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Abstract

We present some possible definitions for what it means for a type theory to be a conservative extension over
another type theory. We do so by giving two type theories of natural numbers: TT (N) and TT (N,×). TT (N)
is a type theory that comprises only the natural numbers as a type, while TT (N,×) is an extended theory
of TT (N) that includes an additional type constructor that can form pair types. Our aim is to search for a
general definition of a conservative extension. Our approach does not only involve judgements in our definition
of conservativity, but also convertibility between terms, which corresponds to the process of computation for
each type theory. Understanding type theories and their computation have valuable implications in research
areas, such as in Computer Science, particular in the context of proof assistants and other fields where type
theory is considered.

We prove that TT (N,×) is not a conservative extension over TT (N) in the strongest sense, by giving
a counter example, but that it is a conservative extension in three other senses. We do this by defining a
translation from TT (N,×) to TT (N), we define terms in TT (N) that will represent terms from TT (N,×),
and therefore use the translation to prove conservativity.

Our contribution lies in providing a deeper understanding of the relationships between type theories,
specifically focusing on type theories that are fragments of Martin-Löf type theory, where Martin-Löf type
theory serves as an alternative foundation of mathematics. We argue why one of the notions of conservative
extension, proposed in this thesis, is the most suitable definition to establish a conservative extension between
TT (N) and TT (N,×). From this notion of conservative extension, we discover that since they are conservative,
they denote the same functions, specifically the primitive recursive functions. This motivates us to utilize
this definition of conservative extension, because it provides the insight that if two theories are conservative,
they denote the same functions. If this is the case in general between type theories then this deserves further
research on our notions of conservativity, as it may be helpful for transferring theorems. This could serve as
a new feature for proof assistants that are based on a type theory, with a particular focus on conservativity.

These findings prompt further questions: can these definitions of conservative extensions be regarded as
a general definition within the context of type theory? Can these definitions be valuable in applications
within type theory? Are there any significant implications that arise from conservative extensions in type
theories overall? Having an understanding of conservative extensions and their implications has the potential
to enhance our understanding of type theory.
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1.2.1 Martin-Löf Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Type Theory of Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Type Theory of Natural Numbers with Pairing . . . . . . . . . . . . . . . . . . . . 9

1.3 Conservative Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Encodings in TT (N) 14
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 The Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Encoding Boolean Operators in TT(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Pairing in TT (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The Church-Rosser Theorem 20
3.1 Church-Rosser Property for TT (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Church-Rosser Property for TT (N,×) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Translation and Conservative Extension 27
4.1 Defining structures of the translation from TT (N,×) to TT (N) . . . . . . . . . . . . . . . 27
4.2 Translating Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Translating Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Conservative Relation between TT (N,×) and TT (N) . . . . . . . . . . . . . . . . . . . . . 31
4.5 Type Theory of Natural Numbers and Primitive Recursive Functions . . . . . . . . . . . . 32

5 Discussion 34
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Contributions and Insights Gained . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 39

A Implementation of TT (N) in Haskell 41

VI



1 Background

1.1 Introduction and Preliminaries

1.1.1 Introduction

Type theories are formal systems designed for reasoning about types and terms, which correspond to proposi-
tions and programs, which makes them significantly constructive and suitable for practical applications, such
as programming languages. Some type theories provide an alternative foundation of mathematics, such as
Martin-Löf type theory [14] developed by Per Martin-Löf. These type theories offer principles that allow us
to construct statements and proofs, and provide a perspective for reasoning about mathematical structures,
meaning that we are able to express complicated structures such as groups, rings, fields, etc. In this thesis,
our focus will be on exploring conservative extensions between type theories, specifically some fragments of
Martin-Löf type theory. Through this investigation, we aim to enhance our understanding of the foundation
of mathematics and the applications of type theory.

In type theory, we interpret types as propositions, and terms are interpreted as proofs, meaning that a
term of a specific type represents a proof for the corresponding proposition. One distinctive feature of type
theory is that it provides not only information about propositions, but also the proofs of these propositions.
Proofs can be seen as programs, for example, we can consider a term λxA.x that denotes the identity
function of type A → A. This term serves as both a proof of A → A and as a program. By using β-
reduction in Lambda calculus [6], we can evaluate the program λxA.x by applying it to an input value
a, to get the output a. This evaluation process is the computation part, and it is similar to how we use
programs to obtain the desired outputs. This gives us a more constructive reasoning through type theory,
which also grants us applications in various fields, including programming languages, particularly functional
programming languages [23]. Moreover, type theory plays a role in proof assistants. Proof assistants assist
users in creating formal proofs, and with type theory, it ensures the correctness of these proofs. Examples of
proof assistants where type theory is used are Coq [5] and Agda [16]. Conservative extension between type
theories could enable us to transfer theorems from one type theory to another in proof assistants. This allows
us to extend a theory without altering the true statements that were valid in the original theory. This grants
us practical contributions due to its connection to proof assistants.

Despite the wide range of applications of type theory, there has been relatively limited exploration con-
cerning the relationships between different type theories, particularly in terms of determining when one type
theory is a conservative extension over another. Consider two theories, one theory that extends the other.
Then the extended theory is a conservative extension, if for every sentence of the language of the original
theory that is provable in the extended theory, is also provable in the original theory. This tells us that if
you extend a theory, then it should not change the behavior from the original theory. This concept deserves
further investigation, as it holds the potential for a better understanding of the relationships between different
type theories and can have valuable implications for the foundation of mathematics.

In this thesis, we explore the relationship between two type theories of natural numbers, where one of the
type theories serves as an extension of the original theory.

� The first one, denoted as TT (N), consists of the natural numbers as the only type. This means that all
the terms we can construct in TT (N) will only be of type N, and nothing else.

� The second theory, denoted as TT (N,×), is an extension of TT (N) and includes an additional type
constructor, ×, that can form pair types.

Some types that we can construct in the extended theory TT (N,×), are all different combinations of pairs
A× B, for instance, N × N, N ×(N × N), (N × N)× (N × N), etc. In TT (N,×), in addition to introducing
a new type constructor, new terms corresponding to the pairing type are also introduced. These new terms
include an ordered pair ⟨a, b⟩ and two projections (π1, π2). The projection π1(⟨a, b⟩) retrieves a, while
π2(⟨a, b⟩) retrieves b.

We define four definitions of conservative extension, where two of them are proposed from us. Then we
translate terms that originates from TT (N,×) to TT (N), in order to prove that they are conservative from
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some of our notions of conservativity. One of the notions that we define, which is strong conservativity, has
already been proposed in [25, Definition 7]. Because strong conservativity has been studied before, then
this motivates us to investigate the relationship between TT (N,×) and TT (N) to that particular notion of
conservative extension, due to prior research of the notion. When we are studying conservative extension
between type theories, we are interested in how terms are computed, and for computation in type theories,
we do reductions. Reduction is the process of computing terms according to specific reduction rules. For
example, when we represent terms as factors (a · b) and define multiplication, we can compute the result
(r) to determine the product of the factors (a · b = r). Most of the proposed definitions of a conservative
extension involves the use of reductions, but there is one particular definition, called canonical conservativity,
that uses a special form of terms. Canonical conservativity involves the use of canonical terms, which are
terms without any variables and can not be further reduced. In TT (N), the canonical terms are the numerals,
for instance, the corresponding terms that represents the natural numbers 0, 1, 2, 3, 4, 5, ..., but the term that
represents the product 1 · 2 is not a canonical term. By proving that TT (N,×) is a canonically conservative
extension over TT (N), we need to prove properties about canonical terms in both TT (N) and TT (N,×).
However, an essential question that arises: can the definition of a canonically conservative extension be
considered a general definition of a conservative extension? The pairing terms in TT (N,×), that is ordered
pairs, can be encoded in TT (N). Therefore, we expect that TT (N,×) is a conservative extension over TT (N),
in the strongest notion of conservativity that we define. However, they are not strongly conservative due to
the presence of free variables, which we will illustrate with a counterexample. Nonetheless, they should be
conservative at some weaker notion. What is important is that conservativity ensures that for each term in
both type theories denote the same functions, which is valuable for theorem proving, particularly in proof
assistants.

To establish a conservative extension between TT (N,×) and TT (N), we need to ensure the preservation
of typing judgements from TT (N,×) to TT (N). A typing judgement asserts that a given term is of a specific
type. Furthermore, we need to ensure that if we have a term of the type N in the extended theory, then
there exists a corresponding term in the original theory with the same type, and the terms are convertible.
Convertibility is the equivalence relation generated by applying multiple reduction steps, which correspond
to the process of computing terms. To prove that TT (N,×) is a conservative extension over TT (N), we
define a translation from TT (N,×) to TT (N), by defining terms in TT (N) to represent terms originating
from TT (N,×). In the end, we demonstrate the implications of the canonically conservative relation between
TT (N) and TT (N,×) on primitive recursive functions. Primitive recursive functions are obtained from basic
functions through composition and recursion.

If a type theory is strongly conservative over another, then it gives us canonical conservativity, which in
turn implies two other weaker notions of conservativity, between the type theories. The two of the weakest
notions of conservativity are closed conservativity and propositional conservativity. Closed conservativity is
a modification of strong conservativity, but we do not consider any free variables. It is not clear if closed
conservativity implies propositional conservativity, therefore, we cannot determine which one is weaker. While
in propositional conservativity we are only considering judgements, but nothing about reductions between
terms. Can any of these definitions be considered a general definition of a conservative extension? What does
it mean to have a conservative extension between type theories? What does conservative extension tell us
about the relationships between type theories? By exploring these aspects, we may get valuable applications
of type theory, paving a way for a greater understanding of the relationships between type theories and their
implications, and further developments in the foundation of mathematics.

1.1.2 Motivation

Our motivation is to explore what could be a general definition of a conservative extension in the context
of type theory. We argue that the standard approach of conservative extension, which is used in first-order
logic, may not be suitable for establishing the computational aspect of type theory. This means that, in
type theory, we allow for computations, while in the standard notion of conservativity, computations are not
considered.

By having an understanding of the computation in type theories, we gain a deeper insight into their
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behavior, and ensure that the computations also remains unchanged when extending a theory compared to
its original. A stronger notion of conservativity will grant us more than what types are inhabited between
the theories, as it will also grant us insights about the reductions between terms.

There have been previous explorations of conservative extensions between type theories, and we highlight
one particular approach that shares similarities with our exploration. Additionally, there is another notable
approach that uses higher-order categorical logic to formulate a definition of a conservative extension.

In [12, p. 197], a definition is provided for when a translation is a conservative extension, by using category
theory. Category theory utilizes objects and morphisms to establish relationships between objects within a
category, which allows the construction of mathematical structures. To address conservative extension, they
define a translation as a morphism in a category called Lang, of type theories, meaning that type theories in
this category are treated as objects, while the morphisms between these objects are translations. Then they
define conservative extension as: for every closed formula, if the translation of the formula is provable in the
extended theory, then the formula itself is provable in the original theory.

In this thesis, our motivation is to provide a definition of conservativity without relying on category
theory and mentioning a translation in our notions of conservativity. There are several ways of providing a
translation between two type theories, rather than one single method. In our notions of conservativity, we
only say that there exist a term in the original theory that is convertible to a term in the extended theory.
We will use a translation though for proving conservativity, but there may be multiple ways of defining a
translation between two type theories.

In [25], Xue presents a definition of conservative extension that is similar to the formulation of conser-
vativity for first-order logic. However, he also introduces another definition of what he calls a definitional
extension [25, Definition 7]. Definitional extension is similar to a strong notion of conservative extension,
that we present in this thesis, since he utilizes derivations in the extended definition. In the conclusion of his
paper, Xue mentions that conservativity alone is not enough to capture the relation between the system under
study for his paper. This motivates us on proposing several stronger definitions of conservative extension,
and explore their applicability in the relationship between the two type theories studied in this thesis.

There has been other explorations of conservative extensions in the context of type theory, that gives more
motivations on why conservative extension is important in type theory. In [1, p. 18] they prove that Peano
arithmetic is conservative over Heyting arithmetic for some particular sentences, and they use Gödel’s System
T to establish these results. In that study, they establish that every provable total recursive function in Peano
arithmetic and Heyting arithmetic can be denoted by a term in System T. By exploring the properties of
System T and its relation to arithmetic, they demonstrate several conservative results in arithmetic. To
study conservative extension in type theory is therefore a motivation by its potential for the implications on
arithmetic.

One major motivation of this investigation is to enhance the design of proof assistants and encourage
further exploration in that field. With a general definition of a conservative extension, we could develop a
new proof assistant or update existing ones to incorporate these notions of conservativity. This would help
us to construct type theories within the proof assistant, establish translations between them, fulfilling the
requirements for conservativity and therefore enable to transfer theorems between type theories. For instance,
both TT (N) and TT (N,×), the type theories that are investigated in this thesis, denote the same functions,
namely the primitive recursive functions. Therefore, if a general definition of conservativity provides such
insights, it would benefit the design of a proof assistant aimed for transferring theorems.

1.1.3 Outline

This thesis is highly technical, and thus we provide an overview of its structure:

� Section 1.2: We introduce type theory and the type theories that we will use for this thesis, namely
TT (N) and TT (N,×).

� Section 1.3: We define four definitions, where two of them are proposed from us, of what it means for
a type theory to be a conservative extension over another.
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� Section 2: We define different encodings in TT (N) that will represent terms that originates from
TT (N,×).

� Section 3: We prove Church-Rosser property for TT (N) and TT (N,×), that will be useful in Section 4.

� Section 4: From our encodings and properties of TT (N) and TT (N,×), we do a translation in order
to present the conservative relationship between TT (N) and TT (N,×).

� Section 5: We conclude our results and propose some further work.

1.2 Type Theory

Type theory is the main focus and hence it is important that there is a great understanding of the subject
before investigating any relations between type theories. Two influential type theories that has been studied
in recent years are: the Simply-typed λ-calculus [6] and Martin-Löf type theory [14].

The simply-typed λ-calculus is a type theory that focuses on functional types. It serves as a basis for many
functional programming languages and has been instrumental in understanding the principles of computation
and programming. Even in imperative programming languages, one could use λ-expressions which comes from
λ-calculus to represent anonymous functions in the programming language.

On the other hand, Martin-Löf type theory stands out by incorporating powerful features like dependent
types and constructive logic. It serves as an alternative foundation of mathematics, meaning that we have
enough rules in the formal system to construct mathematical structures. These additions enhance its ability
to formalize mathematics and has strong connections to proof theory. Our primary focus will be on studying
two specific fragments of Martin-Löf type theory. These fragments offer valuable insights into conservative
extensions, thanks to the inherent constructiveness of type theory.

Through our investigation of the conservative relation between the two type theories within Martin-
Löf type theory, we aim to gain a broader understanding on how such relations should be established across
different type theories. For example, will the results of conservative relations be useful when exploring similar
relationships in the simply-typed λ-calculus? Moreover, the constructiveness of Martin-Löf type theory offers
valuable implications for the foundation of mathematics.

Some other type theories are System F [8, Chapter 11], System FC [22] and System T [8, Chapter 7].
Many functional programming languages incorporates the concepts from type theory, for instance, System
FC is used in the compiler for Haskell. Hence, not is type theory only important in logic and mathematics,
it is also an important field in Computer Science.

1.2.1 Martin-Löf Type Theory

Martin-Löf Type Theory (MLTT), also known as Intuitionistic Type Theory, serves as an alternative foun-
dation for mathematics. Developed by Per Martin-Löf, MLTT has become a cornerstone in multiple areas
of research, this including computer science, formal verification, and mathematics. Notably, it has found
practical utility in formal verification, enabling the verification of program correctness [15]. By utilizing
MLTT, we can ensure that programs operate without encountering runtime errors. This motivates us to
delve deeper into MLTT and explore conservative relations between its fragments. We will investigate two
type theories of natural numbers, which are small fragments of MLTT. Hence, in the upcoming two sections,
these two type theories are also expressible in MLTT. MLTT remains an interesting subject for research due
to its constructiveness and wide-ranging applications. Gaining an understanding of conservative relations
between MLTT fragments can provide valuable insights applicable to various type theories, including the
simply-typed λ-calculus, and their respective applications.

