → ∞ (4.16)

which proves (4.3). Thus, if J is large then (4.16) implies that

J
∑

j=1

St,j
d≈
∣

∣

∣

P

JS0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t

for large J (4.17)

where
d≈
∣

∣

∣

P

means ”approximately equal in distribution under the probability measure P. Next, from the

definition of the portfolio value Vt in (3.6) and the portfolio loss process L
(V )
t in (3.9) together with the

fact that St,0 = S0 for all stocks due to condition (3.34), we get that

L
(V )
t = V0 − Vt =

J
∑

j=1

St,0 −
J
∑

j=1

St,j = JS0 −
J
∑

j=1

St,j (4.18)
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so (4.17) and (4.18) with some simple calculations then imply that

P

[

L
(V )
t ≤ x

]

≈ P



JS0



1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t



 ≤ x



 for large J

(4.19)
which proves (4.4). We next want to find an more explicit expression of the right hand side in (4.19).
First, we note that

P



JS0



1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)N
(m)
t



 ≤ x





=

m
∑

k=0

P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)k
)

≤ x

∣

∣

∣

∣

∣

N
(m)
t = k

]

P

[

N
(m)
t = k

]

.

(4.20)

Since Wt,0 is independent of N
(m)
t we get

P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)k
)

≤ x

∣

∣

∣

∣

∣

N
(m)
t = k

]

= P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)k
)

≤ x

] (4.21)

and assuming ρS 6= 0, some calculations then renders that

P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)(

η

η + 1

)k
)

≤ x

]

= 1− Φ









ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−
(

µ− 1
2σ

2ρ2S
)

t

σρS
√
t









(4.22)

where Φ (x) is the distribution function to a standard normal random variable. So combining (4.20)-(4.22)
and inserting these expression into (4.19) finally yields

P

[

L
(V )
t ≤ x

]

≈ 1−
m
∑

k=0

Φ









ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−
(

µ− 1
2σ

2ρ2S
)

t

σρS
√
t









P

[

N
(m)
t = k

]

for large J

which proves (4.5) and this concludes the theorem. �

We next make some remarks to the results in Theorem 4.2.

Remark 4.3. First, we note from (4.2) in Theorem 4.2, that when conditioning on Wt,0, N
(m)
t and then

studying the limit of 1
J

∑J
j=1 St,j when J → ∞ we see that the individual diffusions Wt,j as well as the

individual jump terms Un,j vanish. Only the effect of Wt,0 and N
(m)
t remains in the limit of 1

J

∑J
j=1 St,j

on a simply form as stated in Equation (4.2). Secondly, if ρS = 0, meaning that there is no correlation
through the factor process Wt,0 in the diffusion part among the stocks, then (4.2) collapses into

lim
J→∞

1

J

J
∑

j=1

St,j = S0e
µt

(

η

η + 1

)N
(m)
t

a.s. under P

[

· |N (m)
t

]

(4.23)

where the right hand side of (4.23) is a piecewise deterministic process with jumps at the default times
τ1, . . . , τm. If ”η = ∞” so that Un,j = 0 for all pairs n, j (see also Remark 2.10) and if ρS = 0, then
(4.23) reduces to the ”standard” law of large numbers under the measure P since from Remark 3.10 with

ρS = 0 then implies that St,j = S
(BS)
t,j for all companies Aj and St,1, . . . , St,J will be an i.i.d sequence.
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This observation together with Equation (2.65) gives E

[

S
(BS)
t,j

]

= S0e
µt which is the right hand side of

(4.23) without the point process N
(m)
t , since Un,j = 0 for all n and j, that is,

lim
J→∞

1

J

J
∑

j=1

St,j = S0e
µt

P -a.s.

and this is just the (strong) law of large numbers under the measure P, since St,1, . . . , St,J is an i.i.d
sequence.

For ρS 6= 0, define F LPA

L
(V )
t

(x) as

F LPA

L
(V )
t

(x) = 1−
m
∑

k=0

Φ









ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−
(

µ− 1
2σ

2ρ2S
)

t

σρS
√
t









P

[

N
(m)
t = k

]

. (4.24)

Then, if ρS 6= 0, the large portfolio approximation formula (4.5) in Theorem 4.2 implies that

P

[

L
(V )
t ≤ x

]

≈ F LPA

L
(V )
t

(x) for large J . (4.25)

Note that F LPA

L
(V )
t

(x) in (4.24) is exactly equal to the right hand side of (4.4). From the probability in the

right hand side of (4.4) it is clear that this probability will be one for x > V0 = JS0 and then F LPA

L
(V )
t

(x) = 1

for x > V0 = JS0. To see this, note that for each k we have that

ln

(

(

1− x

JS0

)(

η + 1

η

)k
)

→ −∞ as x ↑ JS0 = V0 .

so for each k we get

lim
x↑JS0

Φ









ln

(

(

1− x
JS0

)(

η+1
η

)k
)

−
(

µ− 1
2σ

2ρ2S
)

t

σρS
√
t









= 0

and this observation in (4.24) implies that

lim
x↑JS0

F LPA

L
(V )
t

(x) = 1 . (4.26)

Hence, in view of (4.24) and (4.26) the distribution F LPA

L
(V )
t

(x) is only defined for x ≤ V0 = JS0. Conse-

quently, our LPA approximation formula in (4.25) imply that F LPA

L
(V )
t

(x) = 1 for x > V0 = JS0, that is for

any time point t the loss will never be bigger than V0 which is financially correct given our model setup,
while the distribution for the linearized portfolio loss L∆V

t discussed in Section 3 can produce losses bigger
than V0 = JS0 when t increases.

We here note that the distribution function F LPA

L
(V )
t

(x) defined in (4.24) and used in the the right hand

side of (4.5) in Theorem 4.2, will be much easier to evaluate than the corresponding distribution for the

”small time” linear approximation L∆V
t to L

(V )
t , where P

[

L∆V
t ≤ x

]

is given by (3.18) in Theorem 3.8.

More specific, the expression for P
[

L∆V
t ≤ x

]

in (3.18) will for each k ≥ 1 in the sum involve computations
of an integral given by (3.19) in Theorem 3.8, while the corresponding terms in the sum for F LPA

L
(V )
t

(x) in

(4.24) simply involves an evaluation of the distribution function to a standard normal random variable
for each k in the sum. However, we remind that P

[

L∆V
t ≤ x

]

works for heterogeneous stock portfolios

with arbitrary number of stocks J , in particular smaller J , while the approximation of P
[

L
(V )
t ≤ x

]

via

F LPA

L
(V )
t

(x) in (4.25) is only feasible for large stock portfolio sizes J . On the other hand, F LPA

L
(V )
t

(x) works for

arbitrary time points t while P
[

L∆V
t ≤ x

]

is only a good approximation to P

[

L
(V )
t ≤ x

]

for small time

points t.

