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Abstract

In this paper, we investigate differences in government responses to the COVID-19

pandemic. Drawing on the theory of the Behavioral Immune System and the Para-

site Stress Theory, we hypothesize that a higher historical disease exposure leads to a

stricter government response to the pandemic, in particular during the first year which

was characterized by fundamental uncertainty. Our empirical analysis, using weekly

panel data for almost every country in the world, show that a higher historical disease

exposure is indeed related to a stronger response to disease dynamics, at least in the

first year of the pandemic. The pattern is the same for state-level containment policies

within the United States. Our results suggest that the persistence of historical legacies

may not be deterministic, but rather time-varying and conditional on circumstances.

Cultural norms may matter more in times of crisis and fundamental uncertainty.
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1 Introduction

Why did some countries, like China, pursue draconian lockdowns during the COVID-19

pandemic while others, like Sweden, had much less strict measures? Our paper explores

the importance of historical disease exposure for explaining the variation over time across

countries in the strictness of government containment policies during the recent COVID-19

pandemic of 2020-22. We propose a conceptual framework in which a comparatively high

historical prevalence of infectious disease activated a behavioral immune system that resulted

in informal behavioral norms characterized by pathogen avoidance and a strong in-group ori-

entation. We demonstrate empirically that the explanatory power of such deep behavioral

norms from the past for predicting government policy is strongest in times of fundamen-

tal (Knightian) uncertainty such as during the early, pre-vaccine stage of the COVID-19

pandemic in 2020, whereas their importance fades when uncertainty is reduced (in the post-

vaccine stage of 2021-22). Apart from our analysis of government responses to COVID-19,

we contribute to the ”persistence literature” in economics by showing that the influence of

historically determined behavioral norms on contemporary outcomes, might in fact often be

conditional on context- and time-specific circumstances, rather than being deterministic.

A large literature in economics has shown that cultural norms and formal institutions

play an important role for understanding cross-country differences in economic growth and

prosperity (North, 1991; Acemoglu et al., 2005; Nunn, 2012). A typical research design

in this ”persistence literature” postulates that some historical exogenous condition X has

given rise to a cultural or institutional configuration Z, which in turn has caused differences

in a contemporary outcome variable Y, for instance in GDP per capita. One famous public

health-related example of such a theory is Acemoglu et al. (2001), hypothesizing that ex-

ogenous variation in mortality in malaria and yellow fever among colonial settlers (X ) led

to the adoption of disease environment-specific colonial policies and institutions (where Z

is either extractive or inclusive institutions), which in turn had a long-term and persistent

effect on GDP per capita. Focusing on former French colonies in Africa, Lowes and Mon-
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tero (2021) demonstrate that coercive colonial campaigns, aimed at preventing disease like

sleeping sickness, led to a persistent culture of mistrust against modern medicine. Another

well-known study in this tradition suggests that an historically high exposure to infectious

disease led to in-group oriented, collectivist cultural norms that facilitated collective action

but which retarded modern innovation (Gorodnichenko and Roland, 2017). Since extractive

institutions and collectivist cultural norms have been widely accepted as being harmful for

modern technology-driven economic growth, another branch of the field has focused on the

reduced-form impact of historical conditions X (such as climatic variation and an early tran-

sition to agriculture) with cultural norms Z as an outcome variable (Talhelm et al., 2014;

Olsson and Paik, 2016; Giuliano and Nunn, 2021; Ho et al., 2022).

However, this persistence literature has recently been criticized for being overly deter-

ministic and for overstating the importance of historical conditions. For instance, Maseland

(2021) shows that the impact of the various proposed historical condition X do not always

have a consistently significant effect in line with the underlying hypothesis when the out-

come variable is measured over a range of more recent years. Regardless of the validity of

the specific empirical criticisms of the persistence literature, there is a looming conceptual

question whether it is reasonable to think of historically determined cultures or institutions

as having a consistently negative or positive impact on contemporary desirable outcomes

or whether the impact of the historical legacy might in fact often be context-specific and

time-varying? For instance, a collectivist culture might be beneficial for achieving a high

popular acceptance of mobilization during times of war or of restrictions during pandemics,

but might also constrain international exchange and hinder the pursuit of drastic innovations

that lead to ”creative destruction”1

In this paper, we develop a conceptual framework where we argue that historical condi-

tions and their associated deep behavioral norms should in general have a stronger impact on

1See for instance Gorodnichenko and Roland (2017) for a discussion about the tradeoff between indi-
vidualism and collectivism when it comes to innovation and public goods-provision which were central for
development at different points in time.
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contemporary government policy in times of fundamental (or Knightian) uncertainty such

as during wars and pandemics, whereas there should be a weaker link to individual behavior

and public policy during ”normal” times. We further hypothesize that historical legacies will

play a greater role during the early phase of major crises when useful knowledge from recent

experiences is almost non-existent and uncertainty therefore is so high that the probability

distribution of potential outcomes is more or less unknown (Knight, 1921).

We test this hypothesis using the recent COVID-19 pandemic as a natural experiment.

We propose that exogenous variation in the historical prevalence of infectious disease should

have influenced historical behavior and present policies for disease containment. We ground

this hypothesis in the recently developed theory of the Behavioral Immune System (BIS)

suggesting that a historical high prevalence of pathogens should give rise to pathogen avoiding

behavioral rules, including avoidance of strangers and in-group orientation (Murray and

Schaller, 2016; Ackerman et al., 2021). All else equal, we propose that countries with a

higher level of historical pathogen prevalence (HPP) should adopt stricter government policy

(i.e. in terms of lockdowns, school closures, etc) during the 2020-22 COVID-19 pandemic.

The key test of our theory exploits the fact that the first year of the pandemic 2020

was characterized by very high degree of Knightian uncertainty about the transmission and

mortality of COVID-19 and the effectiveness of non-pharmaceutical interventions (NPIs)

(Ferguson et al., 2020), whereas the rapid development of COVID vaccines during the latter

half of 2020 should have reduced Knightian uncertainty during 2021-22.

In our empirical analysis, we create weekly measures of COVID-19 policy strictness and

reported deaths in COVID-19 for all countries in the world and for US states during 2020-22

from the OxCGRT database (Hale et al., 2021). After controlling for objective informational

input to the government, i.e. the reported mortality per capita in the disease within the

country as well in neighboring countries, we study whether (static) measures of historical

pathogen prevalence (HPP) from Murray and Schaller (2010) have a time-varying impact on

policy strictness along the lines hypothesized above. Our panel results indeed show that a
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higher HPP gave rise to a greater sensitivity to reported deaths during 2020 but that this

effect disappeared during 2021-22 among the 182 countries in our sample. A very similar

pattern arises when we instead use US states as our sample. The result is robust to using

other outcomes variables and proxies for historical disease exposure.

We interpret these results as showing that historical legacies might have time-varying

effects on contemporary outcomes and that historical behavioral norms matter in a more

profound sense in times of fundamental uncertainty. We argue that this insight of the

possibility of conditional persistence is novel to the literature and believe that our results

might inform a more nuanced future analysis of how historical cultures and institutions affect

contemporary policy and economic prosperity.

Our paper is related to several strands of literature. Most obviously, our research is re-

lated to the emerging literature on the political economy of government COVID-19 policies.

Macro economists have, for instance, contributed to our understanding of the interaction

between infection rates, government containment policies, and economic decisions by house-

holds (Eichenbaum et al., 2021), something which epidemiological models like Ferguson et al.

(2020) often ignore. Other economists have studied the effectiveness of containment poli-

cies such as mask requirements for reducing growth rates of confirmed COVID-19 cases and

deaths (Chernozhukov et al., 2021), the impact of school closures on future earnings and

welfare for children (Fuchs-Schündeln et al., 2022), the effect of COVID-19 on religiosity

(Bentzen, 2021), and the inherent tradeoff between short-run restrictive public health mea-

sures during pandemics and the long-run impact of such measures for liberal institutions and

economic freedom (Geloso et al., 2022; Furton, 2023; Koyama, 2023).

