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Abstract 

The aim of this thesis is to investigate the performance of different models used in risk 

management to identify and control risks that may negatively impact company operations 

due to unpredictable events. More specifically, the object of this paper is the discussion of a 

cross-sectional quantile regression model (CSQR) and the CAViaR model, which is a time 

series quantile regression model. Additionally, two highly used models were added: the 

Historical VaR and the Normal VaR. The out-of-sample analysis performed from 2000 to 

2021 to the 11 equally sector sectors within the S&P500 index, suggests that the cross-

sectional models outperform the time-series models. The outperformance is evident even 

during periods of stressed market conditions such as the Financial Crisis and the Covid 

Pandemic. Similar results were found for the value-weighted sectors. The study concludes 

that the additional incorporation of data from other firms in the same sector allows the risk 

manager to a more efficient assessment of the market risk and faster adaptation to market 

shocks. 
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1. Introduction 

1.1 Background 

One of the most important processes for individuals and organizations, or probably the most 

important one, is risk management. The aims of risk management are to help companies to 

identify and to control the risks that may negatively impact their operations. The final goal 

is to decrease financial losses due to unpredictable events such as financial crises, 

pandemics, natural disasters, or even scandals. Furthermore, correct management of the risk 

can help firms to create better strategies and to allocate in a better way their resources. In 

addition, it can help companies to maintain a competitive position by protecting their assets 

and reputation. Risk management is important especially for listed companies because they 

are subject to different capital and regulatory requirements. It is even more important for 

banks. Indeed, banks must maintain specific minimum levels of capital based on the risk of 

their assets. Risk management can help them to meet their requirements and to avoid 

potential penalties and scandals that would damage customers and taxpayers. 

 

In relation to this, in 1974, the central bank governors of all the G10 countries established 

the Basel Committee on Banking Supervision, or simply Basel. The aim of the Committee 

is to develop and establish international standards for regulation, supervision, and risk 

management. These standards consist of three main agreements: Basel I, Basel II, and Basel 

III. Every agreement is built on the previous one and provides new tools and new 

requirements. One of the most used measures to assess the market risk introduced by Basel 

Committee was the Value-at-Risk (Kou et al., 2013). This standardized tool is based on 

mathematical and statistical models that consider the volatility, the size of the portfolio, and 

the time horizon. It was developed at the beginning of the 1990s in the financial industry to 

provide a company’s management with a single number that could quickly and easily explain 

the risk of an asset or portfolio (Holton, 2002). Value-at-risk, or simply VaR, consists in 

estimating the maximum potential loss of an investment over a specific period and at a 

specific level of confidence. This method has been criticized and praised. Overall, VaR is a 

good, standardized approach to assess the risk promoting transparency and consistency 

across industries. However, it has different limitations. To name one, it does not allow to 



 12 

capture extreme events or unexpected market shocks. This can lead to an underestimation of 

the risk and the potential losses. However, despite ongoing debates within academic circles, 

it remains one of the most used tools to capture and mitigate risk. Basel does not provide a 

specific methodology for the VaR estimation. Instead, it leaves flexibility for each company 

to adjust its estimation. For this reason, the effectiveness of VaR models in predicting 

financial risks remains a persistent concern. This topic is particularly noteworthy in this 

current period where the health of many US banks has raised concerns of worldwide 

investors and customers. Indeed, on Friday, March 10, 2023, Silicon Valley Bank collapsed, 

becoming the third-largest bank failure in the United States' history. So now more than ever 

is important having an efficient and effective risk-management department along with 

trustworthy methodologies to control the risk. 

 

Therefore, in this thesis, I proceeded by analyzing some of the most common models to 

assess the market risk and comparing them with a different and innovative methodology. 

This innovative methodology was proposed in 2022 by Vidal-Llana and Guillén in the paper 

that I used as a main reference for this analysis (Cross-sectional quantile regression for 

estimating conditional VaR of returns during periods of high volatility’, 2022). The 

innovation of this model is the usage of cross-sectional data in a quantile regression model 

to provide VaR estimates. A cross-sectional approach indicates a collection of information 

from multiple firms at a specific point in time. It allows us to analyze different firms at the 

same time, but it does not account for changes over time.  

 

1.2 Literature 

There are different types of Value-at-Risk models commonly used in financial risk 

management. The simplest method is the Historical VaR which uses historical data to 

simulate the distribution of potential returns and estimates VaR (Linsmeier and Pearson, 

1996). A very common method is the Variance-covariance method which employs statistical 

techniques to estimate the parameters of a probability distribution. These parameters can 

include the mean and standard deviation, and the method then computes the VaR based on 

the estimated distribution. Typically, a normal distribution is assumed for this estimation 

(Linsmeier and Pearson, 1996). Another popular method is the Monte Carlo method which 

provides simulations of the returns and generates some possible scenarios to estimate the 
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VaR based on the distribution of potential returns. Early models that consider autoregression 

conditional heteroskedasticity (ARCH and GARCH models) were proposed by Engle (1982) 

and Bollerslev (1986). These models consider volatility as a weighted combination of past 

stock returns and past variance. Indeed, the GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) model is a time-series model used to estimate the volatility 

in stock returns exploiting the concept of volatility clusters. Other authors modified these 

models by introducing the concept of asymmetry in volatility, or in other words, they 

introduced the leverage effect. An example of such a model is the GJR-GARCH 

specification introduced by Glosten (1993). Furthermore, Value-at-Risk models can be 

additionally modified by adding some assumptions regarding the shape of the conditional 

distribution, for example, the assumption of a student’s t-distribution or normal distribution. 

However, if the shape of the distribution fluctuates over time, then the forecasts of volatility 

may result inappropriate. The acknowledgment of this fact induced new studies that led to 

the development of a few different models that are not based on any assumptions about the 

underlying conditional distribution. Indeed, in recent times, there have been suggestions to 

use extreme quantile estimation methods for evaluating VaR (Danielsson and De Vries, 

2000). The rationale behind this approach is to leverage insights about the asymptotic 

behavior of the tail, instead of focusing solely on the entire distribution. However, this 

method works only with very low probability quantiles and with i.i.d. variables, which is not 

the case with financial market assets. Then, Manganelli and Engle proposed a Conditional 

Autoregressive Value-at-Risk (CAViaR) model (2004). The rationale behind this model is 

that instead of modeling the entire distribution of returns, this model focuses only on the 

interested quantile. The empirical evidence shows that the stock market tends to create 

volatility clusters over time, causing an autocorrelated distribution. Then, the intuition of the 

authors is that also the Value-at-Risk tends to have an autocorrelated behavior. For this 

reason, the authors propose an autoregressive (AR) specification for the VaR, and the 

unknown parameters are estimated with Koenker and Bassett quantile regression (1978). A 

few studies have shown the superior performance of the CAViaR compared to more 

traditional models. For example, Allen et al. (2012) performed the GARCH(1,1), the 

RiskMetrics, the t-APARCH(1,1), and the CAViaR model in the Australian market. Their 

findings show higher forecasting ability of the CAViaR compared to the other models. 

Similar results were found by Bautista and Mora (2021) in more recent studies. The authors 
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compared CAViaR with GJR-GARCH models under normal, skewed-normal, Student-t, and 

Student-t normal distribution assumptions. Their result supports the robustness of the 

CAViaR model in an out-of-sample VaR analysis for emerging market stocks (MILA and 

ASEAN-5). The success of the CAViaR model over RiskMetrics and Extreme value theory 

(EVT) models in emerging markets was also confirmed by a study conducted by Bao et al. 

(2006).  

However, the CAViaR model is based on a univariate time-series analysis of a particular 

company or portfolio, which relies only on past information about that company (or portfolio 

of companies) and does not consider other companies in the same market. To assess a 

company's returns based on a particular attribute, it may be necessary to have a cross-

sectional sample of firms operating in the same market. To address this issue, the authors 

Vidal-Llana and Guillén (2022) suggest utilizing a cross-sectional quantile regression model 

to analyze tail returns for a single company, and then confront this method with the CAViaR 

model. Both models are based on quantile regression. Their analysis was conducted on 

26298 US firms and showed that during high-volatility periods the CSQR model yields 

enhanced accuracy in predicting low quantiles. There exists a vast multitude of academic 

studies dedicated to the analysis of cross-sectional asset pricing. There are some papers that 

provide an overview of this topic. For instance, Nagel (2013) summarized the evidence on 

cross-sectional return predictability and the failure of standard CAPM models. More 

recently, Chen and Zimmermann (2021) provided data and code that reproduces cross-

sectional stock return predictors. In this thesis, I have developed two models that incorporate 

some covariates inspired by some different studies on the momentum effect by Jegadeesh 

and Titman (1993) and Novy-Marx (2012). Other covariates are inspired by the study on the 

skewness prediction of cross-sectional returns by Amaya et al. (2015). 

 

1.3 Purpose  

This thesis seeks to expand upon existing research literature by investigating the viability of 

quantile regressions for evaluating market risk. The main models analyzed are the CAViaR 

model, which is based on a time-series quantile regression, and the cross-sectional quantile 

regression model (CSQR) as proposed by Vidal-Llana and Guillén (2022). By employing 

quantile regressions, the specific conditional quantile can be directly modeled without any 

presuppositions about the distribution of the return series. However, a cross-sectional 
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quantile regression incorporates information from other firms, and this may help to obtain a 

better estimation of the Value-at-Risk, consequently a better assessment of the market risk.  

 

Formally, I aim to answer the following research question: 

 

• Does a cross-sectional quantile regression model exhibit superior market risk 

prediction capabilities compared to conventional time-series VaR models? 

 

Very few papers investigate the cross-sectional models to estimate VaR, and to the best of 

my knowledge, is not yet conducted an analysis of cross-sectional quantile regression models 

on the different S&P500 sectors. As Vival-Llana and Guillén (2022) proposed, I analyze in 

this paper the CAViaR and a cross-sectional quantile regression model. However, instead of 

focusing on the entire US market, as the previous authors did, I decided to analyze separately 

each S&P500 sector. Indeed, I examined the weekly VaR estimates within 11 sector 

portfolios of the S&P500. This selection was deliberate, as the S&P500 index is built by the 

largest companies in the US in terms of market capitalization. By focusing on the sector 

portfolios instead of only the entire S&P500 portfolio, I was able to draw conclusions based 

on 11 distinct portfolios rather than just one. This approach not only provided a more 

comprehensive analysis but also underscored the significance of incorporating cross-

sectional information from stocks outside the specific sector when predicting VaR. In 

contrast to Vival-Llana and Guillén's (2022) approach, my study incorporated various 

confidence interval (CI) levels, namely 95%, 98%, and 99%. Additionally, I introduced a 

new cross-sectional model (CSQR2) that exhibited superior performance compared to 

CSQR1 model, which drew inspiration from their work. The effectiveness of various VaR 

models was assessed using an out-of-sample analysis, which spanned from January 2, 2000, 

to December 26, 2021. Then, similarly to Vival-Llana and Guillén (2022), two additional 

out-of-sample analyses were made during stressed market conditions. The first period 

extended from January 7, 2007, to January 2, 2011, which coincided with the Financial 

Crisis. The second period extended from June 3, 2018, to December 26, 2021, corresponding 

to the Covid Pandemic. In contrast to the findings of the authors, who observed improved 

performance of their cross-sectional model solely during stressed market conditions, my 

research revealed that both cross-sectional models (CSQR1 and CSQR2) exhibited superior 
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performance across all time periods, including the entire sample and both stressed market 

conditions. The final aim of my thesis is to show that there are possibilities to implement 

easy, but better-performing models for managing the market risk. Indeed, the cross-sectional 

models I presented are relatively easy to implement and understand, and according to the 

analysis in this paper, they are even performing better than the typical time series models 

like Historical VaR, Normal VaR, and CAViaR. By doing that, I hope to provide some 

valuable insights for future analyses, allowing also for the development of even more 

complex cross-sectional models that the ones I presented in my thesis. 

