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Abstract
Spatio-temporal analysis of COVID-19 data with the two different statistical ap-
proaches is the main objective of this thesis. The first classical approach, the
Endemic-Epidemic framework (Held et al., 2005) is a class of multivariate time-
series models for the incidence counts, obtained from the surveillance systems. In
this formulation, the conditional mean of the number of cases is partitioned into
endemic, autoregressive and spatio-temporal parts, representing different sources
of infection contribution. The second approach used in the thesis is INLA (Inte-
grated Nested Laplace Approximation (Rue and Martino, 2007)), which performs
the approximate Bayesian inference for latent Gaussian models. The flexibility
of the both approaches allows for various extensions of the models. As the thesis
progresses, we search for the best model with different metrics used as a selection
criteria.

Both frameworks allow for the inclusion of the socio-demographic covariates
in the analysis, as possible drivers of the disease spread. Guided by a previous
study of Söderberg et al. (2022), we chose the covariats of interest to be: Income,
Foreign background, Education, Overcrowding, Square meters per person, Em-
ployed, Care workers. Also, the age factor was added as two covariates: Young
and Older.

It was shown that the Endemic-Epidemic approach with a complex seasonal
trend, random intercepts and the spatial weights, assigned according to the power-
law principle, but without any socio-demographic covariate, achieved almost as
low metric values as the best model. Given the aforementioned extensions, the
best model included the following socio-demographic covariates: Education and
Foreigners in the endemic part, Young and Square meters per person in the autore-
gressive and Overcrowded, Foreigners, Older, Income in the spatio-temporal part.
All these covariates positively correlated with the number of counts.

The model with the random walk time formulation applied within INLA tech-
nique showed on average a positive correlation of the case counts with Foreign
Background, Care workers, Overcrowded, Education and Income. A negative cor-
relation with the case counts on average was shown by the Older, Young, Em-
ployed and Square meters per Person. The results suggest further research about
the impact of the socio-demographics on the case counts of viral diseases.
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1 Introduction
As of May 2023, the COVID-19 pandemic is over according to WHO. During the
last 3 years millions of people were severely affected by the coronavirus disease,
and viral outbreaks still remain a challenge for health care systems. Therefore, it is
necessary to identify the factors that influence the spread of the disease, so that the
strategies to prevent and to slow down the disease transmission can be undertaken
efficiently by the public health authorities. It was shown that socio-demographic
factors, such as age, ethnicity, population density, occupation at health care organ-
isations, low income have significant impact on the number of outcomes or on the
disease development (Andersen et al. (2022); López-Gay et al. (2022); Markovič
et al. (2021)). In particular, in the work of Söderberg et al. (2022) the authors
found that overcrowded living conditions, low income and low education, as well
as a foreign background are associated with a the higher risk of testing positive
for COVID-19. This thesis will continue the study of the impact of these socio-
demographic variables on the disease outcomes, which is a primary goal of this
work.

As the infectious disease spreads around a geographical area, it is important to
take into consideration the similarity of the disease prevalence across the neigh-
bouring areas and at the consecutive time points when analysing the data. Spatio-
temporal methods are prevailing over time-series analysis and pure spatial meth-
ods, because they allow to identify the patterns of disease transmission over space
and time simultaneously. In the review Ibañez et al. (2021) of spatio-temporal
models for count data, the authors analyze the daily data of positive tests of
COVID-19 in the Valencian community in Spain, using both the classical fre-
quentist approach and the Bayesian framework. They compare the performance
of different approaches by computing the root mean square error (RMSE) of the
predictions. In this thesis, we will apply the Endemic-Epidemic time-series model
framework to model the case counts in Västra Götaland, Sweden, which is a clas-
sical frequentist approach, as well as a Bayesian spatio-temporal disease mod-
elling/mapping approach. The comparison of the two frameworks is the secondary
goal of the thesis.

In Section 2 we will present the data and its structure. Section 3 describes
the general Endemic-Epidemic modelling with extensions, the search for the best
models in terms of different selection criteria, concluding with the presentation of
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the results. Section 4 gives an introduction to the INLA method with an example,
followed by the possible models for spatio-temporal areal data and the obtained
results. The thesis is concluded with a discussion.

2 Data
We have the surveillance records of the COVID-19 PCR tests consisting of the
positive or negative outcomes, the date of the testing for the positive outcomes
and a unique code of the DeSO where the testing procedure was conducted. DeSO
zones (Swedish: DEmografiska Statistik Områden), are the demographical statis-
tical areas, with national division considered from 1st January 2018 and is still
valid to date. Sweden is divided into 5984 DeSO zones, each of which contains
from 700 to 2700 residents. The Västra Götaland region is divided into 992 DeSO
zones with 1734443 residents in total (estimated for year 2020). The records of
PCR tests were collected on a daily basis, starting from 01-01-2020 up to 21-06-
2021. Two records, which were dated to the years 2010 and 2014, were removed
from the dataset. Also, 179 cases were deleted from the data, since those individ-
uals didn’t have a fixed DeSO residential status.

Spatial data is usually divided into three types: areal data, point-referenced data
and spatial point patterns. Here, we have an areal data type, where the aggregated
count yi over areal unit i are modelled with a random variable Yi. The areal units
i have well-defined boundaries given by the DeSO boundaries in our case. For
areal data, the neighbourhood structure of the region map defines the dependen-
cies between the observations. Due to the ethical considerations related to the
privacy protection of all residents, we don’t have access to the home addresses
corresponding to individual test results, instead we will analyze the numbers of
counts, aggregated by the time points and the region. The counts yit are modelled
as random aggregated numbers of positive tests where i = 1, . . . , I are the area
indices and t = 1, . . . , T are day indices. Recall that we have I = 992 DeSO
zones in Västra Götaland and we consider a total of T = 537 days. The temporal
dependence between the consecutive daily observations enables to use time-series
analysis for the counts. Figure 1 shows daily positive tests aggregated over DeSO
zones in Västra Götaland. In Figure 2 the number of cases per person for each
DeSO are shown, aggregated over the study period.

9



Figure 1: Time series of daily counts of positive PCR test, aggregated over the
regions, from 1st Jan 2020 till 21st June 2021.

The socio-demograpic covariates, considered in this thesis, are purely spatial
and supplied per DeSO zone. They constitute aggregated counts of various indi-
vidual sociodemographic factors for the residents of each DeSO. Sampled in the
year 2019, these are considered representable for our study period, since demo-
graphic trends are not changing significantly over shorter time periods in Sweden.
In Figures 20, 21, 22 in the Appendix we supply graphical illustrations of all co-
variates under consideration.
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Figure 2: Incidence rates for each DeSO, aggregated over the study period.
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3 Endemic-Epidemic framework
We start with a general basic framework of Endemic-Epidemic disease modelling
in Section 3.1 and consider the model extensions in 3.2. In Sections 3.3-3.5 we
will discuss possible specifications of the model terms. The model selection is
discussed in 3.6, followed by the description of scoring rules for predictions of
count data. The section is concluded with the obtained results in 3.8.

3.1 General model

Originally, this framework for analysis of spatio-temporal data was proposed by
Held et al. (2005), and developed further in subsequent works (Paul et al., 2008;
Paul and Held, 2011; Held and Paul, 2012; Meyer and Held, 2014). The pure
parameter-driven approach, where the counts yt are assumed to be Poisson dis-
tributed with a parameter λ, which drives the distribution of counts, is not able to
describe the epidemic nature of infectious diseases well. The observed number
of counts in the past yt−1 should be included as another governing factor, so the
model is observation- and parameter-driven (Held et al. (2005)). The simple ver-
sion of the model is motivated by the branching process with immigration where
the conditional mean of yt|yt−1 is defined as

µt = ν + λyt−1, (1)

where ν is a positive mean immigration term, or endemic term, and λ ∈ (0, 1)
governs the branching part. In general, this branching process models the repro-
duction of an individual (for example, a bacteria), so that the expected number of
new individuals at time t is the number of individuals at the previous time step,
yt−1, multiplied with an autoregression parameter λ, plus the number of the im-
migrated individuals ν. The appealing property of the model is that the branching
process is approximated to a chain binomial model, when the number of suscepti-
bles is unknown, which is often the case in surveillance systems.

We start with a brief introduction to the Reed-Frost chain binomial model for
epidemic diseases (Abbey, 1952), then we derive the approximation for the condi-
tional mean µt (Wakefield et al., 2019). The whole population is divided into three
compartments: Susceptibles, Infectives and Recovered. The discrete time inter-
vals, during which infection is transmitted to susceptible individuals, are called
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the generation times, and at each generation time new infectives emerge. The
Reed-Frost model assumes homogeneous mixing, that is a contact between two
individuals in a population occurs randomly with equal probability. Also, we as-
sume that the infectious period lasts only one generation time, after which the in-
dividuals are removed (recovered). Denote the number of susceptibles, infectives,
and recovered at generation time t by xt, yt, zt, respectively, and the total popu-
lation size by N . Under the assumption of homogeneous mixing and frequency
dependent contact rate, we can express the infection rate as β = cFDpI , where
cFD is the frequency of contacts and pI is the probability of infection transmission
from an infective to a susceptible individual (Wakefield et al., 2019). Then dur-
ing the time interval [t− 1, t) the probability that a susceptible meets an infective
individual and gets infected is β/N . It implies that the probability that this indi-
vidual avoids becoming infected is 1 − β/N , which for a large population N is
approximated by a Taylor expansion given by exp{−β/N}. Then, if all contacts
are independent, it follows that the probability that one susceptible avoids becom-
ing infected, after having contacted all the infectives yt−1 at generation time t− 1,
is equal to exp{−βyt−1/N}. Therefore, the event that one susceptible became
infected in one time step is Bernoulli distributed, and for independent contacts the
number of new infectives at generation time t is Binomially distributed according
to the probability

Yt|yt−1, xt−1 ∼ Binomial
(
xt−1, 1− e−

βyt−1
N

)
,

Xt = Xt−1 − Yt = X0 −
t∑

i=1

Yi.