In our paper, we focus on the relationship between historical disease exposure and gov-

ernment containment policies during COVID-19. There are at least three pathways through

which historical disease could affect contemporary COVID policies. First, the causal impact

might emerge indirectly through its effect on a country’s set of cultural norms. Prominent

research agendas in psychology argue that there is a strong impact of historical disease en-
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vironments on the BIS, as discussed further below (Murray and Schaller, 2016). According

to the Parasite Stress Theory of Thornhill and Fincher (2014), regions with higher historical

levels of disease should be more prone to develop collectivist cultural norms, characterized

by in-group orientation, aversion to strangers, and a low sense of individual agency. Lowes

and Montero (2021) document empirically a specific example of such a mechanism, showing

how coercive colonial medical campaigns to fight the spread of sleeping sickness in French

Africa gave rise to a culture of persistent mistrust to modern medicine among affected groups.

Economists like Enke (2019) have shown that pathogen threat was associated with a stronger

kinship tightness among ethnic groups prior to industrialization, whereas Gorodnichenko

and Roland (2017) exploit the empirical relationship between historical disease exposure

and culture to establish an external source of variation in individualism-collectivism across

the world.

Furthermore, a large number of recent papers in social science have shown that there is

negative relationship between the strength of individualistic cultural norms and the strict-

ness and/or the speed of implementation of COVID-19 containment policies (Chen et al.,

2021; Jiang et al., 2022; Kitayama et al., 2022; Ashraf et al., 2022). Bazzi et al. (2021)

and Bian et al. (2022) both study the importance of a historical frontier culture of ”rugged

individualism” within United States for understanding public and private responses to the

COVID-19 pandemic. Using different outcome variables, both studies show that social dis-

tancing is less prevalent in more individualistic counties. Bazzi et al. (2021) further find

that local governments in counties with a highly individualistic culture tend to enact less of

restrictive containment policies.

A second pathway from historical disease exposure to COVID-19 policies runs through

formal institutions such as democracy. Thornhill and Fincher (2014), Gorodnichenko and

Roland (2017) and Gorodnichenko and Roland (2021) all show strong empirical associations

between a high prevalence of infectious disease and autocratic forms of government. In a

cross-country analysis of the first wave of the pandemic (up to summer 2020), Saam et al.
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(2022) find that there are differences in the reactions of 40 democratic and 40 autocratic

governments to COVID-19. Using the same early time window, Sebhatu et al. (2020) show

that democracies exerted a slower response to the pandemic and that many countries tended

to follow the policies of their neighbors. Toshkov et al. (2022) present evidence that more

centralized countries with separate ministers of health, reacted faster to the pandemic.

A third pathway focuses on a more direct link between historical pathogen prevalence

and COVID-19 policy responses. Using the HPP data on historical disease from Murray and

Schaller (2010), Lu et al. (2021) show that there is a negative correlation between historical

pathogen prevalence and the speed with which government implemented mobility restrictions

up to August, 2020 among around 150 countries.

While recognizing that cultural norms and formal institutions both are strongly associ-

ated with government choices of COVID-19 containment policies, we argue that these are

only proximate causes of policy variation and that a more fundamental explanation for policy

variation is countries’ legacies of historical exposure to infectious disease. In this sense, our

paper is also strongly related to the literature on long-run persistence of pathogen loads and

health shocks such as Acemoglu et al. (2001); Voigtländer and Voth (2013); Gorodnichenko

and Roland (2017) and Jedwab et al. (2022). Unlike these papers, however, we propose

that the impact of health shocks might in fact often be conditional on the prevailing cir-

cumstances such that governments and individuals will be more prone to turn to historical

legacies during crises years with fundamental uncertainty.

In summary, our paper is distinct from and contributes to the existing literature in the fol-

lowing ways: First, our paper is the first to propose a conceptual framework and analyze the

empirical relationship between historical disease exposure and the strictness of government

COVID-19 containment policies during the whole pandemic 2020-22. Second, our paper is

the first to recognize the key difference in terms of the level of Knightian uncertainty between

the first versus the second and third years of the COVID-19 pandemic. Third, the paper

contributes to the literature on long-run persistence by showing that persistence should be
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regarded as conditional on whether the period that is studied is characterized by normal

conditions or exceptional crisis.

The paper is structured as follows. In chapter 2, we provide a background on the COVID-

19 pandemic, whereas section 3 outlines the conceptual framework. Section 4 discusses the

data. Section 5 presents the empirical results and section 6 includes a discussion of these

findings. Lastly, section 7 lists the conclusions of our study.

2 Background

The novel coronavirus SARS-CoV-2 was first identified in Wuhan, China in December 2019

and its genetic sequence was published already on January 11, 2020. Transmission of the

virus is primarily airborne from person to person and the well-known symptoms of its asso-

ciated infectious disease COVID-19 include fever, coughing and fatigue. In case of a lethal

outcome, death usually occurs 3-4 weeks after infection. In terms of government reaction,

the pandemic changed character over time. After an arguably slow initial response, China

imposed a strict lockdown in the province of Wuhan on January 23. One week later, on

January 30, the WHO declared the new coronavirus a public health emergency of interna-

tional concern (PHEIC). In general the policy response in other countries was limited before

the global scale of the pandemic became apparent. In February and March COVID-19 cases

and deaths were confirmed in an increasing number of countries around the world. Eu-

rope and in particular northern Italy appear to have been particularly hard hit in this early

phase. Amidst an overwhelmed healthcare system and an increasing number of deaths, Italy

imposed restrictions on internal movement and activities deemed incompatible with social

distancing, in various stages starting in late February. The WHO declared the virus, now

named COVID-19, a pandemic on March 11. By April, most governments in the world had

put in place very strict COVID-19 containment policies including lock-downs, school closures

and travel restrictions.
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Figure 1 shows the worldwide average strictness of COVID-19 containment polices (mea-

sured as CHI from OxCGRT, 2022), with a clear peak in April 2020. Measures included

earlier mentioned NPIs such as lockdowns, school closures and travel restrictions, but also

less restrictive measures such as testing, contact-tracing and mask mandates. The strength

of containment measures declined as the spread of the disease decreased over the summer.

A second, lower peak was reached in April, 2021 during a second wave with novel virus

variants. After that the average strictness of containment policies gradually fell during the

rest of the period. Most countries and international agencies considered the pandemic to be

over, and classified COVID-19 as an endemic disease, from winter-spring 2023. By the end

of 2022, COVID-19 had caused approximately 6.6 million confirmed deaths according the

OxCGRT database.

The first wave during spring 2020 was arguably characterized by fundamental (Knight-

ian) uncertainty since no pandemic of similar magnitude had struck in many decades and

knowledge about transmission and mortality was limited.2. For example it was not known

whether transmission could happen when infected persons were asymptomatic, how easily

the virus was transmitted by air or how well, if at all, face masks reduced transmission rates

(WHO, 2020c,b,a,d). Early influential assessments of the mortality of the pandemic under

different containment policy scenarios, such as the famous Report 9 in the United Kingdom

(Ferguson et al., 2020), turned out to be widely off the mark and were later heavily criti-

cized. During spring 2020, no vaccine was yet in sight and the development of a vaccine was

believed to take maybe 18 months.

Over time, knowledge about the virus, prevention and treatment improved (even if the

debate on the efficiency of containment policies is ongoing). A new stage was arguably

reached when it became clear in late 2020 that new vaccines had been successfully developed

in record time. On 2 December, the Pfizer-BioNTech vaccine obtained temporary approval

2Knightian uncertainty refers to a situation when there is a lack of any quantifiable data on the underlying
probability distribution of a social phenomenon. Such uncertainty stands in contrast to situations with
quantifiable risk which economists usually study (Knight, 1921)
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Figure 1: Boxplot distribution of monthly CHI-score for all countries in the
world, 2020-22

Note: Boxplot of distribution of monthly CHI-measure for all countries in the world during 36

months 2020-22. Own graph based on data from OxCGRT, 2022

from the UK regulatory agency and by 21 December, the European Union and many other

countries had also approved it. A week later, approval was granted in many countries for the

Moderna and the Oxford/Astra Zeneca vaccines. The roll-out of the vaccination campaign

then started across the world in early 2021. By this time, the fundamental uncertainty

regarding the effects of COVID-19 was drastically reduced.

