
Thesis for The Degree of Doctor of Philosophy

Improving the Performance of Machine
Learning-based Methods for Continuous

Integration by Handling Noise

Khaled Walid Al-Sabbagh

Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg

Gothenburg, Sweden, 2023

Improving the Performance of Machine Learning-based Methods for
Continuous Integration by Handling Noise

Khaled Walid Al-Sabbagh

© Khaled Walid Al-Sabbagh, 2023
except where otherwise stated.
All rights reserved.

ISBN: 978-91-8069-361-5 (PRINT)
ISBN: 978-91-8069-362-2 (PDF)

Department of Computer Science and Engineering
Division of Interaction Design and Software Engineering

Chalmers University of Technology | University of Gothenburg
SE-412 96 Göteborg,
Sweden
Phone: +46(0)729250522

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2023.

“We are surrounded by data, but starved for insights.”
- Jay Baer

i

Abstract

Background: Modern software development companies are increasingly im-
plementing continuous integration (CI) practices to meet market demands
for delivering high-quality features. The availability of data from CI systems
presents an opportunity for these companies to leverage machine learning to
create methods for optimizing the CI process.

Problem: The predictive performance of these methods can be hindered
by inaccurate and irrelevant information – noise.

Objective: The goal of this thesis is to improve the effectiveness of ma-
chine learning-based methods for CI by handling noise in data extracted from
source code.

Methods: This thesis employs design science research and controlled ex-
periments to study the impact of noise-handling techniques in the context of
CI. It involves developing ML-based methods for optimizing regression test-
ing (MeBoTS and HiTTs), creating a taxonomy to reduce class noise, and
implementing a class noise-handling technique (DB). Controlled experiments
are carried out to examine the impact of class noise-handling on MeBoTS’
performance for CI.

Results: The thesis findings show that handling class noise using the DB
technique improves the performance of MeBoTS in test case selection and code
change request predictions. The F1-score increases from 25% to 84% in test
case selection and the Recall improved from 15% to 25% in code change request
prediction after applying DB. However, handling attribute noise through a
removal-based technique does not impact MeBoTS’ performance, as the F1-
score remains at 66%. For memory management and complexity code changes
should be tested with performance, load, soak, stress, volume, and capacity
tests. Additionally, using the “majority filter” algorithm improves MCC from
0.13 to 0.58 in build outcome prediction and from -0.03 to 0.57 in code change
request prediction.

Conclusions: In conclusion, this thesis highlights the effectiveness of ap-
plying different class noise handling techniques to improve test case selection,
build outcomes, and code change request predictions. Utilizing small code
commits for training MeBoTS proves beneficial in filtering out test cases that
do not reveal faults. Additionally, the taxonomy of dependencies offers an
efficient and effective way for performing regression testing. Notably, handling
attribute noise does not improve the predictions of test execution outcomes.

Keywords

Continuous Integration, Machine Learning, Class Noise, Attribute Noise.

iii

List of Publications

Appended publications

This thesis is based on the following publications:

1. Al Sabbagh, K., Staron, M., Hebig, R., & Meding, W.(2019). Predicting
Test Case Verdicts Using Textual Analysis of Committed Code Churns.
In IWSM-Mensura. 2019, pp. 138–153

2. Al-Sabbagh, K. W., Hebig, R., & Staron, M.(2020). The effect of class
noise on continuous test case selection: A controlled experiment on
industrial data. In Product-Focused Software Process Improvement: 21st
International Conference, PROFES 2020, Proceedings 21 (pp. 287-303)

3. Al Sabbagh, K., Staron, M., Hebig, R., & Meding, W.(2022). Improving
test case selection by handling class and attribute noise.In Journal of
Systems and Software, 183, 111093

4. Al-Sabbagh, K., Staron, M., Hebig, R., & Gomes, F.(2021). A clas-
sification of code changes and test types dependencies for improving
machine learning based test selection. In Proceedings of the 17th Interna-
tional Conference on Predictive Models and Data Analytics in Software
Engineering (pp. 40-49)

5. Al-Sabbagh, K. W., Staron, M., & Hebig, R.(2022). Improving Software
Regression Testing Using a Machine Learning-Based Method for Test
Type Selection. In Product-Focused Software Process Improvement: 23rd
International Conference, PROFES 2022, Proceedings (pp. 480-496)

6. Al-Sabbagh, K. W., Staron, M., & Hebig, R.(2022). Predicting build
outcomes in continuous integration using textual analysis of source code
commits. In Proceedings of the 18th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering (pp. 42-51)

7. Al-Sabbagh, K. W., Staron, M., & Hebig, R.(2023). The Impact of Class
Noise Handling Techniques on the Effectiveness of Machine Learning-
based Methods for Build Outcome and Negative Code Review Comment
Predictions. Submitted to ACM Transactions on Software Engineering
and Methodology

v

vi

Other publications

The following publications were published before and during my PhD studies.
However, they are not appended to this thesis, due to contents overlapping
that of appended publications or contents not related to the thesis.

1. KW. Al-Sabbagh “Noise Handling For Improving Machine Learning-
Based Test Case Selection”
Licentiate thesis - Chalmers Library. (2021).

2. KW. Al-Sabbagh, M. Staron, M. Ochodek, R. Hebig, W. Meding “Select-
ive Regression Testing based on Big Data: Comparing Feature Extraction
Techniques”
2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE. 2020, pp. 322–329.

3. KW. Al-Sabbagh, M. Staron, M. Ochodek, W. Meding “Early Prediction
of Test Case Verdict withBag-of-Words vs. Word Embeddings”
46th International Conference on Current Trends in Theory and Practice
of Computer Science Workshops. (2020).

4. KW. Al-Sabbagh and L. Gren “The connections between group maturity,
software development velocity, and planning effectiveness”
Journal of Software: Evolution and Process, 30(1), p.e1896.

5. L. Gren and KW. Al-Sabbagh “Group Developmental Psychology and
Software Development Performance ”
International Conference on Software Engineering Companion (ICSE-C).
IEEE. 2017, pp. 232–234.

6. L. Bradley and KW. Al-Sabbagh ”Mobile Language Learning Designs
and Contexts for Newly Arrived Migrants.” Australian Journal of Applied
Linguistics 5, no. 3 (2022): 179-198.

7. L. Bradley, L. Bartram, KW. Al-Sabbagh, A. Algers “Designing mobile
language learning with Arabic speaking migrants ”
Interactive Learning Environments, pp.1-13. 2020.

8. KW. Al-Sabbagh, L. Bradley, L. Bartram “Mobile language learning
applications for Arabic speaking migrants – a usability perspective ”
Language Learning in Higher Education9.1 (2019), pp. 71–95.

9. L. Bartram, Lorna, L. Bradley, and KW. Al-Sabbagh. ”Mobile learning
with Arabic speakers in Sweden.”
In Proceedings of the Gulf Comparative Education Symposium (GCES)
in Ras Al Khaimah, UAE, pp. 5-11. 2018.

Research Contribution

In this thesis, the CRediT (Contribution Roles Taxonomy) model [1] was
employed to specify the authors’ contributions to the publications included in
this thesis. Table 1 provides an overview of these contributions.

viii

Table 1: The authors’ contributions to the appended papers that comprise this
thesis.

Role
Khaled
Sabbagh

Miroslaw
Staron

Regina
Hebig

Wilhelm
Meding

Francisco
Gomes

Conceptual-
ization

Papers
B, C, D, E,

F, G

Papers
A, B, C, D,

G

Papers
B, G

Paper
A

-

Methodology
Papers

B, C, D, E,
F, G

Papers
A, B, C, D,

G

Papers
A, B, G

- -

Software
Papers

A, B, C, E,
F, G

Papers
A, C

Paper
A

- -

Validation
Papers

A, B, C, D,
E, F, G

Papers
A, B, G

Paper
A, G

- -

Formal
analysis

Papers
A, B, C, D,
E, F, G

Papers
A, B, D

Paper
A

- -

Investigation
Papers

A, B, C, D,
E, F, G

A, B A - -

Resources
Papers

A, B, C, D,
E, F, G

Papers
B, C, D, E,

F, G

Paper
D

- -

Data
curation

Papers
A, B, C, D,
E, F, G

- - - -

Writing
original draft

Papers
A, B, C, D,
E, F, G

Papers
A, B, D, G

Papers
A, B, F

Paper
A

Paper
D

Writing
review &
editing

Papers
A, B, C, D,
E, F, G

Papers
A, B, C, D,
E, F, G

Papers
A, B, C, E,

F, G

Paper
C

Paper
D

Visualization
Papers

A, B, C, D,
E, F, G

Papers
A, B, C, D,

G

Paper
A

-
Paper
D

Supervision -
Papers

A, B, C, D,
E, F, G

Papers
A, B, C, D,
E, F, G

Paper
A

-

Project
admin-
istration

Papers
A, B, C, D,
E, F, G

Papers
A, B, C, D,
E, F, G

Papers
A, B, C, D,
E, F, G

Paper
A

Paper
D

Funding
acquisition

-
Papers

A, B, C, D,
E, F, G

Papers
A, B, C

-

Acknowledgment

Of all the gifts that I received as a Ph.D candidate, the greatest, undoubtedly,
has been the people I met and worked with. Foremost, I would like to thank
my academic advisors, Miroslaw Staron and Regina Hebig, for their valuable
guidance and stimulating research discussions. Both Miroslaw and Regina have
brought structure into my research work and contributed significantly to my
growth as a researcher. My gratitude is also extended to my examiner, Jan
Bosch, whose feedback has instilled discipline and rigor into my work.

Special gratitude is owed to several individuals from Software Center,
especially to Wilhelm Meding, whose support and continuous advice were of
great help. I also extend my appreciation to the software engineers from Deif,
Axis, Ericsson, and Grundfos, who participated in my research studies and
offered guidance when needed.

I am very grateful to Francisco Gomes, whose wisdom and support have
been instrumental to help me navigate several challenges during my Ph.D. My
heartfelt appreciation extends to Lucas Gren for all the profound discussions
we shared, and the moments of spontaneous laughter. I hold a deep sense of
gratitude for my friendship with Mazen Mohammad, who has always been
reliable and kind. I would like to extend my gratitude to every individual in
the division of interaction design and software engineering. Your presence has
been a wellspring of inspiration.

