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On Systematically Exploring the
State Space for Events with SFCs

Younis Akel
Gianmarco Iachella

Abstract—In the process of developing autonomous driving
systems (AD systems), ensuring safety remains a constant and
continuous priority. Scenario-based testing is a popular approach
to guarantee the safety of AD systems, which however meets
challenges in terms of diversity and efficiency of generation, as
well as evaluating existing test case datasets in terms of their
coverage of the different variations of a particular maneuver.
This research aims to support approaches for diverse and efficient
scenario-based testing generation through the application of
space-filling curves in determining the state space of specific
vehicle maneuvers. The research goal is addressed through the
use of design science, in which we produce an artifact consisting
of a theoretical approach that acts as an initial foundation
for an algorithm that efficiently generates diverse variations
of specific maneuvers. An important discovery made in this
research is understanding how SFC encoding impacts the way
permutations are generated, and the implications of this in terms
of what is required to ensure plausible maneuvers are permuted.
This research mainly provides an initial theoretical approach
to generate permutations of a limited subset of lane change
maneuvers based on defined constraints.

Index Terms—Autonomous driving systems, scenario-based
testing, space-filling curve (SFC), characteristic stripe patterns
(CSP), permutations, state-space, areas of interest (AOI)

I. INTRODUCTION
A. Background

In the development of autonomous driving systems (AD
systems), safety is an ongoing priority and consideration
[1], [2], [3]. Robust testing allows for early identification of
issues that could pose risks in real-world scenarios [4], which
contributes towards ensuring safety. A commonly used method
for testing AD systems is scenario-based testing [3]. Scenario-
based testing can be summarized as using scenarios from
end-user perspectives to test software. For example, making a
hard turn on a frozen street is a safety-critical scenario worth
testing. For each of these scenarios, system-specific tests can
then be derived [4].

However, challenges related to testing are still present in the
development of AD systems. These challenges vary from being
data-related (i.e., not having enough realistic data on extreme
edge cases), to being related to testing how AD systems handle
cases of failure during a real-world operation [5]. Furthermore,
identifying when a test case set has covered all, or at least all
important scenarios, is also ongoing in the research related to
scenario-based testing [6]. Due to these ongoing challenges, a
gap was identified in the testing of AD systems.

A common approach in developing AD systems is Data-
Driven Development, which can be summarized as the storage

and processing of large amounts of multi-dimensional data for
the development of software. However, the multi-dimensional
form in which sensor data is stored proves to be computa-
tionally costly in terms of space and time complexity. The
cost in terms of space is related to the variety of sensors
and large amounts of multi-dimensional data. Consequently,
querying and analyzing such data for specific traffic situations
or maneuvers represent a challenge in regards to time complex-
ity. A recent approach to this challenge is using the concept
of space-filling curves (SFCs) in terms of converting multi-
dimensional data into a single dimension [7], [8], whilst re-
taining spatial information, resulting in a very efficient way for
data access and processing. Along with improving efficiency of
querying multidimensional data, depending on how the single-
dimension SFC representation of multidimensional data is
visualized, the usage of SFCs may enable an improvement and
different approach in research related to testing AD systems -
this will be further discussed in Section I-B.

B. Problem Domain & Motivation

Due to the safety-critical aspect in AD systems, it is vital
to ensure robust testing - implying that a variety of data is not
only needed on multiple events, but also on many variations
of the same event. For example, the event of a roundabout
consists of many variations, such as the speed of the turn
and diameter - all of which pose different safety risks. An
identified gap and ongoing challenge in the research of AD
scenario-based testing, is efficiently generating a diverse test
case dataset consisting of as many safety-critical scenarios as
possible [6]. The authors also denote that current methods of
scenario generation search for the best scenario that conforms
to requirements, causing a decline in diversity leading to a risk
of over-fitting and testing a system against very similar and
limited scenarios [6].

According to Ding et al. adversarial training using generated
scenarios is an efficient way to train AD systems via the
adversarial training framework [6]. However, an issue with this
approach is the imbalance of data diversity found in testing
datasets, leading to risks of developing an AD system too
specific to this limited dataset [6]. This shows a gap not only
in how such scenarios can be generated, but also denotes a gap
in utilizing such scenario generation to verify existing datasets
in terms of how diverse they are.

By exploring the state-space of the single dimensional
representation of sensor data on SFCs, the possibility of
identifying specific events through patterns arises. With the
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Fig. 1. Screenshot of a CSP on the single dimensional SFC representation of multidimensional data [9]

conversion of multi-dimensional car maneuver data into a
single dimension via SFCs, pattern clusters emerge - more
specifically, Characteristic Stripe Patterns (CSPs) are formed.
An illustration of a CSP can be seen in Figure 1. CSPs from the
SFC are correlated to car maneuver data. Identifying properties
of CSPs such as their structure and spread would enable
the permutation of events, such that data consisting of many
variations of the same event can be generated systematically.
This systematic generation would enable for generating a
diverse set of variations of particular scenarios ensuring that
safety-critical variations of a particular scenario are included,
as well as to provide scenarios to evaluate and compare
whether existing test case datasets are representative to all
possible maneuver variations, and save time in terms of being
able to artificially generate events.

C. Research Goal & Research Questions

The purpose of this study is to provide an initial theoretical
foundation to systematically generate all the possible and
relevant permutations of a particular event through the analysis
of its CSPs’ single-dimensional representation. This would
act as a base on which further research can be conducted
to eventually implement an algorithm that can vary multiple
parameters within an event in an efficient manner. The afore-
mentioned algorithm would support generating more diverse
test case scenarios, as well as output reference datasets to
which existing test datasets can be compared and evaluated
against.

From the overall goal, as well as identified gap in the
research, the following Research questions have been defined:

e RQI: What are similarities and differences in character-
istic stripe patterns (CSPs) on SFCs for similar events?

o RQ2: What properties of CSPs are necessary and suffi-
cient to estimate dimensions of the state space for certain
events and scenarios?

o RQ3: How can all possible event descriptions of a ma-
neuver be systematically permuted in an efficient way?

RQ1 will initiate an analysis on CSPs of SFCs for similar
events. This analysis will enable the identification of what
aspects of CSPs could indicate specific events.

RQ2 focuses on identifying which properties are necessary
and sufficient in determining an estimation for the state space
for certain events and scenarios. For example, if we want
to generate artificial data that represents lane change events,
RQ2 would assist in providing which specific characteristics
we may need to maintain such that our generated events are
considered within its respective state space.

RQ3 focuses on a theoretical approach to produce plausi-
ble lane change permutations. The theoretical approach con-

tributes to being able to generate a wider variety of test cases
for particular events, as well as evaluating existing test cases.
RQ3 acts as an initial step to achieving an algorithm that can
generate all permutations of a particular event in an efficient
manner, and therefore has constraints in terms of what it
permutes (described further in Section IV). The success of
the research is measured based on its performance in terms
of time complexity, its completeness in terms of the types of
lane change variations it can cover, and how extendable it is
for future research.

We also initially had a fourth Research question with its
purpose being to act as a metric to evaluate existing test
case datasets to the datasets that would be produced by RQ3.
Initially, we had intended to have a functional algorithm to
answer RQ3, but due to a discovery made and discussed in
Section VI-D1 paired with time constraints, we made a scope
reduction in making a theoretical approach for the RQ3 and
deem RQ4 as out of scope. Although, this does not negate
the importance of RQ4, and hence we discuss its purpose as
follows: RQ4 consisted of measuring the representativeness of
real world test case data sets to all possible events generated by
RQ3. This measurement would target the issue of evaluating
whether existing datasets are encompassing enough to all
variations of a particular real-world scenario in terms of how
well a dataset covers rarer scenarios, such as safety-critical
scenarios [6].

Lastly, throughout this study we will be using the terms
‘events’ and ‘scenarios’ interchangeably to denote a specific
maneuver such as a lane change or roundabout turn.

D. Contributions

This research contributes to the state-of-the-art knowledge

in AD system scenario-based testing by providing:

o A theoretical approach to contribute to computationally
efficient diverse test case generation, through the appli-
cation of SFCs for encoding of sensor data related to
specific vehicle maneuvers

o The above would further contribute to evaluating existing
datasets, contributing to the improvement and robustness
of existing test case datasets in the domain of scenario-
based testing in AD systems.

e A prototype algorithm for permutating lane changes via
Morton values [10]. This prototype is described in Section
Iv-C

« Contributions to a repository for analysis of CSPs tailored
for vehicle maneuver data [11]

E. Scope

The theoretical approach artifact has constraints applied to
it that are described in Section IV. The theoretical approach



is an initial step to the ultimate goal of an algorithm that can
generate plausible permutations of all variations of a particular
maneuver in an efficient manner. The approach would allow
for extensions to be made to it and to allow for constraints to
be made more lenient whilst maintaining the same theoretical
approach.

E. Structure of the Article
The structure of this article is as follows:

e Section I - Introduction

o Section II - Related Work

o Section III - Methodology

o Section IV - Artifact

e Section V - Results

o Section VI - Analysis & Discussion

e Section VII - Conclusion and Future Work

II. RELATED WORK
A. Use cases of SFCs

SFCs are widely used in several domains, mainly due to
their characteristic data storage and querying efficiency. This
section lists uses of SFCs in various areas, with the objective
of delving into examples and evidence that share intuitions
with the subject field of our study.