Assuming that the population size N is large and the quantity βyt−1
N is small,

then 1 − e−
βyt−1

N ≈ βyt−1

N , therefore Poisson approximation of the Binomial distri-
bution yields that we approximately have Yt|yt−1 ∼ Poisson(βxt−1yt−1

N ). Approxi-
mating the number of susceptibles xt−1 with the total population size N we get

Yt|yt−1 ∼ Poisson(βyt−1). (2)

Here we arrived at the approximation of the branching process to the chain bino-
mial model. The term ν in (1) is included in the model to represent the endemic
part of the outbreak, and it ensures that the process will not die out (Held et al.
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(2005)). The Poisson distribution (2) assumes equality between the variance and
the expected value of a random variable, which is often not the case for disease
outcomes. Hence, it is usually replaced by a more flexible Negative Binomial
distribution to account for overdispersion. We achieve this by letting

µt = βyt−1,

σ2t = µt +
µ2t
ψ
,

where the parameter ψ > 0 is estimated from the data. The variance σ2t equals
the mean when ψ → ∞. Otherwise the variance is assumed to be larger than
the expected value, which is called overdispersion. We observe that the above
formulation has an intuitive explanation that on average we can expect the number
of infected individuals in the next time step to be equal to the number of infected
individuals from the previous time step multiplied by the infection rate, which is
also interpreted as the basic reproduction number.

3.2 Model extensions

The simple model (1) has to be extended in order to capture more complicated
dynamics of disease spread, adjusting for the temporal trends, seasonal patterns,
spatio-temporal dependence, as well as the other covariates. The general model
formulation was presented in Meyer et al. (2014) with implementation in the R
package surveillance as hhh4 models (source). Yit has a Negative Binomial dis-
tribution with an additive conditional mean

µit = νiteit︸︷︷︸
endemic

+ λitYi,t−1︸ ︷︷ ︸
autoregressive

+ϕit
∑
j ̸=i

wjiYj,t−1︸ ︷︷ ︸
spatio-temporal

(3)

and the conditional variance of Yit is µit(1 + µitψi). If the overdispersion param-
eter ψi = 0, the counts have Poisson distributions. The first component of the
mean (3) is an endemic part, scaled with the population size (or fraction) eit and,
possibly, other socio-demographic covariates. In our case, the population sizes of
DeSO zones and other DeSO characteristics are constants over the study period,
hence we replace eit with ei. As in the original formulation, the parameter νit is
an immigration term. Usually, it models the cases emerged from an environmental
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reservoir within the region or imported cases. As COVID-19 did not emerge in
Västra Götaland, the νit term represents the immigrated cases from outside of the
Västra Götaland region.

The epidemic part is split into two parts: the autoregressive component λitYi,t−1,
which quantifies the infection spread within the unit i from the previous day, and
the term ϕit

∑
j ̸=iwjiYj,t−1 which accounts for the adjacent regions’ contribution

to the infection transmission from the previous day, i.e. a spatio-temporal compo-
nent. We denote the components by end (endemic), ar (autoregressive), and ne
(neighbours). Each component is log-linked to the covariates z(·)it :

log(νit) = α
(ν)
i + β(ν)⊤z

(ν)
it , (4)

log(λit) = α
(λ)
i + β(λ)⊤z

(λ)
it , (5)

log(ϕit) = α
(ϕ)
i + β(ϕ)⊤z

(ϕ)
it , (6)

where α(·)
i is an intercept, zit are the covariates varying in space in time with the

corresponding effects β(·). We see that the framework allows to add covariates in
each compartment and in the following section we will explain in detail the choice
of covariates for each component and possible model extensions. The appealing
property of the additive risk modelling is that it allows us to estimate the relative
contribution of the 3 sources of the infection: the external, the autoregressive and
from the neighbours.

We start with a more simple model with common intercepts α(ν), α(λ), α(ϕ) in
each component (formulas (4), (5), (6)) and then move to model with random area-
specific intercepts α(·)

i in each component. The model with area-specific intercepts
captures the heterogeneity across the regions, not explained by the other covari-
ates. Random area-specific intercepts are assumed to be correlated or independent.
The independent intercepts are assumed Normally distributed:

α
(ν)
i ∼ N(α(ν), σ2ν), (7)

α
(λ)
i ∼ N(α(λ), σ2λ), (8)

α
(ϕ)
i ∼ N(α(ϕ), σ2ϕ). (9)

It is also possible to set a distric-specific overdispersion parameter ψi or a common
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overdispersion ψ over all districts. But we will not attempt further modelling with
correlated intercepts and nor with district-specific overdispersion parameters due
to the associated computational burden.

3.3 Spatial weights

The weights wji in the neighbour components in (3) define the distribution of
neighbour influence on the unit i. These weights can be chosen as an indica-
tor function: set 1 if two units are neighbours and 0 otherwise. This simplistic
assumption gives worse fit than the weights set according to the power law princi-
ple:

wji =

{
o−d
ji if j ̸= i ,

0 if j = i,
(10)

where o is the adjacency order of neighbour, so if oji = k then region i is the k’th
order neighbour of region j. It means, that one has to cross the regions’ borders
k times as the shortest way from region i to region j. The weights are further
normalized to

wji =
o−d
ji∑I

k=1 o
−d
jk

to ensure that for each region j the sum of the weights of all its neighbours is equal
to one. The decay parameter d is estimated from the data.

Meyer and Held (2014) demonstrate that the power-law weight model exten-
sion, based on the neighbourhood order, improves both the fit and prediction. It
was shown that the human travel behaviour is described by a decaying function
f(x) ∝ 1

xd , where x is distance and d is the decay parameter (Brockmann et al.,
2006). In the definition in (10) we see that if region i is a distant neighbour of or-
der k of region j, then its weight should be small. Also, a large d implies a quick
decay, so that the influence of the distant neighbours is negligible. The power law
adjusts for the heavy tail of the human travel distance distribution, and, given the
fine resolution of the DeSO units and large fraction of commuters in the region
(SCB, data 03/2020), we should definitely include the spatial dependence even on
the most distant neighbouring units in our model. Thus, we apply this by setting
the upper bound for the adjacency order to maximum equal to 20: weights =
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W_powerlaw(maxlag = 20) in the function hhh4 in the R package surveil-
lance. The neighbourhood structure of the regions is supplied to the model in
form of an adjacency matrix, computed with the functions poly2adjmat and
nbOrder.

3.4 Seasonal effects

It is possible to add seasonality in each of the components (4), (5), (6), using a
Fourier series expansion (Held and Paul, 2012):

f(t) =A0 + A1 sin(2πwt) +B1 cos(2πwt) + A2 sin(4πwt) +B2 cos(4πwt) + ....

=A0 +
∞∑
n=1

(An sin(2πnwt) +Bn cos(2πnwt)).

We set the frequency w = 2π
365 , as we have daily counts. If we add one sinusoidal

wave and a temporal trend t in the end component, then we rewrite the endemic
formulation (4) as

log(νit) = α
(ν)
i + βtt+ γ sin(wt) + δ cos(wt).

The model with one sinusoidal wave in end component will be a basic reference
model. Adding more waves in other components enables to capture more compli-
cated patterns of seasonal effects:

log(νit) = α
(ν)
i + β(ν)⊤z

(ν)
it +

S∑
s=1

(
γ(ν)s sin(wst) + δ(µ)s cos(wst)

)
,

log(λit) = α
(λ)
i + β(λ)⊤z

(λ)
it +

S∑
s=1

(
γ(λ)s sin(wst) + δ(λ)s cos(wst)

)
,

log(ϕit) = α
(ϕ)
i + β(ϕ)⊤z

(ϕ)
it +

S∑
s=1

(
γ(ϕ)s sin(wst) + δ(ϕ)s cos(wst)

)
.

Here, the S is the number of harmonic waves and the Fourier frequencies are
ws = 2πs

365 . In R we set addSeason2formula in the hhh4 formulation. We
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will find the best seasonality pattern by experimenting with different numbers of
waves in each compartment and then apply the model selection criteria AIC and
BIC (see Section 3.6).

3.5 Socio-demographic covariates

In the study "The influence of overcrowding and socioeconomy on the spatio-
temporal spread of COVID-19" (Söderberg et al., 2022) the spatial and spatio-
temporal analyses were conducted in order to identify the most influential co-
variates amongst the DeSOs demographic characteristics. By using elastic net
regularised Poisson regression, the authors found that out of 44 covariates (those
included also interaction terms) 21 were chosen as most important for the predic-
tion performance, such as overcrowding, the number of square meters per person,
gainfully employed, health care workers, education level, foreign background, per-
sonal cars, income. Guided by this set of covariates, we will perform model se-
lection, based on the AIC and BIC criteria. The component structure of the model
framework allows adding the covariates into each compartment. We will start with
the richest model, with all the covariates included into end, ar and ne and then
gradually removing the abundant covariates, aiming to find the most parsimonious
model. We excluded the number of personal cars, as it will confound the interpre-
tation. Also, we believe that the age of the inhabitants is an important predictor for
the number of cases, hence we include two additional covariates: the number of
children and adolescents (0-19 y.o.) in a DeSO, call them Young, and the number
of senior people (65+ y.o.) in a DeSO, give them the name Older. Thus, the full set
of interesting covariates are: Young, Older, Income, M2 per person, Overcrowded,
Education, Employed, Foreigners, Care workers. It was found that the fraction of
health care workers worsened the fit, and thus was excluded from the further inves-
tigation. The covariate Education is the number of individuals who have at least 3
years of post-secondary education. The covariate Foreigners represents the num-
ber of people of non-Swedish background, Employed is the gainfully employed
number of people, and Income is the median income per DeSO. According to the
study, the variable Overcrowded is defined as more than one person per room in a
household, with the exceptions of adult couples in a relationship, children under
a certain age or anyone living in a villa, detached or semi-detached house. We
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included the covariates on the logarithmic scale.

3.6 Model selection

We will use the AIC and BIC criteria for model comparison:

AIC = −2 log(L(θ̂|data)) + 2p, (11)

BIC = −2 log(L(θ̂|data)) + p log(n), (12)

where log(L(θ̂|data)) is the log-likelihood and p is the number of estimable pa-
rameters.

