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Abstract—Software comments are written to get an
understanding of what code does, its function, and its
purpose. There is a consensus in the industry that code
comments improve software comprehension, but is this
really the case? In this research, we investigate the
effect of code comments on software comprehension
by conducting an experiment where participants are to
study one of three types of code snippets containing the
same code. The only difference is the code comments,
one contains well-written code comments, one contains
poorly-written ones and the last contain no comments
at all. Our analysis is done on the data from 51 students
studying a programming-related program in Sweden.
We split comprehension into two parts, perceived com-
prehension, which is estimated by the participants after
reading the code snippet. And actual comprehension
which is tested. Our results show that participants
receiving the well-written code comments perceive to
comprehend the code snippet better, but in actuality,
all three comment types score very similarly on the
actual comprehension, with the well-written comments
scoring the lowest.

I. Introduction

Software is read and developed daily, and an important
aspect of software development is the comprehension of the
code that makes up software. The lack of code readability
can have an immense effect on both productivity and com-
prehension and adds an additional risk of introducing bugs
and flaws into code [15]. In order to reduce the number of
bugs and flaws, as well as increase overall productivity
and comprehension, readability has to remain at a high
and acceptable level. By assuring that the readability is at
an acceptable and satisfactory level, code comments can
assist the developer in understanding the current state of
the code base, and reduce the risk of confusion when being
read by other developers.

Even if code comments are used in industry to improve
comprehension, many researchers today argue that there
is no consensus on the best way of using code comments
for this purpose. According to Rani et al. [14], there
is no agreement on what quality means related to code
comments. Despite the lack of formal agreements on what

defines quality regarding code comments, Rani et al. [14]
propose using quality attributes to associate code com-
ments with quality aspects. Quality attributes such as
comprehensibility, cohesion, consistency, and usefulness,
can be chosen. Adhering to quality attributes when writing
comments, allows developers to focus on one or more
aspects or quality attributes when writing code comments.
Researchers have not been able to find an agreement on
what qualities a comment should have in order to define
what a good comment is [14]. Comments vary in their
respective use cases, purpose, scope, and usage, and no
comment structure fits all needs. A definition of what
a good comment is in relation to comprehensibility is
needed.

The use of source code comments is vast. Everything
from bug fixing to code reviews relies upon code com-
ments. Buse et al. [2] argue that one of the most time-
consuming and important code-related tasks, code main-
tenance, becomes more effective and less time-consuming
when well-written source code comments are applied.
Maintenance of code involves understanding the existing
code and making changes according to changing demands.
In the interest of maintainability, developers first must
understand the code that was written, in order to make
changes that involve improving the software product. Buse
et al. [2] state that at least 70% of the software devel-
opment life cycle is in the form of maintenance, which
means that due to the linkage between maintenance of
code and readability, assurances that the code remains
readable after changes are needed for future changes to
be performed without issues.

Alternatively to source code comments, a trend of ‘self-
documenting code’ is starting to be more and more com-
mon. Self-documenting code is an approach to creating
comprehensible code, where the aim includes choosing
the most optimal identifier names and assuring that the
code is able to be read without the need for extensive
documentation (code comments). Code that is written
with the aim of being self-documenting, is meant to be
readable to every individual, although the comprehension
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of code is subjective, it is, therefore, difficult to assure that
every individual is able to fully understand the written
code. This point is strengthened by Posnett et al. [13], who
stated that studies of readability are difficult to perform
due to the subjective answers given by the participants. On
the grounds that code readability is subjective, different
aspects of a code base, including the choice of identifier
names, may not always be clear to other individuals. This
means that code may benefit from comments as a way to
increase comprehension.

This research is a reproduction study of Börstler and
Paech [1], by this we mean that we have a different method
to the baseline experiment, but is still based on the same
theory structure [7]. Börstler and Paech conducted a study
[1] consisting of method chaining combined with the effect
of code comments on the readability of source code. In
order to measure the perceived readability, metrics were
collected in the form of Likert scales between 1 and 5.
The initial questions that included the question ’I am an
experienced Java programmer´, and the question relating
to perceived readability of ’Based on your programming
experience, how would you rate the readability of the
previous piece of code´ both used Likert scales between
1 representing ’Strongly disagree´/’Very difficult´ and 5
representing ’Strongly agree´/’Very easy´. In addition to
the perceived readability, actual readability was measured
in the form of cloze tests, where sections of code were
removed and the participants were tested on how well they
were able to follow their task of filling in the removed
sections with suitable code.

This research is conducted with an experiment inves-
tigating participants’ perceived and actual comprehension
of one of three types of code snippets. The experiment was
conducted similarly to an ABC test to determine how and
if code comments affect the comprehension of source code.
The participants were asked to rate their comprehension
of the code snippet from ’very difficult´ to ’very easy´
(Likert scale). This perceived comprehension was later
tested with the use of further questions, including a cloze
test. We found that the code snippet with the most well-
written code comments was perceived as a lot easier, but
when tested, it scored lower than any of the other two
comment types, even if it only was with a small margin.
We also saw that code comments did not significantly
increase actual code comprehension, the code snippet with
no comments scored better than the snippet with the well-
written comment. The findings of our thesis lead to the
following contributions to Software Engineering research
and practice: (i) that the consensus in the industry that
code comments improve code comprehension, might be
misleading, (ii) that well-written code comments improve
the perceived comprehension of source code, but not its
actual comprehension, and (iii) this research’s findings,
which contradict the consensus, shows the need for further
research in this topic.

