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Magnetic Resonance Imaging (MRI) is a robust and versatile imaging modality and an integral 

component of a lot of studies, especially when performing quantitative analysis. MRI is the preferred 

method of imaging the brain because of its excellent soft tissue contrast. Accurate segmentation of 

the brain into its anatomical regions enables accurate quantitative analysis of the brain. Three 

software programs that perform automatic anatomical segmentation of the human brain are 

FreeSurfer, FastSurfer and MAPER. The purpose of this study was to use FreeSurfer as a baseline, 

and to investigate how well FastSurfer and MAPER segmentations conform to FreeSurfer’s outputs 

on the same dataset. 185 T1-weighted 3D MR images from the IXI Dataset were segmented using 

FreeSurfer, FastSurfer, and MAPER. Default training checkpoints were used for FastSurfer and 

FreeSurfer outputs of the IXI Dataset, along with corresponding brain MR images, were used as a 

source atlas for MAPER. The FastSurfer and MAPER segmentations were then compared with the 

FreeSurfer segmentations using the Jaccard Similarity Coefficient. MAPER performed better than 

FastSurfer at replicating FreeSurfer-conform outputs for subcortical regions. MAPER and FastSurfer 

performed similarly for the cortical regions. 
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1 Introduction 
Magnetic Resonance Imaging (MRI) is a robust and versatile imaging modality and an integral 

component of many studies, especially when performing quantitative analysis. MR imaging is the 

preferred method of imaging the brain because of its excellent soft tissue contrast. 

Accurate segmentation of the brain into its anatomical regions enables accurate quantitative 

analysis of the brain. Analysis of the features of the brain can be used to understand the impact of 

various diseases on brain structure. Automatic segmentation of the brain could also help radiologists 

by making their workflow less time-consuming [1, 2]. 

The traditional neuroimaging pipelines that automatically segment and evaluate incoming MR 

images suffer from high runtimes and resource demand, where it can take several hours to evaluate 

a single patient. An upside is that, given high-performance computing resources, multiple patients 

can be processed at the same time which makes it possible to analyse large datasets relatively 

quickly. Supervised deep-learning alternatives can be excellent options because of their substantially 

lower runtimes and ability to be trained to detect specific diseases, for example atrophy of the 

thalamus and multiple sclerosis [3, 4]. 

 

1.1 FreeSurfer 

FreeSurfer is an open-source software suite for processing, visualising, and analysing MR images of 

the human brain. It includes a number of tools for performing tasks with the focus of volumetric 

segmentation of the brain into its various anatomical regions, as well as cortical reconstruction and 

analysis. FreeSurfer is developed by the Laboratories for Computational Neuroimaging at the 

Athinoula A. Martinos Center for Biomedical Imaging and is widely used in research, with over 

60 000 licences given out in total and thousands of studies that reference FreeSurfer every year [5]. 

FreeSurfer is available for download at surfer.nmr.mgh.harvard.edu/. 

 

 

Figure 1. Figure showing 3D anatomical labels after a successful segmentation using FreeSurfer (right) together with an 
axial slice of the original 3D MR-image (left). Visualization is done using Freeview, a program included in the FreeSurfer 
toolkit. 

FreeSurfer works by using software algorithms to automatically process neuroimaging data and 

extract information about brain anatomy and function. FreeSurfer’s workflow includes the following 

steps: motion correction and averaging, removal of non-brain tissue, automatic Talairach 

transformation, segmentation of subcortical regions, intensity normalization, tessellation of the 

boundary between white and grey matter, automated topology correction, and delineation between 

grey and white matter as well as between grey matter and cerebrospinal fluid. Further cortical 
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processing and analysis can then be done, which includes surface inflation, spherical atlas 

registration, segmentation of the cerebral cortex, and an array of surface-based calculations such as 

sulcal depth, surface area and cortical thickness [6]. For the present work, the relevant capability is 

the generation of 3D labels for cortical and subcortical brain regions. After segmentation, the final 

labels are presented in a 3D image file where each voxel contains a categorical assignment instead of 

an intensity value as in a conventional MR image. This presentation is the same for the other 3D 

segmentation software packages used, FastSurfer and MAPER.  

In addition to these tools for structural MRIs described above, FreeSurfer is also available for use 

with functional MRI (fMRI), diffusion MRI (dMRI) and Positron Emission Tomography (PET) [7].   

By default, FreeSurfer label outputs are based on two atlases: The DKT (Desikan-Killiany-Tourville) 

atlas for cortical labels, and the ASEG (Automated Segmentation with Enhanced Generalization) atlas 

for subcortical labels. Together, they enable FreeSurfer to encompass and segment the whole brain 

[8, 9, 10]. During the period of the present project, a new FreeSurfer version implementing an 

alternative subcortical labelling approach (Sequence Adaptive Multimodal Segmentation; SAMSEG), 

but this was not used for the present work. 

 

1.2 FastSurfer 

FastSurfer is an open-source neuroimaging toolkit, based on FreeSurfer, for automated processing of 

MR images of the brain. It uses deep-learning principles to speed up the reconstruction process 

which enables it to generate FreeSurfer-compliant output in significantly less time. FastSurfer is 

made up of two main parts: FastSurferCNN and recon-surf. FastSurferCNN is the deep-learning 

component and is capable of segmenting a 3D brain MRI into 95 labels in under 1 minute. Recon-surf 

performs cortical surface reconstruction, thickness analysis and mapping of cortical labels. Recon-

surf was not needed for this thesis, instead, the focus will be on FastSurferCNN.  

 

 

Figure 2. Schematic over FastSurferCNN. To the right is an overview of how the F-CNNs (Fully Convolutional Neural 
Networks) are summarised using view aggregation. The structure of each F-CNN can be seen on the left. Image source with 
permission from: deep-mi.org/research/fastsurfer/ 
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FastSurferCNN consists of three fully convolutional neural networks (F-CNN), one for each 2D slice 

plane (sagittal, coronal, and axial). The three F-CNNs are then combined in a multi-slice view 

aggregation stage. Each F-CNN uses competitive dense blocks and competitive skip connections for 

both local and global competition. All this results in a network that is specifically made for accurate 

segmentation of both subcortical and cortical regions [3].  