Let VaRα

(

L
(V )
t

)

defined as in (3.10) be the Value-at-Risk for the stock portfolio loss L
(V )
t with confi-

dence level α. By using the large portfolio approximation formula (4.5) in Theorem 4.2, that is, relation
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(4.25), we can for large J find an approximation to VaRα

(

L
(V )
t

)

which then is given as the unique solution

x∗ to the equation F LPA

L
(V )
t

(x∗) = α, that is

VaRα

(

L
(V )
t

)

≈ (F−1)LPA
L
(V )
t

(α) for large J (4.27)

where (F−1)LPA
L
(V )
t

(x) denotes the inverse function to the function F LPA

L
(V )
t

(x) defined in (4.24). Since F LPA

L
(V )
t

(x) =

1 for x > V0 = JS0 we see that (4.27) can never produce a VaR value bigger than V0, contrary to the
linearized portfolio loss VaR-values.

Just as in Theorem 2.12 and Theorem 3.8, we once again remark that formula in (4.5) in Theorem 4.2
and computations as in (4.27) requires efficient and quick methods of computing the number of default

distribution P

[

N
(m)
t = k

]

.

In the case when there are no jumps in the stock prices at the defaults of the exogenous group of
defaultable entities in Definition 3.1, i.e when ”η = ∞” so that Un,j = 0 for all pairs n, j (see also Remark

2.10), and thus St,j = S
(BS)
t,j for all companies Aj where S

(BS)
t,j is given by (3.39) in Remark 3.10 and if

ρS 6= 0, then (4.2) in Theorem 4.2 will reduce to

lim
J→∞

1

J

J
∑

j=1

St,j = S0 exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

)

a.s. under the random measure P [ · |Wt,0] .

(4.28)
Hence, from (4.28) and using the same arguments as in Theorem 4.2 we then have that

P

[

L
(V )
t ≤ x

]

≈ P

[

JS0

(

1− exp

((

µ− 1

2
σ2ρ2S

)

t+ σρSWt,0

))

≤ x

]

for large J . (4.29)

We also note that the right hand side in (4.28) is on the exact same form as the stock price S
(BS)
t in the

Black-Scholes model for a single stock, under the real probability measure P given in (2.64), but now with

the volatility σρS instead of σ as in (2.64). Hence, for large J , the loss process L
(V )
t will for the case

when Un,j = 0 for all n, j behave as the loss process for one single stock which follows the Black-Scholes
dynamics with volatility σρS , drift µ and initial value JS0. From Equation (2.73) in Section 2 together
with the large portfolio approximation in (4.29) we therefore in the case with no jumps in the stock price
get that

VaRα

(

L
(V )
t

)

≈ JS0

(

1− exp

(

σρS
√
tΦ−1 (1− α) +

(

µ− 1

2
σ2ρ2S

)

t

))

for large J . (4.30)

In our numerical studies in Section 5 and 6 we will use the ”Black-Scholes” LPA VaR formula in (4.30)
as benchmark for the VaR-formulas obtained when using the LPA loss distribution (4.5) in Theorem 4.2
when the stock prices have jumps and are exchangeable.

5. Numerical examples when the default times have CIR intensities

In this section we will study Value-at-Risk for the loss L
(S)
t = − (St − S0) for one single stock when the

stock price St is given by Definition 2.1 under the real probability measure P. Throughout this section
we assume that the default times τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are exchangeable, conditional
independent and have default intensities λt,i = λt same for all entities where λt is a CIR-process. Further-

more, the jumps Ṽ1, . . . , Ṽm in St at the defaults τ1, τ2 . . . , τm are distributed as V1, . . . , Vm in Definition
2.9. In Subsection 5.1 we first discuss the parameters and other related quantizes. Then, in Subsection 5.2
we study Value-at-Risk for the loss of one individual stock with price under the real probability measure
P in a credit portfolio model with parameters as discussed in Subsection 5.1. Finally, in Subsection 5.3
we give some very important and useful remarks on the numerical computation of the loss distribution.
The observations done in Subsection 5.3 will also hold for the loss distributions derived in Section 3 and
Section 4 and for the credit portfolio model studies in Section 6.

5.1. The parameters and related quantities. In this subsection we discuss the modeling setup and
its parameters that will hold in the rest of section and present some related quantities such as e.g. the

distribution of the number of defaults
(

P

[

N
(m)
t = k

])m

k=0
for our model.
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In the rest of this section we assume that the default times τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are
exchangeable, conditional independent and have default intensities λt,i = λt same for all entities. We set
λt = λt,i to be a Cox-Ingersoll-Ross process (CIR-process), that is

dλt = ac (µc − λt) dt+ σc
√

λtdW
(c)
t (5.1.1)

where W
(c)
t is a Brownian motion under the physical probability measure P, independent of the other

random variables in St. Then the default times τ1, . . . , τm are constructed as

τi = inf

{

t > 0 :

∫ t

0
λsds ≥ Ei

}

(5.1.2)

where E1, . . . , Em is an i.i.d sequence of exponentially distributed random variables all with parameter

one which are independent of W
(c)
t . From the construction (5.1.2) one can show that τ1, . . . , τm are

conditional independent given the trajectory of (W
(c)
t )t≥0. Furthermore, the marginal default distribution

F (t) = P [τi ≤ t] is expressed as

F (t) = P [τi ≤ t] = 1− E

[

e−
∫ t
0 λs ds

]

(5.1.3)

and is same for all entities C1, . . . ,Cm due to the exchangeability, where the quantity E

[

e−
∫ t
0 λs ds

]

has

closed formulas, see e.g. in Bielecki et al. (2014c) or Herbertsson (2022). The construction in (5.1.2)-
(5.1.3) can be applied to arbitrary intensities λt, and thus not only to a CIR-process. From a practical
point of view we want to have analytical expressions of the default distribution F (t) in (5.1.3). Another
example of intensity which gives analytical formulas for F (t) is a shot-noise model as presented in e.g.
Herbertsson, Jang & Schmidt (2011). The construction in (5.1.2)-(5.1.3) will also work for heterogeneous
credit portfolios, that is when the intensities λi,t are different among the entities C1, . . . ,Cm.

Going back to our stock price model for St, we let the jumps Ṽ1, . . . , Ṽm in St at the defaults τ1, τ2 . . . , τm
be distributed as V1, . . . , Vm in Definition 2.9 so Ṽi = e−Ũi−1 where Ũ1, . . . , Ũm are i.i.d and exponentially
distributed with parameter η > 0. Hence, given the above assumptions, the dynamics of the stock price

St is same as in Corollary 2.11 and Theorem 2.12 where N
(m)
t =

∑m
i=1 1{τi≤t} and τ1, τ2 . . . , τm are

exchangeable, conditionally independent, and have intensities λt,i = λt as in (5.1.1). In our numerical
examples we choose a CIR-process in (5.1.1) with the parameters ac = 0.6, µc = 0.056, σc = 0.18 and
λ0 = 0.0262 so that the individual one-year default probability is 0.0329 computed via well-known explicit
expressions for the default probability P [τi ≤ t] when τi has a CIR-default intensity. Furthermore, we let
the number of defaultable entities be m = 125, see also in Table 1. In Table 2 we show the expected

number of defaults E

[

N
(m)
t

]

for t = 1, 3, 6, 12, 18, 24 months when individual default times have CIR-

intensities as in Table 1 and where m = 125. So from Table 2 we see that our CIR-intensities implies
that we expect for example around 2 defaults in six months, 4 defaults in one year, and 6 to 7 defaults
in one and a half year. Consequently this is also the number of jumps that we expect to occur in our
stock price up to each of these time points where each jump has the expected size of E [U ] = 1

η
. By our

assumption of exchangeability we have that E
[

N
(m)
t

]

= mP [τi ≤ t] so the individual default probabilities

at t = 1, 3, 6, 12, 18, 24 months are obtained from Table 2 by dividing the numbers for E
[

N
(m)
t

]

with m.

