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Abstract

Background: Modern software development companies are increasingly im-
plementing continuous integration (CI) practices to meet market demands
for delivering high-quality features. The availability of data from CI systems
presents an opportunity for these companies to leverage machine learning to
create methods for optimizing the CI process.

Problem: The predictive performance of these methods can be hindered
by inaccurate and irrelevant information – noise.

Objective: The goal of this thesis is to improve the effectiveness of ma-
chine learning-based methods for CI by handling noise in data extracted from
source code.

Methods: This thesis employs design science research and controlled ex-
periments to study the impact of noise-handling techniques in the context of
CI. It involves developing ML-based methods for optimizing regression test-
ing (MeBoTS and HiTTs), creating a taxonomy to reduce class noise, and
implementing a class noise-handling technique (DB). Controlled experiments
are carried out to examine the impact of class noise-handling on MeBoTS’
performance for CI.

Results: The thesis findings show that handling class noise using the DB
technique improves the performance of MeBoTS in test case selection and code
change request predictions. The F1-score increases from 25% to 84% in test
case selection and the Recall improved from 15% to 25% in code change request
prediction after applying DB. However, handling attribute noise through a
removal-based technique does not impact MeBoTS’ performance, as the F1-
score remains at 66%. For memory management and complexity code changes
should be tested with performance, load, soak, stress, volume, and capacity
tests. Additionally, using the “majority filter” algorithm improves MCC from
0.13 to 0.58 in build outcome prediction and from -0.03 to 0.57 in code change
request prediction.

Conclusions: In conclusion, this thesis highlights the effectiveness of ap-
plying different class noise handling techniques to improve test case selection,
build outcomes, and code change request predictions. Utilizing small code
commits for training MeBoTS proves beneficial in filtering out test cases that
do not reveal faults. Additionally, the taxonomy of dependencies offers an
efficient and effective way for performing regression testing. Notably, handling
attribute noise does not improve the predictions of test execution outcomes.
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Chapter 1

Introduction

Modern software development companies need to keep up with the ever-growing
market demands for delivering complex and high-quality features at lower costs.
To meet these challenges, companies adopt the practice of continuous integration
(CI) and create automated tools to optimize their CI process. Adopting CI
offers companies the benefits of continuously verifying the integrity of code
changes at frequent intervals, which allows for early detection of faults, rapid
feedback to developers, and improved collaborations among team members [1].

The CI process typically comprises a series of steps. These include building
and testing code changes committed by software engineers to a version control
system. The building step includes tasks such as compiling new features,
resolving dependencies, and creating executable artifacts. Once the code is
transformed into an executable form, it undergoes a phase of testing, where
automated test cases are executed to identify whether new faults have been
introduced into the code. After completing the building and testing steps,
software engineers receive feedback from the CI system regarding the status of
their committed code. This feedback informs engineers about whether their
code has successfully passed the CI steps or requires further scrutiny and
bug-fixing.

While CI offers advantages that accelerate feature delivery, organizations
that adopt CI face the challenge of reducing the latency in feedback between
CI and software engineers without compromising the effectiveness of fault
detection. With increased code integration frequency and complexity of features
in source-code files, it becomes important to develop tools that can optimize the
effectiveness of the CI process such that fault-prone code changes are identified
and reported to software engineers as early as possible.

The availability of large amounts of data from CI systems presents research-
ers and practitioners with an opportunity to develop data-driven approaches
that can optimize the automation of tools in CI. As a result, a multitude of
research studies have been conducted to investigate the use of machine learning
(ML) for optimizing tools’ automation within the CI process. For example,
Hassan and Zhang [2] conducted a study in which they mined a diverse set of
product and process metrics from historical projects. These metrics included
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2 CHAPTER 1. INTRODUCTION

the number of modified subsystems and certification results of previous builds.
They utilized this data to construct an ML model for build prediction. The
results of their study demonstrated that training a decision tree classifier with
such information achieved a correct prediction rate of 69% for failing builds.

Similarly, Xia and Li [3] performed an evaluation involving nine classifiers
and 20 software metrics for 126 open-source projects. Their findings revealed
that using these metrics led to an F1-score exceeding 70% for 21 build out-
comes. These results indicate that product and process metrics hold promise in
predicting build outcomes effectively. These approaches employ a classifier that
gets trained on both faulty and non-faulty code examples to predict whether
new code commits will successfully build and pass the testing phase in the CI
pipeline. These approaches have demonstrated their effectiveness in solving CI-
specific tasks, including test case selection, build outcome predictions, bug-fix
time estimations, and more.

While ML-based approaches have demonstrated promising potential in the
context of CI, their utility can be hindered by the presence of noise in the
training data. This noise refers to inaccurate and irrelevant information in
the training entries of a given data-set [4]. Two categories of noise commonly
discussed in the literature are class and attribute noise [5]. Class noise arises
from contradictory or mislabelled instances in the training data, while attribute
noise occurs when attributes contain irrelevant or missing information [6].

In the context of CI, we can observe class noise in code changes that
are assigned with incorrect class labels or code changes that appear multiple
times with inconsistent class labels (i.e., contradictory). On the other hand,
attribute noise can be observed when irrelevant or missing information within
the attributes or features is used to describe the code changes. This inaccurate
information in the class and attribute values makes it difficult for ML models
to learn patterns about faulty code changes.

To address the problem of noise, researchers proposed strategies that can be
used for handling the effect of noise. These strategies can be broadly classified
into three categories: tolerance, elimination, and correction [5]. The tolerance-
based category deals with noise by leaving it in place and, instead, relies on
designing robust ML techniques that can tolerate noise to a certain threshold.
The removal-based category seeks to identify instances with class noise and
then removes them from the data-set. Finally, techniques in the correction
category seek to correct mislabeled entries by replacing their values with ones
that are more appropriate.

Although these noise-handling strategies have been extensively studied in
the field of machine learning, their application and impact within the context
of CI have not been examined. CI differs from other contexts in the way
code-change data gets continuously and frequently pushed, built, and tested.
Due to that difference, it cannot be assumed that the impact of noise-handling
on ML-based methods for CI is similar to those reported in the literature in
different contexts. Thus, it is important to examine the impact of noise in code
changes collected during CI.

Noise in CI can arise due to several factors. One such factor is the accuracy of
the measurement instruments used to measure code metrics. If the measurement
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tool does not accurately measure what it claims to measure, then attribute noise
can be introduced. For example, if a static analysis tool inaccurately measures
the McCabe complexity of a program, it introduces inaccurate information
about the code complexity, and thus attribute noise.

Another factor that introduces noise is the presence of flaky tests. Flaky
tests can produce execution results that falsely indicate faults or non-faults in
code changes. When using their execution outcomes as class labels for code
changes, these flaky tests contribute to the introduction of class noise. Similarly,
tests and build can sometimes be interrupted when they get executed during
an environment upgrade. In such situations, the execution of tests or builds
may be disrupted, leading to incorrect class values assigned to code changes.

Additionally, the labeling mechanism of code changes can be another source
of class noise. In scenarios like test case selection, where faulty lines of code
are unknown, a common practice is to label all lines of code in a code commit
with the execution result of a test case. However, such a labeling mechanism
introduces class noise, as not all lines of code within commits are faulty and
relevant to the observed test execution result used for labeling.

The main goal of this thesis is to improve the effectiveness of ML-based
tools in the context of CI by handling class and attribute noise in CI data.
To achieve our goal, we conducted a series of design science research and
controlled experiments studies. In the design science studies, we developed and
evaluated the effectiveness of an ML-based tool (MeBoTS) to assist software
engineers optimize regression testing. Thereafter, we created a taxonomy of
dependency between code changes and test case types to reduce class noise in
the training data of code changes. To validate the taxonomy, we developed
another method (HiTTs) that classifies code changes into different categories
and selectively executes test cases based on the most occurring code changes.
We then conducted controlled experiments to investigate the effects of noise
and different noise-handling strategies on the effectiveness of MeBoTS in build
outcome predictions, test case selection, and negative code review comments
predictions.

This thesis consists of this introduction chapter and seven other chapters,
each based on a research paper. The introduction chapter is structured as
follows: In Section 1.1, we introduce and describe the theory that explains why
the research problem presented in this thesis is questioned. In Section 1.2, we
highlight related work that concerns ML-based approaches in CI and existing
noise-handling techniques in the software engineering literature. In Section
1.3, we outline the general research question that guided the conduct of the
included research studies. The methodology employed to obtain our results is
detailed in Section 1.4. Section 1.5 outlines the findings and contributions of
this thesis. In Section 1.6, we discuss the threats to the validity of the appended
papers. The answer to the general research question is provided in Section
1.7. Finally, Section 1.8 provides a summary of our conclusions and discuss
potential avenues for future work.
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1.1 Theoretical Framework

In this section, we provide an overview of the fundamental concepts and code
examples that are essential for comprehending the content of this thesis. We
begin by describing the practice of continuous integration and the process it
incorporates. After that, we describe how noise can be introduced in CI and
illustrate different types of noise-handling strategies that we analyze for an
impact on ML-based methods in the context of CI.

1.1.1 Continuous Integration

Continuous Integration is a software development practice that focuses on
frequently integrating code changes that get tested by an automated build
system [7]. This frequent integration and testing performed by CI servers allow
software engineers to detect faults early before new faults propagate into the
code-base. As a result, CI reduces the burden and effort of tracking faults after
they have propagated into other components of the system under test. A CI
process typically consists of three sequential steps that automate the building
and testing of code changes. Figure 1.1 illustrates each of these steps.

Figure 1.1: The continuous integration process.

The first step in the CI workflow is code submission, where developers work
on their individual branches or forks to submit changes and add new features
to the code-base. The code submission step involves committing new code
changes into a shared repository hosted by a version control system, allowing
different code branches to be merged and built.

The second step is automated building. This step involves automatically
compiling the code, resolving dependencies, and generating an executable
artifact. The goal of this step is to ensure that the code-base can be successfully
transformed into an executable form, catching any compilation errors, missing
dependencies, or coding style violations [8].