FastSurfer is developed by the Deep Medical Imaging Lab which is a cooperation of the German 

Center for Neurodegenerative Diseases and the Martinos Center for Biomedical Imaging. FastSurfer 

is available for download at github.com/Deep-MI/FastSurfer. 

 

1.3 MAPER 

MAPER (Multi-Atlas Propagation with Enhanced Registration) is a software tool for automated 

segmentation of the human brain. It is designed to produce accurate and consistent segmentations 

of the brain by using pre-segmented atlases. MAPER then uses advanced image registration 

techniques to propagate the labels from the atlases to the target image. For this, MAPER uses tools 

from the NiftySeg suite as well as tools from the Medical Image Registration Toolkit (MIRTK). The 

default atlas used by MAPER is the Hammers atlas, but MAPER can utilize any set of T1-weighted 3D 

MR images together with corresponding segmented image files, that adhere to MAPER’s 

specifications, to make up a custom atlas.  

MAPER is an open-source software developed by Heckemann et al. [11] and is available at 

github.com/soundray/maper. MAPER has been utilized in multiple studies with research topics such 

as Alzheimer’s disease [12, 13, 14], the Thalamus [15], and Parkinson’s disease [16]. 

 

1.4 Purpose 

The purpose of this thesis was to use FreeSurfer as a baseline, and to investigate how well FastSurfer 

and MAPER segmentations conform to FreeSurfer’s segmentations on the same dataset. 

 

1.5 Structure of this thesis 
This section is meant as a meta explanation of how the thesis is structured and why. 

The purpose of this thesis was based on previous work done by Yaakub et al. [17], where FreeSurfer 

and MAPER were compared against each other, and found that they yielded similar results. The 

original purpose was to train FastSurfer using our own data and compare the accuracy of FastSurfer 

with MAPER. The training results ended up being unsatisfactory and therefore the purpose of the 

thesis was altered.  

To only keep the results from the new purpose would not accurately describe what was tried and 

learned during the making of this thesis. An extra chapter, 4. Narrative account, was added to 

include a summary of the work that was put into training FastSurfer, the methods used, why the 

training failed, as well as the conclusions drawn. 
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2 Method 

2.1 IXI Dataset  

The IXI (Information eXtraction from Images) dataset is a collection of T1, T2, Proton Density, MRA, 

and diffusion-weighted images. The entire collection is made up of almost 600 participants, collected 

using three different MRI scanners: a Philips 3T system, a Philips 1.5T system and a GE 1.5T system 

[18].  

Only T1-weighted images were selected because the methods used (FreeSurfer, FastSurfer and 

MAPER) are primarily designed for using T1 images as input. To control variations between the MR 

scanners being a confounder, only subjects from the 3T scanner were used. 185 subjects were 

utilized in total. The scan parameters used for the acquisition of the images in the IXI Dataset can be 

seen in Appendix 2 section 9.1. 

 

2.2 Segmentation of the IXI dataset 
Before segmentation was done, the dataset had to be pre-processed. The IXI dataset and MAPER 

share the same file format, compressed NIFTI (.nii.gz). FreeSurfer and FastSurfer do not use this file 

format and instead use the MGH/MGZ file format (.mgz). To change the file format from NIFTI to 

MGZ, the function mri_convert from the FreeSurfer suite was used. Examples of the code used, 

as well as how the folders were structured, can be seen in Appendix 1, section 8.1. 

 

2.2.1 FreeSurfer segmentation  
Processing of the IXI dataset with FreeSurfer was done using the recon-all function, the 

argument used was -all. The runtime per subject was approximately 10 hours and the code called 

can be seen in Appendix 1, section 8.2. 

 

2.2.2 FastSurfer segmentation  
Evaluation of the IXI dataset with FastSurfer was done using the eval.py python program. The 

default, pre-trained, checkpoints were used. The runtime per subject was approximately 1 minute 

and the code called can be seen in Appendix 1, section 8.3. 

 

2.2.3 MAPER segmentation 
Since the default atlas used by MAPER is incompatible with the atlases used by FreeSurfer and 

FastSurfer, the atlas for MAPER had to be changed. Out of the 185 IXI subjects, 40 were randomly 

selected to be used as a custom atlas. The subjects in this custom atlas will from here on be referred 

to as source subjects. The source subjects make up the custom atlas used by MAPER and includes 

the original 3D T1 images together with corresponding 3D label images generated by FreeSurfer. The 

145 subjects not used in the custom atlas were segmented using the 40 source subjects, and each 

one out of the 40 source subjects were segmented using the other 39 source subjects.  

To segment images using MAPER, the input images must be skull-stripped images of the brain. Skull-

stripping is done by FreeSurfer as a part of its operation, these skull-stripped images could then be 

used as input images for MAPER. Two pre-processing functions had to be performed on the dataset 

images before running MAPER, onepad and posnorm. Where onepad uses a mask to pad the 

background of the MR image in the vicinity of the brain with the number 1, and posnorm performs 

positional normalization. Onepad is called by MAPER on the fly, but positional normalization had to 
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be done using a program called posnorm, found at github.com/soundray/posnorm. The runtime 

per subject was approximately 2 hours and the code called for MAPER can be seen in Appendix 1, 

section 8.4. 

 

2.3 Image postprocessing and result generation 

2.3.1 Jaccard Similarity Coefficient 
The Jaccard similarity Coefficient (JC), also known as the Jaccard index or the Jaccard score, is a 

measure of the similarity between two sets. It is defined as the size (cardinality) of the intersection 

of the sets divided by the size of the union of the sets, see Eq. 1. 

 

𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 =  

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
                                                 (𝐸𝑞. 1) 

 

The JC is a value between 0 and 1, where a value of 0 indicates that there is no similarity between 

the sets and a value of 1 indicates that the sets are identical [19]. The JC is widely used in many 

fields, such as, text analysis, natural language processing, image analysis, and bioinformatics.  

