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Abstract—The data annotation process is a critical step in
the development of machine learning (ML) models, as it entails
labeling data to help supervised learning. This study investigates
the impact of data annotation process requirements on the perfor-
mance of ML models. Employing an experimental approach, the
study compares the performance of ML models using different
annotated datasets and various process requirements. Perfor-
mance metrics, including average precision, precision, recall, and
F1 score, are used to compare the outcomes.

The study reveals that the requirements imposed on the
data annotation process have a substantial influence on the
performance criteria of ML models. These findings shed light
on the crucial role that the data labeling process plays in the
creation of ML models, providing valuable insights for both
academic researchers and industry professionals. keyword-Data
annotation, performance metrics, precision, recall, true positive,
False negative, false positive, Intersection over Union, mean
average precision, experiment methods.

I. INTRODUCTION

A. Background and Topic

Artificial intelligence is “concerned with the development
of computers able to engage in human-like thought pro-
cesses such as learning, reasoning, and self-correction” [1].
A distinguishing feature of the fourth industrial revolution
is the use and expansion of AI (Artificial Intelligence) in
various applications [2] such as Natural language processing
(NLP), optical character recognition (OCR), image and video
recognition. One of the main reasons for this expansion is the
availability of massive amount of data that can be used to train
AI models [3], However the correctness and accuracy of this
data is crucial to the performance of the resulting machine
learning model.

Supervised machine learning requires a large amount of
annotated data [5]. The process of adding tags or annotations
to the data to enhance the significance is referred to as data
annotation. The purpose of the data annotation is labelling the
sensor data with meaningful classes. Supervised learning and
modeling techniques become available with labeled data [6].

For data annotation open-source datasets were used such as
ImageNet and Microsoft Common Objects in Context (COCO)
[7]. However, these datasets have a limited number of object
classes, which may not be adequate or appropriate for specific
tasks [5]. Requirements on the data annotation process can

have a significant impact on the performance criteria of ML
models.

In order to ensure high-quality annotated data, various
standard methods are used as part of the machine learning
development cycle. Some examples of these practices are:

Manual annotation humans manually tag or label data to
ensure its accuracy and relevance of annotations. Although
(to a certain extent) manual annotation is more accurate, it is
very labor-intensive and commonly used to train a machine
to perform automatic annotation. [8]. Manual annotation is a
commonly utilized technique across several fields, including
natural language processing, image recognition, and speech
recognition, among others. Annotators who are involved in
this process may possess specialized knowledge and expertise
in a particular domain or task, or they may have no prior
experience in the field.

Automated annotation involves automated techniques like
machine learning algorithms to annotate data. Automated
annotation may not be as accurate, but it has the capability to
process a significantly larger number of documents than what
humans can handle. [8]. Automated annotation is a widely
used technique in various machine learning applications such
as natural language processing and image recognition. For
example, image recognition algorithms can be trained to auto-
matically classify objects within images. In natural language
processing, automated annotation is used for labeling text data
with pertinent tags or to identify named entities.

Crowdsourcing involves the use of many non-expert an-
notators to annotate data, enabling cost-effective data anno-
tation. However, the quality of annotations may vary based
on the expertise and skill of the annotators. Crowdsourcing
does present several difficulties, though, including controlling
participant incentives and motives as well as assuring the
quality and consistency of contributions. Crowdsourcing has
been employed successfully in several industries, including
business, healthcare, and scientific research, despite these ob-
stacles. For instance, platforms like CrowdFlower and Amazon
Mechanical Turk have grown in popularity for crowdsourcing
work in industries like picture recognition and data annotation.

The identification of requirements for the annotated data is
crucial in the data annotation process, and these requirements
may include data types and formats, annotation types, anno-



tation guidelines, times and cost constraints.
Time restrictions consider the primary requirements in data

annotation. It is crucial to set a strict deadline for the annota-
tion process to guarantee timely completion of annotations.
This minimizes potential development delays by ensuring
that machine learning models are trained on the most recent
data. Time limitations often restrict the duration annotators
can dedicate to each activity within annotation processes.
Nonetheless, the quality of annotations may deteriorate when
annotators operate under predetermined time budgets, such
as a maximum of 20 seconds per image. This is due to the
reduced time available to focus on the intricate details of each
frame, potentially resulting in lower-quality annotations [18].

Precision requirements are yet another crucial necessity. In
terms of precision, we mean how accurate the annotations
are. The quality of the annotated data will depend on how
precisely the annotations must be made; hence this need must
be clearly stated. The clarity of the annotation standards and
the annotators’ comprehension of the necessary degree of
precision should also be prioritized. Additionally, a crucial
requirement for data annotation is consistency checks. The
annotations must be made with the utmost care, making sure
they follow the set annotation standards and are uniform
among all annotators. Implementing a review process that
examines the consistency of the annotations and resolves any
differences is one approach to accomplish this.

Finding the best balance between the time and cost required
for data annotation and the performance requirements of ML
models are crucial because data annotation may be both time
and cost consuming. The accuracy and quality of the annota-
tions, and consequently, the performance of the resulting ML
models, can be affected by a variety of variables, including
the level of information in the annotations, the consistency of
labeling, and the number of annotators engaged.

B. Review of current knowledge and related work

The importance of the ML (Machine Learning) models is
becoming more and more a common element of software
systems. Therefore, as one of many aspects of integrating ML
models in software systems, several studies aim to explore
the consequences of data annotation process requirements on
the performance of machine learning models. These studies
can help understanding the requirements that are used in
data annotation process, because the annotation process is
an essential element of the machine learning development
cycle and should be treated clearly defined through process
requirements.

The effect of data annotation process requirements on the
performance criteria of machine learning models is receiv-
ing increased attention in the industry. Recent years have
seen a significant focus on scrutinizing dataset annotation
practices [9]. Research has been conducted to investigate the
relationship between data annotation quality and ML model
performance. Studies indicate that high-quality and accurate
data annotations can greatly enhance the performance of ML

models, particularly in tasks like image classification and
object detection [5].

Alhazmi et al. [5] examined how the quality of data
annotations influenced the performance of machine learning
models. The researchers evaluated the performance of various
computer vision models, such as object recognition and picture
classification models, using image datasets with differing
levels of annotator quality. The researcher employed three
different datasets to assess how the models’ performance was
influenced by the quality of annotations. The annotations were
of high quality in the first dataset and become medium quality
in the second dataset, and the third dataset had annotations of
low quality. The models were trained and evaluated on each
dataset, and the outcomes were compared.

