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Abstract

This paper investigates the Granger causal relations between agricultural commodity

returns and several potential determinants using a multivariate Vector Error Correction

Model (VECM) and Impulse Response Functions (IRF). Agricultural commodities are

critical for global food supply, and understanding their determinants is crucial for poli-

cymakers and investors. Results show that biofuel and fertilizer returns have a short-run

predictive power over future agricultural commodity returns. We contribute to the exist-

ing body of literature by examining a comprehensive array of determinants. Our findings

could help inform decision-makers in the agricultural sector and improve the investment

processes for agricultural commodity investors.
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Introduction

In this paper, we explored the Granger causal relationships of agricultural commodity

returns, focusing on the impact of the stock market, energy commodities, and macroeco-

nomic variables. We conducted a multivariate Vector Error Correction Model (VECM)

and Impulse Response Functions (IRF) to address the short-run and long-run determinis-

tic effects on agricultural commodity returns. Since agricultural commodities are critical

for global food supply, understanding their determinants is crucial for policymakers and

investors (Nazlioglu and Soytas 2012). Therefore, the findings of our study could help

inform decision-makers in the agricultural sector and potentially improve the investment

processes for agricultural commodity investors.

The background of this study lies in the increased demand for commodity investments

by financial institutions since the early 2000s due to the increased availability of index-

tracking products. The indexation of commodities has facilitated financial speculation

in commodity markets, leading to an increased correlation between asset classes (Tang

and Xiong 2012; Cheng and Xiong 2014; Basak and Pavlova 2016). Furthermore, since

commodity indices are composed partly of agricultural commodities, the development

has concerned policymakers and investors since farmers and households depend on stable

food prices (Bruno et al. 2017).

Therefore, the linkage between financial markets does not only apply to the broad

commodity markets but also to agricultural commodity markets (Tadesse et al. 2014).

Similar studies have extended the array of potential determinants to investigate the effects

of variables such as the U.S. dollar, natural gas, biofuel, inflation, fertilizers, and crude

oil (Nazlioglu and Soytas 2012; Nicola et al. 2016; Gnutzmann and Spiewanowski 2016;

Baffes 2007; Elser et al. 2014; Taghizadeh-Hesary et al. 2019). However, as we will argue

in this paper, the determinants of agricultural commodities might not be as many as the

previous authors suggest.

This paper originates in the financial literature dating back to Granger (1969), who
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highlighted the problems of using contemporaneous values since causal effects are seldom

instantaneous. Instead, such intertemporal dependencies could be better examined using

the lagged values of one variable to predict the future value of another. On the contrary, the

efficient market hypothesis states that lagged values should not have the power to predict

future values since market participants should already have exploited market anomalies,

and the effect of past values on future values would be diluted due to market efficiency

(Fama 1970).

Contributing to this debate, a method for testing Granger causality was introduced by

Sims (1980). The model is known as the Vector Autoregressive (VAR) model, which

became a popular model for testing Granger causality. However, an issue of the VAR was

that it solely measured the short-run causality and did not account for the long-run causal

effects, which is the case when the endogenous variables are cointegrated. An augmented

version of the VAR, the VECM, proposed a solution. The concept underlying the VECM

is similar to the VAR, except that it incorporates the Error Correction Term (ECT) and

first differences for all variables within the model. The addition of the ECT allows for

interpreting the long-run relationships (Engle and Granger 1987).

While the model gained an additional feature, the increased complexity of the VECM

made it challenging to establish and interpret the estimated short-run coefficients. The

VECM could therefore be complemented with an IRF, which provides interpretability in

the direction and persistence of the short-run effects from the determinants (Koop et al.

1996; Pesaran and Shin 1998).

Researchers within the agricultural commodity markets have adopted these models.

Serra et al. (2011), Allen et al. (2018), Olagunju et al. (2021), Akram (2009) and Elser

et al. (2014) showed that crude oil, biofuel, and natural gas are important in explaining

agricultural commodity returns through their use in transportation costs, fertilizers, and

other production inputs. Nazlioglu and Soytas (2012) further strengthened the findings

that crude oil prices are important in explaining agricultural commodity prices.
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Furthermore, Nazlioglu and Soytas (2012) and Adämmer and Bohl (2015) also found

that the strength of the U.S. dollar can predict future agricultural commodity prices. The

authors explained that the deterministic effect existed because most global commodity

trades are conducted in U.S. dollars. Finally, the deterministic effects between equity

and agricultural commodity markets were analyzed by Bruno et al. (2017). They found a

deterministic effect from equity returns to agricultural commodity returns and that shocks

in equity returns have enduring impacts on agricultural commodity returns.

To extend the current body of empirical research, we investigated the determinants

of agricultural commodity returns using a VECM and IRFs. These models enabled us

to analyze the short-term and long-term deterministic effects of multiple variables and

the direction and persistence of these effects. To test the statistical significance of the

VECM coefficients, a Wald test was conducted (Nazlioglu and Soytas 2012; Akram 2009;

Taghizadeh-Hesary et al. 2019; Kapusuzoglu and Karacaer Ulusoy 2015). Inspired by

Batten et al. (2017), the dataset was split into an in-sample dataset ranging from 2009 to

2021 and an out-of-sample dataset ranging from 2021 to 2023, where the latter was used

to test the replicability of the reported results.

The results from our short-run causality analysis showed that biofuel returns had a

deterministic short-run effect on future agricultural commodity returns. We also found

that agricultural commodity returns had a deterministic short-run effect on future biofuel

returns. Thus, the Granger causal effect between biofuel and agricultural commodities

was bidirectional. Furthermore, we found a unidirectional short-run effect from fertilizer

returns to agricultural commodity returns. The bidirectional and unidirectional effects

were further examined, and we found that the effects were positive, had a minimal delay,

and permanently impacted each other. On the other hand, the long-run causality analysis

showed no statistically significant evidence, meaning that we could not conclude any

long-run effects. Finally, the post-estimation tests showed mixed results.

