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Abstract

This study examines the nature and background to the Credit Value Adjustment(CVA),

a concept that has gained focus due the it’s heightened importance for financial insti-

tutions subsequent to the 2008 financial crisis. CVA can be defined as the the price

that should be added to the bilateral defaultable contract to adjust for the existing

Counterparty Credit Risk (CCR) so that the contract will have the same value as a

corresponding risk-free contract. This thesis aims to derive and implement a CVA

measure of a Credit Default Swap (CDS) under the presence of Wrong Way Risk

(WWR). The Credit Default Swap is roughly an insurance against potential losses

suffered from a default of an obligor, typically a company or a sovereign state , often

denoted by the reference entity. The CDS contains of the buyer and seller of the CDS,

and the reference entity. The buyer of protection has to pay a quarterly payment to

the seller of protection, which in turn has to pay a nominal amount to the buyer in

the case of default of the reference entity. In this setting, WWR can be defined as

the risk of a negative relationship between the reference entity and the sellers credit

quality. We are using the semi-analytical expression derived in Herbertsson (2023)

to examine CVA under different values parameters correlation and default intensity,

which is the default rate for a certain time period conditional on no earlier default.

In line with Arismendi-Zambrano et al. (2022), the results show that CVA is increas-

ing with both parameters. An additional two studies are made on the time-series

CVA. The first one exhibited an increase in CVA losses during the 08’ crisis and the

Europen Debt Crisis. Furthermore, we examine the time-series CVA under different

values of correlation which confirmed a positive relationship between them.

Keywords: Credit Value Adjustment, Counterparty Credit Risk, Wrong Way Risk,

Credit Default Swap, Semi-Analytical Model, Interest Rate Swap
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1 Introduction

Despite the prolific focus on the financial crisis of 07’-09’, both in academia and

the media, the majority of the coverage has been on the credit losses derived from

defaults. However, in the context of increased securitization in the financial markets

and the subsequent growing markets of derivatives, an increasingly important element

in the modeling of credit risk are the losses stemming from the deterioration of credit

quality. Naturally, these can cause considerable devaluations in financial institutions’

portfolios. In fact, a substantial portion of the losses, and as much as two thirds

of the losses endured during the crisis did not stem from actual defaults, but rather

from losses derived from the write-downs of outstanding derivatives. This was in turn

caused by the increase in probability of default of counterparties.

According to the Basel Committee, Credit Value Adjustment ("CVA") risk, is defined

as "the risk of losses arising from changing CVA values in response to changes in

counterparty credit spreads and market risk factors that drive prices of derivative

transactions" (BCBS 2019b). It can also be described as the difference between

the value of a portfolio when the counterparty is default-free and the value of the

portfolio having adjusted for the counterparties risk of default. Counterparty Credit

Risk ("CCR") is shortly defined as the risk that the counterparty to a transaction

could default before the final settlement of the transaction’s cash flows (BCBS 2019a).

A credit default swap is a contract which gives protection against the losses suffered

from the default of a certain obligor, sometimes denoted as the reference name. The

CDS involves the seller of the swap, the buyer of the CDS and the reference entity.

The buyer of the CDS has to pay a quarterly payment to the seller of the swap,

which in turn has to pay a nominal amount to the buyer in the case of default of the

reference entity before the maturity. This is central to the thesis as we use a semi-
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analytical model derived by Herbertsson (2023) for CVA on a Credit Default Swap

in the presence of Wrong way Risk by performing three different numerical studies.

Wrong Way Risk is another concept which will play a vital role in this thesis go-

ing forward. Much like CVA risk, WWR has gained significant attention following

the 2008 financial crisis. Wrong Way risk refers to the potential negative correla-

tion between credit exposure and counterparty credit quality. If WWR is not taken

into account when valuing derivatives, it can lead to an underestimation of the CVA

measure. Several studies, including Brigo and Capponi (2008), Brigo, Morini, and

Pallavicini (2013), Arismendi-Zambrano et al. (2022) have demonstrated that incor-

porating WWR results in an increase in CVA. Černỳ and Witzany (2014) also show

that ignoring WWR in the CVA calculation of an interest rate swap can lead to a

nearly three-fold underestimation of the true CVA. Thus, ignoring wrong way risk

in the CVA calculation should be avoided. This is supported by our results which

are indicating that WWR and default correlation has a substantial impact on CVA

values.

Previous literature on the modelling of CVA on CDS contracts are scarce. The charac-

teristics of the derivatives contract inhibits the use of relatively straightforward CVA

models such as the ones used on interest rate swaps. However, Brigo and Chourdakis

(2009) develops a copula model on a CDS which follows a stochastic default intensity

process. The default intensity is the default rate at any point in time assuming that

the obligor has survived up to that point. By allowing the default intensity to follow a

stochastic process, Brigo and Chourdakis (2009) introduce spread risk into the model

in addition to the default risk. This thesis is different in the way that the default

intensity is kept constant, and our focus is on the modelling of correlation of default

times and its effect on CVA.

2



Brigo and Chourdakis (2009) correlates the default times between the counterparties,

but does so through correlating the associated uniforms of two exponential random

variables using a copula function. A copula is a function that connects multiple

marginal distributions, which creates a cumulative multivariate distribution function,

allowing for the modelling of dependence. There is advantages of doing it in the way of

Brigo and Chourdakis (2009), however, one drawback is that the model loses a big part

of their economic intuition. Therefore, we model the default times directly through

our copula, hence making the interpretation more explicit. Crépey, Jeanblanc, and

Wu (2013) also develops a Gaussian Copula model that can be used for dynamic

valuation and hedging of counterparty risk on credit derivatives. The Gaussian copula

model allows for the assessment of related model risk by comparing the CVA in their

Copula model with a common shocks model that accounts for wrong way risk by

allowing for the possibility of a common default of the reference entity and of the

counterparty. As opposed to Crépey, Jeanblanc, and Wu (2013) we do not benchmark

our model but sensitise it for different values of our correlation and default intensity

parameter.

Our contribution to the literature is twofold. Firstly, we study the time evolution of

CVA inspired by Arismendi-Zambrano et al. (2022), but on a Credit Default Swap

rather than on an Interest Rate Swap which is done in Arismendi-Zambrano et al.

(2022). The CDS adds on complexity as a third party is introduced into the contract.

Secondly, we use the semi-analytical CVA expression for a Gaussian copula derived in

Herbertsson (2023) to study the effects of WWR using different levels of correlation.

These contributions are achieved by answering the following set of research questions:

· How will Wrong Way Risk affect the value of a single CVA measure by changing

the correlation and default intensity parameters?
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· How did the time evolution of CVA progress throughout the 08’ crisis and the

European Debt Crisis?

· Would changes in the correlation parameter have had substantial impact on the

historic time evolution of CVA?

The thesis is organized as follows: In Section 2, central concepts that are necessary

for the comprehension of the rest of this paper such as credit risk, counterparty risk,

wrong way risk and credit default swaps are explained on a relative non-technical

basis. Section 3 outlines and explains different ways of modelling credit risk, such as

intensity based models. Section 4 pinpoints a general CVA valuation model, appli-

cable to any type of contract. In Subsection 5, the models derived from Herbertsson

(2023) are discussed. Subsequently, the numerical results will be presented and ana-

lyzed in Section 6 divided into three main sections. Lastly, in Section 7 we will discuss

and conclude this thesis.
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2 Central Concepts

In this section we aim at presenting and describing some central concepts that are vital

for the understanding of the topics that this thesis contains. Firstly, in Subsection 2.1

the concept of credit risk is explained. Moving on, Subsection 2.2 sets out to describe

the way in which counterparty risk exists within the context of a Credit Default Swap.

In the next section we also discuss the concept of wrong way risk, which was shortly

introduced previously. Lastly, Subsection 2.4 describes the nature of a Credit Default

Swap. The definitions that we use in this section is mainly taken from the sources of

Schmid (2002), Schönbucher (2003) and Brigo, Morini, and Pallavicini (2013).

2.1 Credit risk

Credit risk, although sometimes referred to as default risk, can be categorized into

default risk and spread risk. Default risk is intrinsically linked to the obligation of

a payment for which the obligor has to honor, i.e.,default risk can be defined as the

overall risk of loss that can be derived from the nonpayments from the obligor. In

extension, default risk can be divided into several sub-sections: Arrival risk, which

is a term for uncertainty whether a default will occur or not; timing risk, reffering

to the uncertainty about the precise time of default; recovery risk, describing the

uncertainty of the severity of losses if a default has happened; market risk, meaning

the risk of changes in the market price of assets that can default; default correlation

risk, describing the risk that several obligors default together during some specific

time period. In this thesis, an added focus will be on the default correlation risk,

as it´s being modelled by calculating the correlation between default times using

copulas.
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2.2 Counterparty Credit Risk

" Counterparty credit risk (CCR) is the risk that the counterparty to a

transaction could default before the final settlement of the transaction’s

cash flows. An economic loss would occur if the transactions or portfolio

of transactions with the counterparty has a positive economic value at the

time of default...CCR creates a bilateral risk of loss: the market value of

the transaction can be positive or negative to either counterparty to the

transaction. The market value is uncertain and can vary over time with

the movement of underlying market factors."

(BCBS 2019a)

Counterparty credit risk can be thought of as a subset of credit risk that gained

focus both from managers and regulators, since many of the losses incurred during

the 2007/2008 crisis resulted from events associated with counterparty credit risk.

Today, counterparty risk is considered by the majority of market participants as

the most essential financial risk. The concept of counterparty credit risk is vital to

understand as CVA is the main metric used to estimate marking losses on the market

due to exposure to CCR (International Settlements 2011).

Counterparty credit risk is the risk that one or both of the counterparties in a bilaterial

financial contract will not meet their contractual obligations. There are two aspects

which are specific for counterparty credit risk compared to traditional "loan-based"

credit risk: (1) The value of a derivatives contract in the future is uncertain, in most

cases significantly so. The value of a derivative at a potential default date will be

the net value of all future cashflows to be made under that contract which can be

positive or negative and is in models often seen as a stochastic process derived form

the random underlying cashflows; (2) Since the value of a derivatives contract can
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be positive or negative, counterparty risk is typically bilateral. In other words, in a

derivatives transaction, each counterparty has credit risk to the other. This bilateral

nature of counterparty risk has been a particularly important feature of the recent

credit crisis.