II. Related Work
Borstler and Paech state in their related work “... that

the role of comments for code quality should be studied in
more detail” [1]. This need for further research into code
comment quality is further expressed by Steidl et al. [18].
As discussed in [1] most of the research regarding code
comments is more than 20 years old, this may indicate
a need for new and updated research, as also indicated
by Steidl et al. [18]. In order to get a better view of the
frameworks and guidelines of comments and their relation
to improving readability, Fakhoury et al. [5] discovered
that there exist multiple frameworks and guidelines on
how to write comments to improve readability. This is
without a consensus on which frameworks and guidelines
improve readability the most [5] [11]. Fakhoury et al.
[5] continued by stating that by analyzing state-of-the-
art readability models, they fail to be suitable for daily
maintenance. Scalabrino et al. [16] state that state-of-the-
art code readability models do not take source code lexicon
into consideration, and added that analyses of source
code lexicon may improve the state-of-the-art readability
models, and suggest utilizing textual features in combina-
tion with structural features to enhance code readability
models.

A. Comprehension and Readability
The ability to read code does not necessarily mean

that one comprehends the code. Readability and compre-
hension are often linked with one another but are not
interchangeable [13]. Posnett et al. [13] define readability
as ”...the ’accidental´ component of code understandabil-
ity...”, using understandability rather than comprehension.
By that definition, comprehension is a key part of reaching
readability.

The study of Piantadosi et al. [12] came to the con-
clusion that new code in big commits has a higher risk
of affecting code readability. This shows that developers
should preferably focus on limiting the size of the commits
and properly assure that the code and its associated
comments within the commit are readable, prior to intro-
ducing new code into the main branch. Assuring that new
code and comments have a high level of readability and
comprehensibility, will result in the combined code base
having a higher level of readability and comprehensibility.
Piantadosi et al. [12] also mention that code bases with
a low level of readability will continue to have a lower
level of readability. From this information, readability and
comprehensibility can be difficult to improve once the code
base has reached a level of low readability, and developers
should always strive to reach a high level of readability
within a code base.

Gopstein et al. [8] conducted an experimental research
study that involved comparing the comprehension be-
tween obfuscated and non-obfuscated code, including the
comprehension and confusion relating to both of those
categorical types of software. The conclusions gathered
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from the study from Gopstein et al. [8] is that obfuscated
code has a significant and direct impact on comprehension,
resulting in substantial increases in the misunderstanding
of the code snippets of obfuscated code compared to non-
obfuscated code. Obfuscated code consists of code that
is purposely written to be difficult to read, where it
can be used to avoid malicious intent through the lack
of comments and difficulty to correlate identifier names.
Writing readable code and comments can be considered
tremendously critical in order to improve comprehension,
reduce misunderstandings, and reduce the risk of intro-
ducing bugs and flaws, along with making code more
maintainable for the developers that read and maintains
the code base.

Minimizing nesting can be seen through the experiment
conducted by Johnson et al. [10] as increasing the per-
ceived comprehension and reducing the amount of time
spent reading and attempting to understand the written
code. Johnson et al [10] continue to state that 86.5% of the
participants felt that minimizing nesting is more readable
than the alternative version that does not minimize nest-
ing and that 51.6% believed that readable code includes re-
ducing the level of nesting. From this information, nesting
can potentially be seen as reducing readability and could
affect comprehensibility negatively, and developers should
find alternatives to nesting whenever possible in order to
increase the level of readability and comprehensibility of
their written code.

B. Code comments
Fakhoury et al. [4] came to the conclusion that having

comments and code containing linguistic anti-patterns,
which includes sub-optimal practices in relation to doc-
umentation and identifiers, results in a higher mental
burden during code comprehension tasks. Code compre-
hension may be severely impacted when linguistic anti-
patterns and structural imperfections (e.g. line length,
number of spaces, etc) are combined. This suggests that
code and comments play an important role in relation to
comprehension, where comprehension can be reduced sig-
nificantly if developers do not take linguistic anti-patterns
and structural aspects into consideration.

Rani et al. [14] conducts an SLR on the field of code
comments and finds that there is much more to discover.
Furthermore, they state that most of the research done
on the subject is done in Java, rather than any other
code language, and therefore might not translate across
all Software Engineering fields. There are multiple types of
code comments with multiple types of use cases, Pascarella
et al. [11] developed in their study a taxonomy of the types
of comments. They did this by analyzing more than 40,000
lines of code comments from 14 different Java projects.
They categorized them into six different types with their
corresponding sub-types. In this study, we primarily focus
on the type of comments Pascarella et al. call purpose
comments. Purpose comments are code comments that ”...

describe the functionality of linked source code either in a
shorter way than the code itself or in a more exhaustive
manner” [11].

In industry, it is commonly used that AI create code
comments for undocumented or old code, to improve com-
prehension [17]. But even if this is the case, Stapleton et al.
[17] state that human-written code comments exceed the
ability to improve code comprehension in source code, even
though the study showed no difference in quality between
human-written and machine-written code comments.

Fig. 1: Figure explaining the flow of the methodology in this
research, where the arrows tell the flow. Teal rectangles are
depicting actions taken and the dark rectangles are depicting
the artifacts created.