 

1.4 Structure of the Thesis 

The core topic of this thesis is the comparison between the CAViaR and the CSQR models, 

however, other models, such as the Historical VaR and the Normal VaR, were performed 

for a more complete analysis. The organization of the thesis is as follows: Section 2 

introduces the theoretical background of the different VaR models used in the analysis. This 

section introduces also the different performance evaluation methods applied to the VaR 

models. Section 3 involves the data description, the descriptive statistics, and the 

methodology utilized. Finally, Section 4 includes the empirical results and Section 5 

concludes the thesis. 
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2 Theoretical Background 

2.1 Value-at-Risk 

Value-at-Risk (VaR) is the most common tool used in risk management to measure an asset 

or portfolio's potential loss over a specified period. The VaR is a downside risk measure that 

provides an estimate of the maximum amount of loss that is not expected to be exceeded 

with a certain level of confidence (CI) and it is typically expressed in a currency or in a 

percentage of the initial investment. In other words, the Value-at-Risk is defined as the 

maximal loss that will be exceeded with probability 𝛼 in the next l trading days, i.e.,  

 

𝑃( 𝑅(𝑙) < 𝑉𝑎𝑅𝛼  ) = 𝛼 

                                                                                                                                             (1) 

• 𝑅(𝑙) is the return of the stock or portfolio; 

• l is the trading days; 

• 1 − 𝛼 is the level of confidence (CI); 

 

To be more precise, the VaR can be expressed in two different ways: in terms of returns, as 

just discussed, and in terms of losses. Both approaches indicate the same concept but in 

different ways. In the first case, VaR provides a standardized measure of the potential loss 

in terms of the return relative to the initial investment made, i.e., the typical VaR values are 

negative. In the second case, the estimates are made directly on the losses (negative returns), 

i.e., the resulting VaR values are typically positive. In this thesis, I expressed all the models 

in terms of the returns. Furthermore, the methods to calculate the VaR are frequently 

classified into two main categories: parametric and nonparametric methods. Nonparametric 

models use techniques such as Historical VaR. They are called in this way because it is not 

required any estimation of parameters. On the other hand, parametric models like the Normal 

VaR, the CAViaR, and the Quantile Regression approach require parameter estimation.  

 

Note that the level of confidence (CI) chosen in each model affects the VaR estimates. This 

level is usually decided by the risk management department based on the risk appetite of the 

firm. In some cases, it is imposed by the Basel Committee. Indeed, according to Basel II, a 
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99.9% level of confidence must be used to establish the bank’s regulatory market risk capital 

(Bank for international settlements, 2005). In the literature, it is very common the usage of 

95% and 99% as CI. In this paper, I analyzed all the models with 95%, 98%, and 99% CI. 

 

In the following subsections, I am going to introduce the theoretical background behind the 

widely used models such as Historical VaR and Normal VaR, followed by Manganelli and 

Engle’s model CAViaR (2004), and the cross-sectional quantile regression model by Vidal-

Llana and Guillén (2022). At the end of this chapter, I then discuss the theory behind the 

different evaluation performance techniques applied in this thesis for a comparison of the 

VaR models. 

 

2.2 Historical VaR  

The Historical VaR (HV) is a straightforward and non-theoretical approach that does not 

involve making assumptions about the statistical distributions of the underlying market 

factors. In this approach, to estimate the distribution of tomorrow's portfolio returns, the HV 

method approximates it using the empirical distribution of past returns. The VaR is then the 

α-quantile of the sequence of observed returns. More precisely, these are the steps to follow 

for the estimation: 

 

1. Calculate the returns from the stock prices; 

2. Choose the desired level of confidence 1 − 𝛼; 

3. Determine the α-quantile of the return distribution. The quantile found is the VaR. 

 

Historical VaR is an easy approach to assess market risk and to interpret it. It is frequently 

used as a benchmark due to its quick calculation. It does not require any estimation of 

parameters and it does not require to make any assumption on the underlying distribution of 

the returns. The advantage of HV is that it uses real data. For this reason, it may capture 

possible unexpected events that cannot be predicted by other more complex theoretical 

models. However, one of the main disadvantages is that it is usually very slow to react to 

market shocks and it may undervalue the real risk because it fails to capture the extreme 

events. 
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2.3 Normal VaR 

The Normal approach to assess Value-at-Risk assumes that the underlying market factors 

follow a specific distribution, in this case, a normal distribution. This is one of the most used 

methods to assess market risk in the financial industry. 

 

By making the normality assumption, the method determines the distribution of potential 

profits and losses of a mark-to-market portfolio. Then, by applying standard mathematical 

properties of the normal distribution, the VaR can be determined (Linsmeier and Pearson, 

1996). The variance and the mean are estimated from the historical data: 

 

 �̂�𝑡 =
1

𝑗
∑ 𝑅𝑡−𝑗

𝐽

𝑗=1

  

                                                                                                                                             (2) 

 

�̂�𝑡
2 =

1

𝐽 − 1
∑(𝑅𝑡−𝑗 − �̂�𝑡)

2

𝐽

𝑗=1

 

                                                                                                                                             (3) 

In the above formulas, 𝑅𝑡−𝑗 is the return at time t-j, �̂�𝑡 is the sample mean return,  �̂�𝑡
2 is the 

sample variance of the return, and J is the number of observations in the time window used. 

Then the Normal Value-at-Risk is estimated as follows: 

 

𝑉𝑎𝑅𝑡
𝛼  =  �̂�𝑡 + �̂�𝑡 ∗ 𝑞𝑧(α) 

                                                                                                                                             (4) 

where 𝑞𝑧(𝛼) is the 𝛼-quantile of the standard normal quantile at the specified level of 

confidence, �̂�𝑡 is the estimated mean and �̂�𝑡 is the estimated standard deviation. 

 

This approach is highly used due to its simplicity and intuitive interpretation. It requires a 

basic statistical computation, and it can be easily integrated with portfolio optimization 

techniques.  
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The main disadvantage of this model, however, is that the assumptions of normality in 

returns and constant moments may not be realistic in real-world scenarios. Indeed, asset 

returns tend to exhibit high levels of skewness and kurtosis, which all may significantly 

impact the VaR estimates. 

 

2.4 CAViaR model 

The Conditional Autoregressive Value-at-Risk (CAViaR) model was proposed by 

Manganelli and Engle in 2004. The intuition of the authors was that rather than modeling 

the entire distribution, the quantile can be modeled directly using a conditional 

autoregressive quantile specification. The clustering of volatilities of stock market returns 

over time, which is an empirical observation, implies that the quantiles of the distribution of 

these returns is autocorrelated. As a result, the VaR, which is closely linked to the standard 

deviation of the distribution, must show similar autocorrelated behavior. To account for this 

characteristic, an autoregressive specification is often used, and CAViaR is one such method. 

 

The generic CAViaR specification is a recursive formula for calculating the 𝛼-quantile of 

the portfolio returns at time t, given the past returns. The generic specification of this model 

can be written as: 

 

𝑉𝑎𝑅𝑡
𝛼 =  𝛾0 + ∑ 𝛾𝑗 ∗ 𝑉𝑎𝑅𝑡−𝑗

𝛼 +  ∑ 𝛾𝑄+𝑗 ∗ 𝑓(𝑅𝑡−𝑗)

𝐻

𝑗=1

𝑄

𝑗=1

 

                                                                                                                                             (5) 

where 

• 𝑉𝑎𝑅𝑡
𝛼   denotes the conditional quantile at time t; 

• 𝑉𝑎𝑅𝑡−𝑗
𝛼  denotes the 𝛼-quantile estimate at time t-j; 

• 𝛾 = (𝛾0, 𝛾1, … , 𝛾𝑄 , … , 𝛾𝑄+𝐻) is a vector of parameters to be estimated. 

 

The first term, 𝛾0, represents the intercept of the model. The second term represents a set of 

autoregressive components that captures the persistence of the 𝛼-quantile estimates over 

time. The lag structure is specified by the parameter Q, which determines the number of past 

quantile estimates included in the model. 
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The third term in equation (5) is a set of lagged past returns that can help improve the 

accuracy of the quantile estimates. The number of observable variables is denoted by the 

parameter H, and the coefficients 𝛾𝑄+𝑗 capture the effect of the jth observable variable at 

time t-j on the current quantile estimate. The term 𝑓(𝑅𝑡−𝑗) in the CAViaR model plays a 

crucial role in capturing the effect of observable variables on the conditional quantiles of 

portfolio returns. This term can be seen as a way to link the quantile estimates to the 

information set that includes the past values of the observable variables. In other words, 

𝑓(𝑅𝑡−𝑗) allows to incorporate information from the observable returns into the quantile 

estimation process. This role of 𝑓(𝑅𝑡−𝑗) is similar to the news impact curve introduced by 

Engle and Ng (1993) in the context of GARCH models. In the GARCH framework, the news 

impact curve describes how shocks to the conditional variance of asset returns affect 

subsequent returns. Similarly, in the CAViaR model, the term 𝑓(𝑅𝑡−𝑗) captures the impact 

of observable variables on the conditional quantiles of returns. By incorporating the news 

impact curve or the observable variables, the model can provide a more accurate description 

of the dynamics of financial markets and help forecast future returns. 

 

In the stock market, if the past returns of the stock or portfolio were negative, then we would 

expect the VaR to increase (in absolute value), indicating more risk and higher potential 

future losses. The explanation is that one bad day may increase the probability of another 

bad day, leading to a higher loss. On the other hand, very good days may also increase the 

VaR, as high returns can be followed by high volatility or a significant drop in prices. In 

other words, the VaR can depend symmetrically on the magnitude of past returns, whether 

they are positive or negative. This phenomenon of dependence on past returns is very similar 

to what is observed in volatility models (for example in the GARCH models), where past 

squared returns are used to predict future volatility. By incorporating the past information 

into the VaR model, it may be possible to obtain a more accurate estimate of the potential 

losses of a portfolio and make better investment decisions. 

 

In the CAViaR model, the prespecified 𝛼-quantile of the distribution (i.e., the Value-at-Risk) 

is identified and modeled instead of modeling the entire distribution. This stands in contrast 

to other approaches such as GARCH models that aim to model the entire distribution (Engle 

and Manganelli, 2004). 
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2.4.1 The symmetric absolute value CAViaR approach 

In their paper, Engle and Manganelli (2004) discussed several CAViaR processes, including 

the adaptive process, the symmetric absolute value process, the asymmetric slope, and the 

Indirect GARCH. This thesis concentrates on the second process (i.e., the symmetric 

absolute value) due to its straightforwardness and resemblance to the Indirect GARCH 

model, which models positive and negative returns in a similar way.  

 

The specified process known as the “symmetric absolute value” can be described as follows: 

 

𝑉𝑎𝑅𝑡
𝛼 =  𝛾0 + 𝛾1 ∗ 𝑉𝑎𝑅𝑡−𝑗

𝛼  +  𝛾3 ∗ |𝑅𝑡−1|  

                                                                                                                                             (6) 

It is important to note that CAViaR models can accommodate the non-iid distribution of 

errors, in contrast to the GARCH models. This indicates that this model is not limited to 

situations with constant volatilities but can also be applied in scenarios where the error 

distributions change, or in situations where both the error densities and volatilities are 

changing. 

