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ABSTRACT 

Clostridioides difficile infections primarily affect elderly, hospitalised 

patients treated with antibiotics and are among the most common healthcare-

related infections. This thesis aimed to improve the understanding of the best 

prevention strategies for this disease, particularly in a Swedish setting. In 

Paper I, we evaluated the effects of an antibiotic stewardship programme. C. 

difficile infection incidence fell after a substantial reduction of cephalosporin 

use at the hospital. No significant change in incidence was seen at a 

comparable hospital where no stewardship programme was implemented. In 

Paper II, we evaluated two surveillance algorithms intended to detect 

outbreaks. None of these could accurately discriminate transmission events. 

We combined different typing methods with epidemiological links to 

determine the frequency of intrahospital disease transmission. Transmissions 

occurred infrequently in our setting. In Paper III, we constructed a 

mathematical, compartmental model of C. difficile transmission dynamics, 

where the environmental reservoir of C. difficile spores was modelled 

alongside patient compartments. Antibiotic stewardship had the largest 

potential for decreasing infections, while improved cleaning and disinfection 

practices could best decrease colonisations and environmental spores. 

Improved isolation had modest effects overall. 

In conclusion, antibiotic stewardship, directed primarily at cephalosporins, is 

effective to reduce C. difficile infections in a real-life as well as a modelled 

Swedish setting. For optimal surveillance and outbreak detection, there is a 

need to further develop and validate methods. Improved general cleaning and 

disinfection in hospitals can potentially prevent colonisation and infections if 

a substantially increased rate of spore reduction is achieved. Such measures 

may be more important than isolation of infected patients.  

Keywords: Clostridioides difficile, prevention, antibiotic stewardship, 

infection surveillance, outbreaks, compartmental modelling, cleaning, 

disinfection 
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SAMMANFATTNING PÅ SVENSKA 

Clostridioides difficile (C. difficile) är en bakterie som kan finnas i tarmen 

hos människan och andra djur. Den kan övergå i en tålig sporform som gör 

att den kan överleva utanför kroppen och stå emot vanliga 

desinfektionsmedel. I samband med sjukhusvård, antibiotikabehandling och 

andra riskfaktorer kan den orsaka infektion genom att bilda toxiner som 

påverkar tarmslemhinnans celler. Toxinerna orsakar inflammation som leder 

till diarré, smärtor och ibland allvarliga komplikationer. I studierna som ingår 

i den här avhandlingen har vi utvärderat olika sätt att förebygga att 

infektioner med denna bakterie uppstår och sprids på sjukhus. Ett sätt är att 

minska användningen av antibiotika som ökar risken för infektion mest. I 

Studie I utvärderade vi effekten av att kraftigt minska användningen av 

antibiotikaklassen cefalosporiner till förmån för preparat med lägre risk. Vi 

fann att antalet C. difficile-infektioner minskade, medan antalet infektioner 

var oförändrat på ett annat sjukhus där samma åtgärd inte hade införts. I 

Studie II undersökte vi hur ofta C. difficile-infektion smittar från patient till 

patient i en svensk kontext. Smitta mellan patienter är ett välkänt problem 

och leder ibland till stora utbrott av infektioner. I studien hittade vi några fall 

av smittspridning, men det skedde inte särskilt ofta. Vi utvärderade också två 

övervakningsmetoder med syfte att upptäcka smittspridningar, som utgick 

från antalet fall på olika avdelningar under en 30-dagarsperiod. Ingen av 

metoderna fungerade särskilt bra, eftersom de smittade patienterna ofta hade 

hunnit byta avdelning innan de blev sjuka och provtogs. I den tredje studien 

byggde vi en matematisk modell för att simulera ett sjukhus där patienter 

skrivs in och ut, ibland får i sig C. difficile och ibland blir sjuka av det. Vi 

simulerade också mängden sporer i miljön som kunde stiga eller sjunka. Vi 

prövade olika förebyggande åtgärder i modellen och uppskattade deras 

maximala effekt. Förändrad antibiotikaanvändning hade störst potential att 

minska antalet infektioner, medan mängden sporer i miljön och hur många 

som tar upp bakterien utan att bli sjuka påverkades mest av städning och 

desinfektion.  

Sammanfattningsvis har avhandlingen bidragit med ny kunskap kring 

effektiva åtgärder för att förebygga C. difficile-infektion, särskilt i en svensk 

kontext.  
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DEFINITIONS IN SHORT 

Clostridioides difficile 

infection 

Clinical findings compatible with C. difficile 

infection, e.g. diarrhoea (3 or more loose 

stools within 24 hours) and microbiological 

findings representing toxigenic C. difficile in 

stool 

C. difficile colonisation Presence of C. difficile (toxigenic or non-

toxigenic) in the intestines of a carrier 

without symptoms of infection 

Toxigenic C. difficile C. difficile with the ability to produce toxins 

A or B (or both) 

Non-toxigenic C. difficile C. difficile without the ability to produce 

toxins A and B 

Healthcare facility-

associated C. difficile 

infection 

C. difficile infection with symptom onset 

either during in-patient stay at a healthcare 

facility >48 hours after admission, or within 

four weeks after discharge from a healthcare 

facility 

Community-associated C. 

difficile infection 

C. difficile infection with symptom onset 

>12 weeks after discharge from a healthcare 

facility 

Sporulation The process where vegetative C. difficile 

transform into the endospore state 

Germination The process where C. difficile endospores 

transform into the vegetative state 

Antibiotic stewardship A systematic effort to ensure that antibiotics 

are not overused or misused 

Cleaning Removal of organic or inorganic 

contaminations from surfaces or objects 
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Disinfection A physical or chemical process with the 

intention to kill or inactivate 

microorganisms 
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1 INTRODUCTION 

1.1 THE BACTERIUM 

Clostridioides difficile was first described by Ivan C. Hall and Elizabeth 

O'Toole in 1935 [1] as Bacillus difficilis. They found it to be an anaerobic, 

gram-positive rod, present in the faeces from several newly born, healthy 

babies. The word "difficilis" refers to the difficulties encountered when trying 

to isolate and culture the bacteria at the time. The discoverers correctly 

concluded that the species had a pathogenic potential due to toxin production 

by injecting filtrates subcutaneously in guinea pigs, which then died with 

convulsions. Marshall L. Snyder [2] further studied the pathogenicity and 

found that the toxins produced were lethal for several animal species but not 

as potent as botulinum toxin or tetanus toxin. In 1938, Prévot reclassified the 

species as part of the genus Clostridium and renamed it Clostridium 

difficile. [3]   

 

Figure 1. C. difficile bacteria as viewed in a scanning electron microscope. 

The bacteria are in the early stages (three days) of forming a biofilm. Work 

available in the Creative Commons Public Domains, produced by Semenyuk 

et al. PLoS One, 2014. [4] 
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Although a pathogenic potential of the species had been discovered, it had 

not yet been linked to any human disease. Anaerobic bacteria, in general, 

were not regarded as especially clinically interesting at the time of discovery. 

Furthermore, microbiological methods for routine culturing of anaerobic 

species at clinical laboratories were still to be developed. This all changed in 

the 1970s, with what has been called "the anaerobic renaissance". [5] 

Anaerobes were then found to be present in abscesses as well as abdominal 

and airway infections. The newly discovered antibiotics lincomycin and its 

derivative clindamycin, with effect on many anaerobes, were increasingly 

used to treat these infections. [6] In 1973, Cohen et al. [7] published a case 

reports series where three patients developed severe colitis after clindamycin 

treatment. This led other scientists to investigate the causes of 

pseudomembranous colitis, a disease first described in 1948. [8] By the 

second half of the 1970s, a group led by John G. Bartlett, through a series of 

studies, established the link between C. difficile, its toxins, and 

pseudomembranous colitis. [9-12] Bartlett's group also developed the first 

diagnostic test for C. difficile infection (CDI), the cell culture cytotoxicity 

assay, in the late 1970s. [13] Oral vancomycin, which had been used 

successfully for treatment of staphylococcal enterocolitis [14] and in animal 

models of C. difficile enterocolitis [10] was proven an effective treatment in 

1980 [15] and metronidazole in 1983. [16] 

During the 1980s and 1990s, diagnostic tests and antibiotic treatments for C. 

difficile infections were implemented at hospitals worldwide. It became clear 

that most C. difficile infections did not lead to pseudomembranous colitis but 

milder disease where diarrhoea was the main symptom. It also became 

established that most of the available antibiotic classes increased the risk of 

infection and that most cases were nosocomial. [17] Around the year 2000, a 

disturbing increase in incidence was observed in the United States and 

several European countries. Many of these cases were caused by a specific 

strain named BI/NAP/027 (depending on the kind of typing performed), were 

associated with severe disease, and more frequently affected people with few 

classic risk factors such as advanced age and comorbidities. [18] By the time 

of writing, this strain – now commonly referred to as Multilocus Sequence 

Type 1 (ST 1) or ribotype (RT) 027 – is now the dominant strain in several 

European countries. At the same time, it is still uncommon in countries such 

as Sweden. [19, 20]  

Genetic studies in the age of whole genome sequencing made it clear during 

the 2010s that C. difficile is quite distantly related to other species within the 
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genus Clostridium and more closely related to the 

family Peptostreptococcaceae. A renaming to Peptoclostridium difficile was 

therefore suggested, [21] but other authors argued that a name that retained 

the initial "C." would cause less practical problems. [22] The new name thus 

became Clostridioides difficile in 2016.  

Although we cannot know how often C. difficile infections in humans 

occurred before the antibiotic era, it seems reasonable to believe that they 

were uncommon and that C. difficile was mainly a sporadic, harmless guest 

in our intestines before we began to disturb the gut microbiome with 

antimicrobials. [23] The epidemiology of C. difficile is constantly changing 

and will likely continue to change with our habits. The basis for this 

dissertation is that we can influence the direction, or at least rate, of these 

changes by wise choices.  

 

1.1.1 LIFE CYCLE AND HABITAT 

The life cycle of Clostridioides difficile comprises two distinct states: 

vegetative cells and spores, between which it alters depending on external 

conditions. Unlike true spores, which are multiple offsprings from a mother 

cell, the endospore is a transformed vegetative cell. For simplicity and 

according to current convention, C. difficile endospores will be referred to as 

spores in this thesis from here on. The spore has reduced its metabolism to a 

minimum, decreased its water content substantially, and modified the cell 

membrane and cell wall to a three-layered protective coat (Figure 2). [24] 

Vegetative C. difficile are strictly anaerobic and thus cannot survive for long 

in the oxygen-rich environment outside the gut. Conversely, spores are highly 

resistant to both oxygen and harsh environmental conditions, including 

exposure to heat, acid, ethanol, and other compounds commonly used to kill 

bacteria. The spore can germinate and convert back to a vegetative cell when 

the conditions are favourable. C. difficile spores can be found in most 

environments, inside and outside healthcare facilities. For instance, Janezic et 

al. [25] recovered C. difficile from surfaces in 70 % of investigated 

households, with the highest recovery rate from shoe soles. 
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Figure 2. Different stages of sporulation and the final structure of the C. 

difficile spore. MC, mother cell compartment; SC, smaller compartment; FS, 

forespore compartment; MS, mature spore. Reproduced with permission from 

Zhu et al., Front Cell Infect Microbiol, 2018, Copyright Zhu, Sorg & Sun.  