In Table 2 we see that after e.g. 6 months, there is a 0.1% probability of having 25 defaults or more among
C1, . . . ,Cm, and after 24 months there is a 0.1% probability of 32 defaults or more among C1, . . . ,Cm.

Table 1. The parameters and related quantities for the CIR-process λt and the stock price St

where we let m = 125.

λt λ0 = 0.0262 ac = 0.6 µc = 0.056 σc = 0.18 P [τi ≤ 1] = 0.0329 = 3.29%

St S0 = 50 µ = 0.15 = 15% σ = 0.2 = 20% η = 26.71 E [U ] = 1
η
= 0.0374 = 3.74%

Next we turn to the parameters for the stock price model. We set S0 = 50, µ = 0.15 = 15%, and
σ = 0.2 = 20%, see in Table 1. The jump parameter η is calibrated so that for T = 1 year we have

E [ST ] = S0 or equivalently E





(

η

η + 1

)N
(m)
T



 = e−µT for T = 1 (5.1.4)
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see also Equation (2.71) in Section 2. Hence, η is calibrated so that the defaults from the CIR-model,
”wipes” out the expected one-year log-growth for a corresponding Black-Scholes model with drift µ = 15%
and where m = 125. With the above parameters, we get that η = 26.71 via a numerical solver so that
E [Ui] =

1
η
= 0.0374, see also in Table 1.

Table 2. The expected number of defaults E
[

N
(m)
t

]

and VaR99.9%

(

N
(m)
t

)

for t = 1, 3, 6, 12, 18, 24

months when individual default times have CIR-intensities as in Table 1 and where
m = 125.

t (in months) 1 3 6 12 18 24

E

[

N
(m)
t

]

0.2802 0.8818 1.875 4.116 6.596 9.222

VaR99.9%

(

N
(m)
t

)

20 25 25 25 27 32

From Theorem 2.12 and the definition of VaR we know that in order to compute VaRα

(

L
(S)
t

)

we need

to compute the distribution of the number of defaults
(

P

[

N
(m)
t = k

])m

k=0
. Finding efficient numerical

methods for P

[

N
(m)
t = k

]

is a non-trivial problem. We will in this paper use the method developed

in Herbertsson (2022) to find P

[

N
(m)
t = k

]

which are based on saddlepoint methods for exchangeable,

conditionally independent credit portfolio models and works both for intensity based frameworks as well

as in factor copula settings. To find P

[

N
(m)
t = k

]

in the intensity based case we need the density fZt(z)

to the random variable Zt =
∫ t

0 λudu where λt is a CIR-process defined as in (5.1.1). Details of how to
find fZt(z) as well as numerical graphs of fZt(z) are found in e.g. Herbertsson (2022).

Figure 1. The time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, ..24 months when

individual default times have CIR-intensities as in Table 1 where m = 125. Left
panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18. The plots in the
two panels are viewed from different angles.

With the CIR-parameters parameters in Table 1 we compute P
[

N
(m)
t = k

]

with the saddlepoint method

mentioned above and the left panel in Figure 1 plots, for m = 125, the time evolution of the distribution

P

[

N
(m)
t = k

]

in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 24 months. Furthermore, the right panel

in Figure 1 displays the time evolution of the number of distribution P

[

N
(m)
t = k

]

in normal scale where
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k = 0, 1, . . . , 18 when m = 125 and t = 1, . . . , 24 months when individual default times have CIR-
intensities with parameters same as in the left panel in Figure 1. The plots in Figure 1 were generated
with the saddlepoint algorithms found in Herbertsson (2022) and in these figures we write t in months, but

the actual computations of P
[

N
(m)
t = k

]

are done with t measured in units of years. So for example two,

six and 24 months mean that t is given by t = 2
12 ,

6
12 and t = 24

12 = 2 in our formulas for the computation

of P
[

N
(m)
t = k

]

. The same also hold for the results in Table 2.

5.2. VaR over a 2-year period for one stock when the jumps in the stock price are due
to default times with CIR-intensities. In this subsection we will study Value-at-Risk for the loss

L
(S)
t = − (St − S0) of one individual stock with price St given by Definition 2.1 under the real probability

measure P in a credit portfolio model as discussed in Subsection 5.1. Hence, the stock price St has jumps
at the default times τ1, τ2 . . . , τm which are exchangeable and where the individual default times have
CIR-intensities with parameters same as in Table 1. Furthermore, the jump parameter η is calibrated so
that condition (5.1.4) holds and the rest of the parameters for St are displayed in Table 1.

In Figure 2-3 we study the time evolution of Value-at-Risk (in % of S0) of a single stock for t =
1, 2, . . . , 24 months, computed with same stock parameters as in Table 1. More specific, for m = 125, the
left panel in Figure 2 displays the time evolution of Value-at-Risk in % of S0 for t = 1, 2, . . . , 24 months in
the case when St has jumps coming from default times which have CIR-intensities with parameters same
as in Table 1. The right panel in Figure 2 displays the Black-Scholes case for the stock price, i.e. with no
jumps in St which has same drift and volatility parameters as in the left panel.
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Figure 2. m = 125: The time evolution of Value-at-Risk (in % of S0) of a single stock for t =
1, 2, . . . , 24 months. Left panel: In the case with jumps in St coming from default
times which have CIR-intensities with parameters same as in Table 1. Right panel:
In the Black-Scholes case, i.e. without jumps, where drift and volatility are same as in
Table 1.

The interpretation of the results in Figure 2 is done as follows. For example, in the left panel of Figure
2, looking at the black line (99%-VaR), we see that for t = 14

12 , that is after 14 months, then there is a
1% probability of having a loss in the stock which is 50% or bigger, of the initial stock price S0 at time
t = 0. Similarly, for the red line (99.9%-VaR) in the left panel of Figure 2, at t = 20

12 , that is 20 months
after the starting point t = 0, there is 0.1% probability of having a stock loss which is 70% (or bigger) of
the starting value S0 at time t = 0. The interpretation of the graphs in the right panel of Figure 2, i.e.
the Black-Scholes case, should be done in the same way as in the left panel of Figure 2. Furthermore,
in Figure 3 we plot the time evolution of the relative difference of Value-at-Risk (in %) between the case
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with jumps in the stock price St coming from default times which have CIR-intensities with parameters
same as in Table 1, and the standard Black-Scholes case, i.e. without jumps. The rest of the parameters
for St are same as in Table 1.
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Figure 3. The time evolution of the relative difference of Value-at-Risk (in %) between the case of
with jumps in the stock price St coming from default times which have CIR-intensities
with parameters same as in Table 1, and the standard Black-Scholes case, i.e. without
jumps. The relative difference is measured with respect to the Black-Scholes case. The
rest of the parameters for St are same as in Table 1.

