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Abstract

The electron affinity (EA) of polonium (Po) is calculated with the multi-
configuration Dirac-Hartree-Fock (MCDHF) method combined with a relativistic
configuration-interaction (RCI) approach. Po is of particular interest as one of
the few remaining elements with no experimental value for its EA. There are also
relatively few theoretical studies for Po, targeting these properties. The latest calcu-
lation using MCDHF is over 10 years old and newer coupled-cluster studies indicate
that this value is underestimating the EA. Earlier this year, a proposal was made
to CERN to perform measurements on the EA of Po and it is expected that these
experiments will take place in the foreseeable future. Hence, it is now important
to analyze the discrepancy between the theoretical results by testing new MCDHF
atomic structure correlation models. This work also serves as a preparatory study
for future calculations of the isotope shift (IS) of the EA of Po. The IS in turn
directly relates to the nuclear structure of Po. The results from the present study
are compared to the prior theoretical estimates of the EA and the difficulties with
treating and balancing correlation in Po and Po− will be discussed. The calculations
performed estimates the EA to be 1.446 eV.
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1. Introduction
The scientific field of negative ions, also referred to as anions, started with the discovery
of the electron in the late 19th century by J.J. Thomson. By measuring the deflection
of cathode rays under the influence of electromagnetic fields, he concluded that atoms
must contain even smaller constituents of negative charge, which we today call electrons.
Soon after the discovery of the electron, Thomson was able to detect negative ions in
his gas discharge tubes [1]. Since then, the model of the atom has been refined through
subsequent experiments along with the development of quantum mechanics. In present
day theory, the atom is described by a many-electron wave function whose square mod-
ulus represents the electron charge density. The force that binds the electrons to the
system arises from the electrostatic attraction between the electrons and the protons in
the nucleus. This description works well with neutral atoms and positively charged ions,
but for anions, things become somewhat more complicated. Due to the nucleus being
more effectively shielded by the other electrons for the negative ion, the r−1 asymptotic
attraction as r → ∞ is insufficient to bind the additional electron to nucleus. Instead,
the existence of negative ions relies on a much weaker r−4 dipole potential [2]. This
makes anions interesting from a fundamental theoretical perspective and the negative
ionic charge also makes them useful in applications in different areas of physics.

Even though negative ions form fragile systems, they have proven to play a major role
in many important physical processes. Multiple examples can be found in several scien-
tific fields, such as astro- and plasma-physics. Already in 1939, it was proposed that H−

could explain the visible opacity in certain types of stars including the sun. Likewise,
H− is believed to have helped with stellar formation in the early stages of the universe
with H− being an intermediate step in the formation of hydrogen gas H2 [3]. There are
also several techniques commonly used in chemistry and physics which take advantage
of the unique properties of negative ions. As an example, high energy beams of negative
ions are used in accelerator mass spectrometry and is especially helpful when measuring
the abundance of 14C [4]. Since nitrogen does not form negative ions, this help reduce
the background levels of the isotope 14N. From a theoretical standpoint, the relatively
weak central potential compared to the electron-electron interaction makes negative ions
especially suitable systems to study electron correlation effects. Experimental results on
atomic properties of negative ions can thus be used to benchmark theoretical models.

Another consequence of negative ions being weakly bound systems, is that only around
80% of all elements are able to form stable negative ions [2]. The availability and qual-
ity of the atomic structure studies for these elements varies. Polonium (Z = 84) is
an element which is difficult to study in a normal laboratory setting since the atom is
highly radioactive. Therefore, relatively few studies targeting atomic structure proper-
ties have been performed on Po. This is a part of the explanation why Po is one of
the few remaining elements with no known experimental value for its electron affinity.
Earlier this year, a proposal to perform new experiments with the aim to measure the
EA was presented to the committee for the isotope facility ISOLDE at CERN [5]. Prior
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attempts to measure the EA have been unsuccessful due to Po− not being produced
in sufficiently large quantities. The method previously used for producing radioactive
negative ions is suitable for atoms with an EA above 2.6 eV and theoretical calculations
made with the relativistic coupled-cluster approach [CCSD(T)] predict a value of 1.469
eV for the EA [5][6]. By using a different technique in which a beam of Po+ is converted
to Po− through double electron capture is believed to yield a more effective production
of Po−. The EA will be determined using laser photodetachment spectroscopy and if
the experiment is successful, a high precision measurement of the EA will be obtained.

As mentioned above, the most recent calculation made by Borschevsky et al. us-
ing CCSD(T) predicts the EA to be 1.469 eV. Another calculation performed by Li et
al. using the multi-configuration Dirac-Hartree-Fock method (MCDHF) gives a slightly
lower estimate of 1.405 eV [7]. Older studies of varying quality estimate the EA to be
in the range 1.2-1.9 eV [8][9]. With a possible experimental value of the EA in the next
upcoming years, it is more topical than ever to perform new calculations with the aim
to determine the EA of Po.

In this project, the MCDHF method combined with a relativistic configuration inter-
action (RCI) approach will be used to compute a new estimate of the EA. Unlike the
previous estimate obtained with MCDHF, these calculations will be performed using a
multi-reference and both the 6s- and 6p-orbital will be considered valence. The main
correlation effects will be captured by allowing single and double substitutions from the
valence orbitals. The effect on the EA will be studied when including triple substitutions
for the negative ion in the additional RCI calculation.
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2. Theory
This section starts with a review of the physics of negative ions and why Po is an in-
teresting element to study. This is followed by a brief introduction to the theoretical
framework necessary to understand the foundations of the many-electron atomic struc-
ture method used in this work. A motivation will be given to why it is necessary to use
a relativistic approach when performing calculations on the EA of Po.

2.1. Negative ions
In the simplest way, a negative ion can be viewed as an atom that has gained an extra
electron. However, the atomic structure of negative ions is considerably different and
more complex if compared to neutral and positively charged ions. Due to the excess
negative charge, the valence electrons do not experience a r−1 Coulomb potential at
large distances. Instead, the extra electron will deform the electron cloud and polarize
it, illustrated in fig. 1.

Figure 1: The figure illustrates how the additional electron polarizes the neutral atom. When
the extra electron is introduced, the atomic charge will be redistributed and the
dipolarization will be proportional to the electric field of the electron. The induced
dipole will in turn give rise to an attractive potential Vdip(r) ∝ r−4 which binds the
extra electron to the atom. If the attraction is strong enough, a stable negative ion
can be formed.

The induced dipole will result in a short range r−4 polarization potential Vdip(r) which
will attract the valence electrons. The relation between Vdip(r) and the distance to the
nucleus r can be derived by noting that the induced atomic dipole p will be proportional
to the electric field E of the electron

p = αE = α
e

4πϵ0r2 r̂ ⇒ |p| ∝ 1
r2 , (1)

where the constant of proportionality α is called the atomic polarizability [10]. This
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implies that the polarization potential Vdip(r) arising from the induced dipole can be
written as

Vdip(r) = p · r̂
4πϵ0r2 ⇒ Vdip(r) ∝ 1

r4 . (2)

Due to the weak attractive potential, negative ions only have a finite number of bound
states compared to positive ions where the number of states is infinite [2]. Most elements
can form negative ions, however there are exceptions where the valence electrons are so
weakly bound such that no stable anion naturally can exist. For example, the noble
gases do not exist as negative ions due to their closed shell structure. The number of
bound states also varies and it is common for a negative ion to only have one. Since
the attractive potential which binds the extra electron to the system is a consequence of
many-electron interaction, electron correlation is fundamental in the formation of stable
negative ions. Therefore, negative ions are ideal candidates for investigating effects
related to electron correlation. One important concept when studying negative ions is
the electron affinity (EA). The electron affinity corresponds to the binding energy of
the extra electron and can be viewed as a measurement of the correlation energy. For a
neutral atom A and its negative counterpart A− both in their respective groundstates,
the electron affinity is defined as the difference between the total binding energies [11]

EA ≡ Etot(A) − Etot(A−). (3)

The relation between the EA and the energy levels of a neutral atom A and its anion
A− is illustrated in fig. 2.

Figure 2: The diagram illustrates how the energy levels are typically distributed in a neutral
atom A and its corresponding anion A−. The EA is defined as being the difference
in energy between the ground state of the anion A− and the neutral atom A.
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From an experimental point of view, not all negative ions are equally easy to investi-
gate. In order to measure the electron affinity, one electron is photodetached from the
anion and the energy threshold is determined. A general method for obtaining electron
affinities is laser photodetachment spectroscopy, where a laser beam is overlapped with
a beam of negative ions. The photon energy Eγ is scanned over the electron affinity
threshold EEA while the rate of neutral atoms resulting from photodetachment is mea-
sured as a function of the photon energy. The EA can be deduced by studying the onset
of the production of neutral atoms [4]. For photons with energies Eγ ≥ EEA in the
vicinity of the energy threshold, the photodetachment cross section σ is described by the
Wigner threshold law [11]

σ ∝ (Eγ − EEA)l+1/2. (4)

Since photons carry an angular momentum of 1 (in atomic units with ℏ = 1), it is
expected that the detached electron will have an angular momentum of l = l0 ± 1 where
l0 denotes the angular momentum of the electron as it was bound to the nucleus [2]. The
Wigner law shows that the sharpest threshold for detachment will be when the outgoing
electron has an angular momentum l = 0. The relation between the angular momentum
of the outgoing electron and the sharpness of the threshold is illustrated in fig. 3.