Clostridioides difficile has been found in the gut of a diverse range of hosts, 

including mammals such as horses, [26] sheep, [27] and pigs, [28] as well as 

at least some birds [29] and reptiles. [30] Regardless of species, the rate of 

gut colonisation is usually higher in the newly born individuals than in adults. 

[26-28] This pattern also holds for humans, where the colonisation rates can 

be as high as 60–70% in infants, [31] and the bacterium was indeed first 

discovered in infants under ten days of age. [1] This suggests that the 

ecological niche of vegetative C. difficile is in the gut of recently born 

animals. The spore state enables transfer between hosts as the former host 

ages and develops a more mature gut microbiome. This view is supported by 

the fact that germination (the transformation of spores to vegetative bacteria) 

is triggered not by sensing of nutrients such as sugars and amino acids, as is 

the case in many other spore-forming bacterial species (e.g., Bacillus) but by 

a particular composition of bile acids. [24] Human infant bile has high levels 

of, e.g., taurocholate, [32] a potent inducer of germination, while the 

germination inhibitor chenodeoxycholate [33] occurs in lower levels 

compared to adults. [32] (Figure 3a-b) 
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Figure 3a. Interactions between C. difficile and bile acids in the adult human 

gut. Antibiotic treatment leads to fewer bile acid metabolising microbes, 

which in turn leads to a bile acid composition that promotes C. difficile spore 

germination and growth of vegetative cells. C. difficile produces toxins that 

affect epithelial cells in the colon and cause symptoms. Reprinted with 

permission from Cheng et al., Physiol Genomics, 2019. [34]  
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Figure 3b. Interactions between C. difficile and bile acids in the infant 

human gut. All bile acids are primary, promoting C. difficile spore 

germination and growth of vegetative cells. C. difficile produces toxins that, 

for yet unknown reasons, do not affect the epithelial cells in the colon. The 

infant is heacily colonised but asymptomatic. Reprinted with permission from 

Cheng et al., Physiol Genomics, 2019. [34] 
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Rates of asymptomatic C. difficile colonisation in healthy adults have varied 

between 0% and 15% in different studies. [35] In most studies, colonisation 

has been defined as the detection of C. difficile or C. difficile toxin in the 

faeces of individuals in the absence of diarrhoea and other symptoms 

associated with C. difficile infection. This may represent both long-term 

colonisation and more temporary presence. One study found, for instance, 

that 6.6% of healthy adults were positive for C. difficile in stool, but only a 

third of those tested positive for the same strain at follow-up testing one 

months later. [36] Patients with recent hospitalization or stay at a long-term 

healthcare facility generally have higher colonisation rates than the general 

population. [35] Thus, although infants have the highest colonisation rate, C. 

difficile can also be part of the adult microbiome without causing disease. 

This is especially true for non-toxigenic strains, which lack toxins and are 

protective against symptomatic C. difficile infection. [37] 

 

1.1.2 TOXINS AND OTHER VIRULENCE FACTORS 

The most important virulence factors of C. difficile are Toxin A (TcdA) and 

Toxin B (TcdB). Both have similar structures and belong to a family of high 

molecular weight (>250 kDa) bacterial toxins known as large clostridial 

cytotoxins. [38] They both consist of four subunits with different roles in the 

multi-step pathogenic process: binding to and uptake in the host cell, 

translocation from the endosome to the cytoplasm, and activating the 

enzymatic subunit. This subunit, the glucosyltransferase domain, inactivates 

GTP-binding proteins of the Rho family in the host cell by glycosylation. 

[39] GTP-binding proteins act as switches in the cell signaling pathways, in 

this case, the pathway of building actin fibers vital for the cytoskeleton. Thus, 

cells exposed to TcdA and TcdB lose their cytoskeletal structure, which can 

be seen under the microscope as a rounding of cells. [40] In recent years, 

studies have indicated that apart from the previously described mechanism of 

action, high concentrations of TcdB may also cause rapid cell death by 

inducing the intracellular production of reactive oxygen species. [41-43] To 

which degree this mechanism of action is relevant for the clinical 

manifestations of C. difficile infections is yet unclear.    
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Figure 4. C. difficile Toxin A as viewed from different angles. 3D 

reconstruction based on negative stain electron microscopy. Toxin B has a 

similar structure (not shown). The scale bar in the lower right represents 5 

nanometers. Reproduced with permission from Pruitt et al., PNAS, 2010. 

[44] 

Some strains of C. difficile, notably the hypervirulent strain ribotype 

027/sequence type 1 (RT027/ST1), produce another toxin. This binary toxin, 

CDT, was first described in 1997 [45] and belongs to a different family of 

toxins than TcdA and TcdB. The pathogenic effect is mediated by a direct 

effect on actin by ADP-ribosylation, inhibiting the proliferation of actin 

chains. [39] While the association with hypervirulent strains suggests 

relevance for causing severe infections, the importance of this toxin for 

pathogenicity is still unclear. Experiments in animal models have suggested 

that it might induce inflammation in the small intestine rather than the colitis 

induced by the other toxins. [46] 

The genes encoding TcdA and TcdB are, when present, always found in the 

same genomic location. This chromosomal location is referred to as the 

Pathogenicity Locus (PaLoc) (Figure 5). The CDT toxin genes (cdtA and 

cdtB) are present at another genomic location. Besides 

the tcdA and tcdB genes, PaLoc includes three genes believed to have 

regulatory (tcdR/tcdD and tcdC) and secretory (tcdE) functions. [47] Despite 

being present in the chromosome, the presence or absence of the PaLoc 

varies even between closely related strains. Dingle et al. [48] showed, by 

comparing the core genome with the PaLoc genome of a large number of 

isolates, that this "gene package" has been acquired and lost frequently 

among different clades of C. difficile in recent history. Horizontal gene 

transfer of the PaLoc has also been demonstrated. [49] Thus, the PaLoc can 

be viewed as a mobile genetic element. [50]  
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Figure 5. Genes within the Pathogenicity Locus (PaLoc) of the C. difficile 

genome. The cdt genes are present in a different genomic location. 

Reproduced with permission from McDonald et al., N Engl J Med, 2005, [51] 

Copyright Massachusetts Medical Society. 

Interestingly, human infants and young individuals of most other species 

seem to be largely unaffected by C. difficile toxins. [31] The reason for this is 

yet to be wholly understood, but it has been proposed, based on animal 

studies, that the infant's gut lacks the receptors needed for toxin uptake. [52] 

Toxigenic strains still excrete toxins when they colonise the infant gut, [53] 

apparently to no benefit but at the expense of the nutrient resources required 

to build toxins. Given the assumption that the infant gut of animals and 

humans is their main niche, the benefit for the bacteria of producing toxins in 

these circumstances seems questionable. Toxin production in C. 

difficile might be better explained by evolutionary forces exerted on the 

PaLoc itself as a mobile element. [54]  

In non-toxigenic strains, the PaLoc is replaced by a short, non-coding region. 

[47] Toxigenic strains can be divided into different toxinotypes based on the 

genetic sequence in the PaLoc and the cdt gene. [55] Most toxinotypes code 

for both TcdA and TcdB, but some only have the tcdB gene, and one 

toxinotype that is tcdB negative but tcdA positive has been described. [47]  

Although toxins are the main virulence factors and non-toxigenic strains are 

considered apathogenic, a few other structures have been proposed as 

additional virulence factors. The surface layer protein of C. difficile consists 

of a high molecular weight and a low molecular weight subunit. It is vital in 

adherence to gastrointestinal cells. [56] The role in pathogenesis is still being 
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determined for other structures, such as fimbriae, pili, flagellae, and surface 

polysaccharides. [57]  

 

1.2 C. DIFFICILE INFECTION 

C. difficile spores enter the body through the oral route. Whether this occurs 

mainly by contaminated hands, food intake, or other ways has yet to be 

thoroughly investigated. However, as C. difficile spores are ubiquitous in 

most environments, [58] it can be presumed that we all ingest them from time 

to time by our regular habits. The spores, with their protective coat, can 

survive the gastric acid of the stomach. [59] They remain dormant at least 

until reaching the distal part of the small intestine, the ileum. Germination 

can occur in this part of the gut if the conditions are favourable. A 

combination of adequate levels of certain bile acids (e.g., taurocholic acid) 

and either amino acids (e.g., glycine) or divalent cations (e.g., calcium) 

induces the transformation from spores to active, vegetative bacteria. [60]  

As previously stated, the bile acid composition in infant intestines is more 

likely to induce germination, which can explain the high colonisation rate of 

this group. Likewise, antibiotic treatment affects other bacterial species in the 

adult gut microbiome, which have a role in deconjugating and converting 

primary bile acids to secondary ones. This leads to a composition of bile salts 

resembling that in the infant gut and an increased chance of germination of C. 

difficile spores in intestines where the host has received antibiotics. [34]  

Entering the colon in the vegetative state, C. difficile must compete for 

nutrients amongst countless species of commensal bacteria. The chance of 

survival and proliferation at this stage is assumed to increase significantly if 

the microbiome has been decimated by recent antibiotic treatment. During the 

growth phase, toxin production is inhibited. [61] This may explain the 

paradoxical finding that growth rate is inversely correlated to disease 

severity. [62] There is a trade-off between proliferation and toxin production, 

which consumes considerable resources given the large size of the toxins.  

To achieve long-term colonisation, it is plausible that biofilm formation by 

the bacteria is vital. C. difficile biofilm was first described as late as 2012. 

[63] Subsequently, C. difficile has been shown to form biofilms with other 
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gut commensals in mouse intestines [64] and human intestine models. [65] 

Both spores and toxins can be found in mature biofilms. Furthermore, the 

resistance to metronidazole is increased 100-fold, [4] suggesting that 

surviving biofilms may be important for recurrences after a primary infection. 

 

Figure 6. Six days old biofilm of C. difficile, as viewed in a scanning electron 

microscope. Work available in the Creative Commons Public Domains, 

produced by Semenyuk et al. PLoS One, 2014. [4] 

 

After successful proliferation in the large intestine, some vegetative bacteria 

are transformed into dormant spores. The trigger for sporulation is not yet 

known, [66] but a proportion of vegetative bacteria are required to turn into 

the spore state to enable transmission to new hosts. The spores are excreted 

with the faeces and deposited in the environment, where they can survive for 

months or even years. [67, 68] If and when they, by chance, enter a new 

gastrointestinal tract, the cycle starts over.  

 

1.2.1 CLINICAL PICTURE, TREATMENT, AND 

RECURRENCE 

Clostridioides difficile infections manifest on a scale from mildly loose stools 

to life-threatening, fulminant pancolitis. Diarrhoea, defined as three or more 

loose stools within 24 hours, is the cardinal infection symptom. [69] Other 

symptoms include fever, nausea, and abdominal pain. In more severe cases, 
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the infection may progress to cause (but is not the sole cause of) 

pseudomembranous colitis. This condition is characterized by 

macroscopically visible yellow-white plaques on the colonic mucosa (Figure 

7). [70, 71] Severe cases can also present with ileus, [72] where diarrhoea 

may be absent, or toxic megacolon, [73, 74] Signs of fulminant disease 

include elevated leukocyte counts, abdominal distension and pain, and 

hemodynamic instability. [75]  

 

Figure 7. Pseudomembranes on the colonic mucosa, as viewed by flexible 

sigmoidoscopy. Reprinted with permission from Farooq et al 2015, [71] 

Copyright Elsevier.  