One relevant example is for SFCs that are used to classify
malware into categories to improve antivirus programs [12].
The authors use existing research on the image representation
of malware (which is used for classification into categories)
and improve it by applying the concept of SFCs. They are
essentially building on existing work in terms of categorization
of image fingerprints of malware, upgrading the generation
step of said fingerprints by using SFCs. Here we can see a
parallelism with our contribution (i.e., malware as a specific
maneuver, malware categories as maneuver categories, and
antivirus programs as AD systems), in that we do not focus
on the characteristics of categorization of maneuvers, rather in
providing a way to efficiently generate examples of maneuvers
of specific categories, to improve the efficiency of scenario-
based testing in AD systems.

Martinez-Rubi et al. describe the query optimization of
data management systems with the implementation of SFCs
[13]. The authors present different approaches to SFC usage,
and report the improved scalability of queries within growing
multi-dimensional datasets. In their contribution, they point out
the need for a feature of “Level of Detail” in future work that
is related to data management and querying. For example, they
describe a possible percentage of points to be specified within
a data region. With regards to this necessity, we identify a
potential point of development, since it is part of our artifacts
to produce and measure data by adjusting the accuracy of
the output, hence providing an example implementation that
features the aforementioned “Level of Detail”.

Although the research mentioned above makes wide use of
SFCs, there seems to be a lack of application of the concept of
CSPs and, more specifically, the intuition of permutations of

CSPs. This could potentially be due to the different nomencla-
ture that can be used to refer to such concept. Nonetheless, our
research aims to address this gap, particularly with RQ1, RQ?2,
and RQ3. With our work we aim to introduce, use, analyze and
report the improvements that CSPs bring to AD systems, with
the vision that such concept can be used in other domains.

B. Scenario-based testing

Although Scenario-based testing was introduced and de-
scribed in Section I-A, this section aims to discuss the lit-
erature available related to the state of the art in the domain,
and aspects in which we identify areas that our research may
contribute towards.

Scenario-based testing includes creating scenarios of real-
world situations from which tests can be derived. This form
of testing allows for AD systems to be evaluated in their
performance and safety management in situations with varying
risk levels. An ongoing area in the research of scenario-based
testing is on improving the diversity, quality, and efficiency
in generating realistic scenarios to be used in scenario-based
testing [6]. Furthermore, in the existing literature, an emphasis
is made on generating datasets with highly-critical scenarios
[14].

Cai et al. report the state-of-the-art and current challenges of
scenario-based testing through a survey on existing literature
[15]. Importantly, the authors mention the lack of contributions
with regards to measuring when enough scenarios are covered,
as they point out that there are infinite possible scenarios to be
generated, and no current solution to this “dilemma”. With our
work, we aim to contribute in addressing such aspect by focus-
ing on providing a thorough, yet feasible, initial foundational
approach to the generation of all possible scenarios for a given
maneuver. Moreover, future work that would implement an
algorithm based on our theoretical approach could address the
aforementioned “coverage measurement issue” by providing
guidelines on how existing scenario-based test datasets can be
evaluated.

With regards to the diversity of scenarios generated, Bern-
hard et al. propose guidelines for diversity optimization, by
classifying specific maneuvers into levels of safety concern
[16]. As a contribution to this identified issue, our theoretical
approach would provide the foundations to an algorithm
that includes permutations of all scenarios of a lane change
maneuver, including safety-critical scenarios. Future research
could build upon the theoretical approach, which is extensible
to covering different maneuvers such as ones deemed safety-
critical - this is discussed further in VI-D3.

III. METHODOLOGY

Design Science Research (DSR) will be used in this re-
search. DSR includes solving problems via creating and de-
signing artifacts, as well as evaluating them [17]. The guide-
lines discussed by Peffers et al. show one approach on how
DSR can be structured with activities [18]. The methodology
typically contains an iterative aspect, which makes use of
the first-hand knowledge gained from designing, creating and



evaluating the artifact [18]. DSR is the main overall method-
ology and will contain the literature review methodology for
gathering knowledge about the research domain. A literature
review can be summarized as the analysis and synthesis of
existing literature to provide an understanding of a topic, as
well as to provide a base in terms of demonstrating that the
research being conducted contributes to the domain knowledge
[19]. In particular, the authors describe a three-stage process
of effective literature review, which will be used to guide
the review [19]. As the main methodology and goal of this
research is to create two artifacts, the literature review will
be conducted with the main goal being to gather knowledge
required to develop the artifacts.

DSR is a good fit to solving the research questions due to
an artifact being the output of this research, in particular: RQ3
is the RQ in which an artifact will be the outcome, whilst RQ1
and RQ2 could be considered more as identifying patterns and
aspects of the CSPs required for RQ3 - suggesting that RQ1
and RQ2 occur earlier in the DSR iteration. In relation to the
research by Levy et al. [18], this was our implementation of
the activities that were carried out each cycle:

activity 1: Problem identification and motivation - At the
beginning of each iteration, we used this activity to discuss the
problems to address, in the context of the current cycle and the
state of the artifacts. Existing literature upheld our reasoning
and helped us in motivating our conclusions. Reporting the
iterations of this activity was relevant to justify the solutions
proposed, as well as to understand the adjustments that we
made as the artifacts evolved.

activity 2: Define the objectives for a solution - From
the observations made during the previous activity III, it was
possible to define the objectives for a solution. The objectives
considered the scope of the project as well as their feasibility
with the resources available.

activity 3: Design and development - The design and
development aspect encompassed the creation of the artifact
from RQ3. For the first cycle, more focus was placed on
the design aspect, to ensure that our understanding of the
artifact met an acceptable level. As we progressed to Cycle
2, we adjusted the balance between design and development
to guarantee the production and improvement of the artifact in
subsequent cycles. During Cycle 2, we had created an initial
prototype - which was replaced with a theoretical approach
in Cycle 4 due to a discovery made in terms of how Morton
values work in Cycle 3 (the prototype is discussed further in
Section IV-C)

Regarding the algorithm artifact:

o An analysis was conducted on the single dimensional
maneuver data in order to choose which combination
of sensors provided better CSPs identification. Then, the
data was analyzed in terms of similarities and differences
in CSPs derived. This step related to answering RQ1.

o The second step consisted of answering RQ2, through
analyzing what properties of the patterns were required
for estimating the dimensions of a state space for a
specific event.

e Step 3 consisted of developing a theoretical approach
based on the findings of the previous two steps, which
targeted answering RQ3. This step was initiated through
a literature review, in which existing knowledge was
analyzed in relation to data found in the previous steps.
Analysis from the literature review acted as a base on
which the theoretical approach was built.

activity 4: Demonstration - The fourth activity consisted
of demonstrating the use of the artifact to solve one or more
instances of the problem” [18]. For the 2nd cycle where the
artifact comprised of a prototypical algorithm, this included
a demonstration of its output and time complexity. As we
progressed to develop a theoretical approach in cycle 4, the
activity entailed only proof-of-concept demonstrations.

activity 5: Evaluation - To evaluate the artifact, the 2nd
cycle’s prototype was evaluated in terms of time complexity.
In the following cycles, the theoretical approach was evaluated
in terms the following parameters (further discussed in Section
V-D3): performance, modularity, modifiability, completeness.

A. Data Collection

A variety of data was collected to determine which param-
eters to base the CSP generation on due to their impacts on
pattern occurrences on the CSPs. A clearer CSP pattern will
enable for easier identification for what can be considered a
lane change maneuver on a CSP, which in turn allows for more
accurate permutations to be made. These parameters consisted
of:

e Type of SFC used (Morton or Hilbert)
o Sampling rate

o Number of dimensions of the data

o Types of sensors used

The data collected was based on a real-world dataset con-
sisting of hard braking and lane change maneuvers. These
maneuvers were collected from a Volvo XC90 owned by
Chalmers, which underwent a variety of maneuvers on a test
ground as well as city roads. The data consisted of sensor
readings such as acceleration in three dimensions.

From the aforementioned lane change datasets, we ini-
tially had access to a subset consisting of hard-braking
and lane change maneuvers from a csv named ’brak-
ing_and_lanechange.csv’ found in the SFC_scripts Github
repository [20]. From this initial data, nine lane change ma-
neuvers were extracted, which we refer to as ”Dataset A” in
our research. The following sensors were provided for Dataset
A:

o GPS: Longitude and Latitude (20Hz)

e X, Y, and Z accelerations (20Hz)

o Speed (20Hz)

Data from Dataset A had a sampling rate of 20Hz, which
we down-sampled to both, 5Hz and 10Hz - the reasoning for
this being to analyze and view the impacts of the sampling rate
on the patterns found on the CSP. For each of the different
sampling rate varied Dataset A’s, CSPs were then generated
based on both, Hilbert and Morton indexing.



After the aforementioned data collection had taken place,
we received a new subset of the real-world dataset consisting
of 14 noise” maneuvers such as a braking maneuver, and
16 lane change maneuvers of varying harshness levels when
making the lane change. We refer to this dataset as “Dataset
B” in our research. The following sensors and sampling rates
were provided for the Dataset B maneuvers:

o GPS: Longitude and Latitude (20Hz)

o Steering wheel angle (50Hz)

e X, Y and Z acceleration (100Hz)

o Angular Velocities: Roll rate and Yaw rate. (100Hz)

Each of the sensor readings above came in a separate CSV
file, and so maneuvers for each sensor were derived via finding
the timestamp range of the lane change maneuver from the
GPS data.

