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ABSTRACT 
Sex steroids such as androgens can exert both positive and negative effects in 
tissues and are important in physiology and pathophysiological states of men 
and women. Androgens originate mainly from the gonads. Local androgen 
levels in tissues are also regulated by intracrine processes, resulting in local 
levels not always being reflected by circulating levels. Mouse models are 
commonly used to study sex-steroid related disorders, but a lack of 
sufficiently sensitive and specific methods has prohibited accurate 
measurement of the low sex steroid levels in mouse tissues. Here, we 
developed and validated a gas chromatography – tandem mass spectrometry 
method capable of determining a broad panel of sex steroids in tissues and 
used it to map local sex steroid levels in tissues of mice in different 
conditions/treatments. We found that supplementing castrated male mice with 
dehydroepiandrosterone (DHEA) caused high androgen levels in the prostate 
and liver, raising concerns about the unsolicited use of DHEA by the public. 
Also, the gut microbiota was involved in the deconjugation of intestinal 
androgens, suggesting a possible mechanism for the relationship between 
androgen-related conditions and the gut microbiota proposed by experimental 
and epidemiological studies. Finally, progesterone was the most abundant sex 
steroid in castrated male mice, and the progesterone levels were surprisingly 
unaffected by both adrenalectomy and castration. We found that dietary 
progesterone was absorbed into tissues of male mice; therefore, we suggest 
food as a possible source of progesterone in men, perhaps of relevance for 
men with prostate cancer.  

In conclusion, measurement of local sex steroid levels in tissues is a novel 
method that could bring new understanding of pathways and mechanisms in 
androgen-related disorders and contribute to future development of more 
selective treatments for sex steroid-related diseases. 

Keywords: androgens, progesterone, intracrinology, gastrointestinal tract, 
gut microbiota 
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SAMMANFATTNING PÅ SVENSKA 
Könshormoner styr flera viktiga processer i kroppen och kan ha både positiva 
och negativa effekter. Många vävnader kan både bilda och bryta ner 
könshormoner, därför reflekterar inte alltid nivåerna av hormon i blodet 
nivåerna som finns lokalt i vävnader. Att mäta könshormoner i vävnader är 
svårt, eftersom de innehåller så många andra substanser. Dessutom är organ 
hos försöksdjur, som möss, ofta ganska små så man har inte så mycket 
material att arbeta med. I dessa studier har vi tagit fram och validerat en ny 
effektiv metod som kan mäta låga nivåer av könshormoner i svåra material, 
och använt den för att skapa en karta över könshormonnivåer i vävnader hos 
möss, och mätt hur de påverkas av olika typer av behandlingar. 

Ett intressant fynd som vi gjort är att androgener, de så kallade manliga 
könshormonerna, utsöndras från kroppen via gallan till tarmen. I tarmen kan 
tarmbakterier återaktivera hormonet genom att ta bort den molekyl som 
kopplats på för att möjliggöra utsöndring. Det här kan vara ett av de sätt som 
tarmbakterier och könshormoner interagerar. Just nu forskas det mycket om 
just interaktionen mellan tarmbakterier och könshomoner. 

För att utreda hur mycket av hormonerna i hanmöss som kommer från 
testiklarna respektive binjurarna, två viktiga hormonproducerande organ, har 
vi undersökt lokala hormonnivåer i ett flertal vävnader efter att ha opererat 
bort testiklar (kastration) och/eller binjurar. Det visade sig att progesteron, 
som är ett hormon som är viktigt i den kvinnliga reproduktionen men som 
även finns hos hanar, inte påverkades nämnvärt av någon av operationerna. 
Överraskande nog fanns det höga progesteronnivåer i maten som mössen 
åt. Dessutom finns progesteron i mänsklig föda (främst mat som kommer från 
vuxna hondjur som mejeriprodukter och ägg). Eftersom vi visade att 
progesteron kan tas upp i tarmen kan man fråga sig om progesteron i mat kan 
ha någon påverkan för människor. Detta skulle kunna vara relevant för 
patienter med prostatacancer, då det finns andra studier som visat att 
progesteron kan ha betydelse för den sjukdomen. När man har undersökt hur 
kosten påverkar prostatacancer i stora studier på människor har resultaten 
varit blandade, men man har aldrig direkt funderat på progesteronets roll. 

Sammanfattningsvis har studierna i denna avhandling bidragit med ny 
kunskap om hur könshormoner fördelas i kroppen, liksom uppslag på nya 
forskningsfrågor för att bättre förstå androgenrelaterade sjukdomar som 
exempelvis prostatacancer.
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INTRODUCTION 
Androgens such as testosterone have been known for more than eight 
decades 1. Their levels in men have been manipulated a lot longer, in ancient 
times with surgical castration of for example sex offenders and harem 
employees 2, and nowadays both clinically (castration therapy in prostate 
cancer) and illicitly (androgen doping i.e. anabolic steroids) 3. Androgens 
regulate fetal development of male genitals, and later during puberty 
development of secondary sex characteristics such as body shape, voice, and 
reproductive development. They are vital for male reproductive functions and 
involved in many bodily processes and disease states of both men and 
women 4. Importantly, the effects of androgens can lead to both positive and 
negative end results in different tissues, such that hormonal treatment could 
treat one illness in one tissue but at the same time infer negative side effects 
or risks in another tissue. 

One might assume that the sex steroid levels of the most common laboratory 
animal, the mouse, were already well known and characterized allowing 
research on important androgen-related diseases like prostate cancer. 
However, even though mice have long been used in androgen research, there 
has been a lack of sufficiently sensitive and specific analysis methods to 
characterize local levels in tissues until the last decade. In this thesis, I will 
start by giving a brief overview of androgens and progesterone, their 
mechanisms, effects, and clinical relevance, then dive into the different areas 
in which we have started mapping androgen and progesterone levels. Then I 
will move on to aspects regarding methods we have used, the results of each 
included paper and finally discuss their possible meanings and implications. 
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ANDROGENS 

ANDROGEN PHYSIOLOGY 

 

Figure 1 Hypothalamic-pituitary-gonadal (HPG) axis regulation of testicular 
testosterone production. The hypothalamus produces gonadotropin-releasing 
hormone (GnRH), which causes the anterior pituitary to release luteinizing hormone 
(LH) that stimulates testicular testosterone production. Circulating testosterone 
exerts a negative feedback on both the hypothalamus and the pituitary. 

Androgens are the so-called male sex hormones but they are present and have 
important roles in both sexes. The most abundant androgen is testosterone. In 
males, testosterone is mainly produced by Leydig cells in the testicles, 
regulated by luteinizing hormone (LH). The gonadotropins, LH and follicle-
stimulating hormone (FSH), are released from the pituitary gland in response 
to hypothalamic gonadotropin-releasing hormone (GnRH) in the 
hypothalamic-pituitary-gonadal axis (HPG axis) 5 (Figure 1). The testicles 
contain extremely high local levels of testosterone to enable spermatogenesis, 
which is supported by FSH 5.  

In the blood, testosterone circulates largely bound to sex hormone-binding 
globulin (SHBG), prolonging testosterone’s half-life and buffering rapid 
changes in hormone levels 7. Circulating testosterone exerts a negative 
feedback on the hypothalamic GnRH and pituitary LH secretion, with an 
increased serum level of testosterone leading to decreased stimulation of 
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production 8 (Figure 1). In peripheral tissues such as prostate, skin, liver, 
bone, and hair follicles testosterone can be metabolized by reduction into the 
more potent androgen dihydrotestosterone (DHT), that binds more strongly 
than testosterone to the androgen receptor 9. The levels of DHT in target 
tissues such as the prostate are tightly regulated by expression of 5-
reductase enzymes 10. Another possible metabolic route from testosterone is 
aromatization into estradiol that binds to estrogen receptors 11 (Figure 2).  

 

Figure 2 Simplified schematic of sex steroid metabolic routes. Sex steroids in black 
are measured with the gas chromatography-mass spectrometry assay used in this 
thesis. DHEA = dehydroepiandrosterone; A-diol = androstenediol; A-dione = 
androstenedione; CYP17A1 = cytochrome P450 17-hydroxylase/17,20-lyase; DHT 
= dihydrotestosterone; HSD = hydroxysteroid dehydrogenase; 17-OH-Prog = 17-
hydroxyprogesterone; SRD5A = 5-steroid dehydrogenase.  
Adapted from Schiffer et al 2018 6. 

In addition to the production in testes, testosterone can also be produced in 
target tissues from adrenal precursors such as dehydroepiandrosterone 
(DHEA) and androstenedione (Figure 2). Adrenal DHEA production is 
regulated by the hypothalamic-pituitary-adrenal (HPA) axis, similar to the 
HPG axis controlling testicular testosterone, although DHEA exerts no 
negative feedback on the hypothalamus or pituitary 12, 13 (Figure 3). Synthesis 
from adrenal precursors is the predominant route of androgen production in 
castrate males 14 and, together with the ovary, in females 15.  
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reductase enzymes 10. Another possible metabolic route from testosterone is 
aromatization into estradiol that binds to estrogen receptors 11 (Figure 2).  

 

Figure 2 Simplified schematic of sex steroid metabolic routes. Sex steroids in black 
are measured with the gas chromatography-mass spectrometry assay used in this 
thesis. DHEA = dehydroepiandrosterone; A-diol = androstenediol; A-dione = 
androstenedione; CYP17A1 = cytochrome P450 17-hydroxylase/17,20-lyase; DHT 
= dihydrotestosterone; HSD = hydroxysteroid dehydrogenase; 17-OH-Prog = 17-
hydroxyprogesterone; SRD5A = 5-steroid dehydrogenase.  
Adapted from Schiffer et al 2018 6. 