In mild cases, discontinuation of the inciting antibiotic can be enough to 

resolve the infection. [76, 77] Otherwise, there are a few different choices for 

treating C. difficile infection. Metronidazole is an anaerobe-specific antibiotic 

with an effect on C. difficile and has been widely used historically for this 

purpose. However, randomized controlled studies have shown an inferior 

clinical success rates compared to vancomycin, especially in more severe 

disease. [78, 79] Recent European guidelines recommend metronidazole only 

in settings where the alternatives are unavailable. [77] Instead, vancomycin 

or fidaxomicin are recommended as first-line choices. Vancomycin is a 

glycopeptide antibiotic that affects the cell wall of gram-positive bacteria. Its 

clinical effect on C. difficile infection, with around 85–90% clinical cure rate, 

is similar to that of the newer drug fidaxomicin, [80] which was introduced in 

2011. Fidaxomicin is a narrow-spectrum antibiotic that selectively targets C. 
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difficile, preventing further disruption of the gut microbiota. [81] This is 

thought to contribute to the lower frequency (around 30% lower [82]) of 

recurrences seen in fidaxomicin-treated patients compared to vancomycin-

treated ones, [80, 83] which is its main advantage. The drawback in current 

clinical practice is its high cost, which so far has precluded wide use in most 

settings.  

Recurrences occur in around 20% of cases treated with metronidazole or 

vancomycin. [84, 85] In these cases, symptoms re-emerge after finished 

treatment, usually within the first few weeks but sometimes after months. 

[86] The high rate of recurrences compared to other bacterial infections is 

assumed to be due to surviving spores in the environment or the colon, as 

these are unaffected by antibiotics. [87] The same strain as that involved in 

the primary infection causes most recurrences, but new strains are responsible 

in 10-40% of cases. [86, 88]   After one recurrence, the risk of subsequent 

recurrences is increased, [89] sometimes leading to a hard-to-break cycle of 

recurrences and treatments. Restoration of a normal gut microbiome by 

transplantation to the colon of faecal contents from a donor (faecal 

microbiota transplantation, FMT) has proved to be an effective and relatively 

inexpensive treatment method to break this cycle. [90]  

Aside from antibiotics and FMT, fluid restoration and other supportive care is 

often indicated. In the more severe cases of fulminant colitis, emergency 

surgical treatment such as colectomy should be considered. [91] Lastly, a 

monoclonal antibody directed at TcdB, bezlotoxumab, has recently been 

added to the arsenal of treatment options. It is recommended as additional 

therapy in some cases, such as recurrence after fidaxomicin treatment of the 

primary infection, in current European guidelines. [77] 

 

1.2.2 DIAGNOSTICS 

The cell culture cytotoxicity assay (CCTA), first developed by Chang et al. in 

the late 1970s, [13] was the first diagnostic test for C. difficile infection and is 

still considered a valid reference method for evaluating newer laboratory 

methods. [92] The test is performed by exposing cell cultures to a faecal 

filtrate from the patient with suspected infection, with and without antibodies 

directed at the toxin. If the test is positive, cell rounding caused by the toxin 

can be observed after 24–48 hours, but not in the cell culture where antitoxin 

was added. As the test requires cell culture facilities and experience in 
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assessing cell rounding, and takes several days to perform, it is no longer 

widely used in clinical practice. 

Alternative diagnostic methods were developed during the 1980s, including 

selective media enabling C. difficile culturing [93] and enzyme 

immunoassays (EIAs) permitting the detection of TcdA or TcdB directly 

from faecal samples. [94] The main problem with the first approach was that 

non-toxigenic strains would grow in the cultures, decreasing the specificity of 

the analysis. The second approach had the reverse problem: high specificity 

but limited sensitivity, [95] especially for TcdB. [96] A combination of the 

two methods was eventually proposed: toxigenic culture, where culture is 

performed followed by an EIA on the cultured strains. [97] Toxigenic culture 

became an alternative reference standard, [92] but the main drawback in 

clinical practice was the long turnaround time of three or more days. 

In the early 1990s, a latex test with high sensitivity but low specificity was 

developed, [98, 99] aiming at a glutamate dehydrogenase (GDH). This 

antigen is specific to C. difficile but is produced by non-toxigenic as well as 

toxigenic strains. The diagnostic performance is thus similar to culture, but 

with the advantage that the test is much faster. 

Around the same time, polymerase chain reaction (PCR) methods for C. 

difficile began to be developed. [100] Targeting the toxin genes could 

circumvent the problem of false positives from non-toxigenic strains while 

the sensitivity remained high. [101] PCR analyses have later been joined by 

other types of nucleic acid amplification tests (NAATs). However, the 

presence of toxin genes in faeces does not necessarily mean that toxins are 

expressed and active (e.g., not neutralized by antibodies). Wilcox, [102] 

therefore, argued that, as toxin PCR as a standalone test fails to discriminate 

between C. difficile infection and asymptomatic colonisation, a multi-step 

approach should be used. Such an approach, where a highly sensitive test and 

a highly specific test are combined, followed by either a third test or clinical 

evaluation in ambiguous cases, is currently recommended in European [103] 

(Figure 8) and American [104] diagnostic guidelines for C. difficile. The 

American guidelines, however, state that a standalone NAAT may be used 

”when there are pre-agreed institutional criteria for patient stool submission”, 

acknowledging the fact that diagnostic performance in terms of positive and 

negative predictive value is dependent on case selection (i.e., pre-test 

probability) [105]. 
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Figure 8. Two alternative (a and b) proposed algorithms in the current 

European guidelines for C. difficile diagnostics, combining test of high 

sensitivity with tests of high specificity. Reproduced under the Creative 

Commons CC-BY-NC-ND license, from Crobach et al, CMI, 2016. [103] 
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In Sweden, diagnostic methods vary. Most clinical laboratories shifted from 

EIAs to PCR during the 2010s. An evaluation of this shift showed no 

apparent signs of an increased number of false positives for PCR, which may 

be due to a clinical tradition in Sweden of only testing for C. difficile upon 

clinical suspicion. [106] Some laboratories use PCR as a stand-alone test, 

while other use the two-step approach described above.  

 

1.2.3 TYPING METHODS 

During the 1980s, clusters of pseudomembranous colitis and other 

manifestations of C. difficile infections started to be recognized, and the need 

for typing methods for outbreak investigations and surveillance became 

apparent. Early methods relied on identifying phenotypic characteristics such 

as soluble proteins, extracellular antigens, and toxins by different kinds of 

electrophoresis. [107]  

The next step was to develop genotypic rather than phenotypic methods, 

improving the discriminatory resolution. DNA can be fragmented by 

restriction endonucleases, enzymes that cleave DNA at specific sequences 

(e.g., AAGCTT for endonuclease HindIII [108]). The fragments can then be 

separated by gel electrophoresis, resulting in an array of bands representing 

different DNA fragment sizes. The method described is called restriction 

endonuclease analysis (REA). [109] In a further development of the method, 

pulsed field electrophoresis (PFGE), the electric field changes direction, 

which makes it possible to separate larger DNA fragments and in many cases 

achieve a higher discriminatory resolution. [110] A third endonuclease-based 

method is ribotyping, where the separated DNA fragments are hybridized 

with labelled ribosomal RNA probes. The probed sequences present in the 

sample are thus visualised, and the pattern of visualised gene fragments 

enables the discrimination of different ribotypes. [111] In a comparison 

between these three methods in 1994, [112] REA and PFGE had similar 

discriminatory power, while ribotyping performed worse than the other two.  

In the mid-1990s, the PCR technique was applied to the concept of 

ribotyping of bacteria (Figure 9). [113] Instead of relying on probe 

hybridization of ribosomal sequences present in the samples, suitable 

sequences could now be multiplied before electrophoresis. Later, the 

method's performance was improved by using high-resolution capillary gel-

based electrophoresis. [114] Importantly, reproducibility across laboratories 
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was achieved through a centralized standardized protocol and reference 

database of ribotypes. [115] PCR ribotyping became a standard for C. 

difficile typing. However, with little more than a hundred ribotypes, of which 

a few are common in a given setting, the resolution is insufficient to confirm 

close relationships between strains. [116] 

 

Figure 9. PCR ribotyping by agarosis gel electrophoresis, introduced in the 

mid-1990s. Ribosomal gene fragments are multiplied and then separated 

based on their size, resulting in different patterns for different strains. 

Reprinted with permission from Brazier, CMI, 2001. [117] 

In 2006, the whole genome of C. difficile was first sequenced. [118] During 

the 2010s, sequencing methods increasingly became more efficient, 

affordable, and applied in epidemiological investigations of outbreaks. [119] 

Multilocus sequence typing (MLST), where around seven housekeeping 

genes are sequenced, was an early sequence-based typing method. [120] 

However, the resolution for C. difficile is comparable to that of PCR 

ribotyping. [121] Whole genome sequencing (WGS) offers the ultimate level 

of resolution, down to the single nucleotide, and has increasingly been 

applied in C. difficile outbreak investigations in the last decade. [116, 122] 

While WGS may be the ultimate way to compare two isolates, the high 

resolution becomes a data processing liability when large amounts of strains 

are to be compared to each other, and there is often also a need to divide 

similar strains into groups. To address this problem, core genome multilocus 

sequence typing (cgMLST) has been developed to combine high 

discriminatory power with manageable amounts of data and the ability to 

divide strains into defined groups. In this approach, a selection of a few 

thousand genes are sequenced, and the genomic data are converted to a series 
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of numbers [123] or letter strings (hashes) [124] that represent variants of 

each gene.  

 

Figure 10. Visualisation of the genetic relatedness between isolates from a 

suspected cluster. All isolates are sequence type 35/ribotype 046, collected 

from humans as well as pigs and environmental sources between 2012 and 

2017. Whole genome sequencing with cgMLST analysis revealed that some 

isolates were closely related while others were not. Available under the 

Creative Commons Attribution License, from Werner et al, PLoS One, 2020. 

[125] 

Confirming close kinship between isolates demands typing methods with as 

high resolution as possible, but typing is also used to rule out suspected 

transmission. This is particularly useful when the investigation starts with an 

epidemiological link. To prove that two isolates are not closely related to 

each other, discriminatory resolution is less crucial. Instead, speed and 

affordability are of greater importance for the method's usefulness. A simple 

and inexpensive way of typing C. difficile, based on their high molecular 

weight surface proteins, was described in 2015 by Rizzardi et al. [126] The 

method employs matrix-assisted laser desorption ionization time of flight 

mass spectrometry (MALDI-TOF MS), using equipment already available at 

most clinical microbiology laboratories for routine species identification of 

bacteria. The typing corresponds roughly to PCR ribotyping but has a lower 
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resolution. A two-step approach can be employed in suspected outbreaks: 

first, MALDI-TOF typing to rule out some suspected connections, then, 

cgMLST or whole genome sequencing to confirm close kinship of still 

suspected strains. This strategy has been employed at the Swedish national 

reference laboratory for C. difficile since 2019. [127] 

 

1.2.4 EPIDEMIOLOGY 

The typical patient who develops C. difficile infection is an elderly individual 

with multiple comorbidities admitted to inpatient care and treated with 

antibiotics for an infection. Risk factors for infection can be divided into 

host-related, pharmacological, and related to clinical interventions.  

Among host-related risk factors, advanced age is the most robust. [128] With 

increasing age, the gut microbiota changes and often becomes less diverse, 

[129] while the innate and adaptive immune responses against C. difficile and 

its toxins weaken. [130] Comorbidities such as chronic kidney disease, 

diabetes, malignancies, and inflammatory bowel disease have been identified 

as risk factors in meta-analyses. [131] A plausible mechanism might be that 

these conditions, like advanced age, affect immunity, the gut microbiome, or 

both.   