Special appreciation goes to my friends who have been pillars of support
throughout my journey: To Alaa Alnuweiri, for his steadfast companionship,
standing beside me through both the highs and lows. To Linda Bradley and
her family, for their constant support, belief in me, and encouragement. To
Abiya Touma for her unconditional kindness. I would also like to thank Peter
Samoaa. I cherish the time we shared during different phases of my Ph.D.

My gratitude is extended to my loving family in Syria, without whom
nothing would have been possible. In particular, I want to thank my mother,
sisters, and brother whose sacrifices have played a pivotal role in my professional
growth. I would also like to acknowledge my uncle Haitham, whose guidance
has greatly influenced the person I have become today.

A special thank goes to my amazing wife Joumana, who has been a constant
source of strength and inspiration, particularly during challenging times. I am
deeply grateful for all the boundless warmth and love that she has shown.

ix

Contents

Abstract iii

List of Publications v

Acknowledgement ix

1 Introduction 1
1.1 Theoretical Framework . 4

1.1.1 Continuous Integration 4
1.1.2 Test Case Selection . 5
1.1.3 Noise data types: class and attribute noise 5
1.1.4 Sources of class and attribute noise in CI 6
1.1.5 Noise-handling strategies 9

1.2 Related Work . 11
1.2.1 Machine learning-based approaches in continuous integ-

ration . 12
1.2.2 Noise-handling in software engineering contexts 13

1.3 Research Focus and Questions 14
1.4 Research Methodology . 18

1.4.1 Design Science Research 19
1.4.2 Controlled Experiments 19
1.4.3 Research Methods . 20

1.5 Summary of the Findings . 26
1.6 Research Validity . 30

1.6.1 External Validity . 30
1.6.2 Internal Validity . 31
1.6.3 Construct Validity . 31
1.6.4 Conclusion Validity . 32

1.7 Discussion . 32
1.8 Conclusion and Future Work 34

2 Paper A 37
2.1 Introduction . 37
2.2 Background . 38

2.2.1 Categories of Machine Learning 38
2.2.2 Tree-based and Deep Learning Models 38

xi

xii CONTENTS

2.2.3 Code Churns . 39
2.3 Related Work . 39

2.3.1 ML-based Test-Case Selection 39
2.4 Method using Bag of Words for Test Selection (MeBoTS) . . . 40

2.4.1 Code Churns Extraction (Step 1) 40
2.4.2 Textual Analysis and Features Extraction (Step 2) . . . 41
2.4.3 Training and Applying the Classifier Algorithm

(Step 3) . 43
2.5 Research Design . 43

2.5.1 Collaborating Company 43
2.5.2 Dataset . 43
2.5.3 Evaluating and Selecting a Classification Model 45

2.6 Results . 47
2.6.1 Training the Models on Churns of Varying Sizes 47
2.6.2 Training the Models on Churns of Small Sizes 47
2.6.3 Implication . 48

2.7 Validity analysis . 48
2.8 Recommendations . 49
2.9 Conclusion and Future Work 50

3 Paper B 51
3.1 Introduction . 51
3.2 Definition and Example of class Noise in Source Code 52
3.3 Related Work . 54

3.3.1 The Impact of Noise on Classification Performance . . . 54
3.3.2 Text Mining for Test Case Selection and Defect Prediction 55

3.4 Experiment Design . 55
3.4.1 Data Collection Method 55
3.4.2 Independent Variable and Experimental Subjects 56
3.4.3 Dependent Variables . 56
3.4.4 Experimental Hypotheses 57
3.4.5 Data Analysis Methods 57

3.5 Experiment Operations . 57
3.5.1 Creation of The Control Group 57
3.5.2 Class Noise Generation 59
3.5.3 Performance Evaluation Using Random Forest 60

3.6 Results . 60
3.6.1 Descriptive Statistics . 60
3.6.2 Hypotheses Testing . 61

3.7 Threats to Validity . 63
3.8 Conclusion and Future Work 65

4 Paper C 67
4.1 Introduction . 67
4.2 Related Work . 69

4.2.1 Text Mining For Defect Prediction and Test Case Selection 70
4.2.2 Class Noise Handling Research 71

CONTENTS xiii

4.2.3 Attribute Noise Handling Research 72
4.3 Background, Definitions, and Examples 73

4.3.1 Core Concepts . 73
4.3.2 Method Using Bag of Words For Test Case Selection

(MeBoTS) . 74
4.3.3 Noise Definitions and Examples 76

4.3.3.1 Example of the dependency between code churns
and test case verdict 76

4.3.3.2 Definition and Example of Class Noise in Code
Churns Data 76

4.3.4 Definition and Example of Attribute Noise in Code
Churns Data . 78

4.4 Noise Handling and Removal Approaches 79
4.4.1 Class Noise Approach 80
4.4.2 Selected Attribute Noise Handling Approach 81

4.5 Research Methodology . 81
4.5.1 Original Data Set . 82
4.5.2 Random Forest For Evaluation 83
4.5.3 Class Noise . 83
4.5.4 Attribute Noise . 83

4.5.4.1 Adopted Data-Set 84
4.5.4.2 Independent Variable and Experimental Subjects 84
4.5.4.3 Dependent Variables 85
4.5.4.4 Experimental Hypotheses 85
4.5.4.5 Data Analysis Methods 86
4.5.4.6 Attribute Noise Removal 86

4.6 Evaluation Results . 87
4.6.1 Original vs. Class Noise Cleaned Data 87
4.6.2 Class Noise Cleaned vs. Class and Attribute Noise

Cleaned Data . 87
4.7 Discussion . 93
4.8 Threats to Validity . 95
4.9 Conclusion and Future Work 97
4.10 Appendix A . 98

5 Paper D 99
5.1 Introduction . 99
5.2 Related Work . 100

5.2.1 Defect Taxonomies . 100
5.2.2 Taxonomies in Software Testing 100

5.3 Research Method . 101
5.3.1 Planning . 101
5.3.2 Identification and Extraction 101
5.3.3 Design and Construction 102

5.3.3.1 Survey . 103
5.3.3.2 Workshop with Testers 103

5.3.4 Validation . 104

xiv CONTENTS

5.4 Results . 105

5.4.1 Test Case Types . 105

5.4.2 Code Change Categories and Dependencies with Test
Case Types . 105

5.4.3 Dependency Patterns and Strengths 109

5.4.3.1 Survey. 109

5.4.3.2 Workshop . 110

5.4.3.3 Memory Management 110

5.4.3.4 Complexity code changes 114

5.4.4 Resulting Taxonomy . 115

5.5 Taxonomy Validation . 116

5.5.1 Orthogonality of the Taxonomy’s Facets 116

5.5.2 Instrumenting Prediction of Dependencies 116

5.6 Threats to validity . 118

5.7 Conclusion and Future Work 119

6 Paper E 121

6.1 Introduction . 121

6.2 Related Work . 122

6.3 Core Concepts and Background 123

6.3.1 Core Concepts . 123

6.3.2 The Dependency Taxonomy 123

6.4 Research Design . 124

6.4.1 HiTTs Implementation 125

6.4.1.1 Annotation and Training (Phase 1): 125

6.4.1.2 Calibration (Phase 2): 126

6.4.1.3 Selection (Phase 3): 126

6.4.2 Usage Scenario . 127

6.5 Evaluation of HiTTs . 127

6.5.1 Annotation and Training (Phase 1) 127

6.5.1.1 Code Change Extraction (step 1) 128

6.5.1.2 Annotation and Class Balancing (step 2) . . . 128

6.5.1.3 Features Extraction and Building the Classifier
(step 3) . 129

6.5.2 Calibration (Phase 2) 129

6.5.3 Selection (Phase 3) . 130

6.5.4 Baseline Construction 130

6.5.4.1 Actual . 131

6.5.4.2 Retest-all . 131

6.5.5 Results and Analysis 132

6.6 Threats to Validity . 133

6.7 Conclusion and Future Work 135

CONTENTS xv

7 Paper F 137
7.1 Introduction . 137
7.2 Related Work . 138

7.2.1 Software Metrics for Build Prediction 139
7.2.2 Reasons of Build Failure in CI 139

7.3 Experiment Design and Operations 140
7.3.1 Data Collection and Preprocessing 140

7.3.1.1 Traditional Software Metrics 140
7.3.1.2 The Token Frequency Metric 140

7.3.2 Independent Variables 143
7.3.3 Evaluation Metrics . 144
7.3.4 Experimental Hypotheses 144
7.3.5 Data Analysis Methods 145
7.3.6 Prediction Model . 145
7.3.7 Experimental Subjects and Class Balancing 146

7.4 Results . 146
7.4.1 Evaluation of Metrics effectiveness 146
7.4.2 Hypotheses Testing . 148

7.4.2.1 Significance Testing 148
7.4.2.2 Effect Size . 151

7.5 Threats to Validity . 152
7.6 Conclusion and Future work . 153

8 Paper G 155
8.1 Introduction . 155
8.2 Related Work . 157

8.2.1 Removal and correction based techniques for class noise-
handling . 157

8.2.2 Class noise-handling in software engineering contexts . . 159
8.3 Background . 161

8.3.1 Definition and example of class noise 161
8.3.2 Code review process in Gerrit 161
8.3.3 Class noise example in code review data 162
8.3.4 Noise-handling techniques 163

8.3.4.1 Removal-based noise-handling techniques . . . 163
8.3.4.2 Domain knowledge-based noise-handling tech-

nique (DB) . 164
8.4 Research Design . 165

8.4.1 Data collection and preparation (Part one) 165
8.4.1.1 Experiment variables 165
8.4.1.2 Collection of build outcomes data (Experiment 1)166
8.4.1.3 Collection of code reviews data (Experiment 2) 167
8.4.1.4 Feature extraction 170

8.4.2 Design of the experiments 170
8.4.2.1 Cross validation 171
8.4.2.2 Measurement method 171
8.4.2.3 Individual improvement 172

xvi CONTENTS

8.4.2.4 Effect size . 172
8.4.2.5 Significance testing 172

8.5 Results . 173
8.5.1 The impact of class noise-handling on predicting the

outcome of builds in continuous integration (RQ1) . . . 173
8.5.1.1 Individual improvements 174
8.5.1.2 Descriptive statistics 177
8.5.1.3 Hypotheses testing 180

8.5.2 The impact of class noise-handling on predicting code
change requests (RQ2) 181
8.5.2.1 Descriptive statistics 182

8.5.3 Hypotheses testing . 184
8.6 Discussion . 186

8.6.1 RQ1- What is the impact of applying class noise-handling
techniques on predicting the outcome of builds in con-
tinuous integration? . 186

8.6.2 RQ2: What is the impact of applying class noise-handling
techniques on predicting code change requests? 187

8.6.3 Characteristics of noisy lines of code 187
8.6.4 Confounding factors . 188

8.7 Research Validity . 189
8.7.1 External validity threats 189
8.7.2 Internal validity threats 190
8.7.3 Construct validity threats 190
8.7.4 Conclusion validity threats 190

8.8 Conclusion and Future Work 191
8.9 Appendix A . 193

Bibliography 205

Chapter 1

Introduction

Modern software development companies need to keep up with the ever-growing
market demands for delivering complex and high-quality features at lower costs.
To meet these challenges, companies adopt the practice of continuous integration
(CI) and create automated tools to optimize their CI process. Adopting CI
offers companies the benefits of continuously verifying the integrity of code
changes at frequent intervals, which allows for early detection of faults, rapid
feedback to developers, and improved collaborations among team members [2].