 

2.5 Quantile Regression 

Koenker and Bassett (1978) introduce a linear estimator that departs from the standard 

assumption of normality for the error term in linear regressions. The proposed quantile 

regression model outperforms the least square regression when the error terms are non-

normally distributed. In addition, when examining financial time series, there are often 

abnormal observations during periods of crises and booms. Quantile regression models are 

recognized for their ability to handle outliers in the sample, making them particularly useful 

in financial analysis (Uribe and Guillen, 2020). Indeed, quantile regression is a versatile and 

precise econometric method that can effectively address many of the prevalent challenges 

faced in modern economics and finance. For instance, it can be used to evaluate the impact 

of environmental and market factors on the day-to-day decisions made by individuals and 

firms regarding production and consumption. Additionally, it can be applied to model time 

series of prices, accounting for market state or seasonality variations. 
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This method involves the estimation of the coefficients in a linear combination. The linear 

combination includes some covariates to fit a specific quantile of the response variable's 

cumulative distribution, at a fixed confidence level. In other words, the method aims to 

model how changes in the covariates affect a specific 𝛼-quantile of the response variable. 

 

Quantile regression aims to achieve different objectives than the classical linear regression. 

In a classical linear regression, the dependent variable is expressed as a linear combination 

of some fixed covariates 𝑋𝑖
′ and a random error term εi, and the model aims to fit the mean 

of the response, assuming the error term has an expected value of zero. That is, 

 

𝑌𝑖 = 𝑋𝑖
′ 𝛽 + 𝜀𝑖 

                                                                                                                                             (7) 

assuming E [ 𝜀𝑖 ] = 0 

Then the parameters �̂� estimated are found with the ordinary least squares (OLS) by 

minimizing the sum of squared residuals: 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  ∑[ 𝑌𝑖

𝑛

𝑖=1

− 𝐸(𝑌𝑖|𝑋𝑖) ] 2 = 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝛽  ∑[ 𝑌𝑖

𝑛

𝑖=1

− 𝑋𝑖
′ 𝛽 ] 2 

                                                                                                                                             (8) 

where n is the number of observations in the dataset, and the residuals are calculated by 

subtracting the conditional expected value, 𝐸(𝑌𝑖|𝑋𝑖), from the observed response values. The 

conditional expectation is estimated based on the covariate(s) associated with each 

observation, represented by 𝑋𝑖.  

 

On the other hand, the quantile regression focuses on studying the quantiles of the response 

variable, rather than its expected value. The cumulative distribution function forms the basis 

of quantile regression, making it an excellent tool to investigate the factors that influence the 

probability of extreme response values. For example, when working with a 50% confidence 

level, the 50th quantile regression corresponds to a model for the median of the response 

variable's conditional distribution. In this paper, the level of confidence (CI) used were 95%, 

98%, and 99%. For example, if the CI is 95% then the quantile regression represents a model 
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for the 5th quantile, indicating the conditional distribution of the response that should not be 

surpassed by more than 5% of cases.  

 

The following equation represents the quantile regression:  

 

𝑄𝑌𝑖
(𝛼) =  𝛽0 + 𝛽1𝑋1𝑖 +  𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + ⋯ +  𝛽𝐾𝑋𝐾𝑖 = 𝑋𝑖

′𝛽   

                                                                                                                                             (9) 

where 𝑋𝑖
′ is the matrix with all the covariates taken into consideration, 𝛽 is the vector of 

estimated parameters and 𝑄𝑌𝑖
 is the estimated quantile for a given observation 𝑌𝑖. 

 

When covariates are taken into account, estimating the 𝛼-quantile  𝑄𝑌𝑖
(𝛼)  involves finding 

a parameter vector that minimizes the expected loss function. This procedure is similar to 

classical linear regression, where the parameter vector is estimated by minimizing the sum 

of squared residuals, which corresponds to a quadratic loss function. However, in quantile 

regression, the objective is to minimize the difference between the predicted values and the 

actual observations, weighted by a loss function that accounts for the specific 𝛼-quantile 

being estimated. The parameter vector 𝛽 changes for every confidence level considered and 

its estimation is done via the following minimization: 

�̂�  =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽 𝐸 [ 𝜌𝛼( 𝑌𝑖  −  𝑋𝑖
′ 𝛽)] 

                                                                                                                                           (10) 

where  𝜌𝛼  (𝑢) =  (1 − 𝛼) 𝐼(𝑢 < 0) |𝑢| +  𝛼 𝐼(𝑢 > 0) |𝑢|  

                                                                                                                                           (11) 

When dealing with the median case (𝛼 = 0.5), the solution can be obtained by minimizing 

the sum of the absolute deviations, which is calculated by summing the lengths of the 

residuals. In other words, the line that best fits the data, in this case, is the one that gives the 

smallest sum of the absolute differences between the predicted values and the actual 

observations. The next subsection presents the cross-sectional VaR model, which is based 

on the quantile regression just discussed. 
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2.5.1 Cross-sectional quantile regression model 

Vidal-Llana and Guillén (2022) propose a cross-sectional approach to model the Value-at-

Risk. In this model, the authors fix a point in time t, that is between 1 and the number of 

observations T, and they estimate a quantile regression model for the stock returns using 

specific characteristics of all the firms in the index in that specific time t. The result is as 

many quantile regressions as the number of observations T. This methodology, called by the 

authors the “cross-sectional Quantile Regression model” (CSQR) uses the information of all 

the firm in the index at a given point in time t and it assumes that the quantiles depend on all 

the companies' characteristics. This is the main difference with the CAViaR model, which 

assumes that the quantiles of a single company’s returns depend only on its own past returns. 

 

Vidal-Llana and Guillen (2022) used a set of seven firm characteristics to compute the cross-

sectional quantile regression, such as the company size (MC), the book-to-market ratio 

(BM), the operating profitability (OP), the growth rate of investment (INV), the 12-month 

momentum (MOM), the liquidity (LIQ) and the market beta (BETA). The regressors chosen 

are  standard characteristics used to explain the cross-section of expected stock returns. Some 

of the characteristics, such as MC, BM, OP, and INV are recommended by various previous 

studies including Fama and French (2015, 2020) and Hou, Xue, and Zhang (2015). Other 

characteristics, such as BETA, LIQ, and MOM are recommended by Campbell (2017) and 

Malkiel (2019). In chapter 3 of this thesis, I specify that instead of using seven covariates 

like Vidal-Llana and Guillen (2022) did, I proposed two models based on only four and five 

covariates. As specified by the authors, more regressors could be added which would 

potentially lead to better results. However, my analysis shows that it is sufficient to 

incorporate just four covariates to obtain better outcomes than other models. 

 

One of the main advantages of the CSQR method to assess the VaR is the simplicity of 

computational requirements, which is easier than fitting a CAViaR model for example. It 

uses covariates, that allow to include exogenous characteristics to predict the return quantiles 

for external firms that were not initially in the dataset. It is robust to outliers since it is based 

on a quantile regression instead of a mean-based regression. However, the main 

disadvantages are the requirement of large data sets of different covariates and the limitation 

of the cross-sectional analysis that does not account for time series dynamics. 
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2.6 Performance evaluation measures 

It is of vital importance to evaluate the performance of the VaR estimates. In order to assess 

the efficacy of various models, it is possible to use different evaluation measures. In this 

thesis, the following widely used techniques are performed: the percentage of VaR 

violations, the score function, the Kupiec test, and the time between failures likelihood ratio 

test. An additional test is performed to verify the independence of the VaR estimate series, 

the so-called conditional coverage test of Christoffersen. 

 

The percentage of VaR violations represents the proportion of times that the actual losses 

exceeded the estimated Value-at-Risk threshold. For example, if the estimated Value-at-Risk 

corresponds to the 95% level of confidence, then a higher percentage of violations than 5% 

indicates that the VaR estimate is too low, meaning the method used underestimates the 

market risk of the portfolio. On the other hand, a lower percentage of violations than 5% 

suggests that the VaR estimate is too conservative, meaning that the method used 

overestimates the risk. For this reason, ideally, the percentage of violations should be close 

to the chosen significance level. 

 

A common way to evaluate the VaR models is through the so-called “Hit function”. The Hit 

function 𝐼𝑡(𝛼) is an indicator function indicating the ex-post observations 𝑅𝑡 of VaR 

violations. That is, 

 

𝐼𝑡 (𝛼) =   {
         1      𝑖𝑓 𝑅𝑡 < −𝑉𝑎𝑅𝑡|𝑡−1(𝛼)  

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

                                                                                                                                           (12) 

Christoffersen (1998) stressed that Value-at-Risk forecasts are valid if and only if the 

violation process 𝐼𝑡(𝛼) satisfies two hypotheses: the unconditional coverage and the 

independence hypothesis. 

 

• The unconditional coverage (UC) hypothesis indicates that the probability of the 

return exceeding the VaR forecast must be equal to the coverage rate (level of 

confidence stated before). That is, 
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Prob [𝐼𝑡(𝛼) = 1]  =  𝐸[𝐼𝑡(𝛼)]  =  𝛼 

                                                                                                                                           (13) 

Consequently, if the frequency of observed violations is significantly lower than the 

coverage rate, then the used model to estimate the VaR is overestimating the true 

level of risk. On the other hand, if the observed violations are significantly higher 

than the coverage rate, then the model is not efficiently assessing the real risk. 

However, this hypothesis does not tell anything regarding the level of dependence 

on the VaR violations. 

 

• The independence hypothesis indicates that the VaR violations, with the same 

coverage rate observed on two different dates, must be independently distributed. 

Therefore, past VaR violations must not have any additional information about the 

present and/or future VaR violations.  

 

𝐼𝑡(𝛼) ⫫ 𝐼𝑡−𝑘(𝛼) 

 

2.6.2 Kupiec POF test 

To test the first hypothesis (unconditional coverage), Kupiec (1995) proposed the Proportion 

of failure test (POF). This test examines whether the empirical coverage matches the 

theoretical coverage. For instance, if the Value-at-Risk has an α-value of 5%, this test 

assesses whether the coverage obtained when applying the VaR to the data is truly 5%. The 

Kupiec test statistic is: 

 

𝐿𝑅𝑃𝑂𝐹 = 2 ln  ( (
1 − �̂�

1 − 𝛼
)

𝑛−𝐼(𝛼)

( 
�̂�

𝛼
 )

𝐼(𝛼)

 ) 

                                                                                                                                           (14) 

where  

�̂� =
1

𝑛
 𝐼(𝛼) 

                                                                                                                                           (15) 

and 
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𝐼(𝛼) = ∑ 𝐼𝑡(𝛼)

𝑛

𝑡=1

 

                                                                                                                                           (16) 

where n is the number of observations. The test statistic approximately follows a Chi-squared 

distribution with one degree of freedom. The null hypothesis assumes that the excess rate 

obtained by the model is identical to the assumed excess rate. Consequently, the test aims to 

determine whether there exists a significant difference between the observed and assumed 

excess rates. 