 

2.3.2 Postprocessing 
The program mri_seg_overlap from the FreeSurfer suite was used to measure JCs for each 

subject and label. JCs were measured for comparison between FreeSurfer and MAPER, and for 

comparison between FreeSurfer and FastSurfer. The output from mri_seg_overlap resulted in 

a .json-file for each subject that contained JCs for each label. A bash script was used to summarise all 

of the .json-files into one text file where each row in the text file contained a JC, a number 

corresponding to a specific label, a subject id, and which comparison it was from (FreeSurfer-

FastSurfer or FreeSurfer-MAPER). 

 

2.3.3 Generating results using R and label exclusion 
After the results were summarised, a program was written in R to analyse the results. The R-program 

imported the text file with the results and started with sorting out unwanted labels. The unwanted 

labels were labels that were either not being segmented consistently and/or not segmented by all 

three programs for all subjects, see Table 1. 
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Table 1. Table containing all labels segmented by either FreeSurfer, FastSurfer or MAPER. Labels excluded from the results 
are marked with an asterisk. Labels numbered 2 to 255 are subcortical regions while labels numbered above 1000 are 
cortical regions. Label numbers and names taken from FreeSurfer’s look-up table (FreeSurferColorLUT). 

Label # Label Name Label # Label Name Label # Label Name 

2 Left-Cerebral-White-Matter 85 Optic-Chiasm* 2002 ctx-rh-caudalanteriorcingulate 
4 Left-Lateral-Ventricle 251 CC_Posterior* 2003 ctx-rh-caudalmiddlefrontal 
5 Left-Inf-Lat-Vent 252 CC_Mid_Posterior* 2005 ctx-rh-cuneus 
7 Left-Cerebellum-White-Matter 253 CC_Central* 2006 ctx-rh-entorhinal 
8 Left-Cerebellum-Cortex 254 CC_Mid_Anterior* 2007 ctx-rh-fusiform 

10 Left-Thalamus 255 CC_Anterior* 2008 ctx-rh-inferiorparietal 
11 Left-Caudate 1002 ctx-lh-caudalanteriorcingulate 2009 ctx-rh-inferiortemporal 
12 Left-Putamen 1003 ctx-lh-caudalmiddlefrontal 2010 ctx-rh-isthmuscingulate 
13 Left-Pallidum 1005 ctx-lh-cuneus 2011 ctx-rh-lateraloccipital 
14 3rd-Ventricle 1006 ctx-lh-entorhinal 2012 ctx-rh-lateralorbitofrontal 
15 4th-Ventricle 1007 ctx-lh-fusiform 2013 ctx-rh-lingual 
16 Brain-Stem 1008 ctx-lh-inferiorparietal 2014 ctx-rh-medialorbitofrontal 
17 Left-Hippocampus 1009 ctx-lh-inferiortemporal 2015 ctx-rh-middletemporal 
18 Left-Amygdala 1010 ctx-lh-isthmuscingulate 2016 ctx-rh-parahippocampal 
24 CSF 1011 ctx-lh-lateraloccipital 2017 ctx-rh-paracentral 
26 Left-Accumbens-area 1012 ctx-lh-lateralorbitofrontal 2018 ctx-rh-parsopercularis 
28 Left-VentralDC 1013 ctx-lh-lingual 2019 ctx-rh-parsorbitalis 
30 Left-vessel* 1014 ctx-lh-medialorbitofrontal 2020 ctx-rh-parstriangularis 
31 Left-choroid-plexus 1015 ctx-lh-middletemporal 2021 ctx-rh-pericalcarine 
41 Right-Cerebral-White-Matter 1016 ctx-lh-parahippocampal 2022 ctx-rh-postcentral 
43 Right-Lateral-Ventricle 1017 ctx-lh-paracentral 2023 ctx-rh-posteriorcingulate 
44 Right-Inf-Lat-Vent 1018 ctx-lh-parsopercularis 2024 ctx-rh-precentral 
46 Right-Cerebellum-White-Matter 1019 ctx-lh-parsorbitalis 2025 ctx-rh-precuneus 
47 Right-Cerebellum-Cortex 1020 ctx-lh-parstriangularis 2026 ctx-rh-rostralanteriorcingulate 
49 Right-Thalamus 1021 ctx-lh-pericalcarine 2027 ctx-rh-rostralmiddlefrontal 
50 Right-Caudate 1022 ctx-lh-postcentral 2028 ctx-rh-superiorfrontal 
51 Right-Putamen 1023 ctx-lh-posteriorcingulate 2029 ctx-rh-superiorparietal 
52 Right-Pallidum 1024 ctx-lh-precentral 2030 ctx-rh-superiortemporal 
53 Right-Hippocampus 1025 ctx-lh-precuneus 2031 ctx-rh-supramarginal 
54 Right-Amygdala 1026 ctx-lh-rostralanteriorcingulate 2033 ctx-rh-temporalpole* 
58 Right-Accumbens-area 1027 ctx-lh-rostralmiddlefrontal 2034 ctx-rh-transversetemporal 
60 Right-VentralDC 1028 ctx-lh-superiorfrontal 2035 ctx-rh-insula 
62 Right-vessel* 1029 ctx-lh-superiorparietal 

  

63 Right-choroid-plexus 1030 ctx-lh-superiortemporal 
  

72 5th-Ventricle* 1031 ctx-lh-supramarginal 
  

77 WM-hypointensities 1034 ctx-lh-transversetemporal 
  

80 non-WM-hypointensities*    1035 ctx-lh-insula 
  

 

An overall mean JC was calculated for each comparison based on all of the labels’ JC. The data was 

then divided into two groups based on if the labels were either cortical or subcortical. A mean JC was 

then calculated for the cortical and subcortical labels. Violin plots were then generated using 

ggplot2, which is a part of the Tidyverse collection. The subjects used as source data were 

compared to the rest of the dataset by comparing the mean JC for the two sets. 