The observed results show a clear relationship between the
quality of annotations and the performance of the models. The
model’s accuracy shows an increase when accompanied by
high-quality annotations and low error rates .The experience of
the annotators, the chosen annotation method, and the specific
annotation tool used are considered main factors that affect the
quality of the annotations. Furthermore, the study indicates
that the effect of annotation quality on model performance
changes according to the difficulty of the task. The effect of
annotation quality was more significant for easier activities
like image categorization and less significant for harder tasks
like object detection.

The research emphasizes the need for stringent quality
control procedures in the annotation process and empha-
sizes the significance of high-quality annotations for machine
learning models. The authors propose that to enhance the
overall effectiveness of machine learning models, future study
should concentrate on developing techniques for automatically
evaluating and enhancing annotation quality.

Nazari et al. [11] show how class noise affects the per-
formance of machine learning algorithms. Class noise refers
to instances or data points that are misclassified into a wrong
class. The performance of various machine learning algorithms
was assessed through experiments on several datasets with
differing degrees of class noise. Many factors control the class
noise impact such as model complexity, training dataset size
and the amount of noise.

Additionally, it has been found that some machine learn-
ing techniques—including decision trees, random forests, and
support vector machines—are more impervious to class noise
than others. The study highlights the importance of reducing
class noise in training data if you want machine learning
algorithms to work more effectively. The researcher suggests
that future research should focus on developing more resilient
algorithms that can manage class noise and improve noise
reduction techniques in order to raise the precision of machine
learning models.

Taran et al. [13] highlights the significance of achieving
accurate and efficient semantic image segmentation in traffic
situations by underscoring the requirement for high-quality
ground truth annotations. The research evaluated for semantic
image segmentation three deep learning models on a publicly



available traffic dataset, using annotations of varying quality.
The results indicate that the ground truth annotations’ quality
affects the performance of segmentation models. Low-quality
annotations resulting in decreased accuracy and greater com-
putational expense. The research highlights the significance of
achieving accurate and efficient semantic image segmentation
in traffic situations by underscoring the requirement for high-
quality ground truth annotations. The findings stress the need
for more research to improve the quality of ground truth
annotations in traffic datasets. This is critical for professionals
and academics involved in computer vision and traffic analysis.

Hu et al. [14] suggest a unique method for formulating
specifications for artificial intelligence systems that learn per-
ceptual tasks from human performance. The authors contend
that due to the complexity and ambiguity of machine-learned
perception systems, conventional methods for defining require-
ments for perception systems, such as input-output connections
and performance measurements, are insufficient.

The researcher suggested, instead, utilizing human perfor-
mance as a standard for assessing how well machine-learned
perception systems work. They contend that this strategy is
more understandable and intuitive than more conventional
ones. The authors establish requirements for the system, such
as false positive rates and detection rates, using data on human
performance. The paper presents a novel way for develop-
ing requirements for AI (Artificial Intelligence) perception
systems based on human performance. The technique has
the potential to improve the accuracy and dependability of
machine-learned perception systems and can be used to a wide
range of applications across a number of areas.

According to Hauptmann et al. [15] although video retrieval
systems have made notable advancements in recent years,
there are still several difficulties that machines alone cannot
resolve. Therefore, the researchers suggested a method to
enhance video retrieval by combining human and computer
performance. Instances where human perception and compre-
hension of videos outperform machines include recognizing
intricate events, identifying emotions, or extracting semantic
significance. The authors suggested a collaborative optimiza-
tion structure that maximizes both human and computer per-
formance in video retrieval to tackle these constraints. The
approach involves presenting videos to human annotators,
who provide feedback on the relevance and quality of the
results returned by the computer system. This feedback is used
later to improve the performance of the computer system in
subsequent searches.

The researchers also introduce several techniques to enhance
the interaction between human and computer performance,
such as selecting diverse subsets of videos for annotation,
incorporating user preferences and feedback into the retrieval
process, and adapting the system to the specific needs of
different users. The suggested method is tested on several
benchmark datasets, and the findings demonstrate that it beats
both systems that purely rely on either human or computer
performance as well as state-of-the-art video retrieval systems.
Overall, the research highlights the need of combining human

and artificial intelligence to improve video retrieval results and
provides a solid framework for future research in this area.
Hao et al. [16] discuss the impact of label inaccuracies on
the classification performance of weakly-supervised models. It
highlights the importance of addressing label noise and inac-
curacies, as they can significantly degrade the model’s ability
to generalize and make accurate predictions. The researcher
aims to automatically identify and correct inaccurate labels to
improve the performance of classification models.
The paper addresses the challenge of inaccurate labels in
weakly-supervised deep learning scenarios. In this type of
dataset, where labels are partially or noisily annotated, the pa-
per introduces strategies to estimate the accuracy of each label.
This estimation is achieved by comparing the predictability of
a model trained with enhanced labels to that of a model trained
with the original labels. The experimental results demonstrate
that the automatic identification and correction of inaccurate
labels can significantly improve the classification performance
of weakly supervised deep learning models. The corrected
models achieve higher accuracy and F1-score compared to
models trained without label correction.

C. Gap in knowledge

The existing literature emphasizes the importance of
considering data annotation process requirements and their
impact on the performance of machine learning (ML)
models. Studies have explored various aspects such as the
quality of annotations, dataset noise, class noise, and the
combination of human and computer performance, shedding
light on the relationship between these factors and ML model
performance. However, there is still a gap in knowledge
regarding the optimal annotation requirements that can lead
to improved ML model performance.
Conducting a study on the influence of data annotation
process requirements on performance criteria of ML models
will reduce uncertainty in the role of process requirements
for annotations as well as boost the ability of software
engineer to produce with model with high performance and
to decide on process requirement for the annotation cost
vs. precision. The software engineer will provide detailed
information regarding data annotations process requirements.
When a user does not know the requirements, they can look
at this study to gain as insight into how the data annotations
process requirements affect the performance of ML model.
Our related work explored the impact of annotation errors
and dataset noise on the performance of machine learning
models [5], [11].
They have not considered the significance of annotation
process requirements in causing these errors, which results
in a gap in knowledge. Although they briefly mentioned that
human errors, intentional or unintentional, are the root causes
of such errors, the impact of annotation process requirements
on model performance has not been thoroughly examined.