We decided to down-sample the Acceleration sensor CSV
for ten of the Dataset B lane changes to generate data with
100Hz, 50Hz sampling rates. To verify the sensor readings’
impact on CSPs, four lane changes of the aforementioned ten
were down-sampled to S0Hz and based on: Y-acceleration in
combination with either the steering wheel angle or the yaw
rate. CSPs were not generated on the Roll rate sensor due to its
measurement not being related to the nature of the maneuver.
The sensor combinations that CSPs were generated on for the
analysis were:

o Steering wheel angle and Y-acceleration
o Y-acceleration and steering wheel angle
e Yaw rate and Y-acceleration
e Y-acceleration and Yaw rate

The reasoning for down-sampling four lane changes from
Dataset B was to balance time constraints during the data
collection. The selected four lane changes were of varying
levels of harshness as well as lane-change side. After the dif-
ferent sensor reading impacts had been analyzed, we decided
to down-sample the aforementioned four lane changes further
to both SHz and 10Hz. Results on the decision of Sampling
rate can be found in V-A.

To finalize our answer to RQ2 and also to analyze the
state space itself for RQ3, all lane change and noise data
from Dataset B were extracted and SFC-encoded, based on
the following parameters:

o Type of SFC used: Morton

e Sampling rate: 10Hz

o Number of dimensions of the data: 2

o Types of sensors used: Y-Acceleration and Steering
Wheel Angle

Furthermore, roundabout data was also extracted from a
dataset known as the ’SnowFox Roundabout Dataset’, from
which we also extracted and SFC-encoded roundabouts based
on the aforementioned parameters. To provide clarity on the
data, noise data from Dataset B does not refer to sensor noise,
but rather to other maneuvers that are not lane changes.

In order to solidify our understanding of Morton encoding,
as well as to ensure the validity of permutations, we needed to

SFC Over Time ontop CSP plot
1e7+1.6637651el5

L 6.0
A, .
i |
L =l
4 - 55%
3 8
2 * i
= | 4
E e L5085
[®)
! g
Qi1 e
tas E
(=N
£
- )
LERITR - @
40 8
=
LA 35
LY -
0.5 1.0 15 2.0 2.5

Morton value lel0

Fig. 2. SFC-over-time plot with the 4 different parts of a lane change
maneuver annotated

clarify the reason why Morton outliers occurred in some SFC-
over-time plots. This analysis would determine whether there
are value ranges where Morton values cannot happen, poten-
tially affecting the dimensions of the areas of interest (AOIs)
which are annotated in Figure 2. Moreover, it would explain
clearly the way Morton encoding works, and give us hints
on the adjustments necessary to generate valid permutations.
Morton value data was collected in three ways:

1) Morton values manually generated: Morton values were
generated using scripts, with varying Morton value
range, and spread. Specifically, values were generated
with linear and exponential growth, as well as following
certain shapes, such as the horizontal bell shape that was
recognized in our lane changes’ areas of interest. This
data can be observed in Figure 23.

2) Morton values taken from our lane changes data (Dataset
B, LC15 and LC16): Morton values were taken from
lane changes that contained outliers (since they were
the focus of this analysis). The lane changes were
chosen from Dataset B (lane change 15 and 16), as their
SFC-over-time plot contained outliers. More specifically,
the outliers on the right side were analyzed first (area
number 3 in Figure 2), but the observations apply to
both sides of the plot. The outliers were isolated in their
respective SFC-over-time plots, and they were shifted
using a variety of offsets. The impact that this would
have on unpacked sensor data is further discussed in
Section VI-DI.

3) Morton values taken from algorithm prototype generated
lane change: Finally, Morton values were taken from one
lane change generated using the algorithm prototype,
to observe and further support the understanding of the
Morton value sampling issue.

To improve the density and definition of the spike and



contour plots, we collected sensor data from lane changes
performed through a simulator (CARLA [21]). The simulated
data was given to us by a group of peer researchers, who
we thank and mention in Section VII. Firstly, we measured
through a script the lane change with the median maximum
amplitude in terms of Steering Wheel Angle. Secondly, we
manipulated that lane change’s Steering Wheel Angle sensor
values to generate 5 files with increased steering amplitude
(resembling harsher lane changes), and 5 files with decreased
steering amplitude (resembling more gentle lane changes). The
amplitude of the reference file was manipulated by applying
a coefficient to the sensor values in 5 increasing steps of
about 13% for increased amplitude, and 5 decreasing steps
of about 10% for decreased amplitude. each other. Once the
manipulated files were ready, they were given to our peers for
performing the simulation, along with speed files which were
required to run the simulation. The speed profiles used for
the simulations were: 4m/s, Sm/s, 6m/s, 7m/s, 8m/s, 10m/s,
14m/s. We then received back the simulated lane change data
files, which contained the relevant sensors for our research,
along with location data which was useful for lane change
validation. The simulated lane change data was then analyzed
through a script, which checked the sideways movement of
the vehicle through the location data of the simulations.
With this approach, after defining the standard width of the
lane (3.7m in Germany [22]), as well as the one of the
vehicle (approximately 2 meters for a Volvo XC90), we were
able to determine whether a simulated lane change could be
considered valid or not. We defined a lane change to be valid
when the car moved from one lane to another (i.e., two-lane
lane changes or more were not considered).

After the analysis was completed, we were able to add five
new lane changes to our pool of data. These lane changes
were used to add more data to the density plots analysis, as
discussed in Section III-B

B. Data Analysis

A variety of data analysis was conducted in relation to the
lane change maneuvers from both, Dataset A and B mentioned
in Section III-A. To analyze the lane change maneuver data
in its multidimensional and CSP form, the following software,
libraries and packages were used:

e Programming language: Python 3.9

« Data Processing libraries: pandas 1.5.3, numpy 1.24.2

o Data visualizations: matplotlib 3.7.1

o Computing Platform: Jupyter notebook 6.5.3

e Morton indexing library: morton-py 1.3

o Hilbert indexing library: hilbertcurve 2.0.5

The code used for analysis and data processing was based
on a fork of the SFC_scripts repository by Lukas Birkermeyer
[20].

In order to encode the sensor data into a Morton or Hilbert
index, the data requires an offset and a multiplying factor.
Both, the Hilbert and Morton libraries, require a non floating
and positive integer. Hence, an offset of 10 was added to the
data to ensure that values are positive and the values were

multiplied by a factor of 10000 to remove the decimal and
ensure that sufficient accuracy is maintained from the sensor
reading. The adjusted sensor values were also casted to inte-
gers to ensure that they are non-floating. The aforementioned
factor multiply and offset were already set in the SFC_scripts
repository that we based our analysis on [20]. After applying
the adjustments to the sensor data, the shape of the sensor
readings against timestamp plot was still maintained such that
the impacts of the maneuver were still accurately represented.
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The first phase of the data analysis included plotting the
longitude and latitude position of the vehicle - which is
equivalent to GPS - to identify lane change timestamps from
the lane change datasets (example of the plot seen in Figure
3).



Based on the timestamps extracted from the GPS plots, we
could determine what parts of other sensor readings corre-
sponded to lane changes when plotted against timestamps. This
in turn helped us understand how sensors, such as acceleration
sensors, were affected by lane changes. An example of the
X-acceleration and Y-acceleration against timestamp plot can
be seen in Figure 4. The analysis of sensor data, such as
acceleration sensors, against timestamp plots provided insights
into the relationship between between sensor readings and lane
change patterns on the CSPs generated from corresponding
Sensors.
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Fig. 6. Example of an SFC-over-time plot on top of a CSP

Throughout the research, CSPs were analyzed in more depth
via SFC-over-time plots. An example of an SFC-over-time plot
can be seen in Figure 5. An SFC-over-time plot shows the

Timestamp (microseconds scaled)

Fig. 7. Example of an X and Y acceleration against timestamp plot with
maneuver noise removed

occurrence of Morton values with respect to time. Relating
Figure 5 to CSPs, each point in the SFC-over-time plot
represents an occurrence of a stripe in a CSP plot. To visualize
the aforementioned relation, Figure 6 shows an example of
an SFC-over-time plot on top of a CSP. The SFC-over-time
plots enabled us to analyze what parts/stripes of the CSP
correspond to different parts of the maneuver. For example,
certain stripes are specifically related to the turning aspect of
the lane change, whilst other stripes are related to the initial
acceleration before going into a lane change. The link between
the CSP and SFC-over-time plot is as follows: The SFC-over-
time plot shows clusters of Morton values that correspond
to a specific timestamp. When a point appears in the plot,
a corresponding stripe can be seen in the CSP equivalent,
and the more points there are per cluster, the thicker the
stripe in a CSP will be. Furthermore, the SFC-over-time plot
also provides insights into the order of generation of stripes
in a CSP, enabling the identification of patterns through the
distance between and ordering of clusters.

To analyze the impacts of the sensor choice and ordering,
we had decided to analyze SFC-over-time plots to visualize
how clear patterns were when varying the type of sensor and
ordering of them.

After the aforementioned paragraph, all lane changes, noise
and roundabout data were extracted as discussed in III-A.
SFC-over-time on top of CSP plots, CSPs, and corresponding
sensor against timestamp plots of lane changes were compared
to those of noise and roundabout data. The analysis was
focused on the position and range of stripe occurrence on CSP
plots of different maneuvers compared to lane changes, and
if the temporal occurrence of these stripes would be critical
to estimate the dimensions of a state space for a maneuver,
with the ultimate goal of the analysis being to finalize RQ2.
Results of this analysis are presented in V-C.