 

When testing the 95% VaR, if the proportion of violations is exactly equal to 5% then the 

Kupiec test takes the value zero. This indicates that there is no evidence of inadequacy in 

the model used to assess the Value-at-Risk, implying that the model was able to accurately 

capture the risks associated with the investment. Therefore, the VaR estimate may be 

considered reliable. When the proportion of violations is different from 5%, then the test 

statistics grows and indicates that there is evidence that the model either systematically 

understates or overstates the risk of the stock or portfolio (Zhang and Nadarajah, 2016). 

 

2.6.3 Christofferson test 

Christoffersen (1998) developed a likelihood test to assess the frequency of consecutive 

exceedances. I will refer to this as the CCI test in the thesis. This test verifies the 

independence hypothesis, discussed earlier in this section. The test statistics follows a Chi-

squared distribution, and it is calculated as follows: 

 

 𝐿𝑅𝐶𝐶𝐼 = −2 log (
𝐿(𝛼; 𝐼1, 𝐼2, … , 𝐼𝑇)

𝐿(�̂�1; 𝐼1, 𝐼2, … , 𝐼𝑇)
) 

                                                                                                                                           (17) 

where the likelihood under the null hypothesis is the following: 

 

𝐿(𝛼; 𝐼1, … , 𝐼𝑡) = (1 − 𝛼)𝑛0  𝛼𝑛1 

                                                                                                                                           (18) 

And the approximate likelihood function for this process is: 

𝐿(Π̂1; 𝐼1, … , 𝐼𝑡) = (1 − �̂�01)𝑛00 �̂�01
𝑛01  (1 − �̂�11)𝑛10  �̂�11

𝑛11 
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                                                                                                                                           (19) 

�̂�01 =
𝑛01

𝑛0
 

                                                                                                                                           (20) 

�̂�11 =
𝑛11

𝑛1
 

                                                                                                                                           (21) 

In the following equations, 𝛼 indicates the probability of exceedance for a significance level 

of 5%, n1 represents the number of exceedances present in the time series and n0 represents 

the number of predictions that were not exceeded. The number of misses that are followed 

by another miss is indicated with n00 and the number of hits followed by another hit is 

indicated with n11. Finally, the number of hits followed by a miss is indicated with n10. 

The null hypothesis of the Christofferson test states that the exceedances are independent of 

each other, while the alternative states the non-independence. If the observed test statistics 

surpasses the critical value, then the null hypothesis is rejected, i.e., the exceedances are not 

independent or/and the exceedance rate is not correct. 

 

2.6.4 Kupiec TUFF test 

Kupiec (1995) introduced another test based on the same assumptions as the POF test, the 

Time until first failure test (TUFF). This test measures the time until the first violation, and 

it is mainly used as a preliminary to the POF test. The null hypothesis of the test is the 

following: 

𝐻0: 𝑝 =
1

𝜐
 

                                                                                                                                           (22) 

where 𝜐 represents the time until the first violation. 

From Zhang and Nadarajah (2016), the test statistic is the following: 

 𝐿𝑅𝑇𝑈𝐹𝐹 = 2 ln (
𝑝(1 − 𝛼)𝑣 −1

�̂�(1 − �̂�)𝑣 −1) 

                                                                                                                                           (23) 

where �̂� is given by equation (15). 
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As in the POF test, the test statistic approximately follows a Chi-squared distribution with 

one degree of freedom. Note that this test relies only on the number of violations, but does 

not consider the time dynamics of the violations. 

 

2.6.5 TBF test 

Haas (2001) presented another test to verify the hypothesis of independence, the Time 

between failures test (TBF), which is an extension of the Kupiec TUFF test. This statistical 

test assess that the violations are not correlated, and this is following likelihood ratio statistic: 

𝐿𝑅𝑇𝐵𝐹 =  ∑ ( −2 𝑙𝑛 (
𝛼(1 − 𝛼)𝑣𝑖−1

�̂�(1 − �̂�)𝑣𝑖−1
)) − 2 ln (

𝛼(1 − 𝛼)𝑣𝑖−1

�̂�(1 − �̂�)𝑣𝑖−1
)

𝑚

𝑖=2

 

                                                                                                                                           (24) 

The likelihood ratio statistic proposed evaluates the null hypothesis that violations are 

independent of each other. It employs the time gaps (vi) between successive violations, and 

the number of violations (m), with the resulting statistic having a Chi-squared distribution 

with m degrees of freedom. Rejecting the null hypothesis requires exceeding the critical 

value for the chi-squared distribution.  

An advantage of this test is its robustness since it can detect issues with violation 

dependencies and their count. 

 

2.6.6 Score function 

The scoring function is used in decision theory to assess the accuracy of a forecast with a 

probability distribution, such as a quantile. The score function is a strictly consistent function 

(Fissler and Ziegel, 2016), meaning that it can be used as the loss function in a forecast 

estimation (Gneiting and Raftery, 2007). The following type of scoring function is a 

consistent form for the VaR estimation: 

 

𝑆(𝑄𝑡 , 𝑅𝑡) = (𝛼 − 𝐼(𝑅𝑡 ≤ 𝑄𝑡)) ∗ (𝐺(𝑅𝑡) − 𝐺(𝑄𝑡)) 

                                                                                                                                           (25) 

In this equation, Qt is the quantile with probability level , I is an indicator function that 

assumes value 1 when the return Rt is lower than the quantile Qt and value 0 vice versa, Rt 

are the index returns and G is a weakly increasing function. If the function G is strictly 
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increasing, then it can be proven that the scoring function is strictly consistent (Gneiting, 

2011). Then: 

 

𝑆(𝑄𝑡 , 𝑅𝑡) = (𝛼 − 𝐼(𝑅𝑡 ≤ 𝑄𝑡)) ∗ (𝑅𝑡 − 𝑄𝑡) 

                                                                                                                                           (26) 

Due to its simplicity and familiarity as the quantile regression loss function, the score 

function is extensively used in the academic literature in the evaluation of Value-at-Risk 

models. By taking the average of the score, it is possible to derive a measure to evaluate 𝛼-

quantile forecasts. 

 

Vidal-Llana and Guillen (2022) introduce the Acerbi and Szekely (2014) scoring function 

to evaluate the performance of the CAViaR and CSQR models for Value-at-Risk: 

𝑄𝛼
0 =

1

𝑁
∑ [𝛼 − 𝐼 (𝑅𝑖 ≤ �̃�𝑖(𝛼))] ∗ (𝑅𝑖 − 𝑅�̃�

𝑁

𝑖=1

(𝛼)) 

                                                                                                                                           (27) 

The following function measures the discrepancy between the observed value 𝑦𝑖 and the 

predicted quantile value �̃�𝑖(𝛼), that it is found as �̃�𝑖(𝛼) = 𝑋𝑖
′ ∗ 𝛽�̂�. The score function 𝑄𝛼

0  is 

simply a weighted average of the absolute distance between the observed value and the fitted 

𝛼-quantile. The lower the score, the better the approximation of the quantile. 
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3 Data 

3.1 Data description  
The objects of the study are the different sector portfolios in the S&P500 index, which 

contains the biggest 500 US companies by market capitalization. The sectors are defined 

using the Global Industry Classification Standard (GICS) taxonomy, which was developed 

in 1999 by MSCI and Standard & Poor’s. The GICS categorizes all companies into 11 

sectors: Information Technology, Health Care, Consumer Discretionary, Communication 

Services, Financials, Industrials, Consumer Staples, Energy, Utilities, Real Estate, and 

Materials. The first two digits a firm’s GICS code indicates which sector the company 

belongs to. These two-digit sector codes are reported in the appendix, table 18. 

 

The sector that had the smallest weight in the S&P500 index on 05/05/2023 was Real Estate, 

consisting only of 22 companies and having a market capitalization of around $1.38T. The 

largest sector in the index was Information technology, composed of 66 companies and a 

market capitalization of around $12.24T. From 2000 to 2021, this sector is the one that gave 

the highest weekly returns on average (0.32%), and it is composed of firms in Software & 

Services, Technology Hardware & Equipment, Semiconductors & Semiconductor 

Equipment. The main companies representing this sector are Apple Inc., Microsoft Corp, 

Nvidia Corp, Broadcom Corp, Salesforce Inc., Cisco Systems Inc., Accenture plc A, Adobe 

Inc., Texas Instruments Inc., and Oracle Corp. The second largest sector in the S&P500 

index was Financials, with $8.69T of market cap. It is composed of banks, financial services 

firms, and insurance firms. The main companies in the sector are Berkshire Hathaway B, JP 

Morgan Chase & Co, Visa Inc A, Mastercard Inc A, Bank of America Corp, Wells Fargo & Co, 

S&P Global Inc, Morgan Stanley, Goldman Sachs Group Inc, and BlackRock Inc. The market 

capitalization data for the sectors of the S&P500 Index reported above were computed as of 

the 5th of May 2023, as reported by Fidelity.com. 

 

In this thesis, all the Value-at-Risk models were performed separately for each S&P500 

sector portfolio. The overall sample period covered in the analysis is from 1 January 1995 

to 26 December 2021. The list of historical S&P500 index constituents throughout this 
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period was obtained from Wharton Research Data Services (WRDS). During this period, a 

total of 1210 companies were included in the S&P 500 index at some point. The individual 

weekly return series for each of these companies was downloaded from the Center for 

Research in Security Prices (CRSP) database through WRDS. The GICS codes of the 

companies (to be able to form the sector portfolio) were obtained from the Compustat 

database through WRDS. According to the sector classification provided by GICS, I filtered 

and collected the stocks belonging to each sector. Finally, I created the weekly return series 

of a specific sector portfolio from the individual returns on the stocks that are included in 

the S&P500 index during that week and belong to the given sector.  

 

The out-of-sample evaluation performance was computed from 2 January 2000 to 26 

December 2021. While the out-of-sample evaluation performance during stressed market 

conditions was computed first from 7 January 2007 to 2 January 2011 (Financial Crisis 

period) and secondly from 3 June 2018 to 26 December 2021 (Covid Pandemic period).  

 

The results of the different Value-at-Risk methodologies applied to the 11 sectors in the 

S&P500 index under consideration were largely consistent, except for the Information 

Technology sector. The latter showed a slightly different outcome due to the Dot-com bubble 

in the late 1990s. For this reason, the graphical illustration of the results in this thesis featured 

the Financials sector, which was the second-biggest sector in the S&P500 index and served 

as a representative example. 

 

The source of data to collect some of the covariates for the cross-sectional analysis was 

obtained from the replication dataset connected to Chen and Zimmermann (2021)1. These 

involve the following firm characteristics: market capitalization (SIZE), the 1-year beta 

(BETA), the profitability factor (ROE), the asset growth factor (GROWTH), and the book-

to-market (BM). All the variables are expressed in US dollar currency (USD).  

 

For the main part of the analysis, the sector returns were calculated as the equally-weighted 

average of the returns of all companies in each sector. This decision is based on the 

significant variation of the market capitalization between all the companies listed in the 

 
1 The data are available from https://www.openassetpricing.com/. 
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index, i.e., many companies have very significant market capitalization compared to other 

companies in the same index. This variation may lead to an overemphasis on companies with 

bigger market capitalization and can potentially distort the analysis. However, also note that 

the main results are replicated using value-weighted sector portfolios as well. The equal- and 

value-weighted approaches lead to similar conclusions. 

 

The software used to conduct the analysis was Matlab R2022a. The code for the CAViaR 

model (2004) was taken from Manganelli’s website and then adapted to this paper’s specific 

analysis. 

 

3.2 Descriptive statistics 

The following table displays the descriptive statistics of the equal-weighted weekly index 

returns of the 11 S&P500 sectors from 1995 to 2021.  