Figure 3: The solid curve corresponds to the photodetachment cross section obtained from the
Wigner law when the outgoing electron has zero angular momentum l = 0. Similarly,
the dashed curve represents the cross section when the outgoing electron has non-zero
angular momentum l ̸= 0. As can be viewed in the figure, the cross section is sharp
when l = 0, indicating that the electron affinity can be determined with high accuracy
if the outgoing electron has zero angular momentum.

If the valence electron is initially in a p-orbital, the outgoing electron can be described
by two partial waves corresponding to an s-wave and a d-wave. However, due to a
centrifugal force being present for l > 0, the outgoing d-wave will be suppressed [12].
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Therefore, the most accurate measurements can be made for negative ions with valence
electrons in p-orbitals.

In fig. 4, the accuracy with which the EA has been measured or calculated is plotted
for the elements with known or predicted bound states of the corresponding anion.
The data is taken from the actively maintained Wikipedia page "Electron affinity (data
page)" (accessed in October 2022) [13]. From fig. 4, it is possible to conclude that in
general, the accuracy is much better for the atomic ions with valance electrons in p-
orbitals. In a recent study by Kristiansson et al., the EA of oxygen was measured at
the DESIREE facility at Stockholm university with a remarkable accuracy of ∼ 10−7 eV
[4]. However, some of these elements display uncertain characteristics, where the most
noticeable example is Po with the electron affinity 1.40(7). This value was obtained
by Li et al. through computations made with MCDHF [7]. As it stands today, no
experimental value of the EA exists for Po. Therefore, it is of great interest to get a
measurement of the EA through experiment. Until then, a more accurate value must be
obtained through computational methods.
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Figure 4: The graph display the accuracy in eV with which the electron affinity has been mea-
sured for bound anions up to U (Z = 92). For Po (Z = 84), the given value is from
a calculation. The red line goes through all elements where the corresponding anion
have valence electrons in p-orbitals.

2.2. The many-electron ion
A stationary state of an N -electron ion is described by its wave function Ψ(q1,...,qN )
where qi = (ri,σi) denotes the spatial and spin coordinates for the i:th electron. The
Born interpretation of the wave function states that the probability density function is
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given by the square of the modulus |Ψ|2. The energy E associated with a general atomic
eigenstate is determined by solving the eigenvalue problem ĤΨ = EΨ, where Ĥ is the
Hamilton operator. For an N -electron system, the non-relativistic Hamiltonian can be
expressed in the general form

Ĥ = −
N∑

i=1

(
h2

8π2m
∇2

i + Ze2

4πϵ0ri

)
+ 1

2

N∑
i ̸=j

e2

4πϵ0rij
. (5)

The first two terms is a sum of one-electron Hamiltonians given by the kinetic energy
operator as well as the electron-nuclear Coulomb potential. The solution to each of
the one-electron Hamiltonians are given by hydrogenic wave functions. The third term
describes the Coulomb interaction between electrons i and j separated by the distance
rij = |ri − rj | [14].

When the third term is included, it is no longer possible to obtain an exact solution
for the many-electron ion. By making a number of reasonable assumptions, it is however
possible to find an approximate solution using a numerical approach. One of the most
well known methods for this purpose is the Hartree-Fock (HF) approximation. In the
Hartree-Fock model, it is assumed that the motion of the electrons is uncorrelated and
that the total wave function Ψ can be represented as a product of single-electron spin-
orbitals. These spin-orbitals are assumed to be separable into a spatial component u(r)
and a spin component χ(σ). If the electrons are modelled to be moving in a central
field, the spatial component u(r) can be further divided into a radial Pnl(r) and an
angular part Ylml

(θ,φ). Each orbital is defined by an unique set of quantum numbers
{n, l, ml, ms} and can be written as [15]

ϕ(nlmlms; q) = 1
r
Pnl(r)Ylml

(θ,φ)χms(σ). (6)

When Pauli’s exclusion principle is taken into account, further restrictions are im-
posed on the electron wave function and it is required that the wave function is anti-
symmetrical under the interchange of two electrons. One way of ensuring anti-symmetry
is by constructing the wave function as a normalized Slater determinant

Ψ(PLS) = 1√
N !

∣∣∣∣∣∣∣∣∣
ϕα1(q1) ϕα2(q1) · · · ϕαN (q1)
ϕα1(q2) ϕα2(q2) · · · ϕαN (q2)

· · · · · · · · · · · ·
ϕα1(qN ) ϕα2(qN ) · · · ϕαN (qN )

∣∣∣∣∣∣∣∣∣ . (7)

For some LS-symmetries, it is necessary to use a linear combination of Slater determi-
nants to construct wave functions that are eigenstates of the the non-relativistic Hamil-
tonian shown in eq. (5). These type of functions are referred to as configuration state
functions (CSF). Each CSF is an eigenfunction of the orbital- and spin-angular momen-
tum operators L2, Lz, S2, Sz as well as the parity operator Π [15]. It should be noted
that CSF’s can also be formed through explicit coupling and antisymmetrization for a
given configuration by employing Racah algebra [16]. This is the approach used by the
methods utilized in this work.

7



2.3. The Hartree-Fock equations
The Hartree-Fock equations are derived under the assumptions that the spin-orbitals are
orthonormalized and that the wave function Ψ can be approximated with a single CSF.
It is further assumed that the electrons are subject to a spherical symmetric potential.
The latter is referred to as the central-field approximation. The main advantage of the
central-field approximation is that only the radial part of the wave function has to be
solved since the angular part will be given by spherical harmonics [15]. The many-
electron Hamiltonian in eq. (5) can be viewed as consisting of a sum of one-electron
operators as well as a sum of two-electron operators. Therefore, eq. (5) can be rewritten
using the notation

H =
N∑

i=1
h(i) + 1

2

N∑
i ̸=j

g(i,j). (8)

In atomic units, the two operators hi and gij are given by

h(i) = −1
2∇2

i − Z

ri
, g(i,j) = 1

rij
. (9)

Since the electronic states building the wave function are assumed to be orthonor-
malized ⟨ϕi|ϕj⟩ = δij , it is possible to apply the Slater-Condon rules to calculate the
expectation value ⟨Ψ|H|Ψ⟩ and hence the energy E [17]. Note that this only applies to
CSF’s constructed as Slater determinants and not with Racah algebra. Because elec-
trons with the same distribution are indistinguishable, the energy can be expressed in
terms of a pair of arbitrary coordinates (q,q′) making it possible to define ĥ = h(r) and
ĝ = g(r,r′). Computing the expectation value yields the expression

E = ⟨Ψ|H|Ψ⟩ =
N∑

i=1
⟨ϕi|ĥ|ϕi⟩ + 1

2

N∑
i,j=1

(
⟨ϕiϕj |ĝ|ϕiϕj⟩︸ ︷︷ ︸

Jij

− ⟨ϕiϕj |ĝ|ϕjϕi⟩︸ ︷︷ ︸
Kij

)
. (10)

The two integrals corresponding to an interaction between electrons are referred to as
the Coulomb term Jij and the exchange term Kij [18]. The exchange interaction has
no classical analogue and is a consequence of the required anti-symmetry of the wave
function. In the notation used in eq. (10), it is implicitly understood that the first place-
holder in each ket or bra is reserved for the coordinate q while the second is reserved
for q′, meaning for example that |ϕiϕj⟩ = |ϕi(q)ϕj(q′)⟩.

The variational principle states that the exact energy Eexact is less than or equal to
the energy E obtained from an approximated wave function Ψ [18]. If Ψ is assumed to
be normalized, this condition corresponds to

E = ⟨Ψ|H|Ψ⟩ ≥ Eexact. (11)

Therefore, it is possible to approach the exact solution by choosing a wave function Ψ
which minimizes the energy E where Eexact will be the lower bound to the approximated
energy E. An approximate solution to the wave function can therefore be obtained by
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varying the orbitals {ϕi}N
i=1 with the goal to minimize E. By introducing a set of

Lagrange multipliers εij , it is possible to include the constraint that the orthonormality
of the orbitals must be preserved. This defines the Lagrangian

L = E −
N∑

i,j=1
εij(⟨ϕi|ϕj⟩ − δij). (12)

If a variation is applied to the Lagrangian and requiring that the first variation of L is
set to zero, the following equation is obtained

δL =
N∑

i=1
δ⟨ϕi|ĥ|ϕi⟩ + 1

2

N∑
i,j=1

(δJij − δKij) −
N∑

i,j=1
εijδ⟨ϕi|ϕj⟩ = 0. (13)

Without writing out the different steps explicitly, the various terms of eq. (13) can
be simplified by using the hermiticity of the operators and the indistinguishability of
electrons. Solving for an arbitrarily chosen orbital ϕi(q) yields the equation

h(r)ϕi(q) +
N∑

j=1

[ ∫
dq′ |ϕj(q′)|2

|r − r′|

]
ϕi(q)

−
N∑

j=1

[ ∫
dq′ 1

|r − r′|
ϕ∗

j (q′)ϕi(q′)
]
ϕj(q) = εiϕi(q).