Regarding pharmacological risk factors, antibiotic treatment is the strongest 

[128] and was noted in case series of pseudomembranous colitis even before 

their association with C. difficile was proven. [70] Other medications linked 

to a higher risk for C. difficile infection include proton pump inhibitors [132] 

and corticosteroids. [128]  

Risk factors related to clinical interventions include hospital stay [132] and 

nasogastric tube feeding. [133] Hospital stay, however, is hard to evaluate 

separately due to the inevitable confounding with other risk factors. [131] 

Risk factors for recurrent disease are similar to those for primary infection. 

[89]  

C. difficile infections can be divided into healthcare facility-associated cases, 

community-associated cases, and infections with unknown association, 

depending on the most probable origin. There are competing definitions on 

which infections should be regarded as associated to healthcare. For instance, 

the Swedish National Board of Health and Welfare regards all infections that 
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occur due to medical treatment, surgical, or diagnostic procedures as 

healthcare-associated. [134] By this definition, all C. difficile infections that 

are preceded by antibiotic treatment are regarded as healthcare-associated, 

regardless of any contact with hospitals. There are also a diverse set of terms 

in addition to the terms above that are used or previously have been used, 

such as nosocomial, hospital-associated, hospital-onset, et cetera.  

The current definitions by the European Centre of Disease Control [135] 

regards C. difficile infections as healthcare facility-associated if the symptom 

onset occurs on day three or later, following admission to a healthcare facility 

on day one, or within four weeks after discharge. If the symptom onset occurs 

more than 12 weeks after the latest discharge, the case is defined as 

community-associated, and if symptom onset occurs between 4 and 12 weeks 

after discharge, it is defined as of unknown association. It is, however, 

important to note that these definitions are primarily intended to ensure 

comparable definitions for surveillance. [136] Hence, they are based on 

expert opinion and not validated against actual acquirement patterns. 

 

Figure 11. Current definitions recommended for surveillance of healthcare-

facility-associated vs. community-associated C. difficile infections, based on 

the time relation between symptom onset and hospital care. Reproduced with 

permission from Kuijper et al, CMI, 2006. [137] 

The incidence of C. difficile infections varies globally and has also varied 

over time. Most large studies have been performed in the Western world in 

the 21st century, where cumulative incidence has varied between 13 and 147 

cases per 100,000 inhabitants per year. [138] In Sweden, this figure 

decreased from 85/100,000 inhabitants per year in 2012 to 66/100,000 in 

2016. [139] In neighbouring countries, the corresponding figures were 

92/100,000 per year in Finland in 2013 [140] and 85/100,000 per year in 
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Denmark in 2019. [141] In England, a remarkable decrease in incidence was 

seen between 2006 and 2013, [142] down to incidence figures below 

20/100,000 inhabitants per year. [143] Thus, there seems to be room for 

further improvement of the Swedish incidence figures, given the proper 

measures.  

The distribution of different C. difficile strains within different populations 

varies widely as well. In particular, countries differ regarding the prevalence 

of the epidemic strain ST 1/RT027, [19, 144] which has shown the potential 

to go from obscurity to the dominating strain in just a few years. For instance, 

in the English case, the proportion of ST 1/RT027 cases had risen to 25.1% in 

2005 and 41.7% in 2006 [145] before the trend was reversed. The strain is 

usually resistant to fluoroquinolones, and the subsequent decrease in 

incidence in England has been attributed to the restriction of fluoroquinolone 

use. [142] The diversity of ribotypes in Sweden is comparably high, with 

RT014 as the most common, accounting for 10.5% of cases in 2016. [139] 

ST 1/RT027 is uncommon at <1% of nationally collected samples in 2011-

2016, [106] and moxifloxacin resistance declined to <10% in 2016. [139] 

Only one more minor outbreak with ST 1/RT027 has been described. [146] 

Other more significant outbreaks in the 2010s have been caused by ST 

35/RT046 [147] and a multi-drug resistant, toxin A-negative ST 37/RT017. 

[139] 
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Figure 12. Distribution of ribotypes across Europe 2012-2013. Note the 

large differences between countries in the prevalence of RT027 (red). 

Available under the Creative Commons Attribution License, from Davies et 

al., Eurosurveill, 2016. [19] 

1.3 PREVENTION 

1.3.1 ANTIBIOTIC STEWARDSHIP 

Antibiotic stewardship is a broad term that may include a variety of 

measures, such as antibiotic resistance surveillance, guidelines for antibiotic 

use, educational efforts toward healthcare workers or the public, et cetera. 

The aim is to ensure rational use of antibiotics: to avoid unnecessary use, 

thereby limiting the inevitable antibiotic resistance development associated 

with antibiotics. 
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Alexander Fleming, credited for discovering penicillin, warned against the 

induction of antimicrobial resistance due to misuse in his Nobel lecture in 

1945. [148] New antibiotics were discovered or synthesized in a steady 

stream in the following two decades, and their use increased rapidly. 

However, around 1970, the discoveries began to dry up while resistant strains 

increased in frequency. [149] By the early 1990s, this development was 

recognized as a crisis, [150] and antibiotic stewardship programmes began to 

be implemented to ensure more prudent use of antibiotics to combat 

resistance. [151] 

Around the same time, the choice of antibiotics was shown to have a 

substantial impact on the risk of C. difficile infection. [152-154] 

Clindamycin, cephalosporins, and fluoroquinolones were especially 

associated with an increased incidence of infections. In several cases, the 

increased risk coincided with the C. difficile strain being resistant to the 

antibiotic in question. [155] In addition, treatment with broad-spectrum 

antibiotics affects a larger share of the species in the human microbiome. In 

this way, they may induce intestinal dysbiosis as well as the selection of 

resistant strains to a higher degree than narrow-spectrum antibiotics. [156] 

Thus, antibiotic stewardship programmes aimed to reduce C. 

difficile infections were implemented and evaluated in the 2000s. [157] 

Today, preventing C. difficile infections is usually an integrated goal of 

antibiotic stewardship programmes. [158]  

Meta-analyses have estimated the reduction in C. difficile incidence after the 

implementation of antibiotic stewardship programmes at hospitals to around 

30-50%. [159, 160] However, strain distributions and the nature and degree 

of change of used antibiotics vary, making it difficult to predict the effect of a 

particular measure in different settings. Most studies have been performed in 

the UK and the USA, while studies have been scarce in the Nordic countries. 

A Swedish study published in 2011, where an antibiotic stewardship 

programme led to modest but statistically significant changes in antibiotic 

use, showed no change in C. difficile infection incidence. [161]  



Clostridioides difficile infections: Preventive strategies 

24 

 

Figure 13. Forest plot of the effect of antibiotic stewardship programmes on 

C. difficile infection incidence. The pooled incidence ratio results in an 

overall 32% decrease. Reproduced with permission from Baur et al., Lancet 

Infect Dis, 2017. [159] 

1.3.2 INFECTION CONTROL MEASURES 

Infection control measures in the healthcare sector aim to prevent the 

transmission of pathogenic microorganisms to patients. The source can be 

other patients, healthcare workers, the hospital environment, or the patients 

themselves (e.g., translocation of Staphylococcus aureus from the nasal 

mucosa to a post-operative wound). Measures include (but are not limited to) 

isolation, hand hygiene, protective equipment such as gloves and gowns, and 

cleaning and disinfection of inanimate surfaces and medical equipment. 

The resilience of C. difficile spores constitutes a challenge for effective 

hygienic measures. Alcohol-based disinfectants are effective against many 

bacteria and viruses and are widely used in healthcare facilities for hand 

hygiene and disinfection of inanimate surfaces. C. difficile spores, however, 

are hardly affected by alcohols. Handwashing with water and soap is more 

effective than alcohol-based hand rub [162] simply because of its mechanical 

removal of spores. Transmission of C. difficile by the hands of healthcare 

workers has been implied. [163, 164] In the case of inanimate surfaces, a 

2012 study showed that physical removal alone could reduce the spore 

burden by 2.9 log10 (i.e., 99,8%). [165] More significant 3–6 log10 reductions 

could be achieved with sporicidal agents such as sodium hypochlorite. 

However, sodium hypochlorite and other oxidising agents, which can kill 

off C. difficile spores at adequate concentrations, also have potential adverse 
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side effects on users [166] and the environment. [167] They are not suitable 

for hand disinfection due to their corrosive effects on the skin. In real-life 

settings, using sporicidal agents in cleaning protocols tends to reduce, but not 

eliminate, environmental contamination of C. difficile spores. [168, 169]  

Inanimate surfaces in the hospital environment have been acknowledged as a 

reservoir for transmission since the late 1970s. [170] Spore contamination 

can be found in hospital rooms harbouring patients with and without C. 

difficile in their faecal samples. [171] Increased risk for C. difficile infection 

has been associated with staying in a room where a previous patient was 

infected, [172] or even, merely treated with antibiotics. [173] Besides 

symptomatically infected patients, around 3–10% of patients can be expected 

to be asymptomatically colonised by toxigenic C. difficile at hospital 

admission [174-176] and may act as additional sources of spores. Spores can 

also enter and spread within hospitals in other ways, such as by contaminated 

shoe soles from healthcare workers, patients, and visitors. [177, 178] Thus, 

there is a constant influx of spores to the hospital environment, not limited to 

excretions from symptomatically infected patients. The spores can then 

survive for months or years [67, 68] before they may end up in the 

gastrointestinal canal of a new patient, which in many cases makes 

transmission pathways very hard to follow.  

Transmission dynamics of C. difficile have often been viewed as dominated 

by indirect patient-to-patient transmission with symptomatic patients within 

the healthcare facility as the primary source. This view has been reflected in 

recommended infection control measures directed at symptomatic patients: 

early diagnosis, single-room care, use of gloves and gowns, handwashing 

with soap, et cetera. [179] However, once these measures are implemented 

and overt outbreaks are prevented, only a small proportion of healthcare 

facility-associated C. difficile cases can be traced back to another 

symptomatic case. [180] Even without any contact precautions for 

symptomatic patients with non-hypervirulent strains, transmission to other 

patients occurred in only 1.3% of cases in a Swiss study. [181] The sources 

of the remaining cases have yet to be well known. Even when environmental 

samples can be linked genetically to infections, it is often impossible to 

determine which came first: gut colonisation or environmental 

contamination.  
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Figure 14. CDC poster promoting contact precautions and hand-washing 

when caring for patients with C. difficile infection. Source: Centers for 

Disease Control and Prevention.  
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Although it is not known what proportion of C. difficile infections are caused 

by spores acquired from the hospital environment, it is established that 

colonisation rates increase during hospital care. [174, 182] Given that spores 

are dispersed in the hospital environment and not only in rooms of 

symptomatically infected patients, improved general cleaning practices may 

potentially reduce healthcare-facility-associated C. difficile infections. The 

literature on this subject is sparse. Chau et al. [183] performed a systematic 

review and meta-analysis of the effects of environmental cleaning bundles. 

They found only ten eligible studies, of which one [184] was a randomised 

controlled trial. Chau et al. concluded that, while the bundles improved the 

thoroughness of cleaning as measured by removing surface markers or 

environmental C. difficile contamination, no statistically significant effect 

was found on the C. difficile infection incidence. However, several bundles 

studied only included rooms where symptomatic C. difficile infected patients 

were cared for, not general interventions. The bundles also varied in content, 

making it difficult to draw definite conclusions on the potential effects of 

improved cleaning practices for reducing C. difficile infections in healthcare 

facilities.  