This paper’s primary contribution is its comprehensive approach to examining the de-
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terminants of agricultural commodity returns. Unlike previous researchers who studied a

limited number of determinants, we compiled a more diverse range to provide a holistic

outlook. The results can help policymakers to direct regulatory focus to mitigate price

changes in agricultural commodities and assist investors in the agricultural sector in un-

derstanding the determinants and predictability of returns.

The rest of the paper is structured as follows. Section I. describes the model on which

our study is based, while Section II. presents the specific method employed for our dataset.

Section III. describe the dataset and data-collecting process, as well as the execution of the

pre-estimation tests. Section IV. presents the estimation outputs, post-estimation outputs,

and the interpretation of results. Finally, Section V. concludes the findings with relevant

policy implications and suggestions for future research.
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I. The Model

Inspired by the work of Nazlioglu and Soytas (2012), Zhang et al. (2010) and Olagunju

et al. (2021), we employed a VECM rather than a VAR to examine our variables’ short-

run and long-run relationships. The decision was based on the Johansen cointegration test

presented in Table II, which found evidence of cointegration among our variables. The

VECM specifies which variables could predict future agricultural commodity returns and

whether agricultural commodity returns could predict future returns of those variables.

Our study was based on the following specification for the VECM:

∆Yt = ααα +
p−1

∑
j=1

φφφ j∆Yt− j +λλλECTt−1 + εεε t (1)

Where ∆Yt is a vector containing the contemporaneous first differenced variables. ααα

is a vector with intercept parameters. φφφ j is a square matrix with the estimated coef-

ficients for assessing short-run Granger causality. p is the optimal lag length and was

determined through the lowest value of Akaike’s information criterion (AIC) (Akaike

1974), the Hannan-Quinn information criterion (HQIC) (Hannan and Quinn 1979) and

the Schwarz’s Bayesian information criterion (SBIC) (Schwarz 1978).

The Error Correction Term (ECTt−1) is a scalar derived from the residuals of a re-

gression, as can be seen in Appendix Equation (A3). By estimating the λλλ coefficient

of the ECT, we can determine how deviations from past equilibriums can explain future

equilibriums. The λλλ coefficient is the speed of adjustment to long-run equilibrium. It

measures how many percent of disequilibrium has been corrected until the following ob-

servation, meaning we could assess the long-run causality. Mathematical details regarding

the ECT and the VAR augmentation process on which the VECM originates are found in

Appendix A. The error term is the εεε t .

We employed a Wald test to address the limited interpretability of the estimated short-

run coefficients, which was similar to Nazlioglu and Soytas (2012). The Wald test was
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conducted to test whether the estimated coefficients are statistically different from zero

and whether the variables impact agricultural commodity returns. The results provided

evidence of unidirectional Granger causality between agricultural commodities and some

of the tested variables. Therefore, those variables were further examined by imposing a

Wald test in the opposite direction to test for evidence of bidirectional Granger causality.

Similar to Akram (2009), Taghizadeh-Hesary et al. (2019), Bruno et al. (2017) and

Allen et al. (2018), we used IRFs as a complement to the VECM. The IRFs enabled us to

further examine the direction and persistence of the significant Granger causal relation-

ships found by the VECM. The IRFs were computed by imposing a one-time shock of

a standard deviation of returns to the impulse variable while holding all other variables

constant. Whether the standard deviation shock is daily, weekly, monthly, or annualized

depends on the frequency of the data. To determine the direction and persistence of the

effect, a graphical illustration was used to show the impact of the shock on the responding

variable. The IRFs should include a time period long enough to capture the shock’s full

response.
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II. Methodology

A. Vector Error Correction Model

Following Nazlioglu and Soytas (2012) and Olagunju et al. (2021), we converted all

variables in our dataset through the natural logarithm to reduce the variation and het-

eroscedasticity. The lag length selection criteria illustrated an optimal lag length of two,

as shown in Appendix Table B.II. Equipped with the knowledge that the optimal lag was

two and the number of variables was nine; the VECM used for our study was specified as

follows:

∆Yt = ααα +φφφ∆Yt−1 +λλλECTt−1 + εεε t (2)

In our study, ∆Yt refers to a 9x1 vector that includes the contemporaneous logarithmic

first differences of all the variables. This is equivalent to the continuously compounded

returns. As a result, the findings were interpreted as returns. ααα is a 9x1 vector with

intercept parameters. φφφ j is a 9x9 matrix with the estimated coefficients used to assess the

short-run Granger causality with the Wald test. ∆Yt−1 is a 9x1 vector consisting of the

lagged logarithmic returns. The λλλ is a 9x1 vector used to assess the long-run causality,

and the εεε t is a 9x1 vector containing the error terms (Engle and Granger 1987).

B. Impulse Response Functions

We employed IRFs on the significant Granger causal variables identified through the

VECM estimation. The unidirectional IRFs were conducted to examine how agricultural

commodity returns respond to a shock in the Granger causal variables. For bidirectional

IRFs, we imposed a shock in agricultural commodity returns and observed the impact on

the responding Granger causal variables. By observing the response through a sufficient

number of months, we could conclude whether or not the effect is permanent or transitory

(Koop et al. 1996; Pesaran and Shin 1998). The one-time shock was based on monthly

observations due to the frequency of the data. Therefore, we have chosen a 10-month

observation period to capture the full effect of the shocks.
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The shocks were analyzed visually through graphs. Firstly, a shock was applied to

each variable that Granger causes agricultural commodity returns. Secondly, bidirec-

tional Granger causality was observed by applying a shock to agricultural commodity

returns and observing the response in the variables that are Granger caused by agricul-

tural commodity returns.

C. Pre-estimation tests

The VECM assumes stationarity, no residual autocorrelation, and normally distributed

residuals (Brüggemann et al. 2006). We employed a unit root test to ensure compliance

with the stationarity assumption. Further, we tested for residual autocorrelation and resid-

ual normality in the post-estimation section.