In addition to the production in testes, testosterone can also be produced in 
target tissues from adrenal precursors such as dehydroepiandrosterone 
(DHEA) and androstenedione (Figure 2). Adrenal DHEA production is 
regulated by the hypothalamic-pituitary-adrenal (HPA) axis, similar to the 
HPG axis controlling testicular testosterone, although DHEA exerts no 
negative feedback on the hypothalamus or pituitary 12, 13 (Figure 3). Synthesis 
from adrenal precursors is the predominant route of androgen production in 
castrate males 14 and, together with the ovary, in females 15.  
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Both testosterone and DHT exert their effects by binding to the androgen 
receptor, an intracellular ligand-activated transcription factor, that is 
widespread in the body and expressed for example in reproductive organs, 
intestine, muscles, and brain 16. The expression of the androgen receptor is 
subject to tissue-specific regulation, both by the androgen levels themselves 
and by a variety of transcription factors, in both men and women 9.  

Clinically, androgens have obvious positive effects 17, ensuring normal 
physiology and reproduction; but also negative effects, illustrated by side 
effects of illicit androgen use, including liver toxicity, cardiovascular disease, 
psychological issues, and acne 18. The last decades, prescription of 
testosterone to older men has increased rapidly, despite there being no new 
approved indications for testosterone supplementation to men without 
pathological reproductive disorders. The alleged purpose is rejuvenation, 
with hope for increases in mood, libido, and energy levels. The possible risks 
with this kind of supplementation on for example prostate malignancy is still 
not fully known 19. There has long been discussion of risks connected to 
cardiovascular disease 20. Recently, a large randomized trial showed no 
increase of cardiovascular events in men with hypogonadism treated with 
transdermal testosterone, compared to placebo 21. The study did not include 

Figure 3 Hypothalamic-pituitary-adrenal axis regulation of adrenal androgen 
production. The hypothalamus produces corticotropin-releasing hormone (CRH), 
which causes the anterior pituitary to release adrenocorticotropic hormone 
(ACTH) that stimulates adrenal hormone production, including 
dehydroepiandrosterone (DHEA). DHEA can be converted to testosterone in 
peripheral target tissues. 
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individuals without a diagnosis of hypogonadism. In general, possible 
negative effects of androgen treatment may be tissue-specific, meaning that 
increased androgen levels might be beneficial in one tissue but confer a risk 
of disease in another.  

INTRACRINOLOGY 
Hormones, including the sex steroids, are by definition chemical messengers. 
In traditional endocrinology, hormones are produced by designated glands, 
secreted into the circulation, and exert effects on cells in target tissues by 
binding to their receptor 22. Hormones can have endocrine, paracrine, or 
autocrine effects, corresponding to effects on receptors in the whole body, on 
nearby cells, or on the cell itself. The last 30 years, however, there has been 
increasing attention given to the fact that local processes in target cells also 
regulate local sex steroid levels by transforming precursors or hormones into 
(more) active hormones that can bind to their receptor in the same cell and 
thus exert a biologic effect. Local regulation of sex steroid hormones was 
first described using the term intracrinology by Labrie 23, 24. Thus, as the 
required enzymes for androgen production are expressed in several peripheral 
tissues, measurement of the circulating levels does not always reflect local 
levels 6. This was recently demonstrated in a study comparing local sex 
steroid levels in the periprostatic vein with circulating sex steroid levels in 
patients undergoing radical prostectomy for prostate cancer 25. 

The prostate is the largest producer of DHT from circulating testosterone by 
expression of the enzyme 5-reductase (SRD5A), and this local production 
has been suggested to influence circulating DHT levels 26. Prostate 
hyperplasia, a benign condition which can have large effects on patients’ 
quality of life, can be treated with 5-reductase inhibitors such as finasteride 
that block local synthesis of DHT and thereby cause a decrease in prostate 
size and a relief of symptoms 27. Another example of a clinical application of 
intracrinological mechanisms is the use of aromatase inhibitors in the 
treatment of breast cancer, inhibiting the local production of estradiol from 
testosterone and other precursors 28, 29. The schematic in figure 2 is a 
simplified representation as the intracellular DHT production in target tissues 
can use other pathways by bypassing T and instead use 17-
hydroxyprogesterone and androsterone as intermediates, referred to as the 
backdoor pathway to DHT 6, 30-33. The backdoor pathway was first discovered 
in the tammar wallaby (a marsupial, where undeveloped young can be easily 
accessed in the pouch of the mother) but is also important in mammals 
including humans 32, 34.  
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Androgens can be conjugated in target tissues and mainly in the liver to 
increase water solubility and facilitate excretion (Figure 4). Glucuronidation 
is the most important conjugation for androgens and the group of enzymes 
that catalyze this reaction – the uridine diphosphate-glucuronosyltransferases, 
is expressed in several peripheral androgen target tissues 35. In addition, 
DHT, androsterone, and DHEA can be sulfonated by sulfotransferases that 
are also widely expressed in target tissues 6, 36. 

Figure 4 Simplified, expanded, schematic of androgen metabolic routes. Abiraterone is 
used in prostate cancer to block CYP17A1, inhibiting adrenal androgen production. Sex 
steroids in black are measured with the gas chromatography mass spectrometry assay 
used in this thesis. DHEA = dehydroepiandrosterone; 3-diol = 3 androstanediol, A-
diol = androstenediol; CYP = Cytochrome P450; A-dione = androstenedione; 
Preg =  pregnanolone, Prog = progesterone; CYP17A1 = 17-hydroxylase/17,20-lyase; 
DHT = dihydrotestosterone; HSD = hydroxysteroid dehydrogenase; 17-OH-Prog = 17-
hydroxyprogesterone; -G = glucuronide; UGT = uridine diphosphate-
glucuronosyltransferase; SRD5A = 5-steroid dehydrogenase.  
Adapted from Schiffer et al 2018 6. 
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PROSTATE CANCER 
Intracrinology is of major clinical importance in prostate cancer, the most 
common non-skin cancer in men. Prostate cancer has a very variable course, 
from slow-growing tumors that do not alter life expectancy to rapidly 
growing and metastatic tumors. Nowadays, most cases are detected early, 
when the disease is largely treatable by surgical removal or radiologic 
treatment of the tumor. However, in cases when local advanced disease or 
metastases are discovered, anti-hormonal treatments are used to slow the 
growth of tumors 12, 37.  

Most prostate tumors are, at least at first, dependent on androgens, as shown 
already in the 1940s when Huggins and Hodges proved that advanced 
prostate cancer was dependent on androgens, by surgically castrating patients 
or by suppressing testosterone production by estradiol administration, thereby 
causing decreased cancer activity 38, 39. Medical castration, also referred to as 
androgen deprivation therapy (ADT), is nowadays most often achieved by 
GnRH analogs (agonists or antagonists) that suppress the testicular 
production of testosterone and in the early stages of treatment cause a 
reduction of tumor size and decreased disease burden 40. However, eventually 
most cases of metastatic prostate cancer develop into castration-resistant 
prostate cancer 41. Additional drugs are added to ADT to further decrease 
hormone levels or actions. Antiandrogens have been used to counter the 
effects of castration-resistant prostate cancer for the last 20 years, the 
currently most used substance is enzalutamide 42. Additionally, during the last 
decade, cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) 
inhibitors such as abiraterone are used to inhibit the adrenal production of 
androgen precursors in patients with castration-resistant prostate cancer 43 
(Figure 4). Resistance to the treatment eventually occurs, but abiraterone 
treatment can increase overall survival of prostate cancer patients by 3-17 
months 43, 44.  

The effectiveness of the above treatments is based on the fact that most cases 
of castration-resistant prostate cancer are still dependent on androgens, as 
evidenced by local levels of active androgens in tumor biopsies, and 
upregulation of steroidogenic enzymes and androgen receptors in tumor 
tissue 44, 45. The tumor itself can locally produce the potent androgen DHT 
from circulating precursors and thus can continue to grow despite ADT 12, 33. 
Current research efforts aim to identify new inhibitors that target other parts 
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of the steroid synthesis pathways, to further eliminate androgen precursors 
from the tumor environment 12, 44, 46. 

DHEA AND ITS USE AS A SUPPLEMENT 
One of the main sources for local androgen production in patients on ADT 
for prostate cancer is adrenal-derived DHEA. DHEA is synthesized from 
cholesterol in the zona reticularis of the adrenal glands and is, together with 
its sulfate (DHEA-S), the most abundant circulating sex steroid precursor in 
humans. Circulating levels of DHEA peak around the age of 30, and then 
decrease gradually with age to levels of only 1/10th of peak levels at 80 years 
of age. Because of this, DHEA has by some been suggested as a potential 
“youth hormone” 47-49 and DHEA supplementation has been thought of as a 
feasible approach to restore physiological levels of androgens and estrogens 
in target tissues 50-52. On the one hand, DHEA is classified as a nutritional 
supplement in the US and there sold freely and it is widely available via 
uncontrolled online outlets in other parts of the world including Sweden 53, 54. 
On the other hand, DHEA is a restricted substance according to the 
international doping agency due to its androgenic properties 55, 56.  

When individuals ingest oral DHEA, serum testosterone levels do indeed 
increase 57, 58. However, large-scale supplementation studies in men have 
failed to show any major beneficial effects of DHEA treatment on metabolic 
parameters, sexual function, or quality of life 58, 59. DHEA treatment was 
previously reported to have positive effects on hip bone mineral density but 
in later studies those results stayed true for females only 51, 60. Yet, non-
prescribed use of DHEA as a supplement continues with hopes of 
rejuvenation and possible virilization, despite little knowledge on the 
potential risks of long-term administration. 