Currently, our understanding of the relationship be-
tween data annotation process requirements and the
performance criteria of ML models is not clearly
defined, which is why it is necessary to investigate
the precise influence of data annotation process re-
quirements on the efficiency of ML(Machine Learning)
models.

This thesis covers the selected annotation process and aims
to help create a model with high performance.

D. Statement of the problem

The problem is that the performance criteria of ML models
can be significantly impacted by the requirements on the data
annotation process. To learn and produce precise predictions,
ML models need a lot of labeled data, but the accuracy
and consistency of the annotations can have a a significant
impact on how well the models perform. Performance of ML
models, typically measured as precision, average precision,
average IoU, recall and F1 score can be impacted by different
annotation requirements, such as the level of detail, labeling
consistency, and labeling quality. Therefore, it is crucial to
carefully consider the annotation requirements and their poten-
tial impact on the performance criteria of ML models before
conducting the annotation process.

E. Purpose of the study

The purpose of this study is to investigate the influence of
selected process requirements on typical performance metrics
of ML models. The reason this study is required is that
although ML model is used in a lot in many applications as
mentioned above there is not enough research made on how the
data annotation process requirement affects the performance
of the model. This research is needed because it helps to
lead to better ML model performance once we determine the
requirement of data annotation process. Additionally, involving
students in this field of study can enhance their ability to
create high-performance ML models. Moreover, given the
increasing demand for ML models, this research can have
wide-ranging applications, including in computer vision and
speech recognition.

F. Aim of your research and how it fits into the gap

The aim of this study is to demonstrate the influence of the
data annotation process on the final performance of machine
learning models. This obviously fits the gap of understanding
the role of data annotation in ML model performance and
how data annotation process requirements can be designed to
perfect model performance. This is a crucial area that has to
be filled because reliable data labeling is a necessary step in
the creation of powerful ML models.

II. RESEARCH METHODOLOGY

This study aims to determine how individual aspects of
the data annotation process affect the performance standards
of machine learning models. These aspects include time to

annotate and the data set size. To ensure transparency and
reproducibility, the entire codebase, including the scripts for
creating the dataset and model implementation, is made pub-
licly available on GitHub1. Researchers interested in duplicat-
ing our work or further exploring the data annotation process
can refer to the repository for detailed instructions and access
to the necessary resources.

A. Research questions and/or hypotheses

To achieve the aims of the study, we answer the following
research questions.

• RQ1: How do individual annotation process requirements
impact ML model performance?

• RQ2: What recommendation can be made for the integra-
tion of data annotation process requirements in the machine
learning development cycle based on the experiment’s result?

We also include hypotheses based on a review of the ex-
isting literature and the research questions that we formulated
and answered. The following hypotheses were set:

• H1 : It cannot be argued that the specifications for data
annotation significantly affect the performance metrics of the
machine learning model.

• H0 : We cannot argue for or against that the specifications
for data annotation affect the performance metrics of the
machine learning model.

B. Method used

In this study entails an experiment which compares the
performance of machine learning models using different an-
notated datasets under various process requirements. Scientific
studies often use experimental techniques, which involve the
use of controlled environments to investigate and track the
effects of specific variables on a particular occurrence. The
main objectives of an experimental study are to establish
causal links between variables and test a hypothesis.

Overall, the use of experimental methods in this study
provides a rigorous and systematic approach for evaluating
the influence of data annotation process requirements on the
performance criteria of machine learning models.

By controlling various variables and systematically ma-
nipulating the annotated datasets, researchers can establish
causal relationships between the process requirements and the
model’s performance. This allows for more precise conclu-
sions and better generalizability of the results. The chosen
research strategy facilitates the examination of cause-effect
relationships between variables. The experiment aims to test
the hypothesis that changes to the data annotation process
requirements will lead to alterations in the performance criteria
of the machine learning models. Furthermore, the experiment
enables researchers to control and manipulate the data an-
notation process requirements and assess their impact on the
performance of the machine learning models.

1GitHub repository: https://github.com/adammuntasir/Data-Annotation-
Process-and-ML-Model-Performance

https://github.com/adammuntasir/Data-Annotation-Process-and-ML-Model-Performance
https://github.com/adammuntasir/Data-Annotation-Process-and-ML-Model-Performance


In order to conduct the experiment, two real-life scenarios
have been identified for emulation. Both scenarios involve
a company that provides data labelling services where we
assume that a fixed time and monetary budget exist.

Scenario 1: In this scenario, we assume a requirement that
each frame had to be labeled within a short amount of time,
resulting in each annotator having only a fixed, small amount
of time to decide on a label out of a larger set of possible
labels. This was expected to result in a higher level of wrong
labelled data.

Scenario 2: In this scenario, we assume that the process re-
quirement had changed such that correctness of the labels was
prioritized. To achieve this, the company allowed annotators
unlimited time to carefully select the correct label and em-
ployed double annotation, where two annotators independently
labeled the same dataset to reduce the risk of mislabeling. This
resulted in a longer time allocated to each data frame, which
was expected to lead to higher accuracy. However, due to the
same fixed time and money budget as before, significantly
smaller amounts of labeled data were obtained.

Building upon these scenarios, our experiment consists of
three setups:

Experiment 1: This experiment examined the impact of
dataset noise on the machine learning models by varying the
percentage of labeling error, while keeping the dataset size
constant. Specifically, the labeling error was incrementally
increased from 0% to 20% in fixed intervals (e.g., 5%).
TABLE I provides further details regarding the amount of
data noise and corresponding model name for Experiment 1.

Experiment 2: This experiment examined the impact of
dataset size on the resulting machine learning models by
varying the dataset size, while keeping the percentage of
labeling error constant. the dataset size was incrementally
decreased from 900 to 300 in fixed intervals (e.g., 100 images).
Table II provides details regarding the amount of dataset size
and corresponding model name for Experiment 2.

Experiment 3: This experiment examined the impact of
both the dataset size and the percentage of labeling errors
on the performance of the resulting machine learning models.
the data set size was incrementally increased from 100 to
1000 images in fixed intervals, simultaneously the labeling
error was increased from 0% to 50% in 5 fixed intervals
(e.g., 5%). TABLE III provides further details regarding the
amount of dataset size, the percentage of labelling error and
corresponding model name for Experiment 3.