(14)

The expression can be further simplified by using the fact that that the spin components
fulfil χ(msi)χ(msj ) = δij and thus eq. (14) can be expressed only as a function of the
spatial component [17]

h(r)ui(r) +
N∑

j=1

[ ∫
dr′ |uj(r′)|2

|r − r′|

]
ui(r)

−
N∑

j=1

[
δ(msi ,msj )

∫
dr′ 1

|r − r′|
u∗

j (r′)ui(r′)
]
uj(r) = εiui(r).

(15)

This is the Hartree-Fock equations on the non-canonical form where the Lagrange mul-
tiplier εi is the energy associated with the orbital ϕi. Since the integrals themselves are
dependent on the orbitals, the equations must be solved iteratively. This is why solv-
ing the Hartree-Fock equations is commonly referred to as a self-consisted-field (SCF)
procedure. The procedure can be summarized as follows.

1. Make an initial guess for the orbitals
{
ϕi
}N

i=1.

2. Calculate the potentials.

3. Solve equation (15) keeping the potentials fixed.

4. Restart from step 2 with the new orbitals until convergence is obtained.
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2.4. Multi-configuration Hartree-Fock
The energy EHF obtained from calculations with the Hartree-Fock method is merely an
approximation to the exact electronic energy Eexact. In the HF equations, the exchange
interaction can be viewed as a form of spin-correlation between the electrons arising
as a consequence of the anti-symmetry of the wave function. Apart from the spin-
correlation, no additional electron correlation is considered in the HF method and the
correlated motion of the electrons is completely neglected [15]. If electron correlation
due to the Coulomb interaction is taken into account, the electrons will mutually repel
which will decrease the energy of the system. Therefore, the exact energy can be viewed
as a lower bound to EHF. The deviation from the exact energy is defined as being the
correlation energy [15, p. 67]

Ecorr = Eexact − EHF. (16)

When performing calculations on atomic structure, the aim is to reach an as accurate as
possible approximation for the desired properties of the atom. It is thus in general prefer-
able to introduce electron correlation in the calculations. Correlation can be included
in the HF method by expressing the electronic wave function as a linear combination of
CSF’s rather than being represented by a single CSF. The eigenstate in a basis of CSF’s
is called an atomic state function (ASF). For a given parity P and LS-symmetry, the
ASF can be written as [15, p. 73]

Ψ(γPLS) =
M∑

i=1
ciΦ(γiPLS), where

M∑
i=1

|ci|2 = 1. (17)

In the above expression, Φ(γiPLS) denotes a single CSF with ci being the expansion
coefficient and γi representing other properties necessary to uniquely describe the CSF,
such as the dominant electron configuration. The corresponding energy expression will
be given by

E =
M∑

i=1
c2

iHii + 2
M∑
i>j

cicjHij . (18)

The integrals Hij are elements of a symmetric matrix referred to as the interaction
matrix with elements defined as [15, p. 74]

Hij = ⟨Φ(γiPLS)|H|Φ(γjPLS)⟩. (19)

Solving the HF equations with a multi-configuration approach is similar to that of a
single CSF. The HF equations will be extended to include integrals which account for the
interaction between CSF’s and not only exchange of electrons within a single CSF. The
expansion coefficients are obtained through a configuration interaction (CI) calculation.
The CI calculation corresponds to solving the eigenvalue problem

(H − EmI)cm = 0. (20)
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In the above equation, H is the interaction matrix with elements given by eq. (19) and
I is the identity matrix with the same dimension as H. For an M × M matrix, there
are in total M eigenstates. The state m has a corresponding eigenenergy Em and an
eigenvector cm which contains the expansion coefficients for that particular state m [15].

2.5. Relativistic effects
Relativistic effects do influence the physics of all ions and atoms, but the significance
of these effects will generally increase with the nuclear charge Z. If relativistic effects
are considered, the electronic energy levels will be shifted and the atoms may display
characteristics which were not predicted in the non-relativistic picture. A few common
examples of atomic properties which are consequences of relativity include the yellow-
like colours of Cu (Z = 29) and Au (Z = 79) and the low melting point of Hg (Z = 80)
[19]. The dependency of relativistic effects on the nuclear charge Z can be investigated
for hydrogen-like ions without using a fully relativistic treatment of the atom.

From the theory of special relativity, the observed mass of the electron will be depen-
dent on its speed. In its own rest frame the electron has a mass denoted by me. But
according to the equations of relativity, the observed mass mrel will increase with the
electron speed v according to [19]

mrel = me√
1 − v2

c2

. (21)

The speed of the electron is dependent on the nuclear charge Z which can be examined
with the Bohr model for hydrogen-like ions. In atomic units, the mean speed ⟨v⟩ of the
electron can be expressed in terms of the principal quantum n and the nuclear charge Z

⟨v⟩ = Z

n
. (22)

Likewise, the mean radius ⟨r⟩ can be expressed in terms of the speed ⟨v⟩, nuclear charge
Z and the mass mrel

⟨r⟩ = Z

mrel⟨v⟩2 . (23)

Since ⟨v⟩ ∝ Z it is expected that mrel will increase for heavier ions. Similarly, when
both the speed ⟨v⟩ and the mass mrel are increased, the radius ⟨r⟩ decrease and the inner
atomic orbitals will be contracted. A contraction of the s- and p-orbitals will generally be
observed since they have a large electron density close to the nucleus compared to orbitals
with higher angular momentum l and thus higher velocity [19]. The contraction is said
to be a direct relativistic effect. However, for orbitals with higher angular momentum
l which are located farther away from the nucleus the opposite effect is expected and
the orbitals are instead detracted. This is because the electron density is increased close
to the nucleus when the inner orbitals are contracted thus the shielding becomes more
effective and the outer electrons will experience a weaker interaction with the nucleus.
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The detraction of the outer orbitals are said to be an indirect relativistic effect. This is
illustrated in fig. 5 where the 5d- and 6s-orbitals for Po are plotted. A slight detraction
of the 5d-orbital is observed while the 6s-orbital is significantly contracted.

Figure 5: The detraction of the 5d-orbital and the contraction of the 6s-orbital for Po. The red
orbitals marked with HF are from non-relativistic calculations while the blue orbitals
marked with DHF are relativistic.

Another important relativistic effect is the spin-orbit coupling which gives rise to fine
structure in atomic spectra. The spin-orbit coupling refers to the interaction between
the spin of the electron with its motion around the nucleus. For an electron moving in
a spherical potential, it can be shown through a semi-classical derivation that an extra
term appears in the Hamiltonian which is given by [20]

Hso = 1
2α

2 Z

r3 L · S. (24)

The fine structure constant α is defined as α = e2/(4πε0ℏc) ≈ 1/137. The corresponding
energy shift ∆E is determined by evaluating the integral ⟨Ψ|Hso|Ψ⟩,

∆E = ⟨Ψ|Hso|Ψ⟩ = Z

2 α
2
〈 1
r3

〉
⟨L · S⟩ = Z

2 α
2
〈 1
r3

〉1
2⟨J2 − L2 − S2⟩

= Z

4 α
2
〈 1
r3

〉
[j(j + 1) − l(l + 1) − s(s+ 1)] .

(25)

When evaluating ⟨r−3⟩, it is only necessary to consider the radial part of the wave
function Pnl(r) (technically, Rnl is the radial part with rRnl = Pnl). Since the electron
is moving in a spherical Coulomb potential, Pnl(r) will fulfil the radial equation,

P ′′
nl =

[
l(l + 1)
r2 − 2Z

a0r
+ Z2

n2a2
0

]
Pnl. (26)
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The above equation can be used to derive a relationship which is useful when calculating
expectation values ⟨rs⟩ for integer values of s. The derivation is left out of this text, but
can be viewed in appendix A. After evaluating ⟨r−3⟩ in atomic units with a0 = 1, the
energy shift will be equal to [20]

∆E = Z4α2

4l(l + 1
2)(l + 1)n3 [j(j + 1) − l(l + 1) − s(s+ 1)] . (27)

From the above expression follows that ∆E ∝ Z4 and therefore, for sufficiently heavy
ions, the spin-orbit coupling will compete with the Coulomb interaction. Even though
the relationship ∆E ∝ Z4 was explicitly derived for hydrogenic ions, the same relation-
ship is observed for atoms and ions in general [17]. The strong dependence on Z for the
spin-orbit coupling can be illustrated by studying the magnitude of the fine structure
splitting. In fig. 6, the experimental values for the fine structure of the three lightest
elements with the outer electron configuration ns2np4 are viewed [21]. From this di-
agram, it is observed that with increasing Z, the energy splitting between levels with
different values of the total angular momentum J becomes significantly larger. This is
an immediate consequence of the Z-dependence of the spin-orbit coupling.

Figure 6: The fine structure splitting for the ground state configuration ns2np4 3P of O I, S I,
Se I, Te I and Po I. It is apparent that the energy splitting between two levels with
different values for J is larger for higher Z.

Both with respect to the relativistic mass and the spin-orbit coupling, it is evident
that the non-relativistic treatment of the electron is more problematic for heavily charged
ions. Relativistic effects are accounted for in the covariant Dirac equation. However,
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solving the Dirac equation for a multi-body system is complicated. In the Breit-Pauli
approximation, some relativistic effects are accounted for while still treating the radial or-
bitals non-relativistic. This is accomplished by expanding the relativistic many-electron
equation and including terms of order α2 to the non-relativistic Hamiltonian in eq. (5)
as corrections to the Dirac-Coloumb-Hamiltonian [15, p. 129].