PROGESTERONE IN MEN 
Another androgen precursor, sometimes overlooked in men, is progesterone. 
Progesterone in women and its roles in pregnancy and the menstrual cycle are 
well known, but progesterone in men is less well studied. However, 
circulating progesterone levels in men are similar to those in postmenopausal 
women 61-63. Progesterone exerts its effects via the classical intracellular 
progesterone receptor that exists in two isoforms, A and B, but progesterone 
also has membrane-dependent actions. These have been suggested to play a 
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role in male sperm development 64, LH receptor expression in Leydig cells, 
and effects in the adipose tissue and kidney 62. 

In early studies, testicular extracts from rats, mice, and humans produced 
androstenedione and testosterone when incubated with radiolabeled 
progesterone 65-67. The clinical significance of progesterone’s role as a 
precursor to androgens has however not been extensively studied.  

Progesterone is starting to receive attention in the field of prostate cancer. A 
recent study on castration-resistant prostate cancer found that higher 
circulating progesterone levels after three months of abiraterone treatment 
were predictive of poorer treatment effect 68. The same study investigated the 
oncogenic effects of progesterone in prostate cancer cell lines and concluded 
that the effects were both androgen receptor-dependent and -independent (but 
progesterone receptor-independent), with progesterone inducing the 
transcription factor MYC in prostate tumor cell lines 68. Notably, MYC is a 
driver of the development of prostate cancer tumorigenesis 69. Other studies 
have shown that high expression of the progesterone receptor associates with 
worse progression of prostate cancer tumors 70, 71, although it is unclear if 
progesterone as a ligand is important for this association. 

Only in the last decade, methods have become available that are sensitive 
enough to measure circulating progesterone levels in males, enabling 
research on its clinical relevance and effects. Progesterone levels in men did 
not differ between those who had unprovoked deep vein thrombosis and 
controls 72 but lower progesterone levels were found in men that had an 
aeortic aneurysm, compared to controls 61. Progesterone in men is generally 
described as being produced in the testicles and adrenals 62. However, the 
sources of circulating progesterone in males have to the best of my 
knowledge not previously been thoroughly investigated.  

Another important role of progesterone in both men and women, not further 
addressed or covered in this thesis or the included papers, is its role as a 
neurosteroid 73, 74. 

ANDROGENS IN WOMEN 
As mentioned earlier, androgens such as testosterone and DHT play 
important roles also in female physiology, and have well-described effects on 
body hair growth, acne, and sex drive. In women, testosterone is produced in 



Androgens and progesterone in tissues and the gastrointestinal tract 

 8 

of the steroid synthesis pathways, to further eliminate androgen precursors 
from the tumor environment 12, 44, 46. 

DHEA AND ITS USE AS A SUPPLEMENT 
One of the main sources for local androgen production in patients on ADT 
for prostate cancer is adrenal-derived DHEA. DHEA is synthesized from 
cholesterol in the zona reticularis of the adrenal glands and is, together with 
its sulfate (DHEA-S), the most abundant circulating sex steroid precursor in 
humans. Circulating levels of DHEA peak around the age of 30, and then 
decrease gradually with age to levels of only 1/10th of peak levels at 80 years 
of age. Because of this, DHEA has by some been suggested as a potential 
“youth hormone” 47-49 and DHEA supplementation has been thought of as a 
feasible approach to restore physiological levels of androgens and estrogens 
in target tissues 50-52. On the one hand, DHEA is classified as a nutritional 
supplement in the US and there sold freely and it is widely available via 
uncontrolled online outlets in other parts of the world including Sweden 53, 54. 
On the other hand, DHEA is a restricted substance according to the 
international doping agency due to its androgenic properties 55, 56.  

When individuals ingest oral DHEA, serum testosterone levels do indeed 
increase 57, 58. However, large-scale supplementation studies in men have 
failed to show any major beneficial effects of DHEA treatment on metabolic 
parameters, sexual function, or quality of life 58, 59. DHEA treatment was 
previously reported to have positive effects on hip bone mineral density but 
in later studies those results stayed true for females only 51, 60. Yet, non-
prescribed use of DHEA as a supplement continues with hopes of 
rejuvenation and possible virilization, despite little knowledge on the 
potential risks of long-term administration. 

PROGESTERONE IN MEN 
Another androgen precursor, sometimes overlooked in men, is progesterone. 
Progesterone in women and its roles in pregnancy and the menstrual cycle are 
well known, but progesterone in men is less well studied. However, 
circulating progesterone levels in men are similar to those in postmenopausal 
women 61-63. Progesterone exerts its effects via the classical intracellular 
progesterone receptor that exists in two isoforms, A and B, but progesterone 
also has membrane-dependent actions. These have been suggested to play a 

Hannah Colldén 

 9 

role in male sperm development 64, LH receptor expression in Leydig cells, 
and effects in the adipose tissue and kidney 62. 

In early studies, testicular extracts from rats, mice, and humans produced 
androstenedione and testosterone when incubated with radiolabeled 
progesterone 65-67. The clinical significance of progesterone’s role as a 
precursor to androgens has however not been extensively studied.  

Progesterone is starting to receive attention in the field of prostate cancer. A 
recent study on castration-resistant prostate cancer found that higher 
circulating progesterone levels after three months of abiraterone treatment 
were predictive of poorer treatment effect 68. The same study investigated the 
oncogenic effects of progesterone in prostate cancer cell lines and concluded 
that the effects were both androgen receptor-dependent and -independent (but 
progesterone receptor-independent), with progesterone inducing the 
transcription factor MYC in prostate tumor cell lines 68. Notably, MYC is a 
driver of the development of prostate cancer tumorigenesis 69. Other studies 
have shown that high expression of the progesterone receptor associates with 
worse progression of prostate cancer tumors 70, 71, although it is unclear if 
progesterone as a ligand is important for this association. 

Only in the last decade, methods have become available that are sensitive 
enough to measure circulating progesterone levels in males, enabling 
research on its clinical relevance and effects. Progesterone levels in men did 
not differ between those who had unprovoked deep vein thrombosis and 
controls 72 but lower progesterone levels were found in men that had an 
aeortic aneurysm, compared to controls 61. Progesterone in men is generally 
described as being produced in the testicles and adrenals 62. However, the 
sources of circulating progesterone in males have to the best of my 
knowledge not previously been thoroughly investigated.  

Another important role of progesterone in both men and women, not further 
addressed or covered in this thesis or the included papers, is its role as a 
neurosteroid 73, 74. 

ANDROGENS IN WOMEN 
As mentioned earlier, androgens such as testosterone and DHT play 
important roles also in female physiology, and have well-described effects on 
body hair growth, acne, and sex drive. In women, testosterone is produced in 



Androgens and progesterone in tissues and the gastrointestinal tract 

 10 

target tissues from adrenal DHEA (with decreasing levels by age) and, before 
menopause, in the ovaries 52. Unlike in males, a female hyperandrogenic 
disease state exists. Polycystic ovary syndrome (PCOS) is a common 
condition (incidence between 8% and 13%) and its diagnosis, according to 
the widely accepted Rotterdam criteria, includes at least two of the following 
features: hyperandrogenism (either as elevated measured serum levels or 
distinct symptoms), oligo- or anovulation, and/or polycystic ovaries detected 
by ultrasound 75. The exact pathogenesis is still largely unknown, but it is 
multifactorial and includes genetic, environmental, and transgenerational 
factors 76.  

PCOS is associated with difficulties becoming pregnant, more risks if 
pregnancy does occur and a significant negative impact on quality of life. In 
addition, PCOS patients have a high incidence of metabolic disturbances, 
obesity, and type 2 diabetes. Hormonal treatment of PCOS is mainly 
estrogenic and progestogenic combined contraceptives and sometimes 
antiandrogenic drugs; the latter are associated with risks especially if the 
patient becomes pregnant. The main treatments of PCOS are symptomatic 
treatment of hirsutism and acne and general treatment of the psychologic, 
reproductive, and metabolic comorbidities 77. 

SEX STEROIDS AND THE GUT MICROBIOTA 
The gastrointestinal tract of every living being is the home for trillions of 
bacteria, fungi, and viruses, together referred to as the gut microbiota. The 
gut microbiota has several functions in nutrient uptake, production of 
vitamins, and it contributes to the development of the gastrointestinal 
immune system 78. Studies in germ-free (GF) mice that completely lack gut 
microbiota have established that the gut microbiota is involved in energy 
uptake from food. Transfer of gut microbiota between mice can, in fact, 
transfer a metabolic phenotype such as obesity 79, 80. In addition to these more 
well-known roles, the gut microbiota is also described as a virtual endocrine 
organ producing substances that are excreted into the bloodstream of the host, 
thereby affecting host physiology 81. Examples of these substances include 
short chain fatty acids 82, 83, neurotransmitters, precursors to neuroactive 
compounds such as tryptophan, cortisol, as well as gastrointestinal 
hormones 81 (Figure 5).  
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In 2013, Markle and coworkers showed that the gut microbiota (via fecal 
transplant) could alter a sex steroid-dependent phenotype 84. In non-obese 
diabetic (NOD) mice, the incidence of diabetes differs between the sexes 
with lower prevalence in males. If female pups were treated with intestinal 
contents from adult male mice, their incidence of diabetes decreased to that 
of males. This effect was mediated through an increase in serum testosterone 
(as measured with an immunoassay method) and prevented by treatment with 
the androgen receptor blocker flutamide. This study sparked an interest in the 
possibility of altering androgen levels by changing the gut microbiota.  