As the previous discussion indicates, an important distinction to make within the

context of CCR is the difference between the modelling of unilateral and bilateral

counterparty risk. In the modelling of bilateral risk it is assumed that both of the

parties of the contract carry the risk of default. However, as in the case of this thesis,

unilateral counterparty risk only assumes that it is the counterparty that can default.

Hence, the other party is treated as being risk-free and cannot default. While there

is no risk-free counterparty in reality, often, one of the counterparties are generally

much safer than its counterparty, making the assumption of unilateral counterparty

risk more realistic.

2.3 Wrong Way Risk

According to (Gregory 2010) the price of counterparty risk can generally be derived

from taking the probability of default of the counterparty times the expected exposure

and loss given default, with the crucial assumption that the terms are independent

of each other. If the default time, the exposure and loss given default are not sta-

tistically independent, which is the more realistic scenario then the analysis becomes

increasingly complex. If there is a dependence between any of the terms, either be-

tween expected exposure and probability of default or loss given default, it will create

a form of wrong way risk ("WWR"). The dependence means that it´s no longer

possible to multiply the expected value of the terms with each other. In the context

of the financial contract studied in this paper, i.e., a CDS, there would exist WWR if

there existed a strong relationship between the credit quality of the reference entity
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and the counterparty.

Quite evidently, if we have a US treasury bond as a reference entity in the CDS, with

the seller of protection being a US-based bank, the deterioration in credit quality of

the treasury bond would most likely be strongly correlated with the credit quality

of the US investment bank selling protection on the bond. Note that the correlation

can go both ways. A weakening of the economy, and in extension a weakening of its

bonds, could indicate a less profitable counterparty. The opposite is also true. The

default of a counterparty, especially a large one, could precipitate a weakening of the

economy. The WWR-correlation is even more true in the times of the "too big to

fail" where some banks are considered cornerstones in the financial markets due to

their extensive balance sheets. The direction of the dependence does not necessarily

matter, but it has to be understood and modelled properly in order for institutions

to not mismanage the risk of their credit portfolios. In practice, if wrong way risk is

not modelled correctly, the institution buying protection in the CDS, could end up

with a substantially smaller CVA than its true value, which in the case of a default of

the seller of CDS-protection will imply higher losses for the buyer of CDS-protection.

2.4 CDS description

In this subsection we explain the concept of Credit Default Swaps ("CDS") in more

detail. The notation and framework in this section closely follows that of Herbertsson

(2022) and Herbertsson (2023). The CDS is frequently traded and very liquid contract

where the underlying asset is typically bonds issued by the so called reference entity.

Due to the increased securitization of the financial markets there exists more complex

derivatives on portfolios of CDSs such as the CDS index, credit default swap option

(CDS swaptions), basket default swaps etc. However, this thesis only deals with the

traditional single name credit default swap. The CDS involves three parties which we

8



here denote A, B and C, as seen in Figure 1 where the structure of a CDS is clearly

illustrated. Counterparty A, also called the protection buyer, enters into the CDS

contract with the protection seller B in order to buy protection against the potential

credit losses on bonds issued by the reference entity C, within the coming T years.

The seller of the CDS, counterparty B, promises to cover credit losses suffered by

counterparty A at a possible default of C up to time T . As a compensation for this

hedge, A pays B a fee of R(T )N
4

quarterly until maturity, T , or τC , depending on

whichever takes place first, i.e. if default occurs before maturity or not.

A B

C

-

�

6

-

R(T )N
4

quarterly to min(T,τC)

Nℓ, credit-loss from C if τC < T

N=nominal insured
ℓ=credit loss in percent

τB=default time for B
τC=default time for C

Figure 1: The structure of a Credit Default Swap, where the seller of protection, B,

can default but the buyer of protection, A is risk-free, i.e., can not default.

Furthermore, we denote τC to be the default time of the underlying reference entity

of the CDS and τB the default time of the Counterparty B. In this thesis we make

the assumption that the protection buyer A, also called the investor, is default-free

and hence bear no credit risk. The settlement of the CDS spread R(T ) is done so

that, at inception, the expected present value of the cash flows between A and B

is equal under the risk neutral measure. Hence, R(T ) is then expressed as (see also

9



Herbertsson (2022) and Herbertsson (2023))

R(T ) =
E[1{τC≤T}D(τ)(1− ϕ)]∑4T

n=1 E[D(tn)
1
4
1{τ>tn} +D(τC)(T − tn−1)1{tn−1<τC<tn}]

(2.4.1)

where 1{τC≤T} is an indicator function which takes on the value of 1 if the default time

τC takes place before or at the maturity time T and zero otherwise. Furthermore,

D(t) is the discount factor given by D(t) = e−
∫ t
0 rsds where rt is the risk-free rate at

time t. The numerator in (2.4.1) is referred to as the default leg, which represents the

anticipated cash flow from B to A. Meanwhile, the denominator in (2.4.1) known as

the premium leg, which represents the expected cash flow from A to B in the form

of premiums. The part of the denominator D(τC)(T − tn−1)1{tn−1<τ<tn} in (2.4.1) is

often called the accrued premium which is payed to B in the case of a default before

T . By assuming that the recovery rate is constant and that the short term risk-free

rate, rt, is a deterministic function of time such that rt = r(t), it is possible to derive

R(T ) as (see e.g. in Herbertsson (2022), Herbertsson (2023))

R(T ) =
(1− ϕ)

∫ T

0
D(t)fτC (t)dt∑4T

n=1

(
D(tn)

1
4
(1− F (tn)) +

∫ tn
tn−1

D(s)(s− tn−1)fτC (s)ds
) (2.4.2)

where F (t) = P[τC ≤ tn], represents the default probability at time tn for the reference

entity C, while fτC (t) is the density of default time τC , and
∫ tn
tn−1

D(s)(s−tn−1)fτC (s)ds

is the accrued premium. Note that assuming that rt = r(t) is deterministic, then it

follows that the interest rate is not dependent of the default time τC (Herbertsson

2022). Under the assumption that: (1) the accrued premium is ignored, (2) If the

default is in the period [n−1
4
, n
4
], the loss is paid at time tn = n

4
, which is at the

end of the quarter rather than immediately at τC , then Herbertsson (2023) obtains a

semi-closed formula for R(T ) from (2.4.2) given by

R(T ) =
(1− ϕ)

∑4T
n=1 D(tn)

(
F (tn)− F (tn−1)

)∑4T
n=1(D(tn)(1− F (tn))

1
4

. (2.4.3)
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Hence, from (2.4.2) and (2.4.3) we clearly see that in order to compute R(T ) more

explicit, it is necessary to have a more specific model to compute the default time,

τC , and this will be discussed in the following section.

3 Credit Risk Modelling

From previous sections we concluded that we need more explicit models for default

times. This sections adds on to the previous sections about credit risk and it’s sub-

categories by introducing credit risk models that are traditionally used in the credit

risk industry. First, in Subsections 3.1., the firm-value model is explained, albeit

briefly. Secondly, Subsection 3.2, describes the concept of intensity-based models.

After having discussed the models of credit risk, Subsection 3.3 introduces Copulas

as a way of modelling dependence. Lastly the specifics of the Gaussian copula is

discussed.

According to McNeil, Frey, and Embrechts (2005) there exists two main methodolo-

gies to model credit risk. The first one being a firm-value Model, also referred to as a

structural model. The other being a so called reduced form model, which contains an

intensity based approach. The firm-value model stems from the Merton model but

has since then been revised and developed upon but at its core it relies on assump-

tions regarding the firm´s capital structure and assets. The default event is then

determined by a threshold based on the assets value. The reduced-form models relies

on exogenous and stochastic models to determine when a default event will occur.

3.1 Structural Models - Firm-Value Modelling

As previously mentioned, structural models are used to calculate the probability of

default for a firm using the balance sheet and the value of the assets and liabilities.
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The structural model is built on the assumption that a firm defaults when the value

of its debt exceeds those of its assets. The model uses the market value of the assets,

which is problematic on its own since one does not observe the market value of a

firm´s assets on the balance sheet, but rather the accounting value of it. However,

this is not the case for publicly traded companies for which both the market value of

the equity and liabilities are observable (Merton 1974).

The Merton model is set up in a similar way as the Black-Scholes model. The assets

in a firm has a value Vt and can be computed under risk neutral measure as

Vt = V0e
(r− 1

2
σ2)t+σWt

where σ is the the annual volatility for the asset, r is the risk-free interest rate and

Wt is a random variable that follows a standard Brownian motion (Lando 2004).

In the Merton model, it is assumed that a company has limited liability and has issued

two types of claims: debt and equity where the debt is a zero-coupon bond with face

value D and maturity T . We let the value of the bond at time t be denoted as Bt

and let St denote the value of the equity where 0 ≤ t ≤ T . Hence, the companies

corporate structure is

Assets = equity + debt or Vt = St +Bt

If the companies bond reaches maturity and the assets is larger than its debt, i.e.

VT > D, the owner of the company pays the holders of the bond. If the assets are

smaller than the debt at maturity T , i.e. Vt < D, the entity that owns the companies

equity will declare bankruptcy and hand over to the debt holders who recovers the

remaining assets instead of D. Note that in Merton Model, a default of the company

can only happen at maturity T when the company needs to pay back its debt (Lando

2004).
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There is however extensions to the Merton Model, such as the Black-Cox, (see Black

and Cox (1976) and Chapter 2 in Lando (2004)), where the company can default at

any time t when the assets of the company falls below its debt i.e. Vt < D(t). The

default time for a extended Merton model can than be defined as:

τ = inf{t > 0 : Vt ≤ D(t)} (3.1.1)

where Equation (3.1.1) implies that τ is equal to the first time t when Vt < D(t).

The Merton Model and its extension is one way to model default time. However, in

this thesis, we model default times using a so called intensity-based model.