The CI process typically comprises a series of steps. These include building
and testing code changes committed by software engineers to a version control
system. The building step includes tasks such as compiling new features,
resolving dependencies, and creating executable artifacts. Once the code is
transformed into an executable form, it undergoes a phase of testing, where
automated test cases are executed to identify whether new faults have been
introduced into the code. After completing the building and testing steps,
software engineers receive feedback from the CI system regarding the status of
their committed code. This feedback informs engineers about whether their
code has successfully passed the CI steps or requires further scrutiny and
bug-fixing.

While CI offers advantages that accelerate feature delivery, organizations
that adopt CI face the challenge of reducing the latency in feedback between
CI and software engineers without compromising the effectiveness of fault
detection. With increased code integration frequency and complexity of features
in source-code files, it becomes important to develop tools that can optimize the
effectiveness of the CI process such that fault-prone code changes are identified
and reported to software engineers as early as possible.

The availability of large amounts of data from CI systems presents research-
ers and practitioners with an opportunity to develop data-driven approaches
that can optimize the automation of tools in CI. As a result, a multitude of
research studies have been conducted to investigate the use of machine learning
(ML) for optimizing tools’ automation within the CI process. For example,
Hassan and Zhang [3] conducted a study in which they mined a diverse set of
product and process metrics from historical projects. These metrics included

1

2 CHAPTER 1. INTRODUCTION

the number of modified subsystems and certification results of previous builds.
They utilized this data to construct an ML model for build prediction. The
results of their study demonstrated that training a decision tree classifier with
such information achieved a correct prediction rate of 69% for failing builds.

Similarly, Xia and Li [4] performed an evaluation involving nine classifiers
and 20 software metrics for 126 open-source projects. Their findings revealed
that using these metrics led to an F1-score exceeding 70% for 21 build out-
comes. These results indicate that product and process metrics hold promise in
predicting build outcomes effectively. These approaches employ a classifier that
gets trained on both faulty and non-faulty code examples to predict whether
new code commits will successfully build and pass the testing phase in the CI
pipeline. These approaches have demonstrated their effectiveness in solving CI-
specific tasks, including test case selection, build outcome predictions, bug-fix
time estimations, and more.

While ML-based approaches have demonstrated promising potential in the
context of CI, their utility can be hindered by the presence of noise in the
training data. This noise refers to inaccurate and irrelevant information in
the training entries of a given data-set [5]. Two categories of noise commonly
discussed in the literature are class and attribute noise [6]. Class noise arises
from contradictory or mislabelled instances in the training data, while attribute
noise occurs when attributes contain irrelevant or missing information [7].

In the context of CI, we can observe class noise in code changes that
are assigned with incorrect class labels or code changes that appear multiple
times with inconsistent class labels (i.e., contradictory). On the other hand,
attribute noise can be observed when irrelevant or missing information within
the attributes or features is used to describe the code changes. This inaccurate
information in the class and attribute values makes it difficult for ML models
to learn patterns about faulty code changes.

To address the problem of noise, researchers proposed strategies that can be
used for handling the effect of noise. These strategies can be broadly classified
into three categories: tolerance, elimination, and correction [6]. The tolerance-
based category deals with noise by leaving it in place and, instead, relies on
designing robust ML techniques that can tolerate noise to a certain threshold.
The removal-based category seeks to identify instances with class noise and
then removes them from the data-set. Finally, techniques in the correction
category seek to correct mislabeled entries by replacing their values with ones
that are more appropriate.

Although these noise-handling strategies have been extensively studied in
the field of machine learning, their application and impact within the context
of CI have not been examined. CI differs from other contexts in the way
code-change data gets continuously and frequently pushed, built, and tested.
Due to that difference, it cannot be assumed that the impact of noise-handling
on ML-based methods for CI is similar to those reported in the literature in
different contexts. Thus, it is important to examine the impact of noise in code
changes collected during CI.

Noise in CI can arise due to several factors. One such factor is the accuracy of
the measurement instruments used to measure code metrics. If the measurement

3

tool does not accurately measure what it claims to measure, then attribute noise
can be introduced. For example, if a static analysis tool inaccurately measures
the McCabe complexity of a program, it introduces inaccurate information
about the code complexity, and thus attribute noise.

Another factor that introduces noise is the presence of flaky tests. Flaky
tests can produce execution results that falsely indicate faults or non-faults in
code changes. When using their execution outcomes as class labels for code
changes, these flaky tests contribute to the introduction of class noise. Similarly,
tests and build can sometimes be interrupted when they get executed during
an environment upgrade. In such situations, the execution of tests or builds
may be disrupted, leading to incorrect class values assigned to code changes.

Additionally, the labeling mechanism of code changes can be another source
of class noise. In scenarios like test case selection, where faulty lines of code
are unknown, a common practice is to label all lines of code in a code commit
with the execution result of a test case. However, such a labeling mechanism
introduces class noise, as not all lines of code within commits are faulty and
relevant to the observed test execution result used for labeling.

The main goal of this thesis is to improve the effectiveness of ML-based
tools in the context of CI by handling class and attribute noise in CI data.
To achieve our goal, we conducted a series of design science research and
controlled experiments studies. In the design science studies, we developed and
evaluated the effectiveness of an ML-based tool (MeBoTS) to assist software
engineers optimize regression testing. Thereafter, we created a taxonomy of
dependency between code changes and test case types to reduce class noise in
the training data of code changes. To validate the taxonomy, we developed
another method (HiTTs) that classifies code changes into different categories
and selectively executes test cases based on the most occurring code changes.
We then conducted controlled experiments to investigate the effects of noise
and different noise-handling strategies on the effectiveness of MeBoTS in build
outcome predictions, test case selection, and negative code review comments
predictions.

This thesis consists of this introduction chapter and seven other chapters,
each based on a research paper. The introduction chapter is structured as
follows: In Section 1.1, we introduce and describe the theory that explains why
the research problem presented in this thesis is questioned. In Section 1.2, we
highlight related work that concerns ML-based approaches in CI and existing
noise-handling techniques in the software engineering literature. In Section
1.3, we outline the general research question that guided the conduct of the
included research studies. The methodology employed to obtain our results is
detailed in Section 1.4. Section 1.5 outlines the findings and contributions of
this thesis. In Section 1.6, we discuss the threats to the validity of the appended
papers. The answer to the general research question is provided in Section
1.7. Finally, Section 1.8 provides a summary of our conclusions and discuss
potential avenues for future work.

4 CHAPTER 1. INTRODUCTION

1.1 Theoretical Framework

In this section, we provide an overview of the fundamental concepts and code
examples that are essential for comprehending the content of this thesis. We
begin by describing the practice of continuous integration and the process it
incorporates. After that, we describe how noise can be introduced in CI and
illustrate different types of noise-handling strategies that we analyze for an
impact on ML-based methods in the context of CI.

1.1.1 Continuous Integration

Continuous Integration is a software development practice that focuses on
frequently integrating code changes that get tested by an automated build
system [8]. This frequent integration and testing performed by CI servers allow
software engineers to detect faults early before new faults propagate into the
code-base. As a result, CI reduces the burden and effort of tracking faults after
they have propagated into other components of the system under test. A CI
process typically consists of three sequential steps that automate the building
and testing of code changes. Figure 1.1 illustrates each of these steps.

Figure 1.1: The continuous integration process.

The first step in the CI workflow is code submission, where developers work
on their individual branches or forks to submit changes and add new features
to the code-base. The code submission step involves committing new code
changes into a shared repository hosted by a version control system, allowing
different code branches to be merged and built.

The second step is automated building. This step involves automatically
compiling the code, resolving dependencies, and generating an executable
artifact. The goal of this step is to ensure that the code-base can be successfully
transformed into an executable form, catching any compilation errors, missing
dependencies, or coding style violations [9].

The third step in the CI process is automated testing. Once the code
changes have been successfully built and an executable artifact has been
generated, a suite of test cases is executed to ensure that previously implemented

1.1. THEORETICAL FRAMEWORK 5

functionality continues to work as expected after new code changes or system
modifications are made [10]. This type of testing is known as regression testing.

1.1.2 Test Case Selection

Regression testing ensures that previously implemented functionality continues
to work as expected after new code changes or system modifications are made
[10]. However, regression testing can be time-consuming and resource-intensive,
since all test cases available in the suite of tests get executed at regular intervals.
To address this challenge, techniques like test case selection are employed to
optimize the regression testing process.

Test case selection is a technique that aims at reducing the time of regression
testing by identifying a subset of test cases that effectively exercises parts of
the system that have been affected by code changes. By selecting these relevant
test cases, the testing effort can be focused on parts of the system that are more
likely to be impacted by the modifications, thereby saving time and resources.
This type of technique is leveraged by the CI server for testing frequently
submitted code changes immediately after every successful build.

In order to increase confidence in the testing of the system, a daily suite is
scheduled to run overnight, encompassing a more comprehensive set of tests
that cover a wider range of functionalities and cases. These tests help identify
any issues that may have been missed during the initial regression testing
after the build. Lastly, the weekly suite is executed over the weekend and
encompasses an even broader set of tests. These tests aim to validate the overall
system behavior, ensuring the system’s compliance with various requirements
and specifications.