There are several indications supporting the notion that androgen levels can 
be affected by the gut: CYP17A1, an enzyme vital for the production of 
androgens and precursors, is expressed and functional in the rat 
gastrointestinal tract 85. Also, some strains of bacteria have the ability to 
metabolize androgens, for example convert testosterone into DHT 86 or 
catabolically break down testosterone 87. The opposite relationship has also 
been shown, that the gut microbiota is affected by sex steroids. Gender-
specific differences in gut microbiota composition have been described in 
some, but not other, studies 88; but puberty, menopausal status, and castration 
have all been shown to change the gut microbiota 89-91. Circulating levels of 
testosterone and progesterone have been shown to correlate with microbial 
composition in humans, and fecal transplant from male and female human 
donors affected the gut microbiota and sex steroid levels of male mice 89. In 
patients with PCOS, gut microbial composition correlates with 

Figure 5 The gut microbiota produces substances that can affect the host, and 
host factors affect the composition of the gut microbiota. SCFA = short chain 
fatty acids. 
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hyperandrogenism 92-94, but the direction of the causality (i.e. are the 
androgens, the gut microbiota, or the concurrent metabolic syndrome drivers 
of the differences) has not been conclusively determined 95. 

SEX STEROIDS IN MICE 
For obvious and ethical reasons, detailed analyses of local sex steroid levels 
in certain tissues cannot be performed in humans, and laboratory model 
species such as mice are indispensable in medical and physiological research. 
Rodents mainly produce the same sex steroids as humans 96, with the 
important exception of DHEA which is not found in as high levels 97. 
Although DHEA is not abundantly produced, mice adrenals do produce other 
androgen precursors, as evidenced by the fact that prostate tumor xenografts 
respond with decreased growth after adrenalectomy 98, 99. Also in contrast to 
humans, rodents do not express SHBG which leads to several-fold lower 
circulating levels of sex steroids than in humans 100, 101. 

MEASUREMENT OF SEX STEROIDS 
Mice have low levels of sex steroids and sensitive methods are needed to 
accurately measure them, as well as the low sex steroid levels in children and 
postmenopausal women. Up until quite recently, even in high-impact journals 
direct immunoassay-based methods developed for clinical use have been used 
in preclinical rodent studies. Direct immunoassays without pre-extraction are 
fast and cheap but can cross-react with other substances present in the 
sample. This can lead to falsely high levels of sex steroids due to 
interference, and correlations between direct immunoassay and mass 
spectrometry (MS) -measurements are poor for estradiol in male serum 102 
and for testosterone in mouse serum, testis, and ovary extracts 103. The last 
decade, the need for accurate reporting of validated, sensitive, and specific 
methods for steroid hormone measurements has received increasing 
attention 104-106. MS-based methods are considered the gold standard in sex 
steroid measurements. At the start of the projects included in this thesis, our 
group had just developed a highly sensitive and specific gas chromatography 
tandem MS (GC-MS/MS) method and validated it for serum 107. This is one 
of the most sensitive sex steroid assays in the world regarding estradiol and 
DHT 106. In the works included in this thesis, we set out to explore local sex 
steroid levels in a way that had not been done previously. 
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RESEARCH QUESTIONS 
To conclude, androgens and progesterone are relevant for various diseases 
such as prostate cancer in men and PCOS in women, and they have local 
effects in different tissues. Understanding the local levels of sex steroids in 
tissues could contribute to finding new possible, more specific, drug targets 
with the anticipated effect in the target tissue while avoiding side-effects in 
other tissues. Despite this, only a few studies have been able to accurately 
determine the sex steroid levels locally in tissues. As a result, we lack 
understanding of what a normal distribution of sex steroids in the body looks 
like, and how different conditions affect the local levels of sex steroids. Thus, 
this thesis aims to start bridging this knowledge gap by providing 
comprehensive data on local sex steroid levels in mice in different states with 
its main focus on androgens and progesterone in major body compartments 
and the gastrointestinal contents. 
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AIMS 

OVERALL AIM 
Determine local sex steroid levels in tissues and the gastrointestinal tract of 
mice and evaluate their dependence on gonads, adrenals, and the gut 
microbiota (Figure 6). 

 

  

Figure 6 Overview of aims/themes in the different papers and how they are 
related. DHEA = dehydroepiandrosterone. 
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SPECIFIC AIMS 
• Determine local sex steroid levels in different tissues of intact and 

orchiectomized male mice (paper I) 
• Determine local androgen levels after DHEA treatment in 

orchiectomized male mice (paper II) 
• Determine local sex steroid levels in the gastrointestinal tract 

(paper III) 
• Evaluate the role of the gut microbiota in the regulation of local and 

systemic sex steroid levels (paper III) 
• Evaluate the adrenal and gonadal contribution to androgen and 

progesterone levels in tissues and the gastrointestinal tract of male 
mice (paper IV) 

• Investigate the origins of progesterone in male mice (paper IV) 
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METHODS 

SEX STEROID ANALYSES 

The GC-MS/MS method used is described in detail in our publications 
(paper I, II, III) 107. The method consists of the following steps: 
homogenization, extraction, cleaning, derivatization, and analysis (Figure 7). 
Weighed samples are homogenized and liquid samples measured 
volumetrically and diluted. The sex steroids are extracted using liquid-liquid 
extraction, where an organic solvent is mixed with the water-based 
homogenate, whereby the fat-soluble steroids end up in the organic phase. In 
conjunction with the extraction, the homogenates are spiked with stable 
isotope-labeled steroids as internal standards. Isotope-labeled steroids have 
the same biochemical properties as the native hormone so these will go 
through the same losses in the preparation procedure as the native hormone, 
but they are separated in the mass spectrometric method as they have 
different masses. In nature, most carbons contain 12 neutrons (12C) but a 
small proportion of all carbons have 13 neutrons (13C). In the labeled steroids, 
a known set of carbons are replaced by carbon 13, enabling them to be 
separated from the endogenous steroids in the MS assay. 

Figure 7 Overview of the workflow for sex steroid analyses in tissues. IS = internal 
standard, GC-MS/MS = gas chromatography - tandem mass spectrometry.  
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After the steroids are extracted into the organic phase, cleaning is necessary 
to remove interfering compounds. Samples are cleaned using solid phase 
extraction through silica-based cartridges that bind the steroids, and the 
cartridges are washed with semi-strong solvents to remove impurities. After 
the last wash, the strong solvent isooctane is flushed through the cartridges to 
dissolve the steroids and release them from the silica. Finally, to improve 
detection of the steroids the samples undergo derivatization, where structures 
are added to specific sites on the steroids 108. Derivatization is performed in 
two steps: oximation and esterification.  

In the analysis, seven sex steroids are separated on the GC column and 
detected simultaneously with electron capture negative chemical ionization 
by an Agilent 7000 triple quadrupole mass spectrometer. Peaks are integrated 
using the MassHunter quantitative analysis workstation software from 
Agilent. The measured concentrations are corrected for input material (wet 
mass of intestinal contents and tissues or volume of serum and bile).  

Table 1 Sensitivity of the GC-MS/MS method in different matrices. 

 E2  E1  T  DHT  Prog A-dione  

LLOQ (pg/g)             

Muscle 2.0 2.0 20 8.0 75 7.5 

Liver 2.8 4.0 40 4.0 75 7.5 

Adipose tissue 2.0 2.0 40 4.0 75 7.5 

Bone 2.0 2.0 20 8.0 75 7.5 

Intestinal contents   40 20  7.5 

Serum (pg/ml) 0.5 0.5 8 2.5 74 12 
GC - MS/MS = gas chromatography-tandem mass spectrometry; LLOQ = lower level of 
quantification; E2 = estradiol, E1 = estrone; T = testosterone; Prog = progesterone; A-dione 
= androstenedione. Parts previously published in papers I-IV and Nilsson et al. 2015 107. 

 

VALIDATION 
The assay has been validated by spiking samples of serum, tissues, and 
intestinal content with different concentrations of isotope-labeled or 
unlabeled sex steroids. All details on the tissue validations are presented in 
paper I and in the supplemental materials in paper II, intestinal contents 
were validated in paper III. The lower limit of quantification (LLOQ) is 
defined as the lowest concentration with a coefficient of variation (CV)  
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below 20% and an accuracy of 80-120%. Several different levels in the low 
concentration range have been examined to identify the LLOQ. 

DEGLUCURONIDATION 
In bile and intestinal contents, a proportion of the sex steroids is expected to 
be glucuronidated. To assess the levels of glucuronidated steroids we 
measured levels of each hormone both with and without enzymatic 
deglucuronidation (paper III and IV). Each sample was divided into two 
aliquots before homogenization. After homogenization one of the aliquots 
was deglucuronidated by adding 50 l of ß-glucuronidase (from Escherichia 
coli) and incubated. The deglucuronidated sample was denoted “total” and 
the sample without treatment was denoted “free”. The difference between 
total and free levels was calculated and denoted glucuronidated (“gluc”). 
During method development we found that using recombinant enzyme from 
E. coli gave more accurate results than using extracted enzymes from the 
Roman snail, Helix pomatia, which is commonly used in the clinic. 
H. pomatia glucuronidase contained measurable levels of several sex steroids 
(unpublished data). Other researchers have also reported on artifacts using 
H. Pomatia glucuronidase for measurement of sex steroids in urine 109, and 
rat liver and plasma 110. 

STUDY SUBJECTS 

MICE 
In all studies wildtype mice from the inbred C57BL/6 strain were used. This 
is the most common inbred mouse strain developed already in 1921 by cross-
breeding several generations of siblings and is widely used as a background 
for gene knock out models and in preclinical studies with various 
purposes 111. The two major sub strains J (Jackson laboratory) and N 
(National Institutes of Health) are genetically similar, but have certain 
distinct features regarding for example glucose metabolism 112, 113. In the 
studies of this thesis both the J and N sub strains have been used due to 
practical reasons such as availability. Importantly, within each experiment all 
mice (controls and treated) were from the same sub strain 112. 
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GERM-FREE MICE  

GF mice are born to mothers completely free from bacteria, virus, and fungi, 
living in sterile environments in isolators and they are thus never colonized 
by commensal microbes 114 (Figure 8). Despite this, GF mice lead fairly 
normal lives and grow up healthy, with even longer life spans than 
conventionally raised (CONV-R) mice, probably due to a lack of pathogenic 
infections 115. This model has been used to evaluate the role of the gut 
microbiota for several conditions such as obesity, osteoporosis, and 
neuroendocrine disorders 115, 116. 