 

1.3.3 OUTBREAK SURVEILLANCE 

C. difficile outbreaks range from transmission from one patient to another to 

country-wide outbreaks involving multiple hospitals. Outbreaks can be 

sudden and dramatic, as in the Växjö outbreak in Sweden, [146] or slow and 

insidious, such as the Eksjö outbreak. [147] The latter case constitutes a 

challenge as an increased incidence on the regional, hospital, or ward level 

may not be evident until many patients have suffered unnecessarily, if even 

then. 

Dubberke et al. described in 2009 [185] a surveillance strategy based on the 

incidence of hospital-onset C. difficile infections. They showed that tracking 

other cases, such as community-onset cases, did not give any additional 

valuable information to detect outbreaks. This study is still the basis for the 

recommendation by the Infectious Disease Society of America to track 

hospital-onset C. difficile infectons as the minimum surveillance effort. [104] 

Interestingly, the outbreak definition used by Dubberke et al. was solely 

based on statistical anomalies and not validated by any typing of the strains 

involved in the suspected outbreaks.  
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Proposed cut-offs for suspecting outbreaks are often based on simple time-

space heuristics, such as “two or more cases of the same microorganism at 

the same ward within a month” or computer-assisted and based on more 

detailed statistical calculations. [186] Regardless, they have seldom been 

validated against an objective assessment of actual transmission. PCR 

ribotyping has been used for such validation, [187] but the limitation in the 

resolution of this method precludes definitive conclusions about the 

performance of the suggested surveillance method. Now that whole genome 

sequencing is available, with the ability to determine genetic similarity down 

to the single nucleotide, it is about time to properly validate the methods used 

for the early detection of outbreaks.  

 

1.3.4 OTHER PREVENTIVE MEASURES 

Giving patients probiotics, i.e., viable microorganisms that may benefit the 

host´s intestinal microbiome and possibly prevent overgrowth of C. difficile, 

has been studied with various species and patient groups. A 2017 Cochrane 

meta-analysis concluded that there is moderate evidence that probiotics are 

effective for this purpose when the base-line risk for C. difficile infection is 

greater than 5%. [188] As this is a higher percentage than can be expected in 

most settings and patient groups, and probiotics may come with adverse side 

effects, probiotic prevention has so far not been recommended in European 

guidelines. [77] 

C. difficile in animal hosts, and thereby its zoonotic potential, has attracted 

attention in recent years. Both domestic animals, such as cats and dogs, and 

foodstuff contaminated with C. difficile spores from livestock, are potential 

sources of transmission to humans. [189] Some researchers have therefore 

called for a holistic “One Health” perspective on the infection, where 

clinicians collaborate with veterinarians, environmentalists, and 

policymakers. [190, 191]  
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2 AIMS 

The overall aim of this thesis was to contribute to the knowledge of how C. 

difficile infections best can be prevented, with a focus on the Swedish setting.  

Specific aims were:  

I. To determine the effects of a hospital antibiotic stewardship 

programme restricting cephalosporin use on the incidence of 

healthcare-facility associated C. difficile infections in a Swedish 

hospital.  

II. To evaluate the performance of an early-warning algorithm, 

based on ward-specific incidence cut-offs, for detecting C. 

difficile transmission in hospitals, and to determine the frequency 

of intrahospital C. difficile transmission in a Swedish setting.  

III. To develop a compartmental mathematical model for C. difficile 

transmission within a hospital, encompassing a separate 

compartment for the environmental spore reservoir, and to use 

the model to evaluate the effect of possible interventions.  
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3 PATIENTS AND METHODS 

3.1 STUDY DESIGNS 

Paper I and Paper II were both observational studies. Paper I had a 

retrospective design. It can best be viewed as a retrospective cohort study of 

admitted patients, although data on patients without C. difficile infection was 

limited to aggregated data on the number of admissions and antibiotics 

consumed. The primary exposure studied was care at a hospital where the 

antibiotic stewardship programme had been implemented.  This intervention 

had already occurred when we started the data collection. In Paper II, the 

collection of isolates was prospective. It was primarily a study of the 

diagnostic performance of two proposed tools for detecting intra-hospital 

transmission. Paper III was a mathematical modelling study without patient 

data collection but with assumptions based on results from previously 

performed studies available in the literature.  

 

3.2 PATIENTS AND SETTING 

In Paper I, we evaluated the effect of an antibiotic stewardship programme 

initiated at Södra Älvsborg Hospital, Borås, Sweden, in 2008. The nearby 

Skaraborg Hospital, where no antibiotic stewardship programme was 

implemented, served as a control. Both hospitals are part of the same 

healthcare administrative region and serve populations of approximately the 

same size with secondary care. We included patients with a positive C. 

difficile toxin enzyme immunoassay or PCR (depending on the method used 

at the time and place) who were > 18 years old and fulfilled the healthcare-

facility-associated C. difficile infection criteria. We based these criteria on 

those proposed by McDonald et al.; [136] symptom onset either during 

inpatient care >48 h after admission or symptom onset after discharge but 

within four weeks after an inpatient care episode. As tests are performed 

based on clinical symptoms in our setting, we assumed symptoms to be 

present the day the test was taken, if no information on symptom onset was 

available. Diagnostic tests were performed at two different clinical 

microbiology laboratories. We excluded recurrent cases, defined as a 

diagnosed C. difficile infection during the previous eight weeks. Patients 

fulfilling the criteria in 2007 (before the intervention) as well as in 2012 and 
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2015 (after the intervention) were studied. The total number of patients was 

398.   

In Paper II, we studied patients at the same hospitals as in Paper I, but during 

2020 and 2021. As we were interested in all cases of possible transmission, 

we included all patients (regardless of symptoms) with a positive toxin PCR, 

including community-acquired cases, recurrent cases, and cases where the 

patient was <18 years old. The total number of patients was 673.  

 

Figure 15. Years studied in Paper I and Paper II.  

3.3 CHART REVIEW 

In Paper I, we used chart review as the primary data source. Jon Edman-

Wallér reviewed medical records and collected data at Södra Älvsborg 

Hospital, and Johan Karp did the same at Skaraborg Hospital. We had 

continuous contact during data collection to ensure that we assessed the 

information in the same way. We recorded several variables: age, sex, 

number of inpatient days in the last 30 days, and known risk factors for C. 

difficile infection. These included host-specific (inflammatory bowel disease, 

haematological malignancies, diabetes mellitus, chronic renal failure) and 

pharmacological (antibiotics, corticosteroids, proton pump inhibitors). We 

obtained the administration route and a detailed recording of the number of 

defined daily doses for each class of antibiotics received within 30 days 

before the positive diagnostic test. We also recorded the number of days since 

antibiotic treatment had started (if symptom onset occurred during treatment) 

or since the last antibiotic dose and the positive C. difficile test (if symptom 

onset occurred after treatment). Finally, we collected outcome measures: 

number of days of care (if any) at an intensive care unit, the number of days 

of C. difficile infection treatment, and whether death had occurred within 30 

days of the positive test.  
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In Paper II, Jon Edman-Wallér and Johan Karp performed the chart review. 

We recorded age, sex, and death within 30 days after the positive test for 

each patient, as well as the ward history (inpatient care) within 60 days 

before and 30 days following the positive test. We used the ward history 

combined with MALDI-TOF typing (see section 3.8) to identify potential 

transmission clusters.  

 

Figure 16. Overview of cases included and excluded in Paper I and Paper II. 

Patients from Skaraborg Hospital and Södra Älvsborg Hospital were studied 

in both papers. 

3.4 HOSPITAL-WIDE DATA COLLECTION 

To relate the defined daily doses of antibiotics given to C. difficile patients in 

Paper I to the general consumption of the same antibiotics, we used data from 

the hospital pharmacy (Södra Älvsborg Hospital) and the Swedish eHealth 

Agency (Skaraborg Hospital). To get a denominator for the incidence of 

healthcare facility-associated C. difficile infections, we used IBM Cognos 

(IBM, Armonk, NY, USA) for data on the number of admissions each year.  
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3.5 ATTRIBUTION OF CASES TO DIFFERENT 

ANTIBIOTICS 

To estimate to which degree different antibiotics caused C. difficile infections 

in Paper I, we used the data for each patient of antibiotics given during the 30 

days before the positive test. Each case was attributed to the antibiotics given 

during this time, based on the amount of defined daily doses of each drug. If 

only one antibiotic had been given, the whole case was attributed to it. If a 

patient had received, e.g., four defined daily doses of each of two antibiotics, 

0.5 cases were attributed to each drug. This way, we could estimate the 

number of attributable cases for each antibiotic in the different years and 

hospitals. We could also relate the attributed cases for a given antibiotic to 

the total amount of defined daily doses prescribed at the hospital the same 

year, resulting in a risk estimate for each drug with the unit healthcare-

facility-associated C. difficile infection cases per 10,000 defined daily doses. 

To estimate the potential of an antibiotic stewardship programme in a 

Swedish setting in Paper III, we combined Swedish data on hospital 

antibiotics consumption [192] with a recent meta-analysis on the risk increase 

for C. difficile infections associated with different antibiotics. [193] Point 

estimates of the Odds Ratio were used, except for antibiotics where the 

confidence intervals overlapped 1; in this case, it was set to 1. The yearly 

consumption was then multiplied by 𝑂𝑅 − 1 to estimate the share of 

attributable excess cases for each antibiotic. Excess cases for all antibiotics 

were added to estimate the potential decrease in infections if all antibiotics 

were changed to low-risk agents.  

3.6 TOXIN ENZYME IMMUNOASSAY 

Enzyme Immunoassays were used clinically, and hence, for inclusion in the 

study for some of the patients studied in Paper I. Premier® A&B (Meridian 

Bioscience, Charlotte, NC, USA) was used at both hospitals in 2007 and at 

Skaraborg Hospital in 2012. In this method, microwells are coated with 

toxin-specific antibodies. A faecal specimen from the patient is added, and if 

toxin A or B is present, they bind to the antibodies in the coating. In the next 

step, other antibodies are added to the well and bind to the toxins. These 

antibodies are conjugated with an enzyme (horseradish peroxidase) that 

catalyses the conversion of a chromogenic substrate which is added in the last 

step. The presence of toxins thus results in a colour shift. [194] 
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In 2012, the clinical microbiology laboratory at Södra Älvsborg Hospital had 

changed methods to Vidas® A&B (bioMérieux, Marcy-l’Étoild, France). 

This is an automated system, formally an Enzyme-linked Fluorescent Assay 

(ELFA), based on the same principles as described above. Wells are coated 

with anti-toxin antibodies to which toxins in the faecal samples bind. 