We start with a simplifying assumption of identical intercepts across all regions
for each of the component. The first basic model contains time trend and one
sinusoidal wave in end with the population fraction as an offset, an intercept term
in ar and population fraction as covariate in ne. This is achieved by means of the
following R commands:

b a s i c <− l i s t ( end = l i s t ( f = ad dS eas on 2 fo rm u la (~1 + t ,
p e r i o d = obj@freq , S = 1) ,
o f f s e t = p o p u l a t i o n ( o b j ) ) ,

a r = l i s t ( f = ~ 1 ) ,
ne = l i s t ( f = ~ 1+ l o g ( pop ) ,
w e i g h t s = W_powerlaw ( maxlag = 2 0 ) ) ,
f a m i l y = " NegBin1 " ,
d a t a = l i s t ( pop = p o p u l a t i o n ( o b j ) ) )

b a s i c _ m o d e l <− hhh4 ( s t s O b j = obj , c o n t r o l = b a s i c )

The obtained estimates are the MLEs (maximum likelihood estimates) com-
puted with the quasi-Newton algorithm. For the basic model we obtained AIC =
651312.8 and BIC = 651413.5, which can serve as reference values. Adding one
extra sinusoidal wave so that S = 2 in the endemic component, we got slightly
improved results, with AIC = 651179.4 and BIC = 651302.4. Assuming that
seasonality has an impact on the epidemic components as well as on the endemic
one, we experiment with allowing for sinusoidal waves in the ne and ar parts.
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The best model with S = 2 in each 3 components yielded AIC = 650065 and
BIC = 650289.6. Modelling seasonality with S = 3 resulted in the worsening
of both criteria as compared with S = 2, which is possibly due to the fact that
AIC and BIC penalize for larger numbers of parameters. The higher order waves
S = 4 and S = 5 did improve both AIC and BIC, but not by a lot. We keep the
model with S = 2 in each component, avoiding overfitting with too many waves,
and call this model seasonal. In Figure 3 the multiplicative effect of S = 2 si-
nusoidal waves for each component are shown for a one-year period. We observe
that the amplitude for the epidemic curves ar and ne is small with the value of the
multiplicative effect being close to 1, whereas the endemic curve (the solid line)
has larger amplitude and significant multiplicative effect. The possible interpreta-
tion for the slight drop during summer days for the epidemic curves is likely due
to people being on vacation. This results in people travelling outside to a larger
extent and a reduced number of close contacts, e.g. in schools. The endemic curve
shows two peaks around June and November, so that the influence of the imported
cases is large during these seasons.

We have 9 covariates which we can add into each component, which yields the
model with AIC = 648256.7 and BIC = 648692.7. Initially, a model with all
covariates only in the endemic part was considered. The socio-demographic char-
acteristics were believed to be the driving factors explaining the endemic compo-
nent, as the endemic component represents the imported cases and the cases not
attributed to the epidemic spread. But it turned out that better fits were achieved
with the inclusion of all or several covariates in each component. However, nine
covariates in each component complicates the interpretation. We should sequen-
tially exclude the abundant covariate from different components. Then we obtain
the best possible model, with AIC = 648290.2 and BIC = 648636, which has
the following structure: end : Young, Education, Foreigners, ar: M2 per person,
Young, Education, ne: Overcrowded, M2 per person, Older, Income, Education,
Foreigners. We call this model rich and keep it for further comparison in terms of
prediction quality. Now we aim to find the most simple and parsimonious model,
yet with AIC and BIC as close as possible to those of the rich model. To simplify
the interpretation, we will exclude the repeated covariate from the compartment,
if it gives the smallest impact. Thus, we arrive at the greedy model with: end: Ed-
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ucation, Foreigners, ar: M2 per person, Young, ne: Overcrowded, Older, Income,
Foreigners, where AIC = 648598.8, BIC = 648900.8.

Figure 3: The multiplicative effect of two sinusoidal waves on each component.
The effect is estimated for a one year period.

3.7 Goodness of fit

The previous models didn’t contain any random effects. It is possible to include
random effects as random intercepts according to the distributions (7), (8) and (9)
in each compartment. Denote random effects as ri. We will consider the following
models for comparison,

1. basic : a trend + one sinusoidal wave in end

2. basic + ri : a trend + one sinusoidal wave in end + a random effect in each
component

3. seasonal : a trend in end + S = 2 waves in each component

4. seasonal + ri : a trend in end + S = 2 waves in each component + a random
effect in each component

5. rich: a trend + S = 2 in each component + rich covariates set

6. rich + ri: a trend + S=2 in each component + rich covariates set + a random
effect in each component

7. greedy: a trend + S = 2 in each component + few covariates
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8. greedy + ri: a trend + S = 2 in each component + few covariates + a random
effect in each component

With random effects included, the criteria AIC and BIC are not applicable any-
more. As the AIC and BIC are computed based on the number of parameters, the
inclusion of random effects complicates the estimation of the effective number of
parameters in the model. Instead, the fit of the model can be evaluated by scoring
rules, computed from the predictions. The scoring rules for count data are the
metrics used to measure the discrepancy between the predictive distribution P and
the observed count x (Paul and Held, 2011). A smaller scoring rule indicates a
better model.

Before we compute the scoring rules for our predictions, we will define the
proper scoring rules. Gneiting and Raftery (2007) state that the probabilistic fore-
casts, formed as predictive distributions, should aim to maximize sharpness of the
predictive distributions subject to calibration. Let P be the predictive distribution,
and x the value that materializes, then the score S(P, x) is assigned to the forecast
P and is seen as a penalty if negatively oriented (the smaller the score, the bet-
ter) and is subject to minimization. Denote by Q the true probability distribution
of the observed values, and by S(P,Q) the expected value of S(P, ·) under the
distribution Q. A score is proper if

S(Q,Q) ≤ S(P,Q)

for all P andQ. A strictly proper score is one where the equality above is achieved
if and only if P = Q. With proper score metrics a forecaster is encouraged to
report her true belief P = Q. Strict proper scores address both sharpness and cal-
ibration by penalizing broader prediction intervals (Gneiting and Raftery, 2007).
We report the mean scores as a summary measure of the predictions. Before we
move to the chosen scoring rules of our predictions, we will visually inspect the
calibration of our models by PIT diagrams.

Probability integral transform
The Probability integral transform (PIT) is a measure for the model calibration
(proposed by Dawid (1984)), which can be used as a test of whether the given
data can be reasonably assumed to be generated from the given distribution. As-
sume that a continuous random variable X has a cumulative distribution function
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FX(X), then the random variable Y = FX(X) has a standard uniform distri-
bution. For the predictive distribution P denote its probability mass function as
(pk)

∞
k=0 and its cumulative distribution function as (Pk)

∞
k=0 (Czado et al., 2009). If

we obtain a predictive cumulative distribution for a given model, then the values
of this cumulative distribution, attained at the observations, are PIT values. For
the observations generated by the given model the PIT values should follow the
standard uniform distribution. If the obtained PIT values plotted as a histogram,
exhibit uniformity, it is an indicator of a well-calibrated model. For count data,
Czado et al. (2009) proposed a uniform non-randomized version of the PIT his-
togram. Let x be an observed count, Px is a predictive distribution for the observed
count x and u is a standard uniform. Then define

F (u) =


0, u ≤ Px−1,

(u− Px−1)/(Px − Px−1), Px−1 ≤ u ≤ Px,

1, u ≥ Px,

(13)

for x ≥ 1, and

F (u) =

{
u/P0, u ≤ P0,

1, u ≥ P0,
(14)

for x = 0. F (u) is a cumulative distribution function, given the observed count x.
For each data point i ∈ (1, ..., n) we compute the predictive distribution P (i). To
plot a PIT histogram, choose a number of bins for the histogram equal to J . Hav-
ing observed the materialized counts x for each i, we compute F (i)(u) according to
(13) and (14). Compute the heights of the J histogram bins as fj = F̄ ( jJ )−F̄ (

j−1
J ),

where the mean PIT, aggregated over predictions is F̄ (u) = 1
n

∑n
1 F

(i)(u) for
i = 1, . . . , n.

For each of our models, we plot the empirical cdfs for the probabilistic forecasts
and visually examine the deviation from the standard uniform distribution (Figure
4). We see that each model shows a PIT histogram being very close to the standard
uniform distribution, indicating a good calibration fit. There is, however, a slight
decay in the right part of all the histograms, which indicates that the data actually
has smaller values than the models tend to predict. Still, the deviation is arguably
negligible, and we conclude that there is no apparent miscalibration in any of the
models. In particular, we note that the basic and the basic + ri models are a bit
worse calibrated than the others. The models with visibly better calibrations are
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Figure 4: PIT histograms for calibration check for each competing model of
endemic-epidemic approach.
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seasonal + ri, rich + ri, greedy + ri.

Scoring rules for count data

We will consider four scoring rules.

The proper scoring rule is a logarithmic score (logs):

logS(P, x) = − log(px)

where px is the probability mass function at the observation.
The ranked probability score is strictly proper (rps) :

rps(P, x) =
∞∑
k=0

{Pk − 1(x ≤ k)}2.

Assume that µP is the mean and σP is the variance of predictive distribution
P. The Dawid-Sebastiani score (Dawid and Sebastiani, 1999) is based on the first
two moments of the predictive distribution and is given by

dss(P, x) =
(
x− µP
σP

)2

+ 2 log(σP ).

We further have the traditional squared error score

ses(P, x) = (x− µP )
2.

In the surveillance package, with the function oneStepAhead we can com-
pute one-day-ahead predictions. The function refits the model for each new pre-
diction, which would be infeasible even for 10 predictions. Instead, we can use
the fitted values to compute the scoring rules, hence assessing the goodness-of-fit.
The scores are computed as averages across the regions and days.