GF mice have been used in research for a long time and their use has been 
widespread since the 1960s. During the last decades, new interest in this 
model has been sparked with the development of novel analysis methods to 
investigate microbiota and its metabolites 114. The phenotype of GF mice is 
rather well described. Compared to CONV-R mice, GF mice have immature 
immune systems, enlarged cecums, prolonged intestinal transit time, and 
smaller hearts, lungs, and livers 117, 118, as well as other differences for 
example in their brain architecture 119. GF mice reproduce naturally in their 
germ-free environment (in the same way as other mice), but their 
reproduction is somewhat impaired. GF females have longer diestrus periods, 
so they have longer cycles than CONV-R females and also display smaller 

Figure 8 Germ free mice are totally free of bacteria and viruses and are kept 
sterile by handling inside isolators. Photo from 1966. 
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litter sizes and lower implantation rates. GF males have been reported to have 
lower sperm motility than CONV-R males. All of these reproductive traits 
have been shown to normalize following accidental colonization with certain 
bacterial strains 120. Local sex steroid levels in GF mice had prior to paper 
III not been investigated. In papers III and IV we used GF mice of the 
C57BL/6NTac strain from Taconic, an external company, that housed the 
mice and performed the tissue dissections according to our instructions.  

HUMAN SUBJECTS 
For paper III, we acquired, through a collaboration, human fecal and serum 
samples from the baseline measurement of a randomized diet intervention 
study 121. Serum and fecal samples from eight healthy men aged 23–31 years 
were thus analyzed to evaluate if the novel finding of high androgen levels in 
intestinal contents of mice could be confirmed in men. This diet study also 
included healthy women, but the female samples had to be excluded as the 
study was not originally designed to measure sex steroids. Several of the 
female subjects were taking oral contraceptives and for those who did not, the 
day of the menstrual cycle was not recorded. Unfortunately, this made 
sensible interpretation of the female results impossible.  

METHODOLOGICAL CONSIDERATIONS 

ORCHIECTOMY AND ADRENALECTOMY 
The testes produce the majority of the androgens in the male, so removal of 
testes through surgery, orchiectomy (ORX), induces a hypogonadal state with 
greatly reduced androgen levels. The decrease in androgens leads to 
decreased sizes of androgen-responsive organs, among them the prostate, the 
levator ani muscle, and the seminal vesicles 122-124. Gonadectomy also 
typically leads to an increase in the size of the thymus 125. Finally, the 
decreased androgens also influence how animals respond to provocative 
stimuli, most commonly a decrease in aggression 126. 

The adrenals produce androgen precursors but also vital glucocorticoids, 
mineralocorticoids, epinephrine and norepinephrine, as well as aldosterone 
which affects fluid balance. After adrenalectomy (ADX), surgical removal of 
the adrenals, mice are supplied with extra saline (in paper IV 0.9% NaCl 
instead of tap water) to maintain sodium balance.  
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SUPPLEMENTATION STUDIES 
To replace hormones after ORX or ADX, supplemental hormones can be 
given by injection or by implantable pumps or slow-release pellets. In 
paper II we treated ORX mice with DHEA by intraperitoneal injection, five 
days per week. The dose was based on a previous study by our group and was 
chosen to reflect a physiological replacement dose 127.  

ORAL GAVAGE 

 

Figure 9 Oral gavage of mice, used in paper IV. 

A common method to orally administer substances to mice is oral gavage. A 
plastic syringe fitted with a blunt gavage needle is used, with the length of 
the needle adapted so that the tip is located in the stomach when inserted 
through the mouth and esophagus 128 (Figure 9). This is done in conscious 
mice and can be a somewhat stressful procedure for the mice but stress and 
risk are minimized when the procedure is done by skilled staff, and it ensures 
that each mouse receives the same dose. In paper IV we used oral gavage to 
dose the mice with labeled progesterone. Other options for oral 
administration such as mixing the hormone solution into a sweet nut spread 
(Nutella) as described for estradiol 129 were explored. This alternative method 
did not prove feasible within our time limits, as the mice need to be trained to 
accept the voluntary feeding. Also, there may be uncertainties in the dosing if 
some mice do not finish their serving. 
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which affects fluid balance. After adrenalectomy (ADX), surgical removal of 
the adrenals, mice are supplied with extra saline (in paper IV 0.9% NaCl 
instead of tap water) to maintain sodium balance.  
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SUPPLEMENTATION STUDIES 
To replace hormones after ORX or ADX, supplemental hormones can be 
given by injection or by implantable pumps or slow-release pellets. In 
paper II we treated ORX mice with DHEA by intraperitoneal injection, five 
days per week. The dose was based on a previous study by our group and was 
chosen to reflect a physiological replacement dose 127.  

ORAL GAVAGE 

 

Figure 9 Oral gavage of mice, used in paper IV. 

A common method to orally administer substances to mice is oral gavage. A 
plastic syringe fitted with a blunt gavage needle is used, with the length of 
the needle adapted so that the tip is located in the stomach when inserted 
through the mouth and esophagus 128 (Figure 9). This is done in conscious 
mice and can be a somewhat stressful procedure for the mice but stress and 
risk are minimized when the procedure is done by skilled staff, and it ensures 
that each mouse receives the same dose. In paper IV we used oral gavage to 
dose the mice with labeled progesterone. Other options for oral 
administration such as mixing the hormone solution into a sweet nut spread 
(Nutella) as described for estradiol 129 were explored. This alternative method 
did not prove feasible within our time limits, as the mice need to be trained to 
accept the voluntary feeding. Also, there may be uncertainties in the dosing if 
some mice do not finish their serving. 
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WHOLE-BODY SEX STEROID MODEL 
In paper I, a simplified whole-body model was used to describe and 
visualize the distribution and total amount of sex steroids in the mouse body. 
The measured concentration of a steroid in every organ was multiplied by the 
mass of each organ or tissue type/compartment. For tissues that were 
weighed at sacrifice the actual mass was used for each individual mouse. For 
other tissues and compartments the weights were approximated either as 
fixed weights based on previous experiments (adrenals, testicles) or as 
percentages of the body weights, based on previous experience with DXA 
measurements and literature reports. All compartments added up to 100%, 
with the lean mass as the largest compartment. Then, the calculated amounts 
for all tissues and compartments were summed to give the total pool. 

GONADOTROPIN MEASUREMENTS 
Serum LH and FSH were measured by time-resolved immunofluorometric 
assays by our collaborators in Finland as previously described 130, 131 (paper 
III). 

REAL-TIME QUANTITATIVE POLYMERASE CHAIN 
REACTION (QPCR) 
To assess relative gene expression in different tissues in paper III and IV 
we used real time quantitative polymerase chain reaction, qPCR. In this 
common and sensitive method, RNA is extracted from tissues and then 
reverse transcribed into complementary DNA (cDNA). The cDNA is mixed 
with primers, oligonucleotides and fluorescence-labeled probes and put 
through heat cycles where the genes that match the primers are replicated 
once per cycle, thus, the number of copies doubles once per cycle and grow 
exponentially. During the cycling, fluorescence is measured and when the 
number of copies reaches a threshold fluorescence can be detected. The 
relative expression can be calculated based on in which cycle fluorescence 
was first detected in each sample. In our studies, we also added primers 
labeled with a separate fluorescent marker for the ribosomal housekeeping 
gene 18S as reference gene. We then calculated relative expression of the 
gene of interest, normalized for the expression of the reference gene, 
compared to either a control tissue (paper III) or a control group (paper IV) 
using the ΔΔCT method 132. 
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STATISTICS 

COMPARISONS AND CORRELATIONS 
In all studies, comparisons between two or more groups were performed 
using statistical testing. In the datasets from papers I-III, we used non-
parametrical tests as hormone level data was not normally distributed due to 
several samples below the LLOQ with imputed values (either LLOQ or 
LLOQ/√2). We used Mann-Whitney rank U-test to compare two groups and 
Kruskal-Wallis with Dunn’s post hoc-test to compare more groups.  

In paper IV, data was log-normally distributed, and the parametric tests 
Student’s t-test and two-way ANOVA were used after log-transformation of 
hormone levels. Also in this study there were some tissues and hormones 
with levels below the detection limit, but for tissues and hormones within the 
main interest of the study all or almost all levels were measurable and 
parametrical testing was used in order to maintain statistical power.  

To evaluate the correlations between serum and tissue sex steroid levels in 
paper I, nonparametric Spearman rank-order correlations were used. To 
evaluate the correlation between animal fat percentage and progesterone 
levels in diets in paper IV, Pearson correlation was used. 