2.6. Multi-configuration Dirac-Hartree-Fock
It is possible to extend the MCHF calculations to include some relativistic corrections
through the Breit-Pauli approximation. A more thorough alternative is to use the fully
relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, which is imple-
mented in the code package GRASP2018 [22]. To perform the SCF calculation, the Dirac-
Coulomb Hamiltonian HDC is used. Similarly as with the non-relativistic Hartree-Fock
method, the HDC will consist of an one-electron and a two-electron part. According to
Dirac’s theory, the one-electron operator will consist of the kinetic energy operator Ti

and a nuclear potential Vnuc(ri) from an extended charge distribution. The one-electron
operator hi is given by

hi = Ti + Vnuc(ri) = cαi ·pi +(βi − 1)c2 + Vnuc(ri), (28)

where c is the speed of light, αi and βi are the 4 × 4 Dirac matrices for electron i and
pi is the electron angular momentum operator −i∇i [23]. As a first approximation, the
two-electron interaction can be assumed to only consist of the Coulomb interaction

hij = 1
rij
. (29)

Combining the different parts gives the full Dirac-Coulomb Hamiltonian HDC for an
N -electron system [23]

HDC =
N∑

i=1

[
cαi ·pi +(βi − 1)c2 + Vnuc(ri)

]
+

N∑
i<j

1
rij
. (30)

In a relativistic framework, the two-electron interaction is much more complex. The
leading correction to the Coulomb interaction is called the transverse photon interaction
which in the low frequency limit ωij → 0 will reduce to the Breit interaction [19]

hBreit
ij = −

N∑
i<j

1
2rij

[
(αi · αj) + (αi · rij)(αj · rij)

r2
ij

]
. (31)

It is also possible to expand the Hamiltonian to include additional QED corrections such
as self energy (SE) and vacuum polarization (VP). In its full form, the Hamiltonian can
be written as H = HDC + HBreit + HSE + HV P . The Breit and QED contributions
are included by performing a final diagonalization of the extended Hamiltonian H in a
relativistic configuration interaction (RCI) calculation with an orbital basis determined
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in the initial MCDHF procedure. The effect on the binding energy of the ground state
of Po when the Breit interaction and the leading QED corrections are accounted for in
the RCI calculation is illustrated in fig. 7.

Figure 7: The effect on the binding energy for the ground state of Po when expanding the
Hamiltonian to include the Breit interaction and the leading QED corrections. The
calculation was performed with a single CSF representing the ground state, i.e. a
DHF model without electron correlation effects.

The wave function Ψ is described by an ASF characterized by its parity P and the
total angular momentum J . The ASF Ψ(γPJ) is expressed as a linear combination of
CSF’s Φ(γiPJ) and expansion coefficients ci [22]

Ψ(γPJ) =
NCSF∑

i=1
ciΦ(γiPJ). (32)

The parameters γi represent other necessary properties to fully describe the CSF’s, such
as orbital occupancy. Each CSF is represented as a sum of anti-symmetric products of
orthonormal one-electron Dirac 4-spinors [22]

ϕnκm(q) = 1
r

(
Pnκ(r)χκm(θ,φ)

iQnκ(r)χ−κm(θ,φ),

)
(33)

where n is the principal quantum number, and κ and m are the relativistic angular quan-
tum number and its z-component respectively. Pnκ(r) and Qnκ(r) represent the large
and the small component of the radial wave function for the orbital ϕnκm, respectively.
It can be shown that the large component will have (n − l − 1) number of nodes [19,
p. 41]. The HDC do not commute with the L and S operators. Instead, the CSF’s must
satisfy [23]
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ΠΦ = PΦ, P = (−1)l1+...+lN ,
J2Φ = J(J + 1)Φ,
JzΦ = MΦ, M = −J,− J + 1,...,J.

(34)

Both the expansion coefficients ci and the one-electron orbitals are obtained through the
SCF procedure of the MCDHF method. In the subsequent RCI calculation, the orbitals
building the CSF’s are kept fixed while the expansion coefficients are recalculated with
an expanded Hamiltonian, as described earlier, to include the Breit interaction and
leading QED effects. When doing calculations with GRASP2018, both a configuration
multi-reference (MR) and an active set of orbitals {ϕk} (AS) are defined. Substitutions
are allowed from the configurations within the MR to orbitals defined by the AS. By
successively expanding the AS, it is therefore possible to add more layers of correlation.
This corresponds to extending the CSF basis representing the ASF (32).
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3. Method
The purpose of this section is to give a more detailed explanation to how the calculations
were planned and performed. Different types of correlation effects are discussed and a
motivation to why certain effects were included in the model is given. Some difficulties
with performing calculations of the EA of Po are also discussed and possible approaches
to handle these obstacles are presented.

3.1. The general procedure
The aim of the project was to compute a new estimate of the electron affinity of Po
using the MCDHF method as implemented in the GRASP2018 code. These calculations
were combined with relativistic configuration interaction to include additional correla-
tion effects as well as the Breit interaction and QED effects. The average energy of the
full term of the ground state configuration of Po and Po− was minimized in the SCF
procedure. The states which are optimized are referred to as the target states which for
Po are [Xe]4f145d106s26p4 3P with J = 0, 1, 2 and for Po− are [Xe]4f145d106s26p5 2Po

with J = 1/2, 3/2.

Before carrying out the actual calculations of the EA, it was important to first con-
struct a valid model in which correlation could be included in a structured manner.
To begin with, the core and valence orbitals had to be defined. An appropriate multi-
reference was also needed in order to include higher order correlation effects in the
calculations. To make these decisions, initial estimates of the energies and the orbital
wave functions were calculated. These first approximations were later improved by suc-
cessively introducing correlation in the MCDHF+RCI procedure. The necessary steps
required to perform a calculation using MCDHF and RCI implemented in GRASP2018
are summarized in the flowchart displayed in fig. 8.
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Figure 8: The flowchart illustrates the necessary components of a calculation with GRASP2018
where each blue box represents a specific subroutine. Initially, the nuclear properties
are defined with rnuclear and a list of CSF’s is generated with rcsfgenerate. The
spin-angular coeffcients are obtained from rangular and an initial guess for the radial
orbitals are calcultaed in rwfnestimate. There is also an option in rwfnestimate
to input a wave function file from previous runs. The new orbitals are optimized in
rmcdhf in the SCF-procedure. Based on the orbital wave functions and the mixing
coefficients obtained from rmcdhf, rci can be run to improve the wave function with
an additional RCI calculation.

3.2. Adding correlation
Correlation is added to the model by extending the single-CSF representation of the
HF/DHF wave function to a multi-CSF description as in eq. (32). The CSF’s are gener-
ated by making electron substitutions from the reference configurations within an active
set of orbitals. Since the Hamiltonian is a two-body operator at most, it is generally
enough to consider single (S) and double (D) substitutions from the reference config-
urations. Higher order effects can be captured by extending the set of spectroscopic
reference configurations to a multi-reference (MR) with additional strongly interacting
configurations. In other words, the MR should consist of CSF’s with large interactions
with the target states of interest- which in our case are the ground terms of Po and Po−.
Assuming that the zero-order wave function only consist of the leading CSF ϕ0 for some
interaction H, the expansion coefficient for the CSF denoted ϕn can be estimated to first
order by [19, p. 59]
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cn ≈ ⟨ϕn|H|ϕ0⟩
E0 − En

. (35)

The numerator, and hence cn, will be large if the orbitals of the two different CSF’s are
occupying roughly the same region of space. Therefore, one possible way of identifying a
suitable MR is based on the value of the expansion coefficients in the initial calculations
performed with the target state as a single reference.

After a suitable MR is found, the active space of orbitals is successively expanded by
adding new correlation orbitals. Correlation orbitals are typically not required to have
the expected number of nodes. In this work, only the orbitals found in the target states
were required to be spectroscopic and thus have the expected number of (n−l−1) nodes.
The MCDHF calculations were carried out in a layer-by-layer procedure where in each
step, one new orbital per l-symmetry was added and only the newly added correlation
orbitals were optimized. If more than one new orbital per l-symmetry is included at a
time, issues with convergence are likely to occur in the SCF minimization.

The type of correlation considered decides which CSF’s are included in the ASF in
eq. (32). Three kinds of correlation effects can be defined if two electrons in the physical
orbitals ab are substituted with the correlation orbitals αβ in the replacement ab → αβ
[15, p. 71].

1. If both ab are valence orbitals, the replacement represents valence-valence correla-
tion (VVC).

2. If either a or b is a core orbital and the other one is a valence orbital, the replace-
ment represents core-valence correlation (CVC).

3. If both orbitals ab are core orbitals, the replacement represent core-core correlation
(CCC).

When optimizing the orbitals, only SD substitutions and VVC were considered. After
the SCF procedure, the expansion coefficients were recalculated in an additional RCI
calculation to include the Breit interaction and leading QED effects. After each new
layer, the EA was calculated and compared to the values retrieved from the previous
steps. This procedure was repeated until the EA had reached a satisfactory degree of
convergence.