To measure the volume discrepancy as a percentage between FastSurfer and MAPER, a variable 

named diff was defined and calculated for each label, see Eq. 2: 

 

diff = 200 ∗
𝐽𝐶𝑀 − 𝐽𝐶𝐹

𝐽𝐶𝑀 + 𝐽𝐶𝐹
                                                             (𝐸𝑞. 2) 

 

Where JCM was the JC for a specific label in the FreeSurfer-MAPER comparison, and JCF was the JC for 

same label for the FreeSurfer-FastSurfer comparison. A positive diff-value means that MAPER 

aligned more accurately with FreeSurfer than FastSurfer for that specific label. Conversely, a 

negative value means that FastSurfer aligned more with FreeSurfer. 
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2.3.4 Statistical analysis 
A table containing the mean JC for each subject and comparison was generated in R. Welch’s two 

sample t-test was then performed using the table, with the function t.test, comparing the results 

of the FreeSurfer-FastSurfer comparison with the FreeSurfer-MAPER comparison. The result is a p-

value describing whether the difference in JCs between the two comparisons are statistically 

significant. This was done three times, for the cortical labels, subcortical labels, and all labels.  

 

2.4 Hardware and programming languages 

The data handling and computational work was enabled by resources provided by the National 

Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National 

Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science (C3SE) partially 

funded by the Swedish Research Council through grant agreements no. 2022-06725 and no. 2018-

05973. 

The computational work was done on a supercomputer called Alvis which is hosted by C3SE. The use 

of Alvis is built around utilizing NVIDIA Graphical Processing Units (GPUs) to perform calculations 

significantly faster than what is possible on a conventional computer.  

For calculations and processing, a NVIDIA T4 16GB RAM GPU was used for a majority of the work. 

The other specifications varied depending on which Alvis node was called but the CPU was either 

2×8 core Intel(R) Xeon(R) Gold 6244 @ 3.60GHz or 2×16 core Intel(R) Xeon(R) Gold 6226R @ 

2.90GHz, both with 768GB DDR4 RAM. Alvis is running Rocky Linux 8, which is an open-source 

version of Red Hat Enterprise Linux. The programming languages used was bash version 4.4.20 and R 

version 4.2.1. 

The versions of the software used were FreeSurfer version 7.2.0, FastSurfer version 1.1.2, and 

MAPER version c6e6c21. 
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3 Results 

3.1 Segmentation results 

3.1.1 Overall Jaccard scores 
Across all of the labels, FreeSurfer-FastSurfer had a mean JC with a standard deviation of 0.674 ± 

0.121 and FreeSurfer-MAPER had a mean JC with a standard deviation of 0.689 ± 0.124, see Figure 3. 

The difference in JC between the two comparisons is statistically significant (p < 10-5). 

 

 

Figure 3. Violin plot showing the distribution of the mean JC for each subject by comparison, FreeSurfer-FastSurfer and 
FreeSurfer-MAPER. The plot includes all labels. The line in the boxplot is the median, the box edges are the 25th and 75th 
percentile, and the black dots are outliers. 

 

3.1.2 Cortical Jaccard scores 
For the cortical labels, FreeSurfer-FastSurfer had a mean JC with a standard deviation of 0.665 ± 

0.083 and FreeSurfer-MAPER had a mean JC with a standard deviation of 0.665 ± 0.083, see Figure 4. 

The difference in JC between the two comparisons is not statistically significant (p = 0.982). 
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Figure 4. Violin plot showing the distribution of the mean JC for each subject by comparison, FreeSurfer-FastSurfer and 
FreeSurfer-MAPER. The plot only includes cortical labels. The line in the boxplot is the median, the box edges are the 25th 
and 75th percentile, and the black dots are outliers. 
 

3.1.3 Subcortical Jaccard scores 
For the subcortical labels, FreeSurfer-FastSurfer had a mean JC with a standard deviation of 0.689 ± 

0.169 and FreeSurfer-MAPER had a mean JC with a standard deviation of 0.734 ± 0.165, see Figure 5. 

The difference in JC between the two comparisons is statistically significant (p < 10-53). 

 

 

Figure 5. Violin plot showing the distribution of the mean JC for each subject by comparison, FreeSurfer-FastSurfer and 
FreeSurfer-MAPER. The plot only includes subcortical labels. The line in the boxplot is the median, the box edges are the 25th 
and 75th percentile, and the black dots are outliers. 
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3.2 Regional segmentation differences 

Labels where MAPER aligned better with FreeSurfer compared to FastSurfer were primarily 

subcortical labels, with the Left and Right Accumbens area being the best performing, see Table 2. 

Other notable labels were the Left and Right Caudate as well as Cerebrospinal fluid. The only labels 

where FastSurfer had comparable diff-values to the labels mentioned for MAPER above were the 

Left and Right Inferior Lateral Ventricles. 

 

Table 2. Table containing, for all labels, the mean JC, along with the standard deviation, and the diff-value, sorted by diff-
values (descending). 

  FreeSurfer-MAPER FreeSurfer-FastSurfer  
Label # Label Name Mean JC SD Mean JC SD diff (%) 