The third step in the CI process is automated testing. Once the code
changes have been successfully built and an executable artifact has been
generated, a suite of test cases is executed to ensure that previously implemented
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functionality continues to work as expected after new code changes or system
modifications are made [9]. This type of testing is known as regression testing.

1.1.2 Test Case Selection

Regression testing ensures that previously implemented functionality continues
to work as expected after new code changes or system modifications are made
[9]. However, regression testing can be time-consuming and resource-intensive,
since all test cases available in the suite of tests get executed at regular intervals.
To address this challenge, techniques like test case selection are employed to
optimize the regression testing process.

Test case selection is a technique that aims at reducing the time of regression
testing by identifying a subset of test cases that effectively exercises parts of
the system that have been affected by code changes. By selecting these relevant
test cases, the testing effort can be focused on parts of the system that are more
likely to be impacted by the modifications, thereby saving time and resources.
This type of technique is leveraged by the CI server for testing frequently
submitted code changes immediately after every successful build.

In order to increase confidence in the testing of the system, a daily suite is
scheduled to run overnight, encompassing a more comprehensive set of tests
that cover a wider range of functionalities and cases. These tests help identify
any issues that may have been missed during the initial regression testing
after the build. Lastly, the weekly suite is executed over the weekend and
encompasses an even broader set of tests. These tests aim to validate the overall
system behavior, ensuring the system’s compliance with various requirements
and specifications.

Figure 1.2 exemplifies how companies perform regression testing by organiz-
ing three types of suites. The every build suite in the figure comprises a subset
of test cases that are deemed effective in revealing faults given the new code
changes. The desired outcome from the utilized technique is to reveal all faults
immediately after a successful build, and hence save developers time and effort
that would otherwise be required to address these faults after they have spread
to other parts of the system.

Therefore, an effective test case selection technique is determined by its
ability to detect faults after every build, such that no new faults are detected
when executing the daily and weekly suites.

1.1.3 Noise data types: class and attribute noise

The quality of real-world data is inherently imperfect since it contains a large
amount of entries that come with corrupted information. Those entries can
adversely affect the performance of classifiers in performing their designated
prediction tasks [10].

Among the components that determine the quality of data is the accuracy
of the information within the class and attribute values. The accuracy of
class values is determined by whether the class of training entries is correctly
assigned. The accuracy of attributes is determined by whether the attribute
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Figure 1.2: An illustration of regression testing in CI.

values correctly characterize the training entries for classification. Based on
these two distinctions between the quality of class and attribute values, the
following two types of noise can be identified in data-sets in general, including
CI data:

• Class noise: it occurs when a training entry is incorrectly labeled. Two
types of class noise can be distinguished:

– Contradictory entries: these are identical entries in the data having
different class values.

– Misclassification: these are training entries in the data that are
labeled with class values different from their true values.

• Attribute noise: it occurs when one or more attribute values of a training
entry are erroneous, missing, or deviate substantially from the majority
of entries.

1.1.4 Sources of class and attribute noise in CI

We now turn to discuss the sources of class and attribute noise in CI data.
Figure 1.3 presents a taxonomy outlining eight sources of noise that we identified
in the context of CI.

Sources of class noise In the context of CI, class noise can occur when the
class values assigned to individual lines of code are inaccurate. This inaccuracy
can be observed when identical lines of code are assigned different class values
and when lines of code are misclassified. In the context of CI, we identified six
potential sources of class noise:
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Figure 1.3: An overview of noise types and their sources in CI.

1) labeling mechanism: The first source of class noise is the labeling mech-
anism in which class values are extracted from databases and assigned to
individual lines of code. In some cases, a labeling mechanism might rely on
information stored in databases, such as the execution outcome of a test case,
to determine the class value of lines of code within a particular commit.

Consider a scenario where a labeling mechanism assigns the execution
outcome of a specific test case tc1 that passes the execution as the class value
to all lines of code in a given commit. Now, imagine that a fraction of the same
lines of code appear in another commit where tc1 ‘fail’ and reveals a fault in
the commit. In such a scenario, contradictory entries arise because the labeling
mechanism assigns inconsistent class values to the same lines of code across
multiple commits. As a result, the same line of code may be observed multiple
times with “pass” and “fail” class values.

2) flaky tests: Flaky tests present another potential source of class noise.
These tests exhibit inconsistent behavior, meaning they can produce both
passing and failing results when executed against the same version of the source
code [11]. Since flaky tests can yield different outcomes across multiple test
runs, assigning their execution outcomes as class values to individual lines of
code can result in contradictory entries. For example, a line of code may be
labeled as “pass” in one test run where the flaky test succeeds, but labeled as
“fail” in another test run where the same flaky test “fail”.

3) environment upgrade: Environment upgrades introduce an additional
source of class noise. In a CI pipeline, a regular upgrade to the software
environment in which the CI pipeline operates is performed. This typically
involves upgrading the infrastructure, tools, frameworks, etc that are utilized
within the CI pipeline. During an environment upgrade, the CI server may
need to be temporarily taken offline or restarted several times. This downtime
can disrupt ongoing build jobs or tests amidst their execution, causing their
execution outcomes to fail. As a consequence, assigning the execution outcome
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of builds or tests that got disrupted during an environment upgrade can result
in introducing contradictory entries. For example, a line of code may be labeled
as “fail” in one build or test run due to a disruption caused by an environment
upgrade. In another run, the same line of code may be labeled as “pass” if the
build or test passes the same code.

4) machinery failure: Machinery failure introduce another potential source
of class noise. When a failure in the hardware of CI servers (e.g., a hard drive)
or network equipment occurs, the CI pipeline gets disrupted and some running
builds or tests may fail the execution. As a result, assigning the execution
outcome of builds or tests that failed due to such a disruption would introduce
contradictory entries.

5) using test execution outcomes before and after bug fixes: An additional
source of class noise arises when different execution results of the same set of
tests appear as a result of fixing a bug in a code commit. To illustrate, consider
a scenario where a test case, denoted as tc1, fails when executed against a
particular commit due to an erroneous comparison value used in a conditional
statement (e.g., if(x > -1)). Now, suppose that a software developer fixes
the issue by adjusting the numerical value in the conditional statement to if(x

> 0). In this case, both conditional statements, before and after applying the
fix, have the same syntactical representation – i.e., both statements contain
the same code constructs.

After fixing the issue, tc1 successfully passes when re-executed. However,
if we incorporate multiple instances of the same test case, both before and
after bug fixes, for lines of code that have the same syntactical representations
such as the case with the if(x > -1) and if(x > 0) statements, class noise
is introduced. Consequently, this situation results in observing the same line of
code with both “pass” and “fail” class values.

6) human errors: Human errors introduce another potential source of class
noise. Software engineers or testers responsible for assigning class values to lines
of code for training ML models may make mistakes or exhibit inconsistencies in
their labeling decisions. For example, software engineers might assign different
class values to identical lines of code in different commits, even though the
code is functionally the same. This inconsistency can introduce class noise in
the data.

Sources of attribute noise The definition of attribute noise in this thesis
follows the one proposed by Van Hulse et al. [12], which states that attribute
noise occurs when one or more attributes in a data entry deviate from the
overall distribution of other attributes. The extent of the deviation serves as
evidence of noise, with larger deviations indicating a higher likelihood of noise.

In the context of CI, two potential sources of attribute noise were identified:
1) coding style violations: One potential source of attribute noise in CI

data can arise when a subset of lines of code diverges from the commonly
observed coding style in the majority of similar lines of code. In particular, this
type of noise occurs when certain lines of code are inconsistent in formatting,
indentation, variable naming conventions, or other stylistic elements that
deviate from the established coding standards.
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2) measurement instruments: Measurement instruments may produce inac-
curate attribute values due to algorithmic flaws. For example, a measurement
instrument used to calculate the McCabe complexity may generate incorrect
measurements if it fails to correctly identify the correct number of edges in the
control flow of the analyzed code, leading to attribute noise.

The research studies presented in this thesis focus on handling the impact
of class noise by addressing both contradictory entries and misclassified entries.
To handle class noise, a tool was designed to correct the class labels of such
entries, and a taxonomy of dependencies was developed to reduce the occurrence
of misclassified entries in the data-set. Furthermore, the thesis examines the
effect of removing noisy entries that exhibit attribute values that substantially
deviate from the majority of entries in the data.

1.1.5 Noise-handling strategies

Existing noise-handling strategies in the machine learning literature can be
classified into three broad categories: tolerance, removal, and correction. These
categories, as previously introduced in the introduction section, aim at reducing
the effect of noise in the training data of ML models and improving their
predictive accuracy [13], [14], [15], and [16].

In the tolerance category, noisy entries are retained, and machine learn-
ing algorithms are designed to tolerate a certain threshold of noise. Robust
algorithms, often utilizing techniques like tree pruning and rule truncation [13],
are employed to minimize the negative impact of noise. For example, the C4.5
algorithm prunes statistically insignificant parts of the decision tree to improve
model construction [12]. The advantage of tolerance-based approaches is that
they eliminate the need for data cleaning, saving time and effort. However,
these approaches may experience reduced performance when the noise level
exceeds a certain threshold [17].

The removal-based category focuses on identifying and removing noisy
entries from the training data-set. Approaches in this category typically fol-
low an iterative process to detect and remove potentially mislabeled entries.
However, it is important to note that approaches within this category have
a few drawbacks. Firstly, the iterative nature of the process leads to high
computational costs. Additionally, there is a risk of mistakenly removing entries
that are not actually noisy, thus potentially impacting the integrity of the
data-set [18]. While this category of approaches allows explicit detection of
potentially noisy data entries, it allows users to decide whether a noisy entry
should be removed or retained (e.g., PANDA [12]).

In the correction category, noisy entries are corrected instead of removed.
This ensures that no information loss is encountered as a result of removing
entries from the data. However, existing correction approaches, such as [19]
and [14], often exhibit high time complexity. Additionally, when correcting
class labels of noisy entries, there is a risk of introducing bias towards one of
the classes. Furthermore, correction approaches typically operate in supervised
machine learning environments, making their utility unsuitable when class
labels are unavailable [12].
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Table 1.1: Advantages and disadvantages of existing noise handling strategies

Tolerance Removal Correction

Pros

- No time is needed
to handle noisy entries.