III. Research Methodology
The purpose of this research is to investigate how code

comments in source code affect the comprehension of said
source code. We do this by extending upon the research
by Börstler and Paech [1] and conducting an experiment.
We aim to answer the following research questions:

• RQ1: What effects do source code comments have on
software comprehension?
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• RQ2: To what extent do different code comments of
contrasting quality affect software comprehension?

• RQ3: How do our results compare to the result of
Börstler and Paech [1]?

This experiment is built similarly to an A/B/C test or
a split test, where the subject only gets to take part in
one (of three) versions of a survey. Each version of the
survey is divided into three parts 2: the first part includes
some personal questions regarding the subject’s coding
experience as well as potential reading disorders. The
second part consisted of an initial look at a code snippet,
as well as questions asking the subject to estimate their
comprehension (perceived comprehension) of the code
snippets. Furthermore, each snippet is broken down into
parts that the subjects rate individually. The third and
final part include questions testing the subjects’ actual
comprehension of the code snippets. The process of
developing the survey, as well as all other parts of this
research, is visualized in figure 1.

Reproduction study

While conducting our literature study, we found that
only studies older than 20 years conducted research on
this topic (code comments’ effect on source code compre-
hension), while newer research regarding code comments
mainly focused on automated comment generation with
the help of AI, and assumed that older research on the
topic was still valid. This fact was true until we found
Börstler and Paech [1] that themselves saw this lack of
current research. We adapt and extend their work on
multiple points, we detail the differences between the
original study and ours below.

It is easy to view this as a replication study, but this
is not the case, it is a reproduction study. A reproduction
study is defined as using a different method to the baseline
experiment but still based on the same theory structure
[7], while a replication study is doing the same study again,
meaning that you would follow the methodology as closely
as possible, and by doing so repeating the research. As
mentioned prior, we are not repeating the same research,
we extend upon it [7].

This research study did not include method chaining
as part of its scope, it would therefore not be valid to
call it a replication study. Nevertheless, the scope and
RQs of this research overlapped significantly with Börstler
and Paech [1], which in turn justifies extending upon it.
Some researchers even see reproduction studies as a better
alternative to replication studies, the reason for this is that
by using the same method ”... there could be a cause-effect
relationship between the method and the observation” [7].
Gomez et al. [7] continue describing that some researchers
see reproduction studies as a strategy to mitigate errors
caused by methods and procedures, even though the better

the methods and procedures are, the less need there is to
conduct a reproduction study [7].

One key difference between Börstler and Paech [1] and
this study is the omitting of method-chaining as a part of
its research focus. This is further a reason that validates
the choice of reproduction over a replication study.

As we are doing a reproduction study it is important
to visualize what differs between this study and the core
research. The list below depicts changes in our methodol-
ogy compared to the research conducted by Börstler and
Paech [1].

• Differing population - [1] had a population of only
1st and 2nd-year university students studying Com-
puter Science from Heidelberg University, Germany.
We have a population of university students studying
Software Engineering, Computer Science, and other
programming-related programs from universities in
Sweden

• Differing code snippets - [1] had code snippets fo-
cusing on method chaining and including comments.
We have code snippets that focus on general Java
code, which includes three variants of code comments.

• Differing cloze tests - as we have different code
snippets we also therefore have different cloze tests, as
they are building upon the code in the code snippet.
But worth noting here is that our cloze test build
upon and is closely adapted from the cloze test used
by [1].

• Differing Research Questions(RQ) - [1] has one
RQ involving method chaining, and one RQ involving
the amount and quality of comments that are not
specific to any programming language. Our RQs focus
on how comments affect the comprehensibility in
code.

Data collection and Subjects
The collection of data was conducted using an online

tool called Qualtrics. The primary reason for this choice
was the need for a tool that allowed for A/B/C testing
as well as supported the disabling of returning to the
previous question. The survey was published and managed
through Qualtrics and was conducted online seeing that
the need for larger amounts of participants was imperative,
along with removing the restrictions related to timing and
location. The questions and code snippets used in the
experiment can be found in our online repository. 1

The subjects in this study all consist of University stu-
dents of Data Science, Software Engineering, and similar
programming-related programs in Sweden. By reaching
out to universities, we collected contact information for
relevant students of any year. The only difference in this
strategy was when reaching out to students of Software
Engineering and Management at Gothenburg University,
here we used Discord and Slack as preferred platforms.

1https://github.com/RobbanGit/CodeCommentsAndComprehension
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Fig. 2: Figure displaying the survey structure used in this experiment.

We found the subjects by scouring the web through
universities in Sweden looking for universities that have
programming-related programs. We then contacted these
universities/programs by email, listed on their websites.
The list below shows the universities that either sent some
sort of mailing list (for us to use) or published our survey
on any of their forums/platforms:

• University of Gothenburg
• Chalmers University
• University of Stockholm
• University of Lule̊a
• University of Mälardalen
• University of Karlstad
• University of Örebro

Instruments
Code Snippets: Unlike an ordinary survey, the sub-

jects are only able to see and answer questions regarding
one of the three different code snippets. The code snippets
included identical source code, the only difference between
the snippets was the code comments or lack thereof. We
defined these as:

• Good Comments (GC): A well-structured and
written purpose comment [11] that explains the code
snippet and its purpose and includes further informa-
tion beyond the code it depicts (see listing 1).

• Bad Comments (BC): A code comment that only
explains what the code does and not its purpose (see
listing 2).