Figure 1.2 exemplifies how companies perform regression testing by organiz-
ing three types of suites. The every build suite in the figure comprises a subset
of test cases that are deemed effective in revealing faults given the new code
changes. The desired outcome from the utilized technique is to reveal all faults
immediately after a successful build, and hence save developers time and effort
that would otherwise be required to address these faults after they have spread
to other parts of the system.

Therefore, an effective test case selection technique is determined by its
ability to detect faults after every build, such that no new faults are detected
when executing the daily and weekly suites.

1.1.3 Noise data types: class and attribute noise

The quality of real-world data is inherently imperfect since it contains a large
amount of entries that come with corrupted information. Those entries can
adversely affect the performance of classifiers in performing their designated
prediction tasks [11].

Among the components that determine the quality of data is the accuracy
of the information within the class and attribute values. The accuracy of
class values is determined by whether the class of training entries is correctly
assigned. The accuracy of attributes is determined by whether the attribute

6 CHAPTER 1. INTRODUCTION

Figure 1.2: An illustration of regression testing in CI.

values correctly characterize the training entries for classification. Based on
these two distinctions between the quality of class and attribute values, the
following two types of noise can be identified in data-sets in general, including
CI data:

• Class noise: it occurs when a training entry is incorrectly labeled. Two
types of class noise can be distinguished:

– Contradictory entries: these are identical entries in the data having
different class values.

– Misclassification: these are training entries in the data that are
labeled with class values different from their true values.

• Attribute noise: it occurs when one or more attribute values of a training
entry are erroneous, missing, or deviate substantially from the majority
of entries.

1.1.4 Sources of class and attribute noise in CI

We now turn to discuss the sources of class and attribute noise in CI data.
Figure 1.3 presents a taxonomy outlining eight sources of noise that we identified
in the context of CI.

Sources of class noise In the context of CI, class noise can occur when the
class values assigned to individual lines of code are inaccurate. This inaccuracy
can be observed when identical lines of code are assigned different class values
and when lines of code are misclassified. In the context of CI, we identified six
potential sources of class noise:

1.1. THEORETICAL FRAMEWORK 7

Figure 1.3: An overview of noise types and their sources in CI.

1) labeling mechanism: The first source of class noise is the labeling mech-
anism in which class values are extracted from databases and assigned to
individual lines of code. In some cases, a labeling mechanism might rely on
information stored in databases, such as the execution outcome of a test case,
to determine the class value of lines of code within a particular commit.

Consider a scenario where a labeling mechanism assigns the execution
outcome of a specific test case tc1 that passes the execution as the class value
to all lines of code in a given commit. Now, imagine that a fraction of the same
lines of code appear in another commit where tc1 ‘fail’ and reveals a fault in
the commit. In such a scenario, contradictory entries arise because the labeling
mechanism assigns inconsistent class values to the same lines of code across
multiple commits. As a result, the same line of code may be observed multiple
times with “pass” and “fail” class values.

2) flaky tests: Flaky tests present another potential source of class noise.
These tests exhibit inconsistent behavior, meaning they can produce both
passing and failing results when executed against the same version of the source
code [12]. Since flaky tests can yield different outcomes across multiple test
runs, assigning their execution outcomes as class values to individual lines of
code can result in contradictory entries. For example, a line of code may be
labeled as “pass” in one test run where the flaky test succeeds, but labeled as
“fail” in another test run where the same flaky test “fail”.

3) environment upgrade: Environment upgrades introduce an additional
source of class noise. In a CI pipeline, a regular upgrade to the software
environment in which the CI pipeline operates is performed. This typically
involves upgrading the infrastructure, tools, frameworks, etc that are utilized
within the CI pipeline. During an environment upgrade, the CI server may
need to be temporarily taken offline or restarted several times. This downtime
can disrupt ongoing build jobs or tests amidst their execution, causing their
execution outcomes to fail. As a consequence, assigning the execution outcome

8 CHAPTER 1. INTRODUCTION

of builds or tests that got disrupted during an environment upgrade can result
in introducing contradictory entries. For example, a line of code may be labeled
as “fail” in one build or test run due to a disruption caused by an environment
upgrade. In another run, the same line of code may be labeled as “pass” if the
build or test passes the same code.

4) machinery failure: Machinery failure introduce another potential source
of class noise. When a failure in the hardware of CI servers (e.g., a hard drive)
or network equipment occurs, the CI pipeline gets disrupted and some running
builds or tests may fail the execution. As a result, assigning the execution
outcome of builds or tests that failed due to such a disruption would introduce
contradictory entries.

5) using test execution outcomes before and after bug fixes: An additional
source of class noise arises when different execution results of the same set of
tests appear as a result of fixing a bug in a code commit. To illustrate, consider
a scenario where a test case, denoted as tc1, fails when executed against a
particular commit due to an erroneous comparison value used in a conditional
statement (e.g., if(x > -1)). Now, suppose that a software developer fixes
the issue by adjusting the numerical value in the conditional statement to if(x

> 0). In this case, both conditional statements, before and after applying the
fix, have the same syntactical representation – i.e., both statements contain
the same code constructs.

After fixing the issue, tc1 successfully passes when re-executed. However,
if we incorporate multiple instances of the same test case, both before and
after bug fixes, for lines of code that have the same syntactical representations
such as the case with the if(x > -1) and if(x > 0) statements, class noise
is introduced. Consequently, this situation results in observing the same line of
code with both “pass” and “fail” class values.

6) human errors: Human errors introduce another potential source of class
noise. Software engineers or testers responsible for assigning class values to lines
of code for training ML models may make mistakes or exhibit inconsistencies in
their labeling decisions. For example, software engineers might assign different
class values to identical lines of code in different commits, even though the
code is functionally the same. This inconsistency can introduce class noise in
the data.

Sources of attribute noise The definition of attribute noise in this thesis
follows the one proposed by Van Hulse et al. [13], which states that attribute
noise occurs when one or more attributes in a data entry deviate from the
overall distribution of other attributes. The extent of the deviation serves as
evidence of noise, with larger deviations indicating a higher likelihood of noise.

In the context of CI, two potential sources of attribute noise were identified:
1) coding style violations: One potential source of attribute noise in CI

data can arise when a subset of lines of code diverges from the commonly
observed coding style in the majority of similar lines of code. In particular, this
type of noise occurs when certain lines of code are inconsistent in formatting,
indentation, variable naming conventions, or other stylistic elements that
deviate from the established coding standards.

1.1. THEORETICAL FRAMEWORK 9

2) measurement instruments: Measurement instruments may produce inac-
curate attribute values due to algorithmic flaws. For example, a measurement
instrument used to calculate the McCabe complexity may generate incorrect
measurements if it fails to correctly identify the correct number of edges in the
control flow of the analyzed code, leading to attribute noise.

The research studies presented in this thesis focus on handling the impact
of class noise by addressing both contradictory entries and misclassified entries.
To handle class noise, a tool was designed to correct the class labels of such
entries, and a taxonomy of dependencies was developed to reduce the occurrence
of misclassified entries in the data-set. Furthermore, the thesis examines the
effect of removing noisy entries that exhibit attribute values that substantially
deviate from the majority of entries in the data.

1.1.5 Noise-handling strategies

Existing noise-handling strategies in the machine learning literature can be
classified into three broad categories: tolerance, removal, and correction. These
categories, as previously introduced in the introduction section, aim at reducing
the effect of noise in the training data of ML models and improving their
predictive accuracy [14], [15], [16], and [17].

In the tolerance category, noisy entries are retained, and machine learn-
ing algorithms are designed to tolerate a certain threshold of noise. Robust
algorithms, often utilizing techniques like tree pruning and rule truncation [14],
are employed to minimize the negative impact of noise. For example, the C4.5
algorithm prunes statistically insignificant parts of the decision tree to improve
model construction [13]. The advantage of tolerance-based approaches is that
they eliminate the need for data cleaning, saving time and effort. However,
these approaches may experience reduced performance when the noise level
exceeds a certain threshold [18].

The removal-based category focuses on identifying and removing noisy
entries from the training data-set. Approaches in this category typically fol-
low an iterative process to detect and remove potentially mislabeled entries.
However, it is important to note that approaches within this category have
a few drawbacks. Firstly, the iterative nature of the process leads to high
computational costs. Additionally, there is a risk of mistakenly removing entries
that are not actually noisy, thus potentially impacting the integrity of the
data-set [19]. While this category of approaches allows explicit detection of
potentially noisy data entries, it allows users to decide whether a noisy entry
should be removed or retained (e.g., PANDA [13]).

In the correction category, noisy entries are corrected instead of removed.
This ensures that no information loss is encountered as a result of removing
entries from the data. However, existing correction approaches, such as [20]
and [15], often exhibit high time complexity. Additionally, when correcting
class labels of noisy entries, there is a risk of introducing bias towards one of
the classes. Furthermore, correction approaches typically operate in supervised
machine learning environments, making their utility unsuitable when class
labels are unavailable [13].

10 CHAPTER 1. INTRODUCTION

Table 1.1: Advantages and disadvantages of existing noise handling strategies

Tolerance Removal Correction

Pros

- No time is needed
to handle noisy entries.

- No information loss.

- Explicit detection of
noisy entries.

- No information loss.

Cons
- Reduces the perform-
ance of classifiers as the
noise ratio increases.

- High computational
cost to detect and
remove noisy entries.
points.

- Information loss.

- High computational
cost to detect and
correct noisy entries.

- Introduce bias
towards one of the
classes.

- Applicable in
supervised
classification
tasks only.

Table 1.1 provides a summary of the advantages and disadvantages as-
sociated with each strategy of noise-handling approaches. Tolerance-based
approaches offer the advantage of not requiring additional time for data clean-
ing and preserving information. However, they experience reduced classifier
performance as the noise ratio increases. Removal-based approaches explicitly
detect noisy data points but incur computational costs and may lead to in-
formation loss. Correction-based approaches preserve information but are
computationally expensive, risk introducing bias, and are limited to supervised
classification tasks. Understanding these different categories of noise-handling
techniques is crucial for software engineers to select the most suitable strategy
based on their specific requirements and constraints.

This thesis examines the effectiveness of two removal-based techniques and
a correction-based class noise-handling technique. In what follows, we first
describe the two removal-based techniques, namely Consensus Filter (CF) and
Majority Filter (MF), which are widely used and reported in the literature
[21], [22], and [23], then we describe the correction-based technique, namely
domain-knowledge-based (DB).