TABLE I
EXPERIMENT 1:VARY PERCENTAGE OF LABELING ERRORS WHILE

KEEPING THE SAME DATASET SIZE

Model Name data size Label Error Percentage
E1L0 1000 0%
E1L5 1000 5%

E1L10 1000 10%
E1L15 1000 15%
E1L20 1000 20%

TABLE II
EXPERIMENT 2:VARY DATA SET SIZE WHILE KEEPING PERCENTAGE OF

LABELING ERRORS

Model Name data size Label Error Percentage
E2D90 900 0%
E2D80 800 0%
E2D70 700 0%
E2D50 500 0%
E2D30 300 0%

TABLE III
EXPERIMENT 3:VARY BOTH OF DATA SET SIZE AND PERCENTAGE OF

LABELING ERRORS

Model Name dataset size Label Error Percentage
E3D10L0 100 0%
E3D15L5 150 5%
E3D20L10 200 10%
E3D30L15 300 15%
E3D40L20 400 20%
E3D50L25 500 25%
E3D60L30 600 30%
E3D70L35 700 35%
E3D80L40 800 40%
E3D90L45 900 45%

E3D100L50 1000 50%

In this study, a naming convention has been adopted for
the machine learning models resulting from the experiments.
The convention involves assigning names in the form of
E(x)D(y)L(z), where (x) represents a numerical value rang-
ing from 0 to 100. Specifically, ”Ex” denotes the experiment
number, ”Dy” indicates the size of the dataset used to train
the model, and ”Lz” represents the percentage of labeling
error added to the dataset. This naming convention has been
adopted to facilitate the readers’ understanding of the various
combinations of factors that were utilized to train the machine
learning models, and to aid in distinguishing between different
models in a straightforward manner.

C. Terminology

To better understand the relationship between time to anno-
tate, annotation error rate, and the performance of a machine
learning model on unknown data, we developed a causal
diagram Fig.1. The diagram shows that time to annotate has a
direct causal effect on annotation error rate, which in turn has a
causal effect on the performance of the ML model on unknown
data. Time to annotate is a causal factor, while annotation
error rate is a control variable, and the performance of the
ML model is an effect. By examining this causal relationship,
we can better understand the impact of time to annotate and
annotation error rate on the performance of an ML model, and
potentially identify strategies to improve model performance
through perfecting the annotation process. Another probable



Fig. 1. Annotating Time, Error Rate, and Model Performance Diagram

cause that we can show in the annotation process is amount
of data to annotate, and the control variables could be amount
of training data available and that this can have influence on
the performance of the machine learning model.

1) Data collection: The process of examining the impact of
data annotation process requirements on performance criteria
of ML models involves passing data, which is a crucial stage.
The overall performance of the resulting ML models can
be significantly affected by the quality and quantity of data
that is passed. To ensure that the data obtained is indicative
of the real-world settings in which the ML models will be
used, it is crucial to organize and carry out the data passing
procedure. The data for this study is passed from the Microsoft
COCO (Common Objects in Context) dataset, which consists
of 328,000 images and 2.5 million labeled instances of 91
object types [7].

The COCO (Common Objects in Context) dataset passes a
broad number of photos across a wide range of item categories,
including animals like cats, which is one benefit of using
it for data collecting. This can ensure that the data passes
representative of real-world situations and can enhance the
accuracy of the ML models that are produced. Additionally,
The COCO dataset’s pre-labeled and annotated nature passes
it simpler to begin model training and evaluation, which is
another benefit of using it for data collecting. The availability
of an application programming interface (API) and detailed
documentation further facilitates its usage and integration into
the study. Furthermore, the Microsoft COCO dataset recom-
mends the use of a third-party open-source application called
FiftyOne, which makes it even easier to download the entire
dataset or subsets of it and reprocess it in an efficient manner.
Moreover, the application offers various tools to visualize and
export the COCO dataset into different formats such as YOLO
providing greater flexibility in data processing and model
training.

Set of tools are used to conduct the experiments:
• Google colaboratory notebook and Jupyter Notebook
• VOXEL51 Fiftyone

• ALVIS cluster, National Academic Infrastructure for
Supercomputing in Sweden (NAISS) designed for Artificial
intelligence and Machine Learning research with powerful
Graphical processing Units (GPUs) accelerator cards.

• Open OnDemand web portal for accessing Jupyter Note-
book that connected to compute node on ALVIS cluster.

• AlexeyAB Darknet YOLOV4, object detection model
AlexeyAB Darknet is an open-source neural network frame-
work that is primarily used for object detection, image classi-
fication,and other computer vision tasks.

YOLOv4 was chosen for its high accuracy, fast processing
speed, and ability to detect small objects and multiple cate-
gories [12].

2) Data analysis: To assess the impact of the process re-
quirements of data annotations on the performance of machine
learning models, a disturbance was introduced into the data
annotations by intentionally randomly relabeling number of
the annotations of cats to other classes. This was done to
simulate the errors that annotators may make and is known
as class noise [10] or labeling error [11]. This type of noise
occurs for two reasons: either contradictory instances, where
the same instance appears in the dataset with two class
labels, or misclassification, where some instances are labeled
incorrectly.

The dataset was partitioned into three subsets: training,
validation, and testing, consisting of a total of 4000 images.
Among these, 3000 images were allocated to the test dataset,
while the remaining 1000 images were assigned to the training
dataset. Notably, the training data underwent specific modifi-
cations for each model, involving either a reduction in size
or the introduction of label errors. Following the resizing
process, a designated portion constituting 20% of the training
data was set as the validation set. The test dataset exclusively
depicting cats, and it is noteworthy that this dataset is free
from any labeling errors, thereby ensuring the accuracy of
the ground truth annotations. The considerable size of the
test dataset has been deliberately chosen to facilitate thorough
evaluation of the model’s performance. Moreover, this specific
test dataset has been utilized consistently across all 21 models
under examination. Consequently, the results obtained from
this standardized testing procedure provide a reliable basis for
comparative analysis, as the models have been evaluated under
identical conditions, yielding clear distinctions between their
respective performances.

For evaluating the resulting model, a combination of perfor-
mance criteria is being used to obtain a comprehensive eval-
uation of the models performance. These criteria are widely
used in industry for measuring machine learning performance,
and include:

• Intersection over Union (IoU) ”measure gives the sim-
ilarity between the predicted region and the ground-truth
region for an object present in the image, and is defined
as the size of the intersection divided by the union of the
two regions” [17] .