3.2 Intensity-Based Modelling

There are several types of reduced-form models such as the intensity-based approach

or credit migrations models. The focus of this section will be on the intensity-based

approach and is built on the outlines presented in e.g. Herbertsson (2022), McNeil,

Frey, and Embrechts (2005) and Lando (2004). The expectations are computed under

a risk neutral probability measure. As will be seen from the subsequent sections of

this thesis, an absolute vital role in evaluating the respective conditional expectations

is had by the default intensity, which is also the starting point of the intensity based

approach.

In the intensity based model the probability of default is considered an unexpected

event and is modelled using a stochastic process. The modeling is based on a default

intensity λt which follows a stochastic process where for all t it holds that λt ≥ 0.

If we consider a single obligor with default time τ than the default intensity is the

arrival intensity of τ given market filtration Ft. Intuitively the market filtration Ft

is the flow of information in the market at time t which generates a default time τ

within a certain time period. So, conditional on the market information in Ft and
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time period [t, t + ∆t), where ∆t is "small", the default time τ will arrive within

the time period with approximately the probability λt∆t (Herbertsson 2022). The

next step is to give a rigorous mathematical definition for τ that satisfies the above

structure. We let (Xt)t≤0 be built on a d-dimensional stochastic process meaning

that Xt = (Xt,1, Xt,2, ..., Xt,d) where GX
t is the filtration which is generated by Xt i.e.

GX
t = σ(Xs; s ≤ t), where d is a integer (Lando 2004).

If we let λ be a positive function λ : Rd ! [0,∞) we define λt as a function of

Xt meaning that λt = λ(Xt). Lastly we consider a random threshold E1 to be a

random variable with a exponential distribution with parameter 1 which means that

E[E1] = 1. We let E1 be independent of (Xt)t≤0, so the default time can then be

defined as

τ = inf
{

t ≥ 0 :

∫ t

0

λ(Xs) ds ≥ E1

}
(3.2.1)

where τ will be equal to the first time the increasing default intensity λ(Xs) reaches

the random variable E1 (Lando 2004). This is the definition for the deafult time τ

using the intensity based model which is quite different compared with the definition

of the default time in the firm-value model in (3.1.1). The construction (3.2.1) which

generates random variable τ is visualized in Figure 2.
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Figure 2: The construction of τ with default threshold E1

(Herbertsson 2022, p.47)

The definition of τ gives us the tools to construct the survival probability which

is essential when estimating CVA. Given (3.2.1) and by using rules for conditional

expectations we have for u ≥ t that

P
[
τ > t

]
= E

[
1τ>t

]
= E

[
P
[
τ > t | GX

u

]]
= E

[
P
[ ∫ t

0

λ(Xs)ds < E1 | GX
u

]]
= E

[
1− P

[ ∫ t

0

λ(Xs)ds < E1 | GX
u

]]
= E

[
e−

∫ t
0 λ(Xs)

]
where the filtration GX

u is independent of E1 so

P[τ > t] = E
[
e−

∫ t
0 λ(Xs)ds

]
. (3.2.2)

In this thesis the default intensity is assumed to be constant, meaning that the integral

in the exponent in (3.2.2) is equal to
∫ t

0
λ(Xs)ds = λt resulting in the following

expression for the default distribution F (t) to τ ,

F (t) = P[τ ≤ t] = 1− P[τ > t] = 1− e−λt (3.2.3)
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which will be used to construct the probability of default in the following sections.

3.2.1 The Default Intensity and CDS Spread

As it was mentioned in Section 2.4 on the description of a CDS contract, they are

highly liquid instrument. Another important aspect of the CDS instrument and it’s

liquidity is that it is possible to calibrate the risk-neutral default probability from

it. This makes for an easy calibration of the intensity. Using that assumption,

Herbertsson (2022) derives and simplifies (2.4.3) to

R(T ) = 4(1− ϕ)(e
λ
4 − 1) (3.2.1.1)

Furthermore, as shown in Herbertsson (2022) in the case that λ is small, and then by

using a first-order Taylor-approximation, R(T ) can be simplified further to

R(T ) ≈ (1− ϕ)λ. (3.2.1.2)

If we assume that the CDS spread of the counterparty is observed on the market, given

by S(T ) than S is the market CDS-spread. Furthermore, if we want to calibrate our

models so that R(T ) = S and by making the assumptions stated above. Then (3.2.1.2)

implies that we can calibrate the default intensity λ from the market CDS-spread S

as follows

λ ≈ S

1− ϕ
(3.2.1.3)

where S is the market CDS spread and ϕ being the estimated recovery rate which

in turn implies that the expression in the denominator is the loss given default.

This is commonly referred to as the credit triangle which will be used in this thesis

to compute the default intensity. It is worth mentioning that there exist a term

structure for the market CDS spread where S(Ti) for i = 1, 4, 5, 7, (i.e. there exist

different CDS spreads for different maturities for the same asset in the market which
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creates a CDS-term structure). The most common way to adjust the model for the

term structure is to use piecewise constant default intensities using e.g. bootstrapping

which would calibrate the CDS spreads perfectly. However, under the assumption of

constant default intensities, the CDS spread is constant for all maturities meaning

that the existence of a term structure is ignored and only one market price for a

CDS is considered regardless of the maturity (Herbertsson 2022). In this thesis, the

term structure is ignored because of the assumption of constant default intensity

which makes it easier to compute the CVA for a CDS contract, however it is not very

realistic as the prices for a CDS is different for each maturity.

3.3 Dependency Models using Copulas

The copula approach has emerged as one of the most popular ways to model depen-

dence. In the following section we discuss copula as a concept and subsequently we

introduce a Gaussian copula which is used in this thesis. We can use these copulas in

combination with the default intensity model to produce a dependent CVA model.

3.3.1 Copula

Copulas provide a means of modeling dependence between multiple random variables.

They are functions that connect multiple marginal distributions, each of which is

uniform on an interval [0,1], to create a cumulative multivariate distribution function.

Sklar’s theorem, see Appendix (A.1), demonstrates that any multivariate distribution

function can be expressed as a copula, and that the copula representation is exclusive

when the marginal distributions are uninterrupted (McNeil, Frey, and Embrechts

2005).

Instead of specifying the multivariate distribution, we can use the copula function

to model dependence by indicating both the marginal function and the copula. Ac-
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cording to O’Kane (2008), when it comes to credit modeling, Fi(ti) represents the

likelihood of obligor i defaulting prior to time ti, that is Fi(ti) = P[τi < ti]. In this

context, the m-dimensional copula function C, which has m uniform marginals, and

due to Sklar’s theorem, can be characterized as follows:

C(F1(t1), F2(t2), ..., Fm(tm)) = P[τ1 ≤ t1, τ2 ≤ t2, ..., τm ≤ tm].

When analyzing portfolio credit risk, the concept of a copula is useful because it allows

for the direct calibration of an obligor’s default probability curve based on market

credit default swap (CDS) data, without having to take into account the dependence

structure (O’Kane 2008).

To summarize, Sklar’s theorem allows for the separation of the dependence structure

of the random variable X = (X1, ..., Xm) into two parts where the first part is the

marginal distributions Fi. The second part is the joint distribution of X which is

specified by the copula C. The copula is mainly used in applied multivariate analysis

because it completely describes the joint distribution of X = (X1, X2, ..., Xm) via

the marginal distributions Fi(x) = P[Xi ≤ x] for i = 1, 2, ...,m. (Brigo, Morini,

and Pallavicini 2013), see also McNeil, Frey, and Embrechts (2005). Therefore, the

copula ensure that we do not have to consider the dependency between the marginal

distributions and instead create the dependency using a copula.

3.3.2 Gaussian Copula model

Copulas can be classified into different types based on their parameters. One way

to broadly categorize them is into one-parameter and two-parameter copulas. The

former includes the Archimedean copula family and the well-known Gaussian copula,

which is the most commonly used copula in finance (Meissner 2013).

The Gaussian copula model assumes that the data follows a normal distribution, i.e.,
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Gaussian distribution, with a mean of zero and a standard deviation of one. This

model can be described for i = 1, 2, ....,m as

CGC(F1(t1), F2(t2), ..., Fm(tm)) = Φm(Φ−1(F1(t)),Φ
−1(F2(t)), ...,Φ

−1(Fm(t)))

(3.3.2.1)

where Φm(·) is the m-dimensional cumulative normal distribution (CDF) for a m di-

mensional normally distributed random variable and its inverse Φ−1(·) where Φ−1(Fi(t))

is the threshold of default (O’Kane 2008).

In O’Kane (2008) the relation (3.3.2.1) is obtained by first defining a default indicator

Xi for obligor i as a function of a common factor Z, which may represent the economic

environment, and an idiosyncratic factor Yi which is unique for each obligor. We

have a sequence of m random variables (Y1, Y2, ..., Ym) that all come from the same

distribution, which is a standard normal distribution. The variable Z also comes from

a standard normal distribution, but is independent of Y variables. Consequently, Xi

can be expressed as

Xi =
√
ρZ +

√
1− ρYi (3.3.2.2)

where we note that X will be a standard normal variable. The modelling of X can

be extended by assuming that the correlation parameter ρ can be correlated with

the economic environment Z differently for obligor i = 1, 2, ...,m, (see for example

Gregory and Laurent (2004)). The correlation parameter in (3.3.2.2) can therefore

be replaced with ρi and rewritten into

Xi =
√
ρiZ +

√
1− ρiYi. (3.3.2.3)

The next step is to find a definition for the default time τi in the intensity based

model relying on the works of O’Kane (2008) and Herbertsson (2022). If we define

Φ−1
(
Fi(t)

)
as the threshold for defaults where Fi(t) is the default distribution for
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obligor i and combine it with the default indicator from (3.3.2.3), then the default

time for each obligor i is defined as

τi = inf{t > 0 : Xi ≤ Φ−1
(
Fi(t)

)
}. (3.3.2.4)

This is the construction of default time τi using the intensity based approach and

Gaussian copula which tells us that default time τi equals the first time the random

level X is reached by the increasing threshold Φ−1
(
Fi(t)

)
. Based on the definition

for default intensity in (3.3.2.4) we know that the default time τi will not occur if

the stochastic process Xi is below or equal to the default threshold Φ−1
(
Fi(t)

)
. This

means that the probability of default i.e. the probability that the default time τi is

smaller or equal to t, can be expressed as

P
[
τi ≤ t

]
= P

[
Xi ≤ Φ−1

(
Fi(t)

)]
= Φ(Φ−1(Fi(t))) = Fi(t).