Removal-based techniques: The removal-based techniques examined in
this thesis utilize an ensemble of machine learning models, including a univariate
decision tree (C4.5), K-Nearest Neighbors (KNN), and linear regression (LR),
to classify noisy entries in the training data through a voting mechanism. The
techniques employ k-fold cross-validation, where k-1 folds are used for training
each model in the ensemble, and the remaining fold is used to label each entry as
noisy or clean. After k repetitions, each entry in the entire data-set is assigned
a label indicating its noisiness. The decision on which entries to remove is
determined through a voting mechanism, with CF being more aggressive and

1.2. RELATED WORK 11

removing a higher proportion of entries compared to MF [24]. Based on the
majority voting mechanism presented in [21], an entry is considered noisy if it
is tagged as such by more than 50% of the models. Conversely, the consensus
filter adopts a more conservative approach, removing entries that are tagged as
noisy by one or more models from the data-set.

Correction-based technique: The correction-based technique, also termed
the domain-knowledge-based technique, relies on our expertise in the domain
of source code changes. Considering the nature of code change data, it is
common to observe problematic lines of code in a small fraction of the overall
code fragment in code commits. Thus, it is unlikely that every line of code
within a commit that is labeled as faulty (negative) requires improvement.
Similarly, a line of code that appears in a commit in which all lines are labeled
as non-faulty is unlikely to be faulty. Hence, the DB technique ensures to
relabel contradictory lines of code from ’0’ to ’1’ – if those lines have already
been seen as part of positively labeled entries.

The procedure of the technique can be summarized as follows:

1. Each line of code in the original data-set is sequentially assigned a unique
8-digit hash value.

2. An empty dictionary is created to store unfiltered entries.

3. The hashed entries in the original data-set are iterated through, and only
syntactically unique entries are saved in the dictionary.

4. For each pair of identical entries, the class values are compared in the
original data-set and the dictionary. If the values differ and the class
of the entry in the original data-set is annotated as ’1’, then the class
of the corresponding entry in the dictionary is relabeled from ’0’ to ’1’.
The entry in the original data-set is then discarded. If both entries have
the same class value, the entry from the original data-set is added to the
dictionary.

Note that the DB technique can be seen as both removal and corrective to
noise, since it 1) removes entries that are identical and not contradictory, and
2) corrects the label of identical entries that first appear in the ’negative’ class
and then the ’positive class’.

1.2 Related Work

ML-based methods for improving CI processes are shown to be effective at
identifying fault-prone code changes in software [25] and [26]. The main
advantage that practitioners and researchers seek when using such methods
is to feed developers with useful information about the location of faults in
software, such that those can be fixed as quickly as possible [27].

In order to leverage these methods, software metrics are used by researchers
and practitioners as predictors of fault-prone modules in software. These metrics

12 CHAPTER 1. INTRODUCTION

include object-oriented metrics [28] (e.g., weighted methods per class, number
of ancestors of a class), process metrics [29] (e.g., code churns, number of
changes made to files in commits), product metrics [30] (e.g., total size of the
program, number of lines of code in a commit), and structural metrics [31] (e.g.,
cyclomatic complexity) offer valuable insights into fault-prone software modules.
However, these metrics operate on a module level and do not provide enough
semantic information about the code. In other words, we would not know if
two programs are equivalent in terms of their fault proneness if they both had
a complexity of 1. Thus, additional information is needed to pinpoint exactly
which lines of code are faulty. Our work is the first to leverage a software metric
(token frequency) that relies on counting the frequency of textual features in
software source code changes as predictors of fault-prone code changes.

1.2.1 Machine learning-based approaches in continuous
integration

Several researchers have put forth the argument that ML-based methods for
fault prediction are considered strong predictors if their Precision, Recall, and
Accuracy exceeded 75% [32] and [33]. In the context of CI, this argument
seems attainable by several ML-based approaches. For example, Saidani et al.
[8] proposed an approach that uses Long Short-Term Memory-based Recurrent
Neural Networks model for CI build outcome prediction. The model was
trained on sequential data in which each series observation is the history of
build results during a specific time period. The time series prediction produced
by the model is then used to predict the outcome of future builds. Evaluated
on builds records belonging to 10 open source projects, the results showed
that the accuracy of the model ranged from 63% to 85%, whereas the F1-score
ranged from 22% to 77%.

Chen et al. [34] proposed analyzing build logs and changed files for predicting
outcomes of builds in CI. The proposed approach used an adaptive prediction
model that switches between two models based on the build outcome of previous
builds. The evaluation was performed on 20 projects, and the results have
shown that the approach reached 87.4% in Precision, 88.3% in Recall, and
87.4% in F1-score.

Zhang et al. [35] proposed a test selection technique that starts by build
prediction. The approach uses 21 software metrics from the TravisTorrent
data-set to construct ML models to predict the probability of a specific build
failure and transform the probability into test proportion, with respect to a
selected test case prioritization technique. Based on the output of the ML
model, it selects a prioritized test suite and a variable proportion of test cases
with respect to a build. Using 117 projects for the evaluation, the results
showed that using the approach improves performance in terms of Recall to
88.9%.

All of these studies evaluated their proposed approaches using information
retrieval metrics – such as Precision, Recall, and F1 – and AUC in some cases.
However, it is important to account for imbalanced data-sets, since generally,
the number of failed builds is less than the passed ones in software projects

1.2. RELATED WORK 13

[30]. Thus, using an evaluation metric that equally accounts for the failing
and passing builds is important to get a better understanding of the model’s
performance. Our work uses Mathew’s Correlation Coefficient to mitigate the
risk of reporting inflated results and making over-optimistic conclusions.

1.2.2 Noise-handling in software engineering contexts

There are several noise-handling techniques in the body of literature. The
choice of techniques depends on factors such as the nature of the data, the
type and ratio of noise, and the specific requirements and domain of the
problem being addressed. In this section, we highlight some of the existing
removal and correction-based techniques that have been widely used in the
literature. Further, we present examples of their application in different software
engineering contexts.

Van Hulse and Khoshgoftaar [36] conducted a study to investigate the
impact of class noise, particularly when it occurs in the minority class of
software quality data. Their findings showed that traditional-based algorithms
like Naive Bayes are more effective in handling noise compared to algorithms
like Random Forest. In contrast, Folleco et al. [37] reported different results,
showing that increasing the level of class noise in the minority class significantly
hinders the classification performance of a classifier. Interestingly, their study
showed that the most consistent classification performance was achieved using
a Random Forest model. These contrasting results regarding the classifier
effectiveness highlight the importance of considering the data-set type when
determining the most suitable classifier for noise-handling.

Further, Khoshgoftaar and Seliya [38] suggested that focusing on handling
noise before training a classifier is more beneficial than focusing on finding the
best classifier. They reported that even the best classification algorithm can
perform very poorly if the data contained a high level of class noise.

Brodley et al. [15] proposed the Consensus Filter, an ensemble method
that employs majority voting to identify and eliminate mislabeled instances.
CF utilizes multiple supervised learning algorithms to detect consistently
misclassified instances, which are labeled as noisy and removed from the
training set. Evaluation results show that when the class noise level is below
40%, employing filtering techniques, such as CF, improves predictive accuracy
compared to not filtering the data. This suggests that incorporating any form
of filtering strategy is likely to enhance classification accuracy. This approach
has been extensively used in the SE literature (e.g., [37] and [39]).

Guan et al. [14] extended the work of Brodley et al. by introducing CFAUD,
a variant of CF that incorporates a semi-supervised classification step for
predicting unlabeled instances. Their evaluation on benchmark data-sets using
three popular machine learning algorithms demonstrates that both majority
voting and CFAUD have a positive impact on learning across various noise
levels (ranging from 10% to 40%).

Muhlenbach et al. [40] proposed an outlier detection approach that employs
neighborhood graphs and cut-edge weight algorithms to identify mislabeled
data points. Noisy instances are either removed or relabeled based on the labels

14 CHAPTER 1. INTRODUCTION

of their neighbors. The study shows that using this filtering approach yields
better performance in nine out of ten domain data-sets when the noise removal
level exceeds 4%.

Khoshgoftaar et al. [41] introduced a rule-based approach for noise detection,
using Boolean rules to identify noisy data points. The identified noisy instances
are then removed from the data-set before training the model. Comparative
results with the CF algorithm by Brodley et al. suggest that the CF algorithm
outperforms the rule-based approach in terms of classification accuracy when
introducing noise in 1 to 11 attributes at different noise levels.

While the majority of the reported studies provide empirical evidence
supporting the handling of both class and attribute noise in data, our research
provides counter-evidence related to attribute noise. The findings align with
those described in Liebchen et al. [7], which suggest that the definition and
impact of noise are highly dependent on the specific domain in which noise
occurs. In the context of test case selection, the study suggests that handling
attribute noise by identifying outliers in the attributes is not observed to have
a detrimental effect.

1.3 Research Focus and Questions

This thesis was organized into several empirical research studies.

The main research question that this thesis addresses is: How to improve the
effectiveness of ML-based methods for continuous integration by handling class
and attribute noise? This research question was motivated by the observation
that large amounts of lines in code change data are labeled with inaccurate class
values, and similarly contain attribute values that do not accurately characterize
the assigned class values. Hence, removing/correcting such inaccurate values
can potentially improve the effectiveness of ML-based methods for solving CI
tasks.

Therefore, we empirically investigated aspects that concern the effect of
noise in CI data and investigated ways to minimize the effect of noise on solving
CI tasks. Specifically, our main focus was to understand and improve the
prediction performance of ML-based methods in 1) test case selection, 2) build
job outcome predictions in continuous integration, and 3) code change request
predictions.

To answer the research question, we addressed eight detailed research
questions. Figure 1.4 shows these research questions and illustrates how they
are structured and related to each other.

The first research question addressed the growing need in the industry
to reduce the cost overhead associated with software regression testing. To
that end, we developed a tool that analyzes the dependency patterns between
historically committed code changes and test case execution results.