IoU =
Area of Intersection

Area of Union
(1)



• Average IoU a metric used to evaluate the performance
of object detection or segmentation models. It measures
the average overlap between predicted bounding boxes or
segmentation masks and the ground truth annotations.

Average IoU =
1

Total Objects

Total Objects∑
i=1

IoUi (2)

• Precision represents the ratio of true positive predictions
made by the model to all positive predictions. A high
precision value indicates that the classifier has a low rate
of false positive predictions, while a low precision value
suggests that the classifier makes a considerable number
of false positive predictions.

• Average Precision (AP) measures the average precision
of correctly identified relevant items among the retrieved
results.

• Mean Average Precision (mAP)is a metric commonly
used to evaluate the performance of object detection
models. It provides an overall measure of how well the
model performs across multiple object classes.

mAP =

∑C
i=1 APi

C
(3)

Where:

C represents the total number of object classes.
APi denotes the Average Precision for class i.

• Recall is the proportion of true positive prediction out
of all positive instances. High recall indicates that the
model can detect most of the positive instances and low
recall indicates that the model is missing many positive
instances.

• F1- score is the harmonic mean of precision and recall.

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1-score =
2 · Precision · Recall
Precision + Recall

(6)

Where TP is the true positive, TN is the true negative, FP
is the false positive and FN is the false Negative. [19].

III. RESULTS AND DISCUSSION

In the context of the Darknet framework, weight files
are saved at regular intervals during the training process.
Specifically, the weight file is saved every 1000 iterations,
aligning with the training configuration. Given that the models
in this study were trained on 6000 batches, a total of six weight
files are saved, each corresponding to a set of 1000 iterations.

Furthermore, the Darknet framework employs a selection
process to identify the weight file with the highest mean
average precision. This selected weight file is considered the

best weight among the saved checkpoints. Additionally, the
framework also saves the weight file obtained after the 6000th
iteration as the final weight.

To facilitate result comparison in this study, the evaluation
is performed using the final weight on the testing dataset. By
utilizing the final weight displayed in Table. IV, which repre-
sents the model’s learned parameters after the completion of
the training process, a fair and consistent basis for evaluating
the model’s performance on unseen data is established.

Results of the first experiment:
This experiment showed the impact of changing labeling

error percentages on the performance of machine learning
models. Performance metrics such as precision, recall, F1-
score, true positives (TP), false positives (FP), false negatives
(FN), mean average precision (mAP), average IoU, and aver-
age precision (AP) were utilized to demonstrate the effect of
this change. All models tested in this experiment had a data
size of 1000 images in total.

We started with model E1L0 (Experiment1 Label error 0)
with 0% labeling errors. This model achieved a high precision
of 0.92, showing a high rate of true positives, and a recall
of 0.89. The F1-score, which balanced precision and recall,
reached 0.91, indicating a strong overall performance. With
a high mAP of 30.15% and an average IoU of 79.11%, this
model proved accurate and consistent predictions across the
dataset. Overall, this served as a benchmark for comparing the
impact of increasing labeling errors on model performance.

The precision, recall, and F1-score decreased in model E1L5
(Experiment1 Label error 5%) when compared to the first
model as shown in Fig. 3. The number of false negatives (FN)
increased slightly. Despite the decrease in precision, recall, and
F1-score all these led to reduce the Ap to 90.62

Fig. 2. Comparison of average precision and average IoU for E1.

In model E1L10 (Experiment1 Label error 10%), with a
10% labeling error, we observed further declines in precision,
recall, and F1-score. This suggested that the increase in
labeling errors negatively affected the model’s ability to cor-
rectly classify instances. The number of FP and FN increased
noticeably compared to the baseline model. The decrease in



mAP, average IoU, and AP reinforced the notion that the
model’s performance was being affected by the labeling errors.

As we progressed to model E1L15 (Experiment1 Label error
15%), which had a 15% labeling error, we observed a more
significant impact on the model’s performance. The precision,
recall, and F1-score showed further decreases, indicating an
increased number of misclassifications. The decrease in mAP,
average IoU, and AP was more noticeable, emphasizing the
deteriorating performance of the model as depicted in Fig. 2.

Finally, in model E1L20 (Experiment1 Label error 20%),
which experienced a 20% labeling error, we saw a substantial
decrease in precision, recall, and F1-score. The model’s ability
to correctly classify instances was significantly compromised,
as shown by the larger numbers of FN (False Negatives).
The decrease in mAP, average IoU, and AP indicated a
considerable decline in the model’s overall performance.

In conclusion for experiment 1, the analysis of the examined
machine learning models revealed a clear correlation between
the presence of labeling errors and a decline in model per-
formance as depicted in Fig. 2 and Fig. 3. As the percentage
of labeling errors increased, the models’ precision, recall, and
F1-score decreased, indicating reduced accuracy. The number
of false negatives increased, leading to a deterioration in the
model’s overall performance.

Fig. 3. Comparison of recall, f1-score and precision for E1.

Results of the second experiment:
The results obtained from examining the impact of dataset

size on machine learning models provided insights into how
varying the dataset size affected model performance while
keeping the labeling error constant. We used the same per-
formance metrics that we used in the first experiment to show
the effects of dataset size on model performance. All models
tested in this experiment had a 0 % labelling error in total.

Starting with discussing the result for model E2D90 (Exper-
iment 2 data size 900), which consisted of a dataset size of 900
and had no labeling errors. High precision, recall, and F1-score
in this model showed that it accurately classified occurrences
with few false positives and false negatives. The TP value was
high, and the FP and FN values were low. The mAP of 30.24%
and average IoU of 79.15% indicated accurate and consistent
predictions across the dataset. Additionally, the high average
precision (AP) of 90.73% confirmed the high performance of
the model.

Moving to model E2D80 (Experiment 2 data size 800), with
a dataset size of 800, we observed similar performance to the
baseline model (E2D90). The precision, recall, and F1-score
remained high, indicating that the model maintained its ability
to accurately classify instances. The slight decrease in TP and
FN values suggested a small reduction in overall performance,
but it did not significantly affect the model’s accuracy. The
mAP, average IoU, and AP scores also remained consistently
high, indicating that the model could still provide reliable
predictions despite the reduction in dataset size.