C.1 Johansen cointegration test

To determine if VECM was a suitable method for our dataset, we used the Johansen

cointegration test to determine the existence of cointegration and the number of cointe-

grating relationships among our variables. To test the null hypothesis of no cointegration

against the alternative hypothesis of cointegration, we used the trace statistics and max-

imum eigenvalue tests proposed by Johansen (1988) and Johansen (1991). The results

of the Johansen cointegration test presented in Table II were used to decide between the

VECM and the VAR correctly. The results were also used to correctly specify the VECM

in Equation (2), where each cointegrating relationship should have one error correction

term. The Johansen cointegration test was specified using the same optimal lag length

used for the VECM estimation; see Appendix Table B.II.

C.2 Augmented Dickey-Fuller unit root test

To test if the stationarity assumption of our VECM was fulfilled and if spurious results

were avoided, each variable was tested for the existence of unit roots. For this, we used

the test introduced by Dickey and Fuller (1979), known as the Augmented Dickey-Fuller

(ADF) test. For our study, the ADF was specified as follows:
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∆ Yi,t = αi +βi Yi,t−1 +
m

∑
j=1

γ j∆ Yi,t− j +δit + εi,t (3)

Where i is each of our nine variables in logarithmic form. δi is the deterministic trend

included if statistically significant at the 5% level. Including the deterministic trend affects

which critical value was used to compare against our test statistic. m is the maximum lag

length estimated for each i separately. The null hypothesis of the ADF was that βi was

equal to zero, and the alternative hypothesis was that βi was not zero. Rejection at the 5%

significance level as seen in Table III indicates that the time series contained no unit roots

and were thus a stationary process that fulfilled the VECM stationarity assumption.

D. Post-estimation tests

D.1 Lagrange-multiplier & Jarque-Bera test

The reliability of our VECM results was assessed by testing if the assumptions of no

residual autocorrelation and normally distributed residuals were fulfilled. We tested for

residual autocorrelation with Lagrange-multiplier (LM) test as suggested by Brüggemann

et al. (2006) and for residual normality with the Jarque-Bera test (Jarque and Bera 1987).

D.2 Out-of-sample VECM

Inspired by Batten et al. (2017), a 23-month out-of-sample VECM estimation was em-

ployed to assess the ability to replicate the in-sample results. For this purpose, the dataset

was separated such that the in-sample period ranges between January 2009 and January

2021 and the out-of-sample ranges between February 2021 and January 2023. Although

there is no exact way to determine the reliability of the post-estimation techniques men-

tioned above, these techniques could assist readers in drawing their conclusions about the

reliability of our results.
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III. Data, Cointegration & Stationarity tests

A. Data

The dataset used for this study consisted of agricultural commodities, the stock market,

crude oil, the bond market, the U.S. dollar, biofuel, natural gas, fertilizers, and the con-

sumer price index. All variables were denoted in U.S. dollars with a monthly frequency

from January 2009 to January 2023, resulting in 169 observations. We separated the

dataset to conduct the out-of-sample estimation described in Subsection D.2. The full-

sample period ranged between January 2009 and January 2021, and the out-of-sample

ranged between February 2021 and January 2023.

In line with Bruno et al. (2017), we used the Standard and Poor Goldman Sachs Com-

modity Indices (S&P GSCI), representing investment performance in the commodity mar-

kets. More specifically, we used the S&P GSCI Agriculture, S&P GSCI Crude Oil, S&P

GSCI Natural Gas, and S&P GSCI Biofuel to represent the performance of agricultural

commodities, crude oil, natural gas, and biofuel, respectively. The constituent parts of the

S&P GSCI indices are weighted by the value of world production based on a five-year

production average and are rebalanced annually (S&P Dow Jones Indices 2023).

Additionally, we used the S&P U.S. Aggregate Bond Index as a variable representing

investment performance in the bond markets. The bond index is weighted by market value

and rebalanced monthly. The S&P 500 price index was used to represent investment

performance in the U.S. stock markets, and the U.S. Dollar Index as a variable for the

strength of the U.S. dollar. The index measures the strength of the U.S. dollar to a basket

of six foreign currencies with a fixed weight. All S&P variables and the U.S. Dollar Index

were collected from Thomson Reuters (2023).

The Producer Price Index by Commodity: Chemicals and Allied Products: Mixed Fer-

tilizers was used to represent fertilizer prices in the U.S. The index was collected from

the U.S. Bureau of Labor Statistics (2023) and consisted primarily of nitrogen, phospho-
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rus, and potassium prices. This index, therefore, reflects the prices for the most common

fertilizers used to produce agricultural commodities.

Table I: Descriptive statistics of annualized data in percentages (2009-2023)

Agriculture S&P 500 Crude oil Bonds USD Biofuel Natural gas Fertilizers CPI

Mean 3.0 10.3 4.2 -0.5 1.7 3.7 -1.6 2.1 2.5
Minimum -22.1 -19.4 -45.9 -15.0 -9.9 -26.7 -32.1 -19.9 -0.2
Maximum 44.5 29.6 77.9 5.5 12.8 45.9 59.3 38.6 7.6
Std. Dev. 20.9 15.4 38.4 3.9 7.6 20.8 49.7 5.9 0.9

Table I shows the descriptive statistics of the dataset. Crude oil and natural gas exhib-

ited the most considerable fluctuations, as seen by the standard deviations and minimum

and maximum returns. Bonds and CPI illustrated minor fluctuations. The S&P 500 had

the highest mean return during the full sample, while natural gas had the lowest mean

return.
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Figure 1: Indexed prices starting at 100. Note the difference in scales.
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Figure 1 graphically illustrates the historical price developments of our variables. We

could verify the fluctuating nature of crude oil and natural gas prices as illustrated in Ta-

ble I. Additionally, biofuel prices have been experiencing considerable price fluctuations.

Bonds and natural gas ended at a lower price than in 2009, indicating a negative mean

return as confirmed by Table I. S&P 500 has been increasing the most during the full

sample period.