Prior to the development of this tool, most existing work in the literature
relied on metrics related to the source code (e.g., McCabe complexity), metrics
associated with the development processes (e.g., git commits), and metrics
derived from test history (e.g., rate of test failures). However, these metrics

1.3. RESEARCH FOCUS AND QUESTIONS 15

often lacked sufficient semantic information about the analyzed source code,
e.g., we would not know if two programs are equivalent in terms of their fault
proneness if they both had a complexity of 1. Therefore, we developed a tool
that would allow us to study such kind of dependencies. The tool was founded
on the premise that if we could measure the frequency of tokens (e.g., if, for,
while) in code commits that had previously triggered test case failures, then
we can train a model with such measurements to predict test cases that will
react to new code commits. The measurement of token frequency was achieved
using a third-party open-source tool, called CCFlex [42], which was shown to
provide good results in code analysis tasks. Another goal of designing this tool
was to allow us to pinpoint exactly which lines in the code triggered test cases
to react. This would allow practitioners to quickly fix faults in their code as
soon as they arise.

The following research question was posed:

• RQ1: How to reduce the number of executed test cases by selecting the
most effective minimal test suite when integrating new code churns into
the product’s main branch?

This research question provided a basis for understanding that noise in software
code change data can adversely affect the predictive performance of ML-based
methods. This is because we observed that a lot of identical lines of code in the
training data are labeled with different class values. This observation prompted
further investigation into whether or not noise has an impact on the predictive
performance of the model for test case selection. The results of RQ1 have in
turn raised the question of:

• RQ2: Is there a statistical difference in predictive performance for a test
case selection ML model in the presence and absence of class noise?

We found that there is a statistically significant difference in performance when
training a model on data that includes class noise compared to data without
class noise. Hence, we explored reasons for introducing class noise in code
change and test execution data-set. Our findings showed that the occurrence of
class noise can be attributed to the inherent nature of the continuous integration
(CI) process – that there are several identical lines in different code commits
being integrated. As each line of code in a commit is labeled with the execution
result of a test case whose status had changed from pass to fail or vice versa, we
encountered a large number of identical lines that were assigned with different
class labels.

To address this issue, we developed a class noise-handling algorithm with
the goal of reducing the impact of class noise in software code change data
on the predictive performance of MeBoTS. Further, we examined the effect of
removing instances from the training data that come with high attribute noise
values on the performance of MeBoTS. As a result, we posed the following
research question:

• RQ3: How can we improve the predictive performance of a learner for
test selection by handling class and attribute noise?

16 CHAPTER 1. INTRODUCTION

We found that using an existing attribute noise-handling strategy from the
literature [13] for removing instances with attribute noise had no effect on the
predictive performance of MeBoTS. As a result, we focused on the issue of class
noise. To handle class noise, we implemented a correction-based algorithm that
first removes identical lines in the training data and then corrects the label
values of contradictory entries. We found that handling class noise using the
developed algorithm leads to an improvement in the predictive performance
of MeBoTS. This finding has further motivated us to work on reducing the
occurrence of class noise in software code change and test execution data.

Since a lot of class noise in the data is introduced due to inaccurate mappings
between test execution results and code changes, we wanted to reduce such
inaccurate mappings by understanding what types of test cases are sensitive
to what types of code changes. By understanding these dependencies, we can
map the execution results of sensitive test cases to code changes that appear
in code commits and thereby reduce the rate of class noise. Another goal of
understanding these dependencies is to assist software testers in determining
which types of test cases need to be executed during a CI cycle. Based on these
two goals, we posed the following research question

• RQ4: To which degree do software testers perceive the content of a code
commit and test case types as dependent?

We found that performance-related test cases should be prioritized for
execution to test changes related to memory management and algorithmic
complexity. These findings are further detailed in Chapter 5.

To validate the relationships identified from the answer to RQ4, we developed
a tool that selectively executes test cases that are in relation with code change
types that appear in code commits. Then, we measured the total time taken
by the tool to perform regression testing and compared it with the time taken
by a retest-all approach and the approach employed by our industrial partner.
Accordingly, we posed the following research question:

• RQ5: How to reduce the time of regression testing by selecting only the
most relevant test types?

We found that by using the identified relationships in the answer to RQ4, we
could reduce the total regression time compared to both a retest-all approach
and the approach employed by our industrial partner, without comprising the
effectiveness of testing.

Given these promising results and the positive impact that noise-handling
demonstrated in the context of test case selection, we extended our research
inquiry and examined the impact of noise-handling on the prediction of several
other CI tasks. In particular, we focused on examining noise-handling for an
effect on the prediction of build job outcomes, negative code review comments,
and code smells. By extending our analysis to these additional CI tasks,
we aimed to assess the generalizability and effectiveness of noise-handling
approaches across different prediction tasks that can be encountered by software
engineers during a CI process.

1.3. RESEARCH FOCUS AND QUESTIONS 17

As mentioned in Section 1.1.1, a CI pipeline typically starts by retrieving
the latest code commit submitted to the development repository and then
builds the application. The purpose of this build step is to ensure that the code
is syntactically correct and that the system has all the required dependencies
to function properly. In large and complex projects, performing the build step
in CI can take more than 30 minutes to complete [43]. This delay poses a
challenge for software engineers, as they have to wait for at least 30 minutes
until they know whether their latest code commit will compile successfully. To
address this issue and expedite the development process and feature releases,
it becomes crucial to minimize the time latency between the CI server and
developers without compromising the effectiveness of detecting faults in the
code.

Existing research in the literature proposed utilizing process and product
metrics to build ML models for predicting whether or not new code changes
will compile successfully. However, most of these metrics operate on a file-level,
which means that they can only identify the file(s) that are erroneous and
would trigger a build failure. In contrast, MeBoTS takes a line-level approach
by learning from the frequency of tokens that appear in code commits. This
approach allows MeBoTS to pinpoint specific lines of code that triggered a
build failure, allowing software engineers to quickly identify and address the
problematic lines of code.

Therefore, we aimed at investigating the effectiveness of MeBoTS in predict-
ing the outcome of build outcomes using process, product, and token frequency
metrics respectively as predictors of build outcome predictions. Hence, we
posed the following research question:

• RQ6: How effective is the token frequency metric in comparison with
traditional software metrics for predicting build outcomes in CI?

We found that using a line-level metric presents promising potential in
improving the prediction of build jobs that will pass, in comparison to 15
other product and process metrics. However, the results also indicated that
employing a line-level metric led to a higher rate of false negatives, implying
that its effectiveness as a predictor for MeBoTS was inferior to that of file-level
metrics. One plausible explanation for this observation could be attributed to
the presence of class noise in the data-set.

Since we did not employ any nose handling technique on the data used to
answer RQ6, except for the tolerance capability of the ML model in MeBoTS,
we needed to further assess how much improvement could be achieved if other
noise-handling techniques were applied to the data before training, such as
removal and correction strategies. We also needed to examine the impact of
the same noise-handling strategies on another type of data-set to reduce the
potential for confounding factors related to how the noise was introduced.

To assess how much improvement in the prediction of build outcomes could
be achieved by handling class noise, we applied three noise-handling techniques
to the training data of build outcomes that we used to answer RQ6 and posed
the following research question:

18 CHAPTER 1. INTRODUCTION

Figure 1.4: Mapping between research questions.

• RQ7: What is the impact of applying class noise handling techniques on
predicting the outcome of builds in continuous integration?

We found that applying the MF and CF techniques to the training data has
a statistically significant positive impact on the performance of MeBoTS in
predicting build outcomes in CI. These findings are aligned with prior research
studies that have investigated the efficacy of these techniques in various software
engineering scenarios as well as other domains beyond SE.

To gain a more comprehensive understanding of the effect of noise-handling
in CI context, we applied the same three techniques that we used to answer
RQ7 to the third type of CI data – code reviews. Therefore, we posed the
following research question:

• RQ8: What is the impact of applying class noise handling techniques on
predicting code change requests?

We found an improvement in the predictive performance of MeBoTS for
predicting comments that request a code change after applying the three
algorithms to the training data.

1.4 Research Methodology

The research methodology used in this thesis comprises a series of controlled
experiments and design science research cycles. Through these two methods,
we conducted an in-depth investigation into the effects of noise on CI tasks,
explored the application of noise-handling strategies to CI data, and proposed
novel approaches to improve the prediction of fault-prone code.

1.4. RESEARCH METHODOLOGY 19

All of the research studies conducted in the course of this thesis can be clas-
sified as empirical research, as described in [44]. Table 1.2 provides a mapping
between the research questions defined in Section 1.3 and the methodologies
used to answer each question.

In this section, we start by summarizing the theory of design science research
and controlled experiment respectively. We then describe how we used the two
methods in the research studies included in this thesis. Finally, we provide a
summary of the contributions that we made in the course of this thesis.

Table 1.2: Mapping between research questions and research methodologies.

Question Methodology Paper

RQ1 Design science A

RQ2 Controlled experiment B

RQ3 Controlled experiment C

RQ4 Design science D

RQ5 Design science E

RQ6 Controlled experiment F

RQ7 Controlled experiment G

RQ8 Controlled experiment G

1.4.1 Design Science Research

Design science research is the design and investigation of artifacts in a context.
Runeson et al. [45] defined design science as an iterative approach consisting of
three main activities, namely problem conceptualization, solution design, and
empirical validation.

The problem conceptualization is typically the first activity in a DSR. It
involves understanding a general problem in terms of a specific problem instance
(i.e., in a specific context). During the exploration of the problem instance, it
becomes clearer to the researcher and practitioner what the general problem is
and consequently what potential solution designs can be made to address the
problem. Thus, the solution design activity refers to the mapping between the
identified problem instance and the potential solution design. The empirical
validation activity concerns assessing whether the designed solution is feasible
to solve the identified problem instance.

1.4.2 Controlled Experiments

In software engineering, a controlled experiment is defined as an empirical
inquiry that manipulates one variable of the studied setting [46]. Different
treatments are applied to different subjects while keeping other variables fixed,
and measuring the effects on outcome variables. The purpose is to measure the
effect of the treatments on the outcome variables to determine whether there
is a causal relationship between them.

In a controlled experiment, the researcher considers the current situation
to be the baseline (control), which means that the baseline represents one level

20 CHAPTER 1. INTRODUCTION

of the independent variable, and the new situation that evolves as a result
of applying other levels of the independent variable is the one of interest to
evaluate. Then the level of the independent variable for the new situation
describes how the evaluated situation differs from the control. During these
investigations, quantitative data is collected and statistical methods are applied.

Wohlin et al. [46] identified five sequential steps for conducting controlled
experiments in SE, as illustrated in Figure 1.5. These steps are described as
follows:

1. Scoping: in this step, the objectives of the experiment are defined.

2. Planning: this step concerns identifying the context of the experiment
as well as defining the hypothesis, including a null hypothesis and an
alternative, the independent and dependent variables, and a suitable
design for the experiment.