With regards to the Morton value sampling issue, data anal-
ysis was conducted by unpacking and observing the collected
Morton value data. Unpacking Morton values would give us
the possibility to look at how the sensors values (i.e., Y-
Acceleration, Steering Wheel Angle) were impacted by the
Morton value sampling or manipulation that happened in the
Data Collection stage. Once sensor values were unpacked, and
sensors were plotted, the plots were compared to the real lane
changes from our datasets, which we could use as a visual
reference. If the newly generated plots did not visually follow
the usual sensor behavior seen in lane changes from Dataset
A and B (i.e., correlation of Steering Wheel Angle and Y-
Acceleration), they were considered invalid.

The lane changes that were collected from Dataset B and
simulator were also analyzed in terms of the density of Morton
points in the SFC-over-time representation of the data via
two plots: spike plots and contour on-top heatmap plots. An
example of a spike and contour on-top of heatmap plot can
be seen in 8. Prior to generating the density plots, the lane
changes first had to be normalized based on the timestamp
to ensure that different aspects of the maneuver [23], such as
stabilizing into a lane after a lane change, are overlapping -
this enables the density plots to highlight the more dense areas
of points that are related to a similar part of the maneuver.
This normalization was provided by peer researcher Renyuan
Huang, who we mention in Section VII. An example of an
overlapped SFC-over-time plot can be seen in 9.

The densities of the corresponding scatter points from the
SFC-over-time plot were calculated via the Numpy library’s
“histogram2d” function, which provides a two dimensional
array with a count of the amount of SFC-over-time points
that fall within their respective bins. Regarding the binning
of the density plots, the square root of the number of points
on the SFC-over-time plots was taken, and then heuristically
adjusted based on visual clarity of densities. The bin values
are as follows:

o Spike plots: 31

o Contour plots on-top of heatmap: 50

Although both of the plots seen in 8 show the density, the
spike plots provide insights into the overall pattern of the
data, as well as distribution based on the density of the bins.
The contours on-top of heat map plot provides a different
perspective of the spike plots, allowing for Morton value
ranges more related to lane change maneuvers to be more
easier visualized, as the contours provide a 2D way to view
the spikes, and the heatmap provides a visualization on how
many Morton values from our SFC-over-time plot fall into a
bin via the color of the bin - each bin is assigned a colour in
the heatmap based on its density.

The reason for the density plots is to view if more con-
cise areas of interest based on the density of Morton value
occurrence on an SFC-over-time plot can be formed.

IV. ARTIFACT

In this section we discuss the suggested theoretical approach
for generating valid lane changes. Two main conceptual com-

ponents are needed: Algorithm for Morton value sampling, and
a plausibility checker (the need for the plausibility checker is
discussed in the upcoming Section IV-B). Figure 10 contains
a visualization of the suggested sequence of steps that would
result in the most optimal use of the sampling algorithm
and plausibility checker. This approach can be seen as a
modular pipeline, where we want to emphasize the ease in
the modifiability of its composition (i.e., addition or modifi-
cation of constraints). Each of these conceptual components
is explained in detail in their own subsections (Section IV-A
and Section IV-B). Finally, the end of this section describes
an initial Morton value sampling algorithm prototype that was
developed in cycle 2 [10] (Section IV-C).

A. Morton value sampling Algorithm

The algorithm for Morton value sampling can be built
with similar concepts as the prototype explained in Section
IV-C. Specifically, the theoretical approach of the algorithm is
conceptualized with the use of 4 areas of interest (representing
the 4 different maneuver parts of a lane change) divided
in columns and rows, representing Morton value range and
time dimension respectively. An important improvement from
the prototype is that more concise AOI Morton value ranges
can be defined within the different maneuver parts shown
in Figure 2 via the use of spike plots (explained in Section
VI-D2). The aforementioned improvement would increase the
likelihood of sampling correct Morton values (contributing to
the issue discussed in Section VI-D1, as well as greatly reduce
the amount of Morton values that can be sampled. Once the
AOISs are determined, Morton values are sampled for each AOI
separately, with the following conditions:

o AOIs referring to the vehicle in a straight driving config-
uration (i.e., before and after the lane switch, areas 1 and
4 in Figure 2) are characterized by a sequence of constant
Morton values (which should resemble constant steering
angle). It is important to note that this is a limitation
in the amount of lane changes generated, as the steering
wheel angle is not exactly constant during these sections
of the maneuver. However, to not degrade performance of
the algorithm, we considered the aforementioned choice
as the best in terms of trade-off between amount of
permutations and time efficiency of the sampling step.

e AOIs referring to the vehicle during the lane switch
(i.e., initialization of lane switch and stabilization in the
new lane, areas 2 and 3 respectively in Figure 2) are
characterized by what can be seen as C-shaped Morton
values in the SFC-over-time plots, as explained in Section
IV-C. This choice was made to provide an initial and
basic approach to systematic Morton value sampling,
as we generally notice that the shape of occurrence of
Morton values resembles the one of its related sensor
values.

o The number of rows per AOI is equal to the time duration
of the AOI multiplied by the sampling rate of the sensors.
Consequently, the number of Morton values sampled per
AOI is equal to its number of rows. Again, this is an
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initial approach that simplifies the determination of the
amount of rows per AOI that future work can modify as
needed, for example by increasing the number of rows per
AOI while keeping the number of Morton values sampled
constant.

After the sampling step is completed for all AOIs, the algo-
rithm shall connect these AOIs generating unique sequences of
Morton values that cover the entire duration of the manoeuvre.
This can be done by performing the multiplication of all
combinations from all AOIs (as explained in Section IV-C).

B. Plausibility Checker

Following the findings made on Morton encoding (discussed
in Section VI-D) in terms of plausible permutations within
areas of interest, we determined that there is a need for a
conceptual component that can guarantee whether the sam-
pled Morton values can generate valid lane changes. This
component will be referred to as “plausibility checker”. The
plausibility checker introduces rules that analyze unpacked
sensor data for violations in the defined constraints that a
lane change should follow. The approach proposed focuses
on steering wheel angle sensor checks only as an initial
step for future research to build upon, but it is important
to note that we deem it applicable to acceleration as well.
Nonetheless, the concept is limited in that it still would
not consider the correlation between the sensors, but only
their individual evolution. We therefore present the following
constraints which should be put in place for Steering Wheel
Angle sensor data, regarding unpacked AOIs where Morton
values are generated following a curved pattern (areas 2 and
3 in Figure 2):

o There should be exactly one peak per AOI’s unpacked
sensor data.

Sensor values shall evolve smoothly and with no sudden
increase or decrease.

Sensor values must be all positive or all negative, accord-
ing to which AOI they are being unpacked from.

The two curved AOI sections which make up the curved
part of steering wheel angle sensor values shall be sym-
metrical.
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The first two constraints can be ensured by traversing pairs
of adjacent sensor values, and checking for the coefficient of
the straight segment that connects them. A change in the sign
of the coefficient would mean that a peak has been reached
(first constraint), and a defined threshold would ensure that
the inclination of such segments evolves smoothly (second
constraint). It is important to note that the smoothness of
the inclination shall be checked separately before and after
the peak value, to avoid invalidation of correct lane changes
(since after a peak value it is expected to see a sudden
change in inclination). The third constraint can be ensured
by checking the sign of sensor values. Here it is important
to de-manipulate the unpacked sensor values by reverting
the application of “OFFSET” and “FACTOR_MULTIPLY”, to
obtain the raw sensor values which should be either positive
or negative. Finally, in order to ensure the fourth constraint,
AOIs shall be checked against each other for symmetry. One
example of how this can be done is by having sensor values
stored in separate arrays and comparing the absolute value
of each element at the same index. If the absolute value
is the same (or within a certain threshold), the two AOIs
can be considered symmetrical. If the unpacked sensor data
from the sampled Morton values passes the aforementioned
checks, the lane change can be considered valid. However, it
is important to note that in order to validate the lane change
with total certainty, domain properties need to be specified as
well. These domain properties are: vehicle speed, vehicle type,
lane width, environment of the maneuver. In order to ensure
that the combination of sensor values is valid considering the
aforementioned domain properties, we deem necessary the use
of software that can simulate lane changes by providing sensor
values as input, and consequentially a script that can check the
output of the simulations, similar to how it was discussed at
the end of Section III-B.

C. Algorithm prototype

This section discusses the implementation details of an
initial prototype for the Morton value sampling algorithm.
The initial algorithm was developed using Python 3.9 due
to the language’s simplicity, but we acknowledge that using
other languages could provide more efficient permutations.

The first implementation is a brute-force algorithm, and was
developed in this way to act as a foundation that can be
built and improved upon. We would like to note that this
was an algorithm we had created in Cycle 2, prior to making
a discovery on how Morton values should be sampled as
discussed in VI-D1. Hence, the boundary boxes from which
Morton values are sampled in this prototype are too broad and
result in many implausible lane change permutations. But, the
utilization of a 2D array grid approach could still be utilized
by future research for more concise areas of interest defined
by density plots, as discussed at the start of SectionIV-A.

Areas of interest were first determined to lay out the
boundaries in which Morton values appear in an SFC-over-
time plot - these were based on the different maneuver parts
related to a lane change, and can be seen annotated in 2.
From this, a grid was developed using a 2-Dimensional Array
data structure to imitate an SFC-over-time plot. The array
contains 0’s and 1’s, where 0 represents an empty space, and
1 represents a ”(Morton, timestamp)” tuple. Within this 2D
array, all possible combinations of 1’s positions in the grid
are made.