B. Johansen cointegration test

Table II: Johansen cointegration test

Trace statistics Maximum eigenvalue
Cointegrating Trace 5% critical Reject Max. 5% critical Reject
rank statistics value null eigenvalue value null
0 211.3 192.9 Yes 62.9 57.1 Yes
1 148.5 156.0 No 47.5 51.4 No
2 100.9 124.2 No 40.2 45.3 No
3 60.8 94.2 No 21.4 39.4 No
4 39.4 68.5 No 14.8 33.5 No
5 24.6 47.2 No 13.4 27.1 No
6 11.2 29.7 No 8.7 21.0 No
7 2.5 15.4 No 2.5 14.1 No
8 0.0 3.8 No 0.0 3.8 No

Note: Variables included: agriculture, S&P 500, crude oil, bonds, USD, biofuel, natural gas, fertilizers, and
CPI. All variables are in logarithmic form. Lags: 2 in accordance with AIC, see Appendix Table B.II.

The results from the Johansen cointegration test are presented in Table II. The trace

statistics and maximum eigenvalue were higher than the 5% critical value at the cointe-

gration rank zero, which implied rejection of that null hypothesis. The null hypotheses

at cointegration rank one to eight could not be rejected at the 5% significance level. This

means that the Johansen cointegration test found evidence of one cointegrating relation-

ship. As a result, the VECM in Equation (2) was specified with one error correction term.
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C. Augmented Dickey-Fuller unit root test

Table III: Augmented Dickey-Fuller unit root test

Logarithmic levels First differences
Lags Test 5% critical Reject Test 5% critical Reject

statistic value null statistic value null
Agriculture 1 -1.8 -2.9 No -8.4 -2.9 Yes
S&P 500 3 -4.3 -3.4 Yes -7.1 -2.9 Yes
Crude oil 3 -3.2 -3.4 No -7.2 -2.9 Yes
Bonds 1 -1.4 -2.9 No -8.3 -2.9 Yes
USD 1 -1.3 -2.9 No -8.0 -2.9 Yes
Biofuel 2 -2.9 -3.4 No -6.6 -2.9 Yes
Natural gas 1 -3.6 -3.4 Yes -9.2 -2.9 Yes
Fertilizers 4 -2.5 -2.9 No -4.6 -2.9 Yes
CPI 2 -2.5 -3.4 No -5.0 -2.9 Yes

Note: AIC, SBIC, and HQIC were used to indicate optimal lag length, see Appendix Table B.I. The
critical values are -3.4 if the deterministic trend (δi) was statistically significant at the 5% level and -2.9
if it was not statistically significant.

Table III presents the results of the ADF test specified in Equation (3) on the logarith-

mic prices and the logarithmic first differenced prices. In the logarithmic form, the test

statistics were not sufficient to uniformly reject the null hypotheses for all variables at the

5% significance level. Hence, all variables were not stationary in the logarithmic form.

However, the null hypotheses were rejected for all variables after first differencing the

variables, implying stationarity at the first difference form. Thereby, the variables were

suited for further empirical estimation.
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IV. Calibration & Estimation

A. VECM & Granger causality estimation

To examine the Granger causal relationships of agricultural commodity returns, we

estimated the VECM. Detailed VECM outputs are presented in Appendix Table C.V. The

speed of adjustment (λλλ ) to long-run equilibrium was not statistically significant for agri-

cultural commodity returns, meaning there was no evidence of any long-run relationships.

The existing literature has not drawn a uniform conclusion in this regard. Zhang et al.

(2010) and Kapusuzoglu and Karacaer Ulusoy (2015) failed to find evidence of long-

run relationships between oil prices and agricultural commodities. However, Nazlioglu

and Soytas (2012) found that oil prices and the U.S. dollar have a long-run relationship

with agricultural commodities. There has been limited research in the existing empirical

literature concerning the long-term connections between agricultural commodities and

our included variables. Hence, it was not possible to make an extensive comparison of

our long-term results with previous studies.

Table IV: In-sample Granger causality test based on VECM

Null hypothesis: Does not Granger cause P-value Reject null
Panel A: Unidirectional
Granger causality

S&P 500 → Agriculture .642 No
Crude oil → Agriculture .603 No
Bonds → Agriculture .933 No
USD → Agriculture .682 No
Biofuel → Agriculture .022 Yes
Natural gas → Agriculture .964 No
Fertilizers → Agriculture .023 Yes
CPI → Agriculture .267 No

Panel B: Bidirectional
Granger causality

Agriculture → Biofuel .006 Yes
Agriculture → Fertilizers .190 No

Note: The in-sample consists of 144 monthly observations spanning from 2009 to 2021.

15



The short-run Granger causal relationships were investigated using the Wald tests pre-

sented in Table IV. The results in panel A show that biofuel returns Granger caused

agricultural commodity returns, meaning that the lagged biofuel returns had a predictive

power over the coming month’s agricultural commodity returns. This interdependency be-

tween biofuel and agricultural commodities was consistent with the findings from Nicola

et al. (2016) and Allen et al. (2018). They argue that the relationship existed because bio-

fuel production primarily consists of maize and soybean oil production inputs. Therefore,

biofuel returns were anticipated to be interconnected to agricultural commodity returns.

Panel B in Table IV show statistical evidence that agricultural commodity returns

Granger cause biofuel returns. Therefore, our findings showed that the Granger causal

relations are bidirectional between biofuel and agricultural commodity returns. The ex-

istence of a bidirectional relationship between biofuel and agricultural commodities is in

line with the findings by Serra et al. (2011).

Fertilizer returns Granger caused agricultural commodity return as seen in Panel A in

Table IV. Similar results were found by Baffes (2007) and Nazlioglu (2011), and could be

further supported since fertilizers are an essential input in the production of agricultural

commodities and generally account for 44% of agricultural production cost (Gnutzmann

and Spiewanowski 2016).

We could not find statistically significant evidence that S&P 500, crude oil, bonds,

U.S. dollar, natural gas, or CPI Granger caused agricultural commodity returns. In con-

trast to our results, Bruno et al. (2017) found a relationship between the S&P 500 and

agricultural commodities. Allen et al. (2018), Taghizadeh-Hesary et al. (2019) and Nazli-

oglu and Soytas (2012) found a relationship between crude oil and agricultural commodi-

ties. According to research conducted by Nazlioglu and Soytas (2012) and Adämmer

and Bohl (2015), agricultural commodities are affected by the strength of the U.S. dol-

lar. Additionally, Taghizadeh-Hesary et al. (2019) found a relationship between inflation

and agricultural commodities. There has been a lack of extensive research on bonds and

16



natural gas in relation to agricultural commodities, resulting in limited empirical data and

conclusive findings.