3. Operation: this step is concerned with the execution and validation of
the data. In particular, the focus is to prepare the subjects as well as the
tools needed for data collection

4. Analysis and interpretation: this step is concerned with the analysis of
the data collected in the operation step. The first step in the analysis
is to understand the data by using descriptive statistics. Then we can
perform a hypothesis test to determine whether the hypotheses defined
in the planning step can be rejected.

5. Presentation and package: this step is concerned with presenting and
packaging the findings

Figure 1.5: An overview of the controlled experiment design used in the thesis.

1.4.3 Research Methods

Throughout the course of this thesis, we conducted a total of seven studies to
answer the eight research questions. These studies were conducted using two

1.4. RESEARCH METHODOLOGY 21

distinct research methodologies: four studies were designed according to DSR
and four studies followed the controlled experiment methodology. The following
provides a detailed description of the research method that we followed in each
of the eight studies.

1. Paper A
The study presented in Paper A was conducted following the DSR meth-
odology. In order to address the problem of cost overhead in performing
software regression testing, several researchers proposed utilizing test
prioritization, minimization, and selection techniques [47]. These tech-
niques, however, have inherent limitations that delimit their application
in practice. For instance, static analysis-based tools require the code to
be compiled in order to access abstract syntax trees and get semantic
information about the code. This delimits the applicability of such tools
only when the code-base compiles successfully. On the other hand, dy-
namic analysis tools require real-time test coverage information, which
can be demanding and expensive if hardware resources are limited. While
measuring code coverage is crucial for determining the extent of code
exercised by test cases, it does not guarantee that the system under test is
fault-free or fully tested – even with high code coverage, critical defects or
untested scenarios may still go unnoticed. These limitations highlight the
need for alternative approaches to address the cost overhead in performing
software regression testing without compromising the quality of testing.

To overcome these challenges, we conducted a DSR study (Paper A) at a
company that operates in the field of telecommunication and observed
their testing workflow. We chose DSR as our methodology because it
allowed us to gain practical insights into the problem domain at our
industrial partner. Our observation showed that several test cases in the
regression suite were detecting faults within the same modules, indicat-
ing the presence of redundant tests that are unnecessarily executed. In
addition, we observed that the company was executing over 300,000 test
case executions on a weekly basis to accommodate their two-week feature-
release cycle and that the number of integration tests was increasing
rapidly.

Based on these observations, we designed a solution to the problem posed
in RQ1. The solution represents a new ML-based method, called MeBoTS,
that operates on a fine-grained level (i.e., line of code level). Unlike static
analysis tools, MeBoTS does not require compiling the code base to access
abstract syntax trees. Instead, MeBoTS is a language-agnostic 1 solution,
which leverages code tokens that appear in code changes as predictors
for test case execution results. To assess the effectiveness of MeBoTS
in addressing the identified problem, we conducted an evaluation using
a data-set from a legacy system developed in-house by the company.
The data-set consisted of 82 code revisions and test executions. Two
evaluation trials were conducted to assess the performance of MeBoTS.

1MeBoTS is language-agnostic, which means that it can operate across multiple program-
ming languages, treating the code as if it were written in natural language

22 CHAPTER 1. INTRODUCTION

In the first trial, we used a data-set comprising 1.4 million lines of code
and 82 test execution results to train and test five ML models in MeBoTS,
including three tree-based models and two deep learning networks. The
evaluation was based on the Precision and Recall of the predictions made
by MeBoTS. In the second trial, ML models were trained and tested
exclusively on code check-ins with less than 100,000 lines of code. This
trial aimed to evaluate the performance of MeBoTS in scenarios involving
smaller code revisions. The evaluation metrics focused on measuring the
Precision and Recall of the model’s predictions, providing insights into
its effectiveness in predicting the impact of code changes on test cases.

2. Paper B
In the analysis phase of the study presented in Paper A, we observed
that a large number of identical lines of code were labeled with different
class values (i.e., class noise). This led us to design and implement an
experiment wherein we could examine the effect of such occurrences of
lines in more detail in Paper B.

The study presented in Paper B was conducted in compliance with the
guidelines outlined in Section 1.4.2 for performing controlled experiment
research. The objective of the experiment was to examine a causal relation-
ship between class noise in software source code data and the performance
of the ML model in MeBoTS. This objective is to understand the ratio
in which class noise needs to be handled by testers before training the
model in MeBoTS for test case selection.

In the planning phase, we defined RQ2 and four null hypotheses. These
hypotheses were based on the assumption that class noise in software code
change data has a detrimental effect on the performance of ML model for
test selection. In the operation phase, we utilized a control group with
0% class noise as a baseline for comparison, while six treatment levels
of class noise (10%, 20%, 30%, 40%, 50%, and 60%) were seeded into
the data. In the analysis and interpretation phase, we tested whether
there is a statistically significant difference in the performance of the ML
model in MeBoTS when trained on data with and without class noise.
We used the Mann-Whitney and Kruskal-Wallis inference tests since
the distribution of the evaluation scores were not normally distributed.
The results of the tests showed a statistically significant difference in
the model’s performance when trained on a data-set with 0% class noise
and with the six different levels of class noise. We used this finding to
formulate our research problem in Paper C.

3. Paper C
The study presented in Paper C was conducted following the DSR meth-
odology outlined in Section 1.4.1 and the controlled experiment guidelines
in Section 1.4.2. The study aimed at handling the effect of class noise
in software code change data and thereby improving the effectiveness of
MeBoTS in test case selection. In addition to handling class noise, we
wanted to understand the effect of removing instances in the data with a

1.4. RESEARCH METHODOLOGY 23

high attribute noise rate.

In response to these objectives, we began the study by designing a
solution to the problem posed in RQ3. The solution was a lightweight
tool that relied on our knowledge of source code changes in CI to correct
contradictory entries and remove identical lines of code. The solution
represents an algorithm that begins by assigning a unique 8-digit hash
value to each line of code in the original data-set and creating an empty
dictionary to store unfiltered lines of code. Next, the algorithm iterates
through the hashed lines in the original data-set and saves syntactically
unique lines of code in the dictionary. Finally, the algorithm compares
the class labels of each pair of identical lines in the original and dictionary
sets. If the class label in the original set is labeled as passed (1) and the
same instance in the dictionary is labeled as failed (0), the algorithm
relabels the class label of the line in the dictionary from 0 to 1. If both
identical lines have a class label of 1, the algorithm skips adding the line
from the original set into the dictionary.

In order to assess the effectiveness of the solution, we utilized the code
change data that we collected to answer RQ1 and performed the following
steps:

• we applied the algorithm to the original data-set, resulting in a
data-set of 140,130 lines of code.

• we trained the ML model in MeBoTS using both the original data
(before applying the solution) and the class-noise-curated data (after
applying the solution).

• we compared the learning performance of the two models in terms
of Precision, Recall, and F1.

Similarly, in order to determine whether attribute noise in CI data has
an effect on the performance of MeBoTS, we designed and performed a
controlled experiment to examine potential causality between attribute
noise removal and the predictive performance of MeBoTS.

In the planning phase, we began by reviewing a few related works in the
area of attribute noise-handling to explore existing solutions that can be
used in our experiment. Among the solutions reviewed, we chose to work
with the PANDA algorithm, as described in [13]. We chose PANDA due
to its ease of implementation and its suitability for our research objectives.
The formulated hypotheses were based on the assumption that removing
instances with attribute noise would improve the predictive performance
of MeBoTS. In the operation phase, we implemented and applied the
PANDA algorithm to the data that we utilized in Paper A. Ten different
treatment levels were applied (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50%), each corresponding to a fraction of the instances that
were removed before building the ML model in MeBoTS.

In the analysis and interpretation phase, we utilized the Mann-Whitney
and Kruskal-Wallis statistical tests to determine whether attribute noise

24 CHAPTER 1. INTRODUCTION

removal has a significant impact on the performance of MeBoTS. The
Mann-Whitney test was employed for making pairwise comparisons
between the evaluation measures obtained with each treatment level
and those at obtained at 0%.

4. Paper D
In the analysis phase of the study presented in Paper C, we observed that
utilizing a class noise-handling technique could improve the predictive
capabilities of the model in MeBoTS for test case selection. Motivated
by this observation, our objective was to further reduce the ratio of class
noise by gaining a comprehensive understanding of which test case types
are in relation to what specific code changes. This understanding would
enable us to build the training data of MeBoTS by accurately mapping
code changes with the execution results of tests that are directly related
to the respective code change. To that end, we developed a faceted
taxonomy that depicts dependency links between code changes and test
case types.

We began the taxonomy building by reviewing a few related works that
empirically or theoretically examine the relationship between code change
constructs and test case types. Thereafter, we used the outcome of our
literature search to seek the opinions of software engineers and testers at
four of our collaborating partners about the dependency between types of
code changes and test cases. The resulting taxonomy comprised a total
of six types of code changes and eight test case types.

We validated the taxonomy by demonstrating and discussing the ortho-
gonality between strongly dependent test case types and code change
types, based on the input given by software engineers and testers. The
discussion resulted in a consensus among the recruited participants about
the dependencies between two types of code changes and eight test case
types. Hence, we validated the dependencies between two types of code
changes and their dependent test case types.

5. Paper E
The study presented in Paper E was conducted following the DSR meth-
odology. The study aimed at validating the taxonomy presented in Paper
D using the utility demonstration method, as described in [48]. Therefore,
we formulated our study problem in RQ5.

The solution represents a tool that utilizes ML to classify code changes
into one of the code change categories illustrated in the taxonomy of
dependencies in Paper D. Based on the frequency of occurrence of each
type of code change in a new code commit, the tool selectively executes
tests that belong to types that are dependent on these changes. This way
of selecting test cases eliminates the need of historical data on test case
verdicts, which allows software engineers to use the tool from the outset
of the software development process.

The validation of the method was done by measuring the total regression
testing time reduced by the tool and its effectiveness in selecting relevant

1.4. RESEARCH METHODOLOGY 25

test cases that require executions. The total reduced time was then
compared against the time required by a retest-all approach and the
approach used at the case company. The validation was done using nine
code revisions and 26,576 executions of 868 test cases.

6. Paper F
The study presented in Paper F was conducted following the guidelines
of controlled experiments research presented in Section 1.4.2.