Given the default indicator in equation (3.3.2.3) and the definition of default time τi

in (3.3.2.4) we note that

τi ≤ t if and only if
√
ρiZ +

√
1− ρiYi ≤ Φ−1

(
Fi(t)

)
. (3.3.2.5)

The default time τi is therefore constructed through a dependency by the variable Z,

and the size of this dependency, i.e. correlation, is set by the correlation parameter ρi

which as previously mentioned is set individually for each obligor. Conditional on Z

the default times are independent meaning that the probability of default conditional

on Z can be written as

P[τ1 ≤ t, τ2 ≤ t, ..., τm ≤ t | Z] =
m∏
i=1

P[τi ≤ t | Z].

The next step is to find the conditional default probability P[τi ≤ t | Z] and first we

note from (3.3.2.5) that

τi ≤ t if and only if Yi ≤
Di(t)−

√
ρiZ√

1− ρi
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whch gives us that

P[τi ≤ t|Z] = P

[
Yi ≤

Φ−1
(
Fi(t)

)
−√

ρiZ√
1− ρi

∣∣∣Z].
Since Yi is a normally distributed random variable with a mean of zero and standard

deviation of one, i.e. Yi ∼ N(0, 1) and independent of Z, the default probability

conditional on Z P = [τi ≤ t | Z] can therefore be rewritten as

P[τi ≤ t|Z] = Φ

(
Φ−1

(
Fi(t)

)
−√

ρiZ√
1− ρi

)
(3.3.2.6)

which holds for τ1, ..., τm where m ≥ 2 and can be applied to multiple obligors. In

this thesis, two obligors, (i.e. m = 2), are being considered, however, recall that

counterparty A is risk free so only counterparty B and C has a probability of default

so i = B,C.

4 A General Credit Value Adjustment Formula for

Univariate Counterparty Credit Risk

The aim of this section is firstly to describe a CVA model in a more detailed way

compared to the non-technical intuitive introduction in Section 1 and 2. Additionally,

Subsection 4.1.1 and Subsection 4.1.2 derives an independent CVA model where the

correlation between default times are not modelled. It should be noted that both

Subsection 4.1 and 4.1.1 are general, or arbitrary, i.e., they can be applicable to any

type of derivative or portfolio of derivatives. Subsection 4.1.2 on the other hand is

strictly applicable to the valuation of a CDS. It is largely based on the mathematical

framework presented by Brigo and Chourdakis (2009) and Herbertsson (2023).
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4.1 The Valuation of Univariate Counterparty Risk

In this section we will closely follow the notation and setup presented in Herbertsson

(2022), as well in the papers of Brigo and Masetti (2005), Brigo and Capponi (2008),

Brigo and Chourdakis (2009) and Brigo, Morini, and Pallavicini (2013). Consider

any bilateral derivatives contract where it is assumed that one counterparty in the

bilateral contract is risk-free, meaning that the counterparty cannot default. In this

case the risk free party is denoted by A, the buyer of the derivatives contract, also

called the investor. However, the second party, B, which is the seller of the derivatives

contract, also called the counterparty is not risk-free and can subsequently default.

In this context it is only part A that faces counterparty credit risk. This is called

unilateral counterparty risk.

The default time of the counterparty B is denoted by τB , and let ϕB be the percent

recovery at default for the counterparty. Naturally, loss given default in percent can

be calculated as ℓB = 1− ϕB. From the investor A’s point of view, ΠD(t, T ) denotes

the discounted value from the derivatives contract between the counterparty B and

the investor A. The discounted value is derived from taking the sum of all discounted

cash flows payed from the counterparty to the investor in the period t to T . Moreover,

we denote the "default free" version of ΠD(t, T ) as Π(t, T ), which is the sum of all

discounted cash flows when assuming τB = ∞, i.e., the counterparty B will never

default. Moving on, we can define the net present value NPV(t,T) of the risk-free

cash flow as:

NPV (t, T ) = E
[
Π(t, T )|Ft

]
(4.1.1)

where Ft is the full information available at time t. The expectation is taken under

the risk neutral martingale measure, i.e. under the pricing measure. For s ≤ t let

D(s, t) denote the discount factor at time s for the maturity t. It is now possible to

give a detailed definition of ΠD(t, T ) in the context of the notation used above. Let
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(x)+ denote the part of x that is positive, that is (x)+ = max(x, 0). Note that in the

purpose of notational convenience, NPV (τB, T ) is written as NPV (τB). In the view

of the above notation and arguments, we then get that

ΠD(t, T ) = 1{τB>T}Π(t, T )+

1{t≤τB≤T}
[
Π(t, τB) +D(t, τB)(ϕ(NPV (τB))

+ − (−NPV (τB))
+)
]
.

(4.1.2)

Next we give a more detailed motivation of (4.1.2) and explain each term for them-

selves. The first part of Equation (4.1.2) tells us that if the default time is greater

than the time of maturity, that is, the counterparty does not default before time

T and τB > T then ΠD(t, T ) = Π(t, T ). In the other case, if the default time is

less than the time of maturity, i.e. if t ≤ τB ≤ T there is two scenarios, either

NPV (τB) > 0 or NPV (τB) ≤ 0. In the first case, if NPV (τB) > 0, the investor have

a positive exposure against the counterparty at the time of defualt, meaning that the

counterparty is owing NPV (τB) > 0 to the investor. Since NPV (τB) > 0 we know

that NPV (τB) = (NPV (τB))
+, which in turn means that −NPV (τB) < 0 so that

(−NPV (τB))
+ = 0. Moreover, as the counterparty defaults the investor will only be

able to recover a part of the value of the CDS, which is ϕNPV (τB).

Considering the second case, if NPV (τB) ≤ 0, it is instead the counterparty that has

a positive exposure to the investor at the time of default, meaning that the investor

instead owes the counterparty the amount of −NPV (τB) > 0 which has to be paid

to the counterparty at the time of default. It also follows that (−NPV (τB))
+ > 0

and (NPV (τB))
+ = 0. As a result the counterparty has to pay an amount of

(−NPV (τB))
+ > 0 to the investor. This explains the term −(−NPV (τB))

+ > 0

in (4.1.2) above. Taking the different terms into account it clearly proves the relation

in (4.1.2).
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4.1.1 The General Unilateral CVA Formula

Again, following the framework of Herbertsson (2022) and recalling (4.1.1) from pre-

vious section, with the notation as above we have that

E
[
ΠD(t, T )|Ft

]
= E

[
Π(t, T )|Ft

]
− (1− ϕ)E

[
1{t≤τB≤T}D(t, τB)(NPV (τB))

+|Ft

]
(4.1.1.1)

where the second term on the right hand side of (4.1.1.1)is non-negative:

E
[
1{t≤τB≤T}D(t, τB)(NPV (τB))

+|Ft

]
> 0 (4.1.1.2)

Furthermore, (4.1.1.1) and (4.1.1.2) implies that

E
[
ΠD(t, T )|Ft] ≤ E[Π(t, T )|Ft

]
.

The interpretation of last inequality is that the cash flows are smaller in the default-

case than the corresponding case where there is no default, which is reasonable of

course. Additionally, (4.1.1.1) tells us that the cash flows from the default-case is the

value of the cash flows in the case of a no-default subtracting the value of an option of

the quantity NPV(τB) with a strike of zero. Also, the term E
[
1{t≤τB≤T}D(t, τB)(NPV (τB))

+|Ft

]
from the right hand side of Equation (4.1.1.1), essentially helps the investor decide

how much they should add on to the part that is risky (default-case), E[ΠD(t, T )|Ft]

for them to make the value of the CDS to have the same value as a contract that is

risk free, i.e., without the default risk of the counterparty. Letting (4.1.1.1) we can

compute the quantitites E[ΠD(0, T )] for today, i.e., t = 0, as

E[ΠD(0, T )] = E
[
Π(0, T )

]
− (1− ϕ)E

[
1{τB≤T}D(0, τB)(NPV (τB))

+
]

which can be re-written as

(
1− ϕ

)
E
[
1{τB≤T}D(0, τB)(NPV (τB))

+
]
= E

[
Π(0, T )

]
− E

[
ΠD(0, T )

]
(4.1.1.3)
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The left hand side of (4.1.1.3) is the Credit Value Adjustment at time t = 0, which

we now denote as CV A0 so that

CV A0 =
(
1− ϕ

)
E
[
1{τB≤T}D(0, τB)(NPV (τB))

+
]

(4.1.1.4)

There are different ways to compute CVA0 over a specified time period, in this thesis

the bucketing approach is used. It’s possible to split the interval [0, T ] into a "grid"

or buckets 0 = t0 < t1 < t2 < ... < tJ , giving us the following equation

E
[
1{τB≤T}D(0, τB)(NPV (τB))

+
]

=
J∑

j=1

E
[
1{tj−1≤τB≤tj}D(0, τB)(NPV (τB))

+
]

=
J∑

j=1

E
[
1{tj−1≤τB≤tj}D(0, τB)(E[Π(τB, T )|FτB ])

+
]

(4.1.1.5)

where NPV(τB) is shorthand for NPV(τB, T ) for notational convenience, and

NPV (t, T ) = E
[
Π(t, T )|Ft

]
.

Note that for any bilateral derivatives contract, if our bucket grid has small intervals

[tj−1, tj] we can assume that the default time τB is replaced with the nearest tj bigger

than τB in the grid, i.e. we can use the approximation, which is

E[1{tj−1<τ≤tj}D(0, τB)(E[Π(τB, T ) | FτB ])
+] (4.1.1.6)

≈ E[1{tj−1<τ≤tj}D(0, tj)(E[Π(tj, T ) | Ftj ])
+]

Inserting (4.1.1.6) into (4.1.1.5) and using (4.1.1.4) we get that

E[ΠD(0, T )] ≈ E[Π(0, T )] (4.1.1.7)

− (1− ϕ)
J∑

j=1

E
[
1{tj−1≤τB≤T}D(0, tj)(E[Π(tj, T ) | Ftj ])

+
]
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In general, one has to rely on Monte Carlo Simulations in order to evaluate (4.1.1.7).