To summarize our VECM findings, we discovered that out of the four energy com-

modities we researched, biofuel and fertilizers had a Granger causal relationship with

agricultural commodity returns. However, we found no such linkages between crude oil

and natural gas. It is important, however, to interpret these results with caution as the

test had an R-squared of 8.9%. This could imply that the model has limited explanatory

power, which means that the included variables only account for a minor portion of the

returns.

B. IRF estimation

The IRFs presented in Figure 2 were based on the significant Granger causal relation-

ships found in panel A in Table IV and illustrate the response during a 10-month period.

The first graph in Figure 2 shows that a one-time positive shock in biofuel returns resulted

in a positive response in agricultural commodity returns. The response in agricultural

commodity returns sharply increased from month zero to month one, which continued to

increase slightly until month four, when the response reached stable levels. Moreover, the

effect was permanent and did not return to the pre-shock levels. This meant that a sharp

increase in biofuel returns led to a permanent increase in agricultural commodity returns,

where most of the increase was observed during the first month.

In the second graph of Figure 2, there was a similar response where a sudden increase

in fertilizer returns led to a positive impact on agricultural commodity returns. Again, the

response was immediate, significantly rising from month zero to month one. The increase

continued for six months before reaching permanent and stable levels.

The positive and persistent response in agricultural commodity returns from shocks in

biofuel returns as seen in Figure 2 is in line with the findings from (Taghizadeh-Hesary
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et al. 2019). The authors also found a positive and persistent response in agricultural

commodity prices from shocks in crude oil prices. Our VECM estimations in Table IV

did not show statistically significant evidence of crude oil Granger causality. However, the

authors argued that crude oil affects agricultural commodity prices through the production

of fertilizers. Figure 2 shows that fertilizer returns positively and persistently impacted

agricultural commodity returns. Therefore, the results of our IRFs in Figure 2 were similar

to, but not equal to, the IRF results of (Taghizadeh-Hesary et al. 2019).
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Figure 2: IRF. Monthly response of agricultural commodity returns from a one-time shock in
biofuel and fertilizer returns
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The IRF in Figure 3 further investigates the bidirectional Granger causal relationship

found in panel B in Table IV through imposing a one-time positive shock in agricultural

commodity returns. Biofuel returns responded with an immediate increase starting from

month zero, where the response fluctuated slightly until month four. Afterward, the re-

sponse sustained post-shock levels throughout the rest of the period. This means that a

sharp increase in agricultural commodity returns led to a permanent and immediate in-

crease in biofuel returns.
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Figure 3: IRF. Monthly response of biofuel returns from a one-time shock in agricultural
commodity returns

The results presented in Figure 2 and Figure 3 verified the significant relationships

found in Table IV. The IRFs also suggested that the relationships are positive, the latency

of response is minimal, and the responses had a persistent impact.
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C. Post-estimation tests

Table V: Lagrange-multiplier test

Lag Null hypothesis P-value Reject null
1 No residual autocorrelation at lag 1 .142 No
2 No residual autocorrelation at lag 2 .520 No

Note: The LM tests for residual autocorrelation in each lag order used for the VECM
specification.

Table V presents the residual autocorrelation tests for both lags used in the VECM

estimation. We could not reject the null hypotheses since the p-values were above the

5% significance level. Consequently, we found no residual autocorrelation for the two lag

orders. Thus, the results from the LM test concluded that the VECM was not biased by

residual autocorrelation.

Table VI: Jarque-Bera test

Null hypothesis: Residuals are normally distributed P-value Reject null
Agriculture .001 Yes
S&P 500 .000 Yes
Crude oil .000 Yes
Bonds .171 No
USD .188 No
Biofuel .003 Yes
Natural gas .000 Yes
Fertilizers .000 Yes
CPI .688 No
All .000 Yes

Note: The Jarque-Bera tests if the residuals from each estimated VECM equation are normally
distributed.

Table VI shows the Jarque-Bera residual normality tests based on the estimated VECM

equations. The null hypothesis of normally distributed residuals was rejected at the 5%

level for the VECM equations agriculture, S&P 500, crude oil, biofuel, natural gas, and

fertilizers. In addition, the joint residual normality test was also rejected. As a result, the
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VECM does not fulfill the normality assumption.

Table VII: Out-of-sample Granger causality test based on VECM

Null hypothesis: Does not Granger cause P-value Reject null
Panel A: Unidirectional
Granger causality

S&P 500 → Agriculture .650 No
Crude oil → Agriculture .952 No
Bonds → Agriculture .399 No
USD → Agriculture .268 No
Biofuel → Agriculture .600 No
Natural gas → Agriculture .399 No
Fertilizers → Agriculture .913 No
CPI → Agriculture .636 No

Note: The out-of-sample consists of 23 monthly observations spanning from 2021 to 2023.

The out-of-sample estimation in Table VII failed to find significant Granger causal re-

lationships between the investigated variables and agricultural commodity returns. More-

over, the out-of-sample dataset found evidence of unit roots in the first differenced vari-

ables, as noted in Appendix Table C.III, and thus suffered from non-stationarity. Addi-

tionally, the out-of-sample Johansen cointegration test in Appendix Table C.IV did not

provide interpretable results. Therefore, we discard the out-of-sample results as not reli-

able.
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V. Conclusion

In this paper, we investigated the Granger causal relationships of agricultural com-

modity returns, focusing on the impact of the stock market, energy commodities, and

macroeconomic variables. We employed a VECM and IRFs on monthly returns and found

unidirectional and bidirectional Granger causalities.

Firstly, we found a positive and persistent bidirectional Granger causality between bio-

fuel returns and agricultural commodity returns. An explanation might be that agricultural

commodities are essential to biofuel production. Hence, increased agricultural commod-

ity prices have to be compensated by biofuel producers through higher prices. On the

other hand, the inverse linkage could be explained that increased biofuel prices create

economic incentives for biofuel producers to increase production; hence the demand and

price for agricultural commodities increase.