In the Table 1 we observe that the inclusion of random effects improves the fit
for all models. The best scores logs, rps, dss, ses are achieved by seasonal + ri,
greedy + ri, basic + ri and greedy + ri correspondingly. The second best are
shown by greedy + ri, greedy +ri, seasonal + ri, rich + ri. Thus, we can choose
greedy + ri as the best performing model in terms of scoring rules. This model
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Model logs rps dss ses
basic 0.6124507 0.2295692 -0.7761596 0.4502016
basic + ri 0.6038401 0.2254187 -0.8568488 0.4360547
seasonal 0.6112801 0.2290956 -0.7839494 0.4495570
seasonal + ri 0.6024040 0.2247373 -0.8466738 0.4347323
rich 0.6095670 0.2281738 -0.7914575 0.4464474
rich + ri 0.6024976 0.2247419 -0.8403673 0.4347016
greedy 0.6098648 0.2283480 -0.7870066 0.4470991
greedy + ri 0.6024615 0.2247151 -0.8393824 0.4345951

Table 1: Averaged scoring rules

incorporates the covariates, with the seasonality and random effects structure be-
ing the same as that of seasonal + ri model.

3.8 Results

All estimated fixed effects of the greedy + ri model are shown in the Appendix
in Table 5 (For comparison, all estimated fixed effects of rich + ri are shown
in Table 6 in the Appendix). Figure 5 represents the estimates β̂k of the fixed
effects and their 95% -confidence intervals (the seasonal terms are not shown) on
the logarithmic scale. No interval contains zero. For interpretation purposes, we
present 2β̂k and their confidence intervals in the Table 2.

Estimate (2β̂k ) 2.5 % 97.5 %
ar.M2 2.280 1.855 2.802

ar.Young 1.517 1.386 1.660
ne.population 1.698 1.606 1.794

ne.Overcrowded 1.032 1.019 1.045
ne.Foreigners 1.097 1.068 1.126

ne.Older 1.052 1.020 1.086
ne.Income 1.242 1.165 1.324

end.t 0.998 0.997 0.998
end.Education 1.243 1.184 1.304
end.Foreigners 1.246 1.194 1.299

Table 2: Estimates of fixed effects with CIs on the natural scale, greedy + ri

This means, that if the value of the covariate k is doubled, then we expect a 2β̂k

multiplicative effect on the number of cases. For example, the number of endemic
incidences are estimated to be multiplied by 1.246 on average if the number of
foreigners is doubled. Surprisingly, if the number of people with 3 or more years
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Figure 5: Confidence intervals for the fixed effects, greedy + ri model.

of post-secondary education is doubled, then the endemic incidence is also in-
creased by 1.243 on average. For the epidemic part (ar and ne), if the number of
people living in overcrowded conditions, as well as foreigners and older people
are doubled, then we expect on average the multiplicative effect of 1.032, 1.097,
1.052 correspondingly. Also, the doubled number of square meters per person is
associated with the average multiplicative effect of 2.280 on the autoregressive
component, which was not expected. Additionally, the decay parameter d was
estimated to be 1.80(1.76, 1.83), which is interpreted as a weak decay of spatial
influence from the distant neighbours.

The fitted mean components, aggregated over all regions, together with the ob-
served counts as dots are shown in Figure 6. We see that the largest contributor
of disease cases is the neighbour or spatio-temporal (orange) component. Also, in
the second wave of disease spread, which started in the autumn 2020, the (blue)
autoregressive component is more apparent than in the first wave. The plot 6 re-
turns also an object, containing the fitted mean values together with their estimated
components for each day. For example, for the 1st of May 2020 we have
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Figure 6: The fitted mean components for the greedy + ri model, aggregated over
all regions.

mean epidemic endemic epi.own epi.neighbours
76.471412 58.806892 17.664520 6.762425 52.044466

Then we can compute the proportion of each component contribution to the mean
for each day. The average proportions over all days are : end = 0.080782, ar =
0.104965, ne = 0.814253. 92 % of the cases are explained through the epidemic
components, of which 81.4% refers to the spatio-temporal component. This re-
flects the highly viral nature of COVID-19. We present the similar plots of the fit-
ted mean components for each of the considered models in the Appendix (Figures
23, 24, 25, 26, 27, 28, 29). Also, we plot the map of each component contribution
to the mean in Figure 7. We see no regions with a spatio-temporal contribution
less than 60 % into the mean number of cases, whereas the autoregressive propor-
tion is never higher than 0.12 %. This means, that the reproduction of the disease
within the DeSO is very small.

We included random intercepts in our model to account for the unobserved het-
erogeneity across the regions. If α(·) is the mean intercept of the component,
and α

(·)
i is a region-specific intercept, we can plot the estimated exponentially

transformed deviations α(·)
i − α(·) for each region in Figure 8. These deviations
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Endemic Autoregressive

Spatio-temporal

Figure 7: Proportions of the fitted components, averaged over all days for greedy
+ ri model.

represent the multiplicative effect on each component. We see that the devia-
tions for the spatio-temporal component are large for the border DeSOs such as
the South-Eastern part of the whole region, but this is explained by the fact that
the actual neighbours of the border DeSOs (regions Jönköping, Halland, Örebro)
were not included into the analysis. Looking closely at the regions with highest
multiplicative effect on the endemic components, we observe that those are the

30



central regions (svenska: centralort) such as Göteborg, Borås, Skövde, Tibro. The
multiplicative effect on the autoregressive part is mostly pronounced in the central
regions such as Lysekil, Trollhättan, Falköping, Göteborg, Tibro.

Endemic Autoregressive

Spatio-temporal

Figure 8: The exp-transformed estimated intercept deviations αi − α, which are
the multiplicative effects of district-specific heterogeneity on the components of
greedy + ri.
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4 INLA

4.1 Preface

INLA, which stands for Integrated Nested Laplace Approximations is a tech-
nique developed for a particular class of regression models, namely latent Gaus-
sian models (LGMs), which are a subclass of the generalized additive models
(GAMs). INLA was proposed in the works of Rue and Martino (2007), Martino
and Rue (2009), Rue et al. (2009) and developed further in Martins et al. (2013),
Rue et al. (2017) and Chiuchiolo et al. (2022). Classical MCMC (Markov chain
Monte Carlo) sampling methods are widely used in Bayesian statistics, in partic-
ular in spatio-temporal statistical setups, like the ones initially intended to be em-
ployed for the COVID-19 data modelling. Unfortunately, for very large models,
these methods can be infeasible due to the associated heavy computational burden.
Our observation data contains 537*992 = 532704 points, and here the associated
MCMC algorithms took more than two days to obtain a small sample of size 500
(after burn-in period). The chains showed poor mixing and didn’t converge, so
that a larger sample would be needed for more conclusive results. Since it was
infeasible, it was decided to switch to the INLA approach. INLA employes a de-
terministic algorithm instead of posterior sampling, and its computational speed
and high accuracy make it more suitable for large datasets. INLA-package is avail-
able on the website https://www.r-inla.org/.

We start this part with an introduction of the Laplace approximation method in
Section 4.2 and a brief description of several properties and computational bene-
fits of the Gaussian Markov Random Fields (GMRFs) in Section 4.3. After that
we will look into details on how INLA works in Section 4.4. The application of
INLA for our problem and the obtained results are presented in the Section 4.5.

4.2 Laplace approximation

Laplace approximation is a method for approximating integrals. Let log f(x) to be
a log density function, and denote the mode of this density by x∗ = argmaxx log f(x).
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We write the Taylor series expansion of order two evaluated at the mode as

log f(x) ≈ logf(x∗) + (x− x∗)
∂ log f(x)

∂x

∣∣∣
x=x∗

+
(x− x∗)2

2

∂2 log f(x)

∂2x

∣∣∣
x=x∗

.

The second term of the series expansion turns into 0 at the mode. We can write
the integral of the density f(x) as∫

f(x)dx =

∫
exp(log f(x))dx

≈
∫

exp
(
log f(x∗) +

(x− x∗)2

2

∂2 log f(x)

∂2x

∣∣∣
x=x∗

)
dx.

We observe that the second quadratic term in the integrand above reminds of
the density of a Normal distribution. If we set σ∗2 = −1/∂

2 log f(x)
∂2x

∣∣∣
x=x∗

, then we
can rewrite the approximation∫

f(x)dx ≈ exp(log f(x∗))

∫
exp

(
− (x− x∗)2

2σ2∗

)
dx.

Thus, in order to obtain a Normal approximation of the given density by the
Laplace method, we need to find the mode by setting the first derivative to zero,
and the variance is found by evaluating the negative inverse of the second deriva-
tive at the mode. The general setting of the method for approximating an integral
In is the following:

In =

∫
exp(nf(x))dx

≈
∫

exp
(
n
(
f(x∗) +

1

2
(x− x∗)2f ′′(x∗)

))
dx

≈ exp(nf(x∗))

√
2π

−nf ′′(x∗)
= Ĩn.

As n → ∞ , the approximation will be exact, if the central limit theorem holds.
This approximation has en error satisfying

In = Ĩn(1 +O(n−1)).

which is not an additive, but a relative error with rate n−1 (Rue et el., 2016).
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Assume we have some data y, and the parameter x = (x1, x2), controlling the
distribution of y. We would like to compute the posterior marginal densities for
the parameters. The marginal posterior density for x1 can be approximated by the
Laplace method as

π(x1|y) =
π(x1, x2|y)
π(x2|x1,y)

≈ π(x1, x2|y)
π̃(x2|x1,y)

,

where π̃(x2|x1,y) is the Gaussian approximation to the full conditional density of
x2. In the same way we can approximate the posterior marginal for x2. Of course,
we could make the Laplace approximations directly to the π(x|y) which would
be two-dimensional in this case, and then compute the marginal from it, but such
approximations often might be very off. Instead, we obtain the approximations to
the conditional distributions, which turn out to be more accurate. Such marginals
are closer to Gaussian densities than their joint distributions. Before we look into
details of how INLA produces the approximations, we should briefly introduce
several important concepts about GMRFs.

4.3 Gaussian Markov Random fields

A Gaussian Markov Random fields (GMRF) is a random vector x = (x1, ..., xn)
that follows a Gaussian or multivariate Normal distribution with some mean µ

and the precision matrix Q, which is an inverse of the covariance matrix; and it
has a Markov property: xi and xj are conditionally independent, given all other
indices except for the i and j. Write it as xi⊥xj|x−ij. The concept of conditional
independence is encoded in the precision matrix of the GMRF: the elements of the
precision matrix are zero for conditionally independent elements. Thus, the preci-
sion matrices for GMRFs are sparse, which decreases the computational burdens
substantially. The covariance matrix of such a field, on the other hand, may be a
dense matrix and can be computationally too expensive to work with directly if
the data dimension is large. The sparsity of the precision matrix is one of the key
attributes of the INLA method.