3.3. Effects from core-valence-correlation
Substitutions from core orbitals were not allowed in the SCF procedure since otherwise
the size of the calculations would be too large. Instead, effects from CVC were inves-
tigated by extending the list of CSF’s in a subsequent RCI calculation. CCC was not
considered in this project at all. Typically, recalculating the spin angular coefficients
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with rangular and reoptimizing the orbitals with rmcdhf is a much more time consum-
ing process than running rci, which can be considered as just one iteration of the SCF
procedure. By only running rci, effects from CVC will be included in the model while
the computational time will be manageable.

3.4. Balancing correlation
The existence of negative ions is very much dependent on the ability of the extra elec-
tron to share the attractive field of the nucleus with the other electrons. The correlated
motion of the electrons will result in a polarization of the electron cloud which will act as
the attractive potential that binds the valence electrons to the system. Therefore, a more
accurate approximation for the binding energy of the neutral atom will be obtained with
less correlation compared to the anion. As mentioned above, a layer-by-layer method
was employed in this work in which new correlation orbitals are added to the model in
steps. Due to the anion being more dependent on correlation, the EA will tend to be
underestimated if the binding energies used for Po and Po− when calculating the EA
are from the same step. A typical approach to adjust for this effect is to compare the
value of the binding energy for the anion obtained from step x with value obtained for
the neutral atom from step (x − 1). In this report, electron affinities obtained through
this approach will be denoted with ∆x = 1 while electron affinities computed from the
same step will be denoted with ∆x = 0.

More intricate ways of balancing correlation can be modelled within the actual cal-
culations. For example, by including a larger set of orbitals in the active set for the
anion, correlation effects are better balanced and a more representative value of the
EA can be obtained [24]. Li et al. used another approach when calculating the EA
by allowing SD substitutions for the neutral atom, but for the anion also include some
triple (T) substitutions [7]. Inspired by the latter approach, which was carried out with
MCDHF calculations, a procedure was constructed where extra correlation was added
in the model of the anion Po− through an additional RCI calculation where the list of
CSF’s is expanded to include SDT substitutions within a fixed active set. The model
with only SD substitutions for both Po and Po− will be referred to as SD-SD and the
new model with SDT substitutions for Po− will be referred to as SD-SDT.

To compare the convergence of the EA from the SD-SD and the SD-SDT model, a
simple exponential function was fitted to the datapoints with the parameters A,B,C
according to

f(x) = Ae−Bx + C. (36)
The value of C should be interpreted as being the total binding energy to which the
calculations are converging to, while A can be thought of as representing the total error
between the first data point and the estimated total binding energy. The value of B can
be used as an indication of how fast the binding energy is converging as more correlation
orbitals are included.
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3.5. Handling large expansions with perturbation theory
Working with GRASP2018 is to a large extent a matter of weighing the amount of cor-
relation included against the computational cost. For example, the number of matrix
elements evaluated in the configuration interaction with rci will scale as M2 where M is
the number of CSF’s. For larger systems such as Po, the number of CSF’s generated can
be huge and it is therefore necessary to find ways to manage the large expansion. The
SCF procedure is even more time consuming than the additional RCI calculation and
determining the time it takes for the solution to reach self-consistency is hard to pre-
dict. Therefore it may be necessary to use methods to reduce the size of the calculations.

In GRASP2018, Brillouin-Wigner perturbation theory is implemented through a number
of add-on programs and can be used to manage large expansions [19]. Using this method,
the CSF’s in the expansion are divided in to a zero-order and first-order space for each J
symmetry. Each J-block of the interaction matrix can then be arranged on the following
form (

H00 H01

H10 H11

)
. (37)

All matrix elements involving the zero-order space H00, H10 and H01 are evaluated,
but only the diagonal elements of H11 are computed [22]. In this manner, it is possible
to reduce the amount of computations and improve the run times. This approach was
used when adding the correlation layers VV2 and VV3. The zero-order spaces were
determined by looking at the sizes of the expansion coefficients from the previous layer
of correlation. It was decided that the CSF’s corresponding to 99.99% of the wave
function for each J-symmetry of a given MCDHF step was large enough to define the
zero-order space in the next correlation layer.

3.6. HPC cluster calculations
For the last valence-valence layer and the core-valence layer, the computations were
performed on the computer cluster Vera at C3SE at Chalmers. C3SE is one out of
six high performance computing (HPC) centres in Sweden organised under NAISS [25].
Vera runs two types of CPU’s, one with 32 cores and the other one with 64 cores. The
GRASP2018 package offers MPI versions of the most time consuming programs which
makes it possible to employ parallel processing to reduce the run times. Therefore, the
number of parallel processes were limited to 64 (hyperthreading is not allowed at Vera).
Vera runs the SLURM workload manager which is a batch queuing software. To have
your codes run, it is necessary to write a batch script where certain parameters are
specified, such as estimated run time and the number of parallel processes. The script
is queued and when a node meeting the requirements is available, the codes will be run
and the results will be written to a directory of choice. An example of a batch script
used for the core-valence layer of Po− is found in appendix B.
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4. Model
The main purpose of this section is to present the results from the preparatory calcu-
lations performed to define a suitable atomic structure model for Po and Po−. These
calculations are categorized in to three subsections. In the first part, results from the
non-relativistic HF are compared to the corresponding values from relativistic DHF.
These calculations were carried out to obtain bases for the orbital wave functions and to
verify the need for a relativistic approach. The second subsection serves to motivate why
the 6s- and 6p-orbitals should be considered belonging to the valence shell. In the third
and final part, the approach that was used to decide which configurations to include in
the MR for Po and Po− is explained.

4.1. Initial estimate of EA
An initial calculation with the non-relativistic HF was performed to determine whether
or not Po− was bound in the independent particle model without electron correlation.
By optimizing on the ground state for both Po and Po− and comparing the total binding
energies, Po− was indeed found to be bound. The non-relativistic wave functions from
HF were transformed to relativistic by using the built-in program rwfnmchfmcdf. These
wave functions were used as initial estimates for the orbitals when the corresponding en-
ergies were calculated with MCDHF using a single-reference and without any additional
correlation. The energy estimates for Po and Po− were obtained by optimizing on the
full terms and requiring that all orbitals should be physical. The first correlation layer
consisting of the orbitals {7s,7p,6d,5f,5g} was added to the AS and SD substitutions
were allowed from the 6s- and 6p-orbitals. The binding energies and the corresponding
EA for each step are viewed in table 1. When comparing the values in table 1, a sig-
nificant decrease in the binding energy is observed for both Po and Po− when using a
relativistic approach.

Table 1: Initial estimates of the total binding energies and the electron affinity of Po using
the ground state configuration of Po and Po− as a single reference. The ∆HF values
correspond to the difference of the total binding energy when compared to the initial
calculation with HF.

Po Po− EA [eV]
Step E [eV] ∆HF [eV] E [eV] ∆HF [eV] ∆x = 0

HF -562636.2527 -562637.4850 1.23230
HF+BP -596870.4493 -34234.1966 -596871.4660 -34233.9810 1.01666
DHF -604934.6648 -42298.4121 -604935.1957 -42297.7107 0.53084
DHF+RCI -603705.2744 -41069.0217 -603705.8103 -41068.3253 0.53591
AS1 -604937.1466 -42300.8939 -604938.2273 -42300.7423 1.08075
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4.2. Electron correlation: valence orbitals
Which of the orbitals should be treated as core or valence orbitals had to be determined.
By computing the one-electron energy Enl and the mean radii ⟨r⟩ of the six outermost
orbitals, it was possible to identify which orbitals should be considered as valence orbitals.
The radial probability density functions |Pnl|2 were also plotted for the orbitals to get a
qualitative measure of the overlap between the orbital wave functions. The computations
were performed both with the non-relativistic HF and with DHF. By comparing the
results from HF with the results computed with DHF, it was possible to investigate
the effects of a relativistic treatment of the system. The energies and radial distances
computed with HF are viewed in table 2, while the corresponding results from DHF are
viewed in table 3. Since DHF is a relativistic approach, separate values for the one-
electron energies will be obtained for orbitals with l > 0 depending on the total angular
momentum j = l ± 1/2. In table 3, the negative suffix corresponds to j = (l − 1/2) and
the positive to j = (l + 1/2).

Table 2: The one-electron energies Enl and the radial expectation values ⟨r⟩ for the outer or-
bitals {4f, 5s, 5p, 5d, 6s, 6p} computed with HF.

Po Po−

Enl [a.u.] ⟨r⟩ [a.u.] Enl [a.u.] ⟨r⟩ [a.u.]

4f 8.2807105 0.41909 16.0585038 0.41909
5s 5.9621017 0.90602 11.4204909 0.90607
5p 4.40014835 0.96480 8.2977137 0.96484
5d 1.75530275 1.15067 3.0077746 1.15139

6s 0.6582527 2.39077 0.8574405 2.46226
6p 0.3414654 2.88500 0.1868595 3.16167
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Table 3: The one-electron energies Enl and the radial expectation values ⟨r⟩ for the outer or-
bitals {4f, 5s, 5p, 5d, 6s, 6p} computed with DHF.

Po Po−

Enl [a.u.] ⟨r⟩ [a.u.] Enl [a.u.] ⟨r⟩ [a.u.]