Secondly, we found a positive and persistent unidirectional Granger causality flowing

from fertilizer returns to agricultural commodity returns, implying that the production

cost of agricultural commodities increases as the price of fertilizer increases. The find-

ings are not unexpected since biofuel and fertilizers are closely related in the agricultural

commodity production chain.

On the other hand, most existing literature found evidence of a linkage between the

stock market, crude oil, and USD strength to agricultural commodities. However, this

contradicts our findings since we did not find any significant Granger causality between

these variables and agricultural commodity returns. A potential explanation for why our

results differ from other authors could be linked to the specific time period chosen for

analysis. It could also be because we used an aggregated agricultural commodity index

that might neglect individual agricultural commodities’ dependencies.

Our post-estimation tests showed mixed results. The VECM assumption of no residual

autocorrelation was fulfilled according to the LM test, but the residual normality assump-
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tion was not fulfilled according to the Jarque-Bera test. Additionally, the 23 months out-

of-sample dataset proved insufficient to provide reliable VECM results. A likely reason is

that the number of observations was too few. Future researchers who want to employ an

out-of-sample VAR or VECM could learn from our attempt that more observations might

be required.

This paper’s findings are important to investors in the agricultural sector and policy-

makers. First, the knowledge of Granger causality allows investors to use information

from the biofuel and fertilizer markets to predict future agricultural commodity prices.

Additionally, the lack of Granger causality can potentially highlight diversification ben-

efits for investors since they are not intertemporally dependent on each other. Finally,

policymakers can mitigate price changes in agricultural commodities by directing regula-

tory focus to biofuel and fertilizer markets.

We find three limitations of our study; firstly, since an agricultural commodity index

is used, it might neglect idiosyncratic factors specific to separate commodities within

the index. Secondly, the employed model lacks the ability to interpret the magnitude of

the short-run Granger causalities. Thirdly, the post-estimation tests of our study showed

mixed results, and the VECM illustrated an R-square of 8.9%, whereby each reader should

draw their own conclusions about the validity of our results.

Future research could further examine the link between biofuel and fertilizers to agri-

cultural commodities. We believe a more in-depth analysis could be done by splitting the

fertilizers into the most commonly used fertilizers; nitrogen, phosphate, and potassium.

Additionally, future studies could examine the predictability of farmland prices which

would have policy implications for real estate investors, banks, and farmers.
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A Appendix

We utilized Overleaf and LaTeX to write this thesis, as well as to create tables and equations. The

statistical software STATA version SE 17.0 was used to handle, clean, and transform our dataset. STATA

was also used to conduct statistical tests and to create graphs.

A.1 VECM

The VECM used in this paper was based on a VAR, which estimates one equation for each variable.

For each equation, the value of the dependent variable is estimated by the lagged variables. The base model

VAR for our study was specified as:

Yt = ααα +
p

∑
j=1

φφφ jYt− j + εεε t (A1)

Where Yt is a vector of logarithmic variables. ααα is a vector with intercept parameters. φφφ j is a square

matrix with the coefficients used to assess short-run causality. Since our Johansen cointegration tests in

Table II showed evidence of one cointegrating relationship among our variables, we augmented the VAR

with an additional vector:

λλλECTt−1 (A2)

Where λλλ is the speed of adjustment to long-run equilibrium and ECTt−1 is computed as the OLS

regression error:

ECTt−1 = Y1,t−1 −α −
i−1

∑
j=1

β jYj+1,t−1 (A3)

Where i is the number of variables. If the variables are far apart but share a common trend, they would

be expected to draw closer to each other over time, and thus the error will be corrected, as the name - Error

Correction Term suggests. The speed of adjustment term λλλ assesses the long-run causal relationships but

must be statistically significant to add interpretational value. After adding the λλλECTt−1 vector and first

differencing operators, we ended up with the VECM specified in Equation (1):

∆Yt = ααα +
p−1

∑
j=1

φφφ j∆Yt− j +λλλECTt−1 + εεε t (A4)
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B Appendix - In-sample VECM estimation

B.1 Appendix – Optimal lag length for ADF

Appendix Table B.I: Lag length selection criteria in each separate variable for ADF

Lag AIC HQIC SBIC
Agriculture

0 -.33 -.32 -.31
1 -2.77* -2.75* -2.72*
2 -2.75 -2.73 -2.69
3 -2.74 -2.71 -2.66
4 -2.73 -2.68 -2.62

S&P 500
0 .84 .85 .86
1 -3.56 -3.54* -3.52*
2 -3.55 -3.52 -3.49
3 -3.56* -3.53 -3.48
4 -3.55 -3.51 -3.45

Crude oil
0 .74 .75 .76
1 -1.44 -1.42 -1.40*
2 -1.46 -1.43* -1.40
3 -1.46* -1.43 -1.38
4 -1.45 -1.41 -1.35

Bonds
0 -4.04 -4.03 -4.02
1 -6.57* -6.56* -6.53*
2 -6.56 -6.53 -6.50
3 -6.55 -6.52 -6.47
4 -6.56 -6.52 -6.46

USD
0 -1.81 -1.80 -1.79
1 -4.84* -4.82* -4.79*
2 -4.82 -4.80 -4.76
3 -4.83 -4.79 -4.74
4 -4.81 -4.77 -4.71

Biofuel
0 -.07 -.06 -.05
1 -2.76 -2.75 -2.72*
2 -2.77* -2.75* -2.71
3 -2.76 -2.73 -2.68
4 -2.75 -2.70 -2.64

Natural gas
0 .25 .259 .271
1 -1.40* -1.38* -1.36*
2 -1.39 -1.36 -1.33
3 -1.38 -1.34 -1.29
4 -1.36 -1.32 -1.26

Fertilizers
0 -2.92 -2.91 -2.90
1 -5.56 -5.58 -5.56
2 -5.71 -5.68* -5.65*
3 -5.70 -5.67 -5.62
4 -5.71* -5.67 -5.61

CPI
0 -2.93 -2.92 -9.53*
1 -9.40 -9.39 -9.36
2 -9.55 -9.53 -9.49*
3 -9.56 -9.53 -9.48
4 -9.57* -9.53* -9.47

Note: * = optimal lag. All variables are in logarithmic form.
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B.2 Optimal lag length for Johansen cointegration and VECM

Appendix Table B.II: Lag length selection criteria for Johansen cointegration and VECM

Lag AIC HQIC SBIC
0 -22.80 -22.72 -22.61
1 -41.23 −40.46∗ −39.34∗

2 −41.41∗ -39.95 -37.83
3 -41.00 -38.86 -35.73
4 -40.83 -38.00 -33.86

Note: * = optimal lag. Variables included: agriculture, S&P 500, crude oil, bonds, USD,
biofuel, natural gas, fertilizers, and CPI. All variables are in logarithmic form.