• No Comments (NC): The same code as the two
aforementioned snippets but without any code com-
ments

1 /*
2 * Returns a new fresh folder with the given
3 * paths under the temporary folder .
4 * For example , if you pass in the strings
5 * { @code " parent "} and { @code " child "}
6 * then a directory named { @code " parent "}
7 * will be created under the temporary folder
8 * and a directory named { @code " child "}
9 * will be created under the newly - created

10 * { @code " parent "} directory .
11 */

Listing 1: Code comments used in Good Comment snippet.

1 /*
2 * Creates folder in sequence based on paths .
3 */

Listing 2: Code comments used in Bad Comment snippet.

Importantly, the code used in this experiment needed
to be generic and without subject or application depen-
dencies. We also wanted code that was well-reviewed and
used, to mitigate the risk for bugs and issues. With this in
mind, we scoured through open-source repositories, such
as GitHub, GitLab, and Google Open Source. We chose
code from the JUnit4 repository 2 since it fits our criteria.
This code had more than 8000 stars and 3000 forks on
GitHub, something that ensured that the code was well-
reviewed and used. The code was also non-application and
non-domain specific and only demanded from the reader
sufficient knowledge in Java to be able to read. As our
populous consists of university students, the complexity of
the code needed to be taken into account. Even if the code
we chose consisted of multiple for-loops and if-statements,
we do not consider this code to be too complex for any
university students that have taken an introductory course
in Java, to understand.

2https://github.com/junit-team/junit4
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Comprehension Test: Börstler and Paech tested the
subjects’ actual comprehension of the code snippets by
conducting cloze tests [1]. The cloze tests used were a series
of missing segments in the code snippet for the subject to
fill in. We adapted these comprehension techniques on our
own code snippets and developed a similar cloze test. As
in Börstler and Paech [1] experiment, we do not expect
the subjects to be able to fill in the blanked-out parts
identically to the original code. The blanked-out part is for
the subjects to show that they understand the code and its
function. We use the cloze test in this experiment because
it is a well-proven way to test reading comprehension, even
code comprehension [3], [9].

In addition to the cloze test, we chose to add a question
that answers if the subjects understand the function of the
method that the code snippets depict. We found that by
doing an initial test of the survey, there was a possibility
to answer it correctly without fully understanding the
complete function of the method. We, therefore, developed
the question to fill this gap, If the input to this piece of code
would be [”Apple”, ”Orange”, ”Lemon”, ”Banana”], please
explain what the output would be, and why. The author
Feitelson [6] strengthens the need for such a question to be
implemented into experiments relating to comprehension
of code. Feitelson [6] explains that interpretation is close
to ”real” understanding of code and that individuals can
solve the expected output of a program to show that
they comprehend the code, which means that a question
relating to the execution of a program is necessary to
assure comprehension.

Data analysis
This analysis section covers the quantitative analysis of

the results gathered from the Likert questions relating to
perceived comprehension, and in the cases where a snippet
of code was perceived as difficult, a follow-up question
was asked. This follow-up question was answered in the
free-form format and allowed the subject to explain what
or why it was difficult. The analysis continues with the
analysis of the data from the cloze test and data from
the last question that concludes the actual comprehension.
Both the quantitative and qualitative data were extracted
from Qualtrics into a TSV file, where only the quantitative
and qualitative data for submissions that included answers
to most questions and had completion of 100% were
analyzed.

a) Quantitative data analysis: After filtering out
metadata and non-finished submissions from the TSV file
due to easier handling and formatting that was more
suitable for us to extract the useful data, the file was saved
in the CSV format, to be used for plotting. The reason
for exporting a TSV file that we later save into a CSV
file is that Qualtrics does not export data into a CSV file
correctly, this method is a workaround. The plotting of the
quantitative data was performed in the scripting language,
R, and utilized the ggplot2 and HH libraries. Quantitative

data in the TSV, and by extension, CSV file, was ranged
between 1 and 5, where 1 is equal to ’Very Difficult’
and 5 is equal to ’Very Easy’. This allowed for an easier
generation process of diagrams, where R and its associated
libraries were able to read through the CSV file, and
based on value (1–5), were able to sum each corresponding
value. Stacked bar plots were used for grouping together
the different comment types under their respective answer
category for the initial questions (see figure 3a) Divergent
bar plots were used in question 4 as well as in questions 5–
8, which easily display the divergences across the different
comment types (see figure 4a for an example of a divergent
bar chart). The generated diagrams consist of data per-
taining to the initial questions (questions 1–3), perceived
comprehension of the entire code snippet per each com-
ment type (question 4), and perceived comprehension of
each of the four parts of the code snippets (Marked Code
1-4) per comment type (question 5–8). The two diagrams
that pertain to perceived comprehension, both equal up
to 100% for their respective comment type and show the
proportions and percentages for their respective level of
difficulty. A vertical line at 0 percent is present to ease the
comparison between the proportions. All diagrams relating
to perceived comprehension were marked between very
difficult and very easy, and are ordinal.

b) Actual Comprehension: Actual comprehension
(AC) was collected through the cloze test (Q11) and the
question pertaining to the expected output of a method
(the code snippet) (Q12), where each submitted answer
was rated based on levels of correctness.