- No information loss.

- Explicit detection of
noisy entries.

- No information loss.

Cons
- Reduces the perform-
ance of classifiers as the
noise ratio increases.

- High computational
cost to detect and
remove noisy entries.
points.

- Information loss.

- High computational
cost to detect and
correct noisy entries.

- Introduce bias
towards one of the
classes.

- Applicable in
supervised
classification
tasks only.

Table 1.1 provides a summary of the advantages and disadvantages as-
sociated with each strategy of noise-handling approaches. Tolerance-based
approaches offer the advantage of not requiring additional time for data clean-
ing and preserving information. However, they experience reduced classifier
performance as the noise ratio increases. Removal-based approaches explicitly
detect noisy data points but incur computational costs and may lead to in-
formation loss. Correction-based approaches preserve information but are
computationally expensive, risk introducing bias, and are limited to supervised
classification tasks. Understanding these different categories of noise-handling
techniques is crucial for software engineers to select the most suitable strategy
based on their specific requirements and constraints.

This thesis examines the effectiveness of two removal-based techniques and
a correction-based class noise-handling technique. In what follows, we first
describe the two removal-based techniques, namely Consensus Filter (CF) and
Majority Filter (MF), which are widely used and reported in the literature
[20], [21], and [22], then we describe the correction-based technique, namely
domain-knowledge-based (DB).

Removal-based techniques: The removal-based techniques examined in
this thesis utilize an ensemble of machine learning models, including a univariate
decision tree (C4.5), K-Nearest Neighbors (KNN), and linear regression (LR),
to classify noisy entries in the training data through a voting mechanism. The
techniques employ k-fold cross-validation, where k-1 folds are used for training
each model in the ensemble, and the remaining fold is used to label each entry as
noisy or clean. After k repetitions, each entry in the entire data-set is assigned
a label indicating its noisiness. The decision on which entries to remove is
determined through a voting mechanism, with CF being more aggressive and
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removing a higher proportion of entries compared to MF [23]. Based on the
majority voting mechanism presented in [20], an entry is considered noisy if it
is tagged as such by more than 50% of the models. Conversely, the consensus
filter adopts a more conservative approach, removing entries that are tagged as
noisy by one or more models from the data-set.

Correction-based technique: The correction-based technique, also termed
the domain-knowledge-based technique, relies on our expertise in the domain
of source code changes. Considering the nature of code change data, it is
common to observe problematic lines of code in a small fraction of the overall
code fragment in code commits. Thus, it is unlikely that every line of code
within a commit that is labeled as faulty (negative) requires improvement.
Similarly, a line of code that appears in a commit in which all lines are labeled
as non-faulty is unlikely to be faulty. Hence, the DB technique ensures to
relabel contradictory lines of code from ’0’ to ’1’ – if those lines have already
been seen as part of positively labeled entries.

The procedure of the technique can be summarized as follows:

1. Each line of code in the original data-set is sequentially assigned a unique
8-digit hash value.

2. An empty dictionary is created to store unfiltered entries.

3. The hashed entries in the original data-set are iterated through, and only
syntactically unique entries are saved in the dictionary.

4. For each pair of identical entries, the class values are compared in the
original data-set and the dictionary. If the values differ and the class
of the entry in the original data-set is annotated as ’1’, then the class
of the corresponding entry in the dictionary is relabeled from ’0’ to ’1’.
The entry in the original data-set is then discarded. If both entries have
the same class value, the entry from the original data-set is added to the
dictionary.

Note that the DB technique can be seen as both removal and corrective to
noise, since it 1) removes entries that are identical and not contradictory, and
2) corrects the label of identical entries that first appear in the ’negative’ class
and then the ’positive class’.

1.2 Related Work

ML-based methods for improving CI processes are shown to be effective at
identifying fault-prone code changes in software [24] and [25]. The main
advantage that practitioners and researchers seek when using such methods
is to feed developers with useful information about the location of faults in
software, such that those can be fixed as quickly as possible [26].

In order to leverage these methods, software metrics are used by researchers
and practitioners as predictors of fault-prone modules in software. These metrics
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include object-oriented metrics [27] (e.g., weighted methods per class, number
of ancestors of a class), process metrics [28] (e.g., code churns, number of
changes made to files in commits), product metrics [29] (e.g., total size of the
program, number of lines of code in a commit), and structural metrics [30] (e.g.,
cyclomatic complexity) offer valuable insights into fault-prone software modules.
However, these metrics operate on a module level and do not provide enough
semantic information about the code. In other words, we would not know if
two programs are equivalent in terms of their fault proneness if they both had
a complexity of 1. Thus, additional information is needed to pinpoint exactly
which lines of code are faulty. Our work is the first to leverage a software metric
(token frequency) that relies on counting the frequency of textual features in
software source code changes as predictors of fault-prone code changes.

1.2.1 Machine learning-based approaches in continuous
integration

Several researchers have put forth the argument that ML-based methods for
fault prediction are considered strong predictors if their Precision, Recall, and
Accuracy exceeded 75% [31] and [32]. In the context of CI, this argument
seems attainable by several ML-based approaches. For example, Saidani et al.
[7] proposed an approach that uses Long Short-Term Memory-based Recurrent
Neural Networks model for CI build outcome prediction. The model was
trained on sequential data in which each series observation is the history of
build results during a specific time period. The time series prediction produced
by the model is then used to predict the outcome of future builds. Evaluated
on builds records belonging to 10 open source projects, the results showed
that the accuracy of the model ranged from 63% to 85%, whereas the F1-score
ranged from 22% to 77%.

Chen et al. [33] proposed analyzing build logs and changed files for predicting
outcomes of builds in CI. The proposed approach used an adaptive prediction
model that switches between two models based on the build outcome of previous
builds. The evaluation was performed on 20 projects, and the results have
shown that the approach reached 87.4% in Precision, 88.3% in Recall, and
87.4% in F1-score.

Zhang et al. [34] proposed a test selection technique that starts by build
prediction. The approach uses 21 software metrics from the TravisTorrent
data-set to construct ML models to predict the probability of a specific build
failure and transform the probability into test proportion, with respect to a
selected test case prioritization technique. Based on the output of the ML
model, it selects a prioritized test suite and a variable proportion of test cases
with respect to a build. Using 117 projects for the evaluation, the results
showed that using the approach improves performance in terms of Recall to
88.9%.

All of these studies evaluated their proposed approaches using information
retrieval metrics – such as Precision, Recall, and F1 – and AUC in some cases.
However, it is important to account for imbalanced data-sets, since generally,
the number of failed builds is less than the passed ones in software projects
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[29]. Thus, using an evaluation metric that equally accounts for the failing
and passing builds is important to get a better understanding of the model’s
performance. Our work uses Mathew’s Correlation Coefficient to mitigate the
risk of reporting inflated results and making over-optimistic conclusions.

1.2.2 Noise-handling in software engineering contexts

There are several noise-handling techniques in the body of literature. The
choice of techniques depends on factors such as the nature of the data, the
type and ratio of noise, and the specific requirements and domain of the
problem being addressed. In this section, we highlight some of the existing
removal and correction-based techniques that have been widely used in the
literature. Further, we present examples of their application in different software
engineering contexts.

Van Hulse and Khoshgoftaar [35] conducted a study to investigate the
impact of class noise, particularly when it occurs in the minority class of
software quality data. Their findings showed that traditional-based algorithms
like Naive Bayes are more effective in handling noise compared to algorithms
like Random Forest. In contrast, Folleco et al. [36] reported different results,
showing that increasing the level of class noise in the minority class significantly
hinders the classification performance of a classifier. Interestingly, their study
showed that the most consistent classification performance was achieved using
a Random Forest model. These contrasting results regarding the classifier
effectiveness highlight the importance of considering the data-set type when
determining the most suitable classifier for noise-handling.

Further, Khoshgoftaar and Seliya [37] suggested that focusing on handling
noise before training a classifier is more beneficial than focusing on finding the
best classifier. They reported that even the best classification algorithm can
perform very poorly if the data contained a high level of class noise.

Brodley et al. [14] proposed the Consensus Filter, an ensemble method
that employs majority voting to identify and eliminate mislabeled instances.
CF utilizes multiple supervised learning algorithms to detect consistently
misclassified instances, which are labeled as noisy and removed from the
training set. Evaluation results show that when the class noise level is below
40%, employing filtering techniques, such as CF, improves predictive accuracy
compared to not filtering the data. This suggests that incorporating any form
of filtering strategy is likely to enhance classification accuracy. This approach
has been extensively used in the SE literature (e.g., [36] and [38]).

Guan et al. [13] extended the work of Brodley et al. by introducing CFAUD,
a variant of CF that incorporates a semi-supervised classification step for
predicting unlabeled instances. Their evaluation on benchmark data-sets using
three popular machine learning algorithms demonstrates that both majority
voting and CFAUD have a positive impact on learning across various noise
levels (ranging from 10% to 40%).

Muhlenbach et al. [39] proposed an outlier detection approach that employs
neighborhood graphs and cut-edge weight algorithms to identify mislabeled
data points. Noisy instances are either removed or relabeled based on the labels



14 CHAPTER 1. INTRODUCTION

of their neighbors. The study shows that using this filtering approach yields
better performance in nine out of ten domain data-sets when the noise removal
level exceeds 4%.

Khoshgoftaar et al. [40] introduced a rule-based approach for noise detection,
using Boolean rules to identify noisy data points. The identified noisy instances
are then removed from the data-set before training the model. Comparative
results with the CF algorithm by Brodley et al. suggest that the CF algorithm
outperforms the rule-based approach in terms of classification accuracy when
introducing noise in 1 to 11 attributes at different noise levels.