In model E2D70 (Experiment 2 data size 700), with a
dataset size of 700, we started to observe more noticeable
changes in model performance. The precision, recall, and F1-
score remained high but showed slight decreases compared
to the previous models. The decrease in TP and increase in
FP and FN values indicated a higher rate of misclassification.
However, the model still maintained a reasonably high level
of performance. The decline in mAP, average IoU, and AP
suggested a slight decrease in overall performance, reflecting
the impact of the reduced dataset size.

In model E2D50 (Experiment 2 data size 500), with a
dataset size of 500, we observed further decreases in precision,
recall, and F1-score. The model’s ability to accurately classify
instances was affected as the TP value decreased and the
FP and FN values increased. The decline in mAP, average
IoU, and AP indicated a noticeable reduction in performance,
emphasizing the impact of the reduced dataset size on the
model’s predictive capabilities as shown in Fig. 4.

Fig. 4. Comparison of average precision and average IoU for E2.



Finally, in model E2D30 (Experiment 2 data size 300), with
a dataset size of 300, we observed significant decreases in pre-
cision, recall, and F1-score. The model’s ability to accurately
classify instances was considerably compromised, as indicated
by the lower TP value and higher FP and FN values. The
decrease in mAP, average IoU, and AP underscored the sub-
stantial decline in the model’s overall performance due to the
significantly reduced dataset, examine the graphic displayed
in Fig. 4 and Fig. 5. The results suggested that a smaller
dataset size adversely affected the model’s performance.

In conclusion for experiment 2, the analysis of the examined
machine learning models revealed a clear correlation between
the dataset size and model performance. As the dataset size
decreased, the precision, recall, and F1-score of the models
also decreased, indicating a deterioration in the overall perfor-
mance of the models.

Fig. 5. Comparison of recall, f1-score and precision for E2.

Results of the third experiment:
The findings showed that as the dataset size and labeling

error increased (from D10L0 to D30L15), there was an im-
provement in the values of mAP, AP, and IoU, indicating
enhanced overall performance see Fig. 6. The best perfor-
mance was observed at the E3D30L15 model, while the
lowest values were attained at E3D100. These results suggest
that, for relatively small dataset sizes, the impact of size
supersedes the influence of labeling errors. However, after
reaching the E3D30L15 model, the effect of labeling errors
becomes more prominent, resulting in decreasing values even
with an increased dataset size.

For instance, the E3D10L0 model, with a dataset size of 100
images and a labeling error of 0%, achieved an mAP@0.50
of 27.54%. Conversely, the E3D30L15 model, with a dataset
size of 300 images, achieved an mAP@0.50 of 28.82%. These
findings showed that a larger amount of accurately labeled data
positively influenced the model’s ability to accurately detect
objects.

Similarly, as the labeling error rate increased (from L20
to L50), the performance metrics consistently decreased, sig-

Fig. 6. Comparison of average precision and average IoU for E3.

nifying a reduction in performance attributable to erroneous
annotations.

In conclusion, the results of this experiment reflected the
effect of both data size and labeling errors on model perfor-
mance. Increasing the dataset size generally resulted in im-
proved performance; however, the presence of labeling errors
could diminish these gains, refer to Fig. 6 and Fig. 11. These
findings underscore the importance of carefully considering
both dataset size and the quality of annotations when training
machine learning models.

Comparing the three experiments:
From the results, it is shown that when the data size

remained constant and the label error percentage increased,
the average precision and the number of true positives (TP)
decreased. This effect is particularly evident when comparing
the E1L0 model, characterized by a label error rate of 0%,
with the E3D100L50 model, where the label error rate reaches
50% this indicated by Fig. 7. Since the dataset size remains
consistent across these experiments with total of 1000 images,
it allows for a valid comparison, highlighting the highest val-
ues of label errors. Specifically, the average precision declined
from 90.44% to 79.37%, TP count decreased from 3098 to
2091, F1-score and recall decreased as indicated in Fig. 8.
These trends were consistently observed across all models
within the E1 series, as well as in the E3D100L50 model.

On the other hand, when maintaining a constant label
error percentage while increasing the data size, both average
precision and TP count exhibited an upward trend. This pattern
becomes evident when transitioning from a dataset size of
1000 to 100 images. The average precision decreased from
90.44% to 82.63% , accompanied by a TP count rise from
2787 to 3098. Average precision,average IoU,score and recall
were slightly decreased as shown in Fig. 9 and Fig. 10.
This effect was consistently observed across all models in
the E2 series, as well as in the E1L0 and E3D10L0 models,



Fig. 7. Comparison of average precision and average IoU for E1 and
E3D100L50.

Fig. 8. Comparison of recall, f1-score and precision for E1 and E3D100L50.

which represent full-sized datasets without label errors and the
smallest dataset size without label errors, respectively.

Answers to the research questions:
Based on the information compiled and explained in the

previous section, along with the results obtained from the
experiments, we will present our analysis and draw conclu-
sions to address the research questions in two areas: the
requirements of the individual annotation process (RQ1) and
the integration of the data annotation process (RQ2).

Starting with RQ1: How do individual annotation pro-
cess requirements impact ML model performance?

To answer this question, we will refer to the two scenario
that we had:

Scenario 1: Here the requirement was to label each frame
within a short amount of time. This setup was expected to
result in a higher level of noise and a larger amount of
data. From the results we chose some models e.g., E1L0,
E1L5, E1L10, E1L15, E1L20): These models were trained
with limited time for annotation. As expected, the performance
metrics show a relatively average IoU compared to other

Fig. 9. Comparison of average precision and average IoU for E1L0, E2 and
E3D10L0

Fig. 10. Comparison of recall, f1-score and precision for E1L0, E2 and
E3D10L0.

Fig. 11. Comparison of recall, f1-score and precision for E3.