26 Left-Accumbens-area 0.583 0.087 0.353 0.164 49.1 

58 Right-Accumbens-area 0.644 0.073 0.506 0.128 24.1 

11 Left-Caudate 0.802 0.058 0.657 0.097 20.0 

50 Right-Caudate 0.793 0.061 0.659 0.103 18.5 

24 CSF 0.673 0.050 0.560 0.063 18.4 

1010 ctx-lh-isthmuscingulate 0.682 0.083 0.574 0.059 17.2 

2010 ctx-rh-isthmuscingulate 0.674 0.079 0.578 0.059 15.3 

15 4th-Ventricle 0.816 0.036 0.716 0.052 13.1 

14 3rd-Ventricle 0.801 0.043 0.710 0.103 12.0 

43 Right-Lateral-Ventricle 0.866 0.038 0.770 0.053 11.7 

4 Left-Lateral-Ventricle 0.865 0.040 0.783 0.065 10.0 

63 Right-choroid-plexus 0.465 0.068 0.429 0.071 8.1 

31 Left-choroid-plexus 0.461 0.064 0.427 0.080 7.6 

2006 ctx-rh-entorhinal 0.551 0.107 0.511 0.088 7.6 

28 Left-VentralDC 0.811 0.030 0.754 0.027 7.2 

10 Left-Thalamus 0.863 0.022 0.804 0.029 7.0 

1017 ctx-lh-paracentral 0.653 0.094 0.609 0.058 6.9 

53 Right-Hippocampus 0.819 0.032 0.769 0.034 6.3 

17 Left-Hippocampus 0.809 0.033 0.759 0.030 6.3 

1006 ctx-lh-entorhinal 0.565 0.096 0.533 0.075 5.8 

49 Right-Thalamus 0.865 0.024 0.816 0.029 5.8 

60 Right-VentralDC 0.806 0.033 0.761 0.031 5.7 

2013 ctx-rh-lingual 0.603 0.075 0.572 0.056 5.4 

2035 ctx-rh-insula 0.798 0.064 0.757 0.047 5.3 

18 Left-Amygdala 0.758 0.074 0.720 0.031 5.1 

2017 ctx-rh-paracentral 0.657 0.095 0.625 0.075 5.0 

46 Right-Cerebellum-White-Matter 0.717 0.062 0.682 0.062 5.0 

7 Left-Cerebellum-White-Matter 0.720 0.060 0.687 0.058 4.6 

2016 ctx-rh-parahippocampal 0.697 0.064 0.667 0.052 4.3 

1035 ctx-lh-insula 0.802 0.065 0.771 0.051 3.9 

1013 ctx-lh-lingual 0.601 0.069 0.579 0.052 3.7 

54 Right-Amygdala 0.776 0.081 0.748 0.036 3.6 

2026 ctx-rh-rostralanteriorcingulate 0.659 0.096 0.638 0.088 3.3 

1012 ctx-lh-lateralorbitofrontal 0.734 0.052 0.713 0.041 3.0 

2012 ctx-rh-lateralorbitofrontal 0.732 0.053 0.712 0.039 2.8 

2022 ctx-rh-postcentral 0.670 0.097 0.654 0.079 2.4 

2014 ctx-rh-medialorbitofrontal 0.666 0.057 0.651 0.047 2.3 

16 Brain-Stem 0.895 0.017 0.875 0.018 2.2 

1016 ctx-lh-parahippocampal 0.696 0.065 0.681 0.053 2.1 

2024 ctx-rh-precentral 0.707 0.095 0.693 0.084 2.1 

1014 ctx-lh-medialorbitofrontal 0.668 0.061 0.656 0.051 1.8 

13 Left-Pallidum 0.708 0.086 0.696 0.085 1.7 

1018 ctx-lh-parsopercularis 0.703 0.087 0.693 0.083 1.3 

1026 ctx-lh-rostralanteriorcingulate 0.684 0.072 0.676 0.067 1.2 

1022 ctx-lh-postcentral 0.678 0.083 0.671 0.048 1.1 

1024 ctx-lh-precentral 0.714 0.080 0.707 0.053 0.9 
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1023 ctx-lh-posteriorcingulate 0.680 0.072 0.675 0.058 0.8 