The exception to this case is if τB is independent of the random variable E[Π(tj, T ) | Ftj ]

as well as the interest rate. Since τB is independent of the random variable E[Π(tj, T ) | Ftj ],

it is possible to do further simplifications of the above formula since

E
[
1{tj−1<τB≤tj}D(0, τB)(E[Π(τ, T ) | FT ])

+
]

(4.1.1.8)

= P[tj−1 < τB ≤ tj]E
[
D(0, tj)(E[Π(tj, T )|Ftj ])

+
]
.

Moreover, we use the rule that P[tj−1 < τB ≤ tj] = P[τB ≤ tj]− P[τB ≤ tj−1]. Hence,

in the case that τB is independent of the random variable E[Π(tj, T ) | Ftj ] and the

interest rate, then the implication from (4.1.1.7) and (4.1.1.8) is that

E[ΠD(0, T )] ≈ E[Π(0, T )] (4.1.1.9)

− (1− ϕ)
J∑

j=1

P[tj−1 ≤ τB ≤ tj]E
[
D(0, tj)(E[Π(tj, T ) | Ftj ])

+
]

On the assumption that the default time is independent of the exposure, it is possible

to combine (4.1.1.4) and (4.1.1.9) in order to get

CV A0 ≈ (1− ϕ)
J∑

j=1

P[tj−1 ≤ τB ≤ tj]E
[
D(0, tj)(E[Π(tj, T ) | Ftj ])

+
]

(4.1.1.10)

Lastly, assuming that the interest rate is independent random variable Π(s, t) it is

possible to rewrite (4.1.1.10) as

CV A0 ≈ (1− ϕ)
J∑

j=1

P[tj−1 ≤ τB ≤ tj]E[D(0, tj)]E
[
(E[Π(tj, T ) | Ftj ])

+
]

(4.1.1.11)

Let us again note that this chapter can be applicable to any derivatives contract. In

the following section we derive the CVA model to take into account Wrong Way Risk

by modelling the correlation between τC and τB.
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5 A Semi-Analytical Model for CVA of a CDS under

WWR

In this section we outline the model derived in Herbertsson (2023) as a way to compute

a time-series CVA measure for equation (4.1.1.11) under wrong way risk, i.e., a model

that allows for a correlation between τB, and τC . This is the model that we implement

in Section 6. The semi-analytical model below is solely applicable to the derivative

of a CDS. Herbertsson (2023) develops a contagion model to study CVA on a CDS,

and then also uses a one-factor Gaussian copula model to compute the CVA of a

CDS as a benchmark to CVA-values obtained in the contagion model. The CVA

expression for the CDS and its derivations for the Gaussian copula model in this

thesis is taken from Herbertsson (2023). An important benefit of the model is its

semi-analytical nature, which eliminates the need for Monte Carlo simulations that

can be both computationally demanding and time-consuming.

We start by looking more closely on E[Π(t, T )|Ft] in equation (4.1.1.11). In the copula

model derived in Section 3.3.2 we have a dependency between the default time τC

and τB which results in the following definition for market filtration,

Ft = HC
t ∨HB

t ∨ σ(Z).

Recall that Z is a variable that drives the dependence between τB and τC . HC
t is

the filtration for counterparty C at time t, i.e. HC
t = σ(τC ≤ s; s ≤ t). HB

t is the

filtration for counterparty B at time t, i.e. HB
t = σ(τB ≤ s; s ≤ t), and σ(Z) is the

filtration for the economic environment Z. Hence, the dependence between τB and

τC is driven through common factors in the economic environment that affects both
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of the counterparties. From Herbertsson (2023) we have

E[Π(t, T )|Ft] =
−R(0, T )

4

nT∑
n=nt

D(t, tn)P[τC > tn|Ft] (5.1)

+ LGD(C)E[D(t, τC)1{t<τC<T}|Ft]

where the first step is to find an expression for P[τC > tn|Ft]. For s > t and given

market filtration Ft we have

P[τi > s|Ft] = E[1{τi>s}|Ft]

and that

P[τi > s|Ft] = 1{τi>tn}P[τi > s|Ft] = 1{τi>tn}E[1{τi>s}|Ft]

By the use of Lemma 1, (see (A.2) Appendix), in combination with filtration Hj
t ∨

σ(Z)where j ̸= i we then get

P[τi > s|Ft] = 1{τi>tn}
P[τi > s|Hj

t ∨ σ(Z)]

P[τi > t|Hj
t ∨ σ(Z)]

. (5.2)

However, note that conditional on the economic environment Z, default time τi and

τj are independent of each other and as a result, we then get

P[τi > s|Hj
t ∨ σ(Z)] = P[τi > s| σ(Z)] = P[τi > s| Z] (5.3)

and similarly, we have that

P[τi > t|Hj
t ∨ σ(Z)] = P[τi > t| σ(Z)] = P[τi > t| Z]. (5.4)

Inserting (5.3) and (5.4) and insert into (5.2), we have

P[τi > s|Ft] = 1{τi>tn}
P[τi > s|Z]
P[τi > t|Z]

which could also be rewritten as

P[τi > s|Ft] = 1{τi>tn}
1− P[τi ≤ s|Z]
1− P[τi ≤ t|Z]

. (5.5)
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Next we use (3.3.2.6) in (5.5) which finally renders

P[τi > s|Ft] = 1{τi>tn}

1− Φ
(

Φ−1(Fi(s))−
√
ρiZ√

1−ρi

)
1− Φ

(
Φ−1(Fi(t))−

√
ρiZ√

1−ρi

) .
Moving on, we consider E[D(t, τC)1{t<τC<T}|Ft] in Equation (5.2). From Herbertsson

(2023) we then get

E[D(t, τC)1{t<τC<T}|Ft] = E[D(t, τC)1{t<τC<T}|HC
t ∨HB

t ∨ σ(Z)]

where we replace filtration Ft with filtration HC
t ∨ σ(Z) resulting in

E[D(t, τC)1{t<τC<T}|HC
t ∨ σ(Z)] =

∫ ∞

0

D(t, s)1{t<s≤T}fτC (s|HC
t ∨ σ(Z))ds

which can be rewritten as

E[D(t, τC)1{t<τC<T}|HC
t ∨ σ(Z)] =

∫ T

t

D(t, s)fτC (s|HC
t ∨ σ(Z))ds (5.6)

where fτC (s|HC
t ∨σ(Z)) is the conditional density to τC for s ≥ t given the information

HC
t ∨ σ(Z), that is

fτC (s|HC
t ∨ σ(Z)) =

∂

∂s
P [τC ≤ s|HC

t ∨ σ(Z)]. (5.7)

However, for s ≥ t we have that

P[τC > s|HC
t ∨ σ(Z)] = 1{τC>t}

P[τC > s|σ(Z)]
P[τC > t|σ(Z)]

= 1{τC>t}
P[τC > s|Z]
P[τC > t|Z]

that is,

P[τC > s|HC
t ∨ σ(Z)] = 1{τC>t}

P[τC > s|Z]
P[τC > t|Z]

. (5.8)
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Furthermore, from (3.3.2.6) it is possible to rewrite (5.8) as (see also in Herbertsson

(2023))

P[τC > s|HC
t ∨ σ(Z)] = 1{τC>t}

1− Φ(
Φ−1(FC(s))−√

ρiZ√
1−ρi

)

1− Φ(
Φ−1(FC(t))−√

ρiZ√
1−ρi

)
. (5.9)

and since we know that P[τC ≤ s|HC
t ∨σ(Z)] = 1−P[τC > s|HC

t ∨σ(Z)] we use (5.7)

to then get fτC (s|HC
t ∨ σ(Z)) as

fτC (s|HC
t ∨ σ(Z)) =

1{τC>t}
1

1− Φ(
Φ−1(FC(t))−√

ρiZ√
1−ρi

)
· F

′
C(s)√
1− ρi

· 1

φ(Φ−1(FC(s))
· φ
(Φ−1(FC(s))−

√
ρiZ√

1− ρi

)
(5.10)

where φ(x) = 1√
2π
e−

x2

2 and using the Inverse function rule we know that d
dx
Φ−1(x) =

1
Φ′(Φ−1(x))

= 1
φ(Φ−1(x))

, which can also be seen in Herbertsson (2023). Equation (5.10)

gives us an explicit expression for fτC (s|HC
t ∨ σ(Z)) that in turn can be plugged into

(5.6) in order to find a expression for E[D(t, τC)1{t<τC<T}|HC
t ∨ σ(Z)]. Thus, plugging

(5.10) into (5.6) gives us

E[D(t, τC)1{t<τC<T}|Ft] = 1{τC>t}
1

1− Φ(
Φ−1(FC(t))−√

ρiZ√
1−ρi

)
· 1√

1− ρi

·
∫ T

t

D(t, s) · F
′
C(s)

φ(Φ−1(FC(s))
· φ
(Φ−1(FC(s))−

√
ρiZ√

1− ρi

)
ds.

Furthermore, if FC(s) = 1−e−λCs then F
′
C(s) = λCe

−λCs and if we use constant inter-

est rate, then D(t, s) = e−r(s−t) where s ≥ t, which gives a rather explicit expression.