These levels of correctness spanned between 0 and 2,
where 0 was for incorrect answers that did not resemble
an understanding of what the section of code did, 1 was for
partially-correct answers, and 2 was for completely correct
answers. These scores were assigned manually by the two
researchers of this study and were done cooperatively
throughout all the submitted answers of Q11 and Q12.
Before analyzing the data, we discussed and concluded (for
each question) what the criteria were for each score. These
conclusions were used to maintain a fair and balanced
scoring. The managing of the answers relating to actual
comprehension, the score-keeping, and the calculations of
the average/median/SD values for the scores, were done
using Microsoft Excel.

c) Qualitative analysis: In the cases where one or
more code snippets were found to have been difficult by
the subjects, an additional question per code snippet was
shown, asking what the subject believed to be difficult to
understand about the code snippet that they previously
read. This type of question allows for qualitative analysis
to be performed on the answer that the subject gives, and
gives an insight into what may have created hindrances
in the comprehension of the code snippet. Upon reading
the data, content analysis was made, in order for us to
be able to create codes about the potential hindrances in
comprehension. The answers were collected in the form
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of free text, through a text box. The qualitative data
analysis was performed using Microsoft Excel for reading
the data, and Microsoft Word for noting the observations
and creating codes.

IV. Result
We received 179 submissions of the survey, while only

51 of these submissions were fully completed (28,5%).
Number of participants per type:
• Good Comments (GC) : 18 participants.
• Bad Comments (BC) : 17 participants.
• No Comments (NC): 16 participants.
39 the subjects have concluded 2 years or more of their

studies, 16 of which have concluded 4 or more years (see
Figure 3b). Of all 51 subjects, 27 have more than 1 year
of Java experience, whereas 24 have less than one year of
experience in Java (see figure 3a). When we look closer
at the split between the three code snippet types, we see
that most of the participants have concluded two years or
more of their studies. 13 out of 18 of the subjects that
participated in GC had concluded 2 years of studies or
more. While for BC these numbers were 14 out of 17,
and NC 12 out of 16 (see figure 3b). When it comes
to the number of years of Java experience, we see that
BC consists mostly of subjects with less than 1 year of
experience (70.5%), while GC and NC have a more even
split between the years of experience (see figure 3a)

A. Research Question 1 & 2
As mentioned before, the survey was broken down into

three parts, initial questions, perceived comprehension
(PC), and actual comprehension (AC). The PC was docu-
mented through question 4 (Code Question) (see figure 4a)
and Questions 5-8 (Marked Questions 1-4) (see figure 4b).
Figure 4a shows us that GC perceived the comprehension
of the code snippet to be mostly easy and very easy,
with 61% for both levels. While only 12% perceived the
snippet to be difficult or very difficult to comprehend.
When viewing BC’s and NC’s answers, we see that the
comprehension of the snippet is perceived as more difficult.
Viewing BC, we see that 24% perceive the snippet to be
very difficult or difficult. 25% of NC perceive the snippet to
be difficult to comprehend, while no one of NC perceived
it as very difficult. Noticeable is also that 41% and 38%
of BC and NC respectively, chose to answer the question
with neutral, while only 28% of GC.

When viewing the breakdown of the perceived compre-
hension in regards to every marked code snippet (see figure
4a for the breakdown, and 4c for the snippet), we see
a clear indication that ”marked 3” is perceived as a lot
harder to comprehend than the other three marked parts
for all comment types. 41% of BC perceived ”marked 3” to
be difficult or very difficult while 25% of NC perceived it to
be difficult or very difficult (only type to have subjects that
perceive it as very difficult). Only 17% of GC perceived it
to be difficult, while 39% and 22% perceived it to be easy

and very easy, respectively. Marked part 4 was perceived
to be the easiest to comprehend, only 12% of NC perceived
it to be difficult, while GC and BC did not perceive it to
be difficult at all. 94% of GC perceived ”marked 4” to be
easy or very easy to comprehend.

When comparing the PC to the AC we see that even
though GC perceived to comprehend the code snippet
better than both BC and NC, the AC shows another story.
In table I we see how the median of GC is only 1 while for
both BC and NC, it’s 2, while the average is roughly the
same across all three types.

TABLE I: Actual Comprehension
GC BC NC

Median: 1 2 2
Average: 1.141 1.269 1.3
Standard Deviation: 0.852 0.888 0.869

This table shows that the standard deviation (SD) is
close to the same across all comment types, where an SD
of 0.8 means that the spread of data points is clustered
around the average. In the case of NC, it means that there
exist outliers but most data points are closer to 1.3 than
the opposite. We see that GC has an average of 1 rather
than 2 (as the other types have), as there are only three
values (0, 1, and 2) the jump from 1 to 2 might seem
large, but one has to take into account that there is no
other option than these three values.

RQ1 What effects do source code comments
have on software comprehension?

We note that participants that received Good Com-
ment (GC) perceived the code to be easier to
comprehend than both BC and NC, while still
scoring a median AC of 1 (while Bad Comment
(BC) and No Comment (NC) scored 2). GC and
NC also scored similarly on both PC and AC. We
can therefore not say that code comments have any
positive effect on source code comprehension, The
data indicates that the truth might be the opposite.

RQ2 To what extent do different code com-
ments of contrasting quality affect software
comprehension?
When comparing the scores of the two types of
comments used (GC and BC) we see that while
GC perceive to comprehend the code snippet better
than BC (see figure 4a), when tested GC shows
a lower actual comprehension than BC, even if it
by a small margin (see table I). Therefore we can
not conclude that the quality of the code comment
affects software comprehension differently.
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Fig. 3: Figures for each of the three initial questions
(the question is displayed on the top of each figure)
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(a) Figure showing the number of participants by number of
years of experience with Java. Bars are split into the three
comment types (Initial Question 1) (the number on top of the
bar shows the total number of participants).
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(b) Figure showing the number of participants by the number
of years of concluded coding-related studies. Bars are split into
the three comment types (Initial Question 2) (the number on
top of the bar shows the total number of participants).
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(c) Figure showing the number of participants with or without
a reading disorder. Bars are split into three comment types
(Initial Question 3) (the number on top of the bar shows the
total number of participants).