While the majority of the reported studies provide empirical evidence
supporting the handling of both class and attribute noise in data, our research
provides counter-evidence related to attribute noise. The findings align with
those described in Liebchen et al. [6], which suggest that the definition and
impact of noise are highly dependent on the specific domain in which noise
occurs. In the context of test case selection, the study suggests that handling
attribute noise by identifying outliers in the attributes is not observed to have
a detrimental effect.

1.3 Research Focus and Questions

This thesis was organized into several empirical research studies.

The main research question that this thesis addresses is: How to improve the
effectiveness of ML-based methods for continuous integration by handling class
and attribute noise? This research question was motivated by the observation
that large amounts of lines in code change data are labeled with inaccurate class
values, and similarly contain attribute values that do not accurately characterize
the assigned class values. Hence, removing/correcting such inaccurate values
can potentially improve the effectiveness of ML-based methods for solving CI
tasks.

Therefore, we empirically investigated aspects that concern the effect of
noise in CI data and investigated ways to minimize the effect of noise on solving
CI tasks. Specifically, our main focus was to understand and improve the
prediction performance of ML-based methods in 1) test case selection, 2) build
job outcome predictions in continuous integration, and 3) code change request
predictions.

To answer the research question, we addressed eight detailed research
questions. Figure 1.4 shows these research questions and illustrates how they
are structured and related to each other.

The first research question addressed the growing need in the industry
to reduce the cost overhead associated with software regression testing. To
that end, we developed a tool that analyzes the dependency patterns between
historically committed code changes and test case execution results.

Prior to the development of this tool, most existing work in the literature
relied on metrics related to the source code (e.g., McCabe complexity), metrics
associated with the development processes (e.g., git commits), and metrics
derived from test history (e.g., rate of test failures). However, these metrics
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often lacked sufficient semantic information about the analyzed source code,
e.g., we would not know if two programs are equivalent in terms of their fault
proneness if they both had a complexity of 1. Therefore, we developed a tool
that would allow us to study such kind of dependencies. The tool was founded
on the premise that if we could measure the frequency of tokens (e.g., if, for,
while) in code commits that had previously triggered test case failures, then
we can train a model with such measurements to predict test cases that will
react to new code commits. The measurement of token frequency was achieved
using a third-party open-source tool, called CCFlex [41], which was shown to
provide good results in code analysis tasks. Another goal of designing this tool
was to allow us to pinpoint exactly which lines in the code triggered test cases
to react. This would allow practitioners to quickly fix faults in their code as
soon as they arise.

The following research question was posed:

• RQ1: How to reduce the number of executed test cases by selecting the
most effective minimal test suite when integrating new code churns into
the product’s main branch?

This research question provided a basis for understanding that noise in software
code change data can adversely affect the predictive performance of ML-based
methods. This is because we observed that a lot of identical lines of code in the
training data are labeled with different class values. This observation prompted
further investigation into whether or not noise has an impact on the predictive
performance of the model for test case selection. The results of RQ1 have in
turn raised the question of:

• RQ2: Is there a statistical difference in predictive performance for a test
case selection ML model in the presence and absence of class noise?

We found that there is a statistically significant difference in performance when
training a model on data that includes class noise compared to data without
class noise. Hence, we explored reasons for introducing class noise in code
change and test execution data-set. Our findings showed that the occurrence of
class noise can be attributed to the inherent nature of the continuous integration
(CI) process – that there are several identical lines in different code commits
being integrated. As each line of code in a commit is labeled with the execution
result of a test case whose status had changed from pass to fail or vice versa, we
encountered a large number of identical lines that were assigned with different
class labels.

To address this issue, we developed a class noise-handling algorithm with
the goal of reducing the impact of class noise in software code change data
on the predictive performance of MeBoTS. Further, we examined the effect of
removing instances from the training data that come with high attribute noise
values on the performance of MeBoTS. As a result, we posed the following
research question:

• RQ3: How can we improve the predictive performance of a learner for
test selection by handling class and attribute noise?
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We found that using an existing attribute noise-handling strategy from the
literature [12] for removing instances with attribute noise had no effect on the
predictive performance of MeBoTS. As a result, we focused on the issue of class
noise. To handle class noise, we implemented a correction-based algorithm that
first removes identical lines in the training data and then corrects the label
values of contradictory entries. We found that handling class noise using the
developed algorithm leads to an improvement in the predictive performance
of MeBoTS. This finding has further motivated us to work on reducing the
occurrence of class noise in software code change and test execution data.

Since a lot of class noise in the data is introduced due to inaccurate mappings
between test execution results and code changes, we wanted to reduce such
inaccurate mappings by understanding what types of test cases are sensitive
to what types of code changes. By understanding these dependencies, we can
map the execution results of sensitive test cases to code changes that appear
in code commits and thereby reduce the rate of class noise. Another goal of
understanding these dependencies is to assist software testers in determining
which types of test cases need to be executed during a CI cycle. Based on these
two goals, we posed the following research question

• RQ4: To which degree do software testers perceive the content of a code
commit and test case types as dependent?

We found that performance-related test cases should be prioritized for
execution to test changes related to memory management and algorithmic
complexity. These findings are further detailed in Chapter ??.

To validate the relationships identified from the answer to RQ4, we developed
a tool that selectively executes test cases that are in relation with code change
types that appear in code commits. Then, we measured the total time taken
by the tool to perform regression testing and compared it with the time taken
by a retest-all approach and the approach employed by our industrial partner.
Accordingly, we posed the following research question:

• RQ5: How to reduce the time of regression testing by selecting only the
most relevant test types?

We found that by using the identified relationships in the answer to RQ4, we
could reduce the total regression time compared to both a retest-all approach
and the approach employed by our industrial partner, without comprising the
effectiveness of testing.

Given these promising results and the positive impact that noise-handling
demonstrated in the context of test case selection, we extended our research
inquiry and examined the impact of noise-handling on the prediction of several
other CI tasks. In particular, we focused on examining noise-handling for an
effect on the prediction of build job outcomes, negative code review comments,
and code smells. By extending our analysis to these additional CI tasks,
we aimed to assess the generalizability and effectiveness of noise-handling
approaches across different prediction tasks that can be encountered by software
engineers during a CI process.
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As mentioned in Section 1.1.1, a CI pipeline typically starts by retrieving
the latest code commit submitted to the development repository and then
builds the application. The purpose of this build step is to ensure that the code
is syntactically correct and that the system has all the required dependencies
to function properly. In large and complex projects, performing the build step
in CI can take more than 30 minutes to complete [42]. This delay poses a
challenge for software engineers, as they have to wait for at least 30 minutes
until they know whether their latest code commit will compile successfully. To
address this issue and expedite the development process and feature releases,
it becomes crucial to minimize the time latency between the CI server and
developers without compromising the effectiveness of detecting faults in the
code.

Existing research in the literature proposed utilizing process and product
metrics to build ML models for predicting whether or not new code changes
will compile successfully. However, most of these metrics operate on a file-level,
which means that they can only identify the file(s) that are erroneous and
would trigger a build failure. In contrast, MeBoTS takes a line-level approach
by learning from the frequency of tokens that appear in code commits. This
approach allows MeBoTS to pinpoint specific lines of code that triggered a
build failure, allowing software engineers to quickly identify and address the
problematic lines of code.

Therefore, we aimed at investigating the effectiveness of MeBoTS in predict-
ing the outcome of build outcomes using process, product, and token frequency
metrics respectively as predictors of build outcome predictions. Hence, we
posed the following research question:

• RQ6: How effective is the token frequency metric in comparison with
traditional software metrics for predicting build outcomes in CI?

We found that using a line-level metric presents promising potential in
improving the prediction of build jobs that will pass, in comparison to 15
other product and process metrics. However, the results also indicated that
employing a line-level metric led to a higher rate of false negatives, implying
that its effectiveness as a predictor for MeBoTS was inferior to that of file-level
metrics. One plausible explanation for this observation could be attributed to
the presence of class noise in the data-set.

Since we did not employ any nose handling technique on the data used to
answer RQ6, except for the tolerance capability of the ML model in MeBoTS,
we needed to further assess how much improvement could be achieved if other
noise-handling techniques were applied to the data before training, such as
removal and correction strategies. We also needed to examine the impact of
the same noise-handling strategies on another type of data-set to reduce the
potential for confounding factors related to how the noise was introduced.

To assess how much improvement in the prediction of build outcomes could
be achieved by handling class noise, we applied three noise-handling techniques
to the training data of build outcomes that we used to answer RQ6 and posed
the following research question:
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Figure 1.4: Mapping between research questions.

• RQ7: What is the impact of applying class noise handling techniques on
predicting the outcome of builds in continuous integration?

We found that applying the MF and CF techniques to the training data has
a statistically significant positive impact on the performance of MeBoTS in
predicting build outcomes in CI. These findings are aligned with prior research
studies that have investigated the efficacy of these techniques in various software
engineering scenarios as well as other domains beyond SE.

To gain a more comprehensive understanding of the effect of noise-handling
in CI context, we applied the same three techniques that we used to answer
RQ7 to the third type of CI data – code reviews. Therefore, we posed the
following research question:

• RQ8: What is the impact of applying class noise handling techniques on
predicting code change requests?

We found an improvement in the predictive performance of MeBoTS for
predicting comments that request a code change after applying the three
algorithms to the training data.

1.4 Research Methodology

The research methodology used in this thesis comprises a series of controlled
experiments and design science research cycles. Through these two methods,
we conducted an in-depth investigation into the effects of noise on CI tasks,
explored the application of noise-handling strategies to CI data, and proposed
novel approaches to improve the prediction of fault-prone code.
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All of the research studies conducted in the course of this thesis can be clas-
sified as empirical research, as described in [43]. Table 1.2 provides a mapping
between the research questions defined in Section 1.3 and the methodologies
used to answer each question.

In this section, we start by summarizing the theory of design science research
and controlled experiment respectively. We then describe how we used the two
methods in the research studies included in this thesis. Finally, we provide a
summary of the contributions that we made in the course of this thesis.

Table 1.2: Mapping between research questions and research methodologies.