Additional antibodies directed at the toxins are then added, which are 

conjugated with biotin. Biotin binds strongly to streptavidin, which is added 

in conjunction with alkaline phosphatase in the next step. In the last step, 

alkaline phosphatase catalyses a substrate to a fluorescent product, and the 

fluorescence is measured. [195] As this test can give borderline positive 

results, in contrast to the Premier test which is always positive/negative, we 

included patients with an equivocal result if their medical records revealed 

that they were treated for clinically suspected C. difficile infection or had 

diarrhoea unexplained by other causes that did not spontaneously 

resolve. This was a way to limit the effects of the inevitable bias introduced 

by the different diagnostic methods at the two compared hospitals at different 

times. The two tests had similar sensitivity and specificity against cell culture 

cytotoxicity assay in a 2008 evaluation. [196]  

3.7 TOXIN PCR 

Relevant to Paper I, in 2015, the clinical microbiology laboratory at 

Skaraborg Hospital had changed their diagnostic test for C. difficile from the 

Premier EIA to a duplex PCR for tcdA and tcdB. The method was based on 

de Boer et al. [197] with a modification in the form of using eSwab samples 

at 1:10 dilution in phosphate-buffered saline (PBS) before extraction instead 

of a direct assay from faeces. Again, this may have introduced bias in Paper I, 

where incidence figures were compared between hospitals with different 

diagnostic platforms. However, we compared the positivity rate before and 

after the change from EIA to PCR at Skaraborg Hospital and found no 

increase after the change but rather a slight decrease.  

In Paper II, Södra Älvsborg Hospital had also changed to a PCR-based 

method: the BDMax™ Cdiff Assay (Becton, Dickinson & Co, Franklin 

Lakes, NJ, USA), which is directed at a conserved region within the tcdB 

gene. At Skaraborg Hospital, the in-house PCR step had been substituted by 

the commercial kit AmpliDiag C. difficile+027 (MobiDiag, Espoo, Finland). 

The potential bias introduced by different diagnostic platforms was a lesser 

problem in this paper, as there was no aim to make comparisons between 

hospitals.   
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3.8 CULTURING AND MALDI-TOF TYPING 

In Paper II, all samples positive for toxin PCR were further examined by 

culturing and MALDI-TOF typing. The analyses were performed at the 

Unilabs clinical microbiology laboratory at Skaraborg Hospital, Skövde, 

Sweden. Briefly, a selective C. difficile plate made of fastidious anaerobe 

agar with cycloserine and cefoxitin as additives was used for cultures. The 

plates were anaerobically incubated in 36 OC for 2-3 days, after which 

identified C. difficile cultures were spread on a blood agar plate and 

incubated for another 24 hours. The HMW typing was then performed as 

described by Rizzardi et al. [126] 

3.9 PCR RIBOTYPING 

In Paper II, capillary gel electrophoresis-based PCR ribotyping was 

performed as described by Indra et al. [114] with modifications as described 

by Rizzardi. [126] The analyses were performed at the Public Health Agency 

of Sweden, Solna, Sweden. We performed PCR ribotyping on isolates where 

a transmission event was suspected based on shared ward history and 

identical MALDI-TOF type.  

3.10 WHOLE GENOME SEQUENCING 

In Paper II, we performed whole genome sequencing on isolates where 

transmission was suspected, and their PCR ribotypes were found identical. 

Whole genome sequencing was performed at the Public Health Agency of 

Sweden on the Ion Torrent platform, as described by Harvala et al. [198] A 

mean coverage of 41.1x (standard deviation 17.0x) was obtained. We 

compared the genomes of isolates from suspected clusters and determined 

single nucleotide variations between them. We used a cut-off of <3 single 

nucleotide variations to judge whether the strains were closely related, which 

we based on earlier studies on the mutation rate for C. difficile and proposed 

cut-offs for suspecting transmission. [180, 199]  

3.11 SURVEILLANCE ALGORITHMS  

Paper II was initially conceived when I was put in charge of the surveillance 

of C. difficile infections at the Infection Prevention and Control unit at Södra 

Älvsborg Hospital in 2018. Our surveillance strategy at the time was based 
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on a manual review of cases at different wards, without any set cut-offs for 

suspecting outbreaks. We had tried using a simple heuristic rule of “two or 

more cases at the same ward within the same month” but found that, at some 

wards, this happened frequently. Reviewing historical data, we found that the 

baseline incidence could vary tenfold or more between different wards and 

concluded that ward-specific cut-offs would be more reasonable. We based 

such cut-offs on the Poisson distribution and described our approach in a 

short paper. [200] The study presented in Paper II was performed to validate 

whether this surveillance strategy would be successfully identify transmission 

events. As a comparison, we also evaluated the simpler rule of two or more 

cases described above.  

3.12 COMPARTMENTAL INFECTIOUS 

DISEASE MODELLING 

Paper III resulted from a desire to understand C. difficile infection dynamics 

better. In this work, we collaborated with a mathematician to design a 

transmission model of C. difficile in a hospital. We decided to use a 

compartmental model based on the classic susceptible – infected – recovered 

(SIR) model, which has roots in the early 20th century. [201] In such models, 

a population is divided into different compartments. A set of differential 

equations defines the change in the number of individuals in each 

compartment over time. These changes depend on the number of individuals 

in other compartments, e.g. the number of patients being infected at a given 

time interval depends on the number of already infected patients, as they can 

transmit the infection to susceptible individuals. In our model, we tried to 

model a typical hospital in a Swedish setting. All assumptions in the model 

input were as far as possible based on Swedish circumstances, and the final 

model was calibrated to reflect Swedish incidence numbers and reasonable 

colonisation rates. The modelled hospital has 500 beds, and patients are 

admitted and discharged at a certain rate. Most patients admitted do not 

harbour C. difficile, but some are asymptomatically colonised, and a few have 

a symptomatic infection. Unexposed patients may become exposed during 

their care, and colonised patients may become infected. A novelty with our 

model was that we included a separate compartment for C. difficile spores, 

which affects the colonisation rate of unexposed patients. This environmental 

reservoir may, as the other compartments, increase or decrease depending on 

the dynamics of the model.  
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3.13 STATISTICAL METHODS 

In Paper I, we compared two hospitals at three different periods, resulting in 

six groups being compared. As the quantitative variables were not normally 

distributed according to the D’Agostino and Pearson normality test, we used 

the non-parametric Kruskal-Wallis test instead of ANOVA for these 

variables. For categorical variables, the Chi2 test was performed. When 

significant differences were detected in these analyses, follow-up post-hoc 

tests were performed. To limit the number of statistical analyses and avoid 

mass significance problems, we performed these post-hoc tests only between 

different hospitals in the same year and different years at the same hospital.  

The tests employed were the Mann-Whitney U-test for quantitative variables 

and Fisher´s exact test for categorical ones (for comparisons between 

hospitals in the same year) or a second round of Kruskal-Wallis or Chi2 (for 

comparisons at the same hospitals in different years). Finally, Bonferroni 

correction was used to correct for multiple comparisons. The study´s 

statistical significance limit was set at 0.05; this was thus adjusted to 0.01 by 

Bonferroni correction.  

In Paper II, we evaluated the ability of the early-warning algorithms to detect 

transmission events by calculating the sensitivity, specificity, and positive 

and negative predictive value with 95% confidence intervals based on the 

binomial distribution. This calculation was based on individual cases and 

whether they were part of a cluster. We used Student’s t-test for comparisons 

between groups for continuous variables, as these were approximately 

normally distributed, and Fisher’s exact test for categorical variables. We 

also calculated the Simpson index (D) for assessing strain diversity. This was 

calculated by the formula 𝐷 = ∑(
𝑛

𝑁
)
2
, where n is the number of a particular 

strain, and N is the total number of isolates. The Simpson diversity index was 

then calculated by the formula 1 − 𝐷. 

In Paper I, we used GraphPad Prism version 7 (GraphPad Software, San 

Diego, CA, USA) for statistical analyses and for producing graphs. In Paper 

II, we used Microsoft Excel 365 (Microsoft, Redmond, WA, USA) and SPSS 

version 28 (IBM, Armonk, NY, USA) for statistical calculations and graphs. 

In Paper III, the model was solved in Python using the Scipy-method odeint. 
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3.14 ETHICAL CONSIDERATIONS 

In Paper I and Paper II, the main ethical considerations were related to the 

personal integrity of the patients involved. As part of the studies, we had to 

access the patients’ medical records, which contain sensitive information 

regarding the health of individuals. Obtaining informed consent from each 

patient would have rendered both studies unfeasible. By performing the 

studies, we argued that the potential gain for C. difficile patients overall 

would outweigh the harm caused by accessing the medical records. The 

regional ethics board of Göteborg (Paper I, decision number T599-18) and 

the ethics review authority of Sweden (Paper II, decision number 2019-

03298) agreed with this, and ethics approvals were obtained. Ethics approval 

was not applicable in Paper III, as no actual patients were studied. 
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4 RESULTS 

4.1 IMPACT OF ANTIBIOTIC STEWARDSHIP  

At Södra Älvsborg Hospital, where the antibiotic stewardship programme 

was implemented in 2008, we showed in Paper I that the use of 

cephalosporins decreased from 19,343 DDDs in 2007 to 2,566 DDDs (-87%) 

in 2012 and further to 2,389 DDDs (-88%) in 2015. As substitutes, the 

consumption of other antibiotics, such as piperacillin-tazobactam, 

benzylpenicillin, and cloxacillin, surged. Changes in the same direction but 

much less pronounced were noted at Skaraborg Hospital. Parallel to the 

changed antibiotic use, healthcare-facility-associated C. difficile infections 

decreased substantially at Södra Älvsborg Hospital, from 2.25 cases/1,000 

admissions in 2007 to 1.48 (-34%, p = 0.0029) in 2012 and 1.16 cases (-48%, 

p = 0.0014) in 2015. At Skaraborg Hospital, no statistically significant 

changes in incidence were seen. Comparing hospitals, the difference in 

incidence between them was statistically significant in 2015 (1.16 vs. 2.38 

cases/1,000 admissions, p = 0.0002). 

 

Figure 17. Incidence per 1,000 admissions of C. difficile infections at the two 

hospitals in the years studied in Paper I.  
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To model a Swedish hospital in Paper III, we combined national data on 

antibiotic consumption in Swedish hospitals [192] with risk increase 

estimates of C. difficile infections associated with different antibiotics from a 

recent meta-analysis. [193] By this calculation, we estimated that 30.6% of 

cases could be prevented if all high-risk antibiotics were substituted for 

agents with a low risk of causing C. difficile infection. Cephalosporins and 

beta-lactamase-resistant penicillins were estimated to have the largest shares 

of excess cases due to a combination of elevated risk and high consumption 

(Figure 18).  

 

Figure 18. Estimated share of excess CDI cases in Swedish hospitals, based 

on Swedish data on hospital consumption in 2021 [192] and a meta-analysis 

of the risk increase of each type of antibiotic. [193] This estimation was used 

in Paper III for modelling the effects of an antibiotic stewardship 

programme.  
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4.2 ANTIBIOTIC-SPECIFIC ATTRIBUTION OF 

CASES 

In Paper I, we compared the number of cases attributable to different 

antimicrobial agents used within 30 days before the positive test to the total 

consumption of the same drug at both hospitals. The resulting unit was 

attributed healthcare-facility-associated cases/10,000 defined daily doses, and 

the results confirmed the propensity of cephalosporins to increase the risk of 

C. difficile infection more than other antibiotics in our setting (Figure 19). 

Cefotaxime had the highest number of attributable cases/10,000 DDD at 

23.7, followed by clindamycin and cefuroxime at 14.0. While the 

corresponding number for piperacillin-tazobactam was quite high at 9.2, 

other substitutes, such as benzylpenicillin (1.5) and cloxacillin (2.2), had 

substantially lower numbers. Doxycycline had the lowest number at 1.4 

cases/10,000 DDD. 