Moving on we can plug (5.10) and (5.9) into (5.1) which for 0 ≤ t ≤ T yields

E[Π(t, T )|Ft] = 1{τC>t}
1

1− Φ(
Φ−1(FC(t))−√

ρiZ√
1−ρi

)
(5.11)

·
(
−R(0, T )

4

nT∑
n=nt

D(t, tn)
(
1− Φ

(
Φ−1(FC(tn))−

√
ρiZ√

1− ρi

)
+(1− ϕ)IC(t, Z)

)
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where IC(t, Z) is given by

IC(t, Z) =

∫ T

t

D(t, s)

1− ρi
· F

′
C(s)

φ(Φ−1(FC(s))
· φ
(
Φ−1(FC(s))−

√
ρiZ√

1− ρi

)
ds. (5.12)

This expression for E[Π(t, T |Ft] is also found in Herbertsson (2023). In view of (5.11)

and (5.12) in the case of 0 ≤ t ≤ T it is possible to to rewrite E[Π(t, T )|Ft] as

E[Π(t, T )|Ft] = 1{τC>t}H(t, T, Z) (5.13)

where H(t, T, Z) is given by the terms to the right of the indicator function 1{τC>t}

in (5.11), that is

H(t, T, Z) =
1

1− Φ
(

Φ−1(FC(t))−√
ρiZ√

1−ρi

) (5.14)

·
(−R(0, T )

4

nT∑
n=nt

D(t, tn)

(
1− Φ

(
Φ−1(FC(tn))−

√
ρiZ√

1− ρi

))
+(1− ϕC)IC(t, Z)

)
.

and where IC(t, Z) is same as in (5.12). We know from (4.1.1.4) and (4.1.1) that

CV A0 = (1− ϕ)E[1{τB≤T}D(0, τB)(E[Π(τB, T ) | FτB ])
+]. (5.15)

If we let 0 = t
(B)
0 < t

(B)
1 ... < t

(B)
JB

= T be a bucketing-grid of the interval [0, T ] then

we have

E[1{τB≤T}D(0, τB)(E[Π(τB, T ) | FτB ])
+] =

JB∑
j=1

E[1{tBj−1<τB≤tBj }D(0, τB)(E[Π(τB, T ) | FτB ])
+] (5.16)

Next, from Equation (10.2.11) in Herbertsson (2022) we use the approximation of

E[1{tBj−1<τB≤tBj }D(0, τB)(E[Π(τB, T ) | FτB ])
+] (5.17)

≈ E[1{tBj−1<τB≤tBj }D(0, t
(B)
j )(E[Π(t(B)

j , T ) | F
t
(B)
j

])+]
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that is, if tBj−1 < τB ≤ tBj we approximate D(0, τB) with D(0, tBj ) and similarly,

E
[
Π(τB, T ) | FτB

]
with E

[
Π(tBj , T ) | FtBj

]
. Note that the approximation in (5.17) will

be better and more accurate the smaller the "bucket-grid"
[
t
(B)
j−1, t

(B)
j

]
is. Hence, if

s < t we will next find a simplification of the quantity of

E[1{s<τB≤t}D(0, t)(E[Π(t, T ) | Ft])
+] (5.18)

in the final CVA-computing step. In the view of (5.13) and the fact that 1{τC>t} ≥ 0,

it is possible to rewrite (5.18) as the following equation

E[1{s<τB≤t}D(0, t)(E[Π(t, T ) | Ft])
+]

= E[1{s<τB≤t}D(0, t)1{τC>t}
(
H(t, T, Z)

)+
] (5.19)

where we recall that H(t, T, Z) is given by (5.14). Furthermore, as in Herbertsson

(2023), we make the same assumption that the interest is deterministic, so that D(0, t)

is a deterministic function of t, then (5.19) can be rewritten as

E[1{s<τB≤t}D(0, t)1{τC>t}
(
H(t, T, Z)

)+
] = D(0, t)E[1{s<τB≤t}1{τC>t}

(
H(t, T, Z)

)+
].

Next, following Herbertsson (2023), we note that

E[1{s<τB≤t}1{τC>t}
(
H(t, T, Z)

)+
] = E

[
E[1{s<τB≤t}1{τC>t}

(
H(t, T, Z)

)+|Z]]
which can be rewritten using rules for conditional expectations, see (A.3) in Appendix,

into

E
[
E[1{s<τB≤t}1{τC>t}

(
H(t, T, Z)

)+|Z]] = E
[
(H(t, T, Z)

)+E[1{s<τB≤t}1{τC>t}
∣∣Z]]

and we know that

E[1{s<τB≤t}1{τC>t}
∣∣Z] = E[1{s<τB≤t}|Z]E[1{τC>t}

∣∣Z]
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which can be rewritten using the definition for conditional probabilities, see (A.4) in

Appendix, as

E[1{s<τB≤t}|Z]E[1{τC>t}|Z]
]
= P[s < τB ≤ t|Z]P[τC > t |Z].

Hence, for s < t we have that

E[1{s<τB≤t}1{τC>t}
(
H(t, T, Z)

)+
] =

E
[
P[s < τB ≤ t|Z] · P[τC > t |Z]·

(
H(t, T, Z)

)+]
. (5.20)

Using (3.3.2.6) we can rewrite P[s < τB ≤ t|Z] in (5.20) as

P[s < τB ≤ t|Z] =

Φ

(
Φ−1(FB(t))−

√
ρiZ√

1− ρi

)
−Φ

(
Φ−1(FC(s))−

√
ρiZ√

1− ρi

)
. (5.21)

If we plug (3.3.2.6) and (5.21) into (5.20) we then get

E[1{s<τB≤t}1{τC>t}
(
H(t, T, Z)

)+
] =

= E
[(

Φ

(
Φ−1(FB(t))−

√
ρiZ√

1− ρi

)
−Φ

(
Φ−1(FB(s))−

√
ρiZ√

1− ρi

))
·
(
1− Φ

(
Φ−1(FC(t))−

√
ρiZ√

1− ρi

))
·
(
H(t, T, Z)

)+]
. (5.22)

We note that the the expectation in (5.22) is simply a univariate integral

E
[
1{s<τB≤t}1{τC>t}

(
H(t, T, Z)

)+]
=

∫ ∞

−∞
G(s, t, T, z)φ(z)dz (5.23)

where φ(z) = 1√
2π
e−

z2

2 , and where G(s, t, T, z) is given by

G(s, t, T, z) =

(
Φ

(
Φ−1(FB(t))−

√
ρiz√

1− ρi

)
−Φ

(
Φ−1(FB(s))−

√
ρiz√

1− ρi

))
(5.24)

·
(
1− Φ

(
Φ−1(FC(t))−

√
ρiz√

1− ρi

)
·
(
H(t, T, z)

)+)
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and H(t, T, z) is defined as in (5.14), with Z replaced by z,

Next, by using (5.23) for s = t
(B)
j−1 and t = t

(B)
j for each "bucket interval", i.e. t(B)

j−1 to

t
(B)
j together with the approximation in (5.17) inserted into (5.16) we can finally find

an approximation to CV A0 in Equation (5.15) given by

CV A0 ≈ (1− ϕ)

JB∑
j=1

D(0, tBj )

∫ ∞

−∞
G
(
t
(B)
j−1, t

(B)
j , T, z

)
φ(z)dz (5.25)

where the mapping G(s, t, T, z) is given by (5.24). Equation (5.25) is the formula that

will be used to numerically compute CV A0 in Section 6.

6 Numerical Results

This section sets out to answer the three research questions presented in the introduc-

tion by conducting three different numerical studies using the Gaussian CVA model

derived in Herbertsson (2023):

· How will Wrong Way Risk affect the value of a single CVA measure by changing

the correlation and default intensity parameters?

· How did the time evolution of CVA progress throughout the 08’ crisis and the

European Debt Crisis?

· Would changes in the correlation parameter have substantial impact on the his-

toric time evolution of CVA?

Herbertsson (2023) develops a contagion model to study CVA on a CDS, and then

also uses a one-factor copula Gaussian copula model to compute the CVA ofr a CDS

as a benchmark to CVA-values obtained in the contagion model. The CVA expression

for the CDS and it’s derivation in Section 5 of this thesis for the Gaussian copula
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model is taken from Herbertsson (2023). Note that in this thesis our focus is on the

CVA measure under WWR for a one-factor Gaussian copula model, as it is explained

in Subsection 2.3. Naturally, a focal point of this section will relate to the correlation

parameter in the Gaussian copula model, measured by ρ, which can only take on

positive values between 0 and 1. Another central parameter in the model is the

parameter is the CDS spreads for both parties. Note that given the constant default

intensity, which is derived from the credit triangle in (3.2.1.3), the only determining

factor of the default intensity will be the CDS spread. Given that this thesis deals

with the instrument of a CDS, there is one CDS spread and ρ each for B and C.

As mentioned in previous sections, this the main focus in this thesis is the risk of

default, and not the spread risk, which is why we have chosen to keep the default

intensity constant. Another choice would have been to let the default intensity follow

a stochastic process, or for it to be piece-wise constant. A default intensity that

is piece-wise constant means that it is piecewise constant between fixed time points

T1, T2, ..., Tj. The advantage of piecewise constant is that it is possible to perfectly

calibrate the intensity against the CDS-term structure. Despite its advantages, it’s

easier to model the CVA using a constant default intensity and this thesis only focuses

on the default risk. It should also be noted that the Gaussian copula model works

for an arbitrary choice of the marginal distributions Fi(t) = P[τi ≤ t].

The computations using the CVA formula in Equation (5.25) are extremely time con-

suming, evaluating (5.25) for one setup (ρB, ρC , λB, λC , ϕB, ϕC) takes approximately

80 seconds to compute using matlab on a standard laptop. To put this in perspec-

tive, when calculating the time-series of the CVA from 2007 to 2014 using all available

trading days on four credit default swaps, 7772 calculations had to be computed sep-

arately meaning that is would take approximately 172 hours to compute them in

MATLAB. However, the computations were done in MATLAB using the parfor com-
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mand in order to decrease the time it takes to run each calculation. The parfor

command computes each iteration separately using every processor core available.

In this thesis the number of processor cores used in the computations of the CVA

time series were 24, which was possible by connecting several computers plus a server

to our Matlab-computation. By using the parfor command, MATLAB could calcu-

late 24 calculations simultaneously which decreased the time needed considerably for

all CVA computations. The described technique of utilizing all cores is commonly

referred to as parallel computing, (see MathWorks (2022) for full description).

The first numerical study conducted is a sensitivity analysis and relates to the first

research question stated on the previous page where we look at how a single CVA

value is changing depending on the value of CDSB, CDSC, ρB and ρC . Essentially,

our first numerical study evaluates the CVA of a CDS as a function of WWR and the

change of the CDSB,C which is presented in Subsection 6.1

For the second study we present a time evolution of the CVA measure in an attempt

to answer the second research question. The focus of the second study will mainly be

set on the development of the CVA during the 08’ crisis and especially the European

Debt Crisis that followed a few years later. The time-series of the CVA is presented

in Subsection 6.2.