Question Methodology Paper

RQ1 Design science A

RQ2 Controlled experiment B

RQ3 Controlled experiment C

RQ4 Design science D

RQ5 Design science E

RQ6 Controlled experiment F

RQ7 Controlled experiment G

RQ8 Controlled experiment G

1.4.1 Design Science Research

Design science research is the design and investigation of artifacts in a context.
Runeson et al. [44] defined design science as an iterative approach consisting of
three main activities, namely problem conceptualization, solution design, and
empirical validation.

The problem conceptualization is typically the first activity in a DSR. It
involves understanding a general problem in terms of a specific problem instance
(i.e., in a specific context). During the exploration of the problem instance, it
becomes clearer to the researcher and practitioner what the general problem is
and consequently what potential solution designs can be made to address the
problem. Thus, the solution design activity refers to the mapping between the
identified problem instance and the potential solution design. The empirical
validation activity concerns assessing whether the designed solution is feasible
to solve the identified problem instance.

1.4.2 Controlled Experiments

In software engineering, a controlled experiment is defined as an empirical
inquiry that manipulates one variable of the studied setting [45]. Different
treatments are applied to different subjects while keeping other variables fixed,
and measuring the effects on outcome variables. The purpose is to measure the
effect of the treatments on the outcome variables to determine whether there
is a causal relationship between them.

In a controlled experiment, the researcher considers the current situation
to be the baseline (control), which means that the baseline represents one level



20 CHAPTER 1. INTRODUCTION

of the independent variable, and the new situation that evolves as a result
of applying other levels of the independent variable is the one of interest to
evaluate. Then the level of the independent variable for the new situation
describes how the evaluated situation differs from the control. During these
investigations, quantitative data is collected and statistical methods are applied.

Wohlin et al. [45] identified five sequential steps for conducting controlled
experiments in SE, as illustrated in Figure 1.5. These steps are described as
follows:

1. Scoping: in this step, the objectives of the experiment are defined.

2. Planning: this step concerns identifying the context of the experiment
as well as defining the hypothesis, including a null hypothesis and an
alternative, the independent and dependent variables, and a suitable
design for the experiment.

3. Operation: this step is concerned with the execution and validation of
the data. In particular, the focus is to prepare the subjects as well as the
tools needed for data collection

4. Analysis and interpretation: this step is concerned with the analysis of
the data collected in the operation step. The first step in the analysis
is to understand the data by using descriptive statistics. Then we can
perform a hypothesis test to determine whether the hypotheses defined
in the planning step can be rejected.

5. Presentation and package: this step is concerned with presenting and
packaging the findings

Figure 1.5: An overview of the controlled experiment design used in the thesis.

1.4.3 Research Methods

Throughout the course of this thesis, we conducted a total of seven studies to
answer the eight research questions. These studies were conducted using two
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distinct research methodologies: four studies were designed according to DSR
and four studies followed the controlled experiment methodology. The following
provides a detailed description of the research method that we followed in each
of the eight studies.

1. Paper A
The study presented in Paper A was conducted following the DSR meth-
odology. In order to address the problem of cost overhead in performing
software regression testing, several researchers proposed utilizing test
prioritization, minimization, and selection techniques [46]. These tech-
niques, however, have inherent limitations that delimit their application
in practice. For instance, static analysis-based tools require the code to
be compiled in order to access abstract syntax trees and get semantic
information about the code. This delimits the applicability of such tools
only when the code-base compiles successfully. On the other hand, dy-
namic analysis tools require real-time test coverage information, which
can be demanding and expensive if hardware resources are limited. While
measuring code coverage is crucial for determining the extent of code
exercised by test cases, it does not guarantee that the system under test is
fault-free or fully tested – even with high code coverage, critical defects or
untested scenarios may still go unnoticed. These limitations highlight the
need for alternative approaches to address the cost overhead in performing
software regression testing without compromising the quality of testing.

To overcome these challenges, we conducted a DSR study (Paper A) at a
company that operates in the field of telecommunication and observed
their testing workflow. We chose DSR as our methodology because it
allowed us to gain practical insights into the problem domain at our
industrial partner. Our observation showed that several test cases in the
regression suite were detecting faults within the same modules, indicat-
ing the presence of redundant tests that are unnecessarily executed. In
addition, we observed that the company was executing over 300,000 test
case executions on a weekly basis to accommodate their two-week feature-
release cycle and that the number of integration tests was increasing
rapidly.

Based on these observations, we designed a solution to the problem posed
in RQ1. The solution represents a new ML-based method, called MeBoTS,
that operates on a fine-grained level (i.e., line of code level). Unlike static
analysis tools, MeBoTS does not require compiling the code base to access
abstract syntax trees. Instead, MeBoTS is a language-agnostic 1 solution,
which leverages code tokens that appear in code changes as predictors
for test case execution results. To assess the effectiveness of MeBoTS
in addressing the identified problem, we conducted an evaluation using
a data-set from a legacy system developed in-house by the company.
The data-set consisted of 82 code revisions and test executions. Two
evaluation trials were conducted to assess the performance of MeBoTS.

1MeBoTS is language-agnostic, which means that it can operate across multiple program-
ming languages, treating the code as if it were written in natural language
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In the first trial, we used a data-set comprising 1.4 million lines of code
and 82 test execution results to train and test five ML models in MeBoTS,
including three tree-based models and two deep learning networks. The
evaluation was based on the Precision and Recall of the predictions made
by MeBoTS. In the second trial, ML models were trained and tested
exclusively on code check-ins with less than 100,000 lines of code. This
trial aimed to evaluate the performance of MeBoTS in scenarios involving
smaller code revisions. The evaluation metrics focused on measuring the
Precision and Recall of the model’s predictions, providing insights into
its effectiveness in predicting the impact of code changes on test cases.

2. Paper B
In the analysis phase of the study presented in Paper A, we observed
that a large number of identical lines of code were labeled with different
class values (i.e., class noise). This led us to design and implement an
experiment wherein we could examine the effect of such occurrences of
lines in more detail in Paper B.

The study presented in Paper B was conducted in compliance with the
guidelines outlined in Section 1.4.2 for performing controlled experiment
research. The objective of the experiment was to examine a causal relation-
ship between class noise in software source code data and the performance
of the ML model in MeBoTS. This objective is to understand the ratio
in which class noise needs to be handled by testers before training the
model in MeBoTS for test case selection.

In the planning phase, we defined RQ2 and four null hypotheses. These
hypotheses were based on the assumption that class noise in software code
change data has a detrimental effect on the performance of ML model for
test selection. In the operation phase, we utilized a control group with
0% class noise as a baseline for comparison, while six treatment levels
of class noise (10%, 20%, 30%, 40%, 50%, and 60%) were seeded into
the data. In the analysis and interpretation phase, we tested whether
there is a statistically significant difference in the performance of the ML
model in MeBoTS when trained on data with and without class noise.
We used the Mann-Whitney and Kruskal-Wallis inference tests since
the distribution of the evaluation scores were not normally distributed.
The results of the tests showed a statistically significant difference in
the model’s performance when trained on a data-set with 0% class noise
and with the six different levels of class noise. We used this finding to
formulate our research problem in Paper C.

3. Paper C
The study presented in Paper C was conducted following the DSR meth-
odology outlined in Section 1.4.1 and the controlled experiment guidelines
in Section 1.4.2. The study aimed at handling the effect of class noise
in software code change data and thereby improving the effectiveness of
MeBoTS in test case selection. In addition to handling class noise, we
wanted to understand the effect of removing instances in the data with a
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high attribute noise rate.

In response to these objectives, we began the study by designing a
solution to the problem posed in RQ3. The solution was a lightweight
tool that relied on our knowledge of source code changes in CI to correct
contradictory entries and remove identical lines of code. The solution
represents an algorithm that begins by assigning a unique 8-digit hash
value to each line of code in the original data-set and creating an empty
dictionary to store unfiltered lines of code. Next, the algorithm iterates
through the hashed lines in the original data-set and saves syntactically
unique lines of code in the dictionary. Finally, the algorithm compares
the class labels of each pair of identical lines in the original and dictionary
sets. If the class label in the original set is labeled as passed (1) and the
same instance in the dictionary is labeled as failed (0), the algorithm
relabels the class label of the line in the dictionary from 0 to 1. If both
identical lines have a class label of 1, the algorithm skips adding the line
from the original set into the dictionary.

In order to assess the effectiveness of the solution, we utilized the code
change data that we collected to answer RQ1 and performed the following
steps:

• we applied the algorithm to the original data-set, resulting in a
data-set of 140,130 lines of code.

• we trained the ML model in MeBoTS using both the original data
(before applying the solution) and the class-noise-curated data (after
applying the solution).

• we compared the learning performance of the two models in terms
of Precision, Recall, and F1.

Similarly, in order to determine whether attribute noise in CI data has
an effect on the performance of MeBoTS, we designed and performed a
controlled experiment to examine potential causality between attribute
noise removal and the predictive performance of MeBoTS.

In the planning phase, we began by reviewing a few related works in the
area of attribute noise-handling to explore existing solutions that can be
used in our experiment. Among the solutions reviewed, we chose to work
with the PANDA algorithm, as described in [12]. We chose PANDA due
to its ease of implementation and its suitability for our research objectives.
The formulated hypotheses were based on the assumption that removing
instances with attribute noise would improve the predictive performance
of MeBoTS. In the operation phase, we implemented and applied the
PANDA algorithm to the data that we utilized in Paper A. Ten different
treatment levels were applied (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50%), each corresponding to a fraction of the instances that
were removed before building the ML model in MeBoTS.

In the analysis and interpretation phase, we utilized the Mann-Whitney
and Kruskal-Wallis statistical tests to determine whether attribute noise
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removal has a significant impact on the performance of MeBoTS. The
Mann-Whitney test was employed for making pairwise comparisons
between the evaluation measures obtained with each treatment level
and those at obtained at 0%.