3 Conceptual framework

The conceptual framework for our study is shown in Figure 2 below. Our point of departure

is the observation that historical exposure to infectious disease has varied greatly across the
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world. There are many reasons for this variation, including climatic factors, biogeography,

population density, natural shocks, prevalence of disease vectors such as rats and mosquitos,

etc. In general, the prevalence of infectious disease tends to be higher in tropical regions

close to the equator. The direct cause of such diseases are the transmission of infectious

agents (or pathogens) such as viruses or bacteria to the human body. Small host animals

(i.e. parasites) such as helminths or insects can function as disease vectors that transmit the

infectious pathogens, but infectious disease might also spread directly between humans, as

is the case for airborne diseases.

Populations living in regions with a high pathogen load typically adapt to this environ-

ment in two major ways. First, through the process of natural selection, individuals with a

genetic disposition for a stronger immune system against locally common pathogens (per-

haps due to a mutation) will gradually come to dominate the population in the region. This

genetic or evolutionary adaptation of the biological immune system is likely to work only

very slowly.

Second, the so called Behavioral Immune System (BIS) might also adapt to the pathogen

load. The theory of the BIS was developed by psychologists Damian Murray and Mark

Schaller (Murray and Schaller, 2016) and has recently gained increased attention in the social

science literature. The BIS is defined as a motivational system for parasite and pathogen

avoidance that influences behavior in a number of ways. In essence, BIS provides a theory

for long-term behavioral adaptations among individuals or groups to the prevailing disease

environment where they live. It is important to note that during most of history, people had

a very limited understanding of how infectious diseases spread (Koyama, 2023). Still, we

know that people understood the importance of cleanliness and reacted to bad smells. We

also know that the practice of quarantine was used at least since the Black Death (1347-53).

The BIS includes practices for cleanliness and food preparation. A highly activated BIS

also fosters restrictive sexual values and behaviors, as well as conformity and obedience to

rituals and common practices. In general, it promotes a preference for traditional values,
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Figure 2: Conceptual framework of empirical study

Note: The figure describes the conceptual framework and hypothesized causal relationships in our

study. Source: Own figure

and suspicion and prejudice towards out-group members who might bring new pathogens

(Murray and Schaller, 2016).

In their closely associated Parasite Stress Theory, Thornhill and Fincher (2014) put

forth the argument that a higher pathogen exposure is also associated with a number of

institutional and cultural expressions at the macro level, and also show this empirically.

Populations in countries with a high parasite stress (i.e. pathogen load) tend to have more

authoritarian types of government and cultural norms favoring collectivism (in-group and

family orientation, aversion to strangers, weak sense of personal agency) rather than indi-

vidualism (out-group orientation, openness to strangers, strong sense of personal agency).3

It is thus commonly argued in the literature that there are strong links between the BIS

and both institutional and cultural adaptations, as shown in Figure 2. As discussed in the

3See Triandis (1995) for a more thorough discussion of individualism-collectivism
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introduction, a large emerging literature in social science shows that formal institutions and

cultural norms, in turn, have had a strong impact on government policy responses to COVID-

19. For instance, Bazzi et al. (2021) and Bian et al. (2022) show that US counties with a

stronger individualistic frontier culture tend to engage less with containment measures such

as social distancing and mask requirements. Sebhatu et al. (2020) showed that democracies

were relatively slow to react in the early phase of the pandemic.

Our argument is that both cultural and institutional variations across countries and

regions are primarily proximate causes of government COVID-19 policy that in turn are

to a large extent founded on deeper behavioral immune system adaptations to historical

variations in groups’ exposure to pathogen loads and infectious disease. In addition, we argue

that there are reasons to believe that the BIS could have independent and direct effects on

government COVID-19 policies (see Figure 2). Disease cues may for example give rise to fear

and disgust, and promote strong desires to avoid disease (Murray and Schaller, 2016). As will

be explained further below, our focus in the empirical analysis will therefore be on proxies

for historical disease prevalence rather than on proxies for culture and institutions. We

recognize however that any reduced-form empirical relationships between historical disease

exposure and contemporary COVID-19 policies could either come into effect with culture

and institutions as mediating variables or through an independent direct effect.

There are of course also a large number of other factors that affect the government’s

response to the COVID-19 pandemic. Most importantly, we expect governments to respond

more or less instantaneously to information about the rates of infection and mortality of the

disease within their country. We argue that reported deaths in COVID-19 in period t is the

most relevant informational input for governments in their choice of containment policy.4 To

a great extent, disease dynamics (such as the location and spread of initial outbreaks, the

emergence of new mutations, etc) were largely unpredictable and had a substantial random

component.

4Also other data such as time since first reported death or number of newly infected people, could
certainly have played a role. See sections below for further discussions about this.
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Lastly, the stringency of COVID-19 policies will also depend on a number of country

characteristics such as the general level of economic development and the level of urbaniza-

tion. Urbanization is relevant to consider since respiratory infectious diseases spread rapidly

in densely populated cities and because the disease tend to be more lethal in environments

with poor air quality (Bourdrel et al., 2021). Since COVID-19 fatalities were most common

among the elderly, it is also relevant to take into account the share of elderly in the popu-

lation. The number of hospital beds per capita before the pandemic may be an additional

key input for COVID-19 public policy since many governments feared that their health care

system would be overwhelmed by COVID-19 patients and potentially took their health care

capacity into account when deciding on containment policies. Also the general strength of

state capacity could play a role for the strength of government response. Lastly, we hypoth-

esize that recent experience of other corona virus diseases such as SARS and MERS might

influence public policy.

4 Data

In this section, we present the data that we use in our study with a particular focus on our

proxies for the historical exposure to infectious disease.

4.1 Historical exposure to infectious disease

As our main measure of historical exposure to infectious disease, we use the Historical

Pathogen Prevalence (HPP) measure from Murray and Schaller (2010). This variable mea-

sures the historical prevalence of seven common infectious diseases: leishmanias, schisto-

somes, trypanosomes, malaria, typhus, filariae, and dengue fever. This data was derived

from historical maps from Rodenwaldt and Bader´s (1952-1961) World Atlas of Epidemic

Diseases and Whayne et al.´s (1944) Global Epidemiology.5. The diseases were each rated on

5This variable has previously featured in a number of economics papers including Gorodnichenko and
Roland (2017)
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a 4-point scale with 0 implying completely absent or never reported, and 3 implying severe

levels of epidemic at least once. The data represent the geographical variation in exposure

to infectious disease up to about 1950 (Lu et al., 2021). The measure is normalized to range

from very low exposure at around -1.2 to very high exposure at +1.2 with a mean close to 0.

The Kernel distribution function of our HPP-variable for the 182 countries in our sample is

shown in Figure 3. Selected country examples are indicated in the graph. Not surprisingly,

arctic Greenland has the lowest pathogen prevalence in the sample (-1.18) whereas tropical

countries such as DRC and Nigeria have the highest prevalence (1.19). Spain is very close

to the mean level of HPP: 0.13. The standard deviation is 0.63.

Figure 3: Kernel distribution of Historical Pathogen Prevalence (HPP)

Note: The figure shows the kernel density plot for our main proxy for historical disease exposure:

HPP. Selected countries are shown in graph together with their associated HPP score.

A natural alternative proxy for historical pathogen prevalence would be the famous Log

Settler Mortality-measure from Acemoglu et al (2001). However, this variable is only avail-
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able for 86 former colonies and only cover two infectious diseases: malaria and yellow fever.

Figure B3 in Appendix B shows a scatter plot of the two variables and the Pearson correla-

tion (0.69) is shown in Table B1. Another closely related variable is HPP9, which includes

all the seven diseases from HPP but adds tuberculosis and leprosy (Murray and Schaller,

2010). This variable is only available for 152 countries but the correlation with HPP in Table

B1 is very high (0.97).