Fig. 4: Figures for perceived comprehension of the Likert
questions

(a) Figure showing the perceived comprehension of the code snippet,
grouped by comment type. The number on the right shows the
number of participants.
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(b) Figure showing the perceived comprehension of each of the
marked parts of the code snippet. Grouped by comment type and
marked part.

(c) Image showing each marked part of the code snippet.
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a) Qualitative Analysis: When we try to figure out
why some participants find it hard to comprehend the
code snippet, by analyzing the follow-up questions to the
marked questions by doing content analysis. We did this
by coding the root cause of the difficulty based on the
answers, these codes were then analyzed to see patterns,
and we categorized them by these patterns. The categories
we use are ”Java Syntax”, ”Method Confusion” and ”File
Library”.

By ’Java syntax’, we refer to the lack of knowledge or
confusion regarding parts of the code that pertains to
syntax found in the Java programming language. One par-
ticipant stated that the participant did not know what the
syntax ”String...” meant as a parameter in a method, while
others stated the misunderstanding regarding Enhanced
for-loops (also known as for-each loops). ”I sometimes have
a bit of a hard time with for-each loops.” stated by one
participant.

1 for( String path : paths )

Listing 3: For-each loop used in snippet

1 f o r ( S t r i n g path : paths ) {
2 r e l a t i v e P a t h = new F i l e ( r e l a t i v e P a t h , path ) ;
3 f i l e = new F i l e ( root , r e l a t i v e P a t h . getPath ( ) ) ;
4 l a s t M k d i r s C a l l S u c c e s s f u l = f i l e . mkdirs ( ) ;
5
6 i f ( ! l a s t M k d i r s C a l l S u c c e s s f u l && ! f i l e . i s D i r e c t o r y ( ) ) {
7 throw new IOException (
8 ” f i l e c r e a t i o n at ’ ”
9 + r e l a t i v e P a t h . getPath ( )

10 + ” ’ f a i l e d ” ) ;
11 }
12 }

Listing 4: The third piece of marked code that perceived
difficult to understand.

”Method confusion” is a category representing the abil-
ity to comprehend the functionality and purpose of the
method (code snippet). Here participants did not define
the reason for low comprehension of the syntax itself, but
rather on the methods parts and function. One example
can be ”Why must the path be relative?” stated by one
participant, while another wrote ”Second, the only thing we
use relativePath for, is to prepare the next File constructor,
surely there’s a better solution”. Many participants did not
understand the use of relative versus absolute path, while
others state confusion regarding the use of IOExceptions
and their use in the code.

’File Library’ might fall under any of the previous
categories, but as so many stated issues with the file
library, it got its own category. The File library consists of
various aspects and functions related to the creation and
managing of files. Multiple subjects mentioned that they
did not properly understand or had never interacted with
the File library before. An example of this, as stated by
one subject, is: ”Never used java File class libraries”. This
code was prevalent in the third marked code snippet, in
all comment types.

B. Research Question 3

TABLE II: The table presents the Median(Med), Average(Avg),
and Standard Deviation(SD) for PC and AC

PC PC [1] AC [1]
GC BC NC GC BC NC GC BC NC

Med 4 3 3 3 3 2 0.33 0.33 0.33
Avg 3.78 3.18 3.31 2.95 2.64 2.51 0.41 0.41 0.43
SD 1.13 1.04 1.04 1.02 1.02 1.02 0.35 0.34 0.36

In the table above (see Table II), ’PC´ refers to the per-
ceived comprehension of our experiment, whilst PC [1] and
AC [1] refers to the perceived and actual comprehension
of Börstler and Paech [1]. In this section, the terminology
of ’their‘, directly relates to the study of Börstler and
Paech [1]. The data gathered for our experiment is further
compared with the data and conclusion of the original
study conducted by Börstler and Paech [1].

In Table II, the standard deviation(SD) is very similar
across the comment types for our perceived comprehen-
sion. Each of the standard deviation values is close to
1, which indicates that the data points are relatively
clustered around the average. For GC, this indicates that
the majority of the data points are floating around the
average value of 3.78, instead of the other values. In the
table, similar to our standard deviation values, PC [1] have
standard deviation values that also happen to float around
1, which indicates that the spread of their data points is
floating around the average value of their comment types.

Similarities have been found in the perceived compre-
hension of source code, where GC is associated with
higher levels than BC and NC (see figure II), which our
results show the average values of 3.78 for GC, compared
to 3.18 for BC and 3.31 for NC. Similarly, the results
of Börstler and Paech [1] indicate the same, with GC
having an average value of 2.95, BC having 2.64, and NC
having 2.51. Our results are, however, not completely akin.
One contradiction exists in the ordering of the different
comment types for perceived comprehension, where our
results show that NC has a slightly higher average value
of 3.31 compared to BC with 3.18. Their results show,
however, that BC has a higher perceived comprehension
with a higher average value of 2.64 than NC with 2.51.
This contradiction means that our code snippet with no
comments was more comprehensible than our code snippet
with bad comments.