As can be seen in Figure 3, introducing downward jumps in St at the default times τ1, τ2 . . . , τm which
are exchangeable and where the individual default times have CIR-intensities as in Subsection 5.1, will
in general increase the Value-at-Risk up to around 50% and much more at some few time points (up to
250%) compared to the Black-Scholes model, and this holds for all three confidence levels α = 95%, 99%
and α = 99.9%. For α = 95%, 99% the relative difference (jump-stock model vs. Black-Scholes) is almost
linearly increasing in time t. Of course, that the relative VaR difference between the jump vs. non-jump
case will increase as shown in Figure 3 is not surprising, but knowing exactly how big the difference
actually is as function of different parameters as well as time t, requires the use of somewhat analytical
formulas and efficient numerical methods.

5.3. Some remarks on the numerical computation of the loss distributions. In this subsection
we give some important remarks on the computation of the loss distribution F

L
(S)
t

(x). The observations

done in this subsection will also hold for the loss distributions derived in Section 3 and Section 4 and for
the credit portfolio model studies in Section 6.

The computations in the left panel of Figure 2 are done by numerically solve Equation (2.72). From

Theorem 2.12 we know that F
L
(S)
t

(x) = P

[

L
(S)
t ≤ x

]

is given by

F
L
(S)
t

(x) = 1−
m
∑

k=0

Ψk

(

1− x

S0
, t, µ, σ, 1, η

)

P

[

N
(m)
t = k

]

(5.3.1)

where the mappings Ψk (x, t, µ, σ, u, η) satisfy 0 ≤ Ψk (x, t, µ, σ, u, η) ≤ 1 and are defined in (2.30)-(2.31).
By looking at e.g. the left panel in Figure 1 but also in the left panels of Figure 4, 11 and 13, wee see

that the probabilities P
[

N
(m)
t = k

]

are extremely small for moderate and large integers k for most time

points t. For example, in the left panels of Figure 1 we have that P

[

N
(m)
t = k

]

< 10−14 for k ≥ 65 at

all time points t, and P

[

N
(m)
t = k

]

< 10−28 for k ≥ 85 at all t. These observations means that we do

not have to compute all the terms in the sum for F
L
(S)
t

(x) given by (5.3.1), but still have a very accurate
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approximation to F
L
(S)
t

(x) in the truncated sum. For example, let ε be a very small positive constant,

e.g. ε ≤ 10−9. Then, for each fixed t, there exists a subsequence k0, k1, k2, . . . , kmt(ε) of the integers
0, 1, 2, . . . ,m such that

mt(ε)
∑

j=0

P

[

N
(m)
t = kj

]

≥ 1− ε . (5.3.2)

In the credit portfolio models used in this paper the subsequence k0, k1, k2, . . . , kmt(ε) can always be chosen
on the form 0, 1, . . . ,mt(ε), that is kj = j for j = 0, 1, . . . ,mt(ε) so that (5.3.2) can be rewritten as

mt(ε)
∑

k=0

P

[

N
(m)
t = k

]

≥ 1− ε and thus
m
∑

k=mt(ε)+1

P

[

N
(m)
t = k

]

< ε (5.3.3)

where it obviously holds that mt(ε) ≤ m for any 0 < ε < 1 and at all time points t. Typically, for the
credit portfolio models studied in this paper it will often (but not always) hold that mt(ε) << m for
most time points t. Given an arbitrary number 0 < ε < 1, and for a fixed t, we can in view of the above
observations define the function F ε

L
(S)
t

(x) as

F ε

L
(S)
t

(x) = 1−
mt(ε)
∑

k=0

Ψk

(

1− x

S0
, t, µ, σ, 1, η

)

P

[

N
(m)
t = k

]

(5.3.4)

where the rest of the parameters and mappings are defined as in (5.3.1). Then, (5.3.1), (5.3.3) and (5.3.4)
together with the triangle inequality implies that

∣

∣

∣

∣

F
L
(S)
t

(x)− F ε

L
(S)
t

(x)

∣

∣

∣

∣

≤ ε for all x ∈ R (5.3.5)

where we in (5.3.5) also used that 0 ≤ Ψk (x, t, µ, σ, u, η) ≤ 1 for all k. Hence, for small ε, then (5.3.5)
implies that F ε

L
(S)
t

(x) will be a very sharp approximation to the loss distribution F
L
(S)
t

(x) in (5.3.1). Since

it will often hold that mt(ε) << m, then computing F ε

L
(S)
t

(x) will be much faster than computing the

exact distribution F
L
(S)
t

(x) while simultaneously have an accuracy of F ε

L
(S)
t

(x) compared to F
L
(S)
t

(x) that

is smaller than ε given the relation (5.3.5). Table 3 displays mt(ε) for t = 1, 3, 6, 12, 18, 24 months where
m = 125 and ε = 10−9 when the individual default times have CIR-intensities as in Table 1.

Table 3. The upper truncation level mt(ε) defined as in (5.3.3) for t = 1, 3, 6, 12, 18, 24 months
where m = 125 and ε = 10−9, when the individual default times have CIR-intensities as
in Table 1.

t (in months) 1 3 6 12 18 24
mt(ε) 53 54 54 54 54 55

Hence, from Table 3 we see that in order to have an accuracy of order ε = 10−9 in our approximation
F ε

L
(S)
t

(x) to the exact distribution F
L
(S)
t

(x) at the time points t = 1, 3, 6, 12, 18, 24, we never need to have

more than 56 terms in the sum of F ε

L
(S)
t

(x) compared with 126 terms in F
L
(S)
t

(x) (recall that we start

counting from 0, so e.g. mt(ε) = 55 means 56 terms in the sum for F ε

L
(S)
t

(x) etc.). Also note that for

e.g. 99.9%-VaR computations, we will in our numerical solution of Equation (2.72) work with x∗-values
so that F

L
(S)
t

(x∗) = 0.999. Since we choose ε = 10−9 and since both F
L
(S)
t

(x) and F ε

L
(S)
t

(x) are continuous

mappings in x, and the error-bound in (5.3.5) holds uniformly for all x ∈ R, then the solution x∗ε of the
equation F ε

L
(S)
t

(x∗ε) = 0.999 should therefore be extremely close to the exact VaR-solution x∗ satisfying

F
L
(S)
t

(x∗) = 0.999. More specific, from (5.3.5) we have

10−9 ≥
∣

∣

∣

∣

F
L
(S)
t

(x∗ε)− F ε

L
(S)
t

(x∗ε)

∣

∣

∣

∣

=
∣

∣

∣F
L
(S)
t

(x∗ε)− 0.999
∣

∣

∣

so that the solution x∗ε of the equation F ε

L
(S)
t

(x∗ε) = 0.999 will give a value of F
L
(S)
t

(x∗ε) that deviates at

most 10−9 from α = 0.999 = 99.9% which is very accurate. Hence, we can therefore approximate the
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exact 99.9%-VaR value x∗ with x∗ε obtained from solving F ε

L
(S)
t

(x∗ε) = 0.999 where the function F ε

L
(S)
t

(x) is

defined as in (5.3.4). Similar arguments obviously also hold for the 99%-VaR and 95%-VaR computations.
Furthermore, note that e.g 56 terms (i.e. mt(ε) + 1) versus 126 terms when m = 125 (i.e m+1 = 126)

will mean a running time of VaR-computations with F ε

L
(S)
t

(x) which is more than twice as fast compared

with VaR-computations for the exact distribution F
L
(S)
t

(x).