Other potential proxies for pathogen prevalence use more contemporary data. More

recent data has the advantage of a higher data reliability but also the problem of being further

removed from the historical conditions that we want to capture. As our main alternative

variable, we use Non-zoonotic from Fincher and Thornhill (2012), capturing the modern

prevalence of a large number of infectious diseases transmitted from person to person (non-

zoonotic transmission) rather than from parasite to human (zoonotic). It has been argued

that the BIS was particularly strongly affected by human-to-human transmission (O’Shea

et al., 2022) and this variable has the advantage of isolating the impact of such disease

transmission. Figure B2 in Appendix B shows the scatter plot of the association between

HPP and Non-zoonotic. The Pearson correlation coefficient is 0.83.

As an additional validity check, we also analyze the correlation between HPP and yet

another proxy for contemporary pathogen prevalence: CombPS from Fincher and Thornhill

(2012). The scatter plot and the correlations to the other variables (0.83) are shown in

Appendix B. Our overall conclusion from these validity checks is that our preferred main

measure HPP has a relatively high coverage, should be a good proxy for historical disease

environments, and that it also correlates strongly with other candidate measures.

4.2 Government COVID-19 policy

To measure the government response to the COVID-19 pandemic we use data from the

Oxford COVID-19 Government Response Tracker (OxCGRT), which provides daily data on

various COVID-19 containment measures for almost every country or territory in the world.
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In addition to information on specific measures, such as school closures, mask mandates,

travel restrictions, etc., the data include a number of indices on the government response

(Hale et al., 2021). In our main estimations we use the containment and health index (CHI).

The main alternative would be the Stringency Index which include a number of NPIs which

reduce (physical) social interaction in the general public (school closings, workplace closings,

cancelled public events, restrictions on gathering size, public transport closures, stay at home

requirements, domestic travel restrictions and international travel restrictions). The CHI

include all NPIs in the Stringency index and a number of additional measures to decrease the

spread of the virus, namely public information campaigns, testing policies, contact tracing,

mask mandates and vaccination policies. We prefer the CHI over the Stringency index

since it is more comprehensive. In particular we prefer an index which includes vaccination

policies since we investigate policy responses during the whole pandemic, both before and

after vaccines were available. 6 The Stringency index, which can be seen as a better measure

of the extent to which individual freedoms are restricted to fight the pandemic, is used as a

robustness check. The CHI range between 0 and 100, with equal weight to each of the 14

sub-indices (which also range between 0 and 100). The overall mean is 47.97 and the overall

standard deviation 18.80. At any given time the standard deviation is smaller (10.5 to 16.5).

Figure 1 in the background section shows the variation in the CHI over time.

4.3 Disease dynamics

We use information on confirmed reported deaths in the country itself and in neighbouring

countries to proxy the information on disease dynamics that governments had at their dis-

posal when deciding on containment measures. While government agencies are likely to have

collected information from different sources, new deaths neatly summarizes the number of

people that has recently been infected and have thereafter actually died, given factors such

as physical environment, population structure, health care system etc. in the country. It

6We use the version of the CHI which average over policies for vaccinated and un-vaccinated in cases in
which these differ.
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should thus be highly informative about the current severity of the pandemic in the country.

However, infectious diseases do not stop at borders and so it makes sense to also consider

disease dynamics in other countries. In particular, disease dynamics in countries with shared

land borders may be informative about what to expect in the own country. The main al-

ternative data would be new infections or excess deaths. However, available data on new

infection is patchy and, importantly, it also was so when decisions were taken. While excess

deaths is a good measure of the overall impact of the pandemic, governments did not have

access to these data when making decisions on containment measures.

We measure disease dynamics with the number of new weekly deaths per 100,000 in-

habitants in the country. More precisely, we calculate the average of the total cumulative

confirmed number of deaths for the week in question minus the average of the total cu-

mulative confirmed number of deaths in the previous week, divided by the population in

2019. The data on confirmed number of total deaths is from OxCGRT. The population in

2019 is from the World Bank’s World Development Indicators. To compute new deaths in

neighbouring countries we use the average of new weekly deaths per 100,000 inhabitants in

all countries which share a land border with the country in question. We set new weekly

deaths in neighbouring countries to 0 for island nations (and South Korea since we do not

have information from its only neighbour, North Korea).

It seems possible that confirmed deaths are not immediately observed and/or that it

takes some time to react to information. We therefore compared the estimated response of

the CHI to different lags of new weekly deaths in the own and neighbouring countries in

Appendix Table A1. While the lag structure does not seem to matter much, the non-lagged

new weekly deaths variables seem to overall perform slightly better than 1-week, 2-week or

3-week lags: the F-statistic for the whole period is slightly larger, the R-squared is generally

towards the higher end, and coefficients are generally somewhat larger. To not lag also comes

with the additional advantage of not losing early observations.
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4.4 Additional variables

When we investigate the general response to the global COVID-19 pandemic, independent

of disease dynamics in the country and its neighbours, we use a number of control variables.

Socioeconomic variables - log GDP per capita, share of urban population, share of elderly

population (age 65 or above), all from 2019 - are from the World Development Indicators.

We include two variables as proxies for institutional quality: Government effectiveness and

Voice and accountability from the World Bank’s Worldwide Governance Indicators-dataset

(Kaufmann and Kraay, 2022). Government effectiveness captures aspects like the quality of

public services, independence from political pressures, and the quality of policy formation and

implementation. This percentile rank measure ranges between 0-100 with 0 corresponding

to lowest rank and 100 to the highest. Similarly, Voice and accountability is also a rank

percentile measure between 0-100 and measures the extent to which citizens are able to

participate in selecting their government, freedom of expression, and free media.

Recent experience of a corona-virus epidemic may have affected the response to COVID-

19. For example, South Korea has been credited with a rapid and efficient response in

terms of testing, contact-tracing and isolation of infected due to its experience of the MERS-

epidemic. We use dummy variables for having been exposed to the 2003 SARS-epidemic

and the MERS-epidemic starting in 2012. We set each dummy to 1 if there was more

than one reported case per one million inhabitants in a country. Canada, China, Hong

Kong, Macao, Taiwan, Mongolia and Singapore have more than one reported SARS case

per million inhabitants, and Jordan, Kuwait, Oman, Qatar, South Korea, Saudi Arabia and

United Arab Emirates more than one reported MERS case.7.

Appendix tables A2 and A3 show summary statistics for the main sample and the sample

of US states.

7SARS cases are from WHO available at https://www.who.int/publications/m/item/summary-of-
probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003. MERS cases are from FAO
available at https://www.fao.org/animal-health/situation-updates/mers-coronavirus
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5 Empirical analysis

5.1 Empirical strategy

According to our conceptual framework, historical disease exposure influences how the gov-

ernment respond to the COVID-19 pandemic. The main equation that we estimate is the

following weekly panel data regression:

Cit = αDit + βDnt + γDit ∗HPPi + ηi + ϵit (1)

In this expression, Cit is the average of the CHI of country i in week t, Dit is the increase

in confirmed deaths in COVID-19 per 100,000 people between week t − 1 and t, Dit is the

increase in confirmed deaths per 100,000 people between week t− 1 and t in countries that

share a land border with country i, HPPi is the historical pathogen prevalence of country i,

ηi is a country fixed effect capturing all observed and unobserved time-invariant differences

between countries, such as their level of income, their health care capacity and their political

institutions. Similarly, the possible impact of HPPi which does not depend on disease

dynamics is absorbed by the fixed effect ηi. ϵit is the error term. Our main parameter of

interest is γ, which shows how the response to new confirmed COVID-19 deaths depends

on historical disease exposure. In line with the discussion above, our main hypothesis is

that γ > 0, at least during the first year 2020 characterized by fundamental uncertainty.

We estimate equation 1 for all weeks jointly and separately for each year, where the initial

response during 2020 was during a time of fundamental uncertainty, while the situation was

less uncertain in 2021 and 2000, not the least since vaccines were then available.