The last numerical study attempts to answer the third research question, that is to

study the time evolution of the CVA for different values of ρ. The study will allow

us to draw conclusions on how the modelling of correlation would have affected CVA

losses historically and is presented in Subsection 6.3.

Note that when the CVA value is calculated in this thesis, it is done for one monetary

unit, e.g., one euro, yen or dollar. If the CDS on C is for a value of N = 10 million

monetary units then CV AN
0 is given by CV AN

0 = N · CV A0 due to the linearity of
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CVA. Also note that CV A0 is calculated at time t = 0 where CV A0 can be interpreted

as the sum of monetary units that has to be added on the CDS-contract between A

and B so that B can be regarded as risk-free.

6.1 CVA under Change of Parameters

Subsection 6.1 aims to answer the first research question:How will Wrong Way Risk

affect the value of a single CVA measure by changing the correlation and default

intensity parameters?. We perform a sensitivity analysis and evaluate the CVA of a

CDS as a function of WWR and the change of CDSB and CDSC. In the one-factor

Gaussian copula model, it is difficult to know the true value of the correlation between

the default times of B and C. We therefore want to investigate the way that CVA

behaves under different values of ρ, the correlation parameter. Moreover, given that

we have a constant default intensity, it is interesting to investigate how the model

would have behaved based on different value of the CDS spread. This is interesting

to study as we compute the default default intensity using the CDS spread through

the credit triangle, (see equation (3.2.1.3)).

The recovery rate, ϕB and ϕC are set to 0.4 for both B and C, i.e. ϕB = ϕC = 0.4, so

that 60 percent is lost in the event of a default for both B and C. It should be clarified

that given that we have a heterogeneous model, i.e., we allow for different parameter

values for B and C, the recovery rate does not have to be the same value for the

counterparties. In this thesis, the reference entity, C, is government bonds issued by

sovereign states. It would be interesting to study the actual recovery rates of countries,

however, that is not within the scope of this thesis. The risk-free interest rate is

assumed to be constant and set equal to 0.03 and we use continuous compounding.

Figure 3 displays the CVA computed using (5.25) as a function of the CDS spread for
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party B and C which are ranging from 50 to 500 bps while keeping the correlation

constant at ρB = ρC = ρ = 0.5. Note that we also keep the risk-free rate, r, constant

at r = 0.03 in numerical study 1. The CVA value is increasing with both CDSB and

CDSC. The increase of CDSB is more close to a linear increase than CDSC. In the case

of a CDS spread of zero for B, i.e., CDSB=0 and CDSC = 0.8 for C, the CVA losses

amount to approximately 15 bps. If we keep CDSC = 0 and instead increasing the

CDS spread for B so that CDSB = 0.8, the CVA losses amount to approximately 50

bps. Hence, the model is much more sensitive to a change of CDSB than CDSC. Note

that we use the CDS spreads to find λB and λC via the credit triangle in equation

(3.2.1.3). Hence, Figure 3 displays the change in CVA by the change of parameters

λC and λB, and as mentioned above, the CVA is increasing in default intensity λC

and λB.

Figure 3: CVA with respect to the change of CDSB and CDSC . The CDS spreads

are ranging from 0-500, where ρB = ρC = 0.5, and ϕB = ϕC = 0.4 are kept constant.

Furthermore the interest rate is kept constat at r = 0.03
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Next, Figure 4 shows the sensitivity to the correlation factor ρB and ρC where these

variables range from 0 to 1 with an interval of 0.05 steps while keeping the spread

constant at 100 bps for both CDSB and CDSC. As expected the CVA losses in bps

increase with an increase in both ρB and ρC . As illustrated by Figure 4 below, the

velocity of the increase in CVA seems to be marginally higher for ρC than for ρB. By

keeping ρB constant at zero it’s clear that an increase in ρC has a noticeable effect on

CVA. However, when keeping ρC = 0, the same can not be said for ρB, which when

increased yield close to zero increase in CVA losses, as shown by the ρB axis.

Figure 4: CVA with respect to the change of parameters ρC and ρB. The recovery

rate is kept the same as in Figure 3, i.e., ϕB = ϕC = 0.4. The spread is kept

constant so that CDSB = CDSC = 100. From the credit triangle we can derive that

λB = λC = 1.67%. Note that the risk-free interest rate is kept constant at r = 0.03

as in Figure 3.

Figure 5 gives a two-dimensional version of the plot in Figure 4 for different fixed

39



ρB-values, respective ρC-values. In the right panel of Figure 5, to the right, we see

that for higher levels of ρB, the level of CVA is increasing. It is also evident that for

higher levels of both ρB and ρC the rate of increase in CVA is increasing, Figure 5

confirms this as well.

Figure 5: CVA sensitised for different levels of ρB and ρC . The recovery rate and

CDS parameters are kept the same as in Figure 4. The left panel illustrates CVA as

a function of ρC for ρB = 0.10, 0.40, 0.70, 0.90, 0.99. The right panel illustrates CVA

as a function of ρB for ρC = 0.10, 0.40, 0.70, 0.90, 0.99.

Inarguably, there is a correlation between arbitrary obligors in a Gaussian copula

model. The correlation between obligors became painfully evident when several states

had to bail out banks due to their status as too big to fail during the 08’ crisis. As

a result, it is crucial to take WWR into account. Still, the true level of dependence

between sovereign states, that is C and banks, that is B, is very difficult to measure.

Table 1 below is exhibiting different levels of CVA sensitised for different levels of ρ.

Table 1 illustrates that ignoring WWR and setting ρ close to 1, always results in the

underestimation of CVA, assuming that the true value of ρ is not below 0.1. As an

example, when ρC = 0.4 the CVA is underestimated by 27.13 bps if the true level

of correlation is ρB = 0.9. Instead, if the true level of correlation was ρB = 0.4 the
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model underestimates the CVA by 10.66 bps.

Table 1: CVA in bps of a 5y CDS as a function of ρc = 0.10, 0.40, 0.70, 0.90, 0.99

and ρb = 0.10, 0.40, 0.70, 0.90, 0.99. We keep the same setup as in the Figures of this

section, i.e., ϕB = ϕC = 0.4, a constant spread so that CDSB = CDSC = 100. Hence,

from the credit triangle we can derive that λB = λC = 1.67%. The risk-free interest

rate is also kept constant at r = 0.03

ρc

0.10 0.40 0.70 0.90 0.99

ρb

0.10 4.79 11.35 16.91 21.03 24.36

0.40 8.86 22.01 33.42 41.67 47.84

0.70 12.34 31.84 49.64 62.68 71.79

0.90 14.52 38.48 61.79 80.22 92.84

0.99 15.56 41.81 68.48 91.62 106.97

6.2 Time Evolution of CVA for an Average Counterparty

In this subsection we study the time evolution of CVA on a Credit Default Swap

where the counterparty, B has a CDS spread equal to the CDS of 20 major European

and US banks. The time-series data for the CDS spreads of both B and C have been

downloaded from the S&P Capital IQ platform. We explore the time evolution of CVA

where the reference enitity, C is a Credit Default Swaps on either Spanish, Italian,

French or German bonds as the reference entity running with a 5-year maturity. The

study in this subsection presents how the CVA varies during the financial crisis of 08’

as well as the European Debt Crisis that erupted late 2009.

The time evolution, or, time-series CVA is obtained by re-calculating the CV A0 using

(5.25) for each day in the time-interval. This means that we for each time point re-
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calibrate λB and λB through the credit triangle using the CDSB and CDSC . For

each day the constant risk-free rate, r, is also updated with the overnight 1-year Libor

rate. However, for the calculations in this subsection the correlation factor ρ is fixed

at ρB = ρC = 0.5. Furthermore, the recovery rate is also kept constant in this study

at the same level as for study 1 in Subsection 6.1 where ϕ = 0.4.

The 1-year Libor rate is used as the proxy for the risk-free rate as illustrated in the

right panel of Figure 5 and is downloaded from the SP Capital IQ platform. The

counterparty of the contract in all of our studies is an average comprised of 20 banks,

which namely are: BNP Paribas Cardif, Deutsche Bank, Crédit Agricole, Barclays,

Banco Santander, Société Generale, Intesa Sanpaolo, UniCredit, Credit Suisse, JP

Morgan Chase, Bank of America, Citigroup, Wells Fargo, Goldman Sachs, Allianz,

Morgan Stanley, Standard Chartered, Capital One, American Express and BBVA.

The average spread of the 20 banks named above is presented in the left panel of

Figure 6. We can view this CDS average as the CDS spread for a likely counterparty,

B given that it is highly likely that a buyers of a CDS does business with one of the

counterparties included in our group of 20 international banks. Furthermore, if we

assume that the portfolio of banks is homogenous, which is a reasonable assumption

for the above banks, it is proven in Lemma 9.2.1 in Herbertsson (2022) that the

average CDS spread is equal to the individual CDS spread.
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Figure 6: Average Counterparty CDS Spread and 1-year overnight Libor Rate. In the

left panel the average Counterparty CDS Spread of 20 major US and European banks

is presented. In the right panel the 1-year overnight Libor Rate used as a proxy for

the risk-free rate is presented. Source: SP Capital IQ platform.

Figure 8 displays the time evolution of univariate CV A0 for a CDS between January

2007 and December 2014, where the counterparty B has the CDS spread given in the

left panel of Figure 6 for the same time period. For four different reference entities

(Italy, Spain, Germany and France) Figure 7 displays the CDS spread, i.e., the CDS

spreads for the reference entities, C. The time period presented in and Figure 7 runs

from the beginning of 2008 until the end of 2014 as in Figure 8. Figure 7 shows a slight

increase in CDS-spreads for all reference entities (Italy, Spain, Germany and France)

in the first quarter of 2008. Subsequently, the CDS spreads rise sharply towards the

end of 2008 and throughout the first quarter of 2009. From Figure 7 and Figure 8 it is

evident that as the CDS spreads increase, an increase in CVA losses follow. From the

buyer’s perspective, having a position against the banks contained within the average

Counterparty CDS spread, would have resulted in substantial CVA losses.
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Figure 7: 5y CDS Spreads for Italy, Spain, Germany, France and the average Coun-

terparty CDS Spread. Source: S&P Capital IQ platform.