52 Right-Pallidum 0.721 0.092 0.716 0.087 0.7 

47 Right-Cerebellum-Cortex 0.838 0.042 0.832 0.039 0.7 

8 Left-Cerebellum-Cortex 0.834 0.044 0.830 0.040 0.4 

2030 ctx-rh-superiortemporal 0.754 0.064 0.753 0.052 0.0 

2021 ctx-rh-pericalcarine 0.520 0.100 0.520 0.059 -0.1 

41 Right-Cerebral-White-Matter 0.886 0.026 0.886 0.021 -0.1 

2023 ctx-rh-posteriorcingulate 0.679 0.074 0.680 0.068 -0.1 

51 Right-Putamen 0.771 0.060 0.773 0.045 -0.2 

2 Left-Cerebral-White-Matter 0.884 0.029 0.887 0.021 -0.3 

1028 ctx-lh-superiorfrontal 0.753 0.055 0.755 0.045 -0.4 

2028 ctx-rh-superiorfrontal 0.764 0.051 0.767 0.046 -0.4 

1005 ctx-lh-cuneus 0.564 0.082 0.567 0.059 -0.5 

2003 ctx-rh-caudalmiddlefrontal 0.675 0.085 0.679 0.078 -0.5 

1030 ctx-lh-superiortemporal 0.738 0.063 0.742 0.056 -0.7 

1002 ctx-lh-caudalanteriorcingulate 0.644 0.073 0.649 0.072 -0.7 

12 Left-Putamen 0.770 0.054 0.776 0.048 -0.8 

2018 ctx-rh-parsopercularis 0.673 0.080 0.680 0.076 -1.0 

1034 ctx-lh-transversetemporal 0.629 0.077 0.636 0.066 -1.1 

2002 ctx-rh-caudalanteriorcingulate 0.645 0.110 0.653 0.111 -1.3 

2025 ctx-rh-precuneus 0.701 0.062 0.712 0.051 -1.5 

2005 ctx-rh-cuneus 0.567 0.080 0.576 0.060 -1.6 

1003 ctx-lh-caudalmiddlefrontal 0.681 0.078 0.694 0.070 -1.9 

1020 ctx-lh-parstriangularis 0.647 0.079 0.659 0.075 -1.9 

2007 ctx-rh-fusiform 0.656 0.068 0.669 0.060 -2.0 

77 WM-hypointensities 0.247 0.068 0.252 0.060 -2.1 

1019 ctx-lh-parsorbitalis 0.624 0.090 0.638 0.085 -2.2 

1011 ctx-lh-lateraloccipital 0.639 0.062 0.654 0.056 -2.3 

2031 ctx-rh-supramarginal 0.684 0.077 0.700 0.068 -2.4 

1025 ctx-lh-precuneus 0.697 0.067 0.714 0.053 -2.5 

1015 ctx-lh-middletemporal 0.692 0.064 0.711 0.075 -2.7 

1031 ctx-lh-supramarginal 0.691 0.071 0.710 0.060 -2.8 

2034 ctx-rh-transversetemporal 0.600 0.079 0.620 0.060 -3.2 

1027 ctx-lh-rostralmiddlefrontal 0.683 0.060 0.707 0.058 -3.4 

2019 ctx-rh-parsorbitalis 0.634 0.092 0.657 0.086 -3.6 

2015 ctx-rh-middletemporal 0.726 0.054 0.753 0.053 -3.7 

1009 ctx-lh-inferiortemporal 0.648 0.056 0.674 0.053 -3.9 

1007 ctx-lh-fusiform 0.644 0.070 0.669 0.059 -3.9 

2009 ctx-rh-inferiortemporal 0.652 0.058 0.678 0.054 -4.0 

2020 ctx-rh-parstriangularis 0.637 0.087 0.666 0.067 -4.5 

2027 ctx-rh-rostralmiddlefrontal 0.680 0.056 0.714 0.051 -4.8 

1021 ctx-lh-pericalcarine 0.480 0.104 0.504 0.066 -4.9 

2011 ctx-rh-lateraloccipital 0.643 0.057 0.678 0.051 -5.3 

1008 ctx-lh-inferiorparietal 0.663 0.075 0.702 0.065 -5.7 

2029 ctx-rh-superiorparietal 0.643 0.074 0.682 0.058 -5.8 

1029 ctx-lh-superiorparietal 0.642 0.074 0.688 0.053 -7.0 

2008 ctx-rh-inferiorparietal 0.680 0.062 0.731 0.055 -7.2 

44 Right-Inf-Lat-Vent 0.519 0.170 0.615 0.159 -17.0 

5 Left-Inf-Lat-Vent 0.444 0.125 0.542 0.125 -19.8 
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3.3 MAPER source subjects 

The subjects used as source data for MAPER showed minimal differences compared to the rest of 

the dataset, see Table 3. 

Table 3. Mean JC for subjects used as source data for MAPER compared to the rest of the dataset. Comparison 
between FreeSurfer and FastSurfer, and FreeSurfer and MAPER. 

 FreeSurfer-FastSurfer 
JC 

FreeSurfer-MAPER 
JC 

Source subjects 0.6734 0.6894 

Other subjects 0.6736 0.6892 
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4 Narrative account 
This section contains a narrative account of work that was done as part of the original purpose of the 

thesis, as explained in section 1.5. 

 

4.1 FastSurferCNN training 

4.1.1 Training dataset 
To train FastSurfer, 30 participants from the Hammers atlas database were used. The Hammers atlas 

database contains 3D T1-weighted MRI brain scans of 30 adult subjects, each with a manually 

segmented label file [20]. The scan parameters used for the acquisition of the images used in the 

Hammer atlas database can be seen in Appendix 2, section 9.2. The subjects were equally split into 

two groups: one for training and one for validation. The file structure was set up like this: 

Training data: 
$hm30/trn/a1/ 

$hm30/trn/a2/ 

$hm30/trn/a3/ 

.. 

$hm30/trn/a15/ 

Validation data: 
$hm30/val/a16/ 

$hm30/val/a17/ 

$hm30/val/a18/ 

.. 

$hm30/val/a30/ 

Where $hm30 is the folder containing the Hammers atlas dataset, and a1 to a30 are the subjects. 

 

4.1.2 Training 
Training was done following FastSurfer’s instructions on their github [21].  

The dataset had to be converted to hdf5 using FastSurfer’s generate_hdf5 function. Two csv-

files were used to specify the subjects involved, one file for training subjects and one for validation 

subjects. The label files from the Hammers atlas were used as ground truth for the training. A 

program called Freeview, which is included in the FreeSurfer suite, was used to remove the Corpus 

Callosum from the label images for the gt_noCC argument for the function generate_hdf5. 

Hdf5-data needed to be generated for each slice direction (coronal, sagittal and axial) as well as for 

training and validation data. An example of the code used can be seen in Appendix 1, section 8.5.1. 

After the hdf5-dataset was generated, it was used to train FastSurferCNN using the train.py 

function, once for every slice direction (coronal, sagittal and axial). The default arguments were 

used, example code can be seen in Appendix 1, section 8.5.1. 

The train.py function generates a checkpoint file containing the result of the training. The 

checkpoint files can then be called when segmenting brain images with FastSurfer, as done earlier in 

section 2.3.2. Training was then repeated using FreeSurfer outputs from the Hammers data as 

ground truth, instead of the manually segmented label images.  
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A T1-weighted 3D MR brain image from FreeSurfer’s wiki-page (surfer.nmr.mgh.harvard.edu/fswiki) 

was used as a test image and was segmented three times with FastSurfer using different 

checkpoints: the default checkpoints, checkpoints trained from the Hammers data as explained 

above, and checkpoints trained using FreeSurfer outputs of the Hammers data as the label files. 

Due to unsatisfactory training results, see section 4.2, contact was made with the FastSurfer creators 

to ask for feedback. The culmination of the feedback was to repeat the training using a different 

branch of FastSurferCNN called FastSurferVINN. Due to a lack of up-to-date modules on Alvis at the 

time, FastSurferVINN could not be used with the correct package versions and could not be executed 

properly. Because of these issues, the purpose of the thesis was shifted to the new purpose as 

stated in the introduction.  

 

4.2 Training results 

Training results were unsatisfactory, se Figure 6. Segmentation using checkpoints generated from 

FreeSurfer outputs of the Hammers atlas performed better than using the Hammers atlas with 

manual segmentations.  

 

 

Figure 6. Figure showing FastSurfer segmentation using different checkpoints of a test image. Segmentation using default 
checkpoints to the left (control), checkpoints from training using Hammers atlas data in the middle-left, and checkpoints 
from training using FreeSurfer outputs of the Hammers atlas to the middle-right. Segmentation of one of the images used 
for validation (a17), using checkpoints from training using FreeSurfer outputs of the Hammers atlas, can be seen on the 
right. 

 

  



15 

4.3 Training discussion 

The reason for the failure of the FastSurfer training is multifaceted but most likely stems from at 

least one of two things; the training data differed too much from FastSurfer’s specifications, and/or 

there were not enough subjects for training and validation.  

The default commands were used when training FastSurfer which stated using 15 subjects for 

training and 15 subjects for validation. FastSurfer itself was trained using 140 images for training and 

20 for validation, which was a lot more than was expected [3]. Our findings highlight that 30 subjects 

are not enough for training and validation, for the dataset used. 