4. Paper D
In the analysis phase of the study presented in Paper C, we observed that
utilizing a class noise-handling technique could improve the predictive
capabilities of the model in MeBoTS for test case selection. Motivated
by this observation, our objective was to further reduce the ratio of class
noise by gaining a comprehensive understanding of which test case types
are in relation to what specific code changes. This understanding would
enable us to build the training data of MeBoTS by accurately mapping
code changes with the execution results of tests that are directly related
to the respective code change. To that end, we developed a faceted
taxonomy that depicts dependency links between code changes and test
case types.

We began the taxonomy building by reviewing a few related works that
empirically or theoretically examine the relationship between code change
constructs and test case types. Thereafter, we used the outcome of our
literature search to seek the opinions of software engineers and testers at
four of our collaborating partners about the dependency between types of
code changes and test cases. The resulting taxonomy comprised a total
of six types of code changes and eight test case types.

We validated the taxonomy by demonstrating and discussing the ortho-
gonality between strongly dependent test case types and code change
types, based on the input given by software engineers and testers. The
discussion resulted in a consensus among the recruited participants about
the dependencies between two types of code changes and eight test case
types. Hence, we validated the dependencies between two types of code
changes and their dependent test case types.

5. Paper E
The study presented in Paper E was conducted following the DSR meth-
odology. The study aimed at validating the taxonomy presented in Paper
D using the utility demonstration method, as described in [47]. Therefore,
we formulated our study problem in RQ5.

The solution represents a tool that utilizes ML to classify code changes
into one of the code change categories illustrated in the taxonomy of
dependencies in Paper D. Based on the frequency of occurrence of each
type of code change in a new code commit, the tool selectively executes
tests that belong to types that are dependent on these changes. This way
of selecting test cases eliminates the need of historical data on test case
verdicts, which allows software engineers to use the tool from the outset
of the software development process.

The validation of the method was done by measuring the total regression
testing time reduced by the tool and its effectiveness in selecting relevant
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test cases that require executions. The total reduced time was then
compared against the time required by a retest-all approach and the
approach used at the case company. The validation was done using nine
code revisions and 26,576 executions of 868 test cases.

6. Paper F
The study presented in Paper F was conducted following the guidelines
of controlled experiments research presented in Section 1.4.2.

The scope of the experiment was twofold. Firstly, we wanted to investigate
the effectiveness of the token frequency metric utilized by MeBoTS as a
predictor for build outcome in CI. The goal was to assess whether the
token frequency metric can reliably assist software engineers to pinpoint
and quickly fix issues in lines of code that trigger build failures. Secondly,
we sought to evaluate the effectiveness of the tolerance capability of the
random forest model used in MeBoTS for handling noise in the training
data. This analysis aimed to determine how well the model could tolerate
and mitigate the negative effects of noise on the performance of the model
for build outcome predictions.

In the planning phase, we hypothesized that training a model on the
token frequency metric is more effective than file-level metrics for build
outcome prediction. In the operation phase, we collected data on build
outcomes from a total of 117 Java open-source projects available in the
TravisTorrent database [48]. The collected data also comprised fourteen
software product and process metrics that we utilized in the analysis
to answer RQ6. In the analysis and interpretation phase, we employed
the Kruskal-Wallis test to compare the Precision, Recall, F1, and MCC
obtained using the process and product metrics and the token frequency
metrics. To supplement the analysis, we calculated the effect size between
the Precision, Recall, F1, and MCC scores achieved when using the
line-level metric and the next most effective file-level software metric.

7. Paper G
The study described in Paper G followed the guidelines for conducting
controlled experiments, as presented in Section 1.4.2.

In Paper C, we only used one technique of class noise-handling in the
context of test case selection, which is not sufficient to draw general
conclusions about the effectiveness of handling class noise in CI data.
Therefore, in this study, the scope was to investigate whether the same
results hold for two other noise-handling techniques using other types of CI
data. Specifically, the study examined the effects of three different noise-
handling techniques on build, code review, and historical code change
data. The motivation behind the study was to address the growing
demand among software companies to promptly detect and fix faulty
code changes while providing constructive feedback to software engineers.
Therefore, we formulated our study problems in RQ7 and RQ8.

In the planning phase, we hypothesized that applying any of the examined
class noise-handling techniques to the training data of build outcomes and
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code review data would improve the predictive performance of MeBoTS,
compared to leaving the noise in place and relying solely on the model’s
ability to tolerate noise.

To address RQ7, we utilized the same data-set of historical build job out-
comes that we extracted and introduced in Paper F. The three treatment
levels (i.e., noise-handling techniques) were applied to the experiment
subjects before being fed as input to MeBoTS for training. The experi-
ment’s subjects were generated using 10-fold stratified cross-validation
on the control group data.

To study the effectiveness of the selected noise-handling techniques in
more contexts, we extended our analysis to another type of software
engineering data-set and posed RQ8. There, in the planning phase, we
hypothesized that applying the same three noise-handling techniques used
in our exploration of RQ7 would have a positive impact on the predictive
performance of MeBoTS in code change request predictions.

In the operation phase, we collected historical code review comments and
their corresponding code changes from two Java open-source projects
submitted to Gerrit, a code review tool. To generate the binary class
labels from the collected comments, we manually annotated a sample of
the extracted code review comments data from the two collected projects.
Subsequently, we trained the model in MeBoTS on the collected code
changes and their corresponding review comment labels. We applied
10-fold stratified cross-validation to generate the experiment’s subjects
and to evaluate the model’s performance.

In the analysis and interpretation phase, we tested the hypotheses defined
for RQ7 and RQ8 using the Krusal-Wallis test. The goal was to determine
whether using any of the class noise-handling techniques had a significant
effect on Precision, Recall, F1, and MCC of the model in MeBoTS. We
also performed pairwise comparisons to compare the distribution of each
dependent variable before and after one treatment level respectively.

1.5 Summary of the Findings

In this section, we provide a comprehensive overview of the main findings and
contributions obtained from addressing the eight research questions included
in this thesis. These research questions, including a short description of our
contributions in each paper, are presented in Table 1.3.

1. Paper A

The first finding from the study presented in Paper A is that training and
using ML models in CI context with large commits (over 100,000 LOC)
results in low precision (55%) and recall (17.4%). The finding suggests
that including large commits in the training data of ML-based methods
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Table 1.3: A summary of the contributions of the thesis

No. Paper Findings/Contributions
RQ1 A

• Using revisions of small size for training ML-based methods
leads to correctly excluding 80% of tests that will fail.

• Using traditional-based ML models exhibits a similar predictive
performance as deep-learning models.

RQ2 B
• Encountering a class noise ratio above 20% significantly de-

creases the predictive performance of MeBoTS for test case
selection.

RQ3 C
• Using a domain knowledge-based approach for handling class

noise improves the prediction of test cases that require no
execution.

• Removing instances with attribute noise has no effect on the
predictive performance of MeBoTS.

RQ4 D
• Performance-related tests are sensitive to changes related to

memory management.
• We found that performance-related and maintainability tests

are sensitive to changes related to complexity.

RQ5 E
• Selecting test types using the taxonomy of dependencies reduces

the total regression testing time.
• The dependency links between statement and capacity test cases

and memory management code changes need to be refined to
incorporate other types of code changes.

RQ6 F
• File-level metrics yield better predictive performance of MeBoTS

in build outcome predictions compared to the line-level metric.

RQ7 G
• Applying removal-based techniques for noise-handling improves

the predictive performance of MeBoT for build outcomes.

RQ8 G
• Applying the removal-based and correction-based techniques for

noise handling improves the predictive performance of MeBoT
for code change requests.
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increases the probability of encountering noise. The noise, in turn, leads
to wrong predictions of test execution results.

The second finding from Paper A is that both traditional tree-based
models and deep learning models exhibit similar predictive performance
when it comes to predicting test execution results. The Precision scores
of the five ML models ranged from 67% to 71%, while the Recall scores
ranged from 36% to 49% when trained on code commits containing less
than 100,000 lines of code.

2. Paper B

The first finding from the study presented in Paper B is that 80% of the
code change data collected during the CI process comes with class noise.
The presence of class noise in the data is attributed to the nature of CI,
since the labeling of individual lines of code in a commit relies on the
execution outcome of a test case from a CI cycle.

The second finding is that the statistically significant effect of the class
noise starts at 20% of the noise. This was evidenced by the observed
decreases in Precision by 10%, Recall by 4.5%, F1 score by 10%, and
MCC by 16%. These findings indicate the adverse effect of class noise
when its ratio exceeds 20% in the data.

3. Paper C
The first finding from the study presented in Paper C is that removing
20% of lines of code that come with the highest attribute noise ratio leads
to a 3% decrease in Precision and an 8% decrease in Recall. This finding
highlights that testers should not remove lines of code from the data in
the interest of cleaning attribute noise.

The second finding in Paper C is that handling class noise using the
domain-knowledge-based tool improves the Precision of MeBoTS from
44% to 81% and its Recall from 17% to 87%. These results suggest that
testers can accurately exclude 8 out of 10 passing test cases from the
regression suite if they use the domain-knowledge-based tool for handling
class noise in code change data. Consequently, testers can reduce the
total regression testing time by excluding 70% of test cases that do not
reveal faults in code changes (Recall improved from 17% to 87%).

4. Paper D
The first finding from Paper D is that memory management code changes
should be tested with performance, capacity, load, stress, soak, or volume
test cases. Similarly, we found that complexity code changes should
be tested with the same types of test cases as memory management in
addition to maintainability tests. Using this dependency information
allows testers to reduce the ratio of class noise in code change data by
mapping memory management changes in code as well as complexity
changes to sensitive types of test cases.
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The second finding from Paper D is that there is a lack of consensus among
testers regarding the relationship between memory and complexity code
changes and security tests. Among the reasons for the lack of consensus
were the application domain and the type of programming language used.
In particular, 33% of testers who participated in the study perceived
security tests to be strongly dependent on memory management changes,
since those might lead to memory leaks which in turn might expose the
system to security breaches. On the other hand, 50% of participating
testers argued that memory leaks result in performance issues rather than
security breaches. Further, they linked the sensitivity of security tests to
the program domain.