4f− 7.4950167971 0.424725 7.2494023201 0.424723
4f+ 7.2684202598 0.430550 7.0229051911 0.430549
5s 7.2327560112 0.818050 6.9870240136 0.818049
5p− 5.3844631770 0.868195 5.1380959235 0.868239
5p+ 4.3566561310 0.951000 4.1114775965 0.950892
5d− 1.6385988425 1.14841 1.3920871568 1.14849
5d+ 1.5015116054 1.18569 1.2558478086 1.18706

6s 0.80413535306 2.12118 0.57147995235 2.16521
6p− 0.40295189829 2.56648 0.16027027146 2.70184
6p+ 0.30434578830 2.93946 0.061345112675 3.32871

The mean radii ⟨r⟩ of the outer orbitals are plotted in fig. 9. As expected for the
relativistic calculations, the s-orbitals were contracted while the d- and f -orbitals were
slightly shifted away from the nucleus. Similarly, the 5p-orbital was contracted while the
6p-orbital was detracted. This is due to the nucleus being more effectively shielded for
electrons in the 6p-orbital compared to electrons in the 5p-orbital. It is also evident from
fig. 9 that the valence electrons in the negative ion experience a weaker attraction to the
nucleus compared to the neutral atom. The mean radii ⟨r⟩ for the 6s- and 6p-orbitals
are noticeable larger for the anion, which indicates that the valence electrons are more
tightly bound in the neutral atom. No significant difference in ⟨r⟩ is observed for the
orbitals with n = 4,5.

The radial probability density functions |Pnl|2 obtained with DHF for the six outer-
most orbitals are plotted in fig. 10. From these plots, it is evident that the 6s- and
6p-orbitals share the same region of space to a much larger extent if compared to the
orbitals with n = 4,5. Based on the combined results presented above, it was decided to
only treat the 6s- and 6p-orbitals as valence.
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Figure 9: The mean radii ⟨r⟩ of the outer orbitals {4f+, 5s, 5p+, 5d+, 6s, 6p+} computed with
HF and DHF, respectively.

Figure 10: The curves correspond to the probability density |Pnl(r)|2 for the outer orbitals
{4f+, 5s, 5p+, 5d+, 6s, 6p+} computed using DHF with the ground state configura-
tion as a single reference. The red curve represent the 6p-orbital and by comparing
the plots, it is apparent that the 6s-orbital has the most significant overlap with the
6p-orbital.
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4.3. Electron correlation: multi-reference
The MR should consist of configurations which have a significant interaction with the
target state. One way of identifying the configurations which are the most correlated is
through Z-dependent perturbation theory. By treating the electron-electron Coulomb
interaction Vee as a small perturbation to the one-electron Hamiltonian H0 and expand-
ing with respect to Z−1 gives a perturbed Hamiltonian H

H = Z2(H0 + 1
Z
Vee
)
. (38)

It is possible to show that the zero-order energy is given as a sum of the hydrogenic
energies of the electrons [15, p.69]

E0 = −1
2

N∑
i=1

1
n2

i

. (39)

Since E0 is independent of the spin and angular momentum, it follows that E0 is de-
generate with respect to the CSF’s with the same set of the quantum numbers n while
preserving the total parity. According to results from first-order perturbation theory of
degenerate states, the corresponding zero-order wave function ψ0 can be expressed as
a linear combination of the individual degenerate CSF’s [26, pp. 300−303]. The set of
configurations represented in ψ0 is referred to as the Layzer complex [15, p. 69]. The
configurations in the Layzer complex for Po and Po− are displayed in table 4. In this
table, only SD substitutions from the valance orbitals 6s and 6p up to the orbital 6f
were considered.

Extending the MR to include the full Layzer complex would be too expensive. There-
fore, it was necessary to identify which of these configurations were interacting the most
strongly with the target state. To determine the interaction between the configurations,
the AS was extended with the correlation orbitals {7s, 7p, 6d, 5f, 6f, 5g} while using the
ground state configuration as a single reference. A new list of CSF’s was generated by
allowing SD substitutions from the valance orbitals 6s and 6p. From the sizes of the
mixing coefficients ci, it was possible to determine the contribution from the individual
configurations to the total wave function. Configurations with values of |ci|2 in the range
0.25% to 0.81% are displayed in table 5. By weighing the computational cost against
the accuracy of the calculations, it was decided to include configurations in the MR
with mixing coefficients exceeding |ci|2 = 0.36%. All of the configurations with mixing
coefficients exceeding |ci|2 = 0.36% are found within the complex in table 4, except for
the 6f -orbital being interchanged with the 5f -orbital.
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Table 4: The configurations belonging to the Layzer complex of Po and Po−, respectively. Only
configurations that can be obtained through SD substitutions up to and including the
6f -orbital are listed.

Layzer complex

Po 6s26p4, 6s26p36f , 6s6p46d, 6s26p26d2, 6p6,
6s26p26f2, 6p46d2, 6p46f2, 6s6p36d6f

Po− 6s26p5, 6s26p46f , 6s6p56d, 6s26p36d2,
6s26p36f2, 6p56d2, 6p56f2, 6s6p46d6f

Table 5: The configurations listed in each row are those who have an expansion coefficient
greater or equal to a given value of ci. The configurations are generated by al-
lowing substitutions from the ground state configuration to the correlation orbitals
{7s, 7p, 6d, 5f, 6f, 5g}.

ci |ci|2 [%] Po Po−

0.09 0.81% 6s26p4, 6s6p46d 6s26p5

0.08 0.64% 6s26p4, 6s6p46d 6s26p5 6s26p36d2

6s6p56d

0.07 0.49% 6s26p4 6s6p46d 6s26p5 6s26p36d2

6s26p26d2,5f6s26p3 6s6p56d 5f6s26p4

0.06 0.36% 6s26p4 6s6p46d 6s26p5 6s26p36d2

6s26p26d2,5f6s26p3 6s6p56d 5f6s26p4

0.05 0.25% 6s26p4, 6s6p46d 6s26p5, 6s26p36d2

6s26p26d2, 5f6s26p3 6s6p56d, 5f6s26p4

6s26p37p2
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5. Results
In this section the most important results are presented. The results are primarily
presented in eV and the conversion factor from a.u. to eV was defined as 1 a.u. =
27.211386245988 eV [27]. This section begins with presenting the binding energies and
the EA obtained from the SD-SD model. After that, the corresponding results are pre-
sented using the SD-SDT model where the binding energy for Po− was recalculated with
SDT substitutions in the RCI calculation. The result from the single calculation made
with core-valence correlation is given at the end.

5.1. The SD-SD model
New layers of correlation orbitals were added to the model until a satisfying degree of
convergence for the EA was obtained. The orbitals which were optimized at each step
are given in table 6. When the difference between the ∆x = 0 case and the ∆x = 1 case
was less than 0.03 eV, the EA was considered to have converged. After expanding the
AS to include the correlation orbitals up to and including {9s, 9p, 9d, 8f, 7g, 7h}, the
difference between the ∆x = 0 case and the ∆x = 1 case was less than 0.03 eV. The
convergence of the EA as more correlation orbitals were added is visualized in fig. 11.
The binding energies and the corresponding EA for the different steps are displayed in
table 7. The values presented in table 7 were obtained using MCDHF and RCI, meaning
that the Breit interaction and additional QED effects were considered. By taking the
average of the last value of the EA for the ∆x = 0 case and ∆x = 1 case, the EA was
estimated to be 1.392 eV.

Table 6: The orbitals which were optimized at each step.

Step x Optimized orbitals Substitutions

1. MR 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, none5s, 5p, 4f, 5d, 6s, 6p 5f, 6d
2. VV1 7s, 7p, 7d, 6f, 5g SD
3. VV2 8s, 8p, 8d, 7f, 6g, 6h SD
4. VV3 9s, 9p, 9d, 8f, 7g, 7h SD
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Table 7: The total binding energy E obtained at each step and the corresponding number
of CSF’s generated. The binding energies were obtained from calculations using
MCDHF+RCI. The electron affinity is given both for the ∆x = 0 cases and the ∆x = 1
cases.

Po Po− EA [eV]
Step x NCSF E [eV] NCSF E [eV] ∆x = 0 ∆x = 1

1. MR 56 -603706.5587 45 -603707.1904 0.63172
2. VV1 41 632 -603708.0207 55 628 -603709.2844 1.26369 2.72573
3. VV2 154 978 -603708.1831 205 638 -603709.5405 1.35735 1.51971
4. VV3 341 506 -603708.2118 451 914 -603709.5895 1.37768 1.40641

Figure 11: The electron affinity for the ∆x = 0 case and the ∆x = 1 case obtained at each step
as given in table 7. At the last step, the ∆x = 0 case and the ∆x = 1 case are less
than 0.03 eV apart with the average value of the EA being approximately 1.3920
eV.