TABLE IV
MODEL TESTING RESULTS(FINAL WEIGHTS)

Model mAP AP TP FP FN Precision Recall F1-score Average Detections Unique Detection
Name IoU Count Truth Count Time
E1L0 30.15% 90.44% 3098 254 283 0.92 0.89 0.91 79.11% 4600 3481 56
E1L5 30.21% 90.62% 3076 232 405 0.91 0.88 0.90 77.49% 4854 3481 24

E1L10 29.98% 89.95% 3036 238 445 0.90 0.87 0.89 76.67% 5215 3481 24
E1L15 29.66% 89.99% 2967 234 514 0.86 0.85 0.86 72.85% 5961 3481 23
E1L20 29.32% 87.95% 2917 250 564 0.82 0.84 0.83 69.19% 6338 3481 55
E2D90 30.24% 90.73% 3088 239 393 0.93 0.89 0.91 79.15% 4614 3481 53
E2D80 30.34% 91.01% 3105 237 376 0.93 0.89 0.91 79.25% 4657 3481 53
E2D70 29.88% 89.64% 3071 247 410 0.93 0.88 0.90 78.56% 4469 3481 52
E2D50 29.75% 89.26% 3099 254 442 0.92 0.87 0.90 77.80% 4485 3481 23
E2D30 29.12% 87.35% 2960 265 541 0.92 0.85 0.88 77.00% 4249 3481 23

E3D10L0 27.54% 82.63% 2787 366 694 0.88 0.80 0.84 73.07% 4218 3481 25
E3D15L5 27.80% 83.41% 2785 284 696 0.90 0.80 0.85 74.98% 4265 3481 24
E3D20L10 28.29% 84.87% 2839 256 642 0.91 0.82 0.86 75.36% 4422 3481 25
E3D30L15 28.82% 86.45% 2901 250 580 0.89 0.83 0.86 74.35% 4828 3481 26
E3D40L20 28.18% 84.53% 2743 233 738 0.83 0.79 0.81 69.05% 5731 3481 26
E3D50L25 28.09% 84.26% 2658 220 823 0.79 0.76 0.77 65.91% 6072 3481 25
E3D60L30 28.67% 86.00% 2779 225 702 0.79 0.80 0.79 66.37% 6570 3481 26
E3D70L35 27.65% 82.95% 2467 159 1014 0.68 0.71 0.69 57.02% 7552 3481 24
E3D80L40 27.55% 82.65% 2353 149 1128 0.63 0.68 0.65 53.16% 7819 3481 24
E3D90L45 27.09% 81.27% 2218 168 1263 0.56 0.64 0.60 47.55% 8411 3481 24

E3D100L50 26.46% 79.37% 2091 107 1390 0.54 0.60 0.57 45.58% 8678 3481 24

scenarios.
Scenario 2: In this scenario, annotators were given unlimited

time to carefully select the correct label. We selected some
models (e.g., E2D90, E2D80, E2D70, E2D50, E2D30): the
performance metrics showed higher average IoU compared to
Scenario 1.

From the two scenarios can conclude that individual an-
notation process requirements have a notable impact on ML
model performance. Scenario 2, with a focus on correctness of
the labels, generally leads to higher performance. However, it
also results in fewer labeled data samples. On the other hand,
Scenario 1, with limited time for annotation, provides a larger
amount of data but at the cost of lower performance.

For RQ2: What recommendation can be made for
the integration of data annotation process requirements
in the machine learning development cycle based on the
experiment’s result?

Based on the experiment’s results, several recommendations
can be made for integrating data annotation process require-
ments in the machine learning development cycle:

1. Implementation of consistent annotation methods: It is
advisable to establish a set of standardized annotation methods
that ensure consistency across the annotated data. By employ-
ing such methods, the annotation process can be expedited,
thereby reducing the time required for annotation. Moreover,
the utilization of consistent annotation methods can effectively
mitigate the occurrence of errors made by annotators. This
serves to enhance the overall quality and reliability of the
annotated data.

2. Determination of best data quantity and label error rate:
An important consideration in the data annotation process is
the choice of a suitable combination of the dataset size and the
allowable label error rate. To achieve this, it is recommended

to carefully analyze and find the optimal interval of time for
each frame during the annotation process. This interval should
strike a balance between obtaining a sufficiently large dataset
and ensuring that the label error rate remains within acceptable
limits.

The study done by Nazari et al. [11] illustrates how class
noise affects the performance of machine learning algorithms.
In order to increase the efficiency of machine learning models,
it needs to reduce class noise in training data. The paper rec-
ommends that future research concentrates on developing more
resilient algorithms and improving noise reduction techniques.
In relation to this work, our research findings align with Nazari
et al.’s study by highlighting the importance of individual
annotation process requirements on ML model performance.
Our study shows that factors like annotation method and
experience of annotators, labelling error strongly affect the
performance of ML models, much as class noise impacts the
performance of machine learning algorithms.

Similarly, Taran et al. [13] emphasize the significance of
high-quality ground truth annotations for correct and efficient
semantic image segmentation. They found that variations in
annotation quality can lead to decreased performance and
increased computational expense. Our research echoes these
findings by showing that the quality of annotations, influenced
by individual annotation process requirements, affects the
performance of ML models.

The study used data from the Microsoft COCO (Common
Objects in Context) dataset. By employing diverse datasets
that employ similar metrics like precision, recall, and F1-
score, it is possible to balance false positives (FPs) and false
negatives (FNs). To achieve that we could use ensemble
approaches, which combine the predictions of various models



by training several models with various setups or techniques
and combining their predictions [23].

In data annotation and model creation, the trade-off between
using expert annotations, crowd-sourcing tactics, unsupervised
learning, or automated annotation approaches is crucial to
consider. Expert annotations by subject matter experts or
skilled annotators provide high-quality annotations with pre-
cise labels, making them useful for complex datasets. How-
ever, they could be expensive, time-consuming, and resource
intensive [20]. Crowdsourcing annotation tasks allow for cost
efficiency, and quicker response times, but may cause an an-
notation’s quality to vary because of the variety of annotators.
For dependable findings, effective quality control procedures
are crucial [21]. Without human intervention, unsupervised
learning automates labeling using clustering and machine
learning. It is useful for huge datasets; however, biases and
errors could develop, needing adjustment for better accuracy
[22]. The choice of annotation approaches depends on dataset
characteristics, resources, timelines, and quality requirements.
Balancing factors like cost, time and quality is crucial. The
decision should consider the strengths and limitations of each
approach, based on the project’s specific requirements and
constraints.

Future research
• Instead of using the YOLOv4 object detection model,

we could employ different machine learning models such as
Faster R-CNN (Region-based Convolutional Neural Network)
and SSD (Single Shot MultiBox Detector) to compare their
performance under various data annotation scenarios.

• Investigate different process requirements to provide a
better understanding of how these requirements could affect
model performance.