5. Paper E
The first finding from the study presented in Paper E is that using the
knowledge derived from the taxonomy of dependencies (Paper D) reduces
the total software regression testing time by 52.94% compared to the total
time required by the industrial partner’s approach. Additionally, when
compared to a retest-all approach, we found that using the taxonomy
can reduce the total regression time by 15.78%.

Another finding is that the dependency links between statement and
capacity test cases, and memory management code changes need to be
refined to incorporate other types of code changes or specific instances of
each type. One approach to achieve this refinement is by investigating
the relationship between specific instances of memory management and
complexity code changes, such as memory leaks, buffer overflows, and so
on, and statement and capacity test case types.

Finally, we found that selecting test types that depend on the two most
frequently occurring code change types in a commit results in the highest
rate of fault detection. This led to a 22.2% improvement in the rate
of fault detection compared to selecting tests that depend on the most
frequent code change type.

6. Paper F
The main finding from the study presented in Paper F is that utilizing file-
level metrics as predictors for build outcomes is more effective compared
to token frequency. This conclusion was supported by the evaluation of
the model using different metrics, where the MCC scores were taken into
consideration. Specifically, the model trained on token frequency achieved
a mean MCC of 0.16, whereas the highest MCC score of 0.68 was obtained
when using the file-level metric gh num commits on files touched metric.
However, it is difficult to establish a causality relationship between the
number of commits made on files and build outcomes, as they may both
be measuring the same thing. In other words, no commits would lead to
no failed builds, and more commits would lead to more failed builds.

Despite these results, we found that using the token frequency metric
leads to higher Precision and Recall compared to when using the file-level
metrics. Particularly, the average Precision was at 91% and the average



30 CHAPTER 1. INTRODUCTION

Recall was at 80%, indicating an improved prediction of passing builds
and a reduction of false negatives. The observed discrepancy between
F1 and MCC highlights the need to evaluate the predictions of build
outcomes in light of the confusion matrix.

7. Paper G
The first finding from the study presented in Paper G is that applying
both MF and CF techniques would consistently improve the performance
of MeBoTS in predicting build outcomes. In this context, applying MF
improves Precision from 90% to 96%, Recall from 76% to 98%, F1 from
82% to 97%, and MCC from 0.13 to 0.58. Similarly, applying CF also
showed a significant impact, particularly on Recall (improving from 76%
to 96%), F1 (improving from 82% to 94%), and MCC (improving from
0.13 to 0.52).

The second finding is that applying MF and CF to the training data of
code review comments consistently improves the performance of MeBoTS
in predicting code change requests. In this context, applying MF was
found to improve Precision from 34% to 82%, Recall from 15% to 48%,
F1 from 17% to 53%, and MCC from -0.03 to 0.57. Similarly, applying
CF also showed to improve Precision from 34% to 70%, Recall from 15%
to 56%, F1 from 17% to 60%, and MCC from -0.03 to 0.61.

The third finding is that using DB would significantly improve the average
Recall of MeBoTS (improving from 15% to 25%) for predicting code
change requests, but not build outcomes. However, the performance
improvement that we gain by applying DB is less than those achieved by
applying MF and CF.

In practical terms, these findings suggest that by applying CF or MF
techniques to the training data, MeBoTS can make fewer false predictions
about successful and failing builds. Similarly, the prediction accuracy of
MeBoTS for predicting code change requests can be improved by exposing
the training data to MF, CF, or DB.

1.6 Research Validity

Wohlin et al. [45] identified four types of validity threats to empirical studies
in the area of software engineering. In our research, we carefully addressed
each of these threats to ensure the validity of our findings.

1.6.1 External Validity

External validity is concerned with generalization. It addresses the question
of is there a relation between the treatment and the outcome that allows the
findings to be generalized outside the scope of the current study?

The external validity of our studies is potentially threatened by the small
sample size utilized in the analysis of MeBoTS for test case selection. In Papers
A, B, and C, we conducted the analysis on a single industrial project written
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in the C language, with only twelve test cases, 82 code commits and test
executions. Additionally, the study presented in Paper D relied on the opinions
of a small number of testers. In the second experiment presented in Paper
G, the results were drawn based on the analysis of two open-source projects.
Hence, the generalizability of these findings beyond their specific context may
be limited due to the small sample size. Therefore, we minimized these threats
by randomly selecting the sample of test cases and recruiting testers from
various software companies to capture a broader range of perspectives.

1.6.2 Internal Validity

Internal validity concerns aspects in the analysis that indicates a causal rela-
tionship between independent and dependent variables, although they are not
causal.

The most severe threat to the internal validity of our studies is related to
the measurement of token frequency, frequency of code change types, and data
collection tools. To minimize the risk of this threat, we carefully inspected the
code and tested it using small samples of data points.

Another internal validity is related to the time gap between receiving survey
responses and conducting the workshop in the study presented in Paper D.
During this interval, participants who responded to the survey and participated
in the workshop might have changed their opinions about the dependency
patterns. Consequently, there is a possibility of misalignment between the
dependency links provided by the participants in the survey and those discussed
during the workshop. However, we reduced the likelihood of this threat by
thoroughly explaining all code change and test case types that were introduced
in the survey and during the workshop.

1.6.3 Construct Validity

Construct validity refers to the degree to which experimental variables accur-
ately measure the concepts they purport to measure.

In our research studies, the main threat to the construct validity is related
to whether the execution results of test cases and build outcomes that we use for
labeling are due to faulty code changes and not due to flakiness in the selected
tests, machinery failures, environment upgrades, etc. We minimized this threat
by randomly selecting test execution results from the pool of executed tests
at our industrial partners and by analyzing a large sample of build execution
outcomes (49,040).

Another threat to the construct validity is related to our measurement of
class noise, which is based on calculating the ratio of contradictory entries in
the data. Since class noise can occur among entries that are not necessarily
contradictory but rather inaccurately labeled, it is possible that our measure-
ment of class noise only captures a fraction of the total ratio of class noise in
the data. This implies that if we used alternative metrics for measuring class
noise, we might get different measurement results of noise. However, it is not
trivial to identify all inaccurately labeled entries in CI data since we do not
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know the actual cause of noise. Hence, our measurement of noise can be seen
as a proxy measure of noise.

1.6.4 Conclusion Validity

Conclusion validity focuses on the ability to draw correct conclusions about
the relations between the treatment and the outcome of our study.

One potential threat to the conclusion validity in our research concerns
our choice of employing a random forest model for drawing conclusions about
the effects of class and attribute noise handling, and software metrics on the
predictive performance of MeBoTS in test case selection and build outcome
predictions. We minimized this threat in Paper G by training two additional
models (XGBoost and a neural network) on the build outcome data. The results
showed that random forest outperformed these two models in this context.

Another potential threat to conclusion validity concerns the lack of hyper-
parameter tuning performed before training the random forest model. We
minimized this threat by conducting additional training trials of the random
forest model, where we modified the number of trees from 100 to 300 in the
additional trial. The results demonstrated that the predictive performance of
the model for test case selection remained similar.

1.7 Discussion

The descriptive statistics and improvement ratios on the predictive perform-
ance of ML-based methods for CI are summarized in Table 1.4. All significant
findings are marked in bold. The presented summary of the results shows that
a significant improvement was achieved by applying the CF and MF algorithms
to the build and code change request data (MCC improvement in build pre-
dictions: 0.39 for CF vs. 0.45 for MF, MCC improvement in code change
request predictions: 0.61 for CF vs. 0.6 for MF). Likewise, an improvement
in the predictive performance of MeBoTS was achieved by applying the DB
to the test selection data (F1-score improvement: 59%). The hypotheses on
the effectiveness of DB on test case selection were not statistically tested since
we only worked with a small sample of twelve test cases, which is not a large
sample. However, the statistical test results reported in the study presented in
Paper B showed that seeding contradictory entries into the data has a negative
effect on the performance of MeBoTS in test selection. Hence, removing such
entries from the same data-set employed in Paper B with DB would signific-
antly improve the results. Contrary to the findings reported in previous studies
[49][50], which concluded that the impact of noise on classifier performance
is modest, our findings revealed that the impact of class noise is statistically
significant on classification performance when class noise ratio exceeds 20%.
In addition, we found that applying noise-handling algorithms to the training
data improves classification performance over unhandled noisy data. Sluban et
al. [51] showed that applying MF to noisy data leads to high Precision and
low Recall. This differs from our findings, which revealed that applying MF
improves both Precision and Recall in the context of CI.
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The lack of statistical significance in the effectiveness of DB on build
outcome and code change request predictions can be possibly attributed to the
underlying assumption of DB, which states that faulty labeled entries (labeled
with 0) that are identical in features to non-faulty labeled entries (labeled with
1) should have their labels corrected from faulty to non-faulty. This assumption
may not hold true at all times and can potentially introduce class noise when
faulty entries are incorrectly relabeled to non-faulty. The summary results in
Table 1.4 indicates that applying DB to the build and code change data-sets
has potentially led to an increase in inaccurate labeling. These inaccurately
relabeled entries appear to have negatively influenced the model’s ability to
learn patterns in the code that trigger build failures and code change requests.
This can explain the lack of statistical significance found in Precision, F1-score,
and MCC – as summarized in Table 1.4.

Another possible reason for the lack of significance can be due to the
balancing algorithm used before applying DB to the data. In Paper C and G,
we used the random over-sampling technique [52] to balance the classes in the
training data. This technique creates new entries of the minority class in the
data to match the number of entries in the majority class. Nevertheless, we
cannot assert whether using other over or under sampling techniques will have
an impact on the effectiveness of DB, and consequently the performance of
the ML model. Therefore, future work needs to investigate the use of different
balancing algorithms before applying DB to examine the possible impact on
the effectiveness of DB.