5.2. The SD-SDT model
The attractive potential that keeps the electrons bound in the negative system is pri-
marily a result from electron correlation. Therefore, it is theoretically predicted that the
EA will be underestimated when using the same correlation models for Po and Po−. To
test this prediction, the convergence of the binding energy for the anion and the neutral
atom were compared as more correlation orbitals were added. It is viewed in table 7 that
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the difference between the first and last estimate of the binding energy is 1.6531 eV for
Po and 2.3991 eV for Po−. This indicated that more correlation needed to be included
in the model for the anion compared to the neutral atom. Without having to reoptimize
the radial orbitals, additional correlation effects were included in the model for Po− by
extending the list of CSF’s used in the RCI calculation by allowing triple substitutions.
With this new model for Po−, the difference between the first and last estimate of the
binding energy is 1.8436 eV. The difference in the binding energy between consecutive
steps for Po and Po− using the two different models is given in table 8. Between the two
first steps, the binding energy of Po− was lowered with 2.094 eV in the SD-SD model
while in the SD-SDT model, the corresponding decrease was 1.5175 eV. For the next two
steps, the difference in the binding energy was actually slightly larger for the SD-SDT
model compared to the SD-SD model.

Table 8: The difference in the binding energy ∆E(x) =
[
E(x) −E(x− 1)

]
between step x and

step (x− 1).

Po SD Po− SD Po− SDT
Step x ∆E(x) [eV] ∆E(x) [eV] ∆E(x) [eV]

2 −1.462 −2.094 −1.5175
3 −0.1624 −0.2561 −0.2752
4 −0.0287 −0.0490 −0.0509

The EA was recalculated by taking the difference between the binding energies ob-
tained for Po using the SD-SD model and the new values of the binding energy for Po− us-
ing the SD-SDT model. The results are viewed in table 9. The number of CSF’s was man-
ageable with SDT substitutions up to and including the orbitals {8s, 8p, 8d, 7f, 6g, 6h}.
When adding the next layer of correlation orbitals {9s, 9p, 9d, 8f, 7g, 7h} the number of
CSF’s generated was 13 605 286 and the matrix elements could not be evaluated due
to the size. Therefore, the last step in table 9 corresponds to SDT substitutions to the
second layer of correlation and SD substitutions to the the third layer. The convergence
of the EA in the SD-SDT model is visualized in fig. 12.

Table 9: The total binding energy E and number of CSF’s obtained at each step for Po− after
recalculating the mixing coefficients with SDT substitutions in the additional RCI
calculation. The electron affinities were calculated by using the binding energy for Po
from the corresponding step in table 7.

Po− EA [eV]
Step x NCSF E [eV] ∆x = 0 ∆x = 1

1.MR(SDT) 9 599 -603707.8025 1.24377
2.VV1(SDT) 541 268 -603709.3200 1.29929 2.76133
3.VV2(SDT) 4 079 764 -603709.5952 1.41213 1.57450
4.VV2(SDT)+VV3(SD) 4 326 040 -603709.6461 1.43427 1.46299
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Figure 12: The electron affinity for the ∆x = 0 case and the ∆x = 1 case obtained at each step
as given in table 9. At the last step, the ∆x = 0 case and the ∆x = 1 case are less
than 0.03 eV apart with the average value of the EA being approximately 1.4486
eV.

A simple extrapolation was performed with an exponential fit on the form f(x) =
Ae−Bx + C to the binding energies at each step in table 7 and table 9. The binding
energies and the corresponding curves are plotted in fig. 13. The large difference in
the first step between the two different models for Po− is explained by the fact that no
substitutions were allowed in the SD-SD model in the first step while SDT substitutions
were included in the SD-SDT model. In the next three steps, SD substitutions were al-
lowed in the SD-SD model. This large shift in the initial estimate of the binding energy
will affect the general shape of the extrapolated curve for Po− in fig. 13.

An extrapolated value of the EA for both the SD-SD model and the SD-SDT model
were obtained by taking the difference between the exponential fit for Po(SD) and
Po−(SD) and the difference between Po(SD) and Po−(SDT), respectively. The cor-
responding curves obtained from the SD-SD model and the SD-SDT model are viewed
in fig. 14. With this extrapolation, the SD-SD model will estimate the EA to be 1.378
eV and the SD-SDT model will give an estimate of 1.446 eV.
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Figure 13: The solid curves correspond to the binding energies obtained at each step for Po
and Po− using the SD-SD model in table 7, as well as the binding energy for Po−

with the SD-SDT model in table 9. The dashed curves are exponential functions on
the form f(x) = Ae−Bx + C fitted to the datapoints.

Figure 14: The two curves represent the EA which is obtained from taking the difference be-
tween exponential functions fitted to the binding energies (viewed in fig. 13). The
SD-SD model approach a value of 1.378 eV for the EA while the SD-SDT model
approach a value of 1.446 eV for the EA.
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5.3. Including core-valence correlation
The estimate of the EA can be improved by including core-valence correlation. From
the shape of the plotted orbitals in fig. 10 and the values found in table 3, it was decided
to open up the orbitals {5s, 5p, 5d}. It was not possible to perform the calculations with
substitutions to the third layer of correlation orbitals {9s, 9p, 9d, 8f, 7g, 7h} since the
number of CSF’s grew to large. Therefore, it was decided to perform a calculation with
VVC to the third layer of correlation and CVC to the second layer {8s, 8p, 8d, 7f, 6g, 6h}.
The total binding energy for the ground state of Po was calculated to -603711.7217 eV
and the corresponding energy for the negative ion Po− was calculated to -603712.7951
eV. Given these two values, the electron affinity for the ∆x = 0 case is 1.07345 eV which
is almost 0.3 eV lower if compared to the estimate with only VVC. When adding a new
correlation effect, it is important to make sure that the EA is converging. But with
the current model, it was impossible to properly study the convergence due to the large
number of CSF’s. Likewise, it would not have been possible to study the effect of CVC
while at the same time allowing triple substitutions in the model for Po−. Therefore, this
single value alone is unreliable but indicates that the electron affinity would be lowered
if CVC was taken in to account. This is left for future studies.
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6. Discussion
This section begins with a short discussion about the difficulties with balancing correla-
tion between Po and its corresponding anion Po−. This is followed by a comparison of
the results presented in this report with earlier calculations of the EA of Po. A brief out-
look on possible ways to extend and hopefully improve the model for future calculations
is given at the end.

6.1. Balancing correlation
One of the main considerations when calculating the electron affinity is how to balance
the correlation between the neutral atom and the anion, respectively. In the initial re-
sults from the calculations with only VVC and SD substitutions for both Po and Po−,
an EA of 1.392 eV was obtained. This value was found to be in the lower span when
compared to prior calculations performed on Po. This observation led to further inves-
tigations of correlation effects. As more correlation orbitals were added to the models,
it became apparent that the total binding energy for Po− was more affected compared
to Po, as shown in fig. 13. This indicated that more correlation had to be included in
the model for Po−. To achieve this without having to reoptimize the orbitals, the list of
CSF’s used in the RCI calculation was extended to include SDT substitutions.

As a result of the non-existent experimental value, it is difficult to determine whether
the present calculated EA was improved when allowing SDT substitutions in the RCI
calculation for the anion. Nevertheless, the fact that the binding energy of the neutral
atom converged more quickly suggests that the system was unbalanced and without
sufficient correlation treatment for the anion, the estimate of the EA would probably
be too low. Having SDT substitutions in the additional RCI calculation produced a
significant shift in the energy. However, if the shift in the energy leads to the EA being
over- or undercompensated can not be determined at this stage. If SDT substitutions
instead were used selectively in the SCF procedure, it is likely that a slightly different
result on the binding energies would have been obtained.

6.2. Comparison to prior calculations
In table 10, values of the EA obtained from earlier studies are displayed. The study using
MCDHF performed by Li et al. gave an estimate of 1.405 eV for the EA [7]. Even though
the same method (MCDHF) was used, the systematic approach to add correlation was
much different compared to the procedure employed in this report. In their model,
only the 6p-orbital was considered to be valence and the leading configuration was used
as a single reference. The MCDHF procedure was not combined with additional RCI
calculations, meaning that neither the Breit interaction nor leading QED effects were
accounted for. The results presented in this report have improved the accuracy on
all these parameters. Unlike the prior value where only the 6p-orbital was considered
to be valence, this model allowed substitutions both from the 6s- and 6p-orbitals by
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which more correlation was included. Likewise, the MR was expanded to consist of four
configurations for both Po and Po−, respectively. Furthermore, the MCDHF procedure
was combined with additional RCI calculations where both the Breit interaction and
QED effects were included.

Table 10: Prior calculations of the electron affinity for Po.

EA [eV] Method Ref.

1.225 4c-MBPT [8]
1.405 MCDHF [7]
1.4696 CCSD(T) [6]
1.9(3) SE [9]

1.446 MCDHF This work

In the SD-SD model, the correlation was not differently balanced between Po and
Po−, and the EA was calculated to 1.392 eV. Using this model yielded an estimate of
the EA 0.013 eV below the value obtained in the calculation with MCDHF performed
by Li et al.. In their model, SDT substitutions to orbitals with n = 6 were included
in the SCF procedure for Po− and only SD substitutions for Po, unlike the model used
in this project where only SD substitutions were allowed both for the anion and the
neutral atom. By comparing the electron affinities, it is possible to conclude that the
more extensive model used in this project yields a similar result for the EA compared
to when the less extensive model was used with the correlation being unevenly balanced
between Po and Po−. In the SD-SDT model, the mixing coefficients were recalculated
with SDT substitutions in the RCI calculation for Po− and with an extrapolation of the
binding energies, the EA was estimated to be 1.446 eV.