As all permutations of possible 1’s are made in the grid,
we coded rules that would define what a lane change should
look like in terms of SFC-over-time clusters/point in order to
mitigate the occurrence of permutations that are not related to
a lane change maneuver pattern, which is denoted in Section
V-D. Rules were made for each of the types of areas of
interests denoted in Figure 2, and can be summarized as the
following in relation to Fig 2:

e Area of interest 1 & 4: Generate 1’s by keeping the
column value (Morton value) constant over the rows
(Timestamp) for each combination.

o Area of interest 2 & 3: Keep permutations of the grid that
consist of at least one entry point into the curved shape,
one peak point, and one exit point. To clarify, a point in
this case would be represented by a 1 in the 2D array
grid.

After the valid permutations are determined for each area
of interests, the corresponding Morton and timestamp values
are extracted from the index of the 1’s in the 2D array in
order to produce a set of points for each area of interest.



Finally, permutations are then generated via permuting the
combinations of valid permutations from each area of interest.

To simplify the initial prototype, the following implemen-
tation limitations had been decided:

o Keep the grids and rows related to the sampling rate,
such that the possible positions of 1’s are reduced. If this
was not in place, more columns and rows could be added
such that there is a more accurate scale for Morton values,
which in turn increases the possible permutations as we
would want to keep the number of points constant within
an area of interest to stay consistent with the sampling
rate of the data.

o As this was an initial prototype, we had decided to keep
the resolution of our grid axis at 2 decimal places in
regards to both, the timestamp (scaled 1e6) and Morton
values (scaled 1e10).

Regarding the permutations of the 1’s for each individual
Grid, a back tracking permutation algorithm was inspired by
an article in the "Medium” web page [24]. Regarding the
permutations of the different areas of interests, a nested for-
loop approach was taken to permutate all possible combination
of subsequent areas of interests.

V. RESULTS
A. Parameters to base CSPs on

During the start of our research, we assumed that Morton or
Hilbert may provide better CSP generation based on different
values of: sampling rate, dimensions of the data, and types of
sensors. For example, Morton may work better with a higher
sampling rate than Hilbert. Going on this assumption, we
decided to plot the same variations of the three aforementioned
parameters for both Morton and Hilbert based CSPs.

As discussed in the Data Collection Section III-A, we had
two subsets, called Dataset A and Dataset B respectively,
derived from a maneuver dataset. Results that were found from
both datasets will be discussed.

Regarding the sampling rate choice, as described in Section
III-A, we initially plotted ten lane changes with 100Hz, SOHz,
and 20z sampling rates specifically for X and Y accelerations,
and after, plotted four of these ten with 10Hz and 5Hz
sampling rates. From these different sampling rates, we did
not find any major differences in terms of patterns and stripes
generated apart from clusters seeming more evident in SFC-
over-time plots based on higher sampling rates. However, we
decided to opt for 10Hz as it provided the best compromise
between detail of the ’S” shape pattern discussed in Section
V-B and amount of data, allowing for easy visual identification
of a lane change as well as a potential performance benefit
for the algorithm artifact due to a reduced amount of data to
permute.

Regarding the sensor choice, we had deemed the X-
acceleration to provide most insights into the lane change
maneuvers and hence decided to replace the Z-acceleration
with the yaw rate and steering wheel angle sensors that
came with Dataset B to see if they combined better with
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Fig. 11. SFC-over-time on top of CSP based on Morton encoding side by
side with Y-acceleration and steering angle against timestamp plot

the X-acceleration in terms of pattern clarity in the CSPs.
We determined that the combination of steering angle and Y-
acceleration provided the clearest pattern for identifying lane
changes, and had a strong correlation to the maneuver. As
an example, figure 11 shows the acceleration and steering
wheel angle against time stamp, and its corresponding SFC-
overt-time plot. The S shape maneuver can be clearly seen in
the time frame of the lane switch (timestamp values between:
Sus (scaled) - 5.3us (scaled)). Furthermore, due to the close
representation of the SFC-over-time plot to the maneuver, it
is also a lot clearer when noise occurs, as can be seen in time
stamps: 3us (scaled) - 4.2us (scaled). Furthermore, we also
identify that a lane change around Morton value 1.6 (1e10) just
before the lane switch occurs - this observation may contribute
towards both RQI in terms of finding similarities between
patterns and RQ2 in terms of what is necessary/sufficient in
determining the dimensions of the lane change maneuver.
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Finally, we also found that the ordering in which sensor data
is fed into the Morton encoding impacts the order at which
stripes appear in CSPs. For example, Figure 12 and 13 show
the steering wheel angle and Y-acceleration combination for a
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lane change with varying which parameter is first fed into the
Morton encoding. Although the same general pattern arises in
both CSPs in terms of SFC-over-time plot clusters, it can be
seen that the ordering of the annotated stripes changes between
the graphs.

B. Research Question 1
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Fig. 14. Annotated CSP based on Hilbert encoding to emphasize three stripe
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As the SFC-over-time plots act as refinements of CSPs by
providing more insights into the temporal domain of the CSP,
we had used them to answer RQI1. Based on the SFC-over-
time plots described in Section III-B, we had decided that
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Fig. 15. Annotated CSP based on Morton encoding to emphasize three stripe
groups

using Morton indexing to generate CSPs provided more clear
and consistent patterns.

Compared to Hilbert, Morton had a consistent pattern for
all nine lane changes. In particular, an ”S” shaped pattern can
be seen within the time frame of the lane change, an example
of this pattern can be seen in the highlighted area in Figure 19.
The ”S” shape pattern closely follows the turning maneuver
in terms of turning into a different lane, and then turning the
opposite direction to stay inside of the newly switched lane.

Hilbert based SFC-over-time plot seemed more inconsistent
to us compared to Morton. For example, figure 16 and Figure
17 show two different lane changes on a Hilbert-generated
CSP, that both have a similarity in terms of the clusters within
the highlighted area that fall inside of the time frame of the
lane change. Figure 18 on the other hand shows a third lane
change based on Hilbert indexing, but the clusters within the
highlighted area that represent the lane change look different
and do not follow a similar pattern.

Furthermore, we found that at Y-acceleration values of
around 4m/s> and greater, cluster points from the ”S” shaped
pattern that represent lane change turns seem to jump out-
wards, forming stripes at the start and end of the CSP. This
can be seen in Figure 20, where cluster points that seem to be
apart of the peaks of the curved parts of the ”S” shape within
the annotated area jump outwards at x=4 and x=0.5

C. Research Question 2

Following the Dataset B analysis for answering RQ2 dis-
cussed in Section III-B, we determined that the temporal
domain of CSPs is necessary to estimate the dimensions of the
state space of an event. The temporal domain of the state space
plays a critical role in differentiating maneuvers that may have
stripe occurrences in same areas that could be related to a lane



SFC Over Time ontop CSP plot
1e7+1.646666e15

r8l.0

f
i

808
AR - 80.6

A 80.4

F80.2
3 r80.0

F79.8

.‘
-
Timestamp (microseconds scaled)

T
125
lelo

T T T T
1.05 110 115 1.20

Hilbert value

T T
0.90 0.95 1.00

Fig. 16. Lane change 1 (Dataset A) with SFC-over-time on top of CSP based
on Hilbert encoding

SFC Over Time ontop CSP plot
1e7+1.6466668e15

e 3.4
) be

) ) —
“""i F3.23
.0 m
y : ;
it L 30Q
L.} T 5
| g v, o
L
i 3
t i 28 Q
' 1 E
; a
F2.6 £
] gl
} 2
1 £
! F2.42

i

l ¥ r2.2
0.90 0.95 1.00 1.05 1.10 115 1.20 1.25
Hilbert value 1lel0

SFC Over Time ontop CSP plot
1e6+1.6466668e15

' 1 N
{ - 60
|
§
LY 5
by o
i | 55 5
i @
i w
-
; :
\‘ (¥}
1 ['E)
13 %]
| 3 | 56 2
£ 2
. :.u‘ y ‘i
4
i I &
3 L s4 @
1, [
) E
o ‘ | }_
5
|
1
o |s2
0.90 0.95 1.00 1.05 110 115 1.20 1.25

Hilbert value lel0

Fig. 18. Lane change 3 (Dataset A) with SFC-over-time on top of CSP based
on Hilbert encoding
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change, and also allow for a confident detection/classification
of the maneuver type inside of the state space.

Figure 21 shows CSPs for a lane change, roundabout, and
noise maneuver in which a clustering of stripes can be seen
around X = 1.5. Although a stripe is not seen in the lane
change at X=4.0 when compared to the noise, this may be
attributed to the lane change not having noise, in other words,
if a lane change does have noise and a stripe occurred at
roughly X=4.0, it may be difficult to tell apart the maneuvers
with a high level of confidence. Viewing the noise maneuver
and roundabout CSP, the stripes occur round X=1.5 and X=4.0
for both plots, further showing that it is not unlikely for
different maneuvers to have stripes occurring in similar areas.
All in all, we deem this could lead to a rise in false positives

Morton value

lelo

Fig. 19. SFC-over-time on top of CSP based on Morton encoding, with the
lane change segment annotated. The plots are based on Lane change 1 (Dataset
A)

and false negatives in terms of determining the maneuver type
based on stripe occurrence and limits of stripe appearance. To
put the aforementioned results in a different perspective, if a
CSP corresponds to the limits and Morton value occurrences
of a lane change CSP, we cannot be certain that it is a lane
change.