Finally we again remark that the same type of truncation techniques done in this subsection will
also hold for the loss distributions derived in Section 3 and Section 4, and will be applied in all of the
computations done Section 6.

6. Numerical examples when the default times are driven by a one-factor Gaussian
copula model

In the previous section we studied the time-evolution of Value-at-Risk for a single stock over a two-year
period in time steps of one month where the stock has jumps at default times driven by a CIR-process.

In this section we will amongst others study the time-evolution of Value-at-Risk for a portfolio of stocks
over a 20 day period in time steps of one trading day, with jumps in all stock prices occurring at default
times of an external group of defaultable entitles C1, . . . ,Cm. Throughout this section we assume that
the default times τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are exchangeable, conditional independent and
are driven by a one-factor Gaussian copula model. First, in Subsection 6.1 we briefly discuss the model
for the default times and present the parameters used in this framework. We then also display related

quantities such as e.g. the distribution of the number of defaults P
[

N
(m)
t = k

]

etc. Next, in Subsection

6.2 we study VaR for a portfolio consisting of J = 70 stocks by using the linear approximation formulas
in Theorem 3.8. In Subsection 6.3 we consider a large portfolio with J = 150 stocks and then use the
LPA (large portfolio approximation) formulas in Theorem 4.2 to compute VaR for this equity portfolio.
Finally, in Subsection 6.4 we repeat similar studies as in Subsection 6.2 but now for a two-year period in
steps of one month.

6.1. The parameters and related quantities. In this section we assume that the default times
τ1, τ2 . . . , τm to the entities C1, . . . ,Cm are exchangeable, conditional independent and are driven by
a one-factor copula model as discussed in Subsection 3.2.1. Hence, the conditional default probability is
same for all entities C1, . . . ,Cm and given by

P [τi ≤ t |Z] = Φ

(

Φ−1 (F (t))−√
ρZ√

1− ρ

)

(6.1.1)

where Z is standard normal random variable, ρ is the so-called default-correlation parameter, Φ(x) is dis-
tribution function to a standard normal random variable. Furthermore, F (t) = P [τi ≤ t] is the marginal
default distribution same for all entities due to the exchangeability. For more about factor copula models,
see e.g. in Nelsen (1999), McNeil, Frey & Embrechts (2005), Schönbucher (2003) or Hofert & Scherer
(2011).

The jumps Ṽ1, . . . , Ṽm in St at the defaults τ1, τ2 . . . , τm are distributed as in the numerical studies in

Section 5, that is Ṽi = e−Ũi − 1 where Ũ1, . . . , Ũm are i.i.d and exponentially distributed with parameter
η > 0. Hence, given the above assumptions, the dynamics of the stock price St,j is same as in Corollary

2.11 and Theorem 2.12 where N
(m)
t =

∑m
i=1 1{τi≤t} and τ1, τ2 . . . , τm are exchangeable, conditionally

independent, and come from a one-factor Gaussian model as in (6.1.1). In our numerical examples we
set F (t) = P [τi ≤ t] = 1− e−λt and calibrate λ so that the one-year default probability is same as in the
CIR-model in Section 5, that is 0.0329 = 3.29% and this gives λ = 0.0335, see in Table 4. Furthermore,
we set the ”default-correlation” ρ to ρ = 0.3 and let the number of defaultable entities be m = 125, see
in Table 4.

Table 4. The parameters and related quantities for the one-factor Gaussian copula model and the
stock prices St,j where we let m = 125.

Gauss copula m = 125 ρ = 0.3 F (t) = 1− e−λt λ = 0.0335 P [τi ≤ 1] = 0.0329 = 3.29%

St,j S0 = 50 µ = 0.15 σ = 0.2 ρS = 0.25 η = 21.98 E [Un,j] =
1
η
= 0.0455 = 4.55%
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In Table 5 we show the expected number of defaults E
[

N
(m)
t

]

and VaR99.9%

(

N
(m)
t

)

for t = 1, 5, 10, 15, 20

days when the individual default times are driven by a one-factor Gaussian copula model with parame-
ters as in Table 4 and where m = 125. From Table 5 we see that the expected number of defaults the
first 20 days will never exceed one default, and consequently the expected number of jumps in the stock
prices the first 20 days will also be less than one. By our assumption of exchangeability we have that

E

[

N
(m)
t

]

= mP [τi ≤ t] = m(1 − e−λt) so the individual default probabilities at t = 1, 5, 10, 15, 20 days

are obtained from Table 5 by dividing the numbers for E
[

N
(m)
t

]

with m. Also note from Table 5 we e.g.

see that after 10 days, there is a 0.1% probability of having 8 defaults or more among the entities in the
exogenous group which are negative affecting the stock prices in our equity portfolio, and after 15 days
there is a 0.1% probability of 11 defaults or more among the entities in the same exogenous group.

Table 5. The expected number of defaults E
[

N
(m)
t

]

and VaR99.9%

(

N
(m)
t

)

for t = 1, 5, 10, 15, 20

days when individual default times are driven by a one-factor Gaussian copula model
with parameters as in Table 4 and where m = 125.

t (in days) 1 5 10 15 20

E

[

N
(m)
t

]

0.0166 0.0829 0.1658 0.2487 0.3314

VaR99.9%

(

N
(m)
t

)

2 5 8 11 13

Next we turn to the parameters for the stock price model. First, note that the linearized loss distribution
given in Theorem 3.8 will work for heterogeneous portfolios of arbitrary size J . However, for simplicity
we will consider the homogeneous case, that is the stock prices St,1, . . . , St,J satisfy (3.34) in Remark
3.9, so that S0,j = S0, µj = µ, σj = σ and ρS,j = ρS for all firms A1, . . . ,AJ in the stock portfolio.
Furthermore, we let the parameters µ and σ be same as in the CIR-model case studied in Section 5
so that S0 = 50, µ = 0.15 = 15%, and σ = 0.2 = 20% and we let the stock correlation parameter ρS
be ρS = 0.25, see in Table 4. The jump parameter η is calibrated so that condition (5.1.4) will hold,
that is η is calibrated so that the defaults from the one-factor copula models, ”wipes” out the expected
one-year log-growth for a corresponding Black-Scholes model with drift µ = 15% and where m = 125.
With the default and stock parameters as in Table 4, we then get that η = 21.98 via a numerical solver
so E [Un,j] =

1
η
= 0.0455, see also in Table 4.