 

 Mean 

% 

Median 

% 

Std 

% 

Skewness Kurtosis Jarque-

Bera 

Max 

% 

Min 

% 

Obs. 

Energy 0.21 0.40 4.21 -0.54 9.04 2211.4 21.40 -30.82 1409 

Materials 0.21 0.30 3.14 -0.07 8.13 1545.2 22.39 -14.82 1409 

Industrials 0.23 0.34 2.88 -0.35 8.89 2068.1 15.35 -19.45 1409 

Consumer 

Discretionary 

0.22 0.27 3.35 0.43 16.66 1098.9 0.30 -24.12 1409 

Consumer Staples 0.21 0.24 1.96 -0.64 9.37 2472.9 11.83 -15.85 1409 

Health Care 0.30 0.40 2.44 -0.66 8.26 1727.3 12.36 -18.63 1409 

Financials 0.25 0.33 3.72 -0.58 15.78 9661.3 31.05 -25.04 1409 

Information 

Technology 

0.32 0.44 3.88 -0.12 5.76 449.9 18.99 -21.24 1409 

Communication 

Services 

0.20 0.29 2.97 -0.25 9.92 2820.9 23.99 -21.44 1409 

Utilities 0.15 0.21 2.61 -0.32 12.51 5332.7 19.0 -19.45 1409 

Real estate 0.16 0.27 3.79 0.08 15.61 9342.1 29.27 -25.40 1409 

Table 1: Descriptive statistics S&P500 sectors 

 

According to table 1, the sector that experienced the biggest drop was Energy with a weekly 

-30.82%. On the other hand, the sector that had the highest weekly return was the Financials 
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with 31.05%. An important consideration is that all the sectors in the S&P500 index 

experienced a downturn during the Financial Crisis in 2008 and during the Covid Pandemic 

in 2020. The expectation was to find high estimated values (in absolute value) of the Value-

at-Risk during stressed conditions. 

 

A way to verify if the returns followed a normal distribution is by employing a Jarque-Bera 

test, as suggested by Cryer and Chan (2009). The following test is based on the fact that 

returns with a normal distribution have zero kurtosis and zero skewness. Once having 

assumed that the data are independent and identically distributed, test statistics is defined as 

follows: 

𝐽𝐵 =
𝑛𝑆2

6
+

𝑛(𝐾 − 3)2

24
 

                                                                                                                                           (28) 

Under the null hypothesis, JB follows approximately a Chi-squared distribution with two 

degrees of freedom. S is sample skewness and K is the sample kurtosis of the returns 

considered. Table 1 indicates the Jarque-Bera statistics for the different S&P500 sectors. For 

each sector this value exceeded the critical value of a Chi-Squared distribution with a 5% 

confidence level χ2 2,0.05 = 5.991, indicating that the null hypothesis was rejected and that the 

time series did not show evidence to follow a normal distribution.  
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3.3 Methodology 

This paragraph explains the empirical methodology used for each model in the out-of-sample 

analysis. The choice of the window length for the rolling or expanding windows were made 

with the aim of achieving more accurate and reliable results from the model. 

 

3.3.1 Historical VaR 

The Historical VaR is a non-parametric approach to estimate Value-at-Risk. This implies 

that it does not assume any specific distribution of the asset returns. Rather than making 

assumptions, HV estimates VaR by finding the 𝛼-quantile of the previous N returns. The 

estimation covered a period from 2 January 2000 to 26 December 2021. More precisely, the 

VaR estimate for week t, i.e., 𝑉𝑎𝑅𝑡
𝛼 was found in the following way: 

 

1. Calculate the 𝛼-quantile of the weekly returns from the previous 104 weeks (2 years), 

i.e., using the returns from week t-104 to t-1. 

 

3.3.2 Normal VaR  

The idea behind the Normal VaR is that if the normality assumption about the return 

distribution is acceptable, then the model gives an accurate estimation of the Value-at-Risk. 

Starting from 2 January 2000 to 26 December 2021, these were the following steps to find 

the estimates: 

 

1. Estimate the mean (𝜇𝑡) and variance (𝜎𝑡
2) of the weekly returns using the previous 

52 weeks (1 year), i.e., using the returns from week t-52 to t-1 in the formulas in the 

equations (2) and (3). 

2. Plug the estimated mean and variance from the previous step into formula (4) to 

arrive at the predicted Value-at-Risk for week t, 𝑉𝑎𝑅𝑡
𝛼. 
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3.3.3 CAViaR model 

The CAViaR model was estimated using the original code from Simone Manganelli's 

website2. As before, the estimation of parameters γ started from 2 January 2000 to 26 

December 2021 using an expanding. Better results justify the choice of using an expanding 

window instead of a rolling window (the results from the rolling window estimation are 

omitted from the thesis). More precisely, these were the steps followed: 

 

1. Estimate the model in equation (6) using weekly returns from January 1995 (t=1) to 

week t-1 to obtain �̂�0,𝑡−1, �̂�1,𝑡−1, �̂�2,𝑡−1, and 𝑉𝑎𝑅𝑡−1
�̂�  (expanding window). Note that 

the t-1 subscript indicates that the estimation uses data up until week t-1. 

2. The predicted Value-at-Risk for week t is: 

 

𝑉𝑎𝑅𝑡
𝛼 = �̂�0,𝑡−1 + �̂�1,𝑡−1 ∗ 𝑉𝑎𝑅𝑡−1

�̂� + �̂�2,𝑡−1 ∗ |𝑅𝑡−1| 

                                                                                                                                           (29) 

3.3.4 Cross-sectional quantile regression model 

The CSQR model was estimated weekly, using every firm in the S&P500 index for that 

week, and then the predicted stock-specific quantiles were averaged for each sector 

separately (using only the stocks in that sector) to obtain a VaR prediction for the sector 

portfolios. This method involved a cross-sectional regression using the characteristics of all 

S&P500 firms starting from 2 January 2000 to 26 December 2021 using a 3 weeks as a 

rolling window. To be more precise, these are the steps followed: 

 

1. Estimate the cross-sectional quantile regression in each week throughout the sample 

using all the stocks that are in the S&P500 index during that week: 

 

𝑄𝑅𝑖𝑡
(𝛼) = 𝛽0𝑡 + 𝛽1𝑡𝑋1𝑖𝑡−1 + ⋯ + 𝛽𝐾𝑡𝑋𝐾𝑖𝑡−1 

                                                                                                                                           (30) 

 

            It should be emphasized that the X values are taken from week t-1. 

 
2 Simone Manganelli’s website: http://www.simonemanganelli.org/Simone/Research.html 
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2. To predict 𝑉𝑎𝑅𝑡
𝛼 of a sector portfolio, the average of the 𝛽 estimates from the 

previous three weeks are used. In particular, let 

 

�̅�𝑘,𝑡−3:𝑡−1 =
1

3
∑ �̂�𝑘𝑡−𝑗

3

𝑗=1

 

                                                                                                                                           (31) 

 

where the �̂� values are the estimates from the quantile regressions in step 1. It is 

important to emphasize that information from week t-4 to t-1 is used to calculate 

�̅�𝑘,𝑡−3:𝑡−1. 

3. Let 𝑆𝑠𝑡  denote the set of stocks that belong to sector s during week t, and 𝑛𝑠𝑡 the 

number of such stocks. Then, 

 

𝑉𝑎𝑅𝑡
𝛼 = ∑ 𝑤𝑖𝑡 ∗ (�̅�0,𝑡−3:𝑡−1 + �̅�1,𝑡−3:𝑡−1 ∗ 𝑋1𝑖𝑡−1 + ⋯ + �̅�𝐾,𝑡−3:𝑡−1 ∗ 𝑋𝐾𝑖𝑡−1)

𝑖∈𝑆𝑠𝑡

 

                                                                                                                                           (32) 

where 𝑤𝑖𝑡  is the weight of stock i in the portfolio. For the equal-weighted case 𝑤𝑖𝑡 =

1

𝑛𝑠𝑡
, and for the value-weighted case 𝑤𝑖𝑡  capitalization share of stock i in the sector 

portfolio. Note how only information up to week t-1 is used to calculate 𝑉𝑎𝑅𝑡
𝛼. 

 

In this thesis, two cross-sectional models were proposed. The first model, referred to as 

CSQR1, was computed with the following covariates: company size (SIZE), one-year beta 

(BETA), Book-to-market ratio (BM), asset growth or investment (GROWTH), and 

profitability (ROE). The following equation represents the first cross-sectional quantile 

regression model: 

 

𝑅𝑖𝑡
𝐶𝑆𝑄𝑅1(𝛼) = 𝛽0𝑡 + 𝛽𝑆𝐼𝑍𝐸𝑡𝑆𝐼𝑍𝐸𝑖𝑡−1 + 𝛽𝐵𝑀𝑡𝐵𝑀𝑖𝑡−1𝛽𝐺𝑅𝑂𝑊𝑇𝐻𝑡𝐺𝑅𝑂𝑊𝑇𝐻𝑖𝑡−1

+ 𝛽𝑅𝑂𝐸𝑡𝑅𝑂𝐸𝑖𝑡−1 + 𝛽𝐵𝐸𝑇𝐴𝑡𝐵𝐸𝑇𝐴𝑖𝑡−1 

                                                                                                                                           (33) 
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The covariate SIZE represents the market capitalization. The regressor BM is the annual book 

value of equity divided by the market value of equity. Finally, the covariate BETA is simply 

the market beta calculated over a window of 52 weeks.  

 

I also proposed a second CSQR model, which relied on a different set of cross-sectional 

variables.. This new model, called CSQR2, involved the following covariates: 

 

• 𝑀𝐸𝐴𝑁1𝑖𝑡−1 is the mean of the weekly returns of stock i calculated over weeks t-26 

to t-1;  

• 𝑀𝐸𝐴𝑁2𝑖𝑡−1 is the mean of the weekly returns of stock i calculated over weeks t-52 

to t-27; 

• 𝑉𝑂𝐿𝑖𝑡−1 is the volatility of the weekly returns of stock i calculated over weeks t-52 

to t-1; 

• 𝑆𝐾𝐸𝑊𝑖𝑡−1 is the skewness of the weekly returns of stock i calculated over weeks t-

52 to t-1. 

 

The values of these covariates were calculated by me using the weekly return series of the 

individual stocks. The same methodology was used to perform the out-of-sample analysis, 

and the following equation represents the new model: 

 

𝑅𝑖𝑡
𝐶𝑆𝑄𝑅2(𝛼) = 𝛽0𝑡 + 𝛽𝑀𝐸𝐴𝑁1𝑡

𝑀𝐸𝐴𝑁1𝑖𝑡−1 + 𝛽𝑀𝐸𝐴𝑁2𝑡
𝑀𝐸𝐴𝑁2𝑖𝑡−1+𝛽𝑉𝑂𝐿𝑡

𝑉𝑂𝐿𝑖𝑡−1

+ 𝛽𝑆𝐾𝐸𝑊𝑡
𝑆𝐾𝐸𝑊𝑖𝑡−1 

                                                                                                                                           (34) 

These covariates were inspired by the cross-sectional asset pricing literature. MEAN1 and 

MEAN2 were inspired by momentum effect, introduced by Jegadeesh and Titman (1993), 

who show that stocks’ past return positively predicts their future return (winners continue to 

win and losers continue to lose). Separating past year’s returns into two half-year periods is 

inspired by Novy-Marx (2012), who showed that momentum is primarily driven by firms’ 

performance 12 to seven months prior to portfolio formation. VOL is inspired by Ang et al. 