HANDLING OF UNDETECTABLE VALUES  
Any analytical method has a detection limit below which the signal cannot be 
reliably separated from the background (limit of detection, LOD) or 
accurately quantified (LLOQ). When levels of hormones are lower than this 
limit, the undetectable values need to be handled so that the full dataset can 
be used. Commonly used options are removal of undetectable results, or 
imputation of an estimate such as zero, LLOQ, LLOQ/2, or LLOQ/√2. 
Removing the undetectable results causes an overestimation of the mean and 
decreases the power of the study; whereas imputing zero causes an 
underestimation of the mean, as the undetectable values are distributed 
between zero and the LLOQ 133. Imputing zero also prohibits further 
treatment of the results such as log-transformation. In our studies we have 
used either imputation of LLOQ (paper I, paper III) or LLOQ/√2 (paper II, 
paper IV). The latter was found to introduce the least bias in a study that 
compared simple substitution methods in a large dataset of sex steroid levels 
in humans 133. We also defined a minimum number of detectable values in a 
group (i.e. half of the samples) to allow reporting of steroid levels. This was 
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done to avoid false positive findings as we are investigating steroid levels in 
tissues where few previous reliable measurements are available. 
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RESULTS 
Here, the results from each paper will be briefly presented and discussed 
(Figure 10). For additional details, see also the appended papers. 
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Figure 10 Overview of the different papers and the corresponding studies. Light blue 
studies were performed mainly by other researchers. 
DHEA = dehydroepiandrosterone; GI = gastrointestinal; CONV-R = conventionally 
raised; ADX = adrenalectomized; ORX = orchiectomized; 13C-Prog = stable isotope-
labeled progesterone 
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PAPER I  
COMPREHENSIVE SEX STEROID PROFILING IN MULTIPLE 
TISSUES REVEALS NOVEL INSIGHTS IN SEX STEROID 
DISTRIBUTION OF MALE MICE 

In paper I, we published a detailed assay validation for a broad panel of sex 
steroids with the sensitivity, precision, and accuracy presented for muscle, 
liver, white adipose tissue (WAT), and bone, representing four very different 
types of matrices. We then characterized sex steroid levels in serum and ten 
different tissues of gonadal intact and ORX male mice. The measured levels 
were presented in two different ways. First, we calculated the amount of 
hormone in each tissue or compartment of the body and then calculated a 
total body pool of each sex steroid. Next, we evaluated the tissue/serum 
correlations in each tissue. 

As expected, androgens decreased in most tissues after ORX. In intact mice, 
testosterone and progesterone both had the largest full-body pools. In ORX 
mice, progesterone had the, by far, largest pool. There were strong 
correlations between serum and brain levels of testosterone, DHT, and 
progesterone but only modest correlations between these hormones in serum 
and WAT, testis, or adrenals (Figure 11). This first study investigated the 
levels of several sex steroids in a broad range of tissues, creating an atlas and 
enabling comparisons of local levels across tissues. 

Figure 11 Orchiectomy causes large decreases of the total androgen pools whereas 
progesterone pools remain after orchiectomy. Brain sex steroid levels correlate 
with corresponding serum levels, whereas adipose tissue contains high 
concentrations of sex steroids that do not correlate with their serum levels.  
A-dione = androstenedione; DHT = dihydrotestosterone; Prog = progesterone;  
T = testosterone. 
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PAPER II 
DEHYDROEPIANDROSTERONE SUPPLEMENTATION RESULTS 
IN VARYING TISSUE-SPECIFIC LEVELS OF 
DIHYDROTESTOSTERONE IN MALE MICE  

In paper II, we investigated the effect of supplementing castrated male mice 
with DHEA for three weeks and compared them to the groups already 
published in paper I.  

Downstream metabolites of DHEA, namely testosterone, DHT, and 
androstenedione, increased in serum and most tissues of DHEA-treated ORX 
mice compared to ORX mice. The relative recovery of androgen levels 
(compared to intact mice) markedly differed between tissues, especially for 
DHT. The DHT levels in the liver were supraphysiological after DHEA 
treatment while in reproductive organs and serum they were restored to pre-
castration levels. On the other hand, in muscle and brain cortex the DHT 
levels were not significantly increased compared to ORX mice (Figure 12). 

The most noticeable finding of this study might be the high androgen levels 
in the liver after DHEA treatment. This probably reflects the metabolic 
capacity of the liver to convert endogenous and exogenous compounds and 
may have implications for the use of DHEA as androgens have been 
implicated in liver disease. 

Figure 12 Treatment of orchiectomized mice with dehydroepiandrosterone (DHEA) 
causes large increases of androgens (testosterone and DHT) in the liver and 
reproductive tissues but not in brain or muscle. DHT = dihydrotestosterone. 
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PAPER IV 
DIETARY PROGESTERONE CONTRIBUTES TO INTRA-TISSUE 
LEVELS OF PROGESTERONE IN MALE MICE 

In paper IV, we investigated the effect of ORX and ADX on sex steroid 
levels in serum, tissues, and the gastrointestinal tract of male mice. Androgen 
levels decreased substantially with ORX but were not majorly affected by 
ADX. Surprisingly, the progesterone levels remained largely unchanged after 
both ORX and ADX in most sites. We then investigated the diet as a possible 
source of progesterone. We found that the mouse chow contained higher 
progesterone levels than any tissue in male mice. High and variable levels of 
progesterone were detected in more than 20 investigated mouse diets and in 
certain human foods, for example dairy products and eggs (Figure 14). The 
possibility of intestinal uptake of dietary progesterone into WAT and prostate 
was confirmed using isotope-labeled progesterone administered via oral 
gavage to ORX+ADX and sham-operated male mice. 

Recently, progesterone has been suggested to play a role in the setting of 
castration resistant prostate cancer. If dietary progesterone is taken up into 
tissues, this might be a substrate for intratumoral steroidogenesis and thereby 
affect prostate cancer. The uptake of dietary progesterone may mediate the 
effect of dairy product consumption on prostate cancer seen in some 
epidemiological studies. Also, the high and varying levels of progesterone in 
rodent diets should be considered by researchers in models with sex steroid-
dependent phenotypes. 

Figure 14 Progesterone levels in male mice can originate from dietary uptake in 
addition to being produced in the adrenals. The clinical relevance of this is still 
unknown but may have implications for patients with prostate cancer. 
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PAPER III 
THE GUT MICROBIOTA IS A MAJOR REGULATOR OF ANDROGEN 
METABOLISM IN INTESTINAL CONTENTS 

In paper III, we continued with the mapping of tissue androgen levels and 
also included the gastrointestinal tract. Unexpectedly, we discovered that the 
intestinal contents and feces contain high levels of DHT in both male and 
female mice (Figure 13). These intestinal DHT levels were dependent on 
deglucuronidation by gut bacteria. In GF mice, the gastrointestinal tract did 
not contain high levels of free androgens but instead contained very high 
levels of glucuronidated testosterone and DHT. The GF male mice also had 
increased DHT levels in seminal vesicles and the liver, and increased FSH 
levels. In healthy men, we also found high levels of DHT in feces compared 
to serum levels. The physiological importance of intraintestinal androgens 
deserves further research. 

The findings from this study indicate that the intestine is a route of 
elimination for androgens, and that deglucuronidation by gut bacteria results 
in high levels of bioactive androgens available for reuptake or local effects in 
the intestine. This novel finding suggests a possible mechanism for the 
interaction between the gut microbiota and androgens. 

Figure 13 The small intestine contains high levels of glucuronidated androgens 
(dihydrotestosterone, DHT and testosterone, T) that are deconjugated by the gut 
microbiota and present in high levels as free sex steroids in the distal intestine.  
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DISCUSSION 
The overall aim of the studies included in this thesis was to determine local 
sex steroid levels in tissues and the gastrointestinal tract of mice and evaluate 
their origins and factors affecting them. In paper I we presented the 
validation of the analysis method and investigated the effect of castration on 
tissue sex steroid levels in male mice. In paper II we evaluated the effect of 
treating ORX mice with DHEA and the possibility of local production of 
androgens with DHEA as a substrate. In paper III we focused on the 
gastrointestinal tract and the effect of the gut microbiota, this time including 
both male and female mice and also male human subjects. Finally, in paper 
IV, we followed up our findings of high progesterone levels in ORX mice 
from paper I and high androgen levels in the gastrointestinal tract from 
paper III by investigating the adrenal contribution to local progesterone and 
androgen levels in both tissues and the gastrointestinal tract. After 
unexpected findings of progesterone levels still present after ORX and ADX 
and high progesterone levels in the mouse chow, we also investigated the diet 
as a potential source of progesterone in paper IV.  

MEASUREMENT OF ANDROGEN LEVELS IN 
TISSUES 
Serum levels (and, as we have shown, tissue levels) of androgens in male 
mice show a large interindividual variability within a group, and also vary 
longitudinally in the same animal 134. This is partly related to the social 
dominance pattern, where alpha males typically have higher androgen levels. 
Different types of social dominance patterns can exist in different cages of 
the same study 135. According to the serum testosterone levels no obvious 
alpha males were present in paper I, whereas typical alpha males with 
tenfold higher androgen levels than their cage mates were present in the 
gonadal-intact control groups of papers III and IV. This contributes to a 
smaller variability in androgen levels in paper I than would be expected in 
some other studies. For some applications, it might be reasonable to look at 
tissue/serum concentration ratios rather than the raw concentration. 
Importantly, if different gonadal intact groups are compared in a study, it 
would be important to consider if the number of alpha males per group can 
influence the androgen level results. 
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The GC-MS/MS method for which the validation was published in paper I is 
currently being used in other studies examining local androgens in heart 
(unpublished data), prostate 98, and other tissues. The strength of this method 
is, as mentioned, its high sensitivity, enabling quantification of sex steroids in 
small samples (as small as 5 mg), and its high specificity, eliminating the 
risks of misclassification inherent to immunological methods. MS methods 
are considered the gold standard for sex steroid measurements in serum and 
tissues 136. The work-up with several steps of cleaning and removing 
impurities enables measurement even in complex matrices such as 
metabolically active organs as the liver, and lipid-rich tissues such as adipose 
tissue, which contains substances that are difficult to separate from the 
steroids in a chromatographic assay. The drawback is the requirement of 
qualified personnel to perform the labor-intensive work-up required for each 
sample (around 80-120 samples per working week), restricting its use in 
large-scale studies. For this purpose, our group has also developed a more 
high-throughput liquid chromatography – MS method that is better suited to 
measure serum sex steroid levels in large cohort studies 61. This method 
includes no pre-extraction or derivatization step but has not been validated 
for tissue measurements.  