To formally test if the influence of historical disease exposure on the government response

differ between the first year of fundamental uncertainty and the consecutive years we also

estimate

Cit = αDit + βDnt + γDit ∗HPPi + λI2020 ∗Dit ∗HPPi + ηi + ϵit, (2)
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where I2020 = 1 for observations from 2020 and zero for 2021-22. In accordance, a λ > 0

indicates that the response is different during the first year.

A key feature of infectious diseases is the spatial diffusion between locations. Hence,

in order to understand pandemic outcomes in a certain country, it is of particular impor-

tance to carefully take into account spatial autocorrelation.8 One straightforward strategy

for achieving this is to control for death rates in neighboring countries, as shown above.

Additionally, we report both standard errors clustered at the country level and standard

errors corrected for temporal and spatial autocorrelation, using the Stata acreg-command,

developed by Colella et al. (2020) on the basis of Conley (1999). Importantly, since we use

weekly observations, both types of standard errors accommodate autocorrelation over time

in a country. The latter additionally adjusts for correlation in the COVID-19 response of

geographically close countries within a certain range. Put differently, this procedure should

account for unobserved similarities between nearby countries, resulting in similarities in gov-

ernment COVID-19 responses over time. Both in the cross-country and cross-state analysis

of the United States, we use a radius of 1000 km for assessing spatial autocorrelation. 9

Historical disease exposure may also impact the general response to the global COVID-

19 pandemic, independent of disease dynamics in the own and neighbouring countries. To

investigate this possibility, we run regressions with the estimated fixed effects in equation

(1) as the dependent variable. Hence, in a second stage we estimate

η̂i = ω + δHPPi + θXi + νit (3)

where Xi includes time-invariant country characteristics that could matter for the re-

sponse to the pandemic, i.e. log GDP per capita in 2019, urban population, population

8See Kelly (2019) for an argument that many of the papers in the persistence literature do not provide
adequate tests of spatial autocorrelation and hence produce biased results. See Voth (2021) for counter
arguments against this claim.

9The specific Stata procedure that we employ computes heteroskedasticity-autocorrelation-consistent
(HAC ) standard errors with a linear temporal decay in time for up to 10 weeks. Results for other geographical
ranges are shown in the appendix and are available upon request.
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above age 65, government effectiveness, voice and accountability and whether the country

were hit by the earlier SARS or MERS epidemics. We also control for absolute latitude since

it is correlated with HPP.

5.2 Main results

Our main results are presented in Table 1. In column (1) we estimate a common interaction

term between new deaths and historical disease exposure for all three years, as in equation

(1). In column (2) we test if the influence of historical disease exposure on the response to

new deaths was different in the first year of fundamental uncertainty compared to in the

two later years, in accordance with equation (2). The main coefficient of interest is that of

the triple interaction term between new deaths, HPP and a year 2020 dummy. In columns

(3)-(5) we estimate equation (1) separately for each year.

New deaths in both the country itself and in neighbouring countries are statistically

significantly associated with the strictness of the policy response. One additional confirmed

death per 100,000 people in the country increases the CHI with about 1.6 in the full sample as

well as in 2020 and in 2022. In 2021 the increase is 0.9. A difference in 1.6 would, for example,

approximately correspond to required school closings at all levels rather than at some levels

or to recommended school closings rather than no school closing policies at all, other policies

being equal.10 Countries appear to respond more to new deaths in neighbouring countries

than to new deaths in the own country, the exception being in 2021. One reason could be

that governments try to be forward-looking and, conditional on deaths in the own country,

expect that an increased spread of COVID-19 in neighbouring countries should soon affect

the own country.

In the regressions for all years and for 2020, the response to new deaths in the own

country is stronger in countries with higher historical disease exposure. In the full sample, a

one unit increase of the HPP increases the response to new deaths in the own country with

10In standardized terms, a one standard deviation increase in new deaths in the own country increase the
CHI with about 1.7 standard deviations in the full sample.
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Table 1: Within-estimates of CHI Index in weekly cross-country panel 2020-22

DV: CHI Index
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 1.584 1.679 1.660 0.920 1.614
(0.232)*** (0.237)*** (0.361)*** (0.166)*** (0.474)***
[0.173]*** [0.174]*** [0.377]*** [0.131]*** [0.401]***

Dnt 3.414 3.464 3.568 0.794 5.261
(0.350)*** (0.351)*** (0.416)*** (0.274)*** (0.670)***
[0.273]*** [0.276]*** [0.528]*** [0.218]*** [0.509]***

Dit ∗HPPi 1.108 0.938 1.830 0.016 0.497
(0.306)*** (0.338)*** (0.471)*** (0.245) (0.668)
[0.268]*** [0.298]*** [0.536]*** [0.204] [0.286]

Dit ∗HPPi ∗ I2020 0.733
(0.372)*
[0.345]**

I2020 (dummy) 3.312
(0.658)***

Constant 44.568 43.398 46.663 54.112 35.686
(0.222)*** (0.323)*** (0.266)*** (0.287)*** (0.258)***

Country FE Yes Yes Yes Yes Yes

Observations 26,164 26,164 8,352 9,048 8,764
R-squared 0.13 0.14 0.08 0.09 0.20
Countries 175 175 174 174 175

Notes: The dependent variable is average CHI index observed in during one week, 2020-22.

Country-week observations during 156 weeks in 174-175 countries are shown in column (1), country-

week observations for 2020, 2021 and 2022 respectively in columns (2)-(4). *** p<0.01, ** p<0.05,

* p<0.1. Standard errors clustered at the country level in parentheses (). Standard errors corrected

for spatial and temporal autocorrelation in brackets [], using a spatial cutoff of 1000 km.

more than 70%. In 2020 it more than doubles the response. The regression in column (2)

suggests historical disease exposure to influence the response to new deaths throughout all

years, but more so in 2020 compared to in the later years. However, there is no statistically

significant impact in the separate 2021 and 2022 samples (columns (4) and (5)). Hence, while

results are inconclusive with regard to the possible influence of historical disease exposure

later in the pandemic, when vaccines were available and knowledge about e.g. transmission
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and mortality was higher, there is a clear impact in the first year of fundamental (Knightian)

uncertainty. The coefficient of the 2020 dummy also shows stricter policies overall in the

first, uncertain, year.

While the strictness of the policy response reacts to disease dynamics, as measured by

new deaths in the own and neighbouring countries, the impact is still small in comparison

to the constant, i.e. the average strength of the policy response without any new deaths

in the own or in neighbouring countries. In Table 2 we investigate correlates of the general

response to the global COVID-19 pandemic which did not depend on country-specific disease

dynamics. We do so by regressing the fixed effects from the weekly panel estimations in Table

1 on a set of explanatory variables, for all years (using the fixed effects from the regression

in column (1) in Table 1 1) and separately for each year.

Controlling for absolute latitude and socioeconomic and institutional variables, there is

a statistically significant association between the historical disease exposure and the general

strictness of the COVID response, for all years, in 2020 and in 2021, but not in 2022. A one

unit increase in the HPP increases the CHI with about 4.6, 7.6 and 5.4. Absolute latitude is

positively correlated with the strength of the policy response in 2020, but negatively so in

2022. Contrary to expectations, countries with a larger share of older people had a weaker

policy response during the first year. The urban share of the population is not statistically

significant. Policies are stricter in richer countries.

There is no statistically significant impact of experience from previous corona virus epi-

demics, except for in 2022. The statistically significant positive coefficient for SARS experi-

ence in 2022 is driven by China, which stood out in maintaining very strict COVID policies

until in the autumn in 2022. The lack of an impact of previous coronavirus epidemic experi-

ences could be because such experience mattered more for the type of policies implemented

and their efficiency than for the overall strictness of the policy response. It could also be

because none of these two pandemics reached a scale comparable with COVID-19.

Government efficiency is positively related to the policy response in the full sample, but
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not in any single year (though it remain comparable in size in all estimations). There is no

statistically significant correlation between voice & accountability, our measure of democracy,

and the strictness of the response when controlling for all of the above variables.