From the aforementioned results, we determine that a tem-
poral domain of the CSP is necessary to determine the state
space of a maneuver, and when combined with Morton value
occurrence, is sufficient to estimate a state space. A more
detailed discussion on this is made in Section VI.
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D. Research Question 3

1) Morton value issue: Following the Morton value analy-
sis aforementioned in Section III-B, we gathered the following
information:

e How Morton encoding works: Morton encoding uses
bit interleaving to “pack” multi-dimensional data into
a single value (an example can be seen in Figure 22).
Firstly, the data is converted to its binary equivalent.
Secondly, the bits from each dimension are interleaved to
produce the encoded values. This means that the resulting
encoded Morton values will have the same amount of
bits as the sum of bits of the multi-dimensional data. In
our case, the sensor data to encode was Y-Acceleration
and steering wheel angle. These values, with "OFFSET”
and "FACTOR_MULTIPLY” applied, take up usually
17 bits of data each. This means that, most of the
time, the resulting encoded Morton values will be the
decimal representation of 34-bits binary numbers (i.e.,
17+17). However, seldom, Y-Acceleration sensor values
take up 16 bits (Y-Acceleration < -3.4465 m/s?) or 18 bits
(Y-Acceleration > 3.1071 m/s?). Consequently, Morton
values are affected (i.e., becoming either 33 or 35 bit
numbers), and outliers are observed in the SFC-over-time
plots (as shown in area number 3 of Figure 2).

o Morton values manually generated: Morton values cannot
be generated linearly or exponentially within one area,
and be expected to contain unpacked sensor data that
follows such behaviors in a predictable way. An example
result can be seen in Figure 23. The binary numerical
system needs to be taken in consideration to find the op-
timal way of sampling Morton values such that encoded
sensor data is affected in a predictable manner.

« Morton values taken from real lane changes: as Morton

values were moved, the unpacked sensor data became
increasingly distorted, in a way that was not expected.
Furthermore, it is important to note that these distortions
were observed even though the values were only manip-
ulated to stay within the defined outlier ranges (i.e., re-
ferring to the range of Morton values from 28087995466
to 28735866149 within area number 3 in Figure 2), and
that the offset values utilized for this manipulation had to
be high enough to show an impact on the sensor values
(since Morton value is in the scale of 1e10). The result
of such a manipulation can be seen in Figure 24

¢ Morton values taken from algorithm prototype generated
lane change: as expected following the previous results,
the generated one from the algorithm prototype was not
considered a valid lane change, due to the sensor data
being too distorted to resemble the ones of the real lane
change data, as can be seen in Figure 25

2) Density Analysis of SFC-over-time Plot Clusters: Re-
garding the density analysis on our SFC-over-time plots, figure
26 and 27 show spike plots and contour on-top heatmap plots
respectively. The spike plot containing all lane changes in
figure 26 shows annotated areas of Morton ranges in which
Morton values related to a lane change occur. From this, we
conclude that density plots provide “arbitrarily formed areas”
in which Morton values related to lane change maneuvers are
more likely to appear in.

Furthermore, when viewing the contour on-top heatmap plot
equivalent, we can see a different perspective of the spike plots
with insights on the bins and their impact on the contours. For
example, in the contour on-top heatmap plot containing all lane
changes in figure 27, at annotation 1’s Morton range we can
see a lower density, whilst at annotation 2, there is a high
density concentration. The aforementioned result highlights
the strength of the contour on-top of heatmap plots in being
able to narrow down areas in the state-space of an SFC-
over-time plot in which Morton values more related to lane
changes are more likely to appear. Although, this result may
not directly imply that the Morton range at annotation 1 in
figure 27 should not be used to sample Morton values from
for a lane change, as this area is still related to a lane change,
and may not be as dense due to a lack of data. This shows
that the heatmap is necessary to determine the areas of interest
most concisely, as they will still highlight specific bins within
less contour-dense areas that are a part of the maneuver.

Lastly regarding the density plots, simulator data was used
to increase the density of the plots. There were increases in
density at particular areas, some of which are, annotated on
the left and middle contour on-top heatmap plot in figure 28.
After simulated lane changes were added to the middle plot,
there is a decrease in density in annotation 1, and a general
increase in areas 2 and 3. Although, these density increases
did not significantly increase the density space, which may
be attributed to only 5 lane changes being added, as well as
them being based on an existing lane change as mentioned in
Section III-A.
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on the following criteria: performance (measured in terms
of time complexity), modularity, modifiability, completeness.
The following paragraphs describe the measurements for each
of these aspects in detail, while the results are discussed in

to the research goal in the Analysis Section VI. The

end of this subsection contains measurements regarding an
implemented prototype for the algorithm explained in Section

o Performance: time complexity of the theoretical approach
was measured by concatenating the initial results obtained

from the prototype algorithm for Morton value sampling

Acceleration and Steering Wheel angle against Timestamp

—— Steering Wheel Angle
Acceleration-
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Fig. 24. Dataset B lane change 15 original (left) and manipulated with an
addition of 50000000 to the Morton values of the outliers (right)

3) Artifact: With regards to results obtained from the theo-

retical approach, we performed an evaluation of the artifact

with an estimate of what the suggested implementation
of the plausibility checker would cost in terms of time
complexity over the input. A detailed description of the
performance results can be seen in the following Table I,
where:

p’ represents the number of columns per AOIL In
our suggested approach, it is defined by the range of
Morton values covered.

’q’ represents the number of rows per AOIL In our
suggested approach it corresponds to the number of
sensor values per AOI. Since we are measuring worst
case complexity, 'q’ is generalized and used to refer
to the number of sensor values per whole sequence
(i.e., when the AOIs are connected).

'y’ represents the number of AOIs. In our suggested
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approach there are 4 AOls.

— Opverall complexity is the result of concatenating
the complexity of each theoretical step, taking into
account how they interact with each other.

Modularity: in our context, modularity was considered
as a measure for the cohesiveness and separation of
concerns of the theoretical approach’s components [25].
The modular pipeline design described in Section IV
is characterized by the conceptualization of constraints
and checks that can be easily added to the pipeline.
Moreover, modularity of the approach is upheld by the
division of the algorithm for Morton value sampling
and plausibility checker in different blocks that can be
activated in different steps, as explained in Section IV.

Modifiability: for this quality, we utilized the definition
from Bengtsson et al.: “The modifiability of a software
system is the ease with which it can be modified to

TABLE I
PERFORMANCE OF THEORETICAL APPROACH

Theoretical step Time complexity

Generate Morton for straight driving AOIs

O(p=q)
Generate Morton for lane switch AOIs
O(p?)
Plausibility Checker round 1
O(g)
Generate Morton sequences between AOIs
o((»")Y)
Plausibility Checker round 2
O(q*y)
Simulator
O(((@1)Y) = (g*y))
Overall complexity
O((p?)¥)

changes in the environment, requirements or functional
specification” [26]. We contribute towards fulfilling this
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quality by ensuring that each of the checks are theoret-
ically sound in terms of not only being limited to the
constraints. For example, we envision the implementation
of the plausibility checks with variable parameters that
can be easily adjusted to accommodate changes in the
required characteristics of the maneuvers to be generated
(such as allowing for less smooth steering wheel angle
evolution within a certain threshold).

o Completeness: the completeness of the approach refers
to the extent of lane change maneuvers we would cover.
With regards to the constraints defined for lane change
maneuvers, we cover events performed in a smooth road
environment with smooth evolution of steering wheel
angle, and we focus on systematically generating lane
changes that vary in “harshness” (i.e., amplitude of the
steering wheel angle sensor values, and consequent Y-
Acceleration sensor readings).

The prototype implementation of the Morton value sampling
algorithm described in Section IV-C uses the values shown
in Figure 29 for areas of interest dimensions. Within each
area of interest, Morton value permutations are generated. The
concatenation of each area’s unique permutations results in
uniquely generated lane change maneuvers.

Morion value range for each area of interest (using same scale as SFC-overtime: 1210)

Straight before LC Straight after LC Left side during LC Right side during LC
Y LC1 1.61 1.61 1.39-1.46 1.62-1.63
E LC4 1.61 1.61 1.351.54 1.62-1.71
s [co 162 161 1.4-155 1.62-1.65
=5 LC 15 1.6 1.6 1.05-1.4 1.65-2.85
Overall min-max
value range 1.6-1.62 1.6-1.61 1.05-1.55 1.62-2.85

Duration of each area of interast (using same

scale as SFC-over-time: 1e7+1.663765e15 ps)

Straight before LC Straight after LC Left side during LC | Right side during LC
EE{ LC1 0.15 0.15 0.3 0.3
_g LC4 0.17 0.17 0.26 0.26
@ LC9 0.2 0.2 0.3 0.3
L] LC 15 0.18] 0.18 0.24 0.24
Average duration 0.18 0.18 028 0.28

Fig. 29. Areas of interest measurements (Dataset B)

With regards to the evaluation results of the algorithm
prototype discussed in Section IV-C, the time complexity has
been determined as follows:

o Generation of permutations within one area of interest:
O(columns™®%9),

o Generation of permutations between areas of interest:
O(nY), where n is the amount of permutations of a box,
and y is the amount of boxes (in our implementation y=4).

Based on the aforementioned rules and implementation, the
Algorithm produced 15,180 permutations.

VI. ANALYSIS & DISCUSSION
A. Parameters to base CSPs on

The results of which parameters to base the CSP on are
more general and a foundational step for the research. These
results are required by each RQ based on the following:

e« RQI: CSPs must be defined in a way that provides
clarity in answering RQ1 for identifying similarities and
differences between CSPs of similar events.

e RQ2: CSPs must be defined in order to determine which
properties are necessary and sufficient in estimating the
dimensions of the state space.

e RQ3: CSPs must be defined in order to have an area in
which we can permute in.