Per Martin-Löf presented an idea in philosophy of logic with reasoning through judgements [14]. A
judgement is the object of an act of knowledge, meaning that it is the thing we claim holds. In proof
theory [24], we have Γ ⊢ B, where ⊢ is an entailment, the conclusion B is entailed by the premises of Γ.
We use the same notation ⊢ for judgements in type theory, which denotes the derivation of a term having
a specific type. It is important to note that these judgements in type theory differ from entailments in
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proof theory. In type theory, we assert that a term is of a specific type from a given context, rather than
representing logical entailment or implication.

In Martin-Löf type theory, a judgement can have one of the following forms:

� A type, means A is a type.

� A = B, means A and B are the same types.

� a : A, means a is a term of type A.

� a = b : A, means a and b are the same terms of the same type A.

In the above definition, we have the lower-case letters a and b, which are terms. A term is a proof, while a
type is a proposition. That is why we say that we interpret propositions as types. In proof theory, Γ ⊢ P
expresses the existence of a proof of P . Whereas in type theory, we write Γ ⊢ t : P , and t here is a proof of
P , where in Γ we store all the hypotheses, x1 : A1, ..., xn : An, that are required in order to have a proof of
t. Below we show the difference between type theory and what it means in proof theory:

� A is a type.

� a is a term of type A.

� A is inhabited.

� If x1 is a term of type A1,...,xn is a term of type
An then b is a term of type B.

� A is a proposition.

� a is a proof of proposition A.

� A is provable.

� If x1 is a proof of A1,...,xn is a proof of An then
b is a proof of B.

If we would have a proof a of A, then we could also conclude that A is true. Therefore, we can derive the
following:

Γ ⊢ a : A
Γ ⊢ A true

Let’s have a look at one of the introduction rules in natural deduction [24] and see how the corresponding
judgement looks like. The rule below is a conjunction introduction rule:

A B ∧I
A ∧B

In Martin-Löf Type Theory we treat the types as propositions. To introduce the conjunction introduction
rule, we use a pairing rule:

Γ ⊢ a : A Γ ⊢ b : B
Pair

Γ ⊢ ⟨a, b⟩ : A×B

From the derivation of the judgements, we also have proofs, which are a and b of the types A and B
respectively. In the ∧I-rule, we only know the existence of such a proof. Similarly, we have the corresponding
conjunction elimination rules in type theory: projection one and projection two (π1 and π2, respectively).
These rules allow us to extract the left or right element of a pair, respectively. Below are the rules for
conjunction elimination in natural deduction:

A ∧B ∧ERA
A ∧B ∧ELB

And below are the corresponding judgement rules, which are the projection rules, that corresponds the
conjunction elimination rules:
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Γ ⊢ p : A×B
π1

Γ ⊢ π1(p) : A

Γ ⊢ p : A×B
π2

Γ ⊢ π2(p) : B

We will revisit the pairing and projection rules, as we explore their translation into a type theory with a
reduced set of rules that can encode these rules.

1.2.2 Type Theory of Natural Numbers

A fragment of Intuitionistic Type Theory, which we shall explore, is the type theory of natural numbers,
denoted TT (N). We will explore TT (N) and its relationship to its extension TT (N,×), that we shall define
after TT (N). Our goal is to explore the conservative relations between these two theories. And thus, we want
to keep the theories as simple as possible, both the extension and the original. The type theory of natural
numbers uses the natural numbers as its only type, and nothing else. The terms, that will represent natural
numbers, will be transformed through recursion, and we do this by defining reduction rules for recursion.

When defining a function by recursion f(n), there is one base case f(0), which is 0 in TT (N). An inductive
step f(n), where the value at any natural number that is not equal to zero is defined recursively by calling the
callee function again f(n− 1) with the argument that is one step less than the current value. For example,
one could use the recursive definition of addition as depicted in Figure 1. We define addition by using the
successor function. The successor function s takes a natural number and returns its successor, i.e., the next
natural number in the sequence. For example, s(0) = 1, s(1) = 2, s(2) = 3, and so on. The result of a + n

� Add(a, 0) := a

� Add(a, Succ(n)) := Succ(Add(a, n))

Figure 1: Recursive definition of Addition

would be

n times︷ ︸︸ ︷
(Succ...(Succ(a)...)), where we call the function add, n times. Depending on the value of n, we do

a pattern matching on n, for whether we should call Add(a, 0) or Add(a, Succ(n)). It will work similarly in
TT (N), as for addition in Figure 1 with recursive calls inside a recursive term. To perform the computation
with the natural numbers, a successor term s and a recursion term R will be required. The recursion term
R is the term that we are going to use to specify the instructions for the computation/recursion. It will be
used to define functions on natural numbers recursively, where just as in Figure 1 we do pattern matching,
which specifies what instructions to compute if the argument is either s(n) or 0. The general form of R is
R(a, [x, y]b, n), which is a term with three sub-terms, a, b and c. The term [x, y]b is different from the others,
hence we give a formal definition.

Definition 1.1. [x, y]b is a sub-term of R(a, [x, y]b, n), where x and y are terms and bound within the term
b.

We say that x and y are bound variables. For example, consider the term R(z, [x, y]x, n). The bound
variables here are x and y, but only x has occurred within the scope of [x, y]x. On the other hand, the
variables like z and n are not bound within any term, making them free variables instead. Another example
is if we assume that we have defined an addition term a+ b, then if we have a sub-term [x, y](s(x) + z), then
z is also within the scope of [x, y] but z is still a free variable, while x serves as a bound variable.

Definition 1.2. The syntax for TT (N) is as following:

� There is one type in TT (N), denoted N.

� The terms for TT (N) are: a, b, c := 0 | z | s(a) | R(a, [x, y]b, c).
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In the syntax for TT (N), z is a variable, the intended meaning of s(a) is a+ 1 and the variables x and y
are bound within b in the term R(a, [x, y]b, c). The bound variables x and y are substituted within b, where
x is substituted with the predecessor of c while y is substituted with the result of applying R again to the
predecessor of c. By using only s and R, we can define many functions on natural numbers, such as addition,
multiplication and exponential. Let us define addition, for illustration:

Definition 1.3. a+ b := R(a, [x, y]s(y), b)

In Figure 1, the term [x, y]s(y) represents the expression Succ(Add(a, b)), the term a represents the
expression a in the case of Add(a, 0), and b is the term on which we perform pattern matching. However, this
is just an expression of addition, we need to define the rules that will enable the computation for addition.
For that we need reduction rules for TT (N), which is a single-step computation of a term, transforming one
term into another.

Remark. Some important notations:

� We write a ≡ b if a and b are equivalent.

� We write a⇝ b to indicate that b can be obtained from a by one-step of reduction.

� If b can be obtained from a by applying the reduction rule (⇝) zero or more times inside a, then we
write a↠ b.

� We write a ≃ b to indicate that a and b are convertible, meaning that they are equivalent under the
equivalence relation generated by ↠. More formally, a ≃ b if and only if there is a sequence of terms
M1, ...,Mn such that:

a↠M1 ↞M2 ↠M3 ↞M4 ↠ ...↠Mn ↞ b

Assuming that we have encoded addition, multiplication, exponential, etc., some examples of convertible
expressions in TT(N) are:

� 3 + 1 and 4 · 1,

� 2− 2 and 0,

� 2
2
and 2 · 2.

In TT (N) the term R(a, [x, y]b, c) will be the term to reduce. For that, we need to specify what is going
to happen for each reduction step. Because we are using substitution for a reduction step, we define what
substitution means for a term.

Definition 1.4. Substitution M [N/x] is defined as follows:

� x[N/x] := x.

� y[N/x] := y (if x ̸= y).

� M [N/x] := the result of replacing all free occurrences of x in M with N .

Definition 1.5. The reduction rules for TT (N) are the following:

� R(a, [x, y]b, 0)⇝ a

� R(a, [x, y]b, s(n))⇝ b[n/x,R(a, [x, y]b, n)/y]

Remark. For a natural number n, let n :=

n times︷ ︸︸ ︷
s(s(...(s(0))...)). We say that n is a numeral. For example, if we

want to express the natural number 3 as a numeral, we write s(s(s(0))).

Here is an example of how to compute 2 + 2:
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2 + 2 ≡ R(2, [x, y]s(y), 2) ≡ R(2, [x, y]s(y), s(1))⇝

s(y)[1/x,R(2, [x, y]s(y), 1)/y] ≡ s(R(2, [x, y]s(y), 1)) ≡ s(R(2, [x, y]s(y), s(0)))⇝

s(s(y))[0/x, R(2, [x, y]s(y), 0)/y] ≡ s(s(R(2, [x, y]s(y), 0)))⇝

s(s(2)) ≡ 4

Reduction enables computation. In lambda calculus, reductions have an important role, since the role of
reductions is to express a computation for a given function. However, in general, reductions do not guarantee
that we will reach our desired result. For example, in the lambda calculus, it is possible to reduce a term
in different ways, by a one-step reduction. For instance, consider the lambda term: (λx.((λy.x)M))N . By
using beta reduction, we can reduce this term to either (λy.N)M or (λx.x)N , but both terms can find a
common reduct N [20, Section 2.4].

In TT (N), we would like reductions to be able to find a common reduct as well, for the sake of establishing
convertibility between terms, which will have implications on proving a conservativity between TT (N) and
its extension. In other words, we want to have the Church-Rosser property for TT (N). And furthermore,
for the sake of conservative extension, it is beneficial if we would have normalization in the type theory.
Normalization involves the normal forms of terms, and a normal form is a term that cannot be reduced any
further by the reduction rules of the system. Examples of normal forms in TT (N) are: 4̄, 9̄, 0 and s(x) where
x is a free variable, while the terms R(0, [x, y]s(1̄), s(0)) and R(0, [x, y]0, 0) are not normal forms, since they
can be reduced to s(1̄) and 0, respectively. There are two notions of normalizations [8, p. 22]:

� Weak normalization - every term reduces to a normal form.

� Strong normalization - guarantees that every reduction sequence will eventually terminate.

It is important that we do not confuse normalization and the Church-Rosser property. For instance, in the
untyped-lambda calculus, we do have the Church-Rosser property, but we do not have Weak normalization.
For instance, there are terms that do not have a normal form, since they can be reduced an infinite amount
of times [20]. In TT (N), we expect that every term terminates as well, meaning that it should be strongly
normalizing.

Next we want to introduce the Judgement rules for TT (N). Judgement rules provides us the conditions
for when a term is of a specific type, given some context with hypothesises. Judgements will help us to
reason about the correctness of our definitions and ensure that they meet the requirements of TT (N). The
judgement rules for TT (N) can be found in Figure 2. The Rec rule allows us to define a function recursively

V ar
Γ, x : N,∆ ⊢ x : N Zero

Γ ⊢ 0 : N Γ ⊢ n : N
Succ

Γ ⊢ s(n) : N

Γ ⊢ a : N Γ, x : N, y : N ⊢ b : N Γ ⊢ n : N
Rec

Γ ⊢ R(a, [x, y]b, n) : N

Figure 2: Judgement rules for TT (N)

over the natural numbers. The term R(a, [x, y]b, n) denotes the natural number f(n), where f is a function
defined recursively by:

� f(0) = a
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� f(n+ 1) = b[n/x, f(n)/y].

Note that both a and b are terms of type N. The difference between reduction and judgements is that we are
not computing anything here, we are verifying that a given term is of a certain type. For example, by having
a judgement of ⊢ 3̄ + 4̄ : N , we can be certain that 3̄ + 4̄ is of type N. From the judgement rules, we can
ensure that the system is well-formed and can be used to reason about the correctness of our definitions.

1.2.3 Type Theory of Natural Numbers with Pairing

The type theory of natural numbers with pairing is an extension of TT (N), denoted TT (N,×). It shares the
same syntax, reductions, and judgements as TT (N), but incorporates an additional type and expanded rules.
TT (N,×) is also a fragment of MLTT that includes a type constructor for pairing. This allows us to define
ordered pairs. Additionally, we can use projections to select the elements of a pair, which correspond to the
conjunction introduction and elimination rules in MLTT.

The motivation behind investigating the relationship between TT (N,×) and TT (N) is their relative sim-
plicity. We can represent pairing in TT (N) with the use of a pairing function. By studying the conservative
relation between TT (N,×) and TT (N), we expect to find that the former is a conservative extension of the
latter. Although TT (N,×) introduces an additional type, it also comes with additional rules and terms
compared to TT (N).

Definition 1.6. The syntax for TT (N,×) is as following:

� The types for TT (N,×) are: A,B ::= N | A×B.

� The terms for TT (N,×) are: a, b, c ::= 0 | z | s(a) | R(a, [x, y]b, c) | ⟨a, b⟩ | π1(a) | π2(a)

The terms 0, z, s(a), R(a, [x, y]b, c) are the same as in TT (N)(Definition 1.2). The newly added terms in
TT (N,×) are:

� ⟨a, b⟩ which represents an ordered pair of a followed by b,

� π1(a) is the first projection of the term a,

� π2(a) is the second projection of the term a.

However, the judgement rules in TT (N,×) are different compared to the ones in TT (N). As we can see in
Figure 3, we do not know what type we might have for the var rule or in the Rec rule. × is a type constructor,
meaning that it enables for constructing more complex terms, for instance, we can have the following types
in TT (N,×):

� N

� N × N

� N ×(N × N)

For the reduction rules, see Definition 1.7, we added two additional reductions for when the terms are in the
form of either π1(⟨a, b⟩) or π2(⟨a, b⟩). When reducing π1(⟨a, b⟩) or π2(⟨a, b⟩), we just use projection, meaning
that we reduce to either a or b.

Definition 1.7. The reduction rules for TT (N,×) are the following:

� R(a, [x, y]b, 0)⇝ a

� R(a, [x, y]b, s(n))⇝ b[n/x,R(a, [x, y]b, n)/y]

� π1(⟨a, b⟩)⇝ a

� π2(⟨a, b⟩)⇝ b
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V ar
Γ, x : A,∆ ⊢ x : A

Zero
Γ ⊢ 0 : N Γ ⊢ n : N

Succ
Γ ⊢ s(n) : N

Γ ⊢ p : A×B
π1

Γ ⊢ π1(p) : A

Γ ⊢ p : A×B
π2

Γ ⊢ π2(p) : B

Γ ⊢ a : A Γ ⊢ b : B
Pair

Γ ⊢ ⟨a, b⟩ : A×B Γ ⊢ a : A Γ, x : N, y : A ⊢ b : A Γ ⊢ n : N
Rec

Γ ⊢ R(a, [x, y]b, n) : A

Figure 3: Judgement rules for TT (N,×)

1.3 Conservative Extension

When we talk about conservative extension, we are referring to the relationship between two formal systems
where one system is an extension of the other. Consider two theories T1 and T2 with their respective types
and terms. Then T2 is conservative over T1 if for every proposition P of T1 we have that if P is provable
in T2 then P is provable in T1, which will be our notion for propositional conservativity. Propositional
conservativity has been studied before in [11, p. 160], and we include it here because some of our notions
implies propositional conservativity. What should be noticed, is that no sentences that were true in the
original theory, T1, are altered in the extended theory, T2. The behavior of the extended theory remains the
same as in the original theory, but with additional rules. Conservative extension allow us to explore new
features or capabilities without sacrificing the existing results and proofs.