Figure 4. The time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, . . . , 20 days in a one-

factor Gaussian copula model with parameters as in Table 4 wherem = 125 and ρ = 0.3.
Left panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18.
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With the one-factor Gaussian copula parameters in Table 6.1 we compute P

[

N
(m)
t = k

]

as described

above, and the left panel in Figure 4 plots, form = 125, the time evolution of the distribution P

[

N
(m)
t = k

]

in log-scale where k = 0, ..., 125 and t = 1, 2, . . . , 20 days. Furthermore, the right panel in Figure 4 displays

the time evolution of the number of distribution P

[

N
(m)
t = k

]

in normal scale where k = 0, 1, . . . , 18 when

m = 125 and t = 1, 2, . . . , 20 days where the default times have same distribution as in Figure 4. The
plots in Figure 4 were generated with the algorithms developed in Herbertsson (2022) and in these figures

we write t in days, but the actual computations of P
[

N
(m)
t = k

]

are done with t measured in units of

years. So for example two, six and 20 days mean that t is given by t = 2
252 ,

6
252 and t = 20

252 in the formulas

used for the computations of P
[

N
(m)
t = k

]

, where we remind that 252 is the average number of trading

days on e.g. the US-stock market.

6.2. VaR over a 20-day period for a linearized portfolio of stocks when the jumps are due
to default times driven by a one-factor Gaussian copula model. In this subsection we study
Value-at-Risk for a portfolio of stocks as function of time over a 20-day period in time steps of one
trading day, with jumps in all stock prices occurring at default times τ1, τ2 . . . , τm which are exchangeable,
conditional independent and are driven by a one-factor copula model as discussed in Subsection 6.1 and
with parameters as in Table 4. We study VaR for a portfolio of J = 70 stocks by using the linear
approximation formulas in Theorem 3.8.

In Figure 5-6 we study the time evolution of Value-at-Risk (in % of V0) for a portfolio of J = 70 stocks
discussed in Subsection 6.1 where t = 1, 2, . . . , 20 days, computed with same stock parameters as in Table
4. For m = 125, the left panel in Figure 5 displays the time evolution of Value-at-Risk in % of V0 for
t = 1, 2, . . . , 20 days in the case when St has jumps coming from default times in a one-factor Gaussian
copula model with parameters as in Table 1. The right panel in Figure 5 displays the Black-Scholes case
for the stock price, i.e. with no jumps in St which has same drift and volatility parameters as in the left
panel. From the left panel of Figure 5, looking at the red line (99.9%-VaR), we see that for t = 12

252 , that
is after 12 days, then there is a 0.1% probability of having a loss in the stock portfolio which is 42% or
bigger, of the initial portfolio value V0 at time t = 0. Furthermore, in Figure 6 we plot the time evolution
of the relative difference of Value-at-Risk (in %) between the case with jumps in the stock prices St,j
coming from default times in a one-factor Gaussian copula model with parameters as in Table 1, and the
standard Black-Scholes case, i.e. without jumps. The relative difference is measured with respect to the
Black-Scholes case. The rest of the parameters for St,j are same as in Table 4. As can be seen in Figure
6, introducing downward jumps in St,j at the default times τ1, τ2 . . . , τm which comes from a one-factor
Gaussian copula model, will for example increase the 99.9%-VaR up to around 1450% compared to the
Black-Scholes model, and for the 99%-VaR up to 765%.

Furthermore, we also note the curves in the left panel of Figure 5 are not as smooth as in the left panel of
Figure 2. The main reason for the somewhat non-smooth curves in Figure 5 is that the computations are
down over a very short time period of 20 days, in steps of one trading day leading to a quite degenerated

distribution for P

[

N
(m)
t = k

]

over k as seen e.g. the right panel in Figure 4. More specific, for t =

1, 2, . . . , 20 days, the distribution P

[

N
(m)
t = k

]

will have a very high probability for k = 0 (”no defaults”),

almost equal to one, while P

[

N
(m)
t = k

]

will be very small for k ≥ 1. These degenerated distributions to

N
(m)
t follows from the small time points and will for the loss distributions FL∆V

t
(x) = P

[

L∆V
t ≤ x

]

given

in (3.18)-(3.20) create more numerical challenges for the solver used in the numerical solutions of the VaR-

equation FL∆V
t

(x) = α compared to a less ”degenerated” distribution P

[

N
(m)
t = k

]

. If P
[

N
(m)
t = k

]

is

computed over a long period such as e.g. two years, then P

[

N
(m)
t = k

]

will have a quite large probabilities

also for k ≥ 1, see e.g. the right panel in Figure 13, and this will lead to very smooth VaR-curves in the
Gaussian one-factor case, with same parameters as in Table 4, see the left panel in Figure 12 in Subsection
6.4. All the VaR-computations in the left panel of Figure 5 are done by numerically solving the equation
FL∆V

t
(x) = α where FL∆V

t
(x) is computed using Theorem 3.8 under condition (3.34) in Remark 3.9 so

that the mappings ΨV
k (x, t, µ, σ, S0, ρS , η) in FL∆V

t
(x) are given by (3.35)-(3.36). Furthermore, in our

computations of FL∆V
t

(x) we use the same truncation techniques as discussed in Subsection 5.3. Finally,
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the VaR-computations in the right panel of Figure 5 are done by using Equation (3.43) in Corollary 3.11
for the ”Black-Scholes” linear portfolio case.
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Figure 5. m = 125: The time evolution of Value-at-Risk (in % of V0) of a linearized stock portfolio
with J = 70 stocks for t = 1, 2, . . . , 20 days. Left panel: In the case with jumps in
the stock price where the individual default times are driven by a one-factor Gaussian
copula model with parameters as in Table 4. Right panel: In the Black-Scholes case,
i.e. without jumps, and where the drift and volatility are same as in the left panel.
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Figure 6. The time evolution of the relative difference of Value-at-Risk (in %) for t = 1, 2, . . . , 20
days between the case of linearized stock portfolio with J = 70 stocks with jumps in
the stock price where the individual default times are driven by a one-factor Gaussian
copula model with parameters as in Table 4, and the linearized Black-Scholes case, i.e.
without jumps, where drift and volatility is same as in the jump case. The relative
difference is measured with respect to the Black-Scholes case.
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As discussed in Section 4, the linearized loss L∆V
t will only work somewhat accurately as an approxi-

mation to the true loss L
(V )
t when the time t is small, that is if |Xt,j | is small for all j when t is small.