B. Research Question 1

The results in relation to RQ1 show that through an SFC-
over-time plot, we can visualize similarities and differences
between the CSPs for similar events. The ”S” shape similarity
that was described in the results is consistent amongst all
lane changes, the difference being the width of the ”S” shape,
which seems to be impacted by harsher maneuvers.

Prior to the SFC-over-time plots, we suspected Hilbert
encoding to outperform Morton encoding in regards to pattern
consistency due to its superior locality preservation [27], and
due to the CSP having a clearer distinction in terms of



three pattern groups that can be see annotated in Figure 14,
compared to the Morton generated CSP equivalent that can be
seen in Figure 15.

In relation to the research goal, the results of the ”’S” shape
similarities and differences indicate that these similarities
could be kept a constant, whilst the differences in terms of
the outward jumping points at x=4 and x=0.5 in figure 20
would be what would be permuted/changed per permutation
for the. In other words, RQ1 directly contributes to the RQ3
in terms of defining what must be maintained and what can
be adjusted when making permutations in RQ3.

The outward jumping of points at x=4 and x=0.5 in figure 20
at higher Y-accelerations indicated initially a potential for the
boundaries in terms of start and end of the CSP to correspond
to how harsh of a turn is made for the lane change. This
correlation provided us with an assumption that edge cases in
terms of when the car loses maneuverability could be used to
also define the edges/dimensions of the CSP which directly
contributes to RQ2. Although, due to the issues mentioned in
Section VI-D1, we found that these can not act as boundaries
in which every Morton value corresponds to a lane change,
hence the need to specify more concise areas using Density
plots as discussed in Section VI-D2.

We want to emphasize that the results discussed in this
section assist the overall permutation strategy of RQ3 and
hence can contribute to literature regarding generation in
scenario based testing as described in Section II-B. Lastly
in relation to Section II-A, we believe the discussion in this
section highlight that CSPs (with refinements based on the
domain/goal) can be applied to situations where permutations
must be made on them. An example of such refinements would
be an SFC-over-time plot that also provides the temporal
domain as in our results.

Regarding the ordering of sensors, we have not concluded
which ordering of the steering wheel angle and acceleration-
Y sensor is better, but acknowledge that the ordering of Y-
acceleration and Steering wheel angle may reduce the length
of the CSP, which may provide efficiency benefits for future
research if an algorithm based on our theoretical approach is
created due to reducing the state space in which permutations
can be made.

Lastly, we want to mention that the results of RQ1 were
derived from CSPs using the Acceleration-X and Acceleration-
Y sensor. Later in the research the Acceleration-X sensor was
replaced with the Steering Wheel Angle sensor. Even though
different sensors were used, we found the ”S” shape pattern
to still hold, and hence deem the results of RQ1 to remain
valid. An example of the ”S” shape pattern with the Steering
Wheel angle and Acceleration-y sensor can be seen within the
combination of annotations 2 and 3 in figure 2

What are similarities and differences in characteristic stripe
patterns (CSPs) on SFCs for similar events?

C. Research Question 2

To summarize our answer to RQ2, the temporal domain
and occurrence of Morton values are both necessary, and when

combined, are sufficient to estimate the dimensions of the state
space for certain events and scenarios. The temporal domain
and occurrence of Morton values can be visualization using
an SFC-over-time plot.

As discussed in Section V, we found that the temporal
domain of a CSP is necessary to estimate the state space of a
maneuver, and sufficient when combined with the occurrence
of Morton values. We want to emphasize that if the temporal
domain is not used to estimate the dimensions of a state
space, the variability of maneuvers (such as what occurs before
and after a lane change), could impact stripe occurrences
and allow for false positives, as well as false negatives in
terms of maneuver identification. From this, we determine
that the temporal occurrence is necessary to provide confident
estimations on the dimensions of a state space.

An SFC-over-time plot provides a refined visualization of
a CSP showing the temporal occurrence of Morton value of a
CSP. As discussed in Section III-B, the SFC-over-time plots
provide insights into the clustering of Morton values, allowing
the identification of areas of interest in which Morton values
occur related to the time which in turn define the dimensions
of the state space.

In terms of the research goal, these results show that it
is possible to permute on a single-dimensional representation
of sensor data to create variations of a particular maneuver
via the temporal occurrence of Morton values due to forming
“clusters” which indicate areas in which Morton values for
maneuvers have a higher chance of occurring. We want
to highlight that although the permutation algorithm would
permute a 2D space in terms of both, Morton values and their
corresponding time stamp, the main performance benefit is
that many sensor values can be packed into one Morton value
(ensuring that there is a consistent 2D dimension in which we
permute, regardless of the number of vehicle sensors). One
aspect to consider is that points generated within these areas
of interest are not guaranteed to be a part of a lane change, and
hence subsequent plausibility checks must be made, which is
discussed further in Section VI-DI.

In context to the related work mention in Sections I-B and
I, this result contributes towards the efficiency of generation
of scenarios, as a scenario could be created based on the
sequence of permuted Morton and Timestamp value pairs.
Although, as discussed in Section VI-D1, the plausibility of
such Morton sequences must still be confirmed - implying a
performance hit due to further data processing being required.
The results show the use case of CSPs in terms of being
able to define maneuvers based on state space dimensions
via the SFC-over-time representation of CSPs, and hence
contributes as a possible use case to the lack of application of
CSPs as mentioned in Section II-A. Furthermore, in relation
to II-B, through being able to estimate the dimensions of a
state-space, more diverse scenarios as well as all variations
could theoretically be generated as we would know what is
considered a lane change based on the dimensional limits, and
hence enables the sampling of all variations of a lane change
profile, such as more harsh lane changes and smoother lane



changes - although, we want to note that the scope of our
theoretical algorithmic approach is more constrained within
this thesis, as discussed in Section IV.

D. Research Question 3

To summarize our answer to RQ3, with our theoretical ap-
proach we are able to systematically permute unique and valid
lane change maneuvers with specific constraints on the chosen
sensors (i.e., Steering Wheel Angle and Y-Acceleration) that
describe such maneuvers. The approach is not as efficient as
expected due to the way Morton value sampling has revealed
itself to be more complex than anticipated, but nonetheless the
use of SFCs greatly reduces the amount of data that needs to
be processed from multi-dimensional sensors.

Considering the overall objective discussed in Section I-C,
the thorough analysis of Morton-based SFCs acts as a solid
foundation for future work to build on. Furthermore, the
theoretical approach proposed has been envisioned to be easily
adaptable and extensible for eventual changes in context and
requirements, which should make it easily usable in future
research.

With regards to contributing to the state-of-the-art knowl-
edge and issues discussed in Sections I-B and II, our research
provides useful insights and implications that are entailed
with the use of SFCs for scenario-based test case generation.
The proposed theoretical approach enables for generation of
diverse and valid lane change maneuvers, with the benefit of
using Morton-based SFCs for generation of events based on
multi-dimensional sensor data.

The following subsections aim to address each of the results
with respect to RQ3, the overall research goal and landscape
of the related works.

1) Morton value issue: Reflecting on the results gathered
from the Morton value issue, we observe that:

e Outliers have a particular reason for appearing in the
SFC-over-time plots, and therefore the algorithm must
generate permutations in more specific areas. These spe-
cific areas are better defined in Sections V-D2 and VI-D2.

« Although more specific areas of interest can be defined,
as explained in Section VI-D2, Morton values cannot be
randomly sampled within these areas. In our suggested
theoretical approach (explained in Artifact Section IV),
there needs to be an appropriate approach ensuring that
the unpacked sensor values resulting from the sampled
Morton values follow the constraints necessary to de-
scribe a lane change maneuver.

The improved understanding of Morton encoding helps us
in the advancement of RQ3, since it enables us to focus on the
validation of Morton sequences with a clearer understanding of
the steps that need to be taken after permutations are generated.
Furthermore, the results about Morton encoding analysis (as
shown in Section V-D1 and the considerations entailed with
SFC-over-time sampling can help related research in terms of
providing a clear explanation for overcoming issues with such
concepts, as discussed in Section II-A. Importantly, since our
analysis was performed in the context of vehicle sensors data,

we provide useful insights into the considerations (as well as
potential limitations) that future work that utilizes the SFC
approach for scenario-based testing for AD systems need to
take into account.

2) Density Analysis of SFC-over-time Plot Clusters: Re-
garding the results of the Density plots, these directly build
on RQ2’s results by utilizing the SFC-over-time plots to
identify more dense areas. This contributes directly to the
Algorithm artifact of RQ3, as the areas in which Morton values
should be permuted can be defined by the arbitrarily formed
areas that are made visible from the Density plots. Morton
values sampled from these areas of interest are more likely
to be a part of the respective maneuver, in this case, lane
change maneuvers - more on this is discussed in the coming
paragraphs.

Building on the results of the density plots, we see that the
spike plots provide an overview on where Morton values are
more likely to occur, the contours make this more digestible
via a 2 dimensional visualization and when paired with a
heatmap, provide a way to visualize and identify Morton
ranges that are more related to a lane change. Furthermore,
we want to highlight that less dense areas, such as the outliers
after X=2.75 in the spike plot containing all lane changes in
26, do not necessarily mean that area/Morton range should
be ignored. Rather, we see this as an opportunity for future
research to add more lane changes to these visualizations,
resulting in more density within that area - in other words,
contours which have more distance between one another (less
dense areas) in the contour plot containing all lane changes in
27 could be seen as a base of a peak, and if more lane changes
are added, it would highlight within that area an even more
concise range to sample Morton values from. To summarize
this, if an area in the state-space of figure 27 does not have
much density, it does not necessarily mean that area contains
noise - rather, more and diverse data (with maneuverability
edge cases, regular lane changes etc) could expose this as if
an area is made more dense, it would is more likely to not be
noise.