When studying type theory, and for this thesis, we tackle the matter of conservative extension differently.
We consider the preservation of judgements between type theories as well as convertibility between terms.
We remind ourselves that we write Γ ⊢ a : A to assert that a is of type A from the terms of their respective
types in Γ. We write a ≃ b, to say that a and b are convertible. We define four definitions of conservative
extension in type theory, where two of them are proposed from us, these include:

� Strong Conservativity

� Canonical Conservativity

� Closed Conservativity

� Propositional Conservativity

The definition of strong conservativity, which involves reductions, is also discussed in [25, Definition 7], but
Xue calls it a definitional extension instead. This study contributes to the ongoing investigation of conserva-
tive extension, aiming for a deeper exploration of the topic. Canonical conservativity and closed conservativity
are the new definitions proposed in this thesis, and they are modifications of strong conservativity, and we
will prove that they are weaker than strong conservativity. On the other hand, propositional conservativity
matches the definition of conservative extension in first-order logic, which does not involve any reductions.
In contrast to the standard formulation, the definition of conservative extension in type theory involves the
use of reductions. In general, a conservative extension ensures that all theorems in the extended theory, that
are expressible in the language of the original theory, are already theorems in the original theory. Proposi-
tional conservativity aligns with the standard formulation, while strong, canonical and closed conservativity
incorporate reductions as an additional requirement.

We explore how the type theories of natural numbers align with these definitions and discuss if these
would lead to a general definition of a conservative extension. Importantly, these definitions should ensure
that existing results and proofs from the original theory remains unchanged.
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Strong conservativity combines judgements and convertibility between terms. It ensures that for all types
P in the original theory, if we have a judgement of P in the extended theory, then exists a judgement of
P in the original theory, and the terms involved that are of type P are convertible. With convertibility,
we gain an understanding of reductions between the type theories. If we consider terms as programs, this
implies that they can be transformed into each other by using a set of computation rules. Hence, in practical
usage, we can have more confidence in running our programs within an extended formal system based on
a type theory. Because it ensures that the behavior of the programs computation remains unchanged, if it
is strongly conservative over its original theory. Strongly conservative has been previously studied in [25].
However, further investigation is still required to gain a deeper understanding of conservative extensions, and
its implications between type theories.

Definition 1.8. T2 is strongly conservative over T1 if and only if for every type P of T1, every context Γ in
T1 and every term t such that Γ ⊢ t : P in T2, then there exists a term s such that:

� Γ ⊢ s : P in T1

� s ≃ t in T2

In the definition of canonical conservativity we add more conditions on the hypothesises. We require
that all the free variable are substituted with a canonical term. A canonical term is a term that can not be
reduced any further and has no free variables. For example, if we would have the term ⊢ m̄ + n̄ : N, then
m̄+ n̄ is not a canonical term, but it can be reduced to a numeral, which are the canonical terms of type N.
By using the reduction rules for TT (N) or TT (N,×), m̄+ n̄↠ m+ n, which we will prove in later. Because
canonical terms are important for the definition of canonical conservativity, we define what it means for a
term that is either of type N or constructed through the pairing type, to be canonical.

Definition 1.9. A term t is a canonical term of type A, is defined by recursion on A as:

� The canonical terms of type N are the numerals.

� A canonical term of type A×B is a term ⟨t1, t2⟩ where t1 is canonical of type A and t2 is canonical of
type B.

Some examples of canonical terms in TT (N,×):

� 2̄

� ⟨1̄, 2̄⟩

� ⟨⟨0, 5̄⟩, 2̄⟩

For canonical conservativity, we have a requirement that every term in the hypothesis must be substituted
with a canonical term. If we consider a function f(x) with x as a free variable, a type theory that is canonically
conservative over its original theory cannot ensure the convertibility of f(x) to a term in its original theory.
However, if we substitute x with a canonical term t, then f(t) would guarantee convertibility to a term in
its original theory. The key difference here is that strong conservativity can ensure convertibility for a term
representing a function f(x) without the need of canonical terms. If we viewed terms as programs, as in
the case of strong conservativity, we can transform two terms into each other by using a set of computation
rules. However, we are required to substitute all free variables with canonical terms before performing the
computation. Therefore, canonical conservativity is weaker than strong conservativity, since it is not always
possible to find a term that is convertible with a given term when free variables are involved. However, it
still holds valuable information on the relationships between different type theories and their extensions. It
provides insights on how the preservation of statements can be achieved when canonical terms are used, even
if it may not cover all cases involving functions with free variables.

Definition 1.10. T2 is canonically conservative over T1 if and only if for any types A1, ..., An, B of T1, every
context Γ in T1 and every term t such that x1 : A1, ..., xn : An ⊢ t : B in T2, then there exists a term s such
that:
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� x1 : A1, ..., xn : An ⊢ s : B in T1 and

� for all t1, ..., tn that are canonical to the types A1, ..., An in T2, we have that s[t1/x1, ..., tn/xn] ≃
t[t1/x1, ..., tn/xn] in T2.

Closed conservativity is a weaker definition compared to canonical conservativity, as it only considers the
empty context. This means that this definition does not take free variables into account. Considering terms
as programs, we do not substitute any variables, since we do not consider them as part of the computation.
Therefore, we can only guarantee computations for programs that do not involve any variables. However,
this definition considers convertibility between terms, ensuring that reductions are taken into account.

Definition 1.11. T2 is closed conservative over T1 if and only if for every type P of T1, every context Γ in
T1 and every term t such that ⊢ t : P in T2, then there exists a term s such that:

� ⊢ s : P in T1

� s ≃ t in T2

We include the definition of propositional conservativity in order to understand the relationships between
the four different definitions conservative extensions, as illustrated in Figure 4. Propositional conservativity
focuses on judgements and disregards relations in terms of reductions. Therefore, propositional conservativity
is considered one of the weakest forms of conservative extension in the scope of these specific definitions
presented in this section. As mentioned before, it has been studied in [11], on the relationship between
intentional and extensional formulations of Martin-Löf type theory. The author uses the notion of conservative
extension in line with the definition of propositional conservativity presented here.

Definition 1.12. T2 is propositionally conservative over T1 if and only if

� For every type P of T1,

� if P is inhabited in T2 then P is inhabited in T1.

As mentioned, Definition 1.12 represents a relatively weak form of conservative relation in the context
of type theory, as it solely focuses on the judgements. We want to find a stronger degree of conservative
relation in type theory, and one way is to investigate how the reductions behave between type theories. As
seen in Definitions 1.8 to 1.11, we involve convertibility, and we get more information on the terms for each
type theory.

To demonstrate the strength of the different definitions of conservative extensions, we prove three theo-
rems(Theorems 1.13 to 1.15). These theorems establish the implications of the different types of conservative
extension, allowing us to illustrate their implications in Figure 4. Throughout the investigation of the con-
servative extension between TT (N) and TT (N,×), our aim is to establish a strong degree of conservative
extension. This is because the other implications of the conservative extension will follow.

Theorem 1.13. If T2 is strongly conservative over T1 then T2 is canonically conservative over T1

Proof. Suppose that T2 is strongly conservative over T1, then we already have that for any types A1, ..., An, B
and term t such that x1 : A1, ..., xn : An ⊢ t : B in T2 from the definition of strongly conservative. We also
know that for any term s such that x1 : A1, ..., xn : An ⊢ s : B in T1 we have s ≃ t in T2. Take any canonical
terms t1, ..., tn of types A1, ..., An, respectively, and we get that s[t1/x1, ..., tn/xn] ≃ t[t1/x1, ..., tn/xn] from
s ≃ t.

Theorem 1.14. If T2 is canonically conservative over T1 then T2 is closed conservative over T1

Proof. In the definition of canonical conservativity(Definition 1.10), if n = 0 then we get closed conservativity.

Theorem 1.15. If T2 is canonically conservative over T1 then T2 is propositionally conservative over T1
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Closed Conservativity

Strong conservativity Canonical Conservativity

Propositional Conservativity

Figure 4: Implications for conservative extensions

Proof. We have that T2 is canonically conservative over T1 and from definition we have that for any type B in
T1 such that x1 : A1, ..., xn : An ⊢ t : B in T2 we also have that there is a s such that x1 : A1, ..., xn : An ⊢ s : B
in T1. Hence, every type that is inhabited in T2 is also inhabited in T1.

Figure 4 explains the implications of the different notions of conservativity, prompted from Theorems 1.13
to 1.15. It is important to note that there are no arrows in the opposite direction. For example, Canonical con-
servativity does not imply strong conservativity. In a type theory with function types, closed conservativity
implies propositional conservativity. However, it is unclear whether closed conservativity implies proposi-
tional conservativity without function types, so we cannot include an arrow from closed conservativity to
propositional conservativity without further proof.

To illustrate non-conservative extensions, we provide three non-examples. A non-example of strong con-
servativity is the conservative relation between TT (N) and TT (N,×). The reason for this will be explained
later as we explore their relationship, but it involves the presence of free variables.

Non-example. Take TT (N,→), that is an extension of TT (N), known as Gödel’s System T [1]. In a later
section, we will show that the terms of TT (N) and TT (N,×) denote the same functions, which are the prim-
itive recursive functions. This means that the terms of TT (N) and TT (N,×) can only express the primitive
recursive functions, and nothing else. The proof of this relies on TT (N,×) being a canonically conservative
extension over TT (N). However, TT (N,→) can express more than the primitive recursive functions, for
instance, the Ackermann function, which is a recursive function that is not primitive. This implies that
TT (N,→) is not canonically conservative over TT (N). While canonical conservativity may be considered
relative weak in terms of the gained information, it is still a valuable insight if it grants us that two theories
denote the same functions. This can provide valuable insights about type theories and contribution to their
application in fields like proof assistants.

Non-example. Let T (N, c) be an extension of TT (N), with an additional term u, such that:

u
Γ ⊢ u : N

Then TT (N, u) is not closed conservative over TT (N), because there is no term s in TT (N) such that s ≃ c
in TT (N, u).

Non-example. Let T0 be a type theory consisting of one single type N and no additional terms. Then TT (N)
is not propositionally conservative over T0 since we have Γ ⊢ 0 : N in TT (N), but N is not inhabited in T0,
due to the fact that we have no judgement to assert the type N.

13



2 Encodings in TT (N)
2.1 Overview

In this section, our focus will be on encoding terms in TT (N) to represent terms in TT (N,×). To accomplish
this, we will make use of recursion theory in the encoding process. Recursion theory is the study of computable
functions. The aim is to provide a formal definition of a computable function, to understand the limitations
of what can be computed by an algorithm. We will focus on basic recursive functions for encoding, and
therefore, we limit our attention to the primitive recursive functions [18]. Primitive recursive functions can
be used to define the most basic operators on natural numbers, such as addition and multiplication. To
clarify the basic operators, these include the constant 0, successor function, projection, composition and all
the functions h such that:

� h(x1, ..., xn, 0) = f(x1, ..., xn)

� h(x1, ..., xn, succ(y)) = g(x1, ..., xn, y, h(x1, ..., xn, y))

where f and g are also primitive recursive. More formally:

Definition 2.1. The set of primitive recursive functions are defined inductively by:

� The constant 0 is a primitive recursive function.

� The successor function succ : N → N with succ(n̄) = n+ 1 is primitive recursive.

� Each projection function Pi : Nn→ N with Pi(x1, ..., xn) = xi and i ≤ n are primitive recursive.

� If

– f : Nk→ N is primitive recursive and

– the functions g1, ..., gk : Nn→ N are primitive recursive,

– then the composition h(x1, ..., xn) = f(g1(x1, ..., xn), ..., gk(x1, ..., xn)) is primitive recursive.

� If f : Nn→ N and g : Nn+2→ N are primitive recursive with n ≥ 1, then the function h : Nn+1→ N
such that:

– h(x1, ..., xn, 0) = f(x1, ..., xn)

– h(x1, ..., xn, succ(y)) = g(x1, ..., xn, y, h(x1, ..., xn, y))

is primitive recursive.

From these set of rules you can prove that addition and multiplication are primitive recursive. There is a
proof in [3, p. 67] which shows that addition is primitive recursive. However, the primitive recursive functions
are limited, since there are some computable functions that are not primitive. For example, the Ackermann
function, which is defined as:

A(m,n) =


n+ 1 if m = 0

a(m− 1, 1) if m ≥ 1and n = 0

a(m− 1, a(m,n− 1)) if m ≥ 1and n ≥ 1

The value of A(m,n) grows fast, for example, a computer can calculate that

A(0, 1) = 2, A(1, 1) = 3, A(2, 1) = 5, A(3, 1) = 13

very fast, but for A(4, 1) = 65533 it takes more time to compute due to the amount of recursive calls [17].
The Ackermann function grows faster than any primitive recursive function, and it is a classic example
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for showing that there are recursive functions that are not primitive recursive. Some functions that are not
primitive recursive include those involving quantification over the natural numbers, for instance, the universal
and existential quantifiers, which should output true or false. We want to be able to express quantifiers in
TT (N), but since they are not primitive recursive, we can not do so. Therefore, we will limit ourselves to
bounded quantifiers. Instead of quantifying over all the natural numbers, we quantify over a finite set of
natural numbers.

2.2 The Encodings

We will begin with simple encodings and progress towards more complex ones. Our goal is to encode pairing
in TT (N), which we will achieve by using a pairing function that assigns a unique number to each pair. Using
this number, we can extract each element of the pair individually. Our aim is to replicate the behavior of
TT (N,×), but in TT (N), this requires more reduction steps. Throughout this process, we will gain a deeper
understanding of how TT (N) can be used. We provide below some basic definitions of operators, and we use
the same definition of addition as defined in Definition 1.3:

Definition 2.2. Define:

� a · b := R(0, [x, y](y + a), b)

� ab := R(1̄, [x, y]a · y, b)

� pred(n) := R(0, [x, y]x, n)

� a ·−b := R(a, [x, y]pred(y), b)

Multiplication and exponential are self-explanatory. However, since we have a successor term, we can
also define a predecessor term as pred(n), which returns 0 if n = 0, otherwise it returns n − 1. Because we
are only working with natural numbers, we cannot define the usual subtraction in TT (N). Instead, we use
truncated subtraction, with the following definition:

a ·−b =

{
0 if a ≤ b

a− b otherwise

Judgements on some encodings in TT (N)

Verifying that a term has a specific type is important in TT (N), for example that addition, multiplication, and
exponential is of type N. To achieve this, we will use the judgement rules presented in Figure 2. A derivation
of the judgement rules in TT (N) can be significantly long. For instance, if we consider the encodings in
Definition 2.2 and try to show the derivation tree of ⊢ (m̄ + n̄)p̄ : N, then we would get the derivation tree
for exponential, multiplication and addition as well. Hence, the derivation tree will be significantly large
and complex. We still want to illustrate the process, so we give two examples of derivations for two basic
operators (Examples 2.3 to 2.4).

Example 2.3. Γ ⊢ ā+ b̄ : N has the following derivation:

Zero
Γ ⊢ 0 : N

...
Succ× a

Γ ⊢ ā : N

V ar
Γ, x : N , y : N ⊢ y : N

Succ
Γ, x : N , y : N ⊢ s(y) : N

Zero
Γ ⊢ 0 : N

...
Succ× b

Γ ⊢ b̄ : N
Rec

Γ ⊢ ā+ b̄ : N

Example 2.4. Γ ⊢ pred(n̄) : N has the following derivation:
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Zero
Γ ⊢ 0 : N V ar

Γ, x : N , y : N ⊢ x : N

Zero
Γ ⊢ 0 : N

...
Succ× n

Γ ⊢ n̄ : N
pred(n̄) : N

Reductions on some encodings in TT (N)

It is important to verify that the terms defined in Definition 2.2 reduce to their desired results. We are going
to show that if we insert numerals into the basic terms that we have defined, then we will get the result as
intended, for instance, we want ā+ b̄ to reduce to a+ b. We can have terms like ā+(b̄+ c̄), but first we need
to reduce it to ā+ b+ c, and then reduce it to a+ b+ c. In Theorems 2.5 to 2.9, we will prove that addition,
multiplication, exponential, predecessor, and truncated subtraction (·−) perform their intended computation
according to the rules we have defined.