Table 2: Explaining the fixed effects

DV: Country fixed effects from weekly panel
(1) (2) (3) (4)

All years 2020 2021 2022

HPP 4.577** 7.550*** 5.388** 1.242
(1.772) (1.999) (2.335) (2.105)

Abs. latitude -0.050 0.162** -0.041 -0.273***
(0.069) (0.078) (0.091) (0.082)

Share pop. 65+ -0.438** -0.626*** -0.314 -0.144
(0.203) (0.227) (0.266) (0.242)

Share pop. urban -0.074 -0.012 -0.117* -0.079
(0.047) (0.053) (0.062) (0.056)

Log GDP pc 2019 3.389*** 3.483** 6.070*** 1.432
(1.243) (1.396) (1.631) (1.477)

SARS in country 6.726* 3.525 2.083 12.876***
(3.686) (4.118) (4.810) (4.381)

MERS in country 0.274 0.514 -0.834 0.251
(3.880) (4.336) (5.064) (4.611)

Government efficiency 0.115** 0.080 0.106 0.092
(0.053) (0.059) (0.069) (0.063)

Voice & accountability -0.045 -0.045 -0.031 -0.059
(0.039) (0.044) (0.051) (0.046)

Constant -24.018*** -30.995*** -46.259*** -1.321
(7.902) (8.831) (10.314) (9.390)

Observations 164 163 163 164
R-squared 0.26 0.22 0.27 0.28

Notes: The dependent variable is the country fixed effects from the weekly panel estimations in

Table 1, columns (1), (3), (4) and (5). *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered

at the country level in parentheses ().

5.3 Robustness checks

In the previous section, we interacted HPP for country i with new deaths in country i. How-

ever, COVID-19 containment policies seem to respond more to new deaths in neighbouring
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countries than to new deaths in the own country. In Table B2 we therefore interact the HPP

with new deaths in neighbouring countries as well as with new deaths in the own country.

When we estimate common interaction terms for all years in column (1), the two interaction

terms are of about the same size, and both are statistically significant when we use clus-

tered standard errors. When we use spatial correlation adjusted standard errors, only the

interaction term with new deaths in the own country is statistically significant.

When we allow for a different interaction term in 2020 compared to in the later years,

historical disease exposure appear to increase the response to new deaths in the own country

throughout the pandemic, while it increases the response to new deaths in neighbouring

countries in 2020 only. Still, in the estimation using the 2020 sample the interaction term

between HPP and deaths in neighbouring countries is not statistically significant (even if it

is about the same size as the statistically significant coefficient of the interaction term with

new deaths in the own country). There are no statistically significant interaction terms in the

2021 or 2022 samples, but the 2021 coefficient on the interaction term with deaths in the own

country is quite large. Overall, historical disease exposure seem to matter for how countries

respond to disease dynamics as measured by new deaths in the own country and possibly

for how they respond to new deaths in neighbouring countries, in particular in the first year.

The two interaction terms are of course highly correlated and, even if the interaction term

with new deaths in the country itself appears to be stronger, we do not believe that our

estimated results permit us to draw any firm conclusions regarding possible differences in

how historical disease exposure influence the response to the two different disease measures

over the years.

In the data section we mentioned a few alternative measures of disease prevalence. In

Table 3, we replace HPP with the measure of non-zoonotic diseases from Fincher and Thorn-

hill (2012). This measure may be of particular interest if we believe that pathogens that

transmit between humans are of particular importance for the behavioral immune system

responses which ought to underlie the stronger policy response to the COVID-19 pandemic
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in countries with higher historical disease prevalence. Overall, results are very similar to

those for HPP in Table 1.

In Table 4 we replace the CHI with the Stringency Index as the dependent variable, which

can be seen as a measure of the extent to which countries are willing to compromise individual

rights to curb the pandemic. Again, results are very similar to in the main estimations in

Table 1.

In appendix tables B3 and B4, we check the robustness of the results in Table 1 by

using different assumptions in our calculation of standard errors that correct for spatial

autocorrelation. In Table B3, we use the coordinates for country capitals rather than country

centroids. Such an alternative assumption might be reasonable if one thinks that it is rather

distance between country capitals that matters for the correlation in government responses

in geographically proximate countries. In general, standard errors are quite similar to those

in Table 1. A similar pattern is found in B4 where we double the distance to nearby countries

that are assumed to affect spatial autocorrelation from 1000 to 2000 km. Our conclusion is

that our results are not sensitive to alternative assumptions along these dimensions.

5.4 Panel with US States

While various countries adopted region-specific policies as a response to differences in disease

dynamics across space, policies were typically decided at the central level. However, in

the United States the states decided on policies within their jurisdiction. This allows us

to investigate the extent to which historical disease exposure can explain variation in the

strictness of COVID-19 policies within a single country. Our measure of disease exposure in

US states is Fincher and Thornhill (2012)’s Parasite Stress (PS) measure which summarize

infectious disease cases tracked by the Centre for Disease Control (CDC) between 1993 and

2007. While this data is more recent than the HPP used for the cross-national analysis,

the high correlation between the HPP and the Parasite stress measure documented in the

data section illustrate the persistence in disease exposure over time. OxCGRT has data
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Table 3: Robustness I: Non-zoonotic measure replacing HPP as interaction
variable

DV: CHI Index
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 1.661 1.718 1.831 0.915 2.173
(0.072)*** (0.278)*** (0.498)*** (0.159)*** (0.885)**
[0.195]*** [0.192]*** [0.431]*** [0.130]*** [0.805]***

Dnt 3.356 3.477 3.722 0.791 5.245
(0.097)*** (0.340)*** (0.372)*** (0.278)*** (0.675)***
[0.271]*** [0.271]*** [0.499]*** [0.219]*** [0.510]***

Dit ∗NZi 0.405 0.298 0.846 -0.004 0.627
(0.036)*** (0.150)** (0.244)*** (0.078) (0.443)
[0.111]*** [0.114]*** [0.248]*** [0.063] [0.402]

Dit ∗NZi ∗ I2020 0.371
(0.132)***
[0.142]***

I2020 (dummy) 3.300
(0.61)***

Constant 44.554 43.378 46.495 54.117 35.650
(0.660)*** (0.317)*** (0.232)*** (0.287)*** (0.266)***

Observations 26,164 26,164 8,352 9,048 8,764
R-squared 0.14 0.09 0.09 0.21
Countries 175 175 174 174 175

Notes: The dependent variable is average CHI index observed in during one week in 2020-22.

Country-week observations during 156 weeks in 174-175 countries are shown in columns (1)-(2),

country-week observations for 2020, 2021 and 2022 respectively in columns (3)-(5). *** p<0.01, **

p<0.05, * p<0.1. Standard errors clustered at the country level in parentheses (). Standard errors

corrected for spatial and temporal autocorrelation in brackets [] using a spatial cutoff of 1000 km
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Table 4: Robustness II: Stringency Index replacing CHI as dependent variable

DV: Stringency Index
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 1.807 2.203 1.852 1.255 2.033
(0.095)*** (0.089)*** (0.376)*** (0.245)*** (0.583)***
[0.222]*** [0.174]*** [0.408]*** [0.189]*** [0.495]***

Dnt 4.374 4.592 3.701 1.674 6.375
(0.132)*** (0.123)*** (0.481)*** (0.361)*** (0.828)***
[0.361]*** [0.276]*** [0.607]*** [0.304]*** [0.618]***

Dit ∗HPPi 1.430 1.366 1.598 0.053 1.145
(0.144)*** (0.150)*** (0.530)*** (0.340) (0.811)
[0.344]*** [0.298]*** [0.611]*** [0.299] [0.677]

Dit ∗HPPi ∗ I2020 1.022
(0.225)***
[0.345]***

I2020 (dummy) 16.528
(0.259)***

Constant 39.542 33.822 51.053 48.135 23.122
(0.717)*** (0.722)*** (0.298)*** (0.382)*** (0.312)***

Country FEs Yes Yes Yes Yes Yes

Observations 26,178 26,178 8,352 9,048 8,778
R-squared 0.07 0.11 0.20
Countries 175 175 174 174 175

Notes: The dependent variable is average Stringency index observed in during one week in 2020-22.