The increase in CV A0 losses is also true for the period between 2011-2013 where

we can clearly see the implications of the European Debt Crisis. Not surprisingly,

given the extensive debt positions of the reference entities, the CDS spreads of Spain

and Italy tops the graph and consequently incur the greatest CVA losses during the

period. As seen in Figure 7, The CDS spread of the bond issued by Germany performs

relatively well compared to it’s European peers but also relative to its own history.

During the European Debt Crisis, the German spread is consistently trending below

or marginally above the spread of the financial crisis, rendering CVA losses that are

modest in this context.
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Figure 8: Time evolution for univariate CV A0 on a CDS where CV A0 is computed

by (5.25) for sovereign bonds issued by Italy, Spain, Germany and France where the

counterparty, B for the CDS’s is our average counterparty CDS spread given in the

left panel of Figure 6. Furthermore, as previously ϕB = ϕc = 0.4.

As an example, in the beginning of 2012, if a CDS buyers, A, enters into a contract to

hedge against the default of an Italian bond, a counterparty, B, having a CDS spread

of approximately 350 bps, risk to lose almost 150 bps, 1.5%, or 1.5 million monetary

units assuming that the nominal is 100 million monetary units, at the peak of the

European Debt Crisis, if the counterparty A would default.
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6.3 Time evaluation of CVA as a function of default correla-

tion

Our third numerical study examines the effect that ρ has on our previously obtained

time evolution of CVA. Figure 9 plots the estimated time evolution of CVA on a CDS

using Equation (5.25) for a set of values for the parameter ρ. In the numerical study

in this section we chose the same values for ρB and ρC meaning that ρB = ρC = ρ.

The three set of values are, ρ = 0.3, 0.6 and ρ = 0.9 where the CV A0 for each ρ is

plotted during the same time period as in Figure 7 and Figure 8, (i.e. January 2007

until December 2014). The results in Figure 9 illustrates that for higher levels of ρ,

the level of CV A0 is generally higher, however, during the European Debt Crisis the

difference in CV A0 between ρ = 0.6 and ρ = 0.9 is much smaller in the time period

between 2011 July to 2012 August. To illustrate the differences more clearly we plot

the relative differences in CV A0 between the different set of values for ρ in Figure 10.

Relative differences are employed to assess and compare two quantities while con-

sidering the inherent sizes of the entities under examination. The relative difference

has been computed by first subtracting between two CV A0 values, one with a higher

correlation and the other with a lower correlation. Next, the resulting difference is

divided by the CV A0 value corresponding to the lower level of correlation ρ. This

step helps determine the relative change or ratio between the two values. To present

the result as a percentage, the computed ratio is then multiplied by 100. The de-

scribed process was used to compute the results in Figure 10. The Figure illustrates

the relative difference between ρ = 0.3 and ρ = 0.6, which is represented by the blue

line and the relative difference between ρ = 0.3 and ρ = 0.9 which is represented by

the orange line. The difference is consistently above 0% for the entire time period

between January 2007 and December 2014. Figure 10 clearly illustrates that there is
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a positive correlation between ρ and CV A0.

Figure 9: The time evolution for univariate CVA on a CDS computed by (5.25)

for a CDS on an Italian government bond for ρ = 0.3, 0.6, 0.9. The parameters are

ϕB = ϕC = 0.4 and where the counterparty B has CDS spread from the average

counterparty CDS spread given in the left panel of Figure 6. The overnight 1y Libor

rate is used as a proxy for the risk-free rate. The constant default intensity, λB and

λC is derived by the credit triangle in (3.2.1.3).

Interestingly, the relative differences between ρ = 0.3 and ρ = 0.9 in Figure 10 is much

more volatile compared with ρ = 0.3 and ρ = 0.6. During the Financial Crisis, the

relative differences is very large, while during the European Debt Crisis the difference

is almost negligible. The highest relative difference in CV A0 is between ρC = 0.3 and
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ρC = 0.9 which occurs on the 11 June 2007 and is equal to approximately 1544%.

Conversely, it is true that the least difference of 71% is obtained on 8 November 2011.

The results in Figure 9 and Figure 10 supports the results found in Section 6.1 regard-

ing the positive correlation between correlation parameter ρ and CV A0. However,

the effect seems to depend on the time period, especially for the relative difference

between ρ = 0.3 and ρ = 0.9. As illustrated in Figure 8, during the Financial crisis,

the CDS spread of the the average counterparty was greater than the CDS spread of

the Italian Bond, yielding the highest relative difference, however during the Euro-

pean Debt Crisis, the CDS spread of the the average counterparty was smaller than

the CDS spread of the Italian Bond, yielding the smallest relative difference.

Figure 10: The time evolution of the relative difference in CV A0 between the case

when ρ = 0.3 and ρ = 0.6 as well as when ρ = 0.3 and ρ = 0.9 in the one fac-

tor Gaussian copula model with identical parameters as in Figure 9. The relative

difference is measured in % between the beginning of 2008 and end of 2014 and is

computed using the results from Figure 9. The relative differences has been com-

puted by CV Aρ=0.09
0 −CV Aρ=0.03

0

CV Aρ=0.03
0

and CV Aρ=0.06
0 −CV Aρ=0.03

0

CV Aρ=0.03
0

, the described computation is

then multiplied with 100 in order to get the ratio as a percentage.
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7 Conclusion

We implement the univariate CVA model for a CDS derived in Herbertsson (2023)

for a one-factor Gaussian copula model. Using the univariate CVA model we were

able to present three separate numerical analysis. Firstly, a sensitivity analysis with

a focus on the correlation and default intensity parameters was conducted. Secondly,

a time-series CVA measure enabled us to investigate how CVA behaved throughout

the financial crisis of 2008 as well as the European Debt Crisis. Lastly, the time-

series CVA model was tested using a set of ρ numbers, allowing for the analysis of

time-series CVA under different levels of WWR.

Our implementation of Herbertsson (2023) shows that Wrong Way Risk affects the

value of a single CVA measure by changing the correlation parameters, ρB and ρC . It

was also found that CVA is increasing in the default intensity, λB and λC . From the

results of the sensitivity analysis, we draw the conclusion that neglecting WWR has

a detrimental effect on the modelling of CVA, as it could be severely underestimated.

It is also clear that the default intensity for both B and C has a positive relationship

with CVA. Hence, both of the parameters, λB and λC as well as ρB and ρC showed a

positive relationship with the unilateral CVA value on the CDS with C as a reference

entity and B as a counterparty. The positive correlation between the parameters

and the unilateral CVA value is heavily in line with the results shown in Brigo and

Capponi (2008), Brigo, Morini, and Pallavicini (2013) and Arismendi-Zambrano et al.

(2022).

The results of the time evolution of CVA in our second numerical analysis illustrates

the enormous losses that the financial institutions endured during the financial crisis

in 2008 and 2009 by neglecting WWR. We can also draw the conclusion that the

correlation between the CDS spread and CVA losses are significant as increases in
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CDS spreads are generally followed by increases in CVA losses.

Lastly, the time-series CVA for a range of ρ values is presented in the last numerical

analysis where the the results show that there is a positive relationship between ρ and

CVA, i.e., when the correlation parameter increases, so does the CVA. The positive

relationship between ρ and CVA verifies the result obtained in our sensitivity analysis

in numerical study one which showed that CVA is increasing in both ρB and ρC .
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A Appendix

A.1 Sklar’s Theorem

In Sklar’s theorem we let X1, X2, ..., Xm be a series of m real valued random variables

with Fi(x) = P[Xi ≤ x] as their distribution functions for i = 1, 2, ...,m and denote F

as their joint distribution. We then consider X to be a random m-dimensional vector

X = (X1, X2, ..., Xm) with a joint distribution F (x) which can be expressed as

F (x) = P[X1 ≤ x1, X2 ≤ x2, ..., Xm ≤ xm]

where x = (x1, x2, ..., xm). In this setting, there exist an m-dimensional copula C

which gives us

F (X) = C(F1(x1), F2(x2), ..., Fm(xm))) (A.1)

Note that if Fi is continuous for all i then the copula is unique. If not, the copula is

uniquely determined on RanF1 × ...×RanFm where the range space for the function
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F is denoted as Fi. This theorem lets us separate the dependence structure of random

variable X into two parts where the first part is the marginal distributions Fi. The

second part is the joint distribution of X which is specified by the copula C, (for full

proof see Nelsen (1999))((Herbertsson 2022)).

A.2 Lemma 1

Consider the probability space (Ω,F ,P) where F represents the full market informa-

tion. Let Gt be the filtration at time t. Furthermore define the filtration Ft = Gt∨Ht

where we let Ht = σ(1τ≤s; s ≤ t). From Lemma 7.3.4.1 on p.420 in Janblanc, Yor,

and Chesney (2009) we know that

1{τ>t}E[Z | Ft] = 1{τ>t}
E[1{τ>t}Z | Gt]

E[1{τ>t} | Gt]
(A.2)

where the variable Z is a F measurable random variable. For a full proof we refer to

Janblanc, Yor, and Chesney (2009).

A.3 Rules for conditional expectations

Consider the probability space (Ω,F ,P) which means that all variables are F -measurable,

additionally the sigma-algebras exist in F . Consider the sigma algebras G and H

where H ⊆ G, then

E[E[X | G] | H] = E[X | H] (A.3)

where we let X be a random variable (Williams 1991).

A.4 Rules for conditional probabilities

Consider the probability space (Ω,F ,P) and let G and F be sigma-algebras, addi-

tionally let the indicator function 1A be a random variable where A is a event in
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F meaning that 1A is F -measurable. It is then possible to define the conditional

probability P[A | G] as

P[A | G] = E[1A | G] (A.4)

where we note that P[A | G] is a random variable and G-measurable (Williams 1991;

Herbertsson 2022).
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