Theorem 2.5. ā+ b̄↠ a+ b.

Proof. By induction on b.

� If b = 0, then ā+ 0 ≡ R(a, [x, y]s(y), 0)⇝ a ≡ a+ 0.

� If b > 0, then ā+ b̄ ≡ R(ā, [x, y]s(y), b̄) ≡ R(ā, [x, y]s(y), s(b− 1))⇝ s(R(ā, [x, y]s(y), b− 1)). From the
induction hypothesis, s(R(ā, [x, y]s(y), b− 1))↠ s(a+ (b− 1)) ≡ a+ b.

Theorem 2.6. āb̄↠ ab.

Proof. By induction on b.

� If b = 0, then ā · 0 ≡ R(0, [x, y](y + ā), 0)⇝ 0 ≡ a · 0.

� If b > 0, then āb̄ ≡ R(0, [x, y](y+ ā), b̄) ≡ R(0, [x, y](y+ ā), s(b− 1))⇝ R(0, [x, y](y+ ā), b− 1) + ā
I.H
↠

a(b− 1) + ā
Theorem 2.5
↠ a(b− 1) + a ≡ ab.

Theorem 2.7. āb̄ ↠ ab.

Proof. By induction on b.

� If b = 0, then ā0 ≡ R(1̄, [x, y]āy, 0)⇝ 1̄ ≡ a0.

� If b > 0, then āb̄ ≡ R(1̄, [x, y]āy, b̄) ≡ R(1̄, [x, y]āy, s(b− 1))⇝ ā·R(1̄, [x, y]āy, b− 1)
I.H
↠ ā·ab−1

Theorem 2.6
↠

a · ab−1 ≡ ab.

Theorem 2.8. pred(n̄)↠ n ·−1.

Proof. By induction on n.

� If n = 0, then pred(0) ≡ R(0, [x, y]x, 0)⇝ 0..

� If n > 0, then pred(n̄) ≡ R(0, [x, y]x, n̄) ≡ R(0, [x, y]x, s(n− 1))⇝ n− 1.
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Theorem 2.9. ā ·−b̄↠ a ·−b.

Proof. By induction on b.

� If b = 0, then ā ·−0 ≡ R(ā, [x, y]pred(y), 0)⇝ ā.

� If b > 0, then ā ·−b̄ ≡ R(ā, [x, y]pred(y), b̄) ≡ R(ā, [x, y]pred(y), s(b− 1))⇝ pred(R(ā, [x, y]pred(y), b− 1))
I.H
↠

pred(a ·−(b− 1))
Theorem 2.8
↠ (a ·−(b− 1)) ·−1 ≡ a ·−b.

2.3 Encoding Boolean Operators in TT(N)
In the previous section we saw how basic functions that handles natural numbers can be encoded and used
for computations in TT (N). Even if TT (N) is the type theory of natural numbers, we are still able to handle
boolean connectives. A boolean connective is a symbol that is used to connect propositions [24]. In TT (N),
we are going to define the boolean connectives as terms, and since we are working with the natural numbers
as its only type, we interpret 1̄ as true and 0 as false.

Definition 2.10. We define true (⊤) and false (⊥) as:

� ⊤ := 1̄

� ⊥ := 0

When defining the connectives, we only expect that the inputs are ⊤ and ⊥. In some cases we can consider
0 to be the only value that is considered as false, while everything greater than 0 are considered to be true.
For simplicity, we will only think of 1̄ as being true.

The first operator to introduce when dealing with boolean connectives is going to be the Signum function
[3, p. 69]. The signum function takes a value a, if a > 0 then sg(a) = 1 otherwise sg(0) = 0. The signum
function is going to be helpful in order to transform all the numerals greater than 1 to just 1̄. Then there is
a signum function that does the opposite, we will call it Reverse signum function. The reverse signum
function takes a value a, if a > 0 then sg(a) = 0 otherwise sg(0) = 1. The reverse signum function is similar
to negation, but as mentioned earlier, the reverse signum function deals with all the natural numbers, while
negation only deals with true and false in propositional logic [24].

Definition 2.11. The signum function and the reverse signum function [3]:

� sg(a) := R(0, [x, y]1̄, a)

� sg(a) := R(1̄, [x, y]0, a)

In order to express the boolean connectives used in propositional logic, we only need to define disjunction
and use it together with the reverse signum function, since the two connectives are expressively adequate [21].
What expressively adequate means is that the symbols, in this case disjunction and negation, are capable
of expressing all the other boolean connectives in the system. In this case, disjunction and negation are
expressively adequate in propositional logic, which we are going to express within TT (N).

Definition 2.12. Define: a ∨ b := R(sg(a), [x, y]sg(b), b)

Then the rest of the connectives for propositional logic, which are conjunction and implication, could be
defined by just re-using disjunction and negation.

Definition 2.13. Define the logical connectives:

� a ∧ b := sg(sg(a) ∨ sg(b))

� a ⇒ b := sg(a) ∨ sg(b)
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Let us verify that disjunction behaves as intended.

� ⊤ ∨⊥ should reduce to ⊤: R(sg(⊤), [x, y]sg(⊥),⊥)⇝ sg(⊤)⇝ ⊤

� ⊥ ∨⊥ should reduce to ⊥: R(sg(⊥), [x, y]sg(⊥),⊥)⇝ sg(⊥)⇝ ⊥

� ⊥ ∨⊤ should reduce to ⊤: R(sg(⊥), [x, y]sg(⊤),⊤)⇝ sg(⊤)⇝ ⊤

� ⊤ ∨⊤ should reduce to ⊤: R(sg(⊤), [x, y]sg(⊤),⊤)⇝ sg(⊤)⇝ ⊤

From the boolean connectives that we have defined as operators in TT (N), we are now able to express
operators that are able to determine whether the given input is true or false. For instance, the statement
”n is even” can be written as Even(n) which takes a natural number n and returns either true or false,
depending on whether n is even or odd.

With the help of boolean connectives, we will be able to define more complex operators. We will be able
to define operators as ”n is less than or equal to m”, ”n divides m”, etc. These operators will be used for the
pairing function, as we will see later, which is crucial for translating the pairing term ⟨a, b⟩ that originates
from TT (N,×).

Definition 2.14. Define the following boolean operators:

� Equality: a = b := 1̄ ·−(sg(a ·−b) + (sg(b ·−a))

� Inequality: a ̸= b := sg(a = b)

� If operator: If (a, b, c) := R(c, [x, y]b, a)

� Strictly less-than relation: a < b := sg(b ·−a)

� Less-than or equal: a ≤ b := (a < b) ∨ (a = b)

� Is even: Even(n) = R(1̄, [x, y]sg(y), n)

What needs to be done next is to show that the operators reduce to their expected result. This is done in
the same way as we did for the basic operators, meaning addition, multiplication, exponential, etc. However,
we need to state our theorems differently. When we were expecting numerals as a result we could just state
the theorems as a ↠ b, but since we are working with operators that handle truth values like equality, we
need to describe what we mean for two numerals to be equal. We will prove that equality behaves as intended.
Verifying that the rest of the operators (Definition 2.14) behave as intended is trivial, and we leave it for the
reader to prove.

Theorem 2.15. ā = b̄↠ 1̄ if and only if a and b are identical.

Proof. Suppose that a and b are not identical. Then we have ā = b̄ ≃ 1̄ ·−(sg(ā ·−b̄) + sg(b̄ ·−ā)). Since a and
b are not identical then either sg(ā ·−b̄) ↠ 1̄ and sg(b̄ ·−ā) ↠ 0; or the other way around. In either way, the
sum of them will reduce to 1̄. Thus, the result will in either way be 1̄ ·−(sg(ā ·− b̄) + sg(b̄ ·−ā)) ↠ 1̄ ·− 1̄ ↠ 0.
Hence, ā = b̄ ̸↠ 1̄

For the other direction. Suppose that a and b are identical. Then ā = b̄ ≃ 1̄ ·−(sg(ā ·− b̄) + (sg(b̄ ·−ā)) ↠
1̄ ·−(sg(0) + sg(0))↠ 1̄ ·−(0 + 0)↠ 1̄. Which shows that, ā = b̄↠ 1̄

The final operators to define in this section is the existential and universal quantifiers. The existential
quantifier says that there exists a x in a domain such that a given sentence is true. While the universal
quantifier says that the given sentence is true for all x in the domain. There is one issue with these two
statements. In TT (N) we can not express infinite terms and one requirement is to quantify over infinite
domains, for the universal and existential quantifiers. This means that we can not express the whole set of
natural numbers, since the set of natural numbers is infinite. However, we can still express the quantifiers
in a smaller degree. We need to limit ourselves to a finite domain, meaning that we have a finite range over
what we quantify over. The idea is to give that range to the input of the bounded quantifier operators.
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Definition 2.16. Bounded quantifiers:

� Existential: ∃x ≤ n.P (x) := R(P (0), [x, y]If (P (s(x)), 1̄, y), n)

� Universal: ∀x ≤ n.P (x) := R(P (0), [x, y]If (P (s(x)), y, 0), n)

2.4 Pairing in TT (N)
As we have seen throughout the previous two sections, TT (N) is expressive enough to define some basic
operators and operators that handle truth values, and able to perform computation on them. We will now
use the definitions for the basic operators and the operators that handle the boolean connectives, to encode
an ordered pair in TT (N). For instance, if we have the terms a and b, we want to be able to put them into
an ordered pair as (a, b). Given a pair (a, b) we want to be able to pick the first or second element of the
tuple by using a projection function.

The technique that is going to be used in order to encode pairing is by using a pairing function [3, p. 7]. A
pair of (a, b) is going to be encoded into a unique number, and afterwards, we want to define two projection
functions in order to compute the first and the second element of the pair represented by this unique number.
The unique number of a pair (a, b) is going to be the number 2a · (2b + 1). The projection functions, first
projection and second projection, are going to find the greatest value of x such that 2x and 2x+a respectively,
divides 2a · (2b + 1). In other words, the projection functions are going to find the greatest value such that
2x or 2x + a divides the uniquely encoded pair, and the greatest value x is the element in the pair that we
want to retrieve. To achieve this we need more definitions.

Definition 2.17. The Divides operator is defined as: m|n := ∃x ≤ n.n = mx.

m|n is an important operator in order to define the pairing function, therefore we prove that it actually
returns 1 if m divides n:

Theorem 2.18. m̄|n̄↠ ⊤ if and only if m divides n.

Proof. Suppose m̄|n̄ ↠ ⊤. Then there is a x such that n = mx. If we solve the equation for x, we get that
x = n/m, and we know that x is a natural number. Therefore, we get that m divides n, since the division
does not give us any remainders.

For the other direction, suppose that m divides n. then n/m = x with no remainders and x is a natural
number. Therefore, n = mx, so there exists such an x, which is the same as our definition of m|n. Thus,
m|n↠ ⊤.

As mentioned earlier, we will use m|n in order to calculate the first and second element of an ordered
pair. The only thing we need to prove is that the projection functions work as intended.

Definition 2.19. Functions for pairing:

� Pairing: pr(a, b) := 2̄a · s(b+ b)

� Projection 1: p1(n) := R(0, [x, y]If(2̄x|n, x, y), n)

� Projection 2: p2(n) := R(0, [x, y]If(s(x+ x)|n, x, y), n)

Theorem 2.20. p1(pr(ā, b̄))↠ ā.

Proof. Recall that p1(pr(ā, b̄)) ≡ R(0, [x, y]If(2̄x|2̄ā · s(b̄ + b̄), x, y), 2̄ā · s(b̄ + b̄)). We already know that
2a divides 2a · (2b + 1) and by Theorem 2.18, 2̄ā|2̄ā · s(b̄ + b̄) ↠ ⊤. Then what we want to show is that
there is no m > a such that 2̄m̄|2̄ā · s(b̄ + b̄) ↠ ⊤. Suppose m ≡ a + n for some n > 0. Then we can
see that 2̄m̄ ≡ 2̄ā+n̄ ≡ 2̄ā · 2̄n̄. Notice now that 2a · 2n does not divide 2a · (2b + 1), since 2n does not
divide 2b+ 1 because 2n is even and 2b+ 1 is odd. From Theorem 2.18, 2̄m̄|2̄ā · s(b̄+ b̄)↠ ⊥ and therefore
R(0, [x, y]If(2̄x|2̄ā · s(b̄+ b̄), x, y), 2̄ā · s(b̄+ b̄))↠ ā.
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Theorem 2.21. p2(pr(ā, b̄))↠ b̄.

Proof. Similar to the proof of Theorem 2.20.

For illustration, we show here a practical example for an encoding of TT (N) in Haskell. If we implemented
pairing as we have defined in TT (N), then the computation might take a lot of time. If we try to project a
pair whose unique number is significantly large then we might not be able to compute it at all. For instance,
consider the computation of the pairing function that is written in Haskell in Figure 5 (The implementation
of TT (N) can be found in Appendix A). The function i is utilized in i smallPair and i largePair to convert
numerals into integers, making them easier to interpret. Here we see that the smallPair is an encoding
of the pair pr(1̄, 2̄). We are able to retrieve the first and second element of the smallPair, by using the
projection functions. However, if we let largePair be the pair pr(5̄, 3̄), we see that the value of largePair
is significantly larger than smallPair. When we are trying to pick the first element of largePair by using
projection, we get the error message ”*** Exception: stack overflow”. The stack gets too big because we are
doing too many call by recursion.

*Main> l e t sma l lPa i r = pr (n 1) (n 2)
*Main> i sma l lPa i r
10
*Main> p1 smal lPa i r
S Zero
*Main> p2 smal lPa i r
S (S Zero )
*Main> l e t l a r g ePa i r = pr (n 5) (n 3)
*Main> i l a r g ePa i r
224
*Main> p1 l a r g ePa i r
*** Exception : s tack over f l ow

Figure 5: Computing the projections of a pair in Haskell.

3 The Church-Rosser Theorem

The Church-Rosser Theorem says that for a given term M , if we reduce it in zero or multiple reduction steps
to either N or P , then there exists a term Z such that N and P can reduce in zero or multiple reduction steps
to Z. It gives us the guarantee that every reduction can always find a common reduct, meaning a common
term. If the Church-Rosser theorem is true for a reduction, then it has the Church-Rosser Property. Figure 6
describes the Church-Rosser property, where Z is the common reduct that can be obtained from N and P . In
Simply-typed Lambda Calculus, the Church-Rosser property holds for β-reduction [8, p. 22]. We are going to
prove the Church-Rosser property for TT (N) and TT (N,×), separately, in the upcoming sections. When we
are proving Church-Rosser property for TT (N) and TT (N,×), we employ a similar strategy as in the Simply-
typed Lambda Calculus for β-reduction. However, the difference is that we consider different reduction rules
that are in TT (N), as well as different reduction rules that are in TT (N,×). The Church-Rosser property is
beneficial for proving properties about reductions, and moreover establishing convertibility between terms.
Therefore, by having Church-Rosser property for a reduction can be valuable in the sense of convertibility,
and has implications for proving conservative extensions between TT (N) and TT (N,×).

3.1 Church-Rosser Property for TT (N)
The Church-Rosser property is a fundamental property that guarantees that when applying reduction rules
on a given term, we will always be able to find a common reduct between the terms. The Church-Rosser
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Figure 6: Church-Rosser Property

theorem states that if a term can be reduced to two different terms, in zero or several reduction steps, then
there exists a way to reduce both of these terms to a common reduct.