(2006), who showed that the cross-section of past volatility negatively predicts expected 

returns. Finally, SKEW is inspired by Amaya et al. (2015), who showed that the skewness of 

stocks’ past returns negatively predicts future returns in the cross-section. 
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Note that the above cited studies establish these covariates as good predictors of future 

expected returns. The question that I study in this thesis is whether these characteristics are 

also helpful for predicting left-tail quantiles (i.e., the Value-at-Risk) of the return 

distribution. 

 

Note that all the covariates in both the CSQR1 and CSQR2 models were normalized cross-

sectionally each week, meaning that each variable was subtracted from its mean and then 

divided by the standard deviation. This procedure can help to reduce the influence of outliers 

and can help to interpret the coefficients. The formula for normalizing a variable is: 

 

𝑧 =
𝑥 − �̅�

𝑠𝑡𝑑(𝑥)
 

                                                                                                                                           (35) 

After the normalization, each variable has a mean of 0 and a standard deviation of 1. 

 

 

3.3.6 Limitations 

The results obtained from the application of the models presented in this thesis are strictly 

related to the length of the rolling or expanding window used. Setting a different window 

length, may led to slightly different results. However, the purpose of the thesis is to show 

how straightforward cross-sectional models can leverage information from other firms in the 

market and become accurate predictors of risk compared to more complex models. Indeed, 

cross-sectional models are easy, fast to implement, very intuitive to understand, and they led 

to better results than the more complex model CAViaR.  
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4 Results 

4.1 Forecast 

The following chapter shows a graphical illustration of the out-of-sample application of the 

different Value-at-Risk methodologies object of this thesis: Historical VaR, Normal VaR, 

CAViaR, CSQR1, and CSQR2.  

 

As previously stated, the graphical illustration of the results features the Financials sector, 

however, the results are very similar for all sectors with the exception of the Technology 

sector. The appendix reports the graphical results of all the sectors, including this latter, to 

illustrate the significant Value-at-Risk forecast at the beginning of the 2000s due to the Dot-

com bubble.  

 

The next figures display the weekly returns of the Financials sector and the Value-at-Risk at 

a 95% level of confidence. However, it will be discussed later that the results are similar also 

for 98%, and 99% CI. For an intuitive representation, all the figures the returns are 

represented by a black line and the VaR by a red line. 
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4.1.1 Historical VaR 

The Historical VaR (HV) method is a non-parametric approach to estimate Value-at-Risk. 

As discussed in the theoretical background chapter, this method does not presuppose any 

specific distribution of the asset returns. Instead, HV estimates VaR by fitting the 𝛼-quantile 

of the previous N returns. For this reason, the expectation was not to find highly accurate 

results, but to find very approximative estimations of the market risk. 

 

Figure 1: Plot of Historical VaR (Financials) 

 

From figure 1, one may notice that the accuracy of the Historical method is uncertain. This 

approach provides a curve that tends to behave as a piecewise constant curve. This is due to 

the fact that quantiles tend to remain fixed for several weeks until extreme events occur. 

Consequently, the HV method is slow in responding to changes in volatility. This 

phenomenon can be easily seen during the Financial Crisis, where the returns in the 

Financials sector showed, for example, very high volatility starting from September 2008 

and a weekly return of -0.25% in October 2008, but the historical VaR adjusted this 

information only after a few months. The same performance is seen in 2020, when the 

Financials sector experienced a significant drop of -13.6% in February 2020 due to the Covid 

Pandemic. The Historical VaR, however, did not incorporate this information immediately. 

Indeed, a few months of delay are always present after a significant drop in returns.  
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4.1.2 Normal VaR  

The idea behind the Normal model is that if the assumption of normality on the distribution 

is acceptable, then the model gives accurate estimation values of the Value-at-Risk.  

 

 

Figure 2: Plot of Normal VaR (Financials) 

 

From figure 2, one may say that the Normal VaR method is still not providing accurate 

estimates, but it must be noticed that it reacted quicker to market shocks compared to the 

previous method. Indeed, both during the Financial Crisis in 2009 and during the Covid 

Pandemic crisis, the VaR reacted quicker to the negative drops. However, it still provided 

slow and smooth estimates, and during periods of not stressed markets, like for example in 

2013 or in 2017 the Normal VaR overestimated the market risk. Even in this case, it is 

evident from the figure that this method adjusted the new information with a significant 

delay.  

 

  

Normal VaR 
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4.1.3 CAViaR method 

Next figure displays the results from CAViaR model. 

 

Figure 3: Plot of CAViaR (Financials) 

 

From figure 3, the CAViaR method provided better VaR estimates. It can be noticed that 

this model quickly reacted to market shocks both during the Financial Crisis in 2009 and 

during the Covid Pandemic crisis. In addition, during periods of not stressed markets, the 

CAViaR model does not overestimated the market risk as much as  the Normal VaR model. 

For example, during the entire period from 2004 to 2007, the VaR values were extremely 

low. In other words, in normal times, the CAViaR model did not provide high VaR estimates 

(in absolute value), but when a shock occurs, the model adjusted quite quickly to that shock 

and provided higher estimates of the risk. 
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4.1.4 CSQR models 

As previously stated, the CSQR1 model was computed with different covariates: company 

market capitalization (SIZE), one-year beta (BETA), Book-to-market ratio (BM), asset 

growth (GROWTH), and profitability (ROE). Instead, the CSQR2 model was computed with 

the following covariates: MEAN1, MEAN2, VOL, and SKEW. The next figures display the 

results obtained from both cross-sectional methods. 

 

 

Figure 4: Plot of CSQR1 (Financials) 

 

Figure 4 shows the VaR values predicted by the CSQR1 method. It is not intuitive to see that 

it provides even more accurate VaR estimates than the CAViaR. However, this is the result 

that will be found in the next section. Indeed, by incorporating the data of other companies 

in the cross-sectional regression, this model rapidly adapted its VaR estimates to market 

shocks. Also, during the Financial Crisis and the Covid Pandemic, this model provided 

quickly adjusted estimates.  
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Figure 5: Plot of CSQR2 (Financials) 

 

From figure 5, the CSQR2 method provided very similar estimation results to CSQR1. In 

the evaluation performance paragraph will be discussed which of the two models provided 

the best estimates. 

 

4.1.5 Comparison of CAViaR and CSQR methods: 

The following paragraph compares the plots of the CAViaR model and the CSQR models in 

the estimation of Value-at-Risk. As before, the Financials sector was taken as an illustrative 

example. The dataset includes both the Financial Crisis (2007-2011) and the Covid 

Pandemic (2020-2021). As shown in the figure below, an important consideration is that 

during stressed market conditions, the CAViaR model presented higher forecasts (in 

absolute value) of the fitted quantile VaR compared to the CSQR models. More precisely, 

during the Financial Crisis (when the sector reached -25%), the CAViaR reached forecasts 

of -30.7%, while the CSQR models reached only -17.5%. The same happened during the 

Covid period (when the sector reached -19.7%), the first model reached -24.7% while the 

cross-sectional ones reached -11.7%. 
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Figure 6: CAViaR, CSQR1, CSQR2 comparison (Financials) 

 

Note that this phenomenon happened in the Financials sector, but it was not the case for all 

the sectors (see subsection 6.1 appendix). In fact, for example, the Consumer Staples and 

Health Care sectors had the opposite results during the Financial crisis, i.e., the CSQR 

models gave higher forecasts (in absolute value) than other models (figures 11 and 12, 6.1 

appendix). Indeed, as it is described in the next paragraph (Evaluation performance 

subsection), according to the different evaluation tests, the model that on average performed 

better during volatile periods, was not the CAViaR, but CSQR1 and CSQR2 instead.  

 

The final consideration is that the CAViaR model provides higher estimates in absolute value 

during stressed market conditions, however, the CSQR models did not overestimate the 

market risk as much as other models when the market was not stressed, and they were 

quicker to react and adjust new information from the market. 
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4.2 Beta estimates  

This subsection briefly presents the average 𝛽 estimates and the corresponding t-statistics 

found in the two cross-sectional models. As clarified before, these models involved  cross-

sectional quantile regressions where the parameters 𝛽 were estimated weekly. It may be 

useful, as other authors did in the past, to examine these estimates, their signs, and the 

respective t-statistics. Table 2 reports the average estimates of the parameters 𝛽 given by 

model CSQR1, and table 3 those by the model CSQR2. These results were obtained 

considering a 95% level of confidence, however similar results were found with 98% and 

99% CI. 

 

 constant SIZE BM GROWTH ROE BETA 

average 𝛽 -0.0544*** 0.0022*** -0.0020*** -0.0025*** -0.0003 -0.0095*** 

t-stat -25.1996 8.5049 -3.9910 -6.6139 -0.9435 -12.1791 

Table 2: Summary statistics model CSQR1 

 

From this table, one may notice that all the covariates in model CSQR1 are significantly 

different from zero at a 99% level of confidence, except for the covariate ROE. For the 

correct interpretation, recall that the Value-at-Risk in this thesis is expressed in terms of 

returns (i.e., negative values of VaR). The average parameter sign of the factor SIZE is 

positive (0.0022), indicating that bigger companies by market capitalization, tend to have 

higher Value-at-Risk threshold (i.e., decrease the VaR in magnitude). On the other hand, the 

smaller companies have lower Value-at-Risk, and this is due to the fact the smaller 

companies are usually riskier than the bigger ones. The average parameter of factor BM 

showed a negative sign (-0.0020), indicating that value companies (those with high book-to-

market ratios) tend to have lower VaR, or in other words, tend to have higher risk. This 

means that higher values of book-to-market ratio are perceived as riskier. From the same 

table, Value-at-Risk tend to decrease with GROWTH, since the average parameter sign is 

negative (-0.0025). This intuitively indicates that the firms that direct their revenues towards 

high-growth projects are more likely to experience monetary losses, or in other words, they 

are riskier. Finally, the average VaR decreases with BETA (-0.0095). A higher BETA indicate 

that the firm’s returns are more sensitive to market movements, and for this reason, it is 

intuitive to expect a negative sign for this parameter. Another consideration is regarding the 
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size of the parameters. Indeed, since all the variables were normalized, one may compare 

their size.  BETA has the highest coefficient, and SIZE, BM, and GROWTH have similarly 

sized coefficients. 

 

 constant MEAN1 MEAN2 VOL SKEW 

average 𝛽 -0.0539*** 0.0026*** 0.0004 -0.0179*** 0.0001 

t-stat -26.8517 5.5991 1.3982 -21.2443 0.2826 

Table 3: Summary statistics model CSQR2 

 

Table 3 reports the average of the parameters estimated in model CSQR2 and the respective 

t-statistics. The covariates MEAN1 and VOL resulted to be significantly different from zero 

at 99% level of confidence. The variable VOL is the one with the biggest highest size, while 

MEAN2 and SKEW have similar size coefficients. The sign of the average parameters of 

MEAN1 is positive (0.0026), meaning that companies with higher mean (calculated over 

weeks t-26 to t-1) tend to have higher VaR (i.e., smaller VaR in magnitude). On the other 

hand, companies with lower mean tend to have lower VaR, meaning they are perceived as 

riskier. Finally, as expected, the average parameter sign of VOL is negative (-0.0179), 

meaning that firms with higher standard deviation (over weeks t-52 to t-1) tend to decrease 

the Value-at-Risk, or in other words, they are perceived as riskier.  
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4.3 Evaluation performance  

The following section presents the results obtained after having performed the most common 

Value-at-Risk evaluation techniques: percentage of violations, Score value, POF test, TUFF 

test, TBF test, and CCI test. The out-of-sample analysis covered the period from 2 January 

2000 until 26 December 2021. Weekly VaR estimates were considered. 