Training FastSurferCNN using the manually labelled images from the Hammers atlas as “ground 

truth” failed because the label images did not follow the same standard as FreeSurfer/FastSurfer. 

The ground truth data was then changed to using FreeSurfer outputs from the Hammers atlas as 

ground truth for the training. FreeSurfer generated all of the files needed for training and while the 

training went better, there were still issues.  

In the previous paragraph the term “ground truth” is used because it was what was used by the 

FastSurfer creators. It is important to note that the “ground truth” used for training was not an 

objective ground truth as the term implies, but simply data used for training. Whether we are talking 

about the manual Hammers atlas segmentations or the FreeSurfer label outputs, there is always 

some uncertainty or error associated with each procedure. The term “ground truth” ignores this 

uncertainty and gives the user a false confidence in the training data used, and by extension, the 

model’s output.  

Another minor issue could have been that the test image used was too dissimilar compared to the 

training data. FastSurfer was therefore tested using an image that was not representative of the 

training dataset. To investigate this, segmentation was repeated using one of the validation images. 

The results were better compared to earlier results but still not adequate (Figure 6, right), which 

demonstrated that the test image was not the problem by itself. 

Contact was made with the FastSurfer creators through their Github. After troubleshooting, 

theorising, and concluding in that the reasons listed above were most likely why the training failed. 

They suggested to try an experimental branch of FastSurfer called FastSurferVINN. Unfortunately, 

FastSurferVINN required updated packages that were not yet available on Alvis, and we were unable 

to proceed.  

FastSurfer has since been updated and FastSurferVINN is now the default neural network, instead of 

FastSurferCNN. More work is needed to investigate if using FastSurferVINN would have made a 

difference to the training, if it was the Hammers atlas MR images that were too different from what 

FastSurfer expected, a larger training corpus was needed, or if there was any other reason as to why 

the training failed. 

An error was also made when selecting the subjects for either training or validation, there was no 

randomness in the selection. The first 15 subjects were used for training and the remaining 15 were 

used for validation. If done again, subjects should be chosen randomly for either training or 

validation to minimize subject order being a confounder. If the subjects were ordered in a certain 

way in the atlas, the selection could have led to subjects that share a certain trait being put in the 

same group, for example training, and with no subjects sharing that trait in the validation group. This 

would lead to training on a dataset that is not as diverse as it could have been, and therefore leading 

to subpar training results. This likely was not the cause of the training failure but was bad practice in 

general. 



16 

5 Discussion 
MAPER outperformed FastSurfer at generating FreeSurfer-outputs slightly overall. This was due to 

MAPER’s superior performance for the subcortical labels while the results were almost identical for 

the cortical labels. The results were statistically significant across all labels as well as for the 

subcortical labels (p < 10-5 and p < 10-53, respectively). The difference in JC was not statistically 

significant when comparing the cortical labels, where the two programs scored similarly (p < 0.975).  

Since MAPER outperformed FastSurfer for the subcortical labels, it is not a surprise that 4 out of 5 

labels with the highest diff-values were subcortical. Further investigation is needed to examine the 

differences in segmentation of MAPER and FastSurfer on a label-by-label basis and why they differ 

for labels with higher (or lower) diff-values. 

It is important to note that MAPER and FastSurfer were compared to FreeSurfer and not an objective 

ground truth. We only examined how the two programs compares at replicating FreeSurfer outputs, 

not an actual ground truth.  

The subjects used as source data showed minimal differences in JC compared to the rest of the 

dataset. If MAPER would have favoured the source data, a higher JC would be seen for those 

subjects. Although an increase was seen, it was minimal and not significant. 

A major advantage of FastSurfer was its segmentation speed compared to MAPER. Each subject took 

around a minute to segment using FastSurfer and around 2 hours using MAPER. In a clinical situation 

this could weigh strongly in favour of FastSurfer, as the faster segmentation speed means that it 

would be easier to integrate FastSurfer into the clinical workflow without slowing down the overall 

speed. It also means that FastSurfer is substantially quicker at handling larger datasets compared to 

MAPER. 

One disadvantage FastSurfer had was that it was not trained on the same type of data as MAPER, 

which could have brought down FastSurfers JCs. FastSurfer was used with its default checkpoints 

whereas MAPER could use the FreeSurfer outputs directly as source data. The next step would be to 

investigate how much the results would differ if FastSurfer was trained on an external atlas like the 

IXI atlas.  

Similarly, a disadvantage for MAPER was that a non-native atlas was used. It would be interesting to 

see if the results would differ depending on the atlas used. Comparisons have shown that FreeSurfer 

and MAPER perform better using their native atlases, the question is to what extent it affects 

FastSurfer [17].  

More studies are needed on FastSurfer in general as there are currently very few published studies 

out there. For example, there were no studies on PubMed when this thesis was started (January 

2022), excluding studies from contributors involved with FastSurfer. FastSurfer is still in its infancy 

and is constantly being updated, it will be interesting to see what the future holds for the project. 

It is important to note that results from software algorithms can change with the version of the 

program. For example, results from FreeSurfer have been shown to vary slightly between versions 

[22]. New research is continuously needed to make sure software performance does not decline, 

and that results are as good as possible.  
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6 Conclusion 
This thesis shows that MAPER is more accurate at replicating FreeSurfer-conform segmentations, 

compared to FastSurfer, for a majority of the subcortical labels of the brain, most notably the left 

and right accumbens area, left and right caudate, and CSF. The results of the comparison also show 

that MAPER and FastSurfer perform equally well, on average, for the cortical labels of the brain. 
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8 Appendix 1 

8.1 Folder structure and change of file format 

The dataset was organized according to the following file-structure: 

$ixi/c012/mri/ 

$ixi/c013/mri/ 

$ixi/c014/mri/ 

$ixi/c015/mri/ 

.. 

$ixi/c661/mri/ 

Where c012 to c661 are the different subjects in the dataset and $ixi is the path to the folder 

containing all the subjects. The IXI dataset images were inserted into the mri/ folder. The MR 

images were renamed to orig.nii.gz. 