• Using different dataset instead of Microsoft COCO dataset
for the experiments.

• Add another scenario to run more experiments which lead
to a more correct result.

IV. LIMITATIONS AND VALIDITY THREATS

We considered three validity issues in our study namely
external , internal and construct validity.

External Validity: In our study, external validity was asso-
ciated with the sample we collected from the Microsoft COCO
(Common Objects in Context) dataset, which included specific
types of images and labeled instances. The representativeness
of this dataset to other domains or applications may have
varied, thereby affecting the generalizability of the findings.
Furthermore, the study focused on two scenarios related to data
annotation requirements within a particular company, which
may not directly apply to other industries, organizations, or
annotation processes with distinct characteristics.

Internal Validity: The study’s objective was to enhance
internal validity by investigating the influence of controlled
variables, specifically dataset noise and dataset size, on the
performance of the model. This was achieved through metic-
ulously designed scenarios and experiments conducted in
controlled environments. By concentrating on these particular

variables, the study aimed to establish a clear relationship
between the independent variables and the dependent variable,
thus meeting the criteria for claiming internal validity, as
outlined in the provided definition.

Construct Validity: In this study, we aimed to ensure
construct validity by accurately standing for the theoretical
concept of data annotation requirements and their impact on
the performance of machine learning models. To achieve this,
we conducted an extensive literature review and formulated
research questions and hypotheses that directly aligned with
our study goals. To evaluate the machine’s performance, we
employed industry-standard performance criteria, including
intersection over Union (IoU), average IoU, precision, re-
call, and F1-score. By adhering to these widely recognized
metrics, we made sure there was a strong match between
the variables being examined and the theoretical ideas we
wanted to investigate. Recognizing the crucial role of the data
annotation process in advancing machine learning models, we
investigated various aspects of this process and their overall
influence.

V. CONCLUSIONS

The study focused on examining the influence of data
annotation process requirements on the performance criteria
of machine learning (ML) models. Performance metrics such
as precision, average precision, average IoU, F1-score and
recall that the requirements for the data annotation process
significantly affected the performance criteria of machine
learning models. Therefore, it is important to have a well-
defined data annotation process with clear requirements to
ensure the quality of the annotated data. Three experiments
with different value of data size and labelling error conducted
in this study. The first experiment proved the impact of label
errors on ML models. It was observed that the percentage
of labeling errors increased, precision, recall, and F1-score
decreased, indicating a decline in performance. Moreover, an
increase in false positives and false negatives had a negative
effect on the overall performance of the model.

The second experiment demonstrated the impact of dataset
size on ML models. It was observed that as decreasing the
dataset size had noticeable effects on precision, recall, and F1-
score and that led to a decrease in overall model performance.

The third experiment explored the performance of ML
models with varying dataset sizes and labeling error percent-
ages. The results indicated that larger dataset sizes generally
improved object detection performance, as reflected in higher
mAP values. However, the presence of labeling errors nega-
tively affected model performance, even with a larger dataset.

The main findings of the study indicate that the performance
of ML models is strongly influenced by the data annotation
process requirements. By addressing this knowledge gap, it
paves the way for future research and the development of high-
performance models.

Future work includes comparing different machine learning
models, using alternative datasets, and conducting more sce-
narios and experiments to enhance our understanding of data



annotation’s impact on model performance. These efforts will
contribute to advancing the field and guiding future research.
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APPENDIX A

MODEL TESTING RESULTS(BEST WEIGHTS)

TABLE V
MODEL TESTING RESULTS(BEST WEIGHTS)

Model mAP AP TP FP FN Precision Recall F1-score Average Detections Unique Detection
Name IoU Count Truth Count Time
E1L0 31.10% 93.31% 3155 341 326 0.90 0.91 0.90 69.19% 13356 3481 52
E1L5 31.05% 93.15% 3090 505 391 0.86 0.89 0.87 68.93% 15980 3481 26
E1L10 30.56% 91.67% 3200 702 281 0.82 0.92 0.87 62.10% 24505 3481 25
E1L15 31.08% 93.24% 3187 617 294 0.84 0.93 0.87 65.60% 18189 3481 26
E1L20 30.87% 92.62% 3076 981 405 0.76 0.88 0.82 58.20% 16306 3481 56
E2D90 31.16% 93.47% 3216 395 265 0.89 0.92 0.91 72.54% 7825 3481 53
E2D80 30.71% 91.12% 3161 306 320 0.91 0.91 0.91 76.46% 5185 3481 53
E2D70 30.99% 92.97% 3170 287 311 0.92 0.91 0.91 72.78% 8687 3481 51
E2D50 30.66% 91.97% 3171 635 310 0.83 0.91 0.87 61.20% 12911 3481 26
E2D30 30.68% 92.03% 3126 309 355 0.91 0.90 0.90 73.44% 8190 3481 26

E3D10L0 28.62% 85.87% 2903 349 578 0.89 0.83 0.86 72.73% 5744 3481 26
E3D15L5 29.32% 87.96% 2939 616 542 0.83 0.84 0.84 62.52% 11294 3481 26
E3D20L10 29.00% 87.01% 2934 406 547 0.88 0.84 0.86 71.93% 5825 3481 26
E3D30L15 28.36% 85.07% 2786 495 695 0.85 0.80 0.82 68.74% 5961 3481 25
E3D40L20 28.97% 86.91% 2836 794 645 0.78 0.81 0.80 62.33% 2836 3481 26
E3D50L25 28.69% 86.07% 2611 938 870 0.74 0.75 0.74 58.70% 8608 3481 25
E3D60L30 27.64% 82.91% 2663 1824 818 0.59 0.77 0.67 44.71% 17717 3481 25
E3D70L35 28.91% 86.74% 2406 1924 1075 0.56 0.69 0.62 43.08% 15235 3481 24
E3D80L40 29.28% 87.84% 2759 3654 722 0.43 0.79 0.56 32.33% 32440 3481 24
E3D90L45 30.41% 91.24% 2814 3545 667 0.44 0.81 0.57 34.49% 20915 3481 25

E3D100L50 30.18% 90.55% 2648 2854 833 0.48 0.76 0.59 38.07% 16786 3481 24



APPENDIX B

MAIN PERFORMANCE INDICATORS BY MODELS

Fig. 12. Comparison of main performance indicators by models.
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