We found that, at both hospitals together in 2007, the number of healthcare-

facility-associated C. difficile infections was 2.16 per 1,000 admissions. Of 

these, 0.65 cases per 1,000 admissions (30%) could be attributed to 

cephalosporins. This pattern prevailed at Skaraborg Hospital in 2012 and 

2015, with 0.51 cases per 1,000 admissions (30%) in 2012 and 0.79 cases per 

1,000 admissions in 2015 (33%) attributable to cephalosporins. At Södra 

Älvsborg Hospital, in contrast, cases attributable to cephalosporins were 0.05 

per 1,000 admissions in both 2012 and 2015. Attributable cases for other 

antibiotics substituting cephalosporins were found to increase little or not at 

all over the years studied. The largest effect was seen for piperacillin-

tazobactam, which increased in use by 803% between 2007 (1,291 defined 

daily doses) and 2015 (11,661 defined daily doses), while attributed cases 

increased by 110% from 0.10 to 0.21 attributable cases per 1,000 admissions. 
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Figure 19. Healthcare-facility-associated C. difficile infection cases 

attributable to a selection of different antibiotics related to their total 

consumption at Skaraborg Hospital and Södra Älvsborg Hospital in 2007, 

2012, and 2015. 

 

4.3 PERFORMANCE OF SURVEILLANCE 

ALGORITHMS 

In Paper II, we found that the surveillance algorithm based on ward-specific 

cut-offs that we had proposed had a sensitivity of 30.0% and a specificity of 

83.7%. The alternative “two-case algorithm” had, as could be expected, a 

higher sensitivity (50.0%) but a lower specificity (70.3%). The confidence 

intervals overlapped those expected by chance for both algorithms.  
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4.4 POTENTIAL OF MODELLED 

INTERVENTIONS 

We found in Paper III that an intervention where patients with symptomatic 

C. difficile infections were isolated to the degree that they shedded no spores 

to their environment led to moderate decreases in colonisations (-12.2%), 

infections (-8.6%), and the environmental spore reservoir (-21.8%). 

Antibiotic stewardship had a greater potential of decreasing the number of 

infections (-30.6%), while the decrease in spores (-6.2%) and colonisations 

were modest (-2.5%). Improved removal of spores (+30%) from the hospital 

environment resulted in substantial decreases in colonised patients (-22.5%), 

infections (-16.0%), and the environmental spore reservoir (-39.7%).  

 

Figure 20. Changes in the number of infected and colonised patients and the 

environmental spore reservoir level after the interventions modelled in Paper 

III.  
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4.5 TIME BETWEEN ANTIBIOTIC 

TREATMENT AND SYMPTOM ONSET 

An incidental finding in Paper I was that there were differences between 

hospitals and years regarding the time for symptom onset in relation to 

antibiotic therapy. At Södra Älvsborg Hospital, the proportion of cases where 

symptom onset occurred during antibiotic therapy was 48% in 2007 and 

decreased to 44% in 2012 and 34% in 2015. A reverse trend was observed at 

Skaraborg Hospital, where 60% onset during antibiotic treatment in 2007 

increased to 69% in 2012 and 76% in 2015. Furthermore, the proportion of 

cases without known antibiotic treatment within the last 30 days increased at 

Södra Älvsborg Hospital from 5% in 2007 to 13% in 2012 and 23% in 2015, 

while the corresponding figures at Skaraborg Hospital remained essentially 

unchanged in the years studied. As these results were unexpected, and the 

study was not designed to investigate this further, we do not know the 

reasons for the differences. A possible explanation could be that cefotaxime 

induces C. difficile infection more rapidly than other agents. However, there 

could be other explanations, such as longer treatment times at Skaraborg 

Hospital. Our research group has planned a follow-up study to investigate 

this finding more closely.  

4.6 TRANSMISSION EVENTS 

In Paper II, we found 10 cases (1.5%) that were part of confirmed 

transmission chains. These were divided into four clusters, with 2–3 patients 

in each cluster. The patients involved in transmission had a mean age of 77 

years; 7/10 were women, and 1/10 died within 30 days of the test. Each 

cluster had different ribotypes: RT014 (ST 2), RT020 (ST 2), RT001 (ST 3), 

and RTx231 (ST 11). Each main hospital had two clusters each. The shared 

wards where transmission likely occurred were two surgical wards and two 

medical nephrology wards. Only two patients had their C. difficile test taken 

at the same ward as the shared ward where transmission likely occurred.  
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Table 1. Shared wards and diagnosing wards of patients in confirmed 

clusters. 

Cluster Patient Shared ward Ward where the 

test was taken 

A S088 Surgical 

(general) 

Gastrointestinal 

surgery ward 

S117 Medical 

(general) 

S245 Infectious 

diseases 

(outpatient) 

B S225 Medical 

(nephrology) 

Medical 

(nephrology 

S238 Medical 

(general) 

C B125 Medical 

(nephrology) 

Infectious 

diseases 

B145 Medical 

(nephrology) 

B166 -  Neurology 

(stroke) 

D B209 Surgical ward 

(mixed) 

Medical (lung) 

B225 Medical 

(general) 

 

  



Clostridioides difficile infections: Preventive strategies 

46 

4.7 STRAIN DIVERSITY 

The 673 culturable and HMW-typable isolates were distributed over 34 

different HMW types. The Simpson diversity index was calculated to be 0.9. 

The most common HMW type was HMW14, corresponding to two of the 

most common ribotypes in Sweden, RT014 and RT020. [139] HMW24, 

corresponding to the epidemic strain ST 1/RT027, occurred only in two cases 

(0.3%). Among the 138 cases where ribotyping was performed, 33 different 

ribotypes were identified, of which RT014 and RT020 were the most 

common.  
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5 DISCUSSION 

Preventive measures have the potential to reduce harm before it has occurred. 

This idea is the basis for public health science and has led to important 

achievements for humanity in the last centuries, such as greatly reducing 

infectious diseases by vaccinations, clean water supplies, and disinfection of 

instruments and hands in healthcare. However, there are multiple challenges 

involved in implementing preventive measures in healthcare. First, the 

preventive effect of a specific measure needs to be demonstrated through 

scientific studies. Second, managers need to be convinced that resources 

should be allocated to the preventive measure instead of some other pressing 

issue. Third, healthcare workers and service personnel also need to be 

motivated as the intervention often involves changed work tasks. At all these 

stages, preventive efforts have the disadvantage that the beneficiaries are 

unidentified, future patients rather than identifiable patients suffering here 

and now. [202] The physician may prefer a low-toxicity, broad spectrum 

antibiotic over penicillin to secure that the treatment will be effective in the 

case that the suspected pneumonia unexpectedly turns out to be a urinary 

tract infection. The hospital management may prefer to allocate resources to 

new cancer treatments over building surveillance systems for outbreaks that 

seem to rarely occur. Research funders may be more interested in projects 

aiming at specific patient groups rather than projects investigating the effects 

of improved general cleaning measures. A recurring theme in this discussion 

section will be that more research is needed.  

5.1 ANTIBIOTIC STEWARDSHIP 

The potential effects of antibiotic stewardship are dependent on the setting. 

Sweden has had low frequencies of antimicrobial resistance compared to 

most countries. [203] Antibiotic stewardship has been implemented to 

different degrees since 1995 in a national collaboration network called 

Strama (Swedish strategic programme against antibiotic resistance), with an 

initial focus on primary care prescriptions and a broader scope over time. 

[204] Antibiotic use in primary care and hospitals is less extensive and has a 

higher proportion of narrow-spectrum agents than in most European 

countries. [205] 

The intervention in Paper I was performed in the context of, and was indeed 

part of, a shift in antibiotic choices for in-hospital patients. Cefuroxime had 
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been among the most used antibiotics in Swedish hospitals until 2009, when 

national experts argued for phasing out its use in favour of penicillins (for 

streptococcal and staphylococcal infections) or cefotaxime (for infections 

with Enterobacterales). [206] Accordingly, at Skaraborg Hospital, 

cefuroxime use had been reduced to a minimum while cefotaxime had taken 

its place as the main cephalosporin used by 2012. At Södra Älvsborg 

Hospital, the change was taken one step further. Critics of the shift from 

cefuroxime to cefotaxime warned that the higher degree to which active 

metabolites of cefotaxime are excreted in bile could lead to an increased 

incidence of C. difficile infections. [207] This scenario did not come true 

regarding increased C. difficile incidence nationally, [139] but our findings in 

Paper I align with the notion that cefotaxime increases the risk for C. difficile 

infection more than cefuroxime. The incidence at Skaraborg Hospital 

remained essentially unchanged over the years studied, despite a substantially 

decreased (-36%) overall consumption of cephalosporins. 

The setting also affects the potential of antimicrobial stewardship 

interventions modelled in our Paper III. Based on the Swedish hospital 

consumption of different antibiotics and risk estimates from a meta-analysis, 

our estimation is a theoretical calculation and does not consider secondary 

effects such as lower transmission rates. Still, a 31% decrease seems 

reasonable, given our results in Paper I and other previous studies on 

antibiotic stewardship programmes. The strength of the approach is that a 

similar calculation can be made for any other setting where the estimated 

potential of antibiotic stewardship programmes would be different. In Paper 

I, the cases attributable to specific antibiotics were calculated in another way, 

yet there is a high degree of similarity between the results. This is true for the 

total share of excess cases as well as the estimations for specific antibiotic 

classes. However, in the calculation in Paper I, there may be a bias of 

indication as broad-spectrum, intravenous antibiotics are more often 

administered to more severely ill patients than oral, narrow-spectrum agents. 

These patients are more likely to have other risk factors for C. difficile 

infection, such as advanced age and co-morbidities, which are not considered 

in our calculation.  

Most previous studies on C. difficile infections related to antibiotic 

stewardship programmes have been performed in North America and the 

United Kingdom, where antibiotic consumption and ribotype distributions 

differ from the Swedish setting. Some antibiotic stewardship programmes in 

the meta-analysis by Baur et al. [159] were implemented at the hospital level, 
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others at a ward or unit level. Furthermore, the antibiotics targeted for 

reduction varied considerably. In one case, cephalosporin use even increased 

as part of the stewardship programme. [208] Thus, antibiotic stewardship is a 

heterogeneous concept, and there is reason to continue evaluating the effects 

of specific interventions in specific settings.  

As mentioned in the methods section, differences in the diagnostic platforms 

used at the time may have influenced the results in Paper I. In 2015, when the 

difference between hospitals was statistically significant, Skaraborg Hospital 

used a PCR toxin test while Södra Älvsborg Hospital still used an enzyme 

immunoassay as a stand-alone test. The ~50% lower incidence figure at 

Södra Älvsborg Hospital in 2015 may, therefore, be an exaggerated result. 

However, the attribution of cases to different inciting antibiotics per 10,000 

defined daily doses was very well aligned to risk estimates for hospital-

acquired C. difficile infections in other studies. [193] Around 30% of cases at 

Skaraborg Hospital could be attributed to cephalosporins in all years studied, 

while these cases almost vanished at Södra Älvsborg Hospital.  

While a decrease in incidence occurred after an antibiotic stewardship 

intervention, there may have been other factors involved. For instance, a new 

hospital building was inaugurated at Södra Älvsborg Hospital in 2010. This 

may have led to a “reset” of environmental spore levels in parts of the 

hospital, and thus contributed to a decrease in C. difficile infection incidence. 

In a 2022 Japanese study, relocation to a new hospital building was 

associated with a significant decrease of C. difficile infections. [209] Other 

possible confounders include differences in the compliance to infection 

control routines, cleaning, and disinfection.  