A few previous studies have presented methods for the measurement of local 
sex steroid levels in several rodent tissues. McNamara and coworkers 
published an LC-MS/MS method in 2010 to measure testosterone, DHT, 
estrone, estradiol, 3-androstanediol and 3-androstanediol and it was 
validated in mouse ovaries and testis, in addition to serum 137. Also in 2010, 
Weng and co-workers published an LC-MS/MS method with derivatization 
for detection of T and DHT in serum and various reproductive tissues 138. 
More recently, a metod for determining several steroids in rat serum and liver 
samples was published 110. All of these methods have LLOQs for DHT and 
estrogens significantly higher than those defined by the method used in this 
thesis. To the best of my knowledge, no previous studies on sex steroids have 
included both endocrine organs, androgen-responsive organs, major body 
compartments, as well as the gastrointestinal tract and used a sensitive, 
specific, validated method for a broad panel of sex steroids. 
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DISCUSSION 
The overall aim of the studies included in this thesis was to determine local 
sex steroid levels in tissues and the gastrointestinal tract of mice and evaluate 
their origins and factors affecting them. In paper I we presented the 
validation of the analysis method and investigated the effect of castration on 
tissue sex steroid levels in male mice. In paper II we evaluated the effect of 
treating ORX mice with DHEA and the possibility of local production of 
androgens with DHEA as a substrate. In paper III we focused on the 
gastrointestinal tract and the effect of the gut microbiota, this time including 
both male and female mice and also male human subjects. Finally, in paper 
IV, we followed up our findings of high progesterone levels in ORX mice 
from paper I and high androgen levels in the gastrointestinal tract from 
paper III by investigating the adrenal contribution to local progesterone and 
androgen levels in both tissues and the gastrointestinal tract. After 
unexpected findings of progesterone levels still present after ORX and ADX 
and high progesterone levels in the mouse chow, we also investigated the diet 
as a potential source of progesterone in paper IV.  

MEASUREMENT OF ANDROGEN LEVELS IN 
TISSUES 
Serum levels (and, as we have shown, tissue levels) of androgens in male 
mice show a large interindividual variability within a group, and also vary 
longitudinally in the same animal 134. This is partly related to the social 
dominance pattern, where alpha males typically have higher androgen levels. 
Different types of social dominance patterns can exist in different cages of 
the same study 135. According to the serum testosterone levels no obvious 
alpha males were present in paper I, whereas typical alpha males with 
tenfold higher androgen levels than their cage mates were present in the 
gonadal-intact control groups of papers III and IV. This contributes to a 
smaller variability in androgen levels in paper I than would be expected in 
some other studies. For some applications, it might be reasonable to look at 
tissue/serum concentration ratios rather than the raw concentration. 
Importantly, if different gonadal intact groups are compared in a study, it 
would be important to consider if the number of alpha males per group can 
influence the androgen level results. 
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The GC-MS/MS method for which the validation was published in paper I is 
currently being used in other studies examining local androgens in heart 
(unpublished data), prostate 98, and other tissues. The strength of this method 
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validated in mouse ovaries and testis, in addition to serum 137. Also in 2010, 
Weng and co-workers published an LC-MS/MS method with derivatization 
for detection of T and DHT in serum and various reproductive tissues 138. 
More recently, a metod for determining several steroids in rat serum and liver 
samples was published 110. All of these methods have LLOQs for DHT and 
estrogens significantly higher than those defined by the method used in this 
thesis. To the best of my knowledge, no previous studies on sex steroids have 
included both endocrine organs, androgen-responsive organs, major body 
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specific, validated method for a broad panel of sex steroids. 
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TISSUE WEIGHTS AS INDICATORS OF 
ANDROGEN EFFECTS 
As sex steroid measurements in rodents have long been a challenge, 
monitoring the weights of androgen-responsive tissues is common practice to 
evaluate androgenic effects. The Hershberger Bioassay suggested by the 
Organization for Economic Cooperation and Development (OECD) 
recommends measurement of five tissue weights (ventral prostate, m. levator 
ani, seminal vesicles, Cowper’s glands, and glans penis) of castrated male 
rats to detect androgenic and antiandrogenic effects. A potent androgen such 
as testosterone is generally used as a positive control 139. In paper II we 
assessed not only the tissue weights but also the local androgen levels in 
three of these tissues after DHEA treatment of ORX mice.  

In most studies to date, for several reasons, only sex steroid levels in serum 
and not tissue levels have been used to monitor sex steroid supplementation 
in rodent models. This could have underestimated or overestimated the 
effects locally in the tissues. Measuring local tissue levels provides more in-
depth knowledge on the relationship between local and circulating sex steroid 
levels. This knowledge may contribute to a deeper understanding of disease 
processes that are dependent on local sex steroids, such as prostate cancer, 
breast cancer, endometriosis, and PCOS and possible risks or side-effects of 
sex steroid-affecting treatments. 

ANDROGENS AND THE GUT MICROBIOTA  
A link between sex steroids and the gut microbiota has in the last decade 
been suggested in the context of a variety of diseases or physiological states 
89, 91, 140. Specifically, a relationship between the gut microbiota and 
androgen-related disorders has been suggested in prostate cancer 141-145, 
PCOS 95, 146-150, and male infertility 151. The exact mechanisms and 
dependencies in these correlations still remain to be elucidated 152. 

In paper III we found that high levels of conjugated androgens are present in 
the small intestine, and they are deconjugated by the gut microbiota yielding 
high levels of available androgens in the colonic contents (Figure 15). The 
pattern of high DHT in colonic contents and high conjugated androgens in 
the small intestine was found in both male and female mice, although, 
unsurprisingly, the levels were generally lower in females. Since females do 
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not have tissues with high local levels of DHT (equivalent to the prostate and 
seminal vesicles in males), the intestinal and liver contents of DHT were the 
highest in the female mouse body.  

 

Figure 15 Testosterone (T) and dihydrotestosterone (DHT) are excreted into the 
intestine from the bile as glucuronidated (G) conjugates, where they are 
deconjugated by the gut bacteria and available for reuptake or local effects. 

These high local androgen levels in intestinal contents may have effects on 
visceral muscle contractility 153 or on small intestine endothelial function 154. 
Androgens have also been implicated to play a role in colorectal carcinoma 
although the exact mechanisms are still unknown 155. In addition, testosterone 
and DHT, as lipophilic compounds, can pass the intestinal wall to the 
circulation or the lymphatic system and thereby exert systemic effects 156. 
Orally administered testosterone is absorbed, even though a part of it is lost 
to local metabolism in the intestine and first-pass metabolism in the liver 157.  

Bacterial deconjugation of excreted conjugated androgens followed by 
possible reuptake of the hormone is very similar to the proposed effects of the 
so-called estrobolome (mainly described in females) that involves the gut 
microbiota deconjugating conjugated estrogens secreted by the liver 158. The 
estrobolome has been suggested to be relevant for breast cancer and other 
estrogen-related conditions 159, 160. The corresponding concept, the 
androbolome, has not yet been established but the concept is mentioned in a 
recent review on the gut microbiota and breast cancer 161. Our finding of an 
androbolome in paper III that can deconjugate glucuronidated androgens 
sheds light on one mechanism by which the gut microbiota can affect 
androgen levels. Another mechanism, that could also be included in the 
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androbolome concept, is gut microbial metabolism of androgens or 
precursors which has been demonstrated for several strains of bacteria 86, 87, 

162, 163. In paper IV we found that the uptake of dietary progesterone may be 
influenced by the gut microbiota, as higher progesterone levels were found in 
the adipose tissue of GF than CONV-R male mice. The mechanism for this 
interaction is still unknown but must be different from deglucuronidation as 
progesterone is not glucuronidated. 

The notion that changing the gut microbiota can cause relevant changes in 
androgen-related phenotypes has been demonstrated in several recent 
preclinical studies (Figure 16). In a mouse prostate cancer model, Pernigioni 
and coworkers found that castration influences the gut microbiota, and 
antibiotic treatment, removing most of the gut microbiota, could delay the 
emergence of castration resistance. Also, prostate cancer phenotypes 
(hormone-sensitive versus castration-resistant) could be transferred via fecal 
microbiota transfer 162. Another study found that male androgen receptor 
knock-out mice increased their bodyweight more than wildtype littermate 
controls when exposed to a high-fat diet. Interestingly, antibiotic treatment of 
the mice abolished this difference, suggesting that the gut microbiota plays a 
role in the development of hypogonadal obesity in this androgen receptor-
deficient mouse model 164. In other studies, fecal microbiota transfer between 
mice has been shown to improve sperm quality when it has been diminished 
by high fat diet or the cancer drug busulfan 165, 166. In female rats, prenatal 
treatment with androgens in a PCOS model gave long-term changes in the 
gut microbiota 167. Furthermore, when PCOS mice were co-housed with 
healthy mice their PCOS symptoms improved and a change in the gut 
microbiota was detected 168. 

Another way to affect the gut microbiota is to use probiotics. Probiotic 
treatment (Lactobacillus reuteri) has been shown to affect androgen-
dependent phenotypes in aged male mice 169, 170. However, when we followed 
up paper III by treating castrated male mice with probiotics (L.mix: 
Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum 
DSM15312 and DSM15313) or vehicle, we could not detect an effect on 
androgen dependent phenotypes or circulating or gastrointestinal 
androgens 171. In the future, it would be interesting to accurately measure 
local androgen levels in old male mice with phenotypic improvements from 
probiotic treatment such as those in the studies by Poutahidis and Lee and 
coworkers 169, 170, to find out if the phenotypic changes are correlated with 
increased local androgen levels. 
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Altogether, the prospect of treating or preventing androgen-related disorders 
by modulating the gut microbiota is still some way off, but this is a highly 
active field that attracts a lot of attention at the moment.  