We state the formal definition of a GMRF and an important theorem from (Rue
and Held, 2005). Define a labelled graph G = (V,E), where V are vertices V =
(1, ..., n) and the edges E connect the vertices. There is no edge between the
vertices xi and xj iff they are conditionally independent, given x−ij.
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Def. A random vector x = (x1, ..., xn) ∈ Rn is called a GMRF with mean µ
and precision matrix Q > 0 wrt a labelled graph G = (V,E) , iff its density has
the form

π(x) = (2π)−n/2|Q|1/2 exp
(
− 1

2
(x− µ)TQ(x− µ)

)
, (15)

where

Qij ̸= 0 ⇐⇒ {i, j} ∈ E for all i ̸= j.

Theorem. Let x have a Normal distribution with mean µ and a precision matrix
Q > 0. Then for for i ̸= j

xi⊥xj|x−ij ⇐⇒ Qij = 0.

The proof of the theorem is in the Appendix section.
This result means that we can read off from the graph which elements are ze-

ros in the precision matrix. For a GMRF the pairwise Markov property, defined
above, is equivalent to the local Markov property (conditional independence, given
the neighbors) and a global Markov property. The global Markov property is a
stronger concept, implying the local and pairwise properties. The global Markov
property Rue and Held (2005):

xA⊥xB|xC ,

for all disjoint sets A,B,C, where C separates A and B, and A and B are non-
empty (see Figure 9) The simplicity of the computation of the precision matrix Q
is proven by the following results: Let x be a GMRF as in (15), and let L be a
Cholesky lower triangular matrix of the matrix Q. For the vertices 1 ≤ i < j ≤ n
define the set

F (i, j) = {i+ 1, ..., j − 1, j + 1, ..., n},

then

xi⊥xj|xF (ij) ⇐⇒ Lji = 0.

Hence, the global Markov property implies that if F (i, j) is a separating set for
i < j, then Lji = 0. So the sparsity of precision matrix Q is inherited by the
Cholesky triangles L. If we have a graph with vertices and edges, which in our
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Figure 9: The yellow setA and the blue setB are conditionally independent, given
the red set C.

case is a map with the regions and their neighborhood structure, then we know
which elements must be zero in L and we will save time by not computing them.
But what is the interpretation of the non-zero elements Lji? Assume we want to
sample x ∼ N(µ,Q−1) by the following algorithm Rue and Held (2005):

• Compute the Cholesky factorisation Q = LLT

• Sample z ∼ N(0, I)

• Solve LTv = z

• Compute x = µ+ v

• Return x

Since LT is an upper triangular matrix, the equation LTv = z is solved by back
substitution: 

L11 L12 · · · L1n

0 L22 · · · L2n
... ... . . . ...
0 0 · · · Lnn

×


v1
v2
· · ·
vn

 =


z1
z2
· · ·
zn


vn =

zn
Lnn

,

vn−1 =
zn−1

Ln−1,n−1
− Ln,n−1

Ln−1,n−1
vn,

...
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We observe that this solution by the back substitution method allows us to define
a GMRF x wrt to a labelled graph G with mean µ and precision Q backward in
time or in indices by specifying the expectation and precision, conditional on the
future

E(xi|x(i+1):n) = µi −
1

Lii

n∑
j=i+1

Lji(xj − µj),

P rec(xi|x(i+1):n) = L2
ii,

where i = 1, ..., n are the vertices or the nodes in the graph G. In our case the
regions of the map represent the vertices or the nodes. To simplify the computa-
tions further, it is possible to permute the nodes to make the matrix as sparse as
possible. In general, banded matrices are the fastest in computations, because they
have elements on diagonals and sub-diagonals, and zero everywhere else. There
is no natural ordering for the regions, so we can assign the order of nodes in such
a way to make the matrix a band matrix. Also, the Cholesky triangle L will inherit
the bandwidth of the precision matrix Q. It is possible to find the best order of
the nodes by listing out all n! possible permutations of the matrix Q. This method
is obviously infeasible for large n. Instead, we can apply a reordering based on
a nested dissection algorithm. Select a small set of nodes such that it divides the
whole graph into two completely independent sub-graphs, reorder the nodes and
proceed division of the sub-graphs further (see details in (Rue and Held, 2005)).

4.4 INLA settings
4.4.1 Hierarchical LGM model

Latent Gaussian models (LGMs) constitute a particular class of models, where a
latent field follows a Normal distribution. Each observation yi from y = (y1, ...yn)
is assumed to belong to the exponential family, where the parameter ϕi (usually
the mean µi) is linked to the predictior ηi by the link function g(ϕi) = ηi. The
linear predictor ηi is called latent, because it is usually unobserved or partially
observed. The ηi has an additive structure, allowing to introduce various covariates
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of different forms as

ηi = β0 +
J∑

j=1

βjzij +
K∑
k=1

fk,jk(i). (16)

Here, β0 is an intercept, z = (z1, ..., zJ) are covariates with corresponding fixed
effects β = (β1, ..., βJ), f = (f1, ..., fK) is a collection of independent model
components which can represent spatial, spatio-temporal effects, autoregressive
models, splines, random effects and more. A noise term ϵi can also be added in
the predictor specification (16). We assign a Gaussian prior to all the components
of the model, except for the hyperparameters. Then the linear predictor ηi must be
Gaussian as well. Denote by x = {β0,β,f ,η}, the vector of all Gaussian param-
eters (we use the notation according to the paper of Rue et al. (2009)). Hence, x
is assigned a joint Gaussian prior distribution with a (often) zero mean and a pre-
cision matrix Q(θ2). The hyperparameters control the effects of the model, they
are typically variances, precisions, correlations. Write the hyperparameters as one
vector θ = (θ1,θ2), where θ1 is the hyperparameters controlling the distribution
of data y and θ2 is the hyperparameters of the latent field x. We assume it follows
a joint prior or a product of prior distributions. The hierarchical LGM model is
defined as three-staged

y|x,θ1 ∼
∏
i

π(yi|xi,θ1),

x|θ2 ∼ π(x|θ2) = N(µ(θ2),Q
−1(θ2)),

θ ∼ π(θ).

The first line reads as y is conditionally independent, given the hyperparameters
θ1 and we assume that each data point yi is connected to the latent field via only
one element xi. Only some x are observed in the latent field x. The second stage of
the above specification is the Normal distribution of the latent field with the mean
µ(θ2) and the precision matrix Q−1(θ2). The third stage is the prior distribution
of the hyperparameters θ.

The key factors that make INLA work fast and accurate are the following: the
dimension of the θ must be small, usually 2-6, but not more than 20. If dimension
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of x is large, say, around n = 103−105, then x must be a GMRF. We can write the
joint posterior density for the latent field components and hyperparameters as :

π(x,θ|y) ∝ π(θ)π(x|θ2)
∏
i

π(yi|xi,θ1) (17)

∝ π(θ)|Q(θ2)|
1
2 exp

(
− 1

2
xTQ(θ2)x+

∑
i

log{π(yi|xi,θ1)}
)

(18)

The posterior marginals for each parameter are computed by integrating out other
parameters from the corresponding densities

π(θj|y) =
∫
π(θ|y)dθ−j,

π(xi|y) =
∫
π(xi|θ,y)π(θ|y)dθ.

From the marginals of the parameters we can obtain any summary of interest:
means, variances, quantiles. The INLA method constructs the Laplace approxi-
mations to the posterior marginals

π̃(θj|y) =
∫
π̃(θ|y)dθ−j, (19)

π̃(xi|y) =
∫
π̃(xi|θ,y)π̃(θ|y)dθ. (20)

where π̃(·) stands for an approximation. The marginals π̃(θj|y) can be computed
by integrating out θ−j, as the dimension of θ is relatively small. But instead, a
more computationally efficient approach is used here. The marginals π̃(xi|y) are
computed by numerical integration by summing over θ with the area weights ∆k

π̃(xi|y) =
∑
k

π̃(xi|θk,y)π̃(θk|y)∆k. (21)

4.4.2 Details of approximation

We will look closer into details of approximations (19) and (20). For simplicity,
write θ = (θ1,θ2). Firstly, we need to approximate the joint posterior of the
hyperparameters as follows:

π(θ|y) ∝ π(x,θ,y)

π(x|θ,y)
≈ π(y|x,θ)π(x|θ)π(θ)

π̃G(x|θ,y)

∣∣∣
x=x∗(θ)

:= π̃(θ|y), (22)
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where x = x∗(θ) is the mode of the full conditional for x, and the denominator
π̃G(x|θ,y) is its Laplace approximation. As π(x|θ) has a Laplace prior distribu-
tion, then π(x|θ,y) is close to Gaussian. Therefore, it’s Gaussian approximation
should be reasonably accurate. It has the following form:

π̃G(x|θ,y) ∝ exp
(
− 1

2
xTQ(θ)x+

∑
i

log π(yi|xi,θ)
)

(23)

∝ |P (θ)1/2| exp
(
− 1

2
(x− µ(θ))TP (θ)(x− µ(θ))

)
, (24)

where P (θ) = Q(θ + diag(c(θ))), µ(θ) is the location of the mode, c(θ) con-
tains the negative second derivatives of the log-likelihood at the mode (Rue et al.,
2016). So the contribution from the likelihood enters the expression of the den-
sity only in the diagonal of the precision matrix P (θ), whereas the dominating
term is the contribution from the Gaussian prior (Eq. (23)). This approximation is
also a GMRF with respect to the same graph. Hence, the Markov property of the
precision matrix Q is preserved in the matrix P , implying the high computational
speed even for non-Gaussian data. If y has Gaussian distribution, the approxima-
tion will be exact.

The density π̃(θ|y) departs from Gaussian, and in order to compute it’s nor-
malizing constant, Rue et al. (2009) suggest an approach, which is based on nu-
merical exploration of the θ space to find good points for further integration. The
following illustrations of the INLA method are inspired by Rue et al. (2009) and
Blangiardo and Cameletti (2015).