More formally, we need to show that for any reductions M ↠ N and M ↠ P , there is a term Z such
that both N ↠ Z and P ↠ Z. It would be convenient if the property as stated in Figure 7 held true. That
is if for all one-step reductions M ⇝ N and M ⇝ P there is a term Z such that both N ⇝ Z and P ⇝ Z.
Unfortunately, that is not the case in TT (N), consider the term R(0, [x, y]R(s(0), [x′, y′]y′, s(0)), s(0)). We
can perform one-step reductions in two ways:

R(0, [x, y]R(s(0), [x′, y′]y′, s(0)), s(0))⇝ R(0, [x, y]R(s(0), [x′, y′]y′, 0), s(0))⇝ R(0, [x, y]s(0), s(0)) (1)

or we can do

R(0, [x, y]R(s(0), [x′, y′]y′, s(0)), s(0))⇝ R(s(0), [x′, y′]y′, s(0))⇝ R(s(0), [x′, y′]y′, s(0)) (2)

Although the resulting terms R(0, [x, y]s(0), s(0)) and R(s(0), [x′, y′]y′, s(0)) are not the same, they do reduce
to the normal form s(0). This example shows that the one-step reduction does not always guarantee that we
can find a common reduct for all possible reductions. We need to tackle this matter from a different angle.

Diamond property for One-step Reduction

M

N P

Z

Figure 7: Diamond property for One-Step Reduction that we do not have for TT (N)

What we can agree on is that the terms can always reduce to a common reduct, but the computation may be
different for each step. We are going to define a new reduction relation called parallel one-step reduction
and we write it as ⇝′. By showing that for any two terms, there exists a common reduct that both can be
reduced to and that ↠ is the reflexive-transitive closure of ⇝′, we will establish the Church-Rosser property
for TT (N).

After defining the parallel one-step reduction, we need to show that a computation for a one-step reduction
can be done in a parallel one-step reduction too. A property that is important when proving Church-Rosser
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Figure 8: Church-Rosser Property and Diamond Property for Parallel One-Step Reduction

property is the diamond property, which is illustrated in the right-hand side of Figure 8. The consequence of
having the diamond property and that ↠ is the reflexive-transitive closure of ⇝′, will be the Church-Rosser
property. The diamond property is false for one-step reduction, so instead we need to prove the diamond
property for parallel one-step reduction as shown in Figure 8. The rules for parallel-one step reduction is
shown in Figure 9. The first step is to show that for any one-step reduction we also have a parallel one-step

(1)
t⇝′ t

t⇝′ t′ (2)
s(t)⇝′ s(t′)

a⇝′ a′ (3)
R(a, [x, y]b, 0)⇝′ a′

a⇝′ a′ b⇝′ b′ c⇝′ c′ (4)
R(a, [x, y]b, c)⇝′ R(a′, [x, y]b′, c′) a⇝′ a′ b⇝′ b′ c⇝′ c′ (5)

R(a, [x, y]b, s(c))⇝′ b′[c′/x,R(a′, [x, y]b′, c′)/y]

Figure 9: Rules for parallel one-step reduction for TT (N)

reduction in TT (N). A minor clarification before we proceed to the proofs in this section: When we refer to
rule (x) for x = 1, 2, 3, 4; we are referring to the rules from Figure 9.

Lemma 3.1. For all terms M and M ′, if M ⇝M ′ then M ⇝′ M ′.

Proof. We proceed by case analysis on the reduction of M ⇝M ′:

1. If the rule is recursion of base 0, then we have R(a, [x, y]v, 0)⇝ a. By rule (1), we have a⇝′ a. Then,
using rule (3) together with a⇝′ a, we get R(a, [x, y]b, 0)⇝′ a.

2. If the rule is R(a, [x, y]b, s(n))⇝ b[n/x,R(a, [x, y]b, b)/y], then by rule (1), we have a⇝′ a, b⇝′ b, and
n⇝′ n. By applying rule (5), we get R(a, [x, y]b, s(n))⇝′ b[n/x,R(a, [x, y]b, n)/y].

If we perform a parallell one-step reduction, then we want to know if we can do the same action but with
zero or more one-step reductions instead. This means that if we can do one computation in parallel, then it
should be possible to perform the same computation but with one-step reductions sequentially.

Lemma 3.2. For all terms M and M ′, if M ⇝′ M ′, then M ↠M ′.

Proof. By induction over the reduction rules of M ⇝′ M ′.
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� If the last rule is (1), then we already have t↠ t from zero steps.

� If the last rule is (2), then from the I.H., we have that t ↠ t′. Thus, then we also have s(t) ↠ s(t′)
because of the I.H.

� If the last rule is (3), then R(a, [x, y]b, 0) ⇝′ a′. Then, when we reduce, we can do the following:
R(a, [x, y]b, 0)⇝ a, and from the I.H., we have a↠ a′. Therefore, we have R(a, [x, y]b, 0)↠ a′.

� If the last rule is (4), then R(a, [x, y]b, c)⇝′ R(a′, [x, y]b′, c′) with a⇝′ a′, b⇝′ b′, and c⇝′ c′. By the
I.H., we have a↠ a′, b↠ b′, and c↠ c′. So we do R(a, [x, y]b, c)↠ R(a′, [x, y]b, c)↠ R(a′, [x, y]b′, c)↠
R(a′, [x, y]b′, c′).

� If the last rule is (5), then R(a, [x, y]b, s(c)) ⇝′ b′[c′/x,R(a′, [x, y]b′, c′)/y] with a ⇝′ a′, b ⇝′ b′,
and c ⇝′ c′. By the I.H., we have a ↠ a′, b ↠ b′, and c ↠ c′. So we do R(a, [x, y]b, s(c)) ⇝
b[c/x,R(a, [x, y]b, c)/y]↠ b[c/x,R(a′, [x, y]b, c)/y]↠ b′[c/x,R(a′, [x, y]b′, c)/y]↠ b′[c′/x,R(a′, [x, y]b′, c′)/y].

The next step is to show that ↠ is the reflexive-transitive closure of ⇝′. In a more formal way, we define
the reflexive-transitive closure as:

Definition 3.3. Given a reduction relation R, we define the reflexive-transitive closure R∗ of R to be the
smallest relation that contains R and is reflexive and transitive.

The following lemma will help us show that if the diamond property holds for ⇝′, then its transitive
closure should also have the diamond property.

Remark. In the following proof, we treat the reduction relations⇝,⇝′ and↠ as sets. When writing A ⊆ B,
it means that A is a subset or equal to B.

Lemma 3.4. ↠ is the reflexive-transitive closure of ⇝′

Proof. By Lemma 3.1, we have ⇝⊆⇝′. We know that ↠=⇝∗, therefore, ⇝∗⊆ (⇝′)∗, hence ↠⊆ (⇝′)∗. By
Lemma 3.2, we have ⇝′⊆↠. Hence, (⇝′)∗ ⊆↠∗=↠. Therefore, since (⇝′)∗ ⊆↠ and ↠⊆ (⇝′)∗ we get
that (⇝′)∗ =↠.

As stated before, with the help of Lemma 3.4, we are able to establish the Church-Rosser property for
TT (N). However, what we have not yet proved is the diamond property for the parallel one-step reduction in
TT (N). Therefore, we need to introduce a crucial concept called maximal parallel one-step reduction.
The maximal parallel one-step reduction is a term that can be reached from two previous terms, both
originating from a single term. Consider again Figure 8 for the ⇝′ figure, the Z here will be our maximal
parallel one-step reduction. In other words, this will give us the guarantee that any two parallel reduction
sequences can always find a common reduct. Which is exactly what we need to establish the diamond
property for ⇝′.

Definition 3.5. We define the maximal parallel one-step reduction of a term M as M∗ inductively as follows::

� 0∗ := 0

� z∗ := z (for a variable z)

� (s(n))∗ := s(n∗)

� (R(a, [x, y]b, c))∗ := R(a∗, [x, y]b∗, c∗) (If c is not 0 or s(n))

� (R(a, [x, y]b, 0))∗ := a∗

� (R(a, [x, y]b, s(c)))∗ := b∗[c∗/x,R(a∗, [x, y]b∗, c∗)/y]
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Lemma 3.6. Whenever M ⇝′ M ′ then M ′ ⇝′ M∗

Proof. By induction over the reduction rules of M ⇝′ M ′. Assume that all bound variables have been
renamed to avoid clashes.

� If (1) is the last rule, then M ≡ M ′ and we want to show that t ⇝′ t∗, so we need to do another
induction on the term t:

– If t ≡ 0 then t∗ ≡ 0∗ ≡ 0 ≡ t, so from (1) t⇝′ t∗.

– If t ≡ z is similar to when t ≡ 0.

– If t ≡ s(c) then we have that s(c) ⇝′ s(c) and by I.H. c ⇝′ c∗, and we use (2) with c ⇝′ c∗ to
obtain that s(c)⇝′ s(c∗) ≡ t∗.

– If t ≡ R(a, [x, y]b, c) then we have that R(a, [x, y]b, c)⇝′ R(a, [x, y]b, c). We do a case analysis on
c:

* If c = 0 then (R(a, [x, y]b, 0))∗ = a∗ and from I.H. a⇝′ a∗ and b⇝′ b∗, use (3) with a⇝′ a∗

to get that R(a, [x, y]b, 0)⇝′ a∗.

* If c = s(d) then (R(a, [x, y]b, s(d)))∗ ≡ b∗[d∗/x,R(a∗, [x, y]b∗, d∗)/y] and from I.H. a ⇝′ a∗,
b⇝′ b∗ and d⇝′ d∗, use (5) and R(a, [x, y]b, s(d))⇝′ b∗[d∗/x,R(a∗, [x, y]b∗, d∗)/y].

* If c is neither 0 or s(d) then (R(a, [x, y]b, c))∗ ≡ R(a∗, [x, y]b∗, c∗) from I.H. a ⇝′ a∗, b ⇝′ b∗

and c⇝′ c∗, use (4) and R(a, [x, y]b, c)⇝′ R(a∗, [x, y]b∗, c∗).

� If (2) is the last rule, then s(t) ⇝′ s(t′), so M ≡ s(t) and M ′ ≡ s(t′) with t ⇝′ t′. By I.H. t′ ⇝′ t∗,
apply (2) and we get that s(t′)⇝′ s(t∗) ≡ s(t)∗ ≡ M∗.

� If (3) is the last rule, then R(a, [x, y]b, 0) ⇝′ a′ with a ⇝′ a′. By I.H. a′ ⇝′ a∗, hence we have
R(a, [x, y]b, 0)⇝′ a′ ⇝′ a∗ ≡ (R(a, [x, y]b, 0))∗ ≡ M∗.

� If (4) is the last rule, then R(a, [x, y]b, c)⇝′ R(a′, [x, y]b′, c′). We do a case analysis on c:

– If c = 0 then M∗ ≡ (R(a, [x, y]b, 0))∗ ≡ a∗. We have that M ′ ≡ R(a′, [x, y]b′, 0) with a⇝′ a′, b⇝′

b′ and from (1) 0⇝′ 0. From I.H. a′ ⇝′ a∗, use (3) and we get that R(a′, [x, y]b′, 0)⇝′ a∗ ≡ M∗.

– If c = s(d) for some term d then M∗ ≡ (R(a, [x, y]b, s(d)))∗ ≡ b∗[c∗/x,R(a∗, [x, y]b∗, d∗)/y]. We
have that M ′ ≡ R(a′, [x, y]b′, s(d′)) with a ⇝′ a′, b ⇝′ b′ and from (2) s(d) ⇝′ s(d′) with
d ⇝′ d′. By I.H. a′ ⇝′ a∗, b′ ⇝′ b∗ and d′ ⇝′ d∗, use (5) and we get that R(a′, [x, y]b′, s(d′)) ⇝′

b∗[d∗/x,R(a∗, [x, y]b∗, d∗)/y] ≡ M∗.

– If c is not 0 or s(d), then we have a ⇝′ a′, b ⇝′ b′ and c ⇝′ c′. By I.H. a′ ⇝′ a∗, b′ ⇝′ b∗ and
c′ ⇝′ c∗. Apply (4) and we get that R(a′, [x, y]b′, c′)⇝′ R(a∗, [x, y]b∗, c∗) ≡ M∗.

� If (5) is the last rule, then R(a, [x, y]b, s(c)) ⇝′ b′[c′/x,R(a′, [x, y]b′, c′)/y] with a ⇝′ a′, b ⇝′ b′ and
c ⇝′ c′. By I.H., a′ ⇝′ a∗, b′ ⇝′ b∗, and c′ ⇝′ c∗. Applying (5), we get R(a′, [x, y]b′, s(c′)) ⇝′

b∗[c∗/x,R(a∗, [x, y]b∗, c∗)/y] ≡ (R(a, [x, y]b, s(c)))∗ ≡ M∗.

By using Lemma 3.6, we can prove that the diamond property holds for ⇝′ by the following lemma.

Lemma 3.7 (The Diamond Property for ⇝′ in TT (N)). If M ⇝′ N and M ⇝′ P then there exists Z such
that N ⇝′ Z and P ⇝′ Z.

Proof. Take Z ≡ M∗ and by Lemma 3.6, the result follows.

As we have proved the diamond property for ⇝′ in Lemma 3.7, we are going to show that from the
diamond property we can achieve the Church-Rosser property for ↠.
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Theorem 3.8 (Church-Rosser property for ↠ in TT (N)). If M ↠ N and M ↠ P , then there exists Z such
that N ↠ Z and P ↠ Z.

Proof. By Lemma 3.7, ⇝′ satisfies the diamond property. It follows from a result about Church-Rosser [2,
Lemma 3.2.2 on p. 59] that the reflexive-transitive closure of a relation that satisfies the diamond property
also satisfies the diamond property. By Lemma 3.4, we know that ↠ is the reflexive-transitive closure of ⇝′.
Therefore, ↠ also satisfies the diamond property, and so we have the Church-Rosser property for ↠.

We now present a useful corollary that will be instrumental in showing that two terms are convertible,
which is helpful for establishing a conservative extension between type theories.

Corollary 3.9. In TT (N), a ≃ b if and only if there exists a c such that a↠ c and b↠ c.

Proof. If a↠ c and b↠ c then we already have a↠ c↞ b, by definition of convertable relation, a ≃ b. An
identical proof for the other direction can be found from a result about Church-Rosser [2, Theorem 3.1.13 on
p. 54], and since we have Church-Rosser property for ↠, we can use that theorem.

3.2 Church-Rosser Property for TT (N,×)

For TT (N,×), we also have the Church-Rosser Property. The proof is similar to the proof for Church-Rosser
property for TT (N) (Section 3.1). The difference is that we need to add more rules for the parallel one-step
reduction. The Church-Rosser property cannot be directly inferred from TT (N) because the parallel one-step
reduction in TT (N,×) (See Figure 10) has more rules compared to the parallel one-step reduction in TT (N)
(See Figure 9). The reason is that it introduces additional scenarios that need to be considered in our proofs
for Church-Rosser in TT (N,×). For example, when proving Lemma 3.12, we need to consider additional
cases. We have included some extra cases to consider in Lemma 3.12 to illustrate the process. Similarly,
if we would reduce an R-term in Lemma 3.12, then we would have the same scenario as in Lemma 3.6,
where we need to perform case distinction on the term c. Because of these factors, the proofs becomes larger
as we encounter greater variety of terms in TT (N,×) compared to TT (N). We provide in this section the
necessary rules, definitions and theorems that needs to be proven in order to achieve the Church-Rosser
property for TT (N,×). The process of proving Church-Rosser for TT (N,×) is similar as in TT (N), but
requires considering more cases. We leave some details for the reader to verify.