 

4.3.1 Performance summary  

All the tests were performed for each model and for each individual sector. All detailed 

results can be found in table 13 of the appendix. Instead, table 4 shows a summary of the 

results obtained. Table 4 displays the results with an analysis of the VaR models with a 95% 

of confidence level. 

 

2000-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF  

test 

CCI  

test 

HS 5.5908 0.3955 0 11 9 0 2 

NORMAL 5.0919 0.38378 0 11 9 0 3 

CAVIAR 5.3532 0.3644 4 10 9 0 10 

CSQR1 4.4663 0.3566 2 7 8 1 10 

CSQR2 4.9572 0.3530 5 7 10 3 11 

Table 4: Summary out-of-sample S&P500 sectors VaR evaluation (95% CI) 

 

The first column called Viol.%  represents the mean of the proportion of times that the actual 

losses of the 11 S&P500 sectors exceeded the estimated Value-at-Risk threshold, or in other 

words, it represents the percentage of violations given on average by each method across the 

11 S&P500 sectors. Ideally, the percentage of violations should be close to the chosen 

confidence level. In this case, it should be close to 5%. It can be observed that the model that 

adapts best to the data on average is the CSQR2, with a percentage of violations closest to 

5%. The worse method is the Historical one, with 5.59% of violations, meaning that it 

underestimates the market risk.  
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The second column, called Average score, represents the average of the Score value across 

the 11 sectors. According to the Score function, the best estimate model is still the CSQR2 

(with a 0.353 average score) followed by the CSQR1 (with a 0.356 average score), meaning 

that it provides estimates with the lowest distance between the fitted quantile and the actual 

data. A lower score indicates a better performance of the VaR model in estimating the desired 

𝛼-quantile. Therefore, when the score function is at its lowest for a specific VaR model, it 

means that the model has achieved the best possible fit to the data, and it is more accurate in 

forecasting the quantile at the given probability level. In other words, a lower score implies 

that the predicted quantiles are closer to the observed values, indicating better forecasting 

accuracy of the VaR model. 

 

The third column, named Score winner, represents the number of times that that model was 

the best-performing one in a specific sector. For example, the Historical VaR was never the 

best model, therefore the number of times it resulted to be the best-performing model is zero. 

As shown in the table, the CSQR2 was the best model in 5 sectors out of 11, while the 

CAViaR was the best model in 4 sectors.  

 

Columns 4 to 8 present the results obtained from each test. To be more precise, they report 

the number of sectors where that specific model was accepted. For example, table 4 reports 

a number 11 in the CCI test for the CSQR2 model. This means that in 11 out of 11 models 

that specific model was accepted. Therefore, it suggests that the model was good. 

According to the TUFF, TBF, and the CCI test, the model that performed the best most of 

the time was the CSQR2. This model was accepted 10 out of 11 times in the TUFF test, 3 

out of 11 times in the TBF test and 11 out of 11 times in the CCI test. When the POF test is 

accepted, it means that the test statistic is less than the critical value and the VaR model 

accurately estimates the VaR. Accepting the CCI test means failing to reject the null 

hypothesis, which states that the exceedances are independent of each other. This implies 

that there is no evidence to suggest that the observed exceedances deviate significantly from 

what is expected under the assumption of independence. In other words, the test indicates 

that the exceedance rate and the patterns of exceedances in the data are consistent with what 

would be expected under the null hypothesis.  
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A final consideration is that almost no model passed the TBF test. Indeed, the cross-sectional 

models were the only ones to be accepted by the TBF test. CSQR2 is still the model that was 

accepted the most among all the models. When a model fails to reject the TBF test, it means 

that the violations do not seem to be correlated. This means that the cross-sectional models 

are the only models that showed uncorrelated results, and the CSQR2 is the model that 

showed more times uncorrelated results with respect to other models. 

 

According to this analysis, the CSQR2 is the most accurate model to predict market risk. 

This can be attributed to the additional information provided by the cross-sectional 

regression which is then used in the forecast of the Value-at-Risk.  

 

Tables 5 and 6 below performed all the tests for the 98% and 99% VaR-s. 

 

2000-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI test 

HS 2.9142 0.2203 0 5 8 0 0 

NORMAL 3.1517 0.2110 0 1 10 0 0 

CAVIAR 2.6449 0.1948 1 7 7 0 1 

CSQR1 1.6155 0.1831 3 5 10 4 6 

CSQR2 3.1517 0.1806 7 6 11 5 6 

Table 5: Summary out-of-sample S&P500 sectors VaR evaluation 2000-2021 (98% CI) 
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2000-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI test 

HS 1.7342 0.1358 0 3 9 0 5 

NORMAL 2.3282 0.1366 0 0 8 0 1 

CAVIAR 1.5996 0.1202 1 5 5 1 7 

CSQR1 0.7602 0.1120 3 7 9 6 5 

CSQR2 0.8394 0.1096 7 7 9 5 6 

Table 6: Summary out-of-sample S&P500 sectors VaR evaluation 2000-2021 (99% CI) 

 

Similar results are found with 98% and 99% level of confidence. Indeed, according to both 

tables, the model with the lowest average score was CSQR2 followed by CSQR1. As before, 

according to TUFF, TBF, and CCI tests, the CSQR2 model is the one that was accepted most 

of the time across all the S&P500 sectors. Even according to the percentage of violations, 

the cross-sectional models are the ones that gave closer results to the specific significance 

level. 

 

4.3.2 Performance summary during Financial Crisis 

Table 7 summarizes the evaluation performance of the models during the financial crisis. 

The out-of-sample analysis covers the period from 7 January 2007 to 2 January 2011.  

 

2007-2011 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI test 

HS 8.0035 0.6020 0 6 11 0 7 

NORMAL 6.9595 0.5543 0 10 11 1 7 

CAVIAR 7.7860 0.5107 0 6 11 3 10 

CSQR1 6.6551 0.4519 1 7 11 6 9 

CSQR2 7.0030 0.4315 10 8 11 8 10 

Table 7: Summary out-of-sample S&P500 sectors VaR evaluation 2007-2011 (95% CI) 
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Based on these findings, even in times of high volatility periods like during the Financial 

crisis period, the cross-sectional methods show better results. Indeed, according to the 

Average score and the Score winner, for all the 11 sectors, the cross-sectional methods were 

the best to predict the risk. More precisely, in 10 out of 11 sectors, the best model resulted 

to be the CSQR2, and the CSQR1 was the best one for the remaining sector. Furthermore, 

the CSQR2 was the best model even according to the TBF, and CCI tests. Indeed, the TBF 

test was accepted in 8 out of 11 sectors, and the CCI test in 10 out of 11 tests. According to 

the POF test, the CSQR2 showed good results, with 8 out of 11 acceptances. Also, an 

important consideration from Viol.% is that all the models showed a higher percentage of 

violations than 5%, meaning that all the models underestimated the risk. The additional 

findings presented in the appendix, corresponding to confidence levels of 98% and 99%, 

align closely with those reported above for the 95% confidence level (subsection 6.3 

appendix). 

 

4.3.3 Performance summary during Covid Pandemic 

The next table summarizes the evaluation performance of the models during the Covid 

period. The out-of-sample analysis is performed on the weekly returns of each S&P500 

sector, and it covers the period from 3 June 2018 to 26 December 2021.   

 

2018-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI test 

HS 5.5907 0.5030 0 11 11 3 9 

NORMAL 4.6667 0.5048 0 11 11 1 9 

CAVIAR 6.1254 0.4405 2 10 11 9 11 

CSQR1 5.9796 0.4160 8 10 11 10 11 

CSQR2 6.3685 0.4304 1 9 11 10 11 

Table 8: Summary out-of-sample S&P500 sectors VaR evaluation 2018-2021 (95% CI) 

 

According to this analysis, the best-performing models during the Covid period were still 

the cross-sectional methods. Similar results were found in Table 4. Indeed, the CSQR1 
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presents on average the lowest Score values, and it is the method that is accepted the most 

across the sectors in TBF and CCI tests. To be more precise, CSQR1 and CSQR2 were the 

best-performers in 9 out of 11 sectors. Subsection 6.3 of the appendix shows the results 

during the Covid Pandemic for 98 and 99% CI. 

 

To conclude, based on the out-of-sample analysis performed from 2000 to 2021, the cross-

sectional methods were the models that performed better. Furthermore, during highly 

stressed market conditions like the Financial Crisis and the Covid Pandemic, the cross-

sectional methods were even more reliable. 
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4.3.4 CAViaR, CSQR1, and CSQR2 for each sector 

This paragraph covers the evaluation performance of CAViaR and CSQR models for each 

equally weighted sector in the S&P500 index. The aim is to investigate the sectors that 

showed the best results, those that showed the worst results, and see if there is consistency 

among the different models. 

 

2000-2021 Viol. % Score value POF test TUFF test TBF test CCI test 

Energy 5.2265 0.4954 accept accept reject accept 

Materials 4.8781 0.3745 accept accept reject accept 

Industrials 6.3589 0.3572 reject accept reject accept 

Consumer 

Discretionary 

6.1847 0.3788 accept accept reject accept 

Consumer 

Staples 

4.9652 0.2359 accept accept reject reject 

Health Care 5.5949 0.2940 accept accept reject accept 

Financials 5.8362 0.3923 accept accept reject accept 

Information 

Technology 

4.6167 0.4233 accept reject reject accept 

Communication 

Services 

5.1394 0.3602 accept reject reject accept 

Utilities 5.5749 0.3080 accept accept reject accept 

Real estate 4.5296 0.3889 accept accept reject accept 

Table 9: CAViaR method for each S&P500 sector 2000-2021 (95% CI) 

According to these findings, the CAViaR model performed the best in the Consumer Staples 

sector, with a Score value of 0.2359 and with a percentage of violations very close to the 

desired 5% (4.97%). The worst performance was for the Energy sector, with a Score value 

of 0.4954. 

 

2000-2021 Viol. % Score value POF test TUFF test TBF test CCI test 

Energy 9.5819 0.5136 reject accept reject accept 

Materials 4.4425 0.3631 accept accept reject accept 

Industrials 3.8328 0.3322 accept accept accept accept 

Consumer 

Discretionary 

4.0070 0.3536 accept reject reject accept 
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Consumer 

Staples 

1.8293 0.2596 reject accept reject accept 

Health Care 2.6132 0.3016 reject accept reject reject 

Financials 4.7038 0.3719 accept reject reject accept 

Information 

Technology 

4.3554 0.4081 accept reject reject accept 

Communication 

Services 

3.5714 0.3277 reject accept reject accept 

Utilities 3.9199 0.3018 accept accept reject accept 

Real estate 6.2718 0.3900 accept accept reject accept 

Table 10: CSQR1 method for each S&P500 sector 2000-2021 (95% CI) 

 

Even according to these results, the sector where the CSQR1 model performed better in the 

Consumer Staples sector, with a Score value of 0.2596. However, the percentage of 

violations is 1.83% which is very far from the desired 5%. Even the worst performance was 

again for the Energy sector, with a Score value of 0.5136. 