Recall that Xt,j is defined as in (3.11) and from the expression in (3.11) it is clear that the more potential

number of jump terms
∑N

(m)
t

n=1 Un,j in the expression for Xt,j , that is the more defaultable entities m, the
less likely it will be that |Xt,j | is ”small”. Thus, |Xt,j | should in general grow in the number of defaultable
entities m. So it is therefore of interest to study St,j and its linear approximation S0 (1 +Xt,j) as function
of number of defaulted entities m for different time points t. Hence, Figure 7 displays the expected value
of St,j and its linear approximation S0 (1 +Xt,j), that is E [St,j ] and S0E [(1 +Xt,j)] as function of number
of defaulted entities m, for t = 5, 10, 20 and t = 252 days where Xt,j is defined as in Equation (3.11) with
parameters as in Table 4. The jumps in the stock price occur at default times driven by a one-factor
Gaussian copula model with parameters as in Table 4. The number of defaultable entities m runs from 5
up to 135 in Figure 7.
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Figure 7. Expected value of St,j and its linear approximation S0 (1 +Xt,j), that is E [St,j ] and
S0E [(1 +Xt,j)] as function of number of defaulted entities m, for t = 5, 10, 20 and
t = 252 days where Xt,j is defined as in Equation (3.11) with parameters as in Table
4. The jumps in the stock price occur at default times driven by a one-factor Gaussian
copula model with parameters as in Table 4.

Furthermore, Figure 8 shows the relative difference between E [St,j] and S0E [(1 +Xt,j)] in percent, as
function of number of defaulted entities m for t = 5, 10, 20 days in the left panel and for t = 252 days in
the right panel, where Xt,j is defined as in Equation (3.11) with model and parameters same as in Figure
7. The relative difference is measured with respect to E [St,j]. From Figure 8 we e.g. see that the relative
error, or difference for t = 5 days, never exceeds 0.07% when m ≤ 135. Also, when t = 1 year, that
is t = 252 days, then the relative error is always smaller than 6%. In all plots in Figure 8 the relative
difference is increasing when m ≥ 20.
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Figure 8. Relative difference between E [St,j ] and S0E [(1 +Xt,j)] in percent as function of number
of defaulted entities m for different time points t where Xt,j is defined as in Equation
(3.11) with model and parameters same as in Figure 7. The relative difference is
measured with respect E [St,j]. Left panel: for t = 5, 10, 20 days. Right panel: for
t = 252 days.

6.3. VaR over a 20-day period for a large homogeneous stock portfolio where jumps in stocks
are due to default times driven by a one-factor Gaussian copula model. In this subsection we
study Value-at-Risk for a large homogeneous portfolio of stocks as function of time over a 20-day period
in time steps of one trading day. The stock prices in the portfolio have jumps occurring at default times
τ1, τ2 . . . , τm which are exchangeable, conditional independent and are driven by a one-factor Gaussian
copula model as discussed in Subsection 6.1 and with parameters as in Table 4. We study VaR for a
portfolio of J = 150 stocks by using the LPA approximation formulas in Theorem 4.2 and we do our VaR
studies for two different levels of the default correlation parameter ρ in the one-factor Gaussian copula
model. First, in the left panel of Figure 9 we display the time evolution of Value-at-Risk in % of V0 for
t = 1, 2, . . . , 20 days in the case when St,j has jumps coming from default times in a one-factor Gaussian
copula model with parameters as in Table 1 so the default-correlation ρ is set to ρ = 0.3. The right
panel in Figure 9 displays the same quantities as in the left panel but now with the default-correlation
parameter ρ = 0.6 and η = 13.92 so that condition (5.1.4) holds, just as in the left panel of Figure 9.
Comparing the VaR-curves in the left and right panel in Figure 9 we see that e.g. the 99% and 99.9%-VaR
plots for ρ = 0.6 in the right panel are much higher than the corresponding curves for ρ = 0.3 in the left
panel where η = 13.92, with the rest of the parameters same as in the left panel. For example, looking
at the red line (99.9%-VaR) in the right panel with ρ = 0.6, we see that after 12 days there is a 0.1%
probability of having a loss in the portfolio which is 80% or bigger, of the initial portfolio value V0 at
time t = 0. However, when ρ = 0.3 in the left panel, there is for the same time, that is 12 days, a 0.1%
probability of having a loss in the portfolio which is 33% or bigger, of the initial portfolio value V0 at
time t = 0. The big differences between the curves for same α-levels in the two panels are due to the fact

that a default-correlation of ρ = 0.6 will create probabilities P

[

N
(m)
t = k

]

that are substantially larger

for lower k-values compared to the corresponding probabilities in the case when ρ = 0.3. Looking at the

left panel in Figure 11 which displays the time evolution of the distribution P

[

N
(m)
t = k

]

in log-scale

for k = 0, ..., 125 and t = 1, 2, . . . , 20 days in a one-factor Gaussian copula model where ρ = 0.6 and

comparing these probabilities with the corresponding values for P
[

N
(m)
t = k

]

in the left panel in Figure

4 where ρ = 0.3, we see that the levels of P
[

N
(m)
t = k

]

when ρ = 0.6 for some k are a factor 105 higher

compared with the probabilities P
[

N
(m)
t = k

]

when ρ = 0.3 for the same k-values. The curves in the left

panel of Figure 9 are not as smooth as in e.g. the left panel of Figure 2 and the reason for this is the same
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as discussed in Subsection 6.2. As will be seen in Subsection 6.4, longer periods such as two years, will
lead to very smooth VaR-curves in the Gaussian one-factor case, with same parameters as in Table 4.
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Figure 9. The time evolution of Value-at-Risk (in % of V0) computed with the LPA-formula in
Theorem 4.2 for t = 1, 2, . . . , 20 days of a homogeneous portfolio with J = 150 stocks
which has jumps in all stock prices at default times driven by a one-factor Gaussian
copula model with m = 125 and parameters as in Table 4. Left panel: Default-
correlation parameter ρ = 30% and η = 21.98. Right panel: Default-correlation
parameter ρ = 60% and η = 13.92. In both panels condition (5.1.4) holds.
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Figure 10. The time evolution of the relative difference of Value-at-Risk (in %) for t = 1, 2, . . . , 20
days between a stock portfolio with jumps as in Figure 9 using the LPA formula in
Theorem 4.2 and the standard Black-Schole case, i.e. without jumps given by right
panel in Figure 11. The relative difference is measured with respect to the Black-
Scholes case. All parameters for the jump-model are as in Figure 9. Left panel:
With default-correlation parameter ρ = 30% and η = 21.98. Right panel: With
default-correlation parameter ρ = 60% and η = 13.92.
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Next, in the two panels in Figure 10 we display the time evolution of the relative difference of Value-
at-Risk (in %) for t = 1, 2, . . . , 20 days between a stock portfolio with jumps as in Figure 9 using the
LPA-formula (4.5) in Theorem 4.2 and the standard Black-Scholes case, i.e. without jumps given by
in the right panel of Figure 11 computed with the Black-Scholes LPA-formula in Equation (4.30) with
parameters as in Table 4. As can be seen in Figure 10 the differences between the jump vs non-jump
VaR-cases are huge. For example, the 99.9%-VaR for ρ = 0.6 in the right panel is for some time points
around 3000% higher than the corresponding 99.9%-VaR values in the Black-Scholes portfolio case. In
our VaR-computations in Figure 9 we use the same truncation techniques for the LPA-portfolio loss
distributions as discussed in Subsection 5.3.