With the coupled-cluster method CCSD(T) combined with RCI, Borschevsky et al.
have predicted the value 1.496 eV for the EA [6]. Prior calculations with CCSD(T) have
for some systems proven good agreement with experimental results. For example with
Bi using the same CCSD(T) method and procedure as with Po, the difference between
the calculated value and the experimental result was only 0.05 eV [6]. This indicates
that a similar agreement could be expected in the case of Po.

The CCSD(T) procedure used by Borschevsky et al. will typically underestimate the
EA while the method employed by Li et al. will tend to overestimate the EA [28]. This
is explained by Borschevsky et al. using the same correlation models for Po and Po−

while Li et al. include triple substitutions in the first steps for Po− but not for Po.
Applying this line of reasoning to this work, the value obtained from the SD-SDT model
should overestimate the EA and the value computed from the SD-SD model should un-
derestimate the EA. However, the expected relation between CCSD(T) and MCDHF is
not observed for Po and instead, the CCSD(T) value is close to 0.07 eV above the value
calculated by Li et al.. This may indicate that certain considerations should be taken
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into account when performing atomic structure calculations on Po. It may be necessary
to include more configurations in the MR and allow substitutions to higher order orbitals
to achieve a representative value of the EA for Po.

The SD-SD model provides a lower baseline for the EA of 1.392 eV; it is however likely
that this model underestimates the EA since the anion is more sensitive to electron
correlation. Using the SD-SDT model with extrapolation gives a value of 1.446 eV.
This shows that the additional RCI calculation have a significant effect on the EA when
SDT substitutions are allowed in the model for Po−. It would be interesting to study the
effect on the EA with selective SDT substitutions in the SCF procedure for the anion but
using an MR and with both the 6s- and 6p-orbitals as valence. With the MR selected in
this project, it should also be considered whether the model would benefit from treating
the 5f - and 6d-orbitals as valence. If such a calculation did yield a value of the EA
above 1.40 eV, it would indicate that the model used by Li et al. was insufficiently
small. However, such a study would be difficult to pursue due to the large sizes of
the calculations. Even though more correlation effects are added in the model for the
anion Po−, the value calculated using the SD-SDT model is still 0.02 eV below the
value obtained from CCSD(T). This result does not follow the expected behaviour and
it would be interesting to understand this discrepancy.

6.3. Computational considerations
The main limitation of the project was the increasing sizes of the calculations as the
configuration space was extended. Limited interactions were employed for the higher
correlation layers in the SCF procedure through the use of Brillouin Wigner perturba-
tion theory. For the additional RCI calculation, full interactions were considered and
the expansion coefficients were successfully calculated when the number of CSF’s was
below 4.5 millions. With the computational resources available in this work, the rci
program was unable to compute the integrals when the number of CSF’s surpassed 6
millions. The best way of ensuring that the computations can be run is to limit the
size of the configuration space. It is inevitable that the configuration space will grow as
more correlation effects are included, but it is possible to reduce the number of CSF’s by
making wise choices in regards to which orbitals to optimize and at which step. This will
require a more thorough analysis of which correlation orbitals are the most important to
include for the neutral atom and the negative ion, respectively. To successfully account
for CVC in the calculations, it will be necessary to use a model where fewer CSF’s are
generated at each step.

The later parts of the project was run on a HPC cluster. However, the performance
was not as good as expected when running the codes. It proved to be difficult to fully
utilize the CPU and RAM due to the internal structure of the rci program. Even
though the memory was large enough to handle the calculations, the amount of disc
space needed in order to run the calculations became an issue. The rci program uses
files written to the disc for internal communication and for large scale calculations will
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require many hundreds of GB. It is possible that the performance could be slightly
improved by optimizing the compilation of the codes to the particular nodes used at
Vera.
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7. Conclusions and outlook
The aim of the project was to calculate a new estimate of the electron affinity (EA) of Po.
The computations were performed using the MCDHF method combined with comple-
mentary RCI calculations. A model was constructed by performing initial calculations
with the intention to define a suitable multi-reference and identify which orbitals should
be considered valence. Electron correlation was included in the model by allowing SD
substitutions to a set of correlation orbitals. The set of orbitals was expanded until the
value of the EA had converged. Using this model, the EA was estimated to be 1.392 eV.
Both from theoretical considerations and calculations performed in this project, it was
hypothesized that additional correlation effects needed to be included in the model for
the anion Po−. This was achieved by allowing SDT substitutions in the additional RCI
calculation for the anion Po−. In this new model with SDT substitutions for Po−, the
EA was estimated to 1.446 eV, which is our final value for the Po electron affinity for
this study.

In hindsight, we can motivate the SDT treatment of the Po− system by comparing
the impact of correlation in the SD-SD model. Judging from the values in table 7 and
table 9 and as visualized in fig. 13, it is clear that the anion is more affected by an
increased correlation space. However, when comparing the final total binding energies
with those from the DHF calculations in table 1, the atom somewhat unexpectedly has
a larger correlation contribution by ca 1 eV. This is not the expected result since anions
are known to be more sensitive to electron correlation effects. This can be explained by
the more open 6p4 valence shell as compared to the 6p5 of the anion, which can be seen
as a single electron hole. In other words, the atom has a larger valence shell, in general
leading to more interactions within the same shell (in our case n = 6). Nevertheless,
this indicates that further tests of the correlation models might be desirable.

Looking ahead, it would be interesting to do some modifications to the model and
study how the EA would be affected. However, before any experimental value of the EA
is available, it is impossible to determine how well certain models or methods can predict
the EA. Under the assumption that the upcoming experiment succeeds in measuring the
EA of Po, a natural next step would be to measure the isotope shift on the EA. But
any such experiments would be preceded with theoretical calculations estimating the
isotope shift. Therefore, another possible extension of this project would be to perform
additional isotope shift calculations on the Po and Po− ground terms.
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Appendices

A. Evaluation of ⟨rs⟩
We wish to explicitly calculate expectation values ⟨rs⟩ for integer values of s for hydrogen-
like ions. Since the electron is moving in a spherical Coulomb potential, the second
derivative P ′′

nl(r) w.r.t. r will relate to Pnl(r) according to [14, pp. 64−70]

P ′′
nl =

[
l(l + 1)
r2 − 2Z

a0r
+ Z2

n2a2
0

]
Pnl. (40)

Since Pnl is real-valued, eq. (40) can be multiplied with Pnlr
s to obtain∫ ∞

0
Pnlr

sP ′′
nl dr = l(l + 1)⟨rs−2⟩ − 2Z

a0
⟨rs−1⟩ + Z2

n2a2
0
⟨r⟩. (41)

The integral containing Pnl and it’s second derivative P ′′
nl can be evaluated through

integration by parts and with the requirement that Pnl goes to zero for r → 0 and
r → ∞. An explicit calculation of the integral will give

∫ ∞

0
Pnlr

sP ′′
nl dr = − l(l + 1)(s− 1)

(s+ 1) ⟨rs−2⟩ + 2sZ
a0(s+ 1) ⟨rs−1⟩ − Z2

n2a2
0

⟨r⟩ + s(s− 1)
2 ⟨rs−2⟩. (42)

Setting the LHS equal to the RHS in eq. (40) and rearranging the terms will yield the
Kramer’s relation

s+ 1
n2 ⟨rs⟩ − (2s+ 1)a0

Z
⟨rs−1⟩ + s

[
l(l + 1) + 1 − s2

4

]
a2

0
Z2 ⟨rs−2⟩ = 0. (43)

Since the wave function is normalized ⟨r0⟩ = 1 and setting s = 0 gives〈1
r

〉
= Z

n2a0
. (44)

The Hellman-Feynman theorem gives the expectation value of ⟨r−2⟩ [26]〈 1
r2

〉
= Z2

(l + 1
2)n3a2

0
. (45)

Finally, setting s = −1 and using the results from eq. (44) and eq. (45) yields the
expectation value 〈 1

r3

〉
= Z3

l(l + 1
2)(l + 1)n3a3

0
. (46)
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B. Example of batch script

#!/ usr/bin/env bash
# SBATCH -A C3SE2023 -1-7 -p vera
# SBATCH -C ICELAKE
# SBATCH -n 64
# SBATCH -t 2 -00:00:00
# SBATCH --mail -user= gusarmly@student .gu.se
# SBATCH --mail -type=end

module load foss

cp $HOME/calcs/ bachelor / Po_6p5 /CV2/ run_rci_6p5_CV2 .sh $TMPDIR
cp $HOME/calcs/ bachelor / Po_6p5 /CV2/ run_create_disks .sh $TMPDIR
cp $HOME/calcs/ bachelor / Po_6p5 /VV3/ isodata $TMPDIR
cp $HOME/calcs/ bachelor / Po_6p5 /VV3/ Po_6p5_AS3 .w $TMPDIR

cd $TMPDIR
mkdir grasp_tmp_mpi

./ run_create_disks .sh
cp disks $SLURM_SUBMIT_DIR
./ run_rci_6p5_CV2 .sh

cp Po_6p5_CV2 .csum $SLURM_SUBMIT_DIR
cp Po_6p5_CV2 .cm $SLURM_SUBMIT_DIR

II
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