Another aspect we feel is important to discuss is that the
density in density plots are relative to one another. The highest
density of points that can be seen in the plots in figure 27 are
for straight driving parts of the lane change (Below Y=20).
Based on this, it may be useful for future work to extract and
overlap specific parts of a lane change, which may provide
more accurate areas of interest for specific aspects of the
maneuver, and if this is done for all the different aspects of
a lane change (i.e. straight drive, lane change, stabilization,
straight drive), very concise areas of interest/Morton values
that are part of the lane change may be derived. This would
again contribute to RQ3, as the more concise areas of interest
that can be defined, the more we can reduce the space in which
we permute in whilst also increasing confidence in Morton
values actually being related to a lane change maneuver.

Although the area from which to sample Morton values is
more concise via density plots, this still does not guarantee
that Morton values within these areas of interest are part of



a lane change individually or in sequence with other Morton
values. In other words, a lane change maneuver will fall within
these areas of interest, but it is not guaranteed that any Morton
point individually or in sequence is valid if sampled from these
areas. This is due to the way Morton values are fundamentally
encoded, and more info is discussed in Section VI-D1. Due to
this, plausibility checks will have to be made on the decoded
sensor values that correspond to a permuted Morton sequence,
as discussed in Section I'V-B.

In terms of the research goal mentioned in Section I-C, these
results show that it is possible to define areas of interest in an
SFC-over-time plot via the density visualizations. This, in turn,
allows for the algorithm to permute Morton-timestamp pairs,
reducing the dimensions to permute on from many sensors
to two parameters (Morton and timestamp). Furthermore,
with more concise areas of interest that raise our confidence
in plausible lane changes being generated, future research
can utilize this method of defining areas of interests when
implementing a maneuver permutation algorithm, to which
real-world datasets can be verified against in terms of their
coverage and diversity.

In context to the landscape related work mention in sections
I-B and II, the results discussed in this subsection show that
the SFC-over-time representation of CSPs can be utilized to
define areas in which we are more likely to have Morton
occurrences for a particular maneuver. This is the first step in
creating an efficient algorithm for scenario based generation
due to reducing the number of parameters we permute to 2,
rather than the number of sensors of the vehicle. Regarding
the issues faced in diversity of scenario based generation [6],
this approach in identifying areas of interest is dependent on
the amount of data used. Although we do find outliers at
around X=2.75, there is potential for outliers to be further
out for edge cases where the car may be about to lose
maneuverability for example. Therefore, we suggest for future
works to normalize SFC-over-time plots by time, overlap them
and generate corresponding density plots based on a dataset
with a large variety of safety-critical scenarios, edge cases
where the car is about to lose maneuverability, and normal lane
changes such that the impact on the areas of interest from the
overall profiles of a lane change (such as edge case scenarios,
safety-critical scenarios etc.) can be determined. In regards
to the simulator data added to the density plots results, the
visualizations of the left most plot in figure 28 do not indicate
that the Morton ranges themselves varied when compared to
the middle and right most plot that it is comprised of, and
hence it can be deemed that a simulator can provide data to
be used for determining areas of interest via being normalized
and visualized with density plots. This synthetic generation of
data via a simulator may assist in terms of generating more
edge case scenarios and scenarios that are much rarer in reality
[6], resulting in a more diverse range areas of interests from
which to sample Morton values to allow for the permutation
of these rare scenarios. Overall, the aforementioned discussion
also contributes to the related work landscape described in
II-B as well as overall research goal, as it contributes towards

the ultimate goal of having an algorithm that produces all
permutations, to which real-world datasets can be evaluated
against to determine if ’enough’ scenarios are covered.

3) Artifact: With regards to the proposed theoretical ap-
proach for lane change generation, this section analyses the
results obtained with the measurements aforementioned in
Section V-D3:

o Performance: time complexity of the suggested approach
is heavily impacted by the Morton value sampling steps.
Alternative ways of generating valid Morton value per-
mutations that improve the complexity of the algorithm
would be very useful for addressing larger amount of data
(for example if increasing the resolution of columns, or
the sampling rate of data). Furthermore, the use of the
simulator represents a trade off for confidence in validity
of permutations and cost of the overall plausibility checks
of generated scenarios.

o Modularity: we considered this quality to be fundamental
in our approach, as it enables extensibility of the system,
for example by allowing the addition or removal of
constraint to the plausibility checker with as little impact
as possible on the other components. The modularity of
the theoretical approach’s suggested design is limited by
the amount of information that goes from one component
to the other: in our case, both the Morton values per
AOQOI and which AOI they belong to must be passed as
theoretical arguments throughout the pipeline.

o Modifiability: Since the theoretical approach is charac-
terized by several constraints in terms of steering wheel
angle data, we want to ensure that as requirements are
likely to change the aforementioned constraints, these
changes can be implemented without too many impli-
cations. Similarly as for modularity, limitations with
this quality are related to the theoretical arguments that
are passed throughout the pipeline, as they negatively
influence the ease with which an implementation could
be modified with changes in requirements.

o Completeness: We consider this as a key qualitative
measure that future research can build on top of, with
the hope of covering a broader spectrum of events. The
constraints specified in the theoretical approach greatly
limit the characteristics of maneuvers that can be covered,
nonetheless a wide variety of maneuvers would still be
generated within those constraints. Specifically, we would
not be able to cover lane changes that are not performed
smoothly in terms of changes in steering wheel angle,
and we would also not encompass lane changes where
the sensor noise and environmental factors are taken into
account, but we cover variety in terms of “harshness”
(i.e., amplitude) of steering wheel angle.

The contributions introduced through the theoretical ap-
proach are relevant for answering RQ3 in terms of addressing
the necessity for systematic and efficient generation of vehicle
maneuver data. The overall pipeline suggested in Section IV
has relevant improvement points with regards to performance.



However, the use of SFCs reveals itself useful for reducing
the number of dimensions to generate permutations on. The
proposed approach has been designed to be adaptable and
extensible in terms of maneuver-specific constraints, which
enables the generation of more diverse test case datasets,
issue discussed in the context of scenario-based test generation
for AD systems [6]. Moreover, the constraints defined in the
generation step (e.g., smoothness and symmetrical evolution
of steering wheel angle) have safety-critical impacts in the
generated events, which means that safety-critical scenarios
can be generated through the control of specific parameters,
contributing to the systematic classification of such events
[16]. Finally, the performance evaluation presented in Table
I can be used as an initial step for the definition of coverage
of ”all” possible events related to a specific maneuver [15].

E. Threats to Validity

1) Construct validity: Analyzing the performance of the
theoretical approach based on the time complexity is
not a complete estimation of how long it would take
to run an implementation of it. For example, simulator
time complexity grows linearly with the size of its input,
but to measure its time performance, we would need
to run tests on an actual simulator. This can present
a threat to validity in terms of providing a somewhat
incomplete view over the performance of the approach,
which ultimately would have to be judged with actual
measurements.

2) Internal validity: Due to the limited event data provided
to base our research on, as well as the related sensors,
our findings related to CSP on SFCs might be inaccurate.
This issue is supported by the confirmation bias of
looking for patterns that is implicitly present in the
research, since the incentive is to find patterns with the
use of SFCs to validate the results. As a consequence,
we believe that more vehicle maneuver data and other
sensors could provide different insights on the choice
between Morton or Hilbert based SFCs.

3) External validity: Our research has been focused on a
specific type of maneuver (i.e., lane changes), and the
artifact described in Section IV is characterized by many
constraints (mainly concerning environment conditions,
sensor noise, and smoothness of the maneuver). Thus,
the claims that are made (e.g., CSPs work similarly for
other maneuvers, plausibility checker works for other
sensors and situations), are based on an understanding of
the concept from a specific perspective with constraints
in mind, which might represent a threat to the general-
ization of our findings.

VII. CONCLUSION AND FUTURE WORK

The conducted research lays the foundations for exploring
generation of scenario-based tests using SFCs-based approach
for permutation of multi-dimensional vehicle sensor data. The
analysis of Morton-based SFCs suggests that a random sam-
pling of Morton values inside AOIs of an SFC-over-time plot

of a CSP is not enough to ensure the expected characteristics
of the state space of generated events. However, the usage of
density plots, which measure the frequency of Morton values
occurring at a particular timestamp, provides a way to define
areas in which Morton values are more likely to occur for
particular events, such as lane changes - this reduction of the
value range to sample Morton values from increases the chance
of sampling valid Morton values.

Although, even with more concise areas, the plausibility of
permuted lane changes still can not be ensured, and hence
plausibility checks must be run on decoded sensor data to
ensure confidence. A challenge still present is in the per-
formance implications of such an approach that arise when
generating plausible lane change maneuvers. Future research
can improve upon this issue of performance in particular by
focusing on how Morton values are permuted from the areas of
interests defined by the density plots, as well as an alternative
to requiring a simulator to verify if a permutation is valid in
regards to domain properties.

Furthermore, future research can also expand upon the the-
oretical approach in making constraints more lenient, enabling
the generation of a wider range of lane change events types,
such as safety-critical scenarios of when the car is about to
lose maneuverability.
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