(1)
t⇝′ t

t⇝′ t′ (2)
s(t)⇝′ s(t′)

a⇝′ a′ (3)
R(a, [x, y]b, 0)⇝′ a′

a⇝′ a′ b⇝′ b′ c⇝′ c′ (4)
R(a, [x, y]b, c)⇝′ R(a′, [x, y]b′, c′) a⇝′ a′ b⇝′ b′ c⇝′ c′ (5)

R(a, [x, y]b, s(c))⇝′ b′[c′/x,R(a′, [x, y]b′, c′)/y]

a⇝′ a′ (6)
π1(a)⇝′ π1(a

′)
a⇝′ a′ (7)

π2(a)⇝′ π2(a
′)

a⇝′ a′ (8)
π1(⟨a, b⟩)⇝′ a′

b⇝′ b′ (9)
π2(⟨a, b⟩)⇝′ b′

a⇝′ a′ b⇝′ b′ (10)
⟨a, b⟩⇝′ ⟨a′, b′⟩

Figure 10: Rules for parallel one-step reduction for TT (N,×)

Lemma 3.10. ↠ is the reflexive-transitive closure of ⇝′
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Proof. The proof is similar to lemma 3.4, but we need to swap Lemma 3.1 and Lemma 3.2 for a corresponding
version of the ⇝′ relation for TT (N,×).

Definition 3.11. In TT (N,×), we write the maximal parallel one-step reduct of a term M as M∗ inductively
as follows:

� 0∗ := 0

� z∗ := z (for a variable z)

� (s(n))∗ := s(n∗)

� (R(a, [x, y]b, c))∗ := R(a∗, [x, y]b∗, c∗) (If c is not 0 or s(n))

� (R(a, [x, y]b, 0))∗ := a∗

� (R(a, [x, y]b, s(c)))∗ := b∗[c∗/x,R(a∗, [x, y]b∗, c∗)]

� (π1(a))
∗ := π1(a

∗) (For a that is not of the form ⟨a1, a2⟩)

� (π2(a))
∗ := π2(a

∗) (For a that is not of the form ⟨a1, a2⟩)

� (π1(⟨a, b⟩))∗ := a∗

� (π2(⟨a, b⟩))∗ := b∗

� (⟨a, b⟩)∗ := ⟨a∗, b∗⟩

Lemma 3.12. In TT (N,×), whenever M ⇝′ M ′ then M ′ ⇝′ M∗

Proof. By induction over the reduction rules of M ⇝′ M ′. We do three cases and leave the rest to the reader:

� If (6) is the last rule, then π1(a) ⇝′ π1(a
′) with a ⇝′ a′. By I.H., a′ ⇝′ a∗. Applying (6), we get

π1(a
′)⇝′ π1(a

∗) ≡ (π1(a))
∗ ≡ M∗.

� If (8) is the last rule, then π1(⟨a, b⟩)⇝′ a′ with a⇝′ a′. By I.H., a′ ⇝′ a∗ ≡ (π1(⟨a, b⟩))∗ ≡ M∗.

� If (10) is the last rule, then ⟨a, b⟩⇝′ ⟨a′, b′⟩ with a⇝′ a′ and b⇝′ b′. By I.H., a′ ⇝′ a∗ and b′ ⇝′ b∗.
Applying (10), we get ⟨a′, b′⟩⇝′ ⟨a∗, b∗⟩ ≡ (⟨a, b⟩)∗ ≡ M∗.

Lemma 3.13 (The Diamond Property for ⇝′ in TT (N,×)). If M ⇝′ N and M ⇝′ P then there exists Z
such that N ⇝′ Z and P ⇝′ Z.

Proof. Take Z ≡ M∗ and by Lemma 3.12, the result follows.

Theorem 3.14 (Church-Rosser property for ↠ in TT (N,×)). If M ↠ N and M ↠ P then there exists Z
such that N ↠ Z and P ↠ Z.

Proof. Similar to Theorem 3.8, but use Lemma 3.10 and Lemma 3.13 instead

Corollary 3.15. In TT (N,×), a ≃ b if and only if there exists a c such that a↠ c and b↠ c.

Proof. Identical to Corollary 3.9.
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4 Translation and Conservative Extension

In this section, we utilize the encodings mentioned in Section 2, to translate from TT (N,×) to TT (N). By
using the pairing function, we can represent pairs in TT (N) and extract their individual elements, as we have
proven it. This demonstrates similar behaviours between TT (N,×) and TT (N).

After defining the translations, we need to ensure that the judgements behave the same, which are require-
ments that we need to fulfill for the different notions of conservativity. To verify some notions completely,
we need to include reductions, and this is the part where Section 3 will come in handy, as we have proven
results about convertibility between terms in TT (N) and TT (N,×).

4.1 Defining structures of the translation from TT (N,×) to TT (N)
We present here how a translation of a given term of TT (N,×) is formed in TT (N). As presented earlier, we
use the encodings of a pair in TT (N) which will represent the translated version of pairing in TT (N,×).

Definition 4.1. For any term a of TT (N,×), define the term JaK of TT (N) inductively as follows:

� JxK := x

� J0K := 0

� Js(n)K := s(JnK)

� JR(a, [x, y]b, n)K := R(JaK, [x, y]JbK, JnK)

� J⟨a, b⟩K := pr(JaK, JbK)

� Jπ1(a)K := p1(JaK)

� Jπ2(a)K := p2(JaK)

Next we show that substitution is also preserved as expected, meaning that if we have JM [N/x]K then
this term is equivalent to JMK[JNK/x].

Lemma 4.2. For any terms M,N we have that JM [N/x]K ≡ JMK[JNK/x].

Proof. By induction on M . We do two base cases and one case for the induction step. The ones left out are
similar:

� If M ≡ x then Jx[N/x]K ≡ JNK and JxK[JNK/x] ≡ x[JNK/x] ≡ JNK.

� If M ≡ 0 then J0[N/x]K ≡ J0K ≡ 0 ≡ J0[JNK/x]K ≡ JJ0K[JNK/x]K.

� IfM ≡ π1(a) then Jπ1(a)[N/x]K ≡ Jπ1(a[N/x])K ≡ p1(Ja[N/x]K)
I.H≡ p1(JaK[JNK/x]) and Jπ1(a)K[JNK/x] ≡

p1(JaK)[JNK/x] ≡ p1(JaK[JNK/x]).

4.2 Translating Judgements

This section provides two theorems for judgement translations from TT (N,×) to TT (N). All the notions of
conservativity mentioned in Section 1.3, involves the preservation of derivable judgement between the two
theories. This means that proving the preservation of derivable judgement is important, as it gives us that
we can transfer theorems between type theories. Theorem 4.3 is trivial, since TT (N,×) is an extension of
TT (N) then every judgement in TT (N) is obviously a judgement in TT (N,×), no translation here is needed.
For Theorem 4.4 we need to do more work, and we prove the theorem by induction on the derivation.

Theorem 4.3. Every derivable judgement of TT (N) is a derivable judgement of TT (N,×)
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Proof. Trivial.

Theorem 4.4. If J is a derivable judgement of TT (N,×) then JJ K is a derivable judgement of TT (N).

Proof. By induction on the derivation of J .

We do a case distinction on the last rule of the derivation, some parts of the derivations are omitted for
the reader to prove:

� If the last rule is a var we translate it as:

V ar
Γ, x : A,∆ ⊢ x : A

V arJΓK, JxK : N ,∆ ⊢ JxK : N

� If the last rule is a Zero we translate it as:

Zero
Γ ⊢ 0 : N ZeroJΓK ⊢ J0K : N

� If the last rule is a Succ we translate it as:

Γ ⊢ n : N
Succ

Γ ⊢ s(n) : N
...

I.H.
...

JΓK ⊢ JnK : N
SuccJΓK ⊢ Js(n)K : N

� If the last rule is a π1 we translate it as:

Γ ⊢ p : A×B
π1

Γ ⊢ π1(p) : A

Zero
JΓK ⊢ 0 : N

V ar
JΓK, y : N ⊢ y : N

V ar
JΓK, x : N ⊢ x : N

...

JΓK, x : N ⊢ 2̄x|n : N
Rec

JΓK, x : N , y : N ⊢ If(2̄x|n, x, y) : N JΓK ⊢ JpK : N
Rec

JΓK ⊢ p1(JpK) : N

� π2 is similar as for π1:

� If the last rule is a Pair we translate it as:

Γ ⊢ a : A Γ ⊢ b : B
Pair

Γ ⊢ ⟨a, b⟩ : A×B

Zero
JΓK ⊢ 0 : N

V ar
JΓK, y : N ⊢ y : N

V ar
JΓK, y′ : N ⊢ y′ : N

Succ
JΓK, y′ : N ⊢ s(y′) : N

..

.

JΓK ⊢ 2a : N
Rec

JΓK, y : N ⊢ y + 2a : N

...

JΓK ⊢ b+ b : N
Succ

JΓK ⊢ s(b+ b) : N
Rec

JΓK ⊢ pr(a, b) : N

� If the last rule is a Rec we translate it as:
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Γ ⊢ a : A Γ, x : N, y : A ⊢ b : A Γ ⊢ n : N
Rec

Γ ⊢ R(a, [x, y]b, n) : A

...
I.H.
...

JΓK ⊢ JaK : N

...
I.H.
...

JΓK, x : N, y : N ⊢ JbK : N

...
I.H.
...

JΓK ⊢ JnK : N
RecJΓK ⊢ R(JaK, [x, y]JbK, JnK) : N

4.3 Translating Reductions

In this section, we focus on proving properties related to convertibility between terms. We consider terms
where all the free variables are substituted with canonical terms. To remind the reader, a canonical term
is one that cannot be further reduced and contains no free variables inside it. By substituting all the free
variables with canonical terms, we simplify the process of convertibility between terms, as we eliminate the
presence of free variables. Free variables can complicate the proof of conservativity, as we will discuss in the
next section for strong conservativity. We will demonstrate that due to the existance of free variables, TT (N)
and TT (N,×) are not strongly conservative.

First, we begin by proving some properties about reductions that should be trivial for a translated term:

Theorem 4.5. Suppose in TT (N,×):

� Γ ⊢ M : A

� Γ ⊢ N : A

then

1. if M ⇝ N then JMK↠ JNK

2. if M ↠ N then JMK↠ JNK

3. if M ≃ N then JMK ≃ JNK

Proof. We prove each property:

1. Proof by induction on the reduction of M ⇝ N .

� If R(a, [x, y]b, 0)⇝ a then JR(a, [x, y]b, 0)K ≡ R(JaK, [x, y]JbK, 0)⇝ JaK ≡ JNK.

� IfR(a, [x, y]b, s(n))⇝ b[n/x,R(a, [x, y]b, n)/y] then JR(a, [x, y]b, s(n))K ≡ R(JaK, [x, y]JbK, s(JnK))⇝

JbK[JnK/x,R(JaK, [x, y]JbK, JnK)/y] ≡ JbK[JnK/x, JR(a, [x, y]b, n)K/y]
Lemma 4.2≡ Jb[n/x,R(a, [x, y]b, n)/y]K.

� If π1(⟨a, b⟩)⇝ a then Jπ1(⟨a, b⟩)K ≡ p1(J⟨a, b⟩K) ≡ p1(pr(JaK, JbK))
Theorem 2.20

↠ JaK.

� For π2(⟨a, b⟩)⇝ b it is similar as in π1(⟨a, b⟩)⇝ a.

� If some a⇝ b is the reduction inside a term M .

Consider M [a/x] ⇝ M [b/x] then JM [a/x]K
Lemma 4.2≡ JMK[JaK/x]

I.H.
↠ JMK[JbK/x]

Lemma 4.2≡
JM [b/x]K.

2. Suppose M ↠ N then we have a sequence M ⇝ M0 ⇝ M1 ⇝ ... ⇝ Mn ⇝ N . From (1) we have
JMK↠ JM0K↠ JM1K↠ ...↠ JMnK↠ JNK and thus we have JMK↠ JNK.
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3. Suppose that we have M ≃ N then we have that M ↠ Z and N ↠ Z from Corollary 3.15. From (2)
we get that JMK↠ JZK and JNK↠ JZK, use Corollary 3.15 and we get that JMK ≃ JNK.

Theorem 4.7 is what we need in order to prove canonical conservativity. This theorem states that when
we have a term of a specific type, with free variables inside the term, if we substitute all the free variables
with canonical terms, then the resulting term is convertible to its translation. To prove Theorem 4.7, we
require an additional theorem, which states that if we substitute all the free variables inside a term with
canonical terms, then the resulting term reduces to a canonical term.

Theorem 4.6. Suppose that in TT (N,×), if x1 : A1, ..., xn : An ⊢ b : B and the terms t1, ..., tn are canonical
to the types A1, ..., An, respectively. Then b[t1/x1, ..., tn/xn] reduces to a canonical term of type B.

Proof. By induction on the derivation of x1 : A1, ..., xn : An ⊢ b : B.

� If x1 : A1, ..., xn : An ⊢ 0 : N then 0 is already in its canonical form, which is a numeral.

� If x1 : A1, ..., xn : An ⊢ z : B then let z ≡ xi and B = Ai for some 0 < i ≤ n. Take the canonical term
ti of type Ai and the term xi[ti/xi] ≡ ti, which is a canonical term of type Ai = B.

� If x1 : A1, ..., xn : An ⊢ s(a) : N with x1 : A1, ..., xn : An ⊢ a : N we get from I.H. that the term
a[t1/x1, ..., tn/xn] reduces to a canonical term m of type N, which is a numeral from the definition of
canonical terms. Then we have the term s(a)[t1/x1, ..., tn/xn] ≡ s(a[t1/x1, ..., tn/xn]) ↠ s(m), which
is a numeral and a canonical term of type N.

� If x1 : A1, ..., xn : An ⊢ R(a, [x, y]b, c) : B with x1 : A1, ..., xn : An ⊢ a : B, x1 : A1, ..., xn :
An, x : N , y : B ⊢ b : B x1 : A1, ..., xn : An ⊢ c : N. From the I.H. the terms a[t1/x1, ..., tn/xn] and
c[t1/x1, ..., tn/xn] reduces to the canonical terms ta and tc of types B and N, respectively. Therefore, the
termR(a, [x, y]b, c)[t1/x1, ..., tn/xn] ≡ R(a[t1/x1, ..., tn/xn], [x, y]b[t1/x1, ..., tn/xn], c[t1/x1, ..., tn/xn])↠
R(ta, [x, y]b[t1/x1, ..., tn/xn], tc). tc is a canonical term of type N, from the definition of a canonical
term, it is a numeral. We do a case analysis on tc:

– If tc = 0 then R(ta, [x, y]b[t1/x1, ..., tn/xn], 0)⇝ ta and ta is a canonical term of type B.

– If tc = s(m). Notice that m is a numeral since tc is a numeral.
Then the term R(ta, [x, y]b[t1/x1, ..., tn/xn], s(m))⇝
b[m/x,R(ta, [x, y]b[t1/x1, ..., tn/xn],m)/y, t1/x1, ..., tn/xn]. We need to do another induction on
m to show that the term b[m/x,R(ta, [x, y]b[t1/x1, ..., tn/xn],m)/y, t1/x1, ..., tn/xn] reduces to a
canonical term of type B.

* If m = 0 then b[0/x,R(ta, [x, y]b[t1/x1, ..., tn/xn], 0)/y, t1/x1, ..., tn/xn]⇝
b[0/x, ta/y, t1/x1, ..., tn/xn] where we substitute all the variables to its canonical form and
from the outer induction this reduces to a canonical term of type B.

* If m = s(m′) then b[s(m′)/x,R(ta, [x, y]b[t1/x1, ..., tn/xn], s(m
′))/y, t1/x1, ..., tn/xn]⇝

b[s(m′)/x, b[m′/x,R(ta, [x, y]b[t1/x1, ..., tn/xn],m
′)/y]/y, t1/x1, ..., tn/xn]. From the inner I.H.

b[m′/x,R(ta, [x, y]b[t1/x1, ..., tn/xn],m
′)/y] reduces to a canonical term tb of type B and there-

fore we get that b[s(m′)/x, b[m′/x,R(ta, [x, y]b[t1/x1, ..., tn/xn],m
′)/y]/y, t1/x1, ..., tn/xn] ↠

b[s(m′)/x, tb/y, t1/x1, ..., tn/xn]. From the outer induction the term b[s(m′)/x, tb/y, t1/x1, ..., tn/xn]
reduces to a canonical term of type B.