As far as attribute noise-handling is concerned, the lack of improvement
achieved after applying the PANDA algorithm indicates that removing outliers
from code change data is not necessary. In fact, the unchanged predictive
performance of MeBoTS (Precision remained at 53%, Recall remained at
88%, and F1-score decreased by 1%) after applying PANDA implies that the
tolerance capability of the random forest model can sufficiently handle the
effect of outliers without the need to remove them. These results are in line with
the conclusions drawn by Brodley and Friedl, and Zhu and Wu [20][53], which
suggest that attribute noise is less harmful than class noise on classification
performance. It is important to note that in Paper C, we applied the PANDA
algorithm to a subset of the data that was exposed to the DB algorithm.
Consequently, the initial baseline under the column labeled ‘original’ differs
from the value reported under the ‘PANDA’ column in Table 1.4.

In terms of the improvement in the regression testing time, the results
presented in Paper E demonstrate that executing test cases of types that are in
dependency with the most occurring code change types reduces the total time
of regression testing compared to a retest-all approach as well as the approach
adopted by our industrial partner (regression testing time reduction: from
643,64 to 579.66 hours for retest-all, regression testing time reduction: from
170.01 to 146.72 hours for the approach adopted by our industrial partner).
While the study presented in Paper E employs a method that selects test cases
of types that are sensitive to the most occurring code changes, it highlights
the importance of using the dependency information presented in Paper D for
constructing the training data of ML-based methods for test case selection.
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Table 1.4: Summary of the effect of noise-handling algorithms on the predictive
performance of ML-model for CI.

Original DB CF MF PANDA
(Removal ratio: 25%)

value value improvement value improvement value improvement value improvement

Paper C
(Test Selection)

Precision 44% 81% 37% - - - - 53% 0%

Recall 17% 87% 70% - - - - 88% 0%

F1-Score 25% 84% 59% - - - - 66% -1%

Paper G
(Build Outcome)

Precision 90% 89% -1% 93% 3% 96% 6% - -

Recall 76% 78% 2% 96% 20% 98% 22% - -

F1-Score 82% 82% 0% 94% 12% 97% 15% - -

MCC 0.13 0.08 -5% 0.52 0.39 0.58 0.45 - -

Paper G
(Change Request)

Precision 34% 39% 5% 70% 36% 82% 48% - -

Recall 15% 25% 10% 56% 41% 48% 33% - -

F1-Score 17% 27% 10% 60% 43% 53% 36% - -

MCC -0.03 0.17 20% 0.61 0.64 0.57 0.6 - -

Essentially, when building the training data, historical code changes should
be labeled with the execution results of test cases that belong to dependent
types. This would potentially reduce the ratio of class noise since it increases
the accuracy of labeling.

In general, handling class noise by applying removal-based methods to CI
data provides a more reliable improvement in the effectiveness of ML-based
methods within the context of CI over DB. Improvements were achieved in
the two experiments presented in Paper G after applying MF and CF to the
training data and all of the results were statistically significant, except for the
Precision after applying CF. This result aligns with earlier findings suggesting
that applying CF to noisy data often leads to lower precision improvement
compared with recall [21]. Nevertheless, experimental observations also showed
that having more diversity in the ensemble of classifiers in CF leads to achieving
higher precision [51]. In practical terms, the improvement results – in terms
of MCC – imply that software and DevOps engineers who are keen on using
ML-based methods for predicting faulty code changes can correctly identify
a higher number of actual faults when handling class noise with CF or MF
(MCC value for CF in build outcome: 0.52 vs. 0.58 for MF, MCC value for CF
in code change request: 0.61 vs. 0.6 for MF). Although an MCC value of 0.6
could still suggest the occurrence of false predictions concerning both faulty
and non-faulty code changes, it still implies a substantial improvement in the
model’s ability to predict the occurrence of faults, compared to -0.03 before
noise-handling. Similarly, software engineers can reduce the total regression
testing time without compromising the effectiveness of testing by using the
taxonomy of dependency for test type selection.

1.8 Conclusion and Future Work

The goal of the research presented in the thesis is to improve the effectiveness
of ML-based methods for predicting build outcomes, code change requests,
and test case execution outcomes by handling class and attribute noise. To
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achieve this objective, a series of studies were conducted, as outlined in the
previous sections. These studies aimed at examining the effects of noise,
developing effective strategies, and evaluating the efficacy of existing approaches
in handling noise within the CI context. The culmination of these studies led
to the development of innovative methods for deselecting test cases that are
unlikely to reveal faults in the code and selecting specific types of test cases that
have a higher likelihood of revealing faults. Additionally, a class noise-handling
method was devised, leveraging our domain expertise in code changes.

The first method (MeBoTS) relies on measuring the token occurrence within
historical code commits. This measurement serves as an input for a machine
learning model for identifying patterns in the code that are faulty or non-
faulty. Our research demonstrates that the effectiveness of this method can be
improved when using small code commits for training. This would contribute
to predicting faults in the code and reducing the time required to execute test
cases during regression testing. Accordingly, software engineers are encouraged
to commit small code changes more frequently during their daily development
work to reduce the probability of introducing class noise in code commits.

The second method (HiTTs) is based on measuring the frequency of occur-
rences of code change types in code commits. This measurement is then used
to selectively execute test cases of types that are in dependency with the most
occurring code changes. We showed that by using dependency information from
the taxonomy presented in Paper D, software engineers can reduce the total
time of regression testing without compromising the effectiveness of testing.
This, however, requires engineers to continuously and accurately tag their test
cases with the correct types during the test creation time. It is important to
recognize that several test case types depicted in the taxonomy share com-
mon objectives, such as performance, load, soak, stress, volume, and capacity,
which involve evaluating the system’s performance under different workloads
or assessing its ability to handle a large number of requests simultaneously.
This can make the task of accurately tagging these overlapping test cases with
the correct type challenging. Therefore, software engineers need to familiarize
themselves and adhere to the ISO guidelines [54] before tagging test cases.

Finally, we showed that using removal-based techniques for noise-handling
improves the performance of MeBoTS in predicting build outcomes and code
change requests. While using the domain-knowledge-based method was found
to improve the effectiveness of test case selection, our findings revealed that this
method does not improve the prediction performance of build outcomes. This
disparity in the results between the effectiveness of the tool in test case selection
and build outcome predictions can be attributed to several reasons, such as
the programming languages, the specific domain of the analyzed applications,
and the distinct characteristics of open-source and industrial projects analyzed
in our research.

The results presented in this thesis provide opportunities for further research
in the context of CI and noise-handling. One direction for future research is to
examine the use of different metrics, such as TF-IDF, to extract features from
code. This approach goes beyond token frequency and considers the weight
assigned to tokens based on their occurrences in various code changes. The
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results of such studies can then potentially be used to develop an extended
version of MeBoTS with other metrics.

Another avenue for future research is to measure the time required by
MeBoTS for test case selection and compare it with existing approaches for
regression testing. This comparative analysis would shed light on the practical
applicability of MeBoTS in CI.

Moreover, an additional avenue for future work is to analyze more depend-
ency relationships between different categories of code changes and test case
types. The results of such studies can potentially be used to extend the use
of HiTTs to cover a wider range of test case types and code changes. In
addition, future work needs to utilize the knowledge derived from the taxonomy
of dependencies to train MeBoTS on test cases that belong to one type of test
cases. The results of such studies can potentially be used by testers to decide
which test cases belonging to one type of test need to be executed or excluded
from execution during regression testing.

Regarding noise handling, future empirical studies need to utilize a larger
sample of projects for code change request predictions to provide a more
comprehensive understanding of the effectiveness of the examined techniques
and their generalizability. This would increase our confidence in the applicability
of those techniques in the context of CI. Moreover, it is important to examine
the effectiveness of additional class and attribute noise-handling techniques
beyond those examined in our research. This would help identify the most
suitable techniques for specific contexts and improve the overall decision-making
of which build and test cases need to be executed. Finally, it would be insightful
to examine whether the size of projects and the programming language play
a role in influencing the predictive performance of MeBoTS when applying
each noise-handling technique. By analyzing these factors, we can gain insights
into how project size and programming language influence the effectiveness of
noise handling, enabling us to make informed decisions and improve the overall
performance of MeBoTS.
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[10] S. Garćıa, J. Luengo and F. Herrera, ‘Dealing with noisy data,’ in Data
Preprocessing in Data Mining. Cham: Springer International Publishing,
2015, pp. 107–145, isbn: 978-3-319-10247-4. doi: 10.1007/978-3-319-
10247-4_5 (cit. on p. 5).

[11] A. Ahmad, F. G. de Oliveira Neto, Z. Shi, K. Sandahl and O. Leifler, ‘A
multi-factor approach for flaky test detection and automated root cause
analysis,’ in 2021 28th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, 2021, pp. 338–348 (cit. on p. 7).

[12] J. D. Van Hulse, T. M. Khoshgoftaar and H. Huang, ‘The pairwise
attribute noise detection algorithm,’ Knowledge and Information Systems,
vol. 11, no. 2, pp. 171–190, 2007 (cit. on pp. 8, 9, 16, 23).

[13] D. Guan, W. Yuan, Y.-K. Lee and S. Lee, ‘Identifying mislabeled training
data with the aid of unlabeled data,’ Applied Intelligence, vol. 35, no. 3,
pp. 345–358, 2011 (cit. on pp. 9, 13).

[14] C. E. Brodley, M. A. Friedl et al., ‘Identifying and eliminating mislabeled
training instances,’ in Proceedings of the National Conference on Artificial
Intelligence, 1996, pp. 799–805 (cit. on pp. 9, 13).

[15] T. M. Khoshgoftaar and J. Van Hulse, ‘Identifying noise in an attribute
of interest,’ in Fourth International Conference on Machine Learning and
Applications (ICMLA’05), IEEE, 2005, 6–pp (cit. on p. 9).

[16] K.-A. Yoon and D.-H. Bae, ‘A pattern-based outlier detection method
identifying abnormal attributes in software project data,’ Information
and Software Technology, vol. 52, no. 2, pp. 137 –151, 2010, issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2009.08.005 (cit. on
p. 9).

[17] D. Gamberger, N. Lavrac and S. Dzeroski, ‘Noise detection and elimin-
ation in data preprocessing: Experiments in medical domains,’ Applied
artificial intelligence, vol. 14, no. 2, pp. 205–223, 2000 (cit. on p. 9).
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