5.2 IN-HOSPITAL TRANSMISSION 

Our results in Paper II show that C. difficile transmission within wards from 

symptomatic patients to patients who subsequently fall ill is an infrequent 

event. These results are in line with the other findings in the last decade, 

where the high discriminatory power of whole genome sequencing has 

revealed that many apparent clusters based on earlier typing methods were, in 

many cases, quite distant genetically. [125, 180, 210] The results also align 

with a study from another Swedish region published in 2018. [146] Among 

1000 isolates over almost four years in two counties (total population 

~338,000), three clusters with a total of 24 isolates (2.4%) were confirmed by 

WGS to be closely related. However, no more than 29 isolates (2.9%) were 
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sequenced, compared to 80/673 (11.8%) in our study. The largest cluster (12 

cases) was the so far only occurrence of an ST 1/RT027 outbreak in Sweden.  

Taken together, in a Swedish setting, with a diverse type distribution and 

strong antibiotic stewardship practice, C. difficile clusters appear 

infrequently. Still, we found one cluster per hospital and year, which perhaps 

could have been prevented. On the other hand, the resources needed to 

prevent these few transmission events may not be proportional to the effects, 

as there is an alternative cost for every measure taken.  

Neither our study nor that by Ortega et al. [146] was designed to capture 

transmission from asymptomatically colonised patients. This patient group 

was suggested as a potentially important reservoir in the 2000’s [164] and has 

been increasingly investigated in the last ten years. Eyre et al. [174] followed 

a cohort of 132 medical inpatients, of which 14 (11%) were 

asymptomatically colonised at baseline. Their C. difficile isolates were whole 

genome sequenced and compared to isolates from clinical cases during 

approximately the same time. Based on genetic similarity and 

epidemiological connections, the authors found no clear cases where 

asymptomatic colonisation later resulted in a symptomatic infection in 

another patient. However, the authors concluded this does not rule out 

asymptomatically colonised patients as a substantial reservoir since the 

cohort studied was rather small.  

In a 2018 study by Donskey et al., [211] transmissions from symptomatic 

infections and asymptomatic colonisations were identified within a hospital 

and its associated long-term healthcare facility. They used a combination of 

REA typing and WGS. The authors found seven suspected transmissions out 

of 37 cases (18.9%), of which 5 (13.5%) were from asymptomatically 

colonised patients. This high frequency of identified transmissions compared 

to other studies might be partially due to the inclusion of both a hospital and 

its associated long-term healthcare facility in the analysis. However, it is 

notable that all confirmed transmissions were REA typed to BI, 

corresponding to the epidemic strain ST 1/RT027. No transmissions were 

identified for other strains.  

In a Danish study from 2017, Blixt et al. [212] took a different approach. A 

cohort of patients were screened for asymptomatic C. difficile colonisation at 

admission. One of the exposures studied was to be exposed to an 

asymptomatically colonized patient in the same room. The authors found that 
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this exposure increased the risk of developing C. difficile infection from 2.6% 

to 4.6%. Again, however, these results have been strongly influenced by the 

prevalence of ST 1/RT027: While this strain was prevalent in 9.7% of 

patients colonised at admittance, it accounted for 70% of the infections in 

previously unexposed patients. Thus, most infections originating from 

asymptomatically colonised patients were likely of this strain.  

The jury is still out, but transmission from asymptomatically colonised 

patients seems relevant mainly to ST 1/RT027 infections. For other strains, 

they likely account for only a minor part of transmissions.  

5.3 SURVEILLANCE ALGORITHMS 

We showed in Paper II that our proposed algorithm, as well as a simpler 

algorithm based on two or more cases at a ward in a month, failed to 

discriminate actual transmission from sporadic cases. The main reason was 

the time lag between acquiring spores and symptomatic infection. In most 

cases, patients had either been moved to a different ward or discharged and 

readmitted during this time span. Most contagious diseases have some time 

lag between acquisition and symptoms, which means that ward-based 

surveillance may also be unsuitable for other infections. A way to ensure that 

all in-hospital transmissions are detected is to perform whole genome 

sequencing of all infections, but this is so far not feasible or cost-effective in 

most settings. A combination of validated surveillance algorithms and whole 

genome sequencing of selected cases may be more reasonable. Improved 

surveillance could also be achieved by better use of software assistance, 

where data collected from multiple sources (e.g., laboratory data paired with 

antibiotic prescription data and ward history data) could be analysed, and 

warning signals triggered. Still, such systems should also be validated against 

confirmed transmission events to ensure that they produce the intended 

results. 

In our study, like the study by Ortega et al., [146] we used the inexpensive 

HMW typing method to sort out possible clusters. Since its development, it 

has been introduced in several Swedish regions where C. difficile is cultured 

as part of the diagnostics process – especially in counties that have 

experienced C. difficile outbreaks in the recent past. Together with other 

surveillance and epidemiological linking, it can be used to sort out potential 

clusters to analyse further by whole genome sequencing.  
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5.4 MODELLED EFFECTS 

In Paper III, we investigated the effect of three possible intervention 

strategies in our model. In the antibiotic stewardship intervention, we 

modelled decreased use of antibiotics with increased risk for C. difficile 

infection as a decreased flow from the compartment of colonised to infected. 

Based on our understanding of the infectious process, it could be argued that 

antibiotic use also affects the risk of colonisation. For instance, in a trial with 

twelve healthy volunteers taking oral third-generation cephalosporins, eleven 

became asymptomatically colonised with C. difficile after treatment. [213] 

However, other types of antibiotics, such as betalactam-betalactamase 

inhibitor combinations, can decrease the risk of colonisation. [182] In a meta-

analysis, antibiotic treatment overall did not have a statistically significant 

impact on the risk of C. difficile colonisation. [214] Hence, our results where 

antibiotic stewardship substantially affects infections but has modest effects 

on colonisation are reasonable. Still, these dynamics may be impacted by the 

choice of antibiotic classes targeted in an antibiotic stewardship intervention.  

Real-life studies on the effects of antibiotic stewardship have focused mainly 

on C. difficile infections rather than colonisation. More research on the 

effects on colonisation would be useful to make more detailed assumptions in 

this area.  

In the isolation intervention, we modelled a case where infected patients 

cannot disseminate spores to the hospital environment, for instance, by being 

moved to a separate building. The effects of this intervention were moderate. 

These results highly depend on our assumptions of the rate of spore 

contamination for infected versus colonised patients. The assumption was 

that infected patients contribute four times as many spores per time unit to the 

environment,  based on a study of 44 infected and 35 colonised patients and 

the environmental samples taken in their rooms. [215] Further studies on the 

subject would be useful to make more accurate estimations. The assumption 

is also complicated by the fact that infection control measures (e.g., isolation, 

glove use, oxidative disinfection) are taken when patients are diagnosed with 

an infection, but usually not when patients are only colonised. Thus, the 

dissemination of spores is modified by these measures. Furthermore, there 

may be significant differences between individuals regarding to which degree 

they contribute spores to the environment.  

In the intervention where an increased reduction of spores modelled an 

improved general level of cleaning and disinfection, we found substantial 
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effects, especially on the colonisation prevalence and the environmental 

spore level. As a result, infections also decreased when fewer patients were 

colonised during their stay. In this case, the challenge is determining what 

would be needed to increase the reduction rate of spores by 30%, as we 

modelled. To uphold a higher reduction rate of spores over time, the 

measures would need to be both effective and sustainable. Such measures 

may be resource-intensive and the results not immediately obvious as 

environmental spore levels change slowly. The amount of research on the 

effectiveness of cleaning and disinfection on C. difficile incidence is, so far, 

limited. [183, 216] Most studies have been uncontrolled, with various risks 

for bias, and widely varying regarding the nature of the interventions, 

methods, follow-up time, et cetera. This makes it hard to draw conclusions on 

the potential effect of general cleaning and disinfection interventions.  
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6 CONCLUSIONS AND FUTURE 

PERSPECTIVES 

We showed in Paper I that an antibiotic stewardship programme affected the 

C. difficile infection incidence in a Swedish setting. In Paper III, we 

calculated that there is a potential for a ~31% decrease in C. difficile cases by 

changing antibiotic prescription patterns at an average Swedish hospital 

based on antibiotic consumption in 2021. Our results strengthen the case that 

rational use of antibiotics is among the most important ways to decrease the 

incidence of C. difficile infections. Antibiotic stewardship interventions 

targeting C. difficile infections should ideally consider not only the 

prescription patterns of the local setting, but also the local C. difficile 

epidemiology. Which types are most prevalent and are there strains in 

circulation with resistance to certain antibiotics?  

Improving isolation routines for infected patients may only have moderate 

effects, according to our mathematical model in Paper III. Other studies point 

in the same way, such as the Swiss study, [181] where isolation and contact 

precautions were discontinued for non-hypervirulent strains, and 

transmissions still occurred infrequently. More rigorous measures for infected 

patients or asymptomatic carriers seem unlikely to substantially affect the C. 

difficile infection incidence in settings with a low prevalence of epidemic 

strains. However, ST 1/RT027 has shown how fast and effectively it can 

spread in hospitals, in individual studies [211, 212] and national surveillance 

data. [19] While precautions were put in place for this strain in the Swiss 

study, ST 35/RT046 caused a severe outbreak in Sweden despite the strain 

not being widely recognized as an epidemic or hypervirulent strain. [147] 

There is no clear-cut dividing line between endemic and epidemic C. difficile 

strains. Relaxing infection control measures might then be a gamble that risks 

inviting strains with a high propensity to spread, especially as these strains 

also tend to cause severe disease.  

Improved surveillance practices are essential to detect outbreaks early, but 

Paper II showed that transmission clusters constitute only a minor part of the 

total incidence in our setting. Like the infection control measures, active 

surveillance with appropriate tools is good insurance against severe outbreaks 

but not something that substantially decreases the number of infections in a 

non-epidemic setting. However, outbreaks can become very severe in terms 

of both human suffering and long-term healthcare costs. Given this, it is 
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striking that methods for outbreak detection have been studied and, 

especially, validated to such a low degree. This lack of evidence not only 

exists for C. difficile surveillance, but for surveillance of infectious diseases 

overall, as concluded in a 2016 systematic literature review on early 

infectious disease outbreak detection. [217] 

In our model in Paper III, increasing the rate of environmental spore 

reduction had large effects, primarily on colonisation but also on the infection 

prevalence. An increased overall spore reduction rate targets spores 

regardless of source: infected patients, asymptomatically colonised patients, 

previous patients, visitors, healthcare workers, et cetera. The question is: how 

do we effectively improve the spore reduction rate? So far, studies on 

improved cleaning and disinfection practices have not been too convincing. 

[183] However, this research area is far from exhausted. Besides the more 

traditional approaches, interesting alternatives to labour-intensive manual 

cleaning and disinfection routines include automated systems using 

ultraviolet light or vaporised hydrogen peroxide. [218] 

Over the years, research on C. difficile infections and its prevention has 

mainly been focused on hospitals and other healthcare facilities. This thesis is 

no exception to that rule. However, given the high diversity of strains in 

healthcare facility-associated cases, disclosed in recent years by sequencing 

methods, it may now be time to look up and see the bigger picture. Can C. 

difficile infections be prevented by measures in the community, such as better 

control of spore contamination of meat, vegetables, and other foodstuff? 

Could improved cleaning of domestic areas be an effective preventive 

measure for individuals at high risk? Tracing the infections to their diverse 

sources, including in the community, is challenging. Still, it may be what is 

needed to further advance our understanding of effective preventive measures 

for this disease.
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