Figure 11. Left panel: The time evolution of the distribution P

[

N
(m)
t = k

]

in log-scale for

k = 0, ..., 125 and t = 1, 2, . . . , 20 days in a one-factor Gaussian copula model where
m = 125, ρ = 0.6, η = 13.92 and rest of the parameters are same as in Table 4. Right
panel: The time evolution of Value-at-Risk (in % of V0) for t = 1, 2, . . . , 20 days of a
homogeneous portfolio with J = 150 stocks in the Black-Scholes case computed with
the LPA-formula in Equation (4.30) and with parameters as in Table 4.

6.4. VaR over a 2-year period for a large homogeneous stock portfolio where jumps in stocks
are due to default times driven by a one-factor Gaussian copula model. In this subsection we
repeat similar studies and for the same model and same parameters as in Subsection 6.2 but now for a
two-year period in steps of one month. The obtained VaR-curves in this subsection will be smooth and
continuous, just as in the CIR-case where we also studies VaR over a two-year period. Hence, Figure 12
shows the same type of VaR-curves as in Figure 5, but for a two-year period, and all parameters in Figure
12 are same as in Figure 5, and given by Table 4. By comparing the curves in the left panel of Figure
12 with the graphs in left panel in Figure 5, we clearly see that the VaR-values over a two-year period
are very smooth and continuous. Not surprisingly, the VaR-values for the two-year period are also much
higher than for the 20-day period. For example, looking at the red line (99.9%-VaR) in Figure 12 we see
that after 12 months, then there is a 0.1% probability of having a loss in the portfolio which is 90% or
bigger, of the initial portfolio value V0 at time t = 0.

In Figure 13 we display the time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, . . . , 24 months

in a one-factor Gaussian copula model with parameters as in Table 4 where m = 125 and ρ = 0.3.
Comparing the probabilities in Figure 13 over a two-year period with those in Figure 4 over a 20-day
period, we see that there are huge differences. Furthermore, in the two-year case our probabilities are
now much less degenerated, i.e. not centered around k = 0 as in the 20-day period, and this fact also
explains the much more smooth curves in in the left panel of Figure 12 compared with those in left panel
in Figure 5. All computations in Figure 12 are done as in Subsection 6.3 and with the same parameters,
and the only difference is that we now consider a two-year period in steps of one month. Furthermore,
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just as in previous subsections, we will in our VaR-computations in Figure 12 use the same truncation
techniques for the LPA-portfolio loss distributions as discussed in Subsection 5.3.
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Figure 12. The time evolution of Value-at-Risk (in % of V0) computed with the LPA-formulas in
a homogeneous portfolio with J = 150 stocks for t = 1, 2, . . . , 24 months. Left panel:
In the case with jumps in the stock price where the individual default times are driven
by a one-factor Gaussian copula model with parameters as in Table 4 and using the
LPA-formula in Theorem 4.2. Right panel: In the Black-Scholes case, i.e. without
jumps, using the LPA-formula in Equation (4.30) and with parameters as in Table 4.

Figure 13. The time evolution of the distribution P

[

N
(m)
t = k

]

for t = 1, 2, . . . , 24 months in a

one-factor Gaussian copula model with parameters as in Table 4 where m = 125 and
ρ = 0.3. Left panel: in log-scale for k = 0, ..., 125. Right panel: for k = 0, ..., 18.
The plots in the panels are viewed from different angles.

Note that the right panel in Figure 12 shows the VaR-values for the Black-Scholes case, i.e. without
jumps, using the LPA-formula in Equation (4.30) and with same drift, stock-correlation and volatility
parameters as in the left panel, see also in Table 4. From the right panel in Figure 12 we see that in
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the Black-Scholes LPA portfolio model it is extremely difficult to obtain losses over a two-year period,
where we remind that a negative loss is a gain. For example, we see that after 20 months there is a 95%
probability of having a gain which is 15.2% or more of the initial portfolio value V0. Similarly, after 20
months there is a 99% probability of having a gain which is 10.3% or more of the initial portfolio value
V0 and 99.9% probability of having a gain which is 4.96% or more of the initial portfolio value V0. The
intuitive explanation of these VaR-resuls in the Black-Scholes LPA portfolio setting is that the growth
rate will for longer time periods beat the downside risk given by the volatility term, while such positive
stock-prognoses are newer possible in the corresponding stock price model with jumps at external defaults
over the same time period of 20 months, as clearly seen in the left panel of Figure 12.

Table 6. The expected number of defaults E
[

N
(m)
t

]

and VaR99.9%

(

N
(m)
t

)

for t = 1, 6, 12, 18, 24

months when individual default times are driven by a one-factor Gaussian copula model
with parameters as in Table 4 and where m = 125.

t (in months) 1 6 12 18 24

E

[

N
(m)
t

]

0.3480 2.073 4.113 6.118 8.090

VaR99.9%

(

N
(m)
t

)

13 39 55 66 74

In Table 6 we show the expected number of defaults E
[

N
(m)
t

]

for t = 1, 3, 6, 12, 18, 24 months when the

individual default times are driven by a one-factor Gaussian copula model with parameters as in Table 4
and where m = 125. So from Table 6 we see that our one-factor Gaussian copula model implies that we
expect for example around 2 defaults in six months, 4 defaults in one year, and 8 defaults in two-years.
Consequently this is also the number of jumps that we expect to occur in our stock price up to each of these
time points where each jump has the expected size of E [U ] = 1

η
. By our assumption of exchangeability

we have that E
[

N
(m)
t

]

= mP [τi ≤ t] so the individual default probabilities at t = 1, 3, 6, 12, 18, 24 months

are obtained from Table 6 by dividing the numbers for E
[

N
(m)
t

]

with m. From Table 6 we also see that

after e.g. 6 months, there is a 0.1% probability of having 39 defaults or more among the entities in the
exogenous group which are negative affecting the stock prices in our equity portfolio, and after 24 months
(i.e. 2 years) there is a 0.1% probability of 74 defaults or more among the entities in the exogenous group
negative affecting the stock prices in our equity portfolio, when using the parameters in Table 4.
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Schönbucher, P. J. (2003), Credit Derivatives Pricing Models. Models, Pricing and Implementation, Wiley, UK.
Schoutens, W. (2003), Levy Processes in Finance. Pricing Financial Derivatives, Wiley, Chichester.
Williams, D. (2000), Probability with Martingales., Cambridge mathematical textbooks, Cambridge.

(Alexander Herbertsson), Centre For Finance, Department of Economics, School of Business, Economics
and Law, University of Gothenburg, P.O Box 640, SE-405 30 Göteborg, Sweden
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