B.3 Appendix - Full in-sample VECM outputs

Appendix Table B.III: In-sample VECM outputs

Short-run causality Long-run causality
AG SP CL BND USD BF NG FRT CPI ECT

λ .020 .085* .435* -.002 -.043* .101* -.227* -.013 .004* -
(.634) (.004) (.000) (.712) (.003) (.014) (.008) (.171) (.014)

AGt−1 -.393* -.075 -.239 -.021 .118* -.431* -.323 .049 -.004 1
(.016) (.505) (.374) (.399) (.030) (.006) (.317) (.190) (.451)

SPt−1 -.072 .014 .822* -.030 .042 .071 -.205 -.018 .001 -.774*
(.642) (.892) (.001) (.194) (.422) (.634) (.504) (.618) (.823) (.002)

CLt−1 .005 .003 -.032 .000 .013 .000 -.149 -.026 .002 -.442*
(.933) (.947) (.750) (.993) (.512) (.998) (.221) (.064) (.232) (.000)

BNDt−1 .292 .434 .599 -.044 -.202 .499 -.696 -.034 .002 .239
(.603) (.261) (.519) (.599) (.284) (.356) (.532) (.792) (.931) (.748)

USDt−1 -.121 -.084 .618 -.073 .013 .073 .290 .038 .001 .418
(.682) (.679) (.206) (.100) (.892) (.798) (.620) (.574) (.958) (.334)

BFt−1 .374* -.001 -.224 .024 -.048 .469* .399 -.019 .006 -.758*
(.022) (.993) (.406) (.326) (.384) (.003) (.217) (.622) (.250) (.000)

NGt−1 .002 -.052 -.084 .000 .012 -.028 -.063 .008 -.001 .414*
(.964) (.075) (.231) (.984) (.399) (.493) (.456) (.435) (.527) (.000)

FRTt−1 .783* .360 .501 -.045 .015 .709* 1.007 .298* .000 .154
(.023) (.129) (.380) (.382) (.898) (.033) (.141) (.000) (.994) (.639)

CPIt−1 3.339 2.458 20.726* -.930* -3.282* 4.041 8.542 1.574* .290* 4.079*
(.267) (.234) (.000) (.040) (.001) (.163) (.152) (.023) (.004) (.009)

Intercept -.001 .011* -.015 .003* .003 .000 -.025 -.003* .001* -21.934
(.880) (.023) (.198) (.015) (.256) (.971) (.073) (.043) (.000)

R-square .089 .161 .337 .088 .184 .143 .104 .176 .453 -

Note: * = significance at the 5% level. Values inside parentheses are the p-values. The term λ measures the
speed of adjustment to equilibrium. Abbreviations: AG = agriculture, SP = S&P 500, CL = crude oil, BND =
bonds, BF = biofuel, NG = natural gas, FRT = fertilizers.
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C Appendix - Out-of-sample VECM estimation

C.1 Appendix – Optimal lag length for ADF

Appendix Table C.I: Lag length selection criteria in each separate variable for ADF

Lag AIC HQIC SBIC
Agriculture

0 -1.73 -1.72 -1.68
1 -2.92 -2.90 -2.82*
2 -2.95* -2.92* -2.80
3 -2.87 -2.83 -2.67
4 -2.78 -2.73 -2.53

S&P 500
0 -2.28 -2.27 -2.23
1 -2.85* -2.83* -2.75*
2 -2.82 -2.80 -2.67
3 -2.74 -2.70 -2.54
4 -2.71 -2.66 -2.46

Crude oil
0 -.75 -.74 -.70
1 -1.76* -1.74* -1.66*
2 -1.66 -1.63 -1.51
3 -1.56 -1.52 -1.36
4 -1.53 -1.48 -1.28

Bonds
0 -2.39 -2.38 -2.34
1 -4.84* -4.82* -4.74*
2 -4.74 -4.71 -4.59
3 -4.68 -4.65 -4.49
4 -4.66 -4.62 -4.41

USD
0 -2.52 -2.51 -2.47
1 -4.71* -4.69* -4.61*
2 -4.68 -4.65 -4.53
3 -4.58 -4.54 -4.38
4 -4.49 -4.45 -4.25

Biofuel
0 -2.26 -2.25 -2.21
1 -3.09 -3.07 -2.99*
2 -3.13* -3.11* -2.99
3 -3.07 -3.03 -2.87
4 -3.00 -2.95 -2.75

Natural gas
0 .51 .52 .56
1 -.13* -.11* -.03*
2 -.05 -.02 .10
3 .02 .06 .22
4 .01 .15 .35

Fertilizers
0 -1.63 -1.62 -1.58
1 -5.08* -5.06* -4.98*
2 -5.04 -5.01 -4.89
3 -4.96 -4.92 -4.76
4 -4.94 -4.89 -4.69

CPI
0 -3.77 -3.76 -3.72
1 -8.69* -8.67* -8.59*
2 -8.60 -8.57 -8.45
3 -8.53 -8.49 -8.33
4 -8.50 -8.45 -8.25

Note: * = optimal lag. All variables are in logarithmic form.
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C.2 Augmented Dickey-Fuller test

Appendix Table C.II: Augmented Dickey-Fuller (ADF) unit root test

Logarithmic levels First differences
Lags Test 5% critical Reject Test 5% critical Reject

statistic value null statistic value null
Agriculture 2 -2.0 -3.0 No -3.2 -3.0 Yes
S&P 500 1 -2.3 -3.6 No -4.0 -3.0 Yes
Crude oil 1 -1.0 -3.0 No -3.3 -3.0 Yes
Bonds 1 -2.1 -3.6 No -3.4 -3.0 Yes
USD 1 -1.1 -3.0 No -2.5 -3.0 No
Biofuel 2 -2.8 -3.0 No -3.8 -3.0 Yes
Natural gas 1 -1.8 -3.0 No -3.8 -3.0 Yes
Fertilizers 1 -2.2 -3.0 No -3.9 -3.6 Yes
CPI 1 -1.6 -3.0 No -3.0 -3.0 No

Note: AIC, SBIC, and HQIC were used to indicate optimal lag length. The critical values are -3.6 if
the deterministic trend (δi) was statistically significant at the 5% level and -3.0 if it was not statistically
significant.