Country-week observations during 156 weeks in 174-175 countries are shown in columns (1)-(2),

country-week observations for 2020, 2021 and 2022 respectively in columns (3)-(5). *** p<0.01, **

p<0.05, * p<0.1. Standard errors clustered at the country level in parentheses (). Standard errors

corrected for spatial and temporal autocorrelation in brackets [] using a spatial cutoff of 1000 km
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on confirmed COVID-19 deaths and containment and health polices at the US state level.

Hence, our dependent variable is again the CHI.

In Table 5, we use a weekly panel of US states and run the same regressions as in the

cross-national analysis (Table ). State-level COVID-19 policies in US states does not appear

to respond to new deaths in the own state, but it does respond to new deaths in neighbouring

states. One reason for the comparatively larger influence of new deaths in neighbouring states

in USA, compared to that of neighbouring countries in the cross-national sample, might be

that within-country borders between states are on average more porous than between-country

borders. The positive and significant coefficient for the triple interaction term in column (2),

shows that policy response to own deaths is stronger in states with higher PS values in 2020

but not in the later years (and not in the all-years estimation). A one unit increase in the

PS index more than doubles the policy response to new own deaths.

6 Discussion

We show that historical disease exposure matters for the strictness of government COVID-

19 policies both across countries and across states within the United States. Countries and

states with a higher historical disease exposure responded to the COVID-19 pandemic with

stricter containment policies. This is in line with the theory of the behavioral immune system

(BIS) and the parasite stress theory (PST), which posit that a higher historical disease expo-

sure bring about pathogen avoiding behaviors, more collectivist rather than individualistic

cultural norms, and more authoritarian rather than democratic political institutions. Hence,

a higher historical disease exposure may be the underlying reason behind results in studies

that have found differences in COVID-19 policies between more or less individualistic places

(Ashraf et al., 2022; Bazzi et al., 2021; Bian et al., 2022; Chen et al., 2021; Jiang et al., 2022;

Kitayama et al., 2022) and between authoritarian regimes and democracies (Sebhatu et al.,

2020) or more or less centralised states (Toshkov et al., 2022).
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Table 5: Weekly panel regression of CHI Index among US States

DV: CHI
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 0.261 0.254 0.357 0.196 0.118
(0.162) (0.143)* (0.393) (0.179) (0.081)
[0.122] [0.113]** [0.303] [0.131] [0.054]**

Dnt 1.672 1.769 2.471 0.505 0.562
(0.183)*** (0.158)*** (0.398)*** (0.207)** (0.110)***
[0.237]*** [0.237]*** [0.547]*** [0.250]** [0.083]***

Dit ∗HPPi 0.213 0.046 0.840 0.106 -0.000
(0.130) (0.119) (0.277)*** (0.132) (0.094)
[0.155] [0.152] [0.435]* [0.135] [0.061]

Dit ∗HPPi ∗ I2020 0.481
(0.174)***
[0.202]**

I2020 (dummy) 8.003
(0.623)***
[1.444]***

State FE Yes Yes Yes Yes Yes

Observations 7,296 7,296 2,304 2,496 2,496
R-squared 0.11 0.21 0.16 0.04 0.26
States 48 48 48 48 48

Notes: The dependent variable is average CHI index observed during one week in 2020-22 among

48 US states. State-week observations during 156 weeks are shown in columns (1)-(2), state-week

observations for 2020, 2021 and 2022 respectively in columns (3)-(5). *** p<0.01, ** p<0.05, *

p<0.1. Standard errors clustered at the state level in parentheses (). Standard errors corrected for

spatial and temporal autocorrelation in brackets [] using a spatial cutoff of 1000 km

A forward-oriented government should primarily respond to the information it has on

disease dynamics. Hence, in our main specification we estimate how the historical dis-

ease exposure influences the response to time-varying disease dynamics, measured by new

confirmed deaths in the country/US state. However, historical disease exposure may also

influence the general response to the global pandemic, independent of disease dynamics in

the country and its vicinity. We find that the historical disease exposure matters both for

how strongly containment policy react to disease dynamics in the country and for strictness
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of the general response to the global pandemic.

In contrast to much of the earlier literature, we study the whole COVID-pandemic from

early 2020 to the end of 2022 and show that historical disease exposure matters primarily in

the first year of fundamental Knightian uncertainty. This suggest that policy-makers may

fall back on deep cultural norms during times of crisis and fundamental uncertainty, when

there is very limited knowledge and experience to guide policies. This has implications for

how we should think about cultural and institutional persistence. Persistence of historical

factors is typically modeled as being stable, even if some decay over time may be be taken

into account. Our findings, in contrast, suggest that the importance of historical factors may

both increase and decrease over time depending on context. A stronger influence of historical

factors during times of Knightian uncertainty also has implications for how we should think

about policy-making under uncertainty.

Regarding the possible channels through which historical disease exposure may affect

COVID-19 containment policies, the stricter response during the first period of Knightian

uncertainty may suggest a cultural or behavioral channel rather than an institutional one.

Put differently, it may suggest that policy-makers and/or their constituencies fall back to

individualist or collectivist cultural norms or to behavioral gut reactions, to disease cues to a

larger extent when there is limited knowledge and experience to base decisions on. However,

we do not explicitly investigate the different intermediate channels, and a different policy

response during Knightian uncertainty in autocracies compared to in democracies is also

possible.

Another delineation in our study is that we do not model the political process underlying

the COVID-19 containment policy response. In particular we are silent on the extent to

which policy responses reflect the preferences of the constituency or not. We also do not

investigate behavioral responses in the general public. We believe these topics are natural

areas for future research in an agenda focusing on the implications of the behavioral immune

system.
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7 Conclusions

On the basis of a conceptual framework informed by the theory of the behavioral immune

system, we have investigated differences in government responses to COVID-19. More specif-

ically, we have analyzed whether a high historical exposure to infectious disease has con-

tributed to stricter containment policies in a weekly panel study including almost all coun-

tries in the world and all US states. We found that a greater historical exposure strongly

influenced government policy during the first year of fundamental uncertainty and that it had

a much lower or no impact after vaccines had been introduced from 2021, holding constant

objective risk factors such as death rates in the country in question and among neighboring

countries. This differential impact of historical legacies puts previous findings in the persis-

tence literature in a new light and potentially contributes to informing future government

policy in times of deep crisis.
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Appendix A. Data

Appendix B. Additional figures and tables

Figure B1: Scatter plot: HPP and Log Settler Mortality

Notes: The figure shows a scatter plot of our main measure HPP and the related measure Settler

Mortality for 86 countries. Individual countries are identified by three-letter codes.
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Table A1: Lag structure of new deaths and prediction of the CHI

(1) (2) (3) (4)
All years 2020 2021 2022

Panel A: No lags

Dit 1.362*** 0.976*** 0.917*** 1.534***
(0.213) (0.282) (0.161) (0.433)

Dnt 3.324*** 3.466*** 0.792*** 5.212***
(0.339) (0.372) (0.271) (0.648)

Observations 26,164 8,352 9,048 8,764
R-squared 0.12 0.08 0.09 0.20
F-stat 160 83.07 38.65 70.60
Panel B: One week lag

L.Dit 1.314*** 1.024*** 0.906*** 1.492***
(0.209) (0.244) (0.162) (0.406)

L.Dnt 3.190*** 3.134*** 0.886*** 4.971***
(0.332) (0.344) (0.260) (0.607)

Observations 25,990 8,178 9,048 8,764
R-squared 0.12 0.07 0.10 0.20
F-stat 159.2 92.57 42.94 74.14
Panel C: Two week lag

L2.Dit 1.251*** 0.973*** 0.878*** 1.472***
(0.205) (0.214) (0.161) (0.392)