The function mri_convert was used to change the filetype from .mgz to .nii.gz . mri_convert 

is included in FreeSurfer and to initiate FreeSurfer the following code was used: 

cd $freesurfer 

export FREESURFER_HOME=$PWD 

source SetUpFreeSurfer.sh 

Where $freesurfer is the path to the folder containing FreeSurfer. mri_convert was then 

called with the following code: 

cd $ixi 

realpath c* | xargs -I {} mri_convert {}/mri/orig.mgz 

{}/mri/orig.nii.gz 

This retrieves the file path for each subject, uses the file path as an input for xargs, which then 

calls mri_convert for each subject. 
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8.2 FreeSurfer segmentation code 

The code called for FreeSurfer segmentation for each subject: 

recon-all -all -I $id/mri/orig.mgz -s $id-free/ 

Where $id was the name of each subject. The output file used for the comparison for each subject 

was aparc.DKTatlas+aseg.mgz. 

 

8.3 FastSurfer segmentation code 

The code called for FastSurfer segmentation for each subject: 

python FastSurferCNN/eval.py --i_dir $ixi --o_dir $ixi-fast --

network_sagittal_path 

checkpoints/Sagittal_Weights_FastSurferCNN/ckpts/Epoch_30_training_s

tate.pkl --network_coronal_path 

checkpoints/Coronal_Weights_FastSurferCNN/ckpts/Epoch_30_training_st

ate.pkl --network_axial_path 

checkpoints/Axial_Weights_FastSurferCNN/ckpts/Epoch_30_training_stat

e.pkl 

Where $ixi-fast is a new folder containing the results of the FastSurfer segmentation. The files 

named Epoch_30_training_state.pkl are the checkpoint files used, one for each slice 

direction (sagittal, axial, and coronal). In this example the default checkpoints were used. The output 

file used for the comparison for each subject was aparc.DKTatlas+aseg.deep.mgz. 

 

8.4 MAPER segmentation code 

Example code called to determine the rigid transformation that positionally normalizes IXI image of 

subject c012: 

$SOFTWARE/posnorm/posnorm.sh -img 

$IXI/fs/subjects/c012/mri/brainmask.nii.gz -mask 

$IXI/fs/subjects/c012/mri/brainmask.nii.gz -dofout 

$IXI/fs/posnorm/c012.dof.gz 

MAPER was then called using the following code: Example code called for the pairing of IXI image of 

subject c015 as source and IXI image of subject c012 as target: 

$SOFTWARE/maper/maper -tgtid c012 -tgtmri 

$IXI/fs/subjects/c012/mri/brainmask.nii.gz -tpn 

$IXI/fs/posnorm/c012.dof.gz -tgtlabels 

aseg:$IXI/fs/subjects/c012/mri/aparc.DKTatlas+aseg.nii.gz -atlasn 40 

-output-dir $IXI/fsmaper -threads 32 -srcid c015 -srcmri 

$IXI/fs/subjects/c015/mri/brainmask.nii.gz -spn 

$IXI/fs/posnorm/c015.dof.gz -srclabels 

aseg:$IXI/fs/subjects/c015/mri/aparc.DKTatlas+aseg.nii.gz -srccache 

$IXI/fsmaper/cache -tgtcache $IXI/fsmaper/cache  
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8.5 Training FastSurferCNN 

8.5.1 Hdf5 generation 
To generate a hdf5 dataset of the Hammers atlas, an example of the code used can be seen below 

for the axial slice direction and training subjects: 

python3 FastSurferCNN/generate_hdf5.py --hdf5_name 

$training_data/training_set_cispa_axial.hdf5 --csv_file csv_trn.csv 

--plane axial --image_name mri/orig.mgz --gt_name mri/aseg.mgz --

gt_nocc mri/aseg_noCC_c.mgz 

Where $training_data is the folder containing the training data, orig.mgz is the MR image 

of the brain, aseg.mgz is the label file containing the manually segmented brain, and 

aseg_noCC.mgz is a copy of the manually segmented label file but with the Corpus Callosum 

removed. 

 

8.5.2 Training 
To train FastSurferCNN using the previously generated hdf5-dataset the train.py function was 

called three times, once for each slice direction (sagittal, axial, and coronal). The following code was 

used for the sagittal plane direction: 

python3 FastSurferCNN/train.py --hdf5_name_train 

$training_data/training_set_cispa_sagittal.hdf5 --hdf5_name_val 

$training_data/validation_set_cispa_sagittal.hdf5 --plane sagittal -

-log_dir checkpoints/Sagittal_Competitive_APARC_ASEG/ --epochs 30 --

num_channels 7 --num_classes 51 --batch_size 15 --

validation_batch_size 15 

Where a checkpoint directory is created, with a name chosen with the –log_dir argument.  
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9 Appendix 2 

9.1 Scan parameters for the IXI dataset 

• Scanner: Philips Medical Systems Intera 3T 

• Repetition Time = 9.6 

• Echo Time = 4.6 

• Number of Phase Encoding Steps = 208 

• Echo Train Length = 208 

• Reconstruction Diameter = 240.0 

• Acquisition Matrix = 208 x 208 

• Flip Angle = 8.0 [23] 

9.2 Scan parameters for the Hammer’s atlas dataset 

MRI scans were conducted at the National Society for Epilepsy using a 1.5 Tesla GE Signa Echospeed 

scanner. A coronal T1 weighted 3D volume was acquired using a GE inversion recovery prepared fast 

spoiled gradient recall sequence. The TE/TR/NEX parameters were set to 4.2 msec (fat and water in 

phase)/15.5 msec/1, respectively. A time of inversion (TI) of 450 msec and a flip angle of 20° were 

applied to obtain 124 slices with a thickness of 1.5 mm. The field of view was 18×24 cm with a 

192×256 matrix, providing complete coverage of the entire brain with voxel sizes of 0.9375 × 0.9375 

× 1.5 mm. In order to maintain the native resolution, the images were resliced using windowed sinc 

interpolation, resulting in isotropic voxels measuring 0.9375 × 0.9375 × 0.9375 mm³ [24]. 

 

 

 

 

 

 

 