� If x1 : A1, ..., xn : An ⊢ π1(p) : B with x1 : A1, ..., xn : An ⊢ p : B × C for some type C. From the I.H.
the term p[t1/x1, ..., tn/xn] reduces to a canonical term of type B×C. From the definition of a canonical
term, the canonical of p[t1/x1, ..., tn/xn] is ⟨u1, u2⟩ where u1 is canonical of type B and u2 is canonical
of type C. Then the term π1(p)[t1/x1, ..., tn/xn] ≡ π1(p[t1/x1, ..., tn/xn])↠ π1(⟨u1, u2⟩)⇝ u1, and u1

is a canonical term of type B.
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� x1 : A1, ..., xn : An ⊢ π2(p) : B is similar as in x1 : A1, ..., xn : An ⊢ π1(p) : B.

Theorem 4.7. In TT (N,×), if x1 : A1, ..., xn : An ⊢ a : N and the terms t1, ..., tn are canonical to the types
A1, ..., An, respectively. Then a[t1/x1, ..., tn/xn] ≃ Ja[t1/x1, ..., tn/xn]K in TT (N,×).

Proof. Suppose that x1 : A1, ..., xn : An ⊢ a : N and the terms t1, ..., tn are canonical to the types A1, ..., An,
respectively. By Theorem 4.6, a[t1/x1, ..., tn/xn] reduces to a canonical termm of type N, which means thatm
is a numeral. We know that a[t1/x1, ..., tn/xn]↠ m and m↠ m, and by Corollary 3.15, a[t1/x1, ..., tn/xn] ≃
m and from Theorem 4.5, Ja[t1/x1, ..., tn/xn]K ≃ JmK. We know that m is a numeral and by Definition 4.1, it
follows immediately that m ≡ JmK, which gives us that a[t1/x1, ..., tn/xn] ≃ m ≡ JmK ≃ Ja[t1/x1, ..., tn/xn]K.

4.4 Conservative Relation between TT (N,×) and TT (N)
In this section, we investigate how strong the conservative relation is between TT (N) and TT (N,×). The first
thought would be that since we are able to encode the pairing function inside TT (N), then TT (N,×) should
be strongly conservative over TT (N) (Definition 1.8). However, TT (N,×) is not strongly conservative over
TT (N) and the reason is that it fails when it comes to free variables. Consider the Fibonacci Sequence [19,
p. 158]:

� fib(0) = 0

� fib(1) = 1

� fib(n) = fib(n− 1) + f(n− 2)

In TT (N,×) we can define fib as well. Let fib := π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y)+π2(y)⟩, n)), when calculating
the fifth term of the fibonacci sequence we do it recursively by:

0th: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 0))⇝ π1(⟨0, 1⟩)⇝ 0

1st: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 1))↠ π1(⟨1, 1⟩)⇝ 1

2nd: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 2))↠ π1(⟨1, 2⟩)⇝ 1

3rd: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 3))↠ π1(⟨2, 3⟩)⇝ 2

4th: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 4))↠ π1(⟨3, 5⟩)⇝ 3

5th: π1(R(⟨0, 1⟩, [x, y]⟨π2(y), π1(y) + π2(y)⟩, 5))↠ π1(⟨5, 8⟩)⇝ 5

The property the term fib has is that it memorizes its previous two sequences and adds them together to
calculate the next sequence. However, the term we have defined n : N ⊢ fib : N is not convertible to its
translation n : N ⊢ JfibK : N . First notice that fib and JfibK are not the same term, then what is left is
that we need to find a term that both reduces to in order to show that they are convertible, by following
Corollary 3.15. The term n : N ⊢ fib : N can not be reduced any further, because the free variable n
is blocking the computation and fib becomes a stuck term [13]. A stuck term is a term that is not in its
canonical form and can not be reduced any further from the given reduction rules of a type theory. Therefore,
we can not reduce fib any further. We can not reduce JfibK to fib either, since fib is of the form π1(...)
and JfibK translates it to p1(...), which excludes all the π1(...) forms, so JfibK ̸↠ fib. Then there exists no
common reduct between fib and JfibK, which means that they are not convertible by Corollary 3.15. More
generally, fib is not convertible to any term than itself, which gives us the following lemma:

Lemma 4.8. There is no s in TT (N) such that Γ ⊢ s : N and s ≃ fib in TT (N,×).
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Proof. Take any s such that Γ ⊢ s : N in TT (N). Since s is a term of TT (N), there is no term of the form
π1(p) for some term p inside s. Therefore, s cannot be transformed into a term of the form π1(p), implying
that s ̸≡ fib and s ̸↠ fib. Examining the reduction rules of TT (N,×), we observe that fib is a normal form,
meaning there is no a such that fib⇝ a. This indicates that fib can only reduce to itself with zero reduction
steps, i.e., fib ↠ fib and nothing else. Since we only have fib ↠ fib for fib and s ̸↠ fib, then there is no
term z such that both fib↠ z and s↠ z. By corollary 3.15, we conclude that s ̸≃ fib.

Now we can use fib as a counterexample to demonstrate that TT (N,×) is not strongly conservative over
TT (N).

Theorem 4.9. TT (N,×) is not strongly conservative over TT (N).

Proof. Take the Fibonacci term n : N ⊢ fib : N in TT (N,×), and by Lemma 4.8, there is no s in TT (N)
such that Γ ⊢ s : N and s ≃ fib in TT (N,×). Which means that TT (N,×) is not strongly conservative over
TT (N).

TT (N) and TT (N,×) are not strongly conservative as we have defined in Definition 1.8. They are still
conservative though on a lower degree. The issue we have is the free variable, which introduces stuck terms.
We can take care with the issue of the stuck terms with the properties we have proved about reductions
involving canonical terms.

Theorem 4.10. TT (N,×) is canonically conservative over TT (N).

Proof. The only type we have in TT (N) is N. Suppose we have x1 : N , ..., xn : N ⊢ t : N in TT (N,×) for any
t and that t1, ..., tn are canonical to the type N, i.e. t1, ..., tn are numerals.
By Theorem 4.3 we get that x1 : N , ..., xn : N ⊢ JtK : N in TT (N) and by Theorem 4.7, t[t1/x1, ..., tn/xn] ≃
Jt[t1/x1, ..., tn/xn]K in TT (N,×).

Corollary 4.11. TT (N,×) is closed conservative over TT (N) and TT (N,×) is propositionally conservative
over TT (N).

Proof. By Theorem 4.10, TT (N,×) is canonically conservative over TT (N). By Theorem 1.14 and Theo-
rem 1.15, they are closed and propositionally conservative as well.

4.5 Type Theory of Natural Numbers and Primitive Recursive Functions

In this section, we will see that functions that are denoted by a term in TT (N) are the primitive recursive
functions. When encodings were made in TT (N), we encoded only functions that are primitive recursive.
And because we have showed that TT (N,×) is canonically conservative over TT (N), the functions that are
denoted by the terms in TT (N,×) are also primitive recursive. This demonstrates the results of TT (N,×)
being canonically conservative over TT (N), which has impact on future research on canonical conservativity.
First we need to define what it means for a function to be denoted by a term.

Definition 4.12. The function denoted by x1 : N , ..., x : n : N ⊢ t : N is ft where ft(r1, ..., rn) = s if and
only if t[r1/x1, ..., rn/xn]↠ s̄.

Next, we use the knowledge of the canonically conservative relation between TT (N) and TT (N,×) and
show that a given term that denotes one function in TT (N,×) also denotes the same function in TT (N).

Theorem 4.13. If x1 : N , ..., xn : N ⊢ t : N in TT (N,×) then it denotes the same function as x1 : N
, ..., xn : N ⊢ JtK : N in TT (N).

Proof. Let ft be the function that is denoted by x1 : N , ..., xn : N ⊢ t : N in TT (N,×). By defini-
tion, t[r1/x1, ..., rn/xn] ↠ ¯ft(r1, ..., rn), and since r1, ..., rn are numerals we know by Theorem 4.7, that
t[r̄1/x1, ..., r̄n/xn] ≃ Jt[r̄1/x1, ..., r̄n/xn]K ≡ JtK[r̄1/x1, ..., r̄n/xn]. We know that s̄ is a numeral, so it is
also canonical of type N, which means it can not be reduced any further. From t[r1/x1, ..., rn/xn] ↠
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s̄, t[r̄1/x1, ..., r̄n/xn] ≃ JtK[r̄1/x1, ..., r̄n/xn] and Corollary 3.15, We know that t[r̄1/x1, ..., r̄n/xn] ↠ Z,
JtK[r̄1/x1, ..., r̄n/xn] ↠ Z and Z ↠ s̄ which gives us that JtK[r̄1/x1, ..., r̄n/xn] ↠ s̄. Hence, fJtK(r1, ..., rn) =
ft(r1, ..., rn).

Finally, we prove that all the terms in TT (N) denote exactly the primitive recursive function. Then we
use Theorem 4.13, in order to show that all the terms in TT (N,×) denote exactly the primitive recursive
function as well. Recall also that we can do this since TT (N,×) is a canonically conservative extension over
TT (N).

Theorem 4.14. The functions denoted by the terms of TT (N) are exactly the primitive recursive functions.

Proof. First we prove that for every term x1 : N , .., xn : N ⊢ t : N, such that ft is denoted by t, then ft is
primitive recursive. We do induction on the derivation of x1 : N , .., xn : N ⊢ t : N.

� If ft is denoted by x1 : N , .., xn : N ⊢ 0 : N then ft is constant 0.

� If ft is denoted by x1 : N , .., xn : N ⊢ xi : N for 0 < i ≤ n then ft is the projection function Pi.

� If ft is denoted by x1 : N , .., xn : N ⊢ s(a) : N then ft is the function succ ◦ fa, and by I.H. fa is
primitive recursive.

� If ft is denoted by x1 : N , .., xn : N ⊢ R(a, [x, y]b, c) : N then define g : Nn+1→ N by

– g(r1, ..., rn, 0) = fa(r1, ..., rn)

– g(r1, ..., rn,m+ 1) = fb(r1, ..., rn,m, g(r1, ..., rn,m))

From the induction hypothesis, fa(r1, ..., rn), fb(r1, ..., rn,m, g(r1, ..., rn,m)) and fc(r1, ..., rn) are prim-
itive recursive.

– If fc(r1, ..., rn) = 0 then R(a, [x, y]b, c)[r1/x1, ..., rn/xn] ≡
R(a[r1/x1, ..., rn/xn], [x, y]b[r1/x1, ..., rn/xn], c[r1/x1, ..., rn/xn])↠
R(a[r1/x1, ..., rn/xn], [x, y]b[r1/x1, ..., rn/xn], 0)⇝

a[r1/x1, ..., rn/xn]
I.H.
↠ fa(r1, ..., rn), and fa(r1, ..., rn) = g(r1, ..., rn, 0) is primitive recursive.

– If fc(r1, ..., rn) = m+ 1 for m > 0 then R(a, [x, y]b, c)[r1/x1, ..., rn/xn]↠
R(a, [x, y]b, s(m))[r1/x1, ..., rn/xn] ≡
R(a[r1/x1, ..., rn/xn], [x, y]b[r1/x1, ..., rn/xn], s(m)[r1/x1, ..., rn/xn])↠
R(a[r1/x1, ..., rn/xn], [x, y]b[r1/x1, ..., rn/xn], s(m))⇝

b[m/x,R(a, [x, y]b, c)[r1/x1, ..., rn/xn]/y, r1/x1, ..., rn/xn]
I.H.
↠ fb(r1, ..., rn,m, g(r1, ..., rn,m)), and

fb(r1, ..., rn,m, g(r1, ..., rn,m)) = g(r1, ..., rn,m+ 1) is primitive recursive.

Now we want to show that for every primitive recursive function, there is a term that denotes that function.

� The constant 0 is denoted by x1 : N , .., xn : N ⊢ 0 : N .

� The projection function Pi is denoted by x1 : N , .., xn : N ⊢ xi : N .

� The successor function is denoted by x1 : N , .., xn : N ⊢ s(a) : N .

� The primitive recursive function (number 5 of Definition 2.1) is denoted by x1 : N , .., xn : N ⊢ R(a, [x, y]b, c) :
N.

We need to show that the composition

h(x1, ..., xn) = f(g1(x1, ..., xn), ..., gk(x1, ..., xn)),
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which is primitive recursive, is also denoted by a term. Let f be denoted by y1 : N , ..., yk : N ⊢ t : N while
for 0 < i ≤ k, let gi be denoted by x1 : N , ..., xn : N ⊢ ui : N . We need to show that h is denoted by the
term x1 : N , ..., xn : N ⊢ t[u1/y1, ..., uk/yk] : N . When substituting the numerals r1, ..., rn we get

t[u1/y1, ..., uk/yk][r1/x1, ..., rn/xn] ≡ t[u1[r1/x1, ..., rn/xn]/y1, ..., uk[r1/x1, ..., rn/xn]/yk],

and since for each ui denotes gi, we get that

t[u1[r1/x1, ..., rn/xn]/y1, ..., uk[r1/x1, ..., rn/xn]/yk]↠ t[g1(r1, ..., rn)/y1, ..., gk(r1, ..., rn)/yk].

Finally, since t denotes f we get that

t[g1(r1, ..., rn)/y1, ..., gk(r1, ..., rn)/yk]↠ f(g1(r1, ..., rn), ..., gk(r1, ..., rn)) ≡ h(r1, ..., rn).

Corollary 4.15. The functions denoted by the terms of TT (N,×) are exactly the primitive recursive func-
tions.

Proof. We prove each direction:

� Take any term x1 : N , .., xn : N ⊢ t : N, such that ft is denoted by t, by Theorem 4.13 we have that ft
is denoted by both x1 : N , ..., x : n : N ⊢ t : N in TT (N,×) and x1 : N , ..., x : n : N ⊢ JtK : N in TT (N).
By Theorem 4.14, ft is primitive recursive.

� Suppose that ft is primitive recursive, then from Theorem 4.14 ft is denoted by the term x1 : N , ..., x :
n : N ⊢ t : N in TT (N). Then it is trivial that ft is denoted by the term x1 : N , ..., x : n : N ⊢ t : N in
TT (N,×) too.

5 Discussion

5.1 Conclusion

The purpose of this thesis was to investigate the conservative relations between type theories. We examined
the type theories of natural numbers, TT (N) and TT (N,×), and established that TT (N,×) is canonically
conservative over TT (N). This result implies that TT (N,×) is closed conservative and propositionally con-
servative over TT (N) as well. Because of the similarities between TT (N) and TT (N,×), one might initially
expect them to be strongly conservative, but the presence of free variables led to stuck terms. This vio-
lated the requirement that there should exist a term in TT (N) that is convertible to a corresponding term
in TT (N,×). This, in turn, led to TT (N,×) not being strongly conservative over TT (N). Hence, strong
conservativity was not applicable in the conservative relation between TT (N) and TT (N,×). However, it
still deserves further research, as it might prove useful in other type theories beyond TT (N) and TT (N,×).

On the other hand, canonical conservativity is open for further investigation. For instance, there may
be some additional details to consider in the definition of canonical conservativity, in order to create a
more general definition for conservativity between type theories. It is currently unclear whether canonical
conservativity serves as a general definition of a conservative extension, because as we have observed so far, we
only know that TT (N,×) is canonically conservative over TT (N), but not for other type theories that share
similar relations. We would need to expand our research between different type theories, beyond TT (N) and
TT (N,×), in order to verify if canonical conservativity is applicable to them. As a guide for the investigation
of conservative relations, the implications in Figure 4 could be beneficial, since it is better to investigate more
than one notion of conservativity.

If a theory is closed conservative over its sub-theory, then it implies propositional conservativity when
function types are included in the extended theory. This is because we can express all the free variables as
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terms that are bound within lambda terms in the extended theory. However, it remains an open question
whether closed conservativity implies propositional conservativity without the use of function types.