1. Locate the mode θ∗ of π̃(θ|y) by optimizing log(π̃(θ|y)) wrt θ by, for exam-
ple, the Newton-Raphson method.

2. At the mode θ∗ compute the negative Hessian H. Set the covariance matrix
for θ as Σ = H−1. Do the eigendecomposition of Σ as Σ = V ΛV T . Define
a new standardized variable z with mutually orthogonal components

θ(z) = θ∗ + V Λ
1
2z

3. Explore the density of log(π̃(θ|y)) to detect the regions, where the bulk of
probability mass is located. For visualisation purposes, let θ space be two-
dimensional. In Figure 10 the new coordinate axes z1 and z2 and the contour
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plot of the log(π̃(θ|y)) are shown, together with the points with substantial
probability mass. Starting from the mode, where z = 0, we move along the
axis with some step length, δz. Then the other axis is explored in the same
way, yielding the black points in the Figure 10(a). The grey points are the in-
termediate combinations of the black points. We collect the points θk together
with the area weights ∆k, which we will need for the numerical integration
(equation (21)). This method is called the grid strategy (Figure 10 (a)). When
the dimension of π̃(θ|y) grows, and more points are built, the computational
costs grow exponentially. The other approach was developed to overcome that
difficulty, a central composite design strategy (CCD) to be applied when the
dimension of the hyperparameters is larger than 2. Instead of building a regu-
lar grid, the CCD method selects the points (using the mode and the Hessian)
and evaluates the curvature. These few but carefully selected points allow to
explore the space of θ with less computational burden (Figure 10(b)).

4. The marginal densities π̃(θj|y) are obtained by constructing an interpolant,
evaluated at the collected points θk. The density is to be normaliazed numer-
ically.

(a) Grid strategy (b) CCD strategy

Figure 10: Illustration of the exploration of log(π̃(θ|y)). The contour plots with
the new axes z1 and z2 are shown. The marked points are those with a significant
probability mass.

Secondly, we need to approximate the densities π(xi|θ,y) which later will be
used in the numerical integration to obtain the marginals for the components of
the latent field. There are several ways to compute these marginals: the Gaussian,
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the Laplace and the simplified Laplace. The simplest way, the Gaussian method,
is to compute the marginals from πG(x|θ,y) (Eq. 23). This method is fast but can
give errors in the location and the absence of skewness. The second method, the
Laplace approximation uses

π(xi|y,θ) ∝
π(x,θ|y)

π(x−i|xi,θ,y)
≈ π(x,θ|y)
π̃(x−i|xi,θ,y)

∣∣∣
x−i=x∗

−i(θ,xi)
:= π̃(xi|y,θ).

(25)
Here, the denominator is a Laplace approximation with a mode x∗

−i(θxi
). This

method gives good results, but is computationally more expensive, as it has to
recompute the approximations for each point of θ and xi, which can be too expen-
sive for large x. The next cheaper method, which is a default method as well, is a
simplified Laplace strategy. The numerator and the denominator of the expression
(25) are expanded as Taylor series around xi = µi(θ). The third term of the Taylor
expansion corrects for the skewness of the distribution. In the recent paper Chiu-
chiolo et al. (2022), the authors propose an Extended Simplified Laplace method
with the fourth order Taylor expansion.

4.4.3 Example

We will look at a simple graphical example of how INLA works, taken from the
book of Blangiardo and Cameletti (2015). We keep the notations in accordance
with Rue et al. (2009) as before. Assume y = (y1, ..., yn) are independent and
have marginal Normal distributions with yi ∼ N(µ, σ2) . Set independent priors
for µ and θ = 1/σ2:

µ ∼ Normal(µ0, σ
2
0),

θ ∼ Gamma(a, b).

Assume xi = µ, so that each data point yi is connected to xi, which is Gaussian.
In this particular case, the full conditional distribution π(x|θ,y) has the Gaussian
form N(xn, σ

2
n), where

xn =
θ
∑
yi +

µ0

σ2
0

nθ + 1
σ2
0

and σ2n =
1

nθ + 1
σ2
0

.
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To find the posterior for the hyperparameter θ we use eq. (22) and get

π(θ|y) ∝ π(y|x, θ)π(x)π(θ)
π(x|θ,y)

∣∣∣
x=xn

=
1

1/
√

2πσ2n
π(y|x, θ)π(x)π(θ)

∣∣∣
x=xn

,

where the equality followes from the evaluation of the density π(x|θ,y) at the
mode xn which resulted in 1/

√
2πσ2n. In general, INLA computes Laplace Nor-

mal approximation for the denominator as shown in the equation (23). But in this
simple example we know that the denominator is Gaussian, because yi has a Nor-
mal distribution. We still need to compute the normalizing constant. As performed
by INLA, the space of θ is explored by computing the points θk and evaluating the
density at each of them, yielding the weights ∆k. Starting from the mode, we
evaluate the curvature at the mode, and the exploration proceeds further until the
main bulk of density masses are found, as shown on Figure 11. Thus we find the
black points θk, evaluate the shape and obtain the marginal distribution for θ by
an interpolation (Figure 11). The normalizing constant will be computed from the
interpolated marginal. At the second step we evaluate the posterior density π(x|y)
using numerical integration as in eq. (21). For each point θk and each point in
the set of points of x we compute the full conditional distribution π(x|θ,y). These
full conditionals are shown in Figure 12 (a). Then we weigh this distributions with
the corresponding posteriors of θ. In Figure 12(b) the weighted posterior distri-
butions are shown (π̃(xi|θk,y)π̃(θk|y)∆k) and above them is the solid line of the
marginal posterior density π(x|y) which is obtained by vertically summing up the
weighted posteriors for each point of x.

4.5 Modelling

The modelling approaches, attempted in this thesis, are stemming from the book
Blangiardo and Cameletti (2015). In Section 4.5.1 the general model setup is de-
scribed. In Section 4.5.2 we present the criteria for model selection. The Sections
4.5.3 and 4.5.4 formulate two model specifications for the time trend, followed by
the results presented in 4.5.5.
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Figure 11: The evaluation of the posterior distribution of θ by finding points with
the main bulk of probability masses and then computing an interpolant.

4.5.1 General approach

We assume that the data is Poisson distributed with the average number of cases
λit for each area i and time point t, so that

yit ∼ Poisson(λit), (26)
λit = Eitρit, log(ρit) = ηit, (27)
ηit = b0 + ui + vi + Temporalt. (28)

The mean value λit is equal to the expected number of cases in region i at time t,
Eit, multiplied with a relative risk ρit for this area; see (27).The expected number
of cases is modelled as an offset. The offset is unknown, so we need to calculate
it by using the reference rate

r =

∑
it yit∑
i ni

,

Eit =
r ∗ ni
T

,

where ni is the total population in district i, T is the total number of time points,
which is 537 days (from the 1st of January 2020 till 21st of June 2021).
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(a) Full conditional distributions for x, given y and
hyperparameter θ for each point θk .

(b) Weighted joint posterior distributions of x, the solid
line is the posterior distribution of x.

Figure 12: Computing the posterior distribution for x by numerical integration.

The rate ρit, which is the relative risk, is log-linked to the linear predictor ηit,
the additive structure of which allows to include the fixed effects, random effects,
and different models for time trends. If the rate or relative risk ρit is larger than
one, then the risk in area i at time t is larger than the average in the region. Ba-
sically, in disease mapping analysis, the areas with an increased relative risk is of
main interest for identification.

The predictor (28) includes the overall intercept b0, the spatially structured area-
specific effects ui, the unstructured area-specific effects vi and a temporal trend.
The structured area-specific effect has a conditional intrinsic autoregressive spec-
ification (Besag, 1974)

ui|u−i ∼ Normal
(
µi +

1

Ni

n∑
j=1

aij(uj − µj),
σ2u
Ni

)
, (29)

where aij is an indicator function for the neighborhood for i: if j is a neighbour
of i, aij = 1, and aij = 0, if they are not. Each unit has a number of neighbours
Ni. If the effects are assumed to be zero mean, then the expectation for the effect
ui is an averaged value over the neighboring regions’ effects. It is a natural as-
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sumption about the smoothness of the area-specific structured effect: we suppose
that neighboring areas exhibit a similar picture in terms of the number of cases.
From the variance specification in equation (29) one sees that the more neighbors
an item i has, the smaller its corresponding variance is. So we expect to be more
certain about the structured area-specific effect for the inland sub-regions than for
the isolated regions. Combined with the unstructured effect vi, it is called a Besag-
York-Mollié model (Besag et al., 1991). The unstructured area-specific effect vi,
or noise, is assumed to follow a zero mean Normal distribution

vi ∼ Normal
(
0, σ2v

)
,

and it accounts for overdispersion due to some heterogeneity across the regions. A
priori, we don’t have any information on the possible variation of the effects in our
models, so we will assign weakly informative priors to our precision parameters
of spatial effects (this is default in INLA)

log(τu) ∼ logGamma(1, 0.0005),
log(τv) ∼ logGamma(1, 0.0005),

where τu = 1/σ2u, and τv = 1/σ2v are precisions of the effects. The distribution
logGamma on the log precision is equivalent to a Gamma distribution on the pre-
cision. Each fixed effect has a non-informative normal distribution

βi ∼ Normal(0, 0.001),

which is also default in INLA.

4.5.2 Model selection criteria

The INLA package allows us to compute the leave-one-out cross-validation in-
dices for model selection without the refitting the model each time. If we split the
data into two sets y = (yi,y−i), the model will be fit with the set y−i, and one
observation yi is left for validation. Let yrepi,−i denote a new predicted value for yi
based on data y−i. The following model selection criteria are used:

The conditional predictive ordinate for leave one out cross-validation

CPOi = p(yrepi,−i|y−i) =

∫
p(yrepi,−i|θ)p(θ|y−i)dθ

The probability integral transform (PIT) for observation i

PITi = p(yrepi,−i ≤ yi|y−i).
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We already used PIT as an informal calibration test. Now we will use PIT for the
goodness-of-fit check. The CPO values are the probabilities of the materialized
values yi under the given model. The sum of logarithms of the computed CPO
values can also be used as a criterion for the model fit. Small CPO values indicate
that these observations are unlikely under the given model. To obtain PIT and
CPO we simply need to add control.compute=list(cpo=TRUE) in the
INLA command. The values of Px−1 were computed as the PIT value minus the
CPO value. The code for computing and plotting PIT histograms was taken from
Andrea Riebler (2014)

The deviance of a model is defined as:

D(θ) = −2 log(p(y|θ)).