An additional similarity found between our and Börstler
and Paech [1] results, is that the values for the standard
deviation are similar between both the experiments, in
which both are close to the value of 1.

Our data for actual comprehension, once again, differs
from the data noted in the study conducted by Börstler
and Paech [1]. The first difference is the ordering of
comprehensible comment types. In our results, GC is seen
as the least comprehensible comment type with an average
value of 1.141, followed by BC with 1.269, and ended with
NC as the most comprehensible comment type with 1.3
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(see table I). This ordering from least comprehensible to
most comprehensible shows that in our experiment, NC
is more comprehensible than GC, although by a smaller
amount (see table I). The ordering for Börstler and Paech
[1] are moderately different, with BC and GC having a
lower average value of 0.41, and NC with a higher average
value of 0.43 (see table II).

RQ3 How does our result compare to the
result of Börstler and Paech [1]?

Our results show both similarities and contradic-
tions to the findings by Börstler and Paech [1]. Sim-
ilarities were found to be that GC was perceived
as more comprehensible than BC and NC, and
that the standard deviation between all comment
types of both studies was similar. Contradictions
were found to be that NC was perceived as being
slightly more comprehensible than BC according
to our data, as well as that our actual comprehen-
sion results show slightly larger differences between
our average values for GC, BC, and NC. Börstler
and Paech [1], on the other hand, have slightly
more similar values between their comment types,
whereas GC and BC share the same average value.
Despite the different orderings from least- to most-
comprehensible comment types for actual com-
prehension, our differences between the comment
types are small enough to be seen as relatively
similar, which is a similarity to Börstler and Paech
[1].

V. Discussion
As the introduction entails, code comments are widely

used in industry to improve readability or comprehension
of the source code [14], while this statement might be true,
our data shows no indication that code comments in source
code improve comprehension. With a small sample size like
ours, we can not infer causation. But the data still makes
an interesting statement.

The lack of a clearly better performing ’type’ is in-
triguing. The AC between all three types differs by such
a small amount that one can argue that with a larger
sample size, any of the three types could perform better.
This goes against most if not all, previous findings on the
topic, such as Rani et al. [14] that state ”As developers
spend significant amount of time reading code, including
comments, having readable comment can help them in
understanding code easier” and Stapleton el al. [17] that
states ”Source code comments play an invaluable role in
facilitating program comprehension”.

If using the comparison of perceived comprehension and
actual comprehension in BC and NC as a baseline, we
see a significant difference in GC. GC perceived the code
to be so much easier, while their actual comprehension

is worse than both BC and NC. An explanation for this
might be that longer and more thorough comments strain
on the participant’s mental capacity and therefore do
not benefit improved comprehension, something Rani et
al. [14] experienced. Another explanation could be that
the discrepancy between the three types in regard to the
number of years of code-related studies that have been
concluded (see figure 3b) would be the reason for these
results. We see that GC has more participants with under
1 year of concluded studies while BC has more than twice
the participants that concluded 3-4 years and NC has
almost twice the number of participants who concluded
4+ years of studies.

GC having a higher level of perceived comprehension
than BC and NC in both our and Börstler and Paech [1]’s
study was always expected, but what was not expected is
the different ordering of the comment types in the results
for the actual comprehension. Our results show that both
NC and BC are more comprehensible than GC, which
is a surprise, which also contradicts the results from the
study of Börstler and Paech [1]. It is possible that BC
had comments that reduced perceived comprehension and
that those comments made the subjects question the code
itself, or alternatively, the splitting of subjects between
BC and NC were giving NC subjects that answered more
positively. Due to BC and NC having similar values, they
can be comparable to Börstler and Paech’s [1] closely-
valued BC and NC.

Considering that their results show similar values be-
tween all comment types, it is interesting that GC was
the least comprehensible comment type according to our
results. There may be differences in quality between our
comments in our code snippets and their comments in
their code snippets, which resulted in the difference in the
ordering of comprehension of the comment types.

As mentioned in the result we got 51 responses, these
are the responses from participants that finished the entire
survey. If we add the ones that did not finish the entire
survey we end up with 179 responses. This means that
128 participants did not finish. We see this as a significant
number and wonder how this comes to be. One participant
(that did finish the survey) wrote that the survey took
more time than anticipated, this might be the reason for
a part of all unfinished submissions. We also believe that
the effort it takes to participate in a survey where the
participants are to read and understand a piece of code
might be too high for some. Some participants may have
been under the impression that the survey would not ask
for any extraneous mental effort from the participants and
therefore gave up as soon as they realized what the survey
entailed. There could be numerous reasons as to why a
participant did not finish the survey that they began.
From our submission data, some participants wrote that
they thought the survey was long, either in the number
of questions or the amount of time required to finish the
survey. Many of those non-finished surveys were close to
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the final question of function output. There were also
participants who did not proceed past the initial questions,
which could be due to the same reason of not knowing
the amount of time required for completion. This can
be seen as a way to improve further research, inform
the participants about the estimated time or the total
number of questions included in the survey, and give
information about how many questions are left before
completion (at each question). It is possible that the non-
finished submissions would have concluded the survey if
these strategies would have been in effect, and this in turn
would have affected the result.

A. Threats to validity
The number of participants is limited by the participa-

tion scope that we did set. We are limited to collecting
data from participants who are students of Computer
Science and similar educations at universities in Sweden.
Our limitation in participation size is also relevant to the
platforms that we utilize to contact potential participants.