Despite canonical conservativity being weaker than strong conservativity, due to the involvement of canon-
ical terms, it demonstrated that the functions denoted by a term in TT (N,×) are exactly the primitive recur-
sive functions, from the theorems that we needed to prove canonical conservativity. Without these results,
corollary 4.15 would require additional cases, for example, proving that an ordered pair denotes a primitive
recursive function. The major point to be made is that from TT (N,×) being canonically conservative over
TT (N) it gave us that the terms of TT (N,×) and TT (N), denote the same functions. This can be valuable as
it allows us to define new functions in the extended theory that are also definable in the sub-theory. Working
with an extended theory that has additional rules can make the theorem proving process easier for us, as we
can use more resources.

If we only tried to prove that TT (N,×) is propositionally conservative over TT (N, ), then it would not
be obvious to prove that all the functions denoted by a term in TT (N,×) are exactly the primitive recursive
functions, since we have no insight about convertibility between TT (N) and TT (N,×). We would have to do
a proof induction on Corollary 4.15, as we did in Theorem 4.14, but with more cases.

With canonical conservativity, we enhance our understanding of the terms across the type theories, and
since terms represent proofs in type theory, we have a deeper understanding of proofs, as well as programs.
Another major point to be made, fulfilling the requirement of canonical conservativity, may grant us highly
valuable properties when it comes to transferring theorems and understanding the relationship between two
type theories.

By seeking for a general definition of a conservative extension, we strive to enhance our understanding of
the foundation of mathematics, as there are type theories that serves as a foundation of mathematics, like
Martin-Löf type theory. If a type theory T1 that serves as a foundation of mathematics has an extended
theory T2 that is canonically conservative over T1, then we may be able to prove new results in T2 that is
therefore provable in T1 as well. While proving conservativity, Figure 4 should serve as a guide, as we may
get stronger notions of conservativity between the theories, than canonical conservativity.

5.1.1 Contributions and Insights Gained

One significant insight that we have gained from canonical conservativity is that we impose specific conditions
for the extension of a theory. For instance, in the presence of a canonically conservative relationship between
two type theories, we are limited to terms that denotes functions such as f(t), where t is in its canonical
form. For example, consider the proof of Theorem 4.13. We relied on the proof of Theorem 4.7, which in
turn proved canonical conservativity between TT (N) and TT (N,×). Because of these considerations, we
defined what it means for a term to denote a function more precisely (see Definition 4.12). We defined it in
such a way, that it substituted all the free variables with numerals, i.e., canonical terms. We did so because
TT (N,×) is a canonically conservative extension over TT (N), and this helped us to prove Theorem 4.13,
which in turn proved Corollary 4.15. A strong conservative relation between two type theories, could imply
the existence of additional properties between the theories that could go beyond than simply be able to define
the same functions between two theories.

We know that the terms in TT (N) and TT (N,×) can express the primitive recursive functions, and
the relationship between them is that they are canonically conservative. Primitive recursive functions are
considered to be significantly basic, then one might suggest that canonical conservativity is a relatively weak
notion. However, canonical conservativity grants us that the theories defines the same functions, which is
a valuable property, which in that sense, it is a relatively strong notion. For instance, if one theory can
express more than just the primitive recursive functions, while another theory can only express the primitive
recursive functions, then these two theories should not be canonically conservative. We cannot conclude that
canonical conservativity can be considered a weak definition, because we have only investigated canonical
conservativity on two simple type theories, namely TT (N) and TT (N,×). If we were about to investigate
Gödel’s System T [1], and try to prove canonical conservativity for another theory that extends System T,
we could then verify if the terms for each theory denote the exact same functions. If that is the case, then
we can transfer more functions than just the primitive recursive functions, since System T can express more
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than TT (N), for example the Ackermann function. Therefore, our contribution lies on further research on
canonical conservativity, to explore its applications and implications in mathematics and computer science.

It is unclear how these definitions of conservative extensions relates back to non-type theories through
the propositions as types correspondence. This is because our notions of conservativity are built upon the
standard formulation and are extended with convertibility as an additional condition. We want to establish
stronger notions of conservativity within type theory, in order to get further insight on our proofs or programs.
If one were to establish a conservative extension between two non-type theories and translate it to their type-
theoretic equivalence, then investigating conservative extension through these type theories might grant us
some further insight from a type-theoretic perspective. For instance, in System T, we have strong connections
to arithmetic, and conservative extension has been studied in [1, p. 18] for Peano arithmetic and Heyting
arithmetic for some particular sentences. Therefore, it would be valuable to explore if we can find a theory
that is canonically conservative over System T. This investigation could yield some interesting results in
the extended theory, which would also hold for System T and potentially have implications for arithmetic.
And for the same reason as for arithmetic, one may study other foundations of mathematics through their
type-theoretic equivalence, in order to gain further insights of conservativity of that perspective.

5.2 Further Work

This thesis opens up for further investigations when studying conservative extensions. We propose four further
investigations, where one serves as a more practical approach towards conservative extension. The others are
similar investigations as in this thesis but with different type theories and extensions of previous ones. The
practical approach is providing the design of a new proof assistant, with conservativity in considerations.
While the more theoretical aspects for further work are:

� Type Theories of General recursion, where we investigate general recursive functional programs from
their type-theoretic equivalence. We propose this to have a closer relationship to functional program-
ming languages. Having a definition of a conservative extension can be valuable when extending pro-
gramming languages, so we do not break the existing programming language.

� Extending TT (N), as it could be valuable for further investigation on similar extensions as between
TT (N) and TT (N,×). We might expect similar results, but there might arise new notions of conserva-
tivity through the investigations.

� Type Theories of Set Theory: instead of working with the natural number as a type, it could be worth
investigating a different kind of type theory. Canonically conservative and the different notions of
conservativity deserves to be put into test for other type theories, instead of those that process natural
numbers as a type, and with additional type constructors.

Conservative Relations between Type Theories of General Recursion

TT (N) is one way to translate primitive recursive function into type theory. There is a related topic written
by Ana Bove about translating general recursive functional programs into their type-theoretic equivalents
[4]. Although the translations are not between type theories, they involve the transformation of functional
programs into their type-theoretic equivalents. Even if it does not discuss conservative extensions between
type theories, it could still be relevant to this thesis, since it deals with general recursive functional programs.
While this thesis is dealing with primitive recursive functions into their type theoretic equivalences.

One could extend a type theory of General recursion and investigate the notion of conservativity between
the two of them. Questions to investigate are: are they conservative to the same notions as TT (N) and
TT (N,×)? Do we need another definition of what a conservative extension means and if so, is the new
definition of a conservative extension true between TT (N) and TT (N,×) as well?
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Extending Type Theory of Natural Numbers

One could extend TT (N,×) even further to a type theory of natural numbers with pairing and lists, called
TT (N,×, []). In TT (N,×, []) we add a new type constructor that is defining a list, so the types would be:

A,B ::= N | A×B |[A]

Then the terms for TT (N,×, []) are:

a, b, c ::= 0 | z | s(a) | R(a, [x, y]b, c) | ⟨a, b⟩ | π1(a) | π2(a) | [c1, ..., cn]

We could then use Gödel numbering, which Gödel developed for the proof in his incompleteness theorem [10],
which we use in order to encode the list terms and thereafter try to prove conservative relation. We would
expect them to be canonically conservative, as we can implement lists by using primitive recursive functions,
but there may be other notions of conservativity that would arise during the investigation.

We could extend TT (N,×, []) even further and add formulas as a type. In Martin-Löf type theory we have
propositions as types, which is the same here, but with formulas as well. The terms would be a proof of a
formula then as well. We could then investigate how Gödel numbering can be used in the translation between
TT (N,×, []) and the type theory of natural numbers with formulas, since Gödel used Gödel numbering in
order to encode formulas. Similar with TT (N,×, []), we would expect them to be canonically conservative as
its strongest notion. Even if we expect them to be canonically conservative, it is worth investigating why that
is the case. We could be able to detect early when a type theory is canonically conservative over another.
And investigating more simple type theories may grant us further knowledge on why some type theories are
canonically conservative.

If we would add function types to TT (N), which corresponds to Gödel’s System T [1], say that we call
it TT (N,→), then we can express the Ackermann function in the theory. For that case, we can express
more that the primitive recursive functions, and we know that TT (N,→) is not canonically conservative over
TT (N). Hence, if we were to extend TT (N,→) by introducing additional rules that should be able to define
the same functions as in TT (N,→), the resulting theory should be canonically conservative over TT (N,→).
By doing this, we can transfer more theorems between these two theories and define more functions.

Type Theories of Set Theory: A Study of Conservative Extension

Instead of investigating type theories of natural numbers, one might consider to investigate type theories
of Set Theory instead. For instance, in set theory, an ordered pair ⟨a, b⟩ can be defined as {{a}, {a, b}}.
Additionally, functions can also be defined in set theory [9]. From this, we can have translations between the
following type theories:

� A theory with one type ’set’.

� A theory with a type ’set’ and a type constructor × (Cartesian product).

� A theory with a type ’set’, type constructor × and a type constructor → (functions).

From those theories, we can use Figure 4, for guidance to investigate the conservative extensions between the
type theories of set theory. And by studying a type-theoretic equivalence of set theory, we can gain insights
about how set theory could be extended.

Applications in Proof Assistants

Type theory is a great tool to be used as a programming language, mathematical system, and also a logic for
reasoning about correctness [15]. One particular application of type theory is in proof assistants. In proof
assistants, a user can construct proofs in order to verify theorems in its logic. For instance, in Coq [5], the
type theory called the Calculus of Inductive Constructions is implemented in this framework, in order to
ensure correctness in our proofs.
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When it comes to conservativity, our notions of conservativity can be valuable in the development of the
design of a new proof assistant or as new features for existing proof assistants. For example, if we create a
proof assistant that incorporates a condition for determining whether two type theories within the system
are canonically conservative or one of the other notions of conservative extension, then we could add features
that would make it easier for the user’s theorem proving process. For instance, if it is the case that the
two theories are found to be canonically conservative, we know that every function that is definable in the
extended theory is definable in the original theory. And from propositional conservativity, we know that
for all theorems in the original theory, if the theorem is provable in the extended theory then it is provable
in the original theory. This enables the possibility for transferring theorems from the extended theory to
the original theory, and use the extended theory in order to prove theorems. For example, suppose that we
have a proof assistant where we can define two new theories T1 and T2. We prove that T2 is canonically
conservative over T1, which give us the information that both T1 and T2 can define the same functions. We
know that canonical conservativity implies propositional conservativity, then if we know that a theorem P ,
that originates as a type from T1, is provable in T2 then P is provable i T1. We can now work with T2 instead
of T1, because all the functions that we define in T2 is definable in T1. With such a condition in place, users
can work with T2 to prove theorems, by knowing that these theorems can also be provable in T1. This new
design would make it easier for the theorem proving process in proof assistants, by allowing users to create
additional rules for a type theory, without compromising the original theory.

Utilizing the strength of canonical conservativity within a proof assistant can be highly advantageous for
theorem proving. It would provide a reliable framework for transferring theorems between type theories that
are conservative, and would be beneficial for ensuring correctness for our programs. And by incorporating a
stronger notion of conservativity in a proof assistant, we may be able to design the new proof assistant for
more features.

To initiate for further investigation, we can start by examining the type theory that Coq is based on. The
Calculus of Inductive Constructions (CIC) [5], which is an extension of The Calculus of Constructions(CoC),
where CoC was developed by Thierry Coquand [7]. We begin by extending CIC, just like we did for TT (N)
with TT (N,×), analyze the conservative relations between them, and look for similarities with the notions
of conservativity proposed in this thesis. If we can establish a new definition of conservativity between CIC
and its extension, then this definition can be integrated in the new design of a new proof assistant that
have this notion of conservativity as a condition. Furthermore, as we explore conservative extension within
proof assistants, we may encounter scenarios that would suggest further improvements in our notions of
conservativity. As practical applications often reveals unexpected outcomes.
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A Implementation of TT (N) in Haskell

Here is an implementation of TT (N) in Haskell, which was used to test the encodings for the basic functions
and pairing in TT (N). We used this implementation for the demonstration of using the pairing function in
practise, which is illustrated in fig. 5.

data Nat = Zero | S Nat
deriving (Show, Eq)

== one : : Nat
one = S Zero

== two : : Nat
two = S one

== t h r ee : : Nat
three = S two

== f our : : Nat
f our = S three

== Reduction Rules f o r TTNat :

r e c : : Nat => (Nat => Nat => Nat ) => Nat => Nat
rec a b Zero = a
rec a b (S n) = b n ( rec a b n)

== Encodings

== Addit ion
add : : Nat => Nat => Nat
add a b = rec a (\x y => S(y ) ) b

== Mu l t i p l i c a t i o n
mul : : Nat => Nat => Nat
mul a b = rec Zero (\x y => add y a ) b

== Exponent ia l
expN : : Nat => Nat => Nat
expN a b = rec one (\x y => (mul a y ) ) b

== Predecessor
predN : : Nat => Nat
predN n = rec Zero (\x y => x ) n

== Truncated su b t r a c t i on
monus : : Nat => Nat => Nat
monus a b = rec a (\x y => predN y) b

== Signum func t i on s

== Signum
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s i g : : Nat => Nat
s i g a = rec Zero (\x y => one ) a

== Reverse Signum
s igNeg : : Nat => Nat
sigNeg a = rec one (\x y => Zero ) a

== Truth va l u e s
t = one
f = Zero

== Log i ca l Connective

== Dis junc t ion
orN : : Nat => Nat => Nat
orN a b = rec ( s i g a ) (\x y => s i g b) b

== Conjunction
andN : : Nat => Nat => Nat
andN a b = sigNeg $ orN ( sigNeg a ) ( s igNeg b)

== Imp l i ca t i on
cond : : Nat => Nat => Nat
cond a b = orN ( sigNeg a ) ( s i g b)

== Pred i ca t e s

== Equa l i t y
eq : : Nat => Nat => Nat
eq a b = monus one ( add ( s i g (monus a b) ) ( s i g (monus b a ) ) )

== Not equa l
neq : : Nat => Nat => Nat
neq a b = sigNeg ( eq a b)

== I f=then=e l s e
ifTE : : Nat => Nat => Nat => Nat
ifTE a b c = rec c (\x y => b) a

== Less than
lessThan : : Nat => Nat => Nat
lessThan a b = s i g (monus b a )

== Less than or equa l
l e q : : Nat => Nat => Nat
l eq a b = orN ( lessThan a b) ( eq a b)

== I s even
i sEven : : Nat => Nat
isEven n = rec one (\ y => s igNeg y ) n

== Bounded E x i s t e n t i a l
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e x i s t s : : (Nat => Nat ) => Nat => Nat
e x i s t s p n = rec (p Zero ) (\x y => ifTE (p (S x ) ) t y ) n

== Bounded un i v e r s a l
f o rA l l : : (Nat => Nat ) => Nat => Nat
f o rA l l p n = rec (p Zero ) (\x y => ifTE (p (S x ) ) y Zero ) n

== Div ides
d i v i d e s : : Nat => Nat => Nat
d i v i d e s m n = e x i s t s (\x => eq n (mul m x ) ) n

== Pair ing
pr : : Nat => Nat => Nat
pr a b = mul (expN two a ) (S( add b b ) )

== Pro jec t i on 1 :
p1 : : Nat => Nat
p1 n = rec Zero (\x y => ifTE ( d i v i d e s ( expN two x ) n) x y ) n

== Pro jec t i on 2 :
p2 : : Nat => Nat
p2 n = rec Zero (\x y => ifTE ( d i v i d e s (S ( add x x ) ) n) x y ) n

== Convert to i n t e g e r
i : : Nat => Int
i Zero = 0
i (S n) = 1 + i n

== Convert to numeral
n : : Int => Nat
n 0 = Zero
n i = S $ n $ pred i
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