Appendix Table C.II shows that the null hypothesis of unit root cannot be rejected in biofuel and CPI in

the first differences, indicating a non-stationarity problem.

C.3 Optimal lag length for Johansen cointegration and VECM

Appendix Table C.III: Lag length selection criteria for Johansen cointegration and VECM

Lag AIC HQIC SBIC
0 -35.48 -35.41 -35.03
1 -83.93 -83.32 -79.48
2 -519.76 -518.65 -511.75
3 -569.97 -567.87 -560.96
4 -564.90 -563.79 -556.89
5 -575.67 -574.57 -567.66
6 −579.31∗ −578.20∗ −571.30∗

Note: * = optimal lag. Variables included: agriculture, S&P 500, crude oil, bonds, USD,
biofuel, natural gas, fertilizers, and CPI. All variables are in logarithmic form.
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C.4 Johansen cointegration test

Appendix Table C.IV: Johansen cointegration test

Trace statistics Maximum eigenvalue
Cointegrating Trace 5% critical Reject Max. 5% critical Reject
rank statistics value null eigenvalue value null
0 - 192.9 No - 57.1 No
1 - 156.0 No 737.7 51.4 Yes
2 - 124.2 No - 45.3 No
3 - 94.2 No - 39.4 No
4 - 68.5 No - 33.5 No
5 - 47.2 No - 27.1 No
6 - 29.7 No - 21.0 No
7 - 15.4 No - 14.1 No
8 - 3.8 No - 3.8 No

Note: Variables included: agriculture, S&P 500, crude oil, bonds, USD, biofuel, natural gas, fertilizers, and
CPI. All variables are in logarithmic form. Lags specified: 6.

When estimating the Johansen cointegration for our out-of-sample dataset in Appendix table C.IV,

STATA automatically removed three lags because of collinearity. This is problematic because it is not

in accordance with the optimal lag length. Consequently, the outputs in Appendix Table C.IV were not

interpretable and thus failed to correctly identify potential cointegrating relationships among our variables.

The following section presents the full out-of-sample VECM outputs. However, because of the non-

stationarity problem and failure to correctly test for cointegration, we deem the results of our out-of-sample

estimation unreliable. Nevertheless, to be transparent, we estimated the out-of-sample VECM with the

same specification as the in-sample VECM. The results are presented in Appendix Table C.V.
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C.5 Full out-of-sample VECM outputs

Appendix Table C.V: In-sample VECM outputs

Short-run causality Long-run causality
AG SP CL BND USD BF NG FRT CPI ECT

λ 1.21 .317 -.837 .115 -.266 .170 -4.063 -.020 .125* -
(.385) (.762) (.707) (.673) (.529) (.901) (.365) (.955) (.012)

AGt−1 -.381 -.359 .012 4.084 3.000 1.102 -.232 -.166 -3.987 1
(.804) (.650) (.952) (.399) (.268) (.547) (.399) (.913) (.636)

SPt−1 -1.421 -.435 .112 3.402 2.581 1.674 -.253 -.346 3.931 .328
(.218) (.463) (.458) (.349) (.204) (.223) (.221) (.761) (.533) (.375)

CLt−1 -.304 -.755 -.265 -3.335 -2.459 .537 .088 2.920 7.453 .522
(.902) (.551) (.411) (.668) (.571) (.855) (.841) (.229) (.580) (.670)

BNDt−1 -.773* -.001 .0477 1.246 .880 .780* -.072 -.406 2.648 -4.34*
(.010) (.951) (.223) (.188) (.096) (.029) (.179) (.170) (.107) (.003)

USDt−1 .693 .078 -.010 -2.158 -1.304 -.972 .100 .757 -1.158 -3.101*
(.137) (.745) (.866) (.142) (.112) (.080) (.229) (.100) (.650) (.009)

BFt−1 .424 .192 -.070 -.209 .954 -.037 -.063 .424 -5.879 -1.521*
(.777) (.803) (.720) (.965) (.718) (.984) (.814) (.774) (.474) (.000)

NGt−1 .561 1.021 .511 -12.176 -1.641 -1.017 .273 6.439 -25.261 .238*
(.910) (.688) (.429) (.435) (.851) (.863) (.758) (.187) (.351) (.000)

FRTt−1 -.209 -.125 .035 1.002 .604 .240 -.060 -.071 .075 2.096*
(.599) (.542) (.503) (.425) (.389) (.613) (.397) (.857) (.973) (.001)

CPIt−1 -.094 -.065* .004 .388* .213* .154* -.0198* -.003 .165 -9.522*
(.088) (.022) (.598) (.026) (.029) (.020) (.046) (.953) (.585) (.000)

Intercept .219 -.011 -.077 -.015 -.003 .024 .022 .025 .004 74.195
(.712) (.800) (.416) (.194) (.886) (.678) (.907) (.109) (.070)

R-square .292 .551 .330 .776 .551 .320 .491 .761 .923 -

Note: * = significance at the 5% level. Values inside parentheses are the p-values. The term λ measures the
speed of adjustment to equilibrium. Abbreviations: AG = agriculture, SP = S&P 500, CL = crude oil, BND =
bonds, BF = biofuel, NG = natural gas, FRT = fertilizers.
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