The deviance information criteria, DIC, introduced by Spiegelhalter et al. (2002),
is a measure of model deviance combined with a term quantifying the complexity
of the model:

DIC = D̄ + pD,

where pD is the effective number of parameters:

pD = Eθ|y(D(θ))−D(Eθ|y(θ)) = D̄ −D(θ̄)

We also want to compare the model results with the endemic-epidemic frame-
work by computing the MSE. In the Bayesian framework we will need to gener-
ate posterior samples with the function inla.posterior.sample, compute
MSE for each of them and take the mean of MSEs.

4.5.3 Parametric trend

The parametric trend model divides the temporal effect into the global linear time
trend β and differential area-specific trends δi. The linear predictor is

ηit = b0 + ui + vi + (β + δi)t. (30)

Here, β is assigned a non-informative Normal prior with zero mean and precision
of 0.001, as for other fixed effect covariates. The specifications for the differential
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trends are

δi ∼ Normal
(
0,

1

τδ

)
,∑

i

δi = 0,

The differential time trend allows us to identify the time trend for each area sepa-
rately: if δi is negative, then the time trend is less steep than the main trend, and
if δi is positive, the area-specific trend is more steep. This is specified in INLA by
putting sum-to-zero constraints, as well as for the area-specific spatial effect ui.
The DIC of this model is equal to 764682.14, and the CPO = -382569.2. We add
the following explanatory covariates : Older, Young, Income, Employed, Foreign-
ers, Overcrowded, M2 (number of square meters per person), Care workers and
Education. These covariates were found important for predicting the number of
cases in Söderberg et al. (2022). The DIC and CPO were only slightly improved
: DIC = 764657.21 and CPO = -382556.8. The PIT histogram values for the two
parametric trend models are shown on the left on the first and the second rows of
Figure 13

4.5.4 Nonparametric trend

The temporal trend is modelled as a combination of a random walk γt and an
unstructured temporal effect ϕt, with a linear predictor of the form

ηit = b0 + ui + vi + γt + ϕt. (31)

The random walk can be of order 1 or 2:

γt|γt−1 ∼ Normal(γt−1, σ
2),

γt|γt−1, γt−2 ∼ Normal(2γt−1 + γt−2, σ
2).

The prior for the unstructured temporal effect is set to a Normal distribution,

ϕt ∼ Normal(0,
1

τϕ
).

The default priors for the precisions of the time effects are logGamma with pa-
rameters 0 and 0,00005. For the model with random walk of order 1 and no co-
variates we have DIC = 648152.62 and CPO = -324209. The model with added
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covariates has DIC = 648119.55 and CPO = -324186.7. For the similar model
with random walk of order 2 and no covariates DIC = 648154.41 and CPO = -
324207.9, whereas with the added covariates we have DIC = 648110.77 and CPO
= -324182.4. Clearly, the random walk models (formulation (31)) are supported
better by the data than the parametric trend models (formulation (30)). Also, the
PIT histograms of the random walk models, both with and without covariates,
have distributions which are closer to uniform than the models with a parametric
trend.

Figure 13: PIT histograms of competing models.

4.5.5 Results

The DIC and CPO criteria are summarized in the table below for the competing
models.

Both DIC and CPO point at rw2 with covs as best model, although the indices
are not far from the rw1 with covs model. The covariates do improve both models’
fits, but not significantly. If we simulate 10 samples from the posterior distribu-
tions and compute the MSE for each them and then take the mean of MSEs, we
will get ¯MSE = 0.7906 for model with rw1 with covs and ¯MSE = 0.7918 for
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model DIC CPO
param.trend 764682.14 -382569.2

param trend with covs 764657.21 -382556.8
rw1 648152.62 -324209

rw1 with covs 648119.55 -324186.7
rw2 648154.41 -324207.9

rw2 with covs 648110.77 -324182.4

rw2 with covs model. The R code for random walk models is specified as:

formula <− o b s e r v a t i o n s ~ 1 + l o g ( Olde r ) + l o g ( Young )
+ l o g ( Ink ) + l o g ( Empl ) + l o g ( U t l ) + l o g ( Trang )
+ l o g (M2) + l o g ( Care .w) + l o g ( Edu )
+ f ( a r ea , model = "bym" ,
g raph = " graph . t x t " , s c a l e . model = TRUE)

+ f ( t imes , model = " rw1 " ) + f ( t i m e s . 1 , model = " i i d " )

Since the model selection criteria for the models rw1 and rw2 are very close
in values, we would like to compare the posterior credible intervals for the fixed
parameters of both models.

covariate mean 0.025quant 0.975quant
Intercept -6.4182 -7.4058 -5.4304
log Older -0.0119 -0.0462 0.0223
log Young -0.0262 -0.0631 0.0106
log Income 0.5103 0.4194 0.6013

log Employed -0.1118 -0.1798 -0.0437
log Foreigners 0.1057 0.0747 0.1367

log Overcrowded 0.0090 -0.0029 0.0209
log M2 -0.2913 -0.4358 -0.1468

log Care workers 0.0077 -0.0104 0.0258
log Education 0.0777 0.0338 0.1217

covariate mean 0.025quant 0.975quant
Intercept -6.4149 -7.4034 -5.4261
log Older -0.0120 -0.0462 0.0223
log Young -0.0262 -0.0631 0.0107
log Income 0.5100 0.4190 0.6009

log Employed -0.1117 -0.1798 -0.0436
log Foreigners 0.1056 0.0746 0.1366

log Overcrowded 0.0091 -0.0029 0.0210
log M2 -0.2909 -0.4355 -0.1464

log Care workers 0.0078 -0.0103 0.0259
log Education 0.0777 0.0337 0.1217

Table 3: Posterior summary on fixed effects, left: rw1, right : rw2

In Table 3 we observe that the difference between the intervals is only in the
3rd or 4th number after the comma, which we can consider as negligible for the
general interpretation. The intervals that do not contain zero are for those of the
intercept and covariates: Income, Employed, Foreigners, M2, Education. The
positive correlation between the number of cases and high education level, as well
as between number of cases and the income was a bit surprising. Possibly, this
can be explained by the association between the number of cases of viral diseases
and metropolitan areas in general: people with higher education level and larger
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(a) rw1 (b) rw2

Figure 14: Posterior mean for temporal trend with its credible intervals.

income tend to live in big cities with a higher population density. The negative
association of the outcome and the square meters per living person was expected:
the less is the living space, the more cases we should expect on average. The
number of foreigners, many of whom have to live in overcrowded conditions, also
shows a positive association with the number of cases:

The posterior mean with the credible intervals for both models are plotted in
Figure 14, where the estimate of rw2 is much more smooth. Comparing with Fig-
ure 1 with the time series of daily counts, one notices that the random walk time
model captures very well the temporal dynamics of the cases.

We are interested in the relative risk of the cases for each area, so we map the
posterior mean estimates ui + vi in Figure 15. The posterior means are exponen-
tiated, so that we see the multiplicative effect of the DeSO region on the number
of cases. If the values are larger than 1, then the area shows an excessive relative
risk, compared to the average across the whole region. We observe that Gothen-
burg, its suburbs, as well as North-West and the sub-region bordering to the region
Jönköping in the East, exhibit on average higher relative risk of COVID-19 cases.
Also, we see that the DeSOs, which denote the dense centre of the local munici-
pality, are those with an excessive relative risk of 1.2 and more (brown colors in
Figure 15). The zoomed in map of Gothenburg and its exponentiated posterior
mean for spatial effects is shown in Figure 17.

We can also map the probabilities the extensive risks: Figure 16 for the whole
region and Figure 18 for Gothenburg. Here, the most densely populated DeSOs,
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Figure 15: The posterior mean estimates for the area-specific effects ui+vi. Areas
with excessive relative risks have a multiplicative effect value larger than 1.

Figure 16: The posterior probabilities that the relative risk is excessive.
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Gothenburg and its neighbourhoods, Trollhättan, Borås exceed the relative risk
with probability 0.75 and higher. One notes, that although the west of Gothenburg
doesn’t have an increased relative risk, still the probability to show the higher risk
is estimated to be 0.8 and higher. (Figures 17 and 18).

Figure 17: The posterior means for the area-specific effects ui+ vi in Gothenburg.
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Figure 18: The posterior probabilities that the relative risk is excessive in Gothen-
burg.

Additionally, we could have mapped the posterior relative risk estimates for
each day, but then it would have been 537 figures. Instead, we map the results
for the first calendar day of each month to visualize the dynamics of relative risk
evolution, so that we get 19 plots in Figure 19. The last figure is for the last day
of the study period. The relative risk began to drastically increase in November
2020, being the highest around the period of December 2020, January, March and
April 2021, subsided in May and returned to the estimate of 1 in summer 2021.

In the Appendix, we plot the posterior marginal distributions for the fixed pa-
rameters in Figure 30, for precisions for hyperparameters in Figure 31, and the
variances (the transformed precisions) in Figure 32.
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Figure 19: Posterior relative risk estimates of the 1st calendar day of each month.

5 Discussion

5.1 Comparison of two approaches

To compare the goodness of fit of both approaches we use the mean squared errors
(MSE). For the endemic-epidemic approach the MSEs are

model MSE
seasonal + ri 0.4347
rich + ri 0.4346
greedy + ri 0.4347
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For the INLA Bayesian approach it is given by

model mean of MSE
rw1 with covs 0.7906
rw2 with covs 0.7918

Here, we simulated 10 samples from the posterior distribution using the command
inla.posterior.sample, and then computed the average MSE across these
samples. The Endemic-Epidemic model approach performed better in terms of
goodness of fit.