LOCAL ANDROGENS AND CANCER  
Prostate cancer is one obvious field for local sex steroid measurements. 
Steroid metabolizing enzymes are expressed in tumor tissue. In castration 
resistant prostate cancer, non-androgenic precursors are locally transformed 
into androgens in tumor tissue thus driving cancer progression 40, 44, 172.  

In humans, local levels of androgens in the prostate correlate poorly with 
circulating androgens 173. Circulating testosterone levels or treatment with 
testosterone have not been consistently associated with the development of 
new prostate cancer in epidemiological studies 174, but a Mendelian 
randomization study has shown a causal link between genetically determined 
testosterone levels and an increased risk of prostate cancer 175. Thus, the fact 
that the common nutritional supplement DHEA increases androgen levels 
preferentially in the prostate (and liver) may be a cause of concern (our 
finding in paper II). This increase is however not entirely surprising as these 
tissues are known to express 5-reductase enzymes, capable of producing 
DHT from testosterone 176. In paper II we also found that supplementation 
with DHEA leads to increased local androgen levels in the liver. Higher 
serum levels of androgens have been linked to an increased risk of 
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developing liver cancer, and interestingly, an inverse correlation was seen for 
DHEA, associating higher DHEA levels with less liver cancer. The authors 
speculate that the capacity of local production of androgens from DHEA is 
important for liver cancer risk 177. 

PROGESTERONE IN MALES 
In study I we concluded that progesterone was as abundant as testosterone in 
intact male mice, and the most abundant sex steroid in castrated male mice. 
In study IV we found that a source other than the adrenals must exist as 
progesterone levels remained largely unchanged after ORX and ADX. The 
clinical relevance of progesterone in men is still mostly unknown 62, 63, but 
levels in men are similar to those in postmenopausal women, and lower 
progesterone levels have been associated with an increased risk of aortic 
aneurysm 61. 

Progesterone affects prostate cancer cells in vitro and it has been described as 
an oncometabolite 68. Progesterone levels increase in prostate cancer patients 
treated with the CYP17A1-inhibitor abiraterone during the first months of 
treatment as the downstream metabolism of progesterone is blocked by 
abiraterone 178. In addition, the progesterone receptor is expressed in prostate 
tissue and higher expression of progesterone receptor B is associated with 
worse prognosis for prostate cancer patients, but it is unclear if progesterone 
is important as a ligand for this mechanism 70. The role of progesterone in 
prostate cancer is still far from fully understood. 

The finding in paper IV that dietary progesterone can be taken up and 
detected in prostate and adipose tissue of male mice is novel, and in line with 
previous research reporting high progesterone levels in dairy products and 
other food items 179-182. Dietary sex steroids from milk can in fact affect urine 
or serum sex steroid levels of women and children 183, 184. The possible 
clinical relevance of dietary progesterone in men remains to be elucidated. 

CONSIDERATIONS OF SEX/GENDER 
In this thesis and its accompanying papers, I have used the terms sex and 
men/women/males/females for individuals based on their sex chromosomes, 
but I acknowledge that not everyone identifies according to the gender as 
defined by their sex chromosomes; thus, this a simplified nomenclature. All 

Hannah Colldén 

 37 

studies on physiology should consider differences according to sex – this is 
especially relevant in research regarding sex hormones 185. Historically, 
female rodents have been understudied due to the belief that estrus cycling 
may induce too much variability, despite that also males show significant, 
and sometimes greater, variability in several traits 186, 187.  

In this thesis, the major focus is on sex hormone measurements in males, 
whereas androgens are relevant also for female physiology and diseases. In 
paper III, results from females were published alongside those from males. 
The basic distribution and supplementation effects of sex steroids in tissues 
published in papers I and II have also been performed in females and will 
be published separately. Further studies in females should be performed to 
understand local levels of androgens and their relevance for female-specific 
androgen-related diseases such as PCOS. The connection between the gut 
microbiota and PCOS is an active area of research, even though it is still 
unclear if the proposed relationships between the gut microbiota and PCOS 
are more related to the androgenic or the metabolic component of the 
disease 95.  

Measuring local tissue sex steroids in female mouse tissues is definitely 
possible with our developed and validated method. Accurate study planning 
taking into consideration the cycling of intact female mice could benefit 
analysis. This could be achieved for example by monitoring estrus cycling 
through vaginal smears during the days before sacrifice, or timing the 
sacrifices to have all mice in the same cycle phase, depending on the research 
question 107, 188. In our experience, slightly larger study groups can be used to 
compensate for the cycle-dependent variability between female rodents when 
examining sex steroid levels. Local tissue sex steroid measurements in both 
female mice and human samples can be important in studies on estrogen-
driven diseases such as endometriosis 189 and breast cancer 190. 
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studies on physiology should consider differences according to sex – this is 
especially relevant in research regarding sex hormones 185. Historically, 
female rodents have been understudied due to the belief that estrus cycling 
may induce too much variability, despite that also males show significant, 
and sometimes greater, variability in several traits 186, 187.  

In this thesis, the major focus is on sex hormone measurements in males, 
whereas androgens are relevant also for female physiology and diseases. In 
paper III, results from females were published alongside those from males. 
The basic distribution and supplementation effects of sex steroids in tissues 
published in papers I and II have also been performed in females and will 
be published separately. Further studies in females should be performed to 
understand local levels of androgens and their relevance for female-specific 
androgen-related diseases such as PCOS. The connection between the gut 
microbiota and PCOS is an active area of research, even though it is still 
unclear if the proposed relationships between the gut microbiota and PCOS 
are more related to the androgenic or the metabolic component of the 
disease 95.  

Measuring local tissue sex steroids in female mouse tissues is definitely 
possible with our developed and validated method. Accurate study planning 
taking into consideration the cycling of intact female mice could benefit 
analysis. This could be achieved for example by monitoring estrus cycling 
through vaginal smears during the days before sacrifice, or timing the 
sacrifices to have all mice in the same cycle phase, depending on the research 
question 107, 188. In our experience, slightly larger study groups can be used to 
compensate for the cycle-dependent variability between female rodents when 
examining sex steroid levels. Local tissue sex steroid measurements in both 
female mice and human samples can be important in studies on estrogen-
driven diseases such as endometriosis 189 and breast cancer 190. 
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CONCLUSION 
In the papers included in this thesis, we have published an atlas of local sex 
steroid levels in tissues and the gastrointestinal tract of mice in different 
conditions (castrated, castrated + DHEA-treated, castrated  
adrenalectomized, germ-free) and specifically mapped local sex steroid levels 
in intestinal contents of both males and females, as well as the sex steroid 
levels in mouse and human food.  

As these studies have had rather open-ended research questions, we have had 
a few thought-provoking and unexpected findings, namely the effect of 
DHEA treatment on androgen levels in the liver, the high DHT levels in the 
intestinal contents, the effect of the gut microbiota on intra-intestinal 
androgens, and the possible role of dietary progesterone for male 
progesterone levels (Figure 17).  

Measuring local sex steroid levels in tissues is unlikely to become 
widespread in clinical practice, as using a GC-MS/MS method such as ours 
still requires a lot of time and money, and tissue sampling is not always 
feasible in a clinical setting. Instead, understanding the details of local 
mechanisms by looking closely at local sex steroid levels together with 
detailed knowledge of enzyme expression and transcription can result in the 
identification of novel drug targets or better understanding of the tissue-
specific effects and risks of sex hormone-affecting treatments. 

One of our findings that is already being actively investigated, and for which 
we provided a small piece of the puzzle regarding potential mechanisms, is 
the connection between the gut microbiota and androgen levels and disorders. 
Since its publication in 2019, paper III has been cited 115 times according to 
Google Scholar (September 2023). This comparatively large number reflects 
the numerous recent publications discussing the interaction between 
androgens and the gut microbiota, although in my opinion, review articles are 
overrepresented and conclusive studies are still lacking. The possibility of 
targeting the gut microbiota to treat or prevent androgen-dependent disorders 
requires more high-quality, well-powered studies. 
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Figure 17 Four main findings and their related future research fields, arranged in 
order of my personal perceived level of excitement. 
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FUTURE PERSPECTIVES 
The field in which local tissue sex steroid levels are used in research has 
grown rapidly since the planning of the first studies of this thesis. Our 
findings will lay a foundation for future research on local sex steroid levels 
and have produced several interesting research questions.  

To understand the relationship between sex steroid levels and the gut 
microbiota in humans in more detail a more epidemiological approach could 
be to use data on sex steroid levels and gut microbiome sequencing from 
large cohort studies, to elucidate the interactions between androgens and the 
gut microbiota. Our finding of high local androgen levels in feces of young 
and healthy men should be expanded into other groups such as women and 
men of other ages, and patient groups with androgen-related or intestinal 
disorders. 

The role of progesterone in prostate cancer is currently under investigation, 
and our novel finding of uptake of dietary progesterone into prostate tissue 
requires further studies. An obvious next study would be to investigate the 
contribution of dietary progesterone to circulating or tissue levels of 
progesterone by adding progesterone-rich foods to the diets of mice. This 
could also be done in a prostate cancer mouse model. Also, it would be 
interesting to plan a clinical diet study for men with prostate cancer on ADT 
where diets are designed to contain different levels of progesterone, and then 
follow up the circulating progesterone levels.  

Possible long-term effects of DHEA treatment on the liver deserves further 
investigation, especially if prescribed use of DHEA increase in men or 
women. At least, careful consideration of the long-term liver effects is 
warranted in any clinical studies investigating DHEA treatment. 

Finally, understanding more about local sex steroid levels in tissues may 
bring on new ideas and research questions in several different fields, and 
ultimately lead to new treatment options for sex steroid-dependent diseases or 
more knowledge about modifiable risk factors for endocrine cancers. 
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