 

2000-2021 Viol. % Score value POF test TUFF test TBF test CCI test 

Energy 8.6237 0.5055 reject accept reject accept 

Materials 5.0523 0.3532 accept accept accept accept 

Industrials 5.1394 0.3293 accept accept reject accept 

Consumer 

Discretionary 

4.1812 0.3534 accept accept accept accept 

Consumer 

Staples 

2.2648 0.2507 reject accept reject accept 

Health Care 2.7875 0.3060 reject accept reject accept 

Financials 5.8362 0.3591 accept accept reject accept 

Information 

Technology 

4.2683 0.4102 accept accept reject accept 

Communication 

Services 

3.8328 0.3307 accept reject reject accept 

Utilities 4.6167 0.2940 accept accept accept accept 

Real estate 7.9268 0.3912 reject accept reject accept 

Table 11: CSQR2 method for each S&P500 sector 2000-2021 (95% CI) 
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Finally, even according to the last table, the CSQR2 model performed better in the Consumer 

Staples sector, with a Score value of 0.2507. However, even in this case, the percentage of 

violations is far from the desired 5% (2.26%). As before, the worst performance was for the 

Energy sector, with a Score value of 0.5055. 

 

Summarizing the last three tables, the final consideration is that all three models (the 

CAViaR, the CSQR1, and the CSQR2) performed better in the Consumer Staples sector and 

performed the worst in the Energy sector. 

 

4.3.5 Summary results value-weighted 

This subsection reports the summary results across the 11 value-weighted S&P500 sectors, 

meaning that each firm in the sector was weighted by its market capitalization. The aim is to 

shows that the previous results can be extended also in the value-weighted case. 

 

2000-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF  

test 

CCI  

test 

HS 5.5908 0.3605 0 11 9 0 3 

NORMAL 5.0998 0.3524 0 11 10 0 2 

CAVIAR 5.1156 0.3406 3 11 9 1 8 

CSQR1 4.6246 0.3348 1 6 9 2 10 

CSQR2 5.1156 0.3289 7 4 10 4 10 

Table 12: Summary S&P500 sectors VaR evaluation (95% CI) value-weighted 

 

According to the average score, the score winner, the TUFF, TBF, and CCI test, the most 

accurate model to predict the risk from 2000 to 2021 was the CSQR2 model. Indeed, this 

model was the one presenting the lowest score on average across all the sectors (0.3289, 

second column), and it was the model with the lowest score function in 7 out of 11 sectors 

(see third column ‘Score winner’). According to the TUFF and CCI tests (fifth and seventh 

column respectively), CSQR2 was accepted in 10 out of 11 sectors. Finally, according to the 

TBF test, it was accepted the most among all the other models.  
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5 Conclusions 

The aims of risk management are to help companies to identify and to control the risks that 

may negatively impact their operations. The final goal is to decrease monetary losses due to 

unpredictable events. The most popular and used method to evaluate market risk is the 

Value-at-Risk. This standardized tool is based on a mathematical and statistical model 

developed at the beginning of the 1990s in the financial industry to provide a company’s 

management with a single number that could quickly and easily explain the risk of an asset 

or portfolio. From those years, many different models were proposed to find the Value-at-

Risk. This thesis analyzed the performance of five different methods: Historical VaR, 

Normal VaR, CAViaR model, and two cross-sectional quantile regression models. The first 

two models are the most common and simple models. CAViaR is a model introduced by 

Simone Manganelli (2004), where rather than modeling the entire distribution, the quantile 

is modeled directly using a conditional autoregressive quantile specification. The last two 

models are simple models based on quantile regression with a cross-sectional approach. In 

other words, to find the VaR of a specific firm were used data of other firms in the same 

sector. This additional information from other companies in the same sector may help the 

risk manager to assess the market risk in a more efficient way. 

 

An out-of-sample analysis was performed from 2 January 2000 until 26 December 2021, 

with 95%, 98%, and 99% levels of confidence. The objects of the analysis were the 11 

S&P500 equally weighted sectors. The models that gave better results for all the levels of 

confidence were the cross-sectional ones. More importantly, the same analysis was 

conducted individually during two subperiods, during the Financial Crisis and the Covid 

Pandemic, finding the same outperforming results by the cross-sectional models. Indeed, in 

both periods, the cross-sectional methods showed a highly superior forecasting performance 

with respect to the other models. Due to the incorporation of the data from other firms in the 

cross-sectional regression, this model rapidly adapted its VaR estimates to market shocks, 

leading to a more accurate prediction of market risk. Finally, the same results were consistent 

with the value-weighted S&P500 sectors.  
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6 Appendix 
 

6.1 CAViaR, CSQR1, CSQR2 plots S&P500 sectors 
 

 
Figure 7: Energy 

 

 
Figure 8: Materials 

 

 
Figure 9: Industrials 
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Figure 10: Consumer Discretionary 

 

 
Figure 11: Consumer Staples 

 

 
Figure 12: Health Care 
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Figure 13: Communication Services 

 

 
Figure 14: Financials 

 
Figure 15: Information Technology 
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Figure 16: Utilities 

 

 
Figure 17: Real Estate 
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6.2 Detailed results  
 

 2000-2021 Viol. % Score value POF  

test 

TUFF  

test 

TBF 

 test 

CCI 

test 

Energy HS 6.0105 0.5468 accept accept reject reject 

 NORMAL 5.0523 0.5219 accept accept reject reject 

 CAVIAR 5.2265 0.4954 accept accept reject accept 

 CSQR1 9.5819 0.5136 accept accept reject accept 

 CSQR2 8.6237 0.5055 reject accept reject accept 

Materials HS 5.7491 0.3974 reject accept reject accept 

 NORMAL 5.0523 0.3909 accept accept reject reject 

 CAVIAR 4.8780 0.3745 accept accept reject accept 

 CSQR1 4.4425 0.3631 accept accept reject reject 

 CSQR2 5.0523 0.3532 accept accept reject accept 

Industrials HS 5.4878 0.3756 accept accept reject accept 

 NORMAL 4.9652 0.3676 accept accept accept accept 

 CAVIAR 6.3589 0.3572 reject accept reject accept 

 CSQR1 3.8328 0.3322 accept accept reject reject 

 CSQR2 5.1394 0.3292 accept accept reject accept 

Consumer  HS 5.1394 0.4157 reject accept reject accept 

Discretionary NORMAL 4.9652 0.4068 accept accept accept accept 

 CAVIAR 6.1847 0.3788 accept accept reject accept 

 CSQR1 4.0070 0.3536 accept accept reject accept 

 CSQR2 4.1812 0.3534 accept accept reject reject 

Consumer  HS 5.7491 0.2551 accept accept reject reject 

Staples NORMAL 4.7038 0.2480 accept accept reject accept 

 CAVIAR 4.9652 0.2359 accept accept reject reject 

 CSQR1 1.8293 0.2596 accept reject reject accept 

 CSQR2 2.2648 0.2507 accept accept accept accept 

Health Care HS 5.2265 0.3162 accept accept reject reject 

 NORMAL 4.6167 0.3067 accept accept reject reject 

 CAVIAR 5.5749 0.2940 accept accept reject accept 

 CSQR1 2.6132 0.3016 accept accept reject reject 

 CSQR2 2.7875 0.3060 reject accept reject accept 

Financials HS 5.6620 0.4419 reject accept reject accept 

 NORMAL 5.2265 0.4206 accept accept reject reject 

 CAVIAR 5.8362 0.3923 accept accept reject accept 

 CSQR1 4.7038 0.3719 accept accept reject reject 

 CSQR2 5.8362 0.3591 accept accept reject accept 
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Information  HS 5.2265 0.4384 reject accept reject reject 

Technology NORMAL 4.7909 0.4330 reject accept reject accept 

 CAVIAR 4.6167 0.4233 accept reject reject accept 

 CSQR1 4.3554 0.4081 accept accept reject reject 

 CSQR2 4.2683 0.4102 accept accept reject reject 

Communication  HS 5.7491 0.3822 accept accept reject accept 

Services NORMAL 5.5749 0.3650 accept reject reject accept 

 CAVIAR 5.1394 0.3602 accept reject reject accept 

 CSQR1 3.5714 0.3277 accept accept reject accept 

 CSQR2 3.8328 0.3307 accept reject reject accept 

Utilities HS 6.1847 0.3284 accept reject reject accept 

 NORMAL 5.6620 0.3259 accept reject reject accept 

 CAVIAR 5.5749 0.3080 accept accept reject accept 

 CSQR1 3.9199 0.3018 accept reject reject accept 

 CSQR2 4.6167 0.3307 accept accept reject accept 

Real estate HS 5.3136 0.4527 accept reject reject accept 

 NORMAL 5.4007 0.4351 accept reject reject accept 

 CAVIAR 4.5296 0.3887 accept accept reject accept 

 CSQR1 6.2718 0.3900 accept reject reject accept 

 CSQR2 7.9268 0.3912 reject accept reject accept 

Table 13: HV, NORMAL, CSQR1, CSQR2 for all S&P500 sectors 2000-2021 (95% CI) 
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6.3 Summary results 98% and 99% CI during stressed market conditions 
 

 

2007-2011 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF  

test 

CCI 

 test 

HS 4.3497 0.3401 0 5 11 0 8 

NORMAL 4.6977 0.3115 0 4 11 1 9 

CAVIAR 4.3062 0.2817 0 5 11 0 8 

CSQR1 2.1749 0.2121 1 10 11 11 11 

CSQR2 2.5228 0.1990 10 8 11 10 11 

Table 14: Summary out-of-sample S&P500 sectors VaR evaluation 2007-2011 (98% CI) 

 

2007-2011 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI  

test 

HS 2.5228 0.2116 0 8 11 0 9 

NORMAL 3.8278 0.2031 0 0 11 0 9 

CAVIAR 2.3923 0.1707 0 8 11 3 9 

CSQR1 0.8699 0.1188 2 6 11 10 11 

CSQR2 1.0439 0.1111 9 9 11 10 11 

Table 15: Summary out-of-sample S&P500 sectors VaR evaluation 2007-2011 (99% CI) 
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2018-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI  

test 

HS 3.0141 0.3170 0 11 11 0 10 

NORMAL 3.0627 0.3122 0 11 11 0 10 

CAVIAR 3.1113 0.2363 3 11 11 4 10 

CSQR1 2.8683 0.2202 8 10 11 8 11 

CSQR2 2.9655 0.2298 0 10 11 10 11 

Table 16: Summary out-of-sample S&P500 sectors VaR evaluation 2018-2021 (98% CI) 

 
2018-2021 Viol. % Average 

score 

Score 

winner 

POF 

test 

TUFF 

test 

TBF 

 test 

CCI 

 test 

HS 2.0418 0.2017 0 11 11 3 11 

NORMAL 2.5766 0.2266 0 9 11 0 10 

CAVIAR 1.9932 0.1445 5 10 11 9 10 

CSQR1 1.5071 0.1358 4 10 11 9 10 

CSQR2 1.6529 0.1404 2 10 11 7 11 

Table 17: Summary out-of-sample S&P500 sectors VaR evaluation 2018-2021 (99% CI) 

 

6.4 GICS codes 

 
Energy 

 

Materials Industrials Consumer 

Discretionary 

Consumer 

Staples 

Health 

Care 

Financials Information 

Technology 

Communication 

Services 

Utilities Real 

Estate 

10 15 20 25 30 35 40 45 50 55 60 

Table 18: GICS codes for S&P500 sectors 
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