For comparison, we present in the table below the mean estimates with the cred-
ible bounds and confidence intervals of the significant covariates, found in each of
the models: rw1 with covs, greedy + ri, rich + ri. All three models found a
positive association between Income and the number of cases, as well as Educa-
tion, although Education in the autoregressive compartment of the rich+ri model
shows a negative association. Each model has a positive estimate for the covariate
Foreigners: around 0.10 on the logarithmic scale, which means that a 1% increase
in the number of foreigners would be associated with a 0.1% increase on average
in the number of cases. A larger coefficient for Foreigners found by the greedy
+ ri model in the endemic compartment. The covariate M2 has a positive esti-
mated parameter in the autoregressive components, which is surprising, but the
same mean negative estimate of −0.29 in the random walk models and in the rich
+ ri model in the spatio-temporal component. We saw, that the average estimation
of the neighbourhood component’s contribution to the fitted means was around
81.4% (Section 3.8), so the covariates in the ne compartment play major role in
the disease spread.

In general, we saw that the inclusion of socio-demographic covariates didn’t
improve the fit significantly in the both approaches. The flexibility of the model
specifications allowed to achieve very good fits even without the given covariates.
The possible explanation to that is the nature of COVID-19, a highly viral disease,
the transmission of which is not driven by socio-demography, but other factors.
More likely, seasonal variations like temperature, humidity play a more important
role in the virus spread.
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mean 2.5% 97.5%
rw1 with covs

log Income 0.5103 0.4194 0.6013
log Employed -0.1118 -0.1798 -0.0437
log Foreigners 0.1057 0.0747 0.1367
log M2 -0.2913 -0.4358 -0.1468
log Education 0.0777 0.0338 0.1217

greedy + ri
ar.log M2 1.1890 0.8915 1.48658
ne.log Foreigners 0.1329 0.0949 0.1709
ne.log Income 0.3127 0.2206 0.4047
end.log Foreigners 0.3168 0.2558 0.3778
end.log Education 0.3135 0.2437 0.3832

rich + ri
ar.log M2 1.2367 0.9422 1.5312
ar.log Education -0.3046 -0.3993 -0.2099
ne.log M2 -0.2902 -0.4986 -0.0819
ne.log Income 0.3857 0.2608 0.5105
ne.log Foreigners 0.1024 0.0586 0.1462
end.log Education 0.3366 0.2677 0.4056

Table 4: Comparison of the fixed effects, presenting in the selected models

5.2 Limitations and further work

The large dataset comprising approximately half a million points made the compu-
tational time for the INLA model around 40 minutes, whereas the surveillance
package took around 3 hours for the model with random effects in each compo-
nent. It is possible to introduce the interaction terms in INLA models: there are
four types of interaction specifications between space and time, which is implied
to be natural inclusion in the spatio-temporal disease modelling. Besides, the inter-
action terms between the chosen covariates would be needed to further investigate
the impact of the driving factors on the disease spread. Also, one can include lin-
ear combinations between the intercept and the random effects in order to obtain
the posterior distributions of the area-specific intercepts. Unfortunately, again due
to large computational intensity, these model extensions were not feasible.

The other limitation were the border effects in the estimation of the neighbour-
hood influence. Since we took only Västra Götaland region, we did not use the
neighboring regions (Swedish: län) in our analysis. As a result of this, the estimate
of component contribution might be slightly misleading for the border municipal-
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ities. Future work could be to perform a similar analysis on whole Sweden.

The inclusion of all covariates in the model led to misleading and confounding
results. It is quite hard to interpret and quantify the impact of each covariate on
the number of cases. A possible solution would be to include only one covariate
at the time and compare which model makes better prediction.
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6 Appendix

Theory of GMRF

This section is based on the material from the Rue and Held (2005) book.

The two random variables x and y are independent, iff π(x, y) = π(x)π(y),
and we write it as x⊥ y. The two variables are conditionally independent iff
π(x, y|z) = π(x|z)π(y|z), which we write as x⊥ y|z.

Theorem 1.
x⊥ y|z ⇐⇒ π(x, y, z) = f(x, z)f(y, z) (32)

for some functions f and g, and for all z with π(z) > 0.

Theorem 2. Let x has a Normal distribution with mean µ and a precision matrix
Q > 0. Then for for i ̸= j,

xi⊥xj|x−ij ⇐⇒ Qij = 0.

Proof. We partition x as (xi, xj,x−ij). Fix i ̸= j and assume µ = 0. The
density of x has the form π(x) = (2π)−n/2|Q|1/2 exp

(
− 1

2(x−µ)TQ(x−µ)
)
,

(eq.15). Then

π(xi, xj,x−ij) ∝ exp
(
− 1

2

∑
k,l

xkQklxl

)
∝ exp

(
− 1

2
xixj(Qij +Qji)︸ ︷︷ ︸

term 1

−1

2

∑
{k,l}≠{i,j}

xkQklxl︸ ︷︷ ︸
term 2

)
.

We see that term 2 doesn’t involve xjxj. Term 1 involves xixj iff Qij ̸= 0. Com-
paring with (32) in Theorem 1 we get

π(xi, xj,x−ij) = f(xi,xij)g(xj,xij)

for some functions f and g, iff Qij ̸= 0.
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Figure 20: Socio-demographic covariates: Number of people of age 19 and
younger, Number of people of age 65 and older, Number of people having 3 or
more years of post-secondary education, Number of gainfully employed workers.
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Figure 21: Socio-demographic covariates: Average square meters per person,
Number of people living in overcrowded conditions, Average income, Number
of people of non-Swedish background.
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Endemic

Figure 22: Socio-demographic covariates: The proportion of hospital staff.
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Estimate 2.5 % 97.5 %
ar.sin(2 * pi * t/365) 0.24 0.17 0.31
ar.cos(2 * pi * t/365) 0.32 0.24 0.39
ar.sin(4 * pi * t/365) -0.23 -0.29 -0.16
ar.cos(4 * pi * t/365) -0.17 -0.23 -0.11

ar.log(M2) 1.19 0.89 1.49
ar.log(Young) 0.60 0.47 0.73

ar.ri(iid) -10.55 -12.07 -9.03
ne.log(pop) 0.76 0.68 0.84

ne.sin(2 * pi * t/365) 0.32 0.27 0.36
ne.cos(2 * pi * t/365) 0.32 0.29 0.34
ne.sin(4 * pi * t/365) -0.14 -0.16 -0.12
ne.cos(4 * pi * t/365) 0.00 -0.02 0.03

ne.log(Trang) 0.05 0.03 0.06
ne.log(Utl) 0.13 0.09 0.17

ne.log(Older) 0.07 0.03 0.12
ne.log(Ink) 0.31 0.22 0.40

ne.ri(iid) 0.48 -1.02 1.99
end.t -0.00 -0.00 -0.00

end.sin(2 * pi * t/365) -1.99 -2.18 -1.80
end.cos(2 * pi * t/365) -0.90 -1.01 -0.79
end.sin(4 * pi * t/365) -1.56 -1.67 -1.45
end.cos(4 * pi * t/365) 0.54 0.44 0.63

end.log(Edu) 0.31 0.24 0.38
end.log(Utl) 0.32 0.26 0.38

end.ri(iid) 2.20 1.80 2.60
neweights.d 1.80 1.76 1.83

overdisp 0.28 0.27 0.29

Table 5: Estimates with confidence intervals, model greedy + ri
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V1 2.5 % 97.5 %
ar.sin(2 * pi * t/365) 0.24 0.17 0.31
ar.cos(2 * pi * t/365) 0.31 0.23 0.38
ar.sin(4 * pi * t/365) -0.24 -0.31 -0.17
ar.cos(4 * pi * t/365) -0.17 -0.23 -0.11

ar.log(M2) 1.24 0.94 1.53
ar.log(Young) 0.81 0.65 0.96

ar.log(Edu) -0.30 -0.40 -0.21
ar.ri(iid) -10.37 -11.95 -8.79

ne.log(pop) 0.74 0.63 0.84
ne.sin(2 * pi * t/365) 0.31 0.26 0.35
ne.cos(2 * pi * t/365) 0.32 0.29 0.34
ne.sin(4 * pi * t/365) -0.14 -0.16 -0.12
ne.cos(4 * pi * t/365) -0.00 -0.03 0.02

ne.log(Trang) 0.04 0.02 0.06
ne.log(M2) -0.29 -0.50 -0.08

ne.log(Older) 0.13 0.06 0.19
ne.log(Ink) 0.39 0.26 0.51

ne.log(Edu) -0.00 -0.05 0.04
ne.log(Utl) 0.10 0.06 0.15

ne.ri(iid) 0.14 -1.37 1.66
end.t -0.00 -0.00 -0.00

end.sin(2 * pi * t/365) -1.95 -2.14 -1.76
end.cos(2 * pi * t/365) -0.93 -1.03 -0.82
end.sin(4 * pi * t/365) -1.54 -1.65 -1.43
end.cos(4 * pi * t/365) 0.51 0.42 0.60

end.log(Kids) -0.30 -0.40 -0.21
end.log(Edu) 0.34 0.27 0.41

Table 6: Estimates with confidence intervals, model rich + ri
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Figure 23: The fitted mean components for the basic model, aggregated over all
regions.

Figure 24: The fitted mean components for the basic + ri model, aggregated over
all regions.
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Figure 25: The fitted mean components for the seasonal model, aggregated over
all regions.

Figure 26: The fitted mean components for the seasonal + ri model, aggregated
over all regions.
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Figure 27: The fitted mean components for the rich model, aggregated over all
regions.

Figure 28: The fitted mean components for the rich + ri model, aggregated over
all regions.
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Figure 29: The fitted mean components for the greedy model, aggregated over all
regions.
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Figure 30: Posterior marginal distributions for the fixed parameters of the rw1
with covs model. The distributions with credible intervals not containing 0 are
shown in red.
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Figure 31: Posterior marginal distributions of precisions of the rw1 with covs
model. The first row shows the precisions for the area components. The second
row shows the precisions for the time model,
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Figure 32: Posterior marginal distributions for the variances (transfromed preci-
sions) of the rw1 with covs model.
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