L2.Dnt 3.028*** 2.756*** 0.970*** 4.688***
(0.326) (0.303) (0.251) (0.571)

Observations 25,816 8,004 9,048 8,764
R-squared 0.11 0.06 0.10 0.19
F-stat 156.7 100.4 46.50 77.56
Panel D: Three week lag

L3.Dit 1.170*** 0.898*** 0.837*** 1.412***
(0.201) (0.182) (0.158) (0.384)

L3.Dnt 2.840*** 2.282*** 1.038*** 4.370***
(0.322) (0.262) (0.244) (0.541)

Observations 25,642 7,830 9,048 8,764
R-squared 0.10 0.05 0.10 0.19
F-stat 152.2 100.6 49.05 79.03

Countries 175 174 174 175
Notes: Standard errors clustered by country in parentheses (). *** p<0.01, ** p<0.05, * p<0.138



Table A2: Summary statistics

Obs. Mean Std. dev. Min Max
Time-varying variables
Dit 26,164 0.844 1.946 -8.101 45.698
Dnt 26,164 0.7455 1.445 -1.811 14.068
CHI 26,164 48.291 18.523 0 92.429
Stringency Index 26,164 44.207 23.945 0 100

Time-invariant variables
HPP 182 0.107 0.628 -1.180 1.200
HPP9 152 0.139 0.659 -1.310 1.170
CombPS 172 0.346 2.857 -3.615 6.184
Nonzoon 181 0.264 1.974 -2.481 4.728
Absolute latitude 182 26.434 17.147 0.0236 71.707
Population above 65 181 9.467 6.896 1.172 35.621
Urban population 181 61.825 23.345 13.456 100
Log GDP per capita 167 8.741 1.483 5.338 11.618
SARS experience 182 0.0385 0.193 0 1
MERS experience 182 0.038 0.1932 0 1
Government efficiency 180 50.248 29.410 0.481 100
Voice & accountability 180 48.484 28.909 0.483 100

Table A3: Summary statistics US states

Obs. Mean Std. dev. Min Max
Time-varying variables
Dit 7,296 2.151 2.611 -11.362 35.756
Dnt 7,296 2.172 2.129 -3.647 18.747
CHI 7,296 48.087 12.776 7.740 80.814
Time-invariant variable
PS 50 -0.004 0.910 -1.464 2.635
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Table B1: Pearson correlation among proxies for infectious disease exposure
in cross-country sample

Correlation matrix
(1) (2) (3) (4) (5)
HPP HPP9 LSM NZ CombPS

HPP 1.00
(0.000) 1.00
182

HPP9 0.979 1.00
(0.000)
152 152

Log Settler Mortality 0.679 0.742 1.00
(0.000) (0.000)

86 75 86

Non-zoonotic 0.826 0.832 0.667 1.00
(0.000) (0.000) (0.000)
181 152 86 181

CombPS 0.821 0.858 0.724 0.974 1.00
(0.000) (0.000) (0.000) (0.000)
172 146 85 172 172

Notes: The table shows the Pearson correlation coefficients in the first row for each variable, p-value

for Bonferroni significance at 0.01-level on the second row, and number of country observations on

the third row.
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Figure B2: Scatter plot: HPP and Non-zoonotic

Note: The figure shows a scatter plot of our main measure HPP and the related measure Non-

zoonotic for 181 countries. Individual countries are identified by three-letter codes.

Figure B3: Scatter plot: HPP and CombPS

Note: The figure shows a scatter plot of our main measure HPP and the related measure CombPS

for 172 countries. Individual countries are identified by three-letter codes.
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Table B2: Robustness III: Double interactions

DV: CHI
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit ∗HPPi 0.807 0.837 1.228 0.119 0.653
(0.134)*** (0.152)*** (0.507)** (0.318) (0.821)
[0.287]*** [0.323]*** [0.516]** [0.247] [0.683]

Dnt ∗HPPi 0.719 0.377 1.142 -0.279 -0.453
(0.185)*** (0.208)* (0.796) (0.511) (1.115)
[0.460] [0.531] [0.825] [0.392] [0.894]

Dit ∗HPPi ∗ I2020 0.090
(0.265)
[0.452]

Dnt ∗HPPi ∗ I2020 0.979
(0.324)***
[0.482]**

I2020 3.319
(0.203)***
[0.719]***

Dit Yes Yes Yes Yes Yes
Dnt Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes

Observations 26,164 26,164 8,352 9,048 8,764
R-squared 0.08 0.09 0.20
Countries 175 175 174 174 175

Notes: The dependent variable is average CHI index observed in during one week in 2020-22.

Country-week observations during 156 weeks in 174-175 countries are shown in columns (1)-(2),

country-week observations for 2020, 2021 and 2022 respectively in columns (3)-(5). The variables

Dit and Dnt have been included in all regressions but with unreported estimates. *** p<0.01, **

p<0.05, * p<0.1. Standard errors clustered at the country level in parentheses (). Standard errors

corrected for spatial and temporal autocorrelation in brackets [] using a spatial cutoff of 1000 km.
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Table B3: Robustness IV: Alternative coordinates for spatial autocorrela-
tion in Table 1

DV: CHI Index
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 1.584*** 1.679*** 1.660*** 0.920*** 1.614***
(0.177) (0.178) (0.386) (0.131) (0.418)

Dnt 3.414*** 3.464*** 3.568*** 0.794*** 5.261***
(0.277) (0.280) (0.529) (0.219) (0.566)

Dit ∗HPPi 1.108*** 0.938*** 1.830*** 0.016 0.497
(0.268) (0.299) (0.538) (0.204) (0.550)

Dit ∗HPPi ∗ I2020 0.733**
(0.345)

I2020 3.312***
(0.729)

Country FE Yes Yes Yes Yes Yes

Observations 26,164 26,164 8,352 9,048 8,764
R-squared 0.13 0.14 0.08 0.09 0.20
Countries 175 175 174 174 175

Notes: The table is identical to Table 1 except for a different calculation of reported standard

errors based on the coordinates of country capital cities instead of standard (centroid) coordinates

for countries. The dependent variable is average CHI index observed in during one week, 2020-

22. Country-week observations during 156 weeks in 174-175 countries are shown in column (1),

country-week observations for 2020, 2021 and 2022 respectively in columns (2)-(4). A constant

with unreported estimates has been included in all regressions. *** p<0.01, ** p<0.05, * p<0.1.

Standard errors corrected for spatial and temporal autocorrelation in brackets (), using coordinates

for capital cities and a spatial cutoff of 1000 km.

43



Table B4: Robustness V: Alternative distance cutoff for spatial autocorre-
lation in Table 1

DV: CHI Index
(1) (2) (3) (4) (5)

All years 2020 2021 2022

Dit 1.584*** 1.679*** 1.660*** 0.920*** 1.614***
(0.176) (0.176) (0.389) (0.129) (0.401)

Dnt 3.414*** 3.464*** 3.568*** 0.794*** 5.261***
(0.309) (0.312) (0.621) (0.227) (0.544)

Dit ∗HPPi 1.108*** 0.938*** 1.830*** 0.016 0.497
(0.279) (0.313) (0.581) (0.209) (0.557)

Dit ∗HPPi ∗ I2020 0.733**
(0.349)

I2020 3.312***
(0.936)

Country FE Yes Yes Yes Yes Yes

Observations 26,164 26,164 8,352 9,048 8,764
R-squared 0.13 0.14 0.08 0.09 0.20
Countries 175 175 174 174 175

Notes: The table is identical to Table 1 except for a different assumption of distance cutoff in

calculation of standard errors corrected for spatial autocorrelation. The dependent variable is

average CHI index observed in during one week, 2020-22. Country-week observations during 156

weeks in 174-175 countries are shown in column (1), country-week observations for 2020, 2021 and

2022 respectively in columns (2)-(4). A constant with unreported estimates has been included in all

regressions. *** p<0.01, ** p<0.05, * p<0.1. Standard errors corrected for spatial and temporal

autocorrelation in brackets (), using standard coordinates for countries and a spatial cutoff of 2000

km.
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