Collecting a larger amount of data than we accounted
for may require additional time for the analysis, which is
related to the limitation of participation size.

Our form of collecting data from our participants over
the Internet may have an impact on the reliability of our
data. By conducting the data collection over the internet,
the participants can participate in our research study in a
location of their choice, which in turn might lead to more
participants, but also enhances the risk for ”cheating”
where the subject uses other tools that were not given
to answer the questions.

By voluntarily participating in the experiment, we can
conclude that the participants were interested in the topic
and due to their own interests, are unlikely to ”cheat” in
ways that could have an impact on their results. Despite
the low risk of ”cheating”, the back button was disabled,
meaning that once an answer had been given, the partici-
pants were unable to go back to the previous question. In
addition, if identifiable data was collected in the survey,
restrictions regarding attempts for the same participant to
perform the survey multiple times could potentially have
been introduced to reduce the risk of data unreliability,
although introducing questions that collect identifiable
data significantly reduces the level of anonymization of
the submissions, which could have negative impacts on the
participants and their associated submitted results.

In future research, this may be converted to an in-person
observation or interview to reduce this limitation further.

When reviewing this study, one needs to take into
account that comments do not necessarily have to be the
primary contributor to the differences between perceived
comprehension and actual comprehension, where other
contributors, such as previous experience, could be valid.
This could be an interesting factor as to why there are
differences between perceived comprehension and actual
comprehension.

As seen in the result of perceived comprehension of the
marked parts of the code snippet (see figure 4b), all parts
are not perceived to be equally hard to understand. The
third part of the code snippet was perceived to be a lot
harder to comprehend than the other three parts, this, in
turn, might lead to affect individuals’ estimated compre-
hension of the whole snippet differently. For instance one
participant might see three easy parts and one difficult
part and then rate the entire snippet as easy, while another
participant might also see three easy parts and one hard
part and rate the entire snippet as hard. Having an uneven
complex code snippet might make the code snippet harder
for the participants to rate, and therefore affect the result.

Provided that we reach out to individuals that we find,
we are not able to completely randomly pick participants
to invite to participate in our research study. This takes
the form of participation bias. Despite the invitation to
the survey not being randomly picked, the survey tool,
Qualtrics, was set up to strive for an even distribution
between the variations of code snippets. Even if this is the
case, we can not guarantee a 100% even split between the
code snippets.

We believe that not every individual that we invite to
the survey in our research study will want to participate.
This may have been reduced when we provided additional
information regarding our research study. By conducting
the experiment over the Internet in the form of a question-
naire, potential hindrances to participating in our research
study may also have been reduced.

Due to not forming questions relating to what university
a participant studies at, we are unable to predict the
number of participants at each university. Furthermore,
it means that we are unable to see differences in char-
acteristics of the participants from each university, and
may therefore be unable to compare the potential results
between participants from different universities.

We saw that enough individuals took part as partici-
pants in our research study, although non-response bias
could not be completely eliminated, since a portion of
the individuals that received an invitation likely did not
want to participate in our research study. Strides to reduce
this bias was taken, including giving a short and brief
message about the questionnaire, along with mentioning
the importance of their participation in our research study,
to increase the likelihood of participation.

Provided that the vast majority of the participants are
serious about participating in our research study, a large
portion of those participants would choose to not skip the
qualitative questions of our questionnaire. A participation
percentage of 100% in the qualitative questions of the
survey may be unreasonable to expect, although it may
not be unreasonable to expect that a vast majority of the
participants are willing to answer the qualitative questions
seriously, primarily considering their participation in the
other sections of the questionnaire. As some of the text
boxes prompt only when criterias are met, there is a
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possibility that these criteria are not met to a degree that
would allow for enough data.

The comments used in this research are taken from
industry and adapted to fit the definition of what we, in
conjunction with Börstler and Paech [1], defined as good
comments and bad comments respectively. As stated prior,
there is no consensus on this matter, and in what contexts
a good and bad comment is subjective, and we cannot,
therefore, guarantee that the subjects in this study agree
with our definition. There might be the case that the code
comments used in this research are constructed poorly and
therefore derives the results. It should be noted that the
comments used were not written by us, and have been
reviewed countless times by experienced programmers,
something we are not. We can therefore not argue whether
the code comments are well-written or construed using
good standards.

VI. Conclusion
In this research paper, we have reported the results

gathered from our experiment relating to the perceived
and actual comprehension of source code comments. These
results were collected through Likert scales for the per-
ceived comprehension, as well as cloze tests and an open-
ended question relating to the output of the code for the
actual comprehension. This was a reproduction study of
the original study conducted by Börstler and Paech [1],
in which our results were compared against. Our results
showed that well-written comments have an effect on
perceived comprehension, although well-written comments
do not have the same effect on actual comprehension.
We find that the effect of well-written code comments
does not improve the actual comprehension more than
poor-written comments do. We also see that contradicting
previous research, the code snippet with no comments
was just as easy to comprehend as any of the other code
snippets that had code comments in them. Despite our
interesting and somewhat conflicting results, the sample
size of our participants is limited, and further research on
this topic may be needed in order to provide conclusive
results. Future work that entails a larger sample size, a
different population, and/or multiple comment snippets
may provide an engaging contribution to the topic of
comments and their effects on comprehension. Similarly to
Börstler and Paech [1], we also see the need for additional
research to be made relating to this topic.
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