The scope of the experiment was twofold. Firstly, we wanted to investigate
the effectiveness of the token frequency metric utilized by MeBoTS as a
predictor for build outcome in CI. The goal was to assess whether the
token frequency metric can reliably assist software engineers to pinpoint
and quickly fix issues in lines of code that trigger build failures. Secondly,
we sought to evaluate the effectiveness of the tolerance capability of the
random forest model used in MeBoTS for handling noise in the training
data. This analysis aimed to determine how well the model could tolerate
and mitigate the negative effects of noise on the performance of the model
for build outcome predictions.

In the planning phase, we hypothesized that training a model on the
token frequency metric is more effective than file-level metrics for build
outcome prediction. In the operation phase, we collected data on build
outcomes from a total of 117 Java open-source projects available in the
TravisTorrent database [49]. The collected data also comprised fourteen
software product and process metrics that we utilized in the analysis
to answer RQ6. In the analysis and interpretation phase, we employed
the Kruskal-Wallis test to compare the Precision, Recall, F1, and MCC
obtained using the process and product metrics and the token frequency
metrics. To supplement the analysis, we calculated the effect size between
the Precision, Recall, F1, and MCC scores achieved when using the
line-level metric and the next most effective file-level software metric.

7. Paper G
The study described in Paper G followed the guidelines for conducting
controlled experiments, as presented in Section 1.4.2.

In Paper C, we only used one technique of class noise-handling in the
context of test case selection, which is not sufficient to draw general
conclusions about the effectiveness of handling class noise in CI data.
Therefore, in this study, the scope was to investigate whether the same
results hold for two other noise-handling techniques using other types of CI
data. Specifically, the study examined the effects of three different noise-
handling techniques on build, code review, and historical code change
data. The motivation behind the study was to address the growing
demand among software companies to promptly detect and fix faulty
code changes while providing constructive feedback to software engineers.
Therefore, we formulated our study problems in RQ7 and RQ8.

In the planning phase, we hypothesized that applying any of the examined
class noise-handling techniques to the training data of build outcomes and

26 CHAPTER 1. INTRODUCTION

code review data would improve the predictive performance of MeBoTS,
compared to leaving the noise in place and relying solely on the model’s
ability to tolerate noise.

To address RQ7, we utilized the same data-set of historical build job out-
comes that we extracted and introduced in Paper F. The three treatment
levels (i.e., noise-handling techniques) were applied to the experiment
subjects before being fed as input to MeBoTS for training. The experi-
ment’s subjects were generated using 10-fold stratified cross-validation
on the control group data.

To study the effectiveness of the selected noise-handling techniques in
more contexts, we extended our analysis to another type of software
engineering data-set and posed RQ8. There, in the planning phase, we
hypothesized that applying the same three noise-handling techniques used
in our exploration of RQ7 would have a positive impact on the predictive
performance of MeBoTS in code change request predictions.

In the operation phase, we collected historical code review comments and
their corresponding code changes from two Java open-source projects
submitted to Gerrit, a code review tool. To generate the binary class
labels from the collected comments, we manually annotated a sample of
the extracted code review comments data from the two collected projects.
Subsequently, we trained the model in MeBoTS on the collected code
changes and their corresponding review comment labels. We applied
10-fold stratified cross-validation to generate the experiment’s subjects
and to evaluate the model’s performance.

In the analysis and interpretation phase, we tested the hypotheses defined
for RQ7 and RQ8 using the Krusal-Wallis test. The goal was to determine
whether using any of the class noise-handling techniques had a significant
effect on Precision, Recall, F1, and MCC of the model in MeBoTS. We
also performed pairwise comparisons to compare the distribution of each
dependent variable before and after one treatment level respectively.

1.5 Summary of the Findings

In this section, we provide a comprehensive overview of the main findings and
contributions obtained from addressing the eight research questions included
in this thesis. These research questions, including a short description of our
contributions in each paper, are presented in Table 1.3.

1. Paper A

The first finding from the study presented in Paper A is that training and
using ML models in CI context with large commits (over 100,000 LOC)
results in low precision (55%) and recall (17.4%). The finding suggests
that including large commits in the training data of ML-based methods

1.5. SUMMARY OF THE FINDINGS 27

Table 1.3: A summary of the contributions of the thesis

No. Paper Findings/Contributions
RQ1 A

• Using revisions of small size for training ML-based methods
leads to correctly excluding 80% of tests that will fail.

• Using traditional-based ML models exhibits a similar predictive
performance as deep-learning models.

RQ2 B
• Encountering a class noise ratio above 20% significantly de-

creases the predictive performance of MeBoTS for test case
selection.

RQ3 C
• Using a domain knowledge-based approach for handling class

noise improves the prediction of test cases that require no
execution.

• Removing instances with attribute noise has no effect on the
predictive performance of MeBoTS.

RQ4 D
• Performance-related tests are sensitive to changes related to

memory management.
• We found that performance-related and maintainability tests

are sensitive to changes related to complexity.

RQ5 E
• Selecting test types using the taxonomy of dependencies reduces

the total regression testing time.
• The dependency links between statement and capacity test cases

and memory management code changes need to be refined to
incorporate other types of code changes.

RQ6 F
• File-level metrics yield better predictive performance of MeBoTS

in build outcome predictions compared to the line-level metric.

RQ7 G
• Applying removal-based techniques for noise-handling improves

the predictive performance of MeBoT for build outcomes.

RQ8 G
• Applying the removal-based and correction-based techniques for

noise handling improves the predictive performance of MeBoT
for code change requests.

28 CHAPTER 1. INTRODUCTION

increases the probability of encountering noise. The noise, in turn, leads
to wrong predictions of test execution results.

The second finding from Paper A is that both traditional tree-based
models and deep learning models exhibit similar predictive performance
when it comes to predicting test execution results. The Precision scores
of the five ML models ranged from 67% to 71%, while the Recall scores
ranged from 36% to 49% when trained on code commits containing less
than 100,000 lines of code.

2. Paper B

The first finding from the study presented in Paper B is that 80% of the
code change data collected during the CI process comes with class noise.
The presence of class noise in the data is attributed to the nature of CI,
since the labeling of individual lines of code in a commit relies on the
execution outcome of a test case from a CI cycle.

The second finding is that the statistically significant effect of the class
noise starts at 20% of the noise. This was evidenced by the observed
decreases in Precision by 10%, Recall by 4.5%, F1 score by 10%, and
MCC by 16%. These findings indicate the adverse effect of class noise
when its ratio exceeds 20% in the data.

3. Paper C
The first finding from the study presented in Paper C is that removing
20% of lines of code that come with the highest attribute noise ratio leads
to a 3% decrease in Precision and an 8% decrease in Recall. This finding
highlights that testers should not remove lines of code from the data in
the interest of cleaning attribute noise.

The second finding in Paper C is that handling class noise using the
domain-knowledge-based tool improves the Precision of MeBoTS from
44% to 81% and its Recall from 17% to 87%. These results suggest that
testers can accurately exclude 8 out of 10 passing test cases from the
regression suite if they use the domain-knowledge-based tool for handling
class noise in code change data. Consequently, testers can reduce the
total regression testing time by excluding 70% of test cases that do not
reveal faults in code changes (Recall improved from 17% to 87%).

4. Paper D
The first finding from Paper D is that memory management code changes
should be tested with performance, capacity, load, stress, soak, or volume
test cases. Similarly, we found that complexity code changes should
be tested with the same types of test cases as memory management in
addition to maintainability tests. Using this dependency information
allows testers to reduce the ratio of class noise in code change data by
mapping memory management changes in code as well as complexity
changes to sensitive types of test cases.

1.5. SUMMARY OF THE FINDINGS 29

The second finding from Paper D is that there is a lack of consensus among
testers regarding the relationship between memory and complexity code
changes and security tests. Among the reasons for the lack of consensus
were the application domain and the type of programming language used.
In particular, 33% of testers who participated in the study perceived
security tests to be strongly dependent on memory management changes,
since those might lead to memory leaks which in turn might expose the
system to security breaches. On the other hand, 50% of participating
testers argued that memory leaks result in performance issues rather than
security breaches. Further, they linked the sensitivity of security tests to
the program domain.

5. Paper E
The first finding from the study presented in Paper E is that using the
knowledge derived from the taxonomy of dependencies (Paper D) reduces
the total software regression testing time by 52.94% compared to the total
time required by the industrial partner’s approach. Additionally, when
compared to a retest-all approach, we found that using the taxonomy
can reduce the total regression time by 15.78%.

Another finding is that the dependency links between statement and
capacity test cases, and memory management code changes need to be
refined to incorporate other types of code changes or specific instances of
each type. One approach to achieve this refinement is by investigating
the relationship between specific instances of memory management and
complexity code changes, such as memory leaks, buffer overflows, and so
on, and statement and capacity test case types.

Finally, we found that selecting test types that depend on the two most
frequently occurring code change types in a commit results in the highest
rate of fault detection. This led to a 22.2% improvement in the rate
of fault detection compared to selecting tests that depend on the most
frequent code change type.

6. Paper F
The main finding from the study presented in Paper F is that utilizing file-
level metrics as predictors for build outcomes is more effective compared
to token frequency. This conclusion was supported by the evaluation of
the model using different metrics, where the MCC scores were taken into
consideration. Specifically, the model trained on token frequency achieved
a mean MCC of 0.16, whereas the highest MCC score of 0.68 was obtained
when using the file-level metric gh num commits on files touched metric.
However, it is difficult to establish a causality relationship between the
number of commits made on files and build outcomes, as they may both
be measuring the same thing. In other words, no commits would lead to
no failed builds, and more commits would lead to more failed builds.

Despite these results, we found that using the token frequency metric
leads to higher Precision and Recall compared to when using the file-level
metrics. Particularly, the average Precision was at 91% and the average

30 CHAPTER 1. INTRODUCTION

Recall was at 80%, indicating an improved prediction of passing builds
and a reduction of false negatives. The observed discrepancy between
F1 and MCC highlights the need to evaluate the predictions of build
outcomes in light of the confusion matrix.

7. Paper G
The first finding from the study presented in Paper G is that applying
both MF and CF techniques would consistently improve the performance
of MeBoTS in predicting build outcomes. In this context, applying MF
improves Precision from 90% to 96%, Recall from 76% to 98%, F1 from
82% to 97%, and MCC from 0.13 to 0.58. Similarly, applying CF also
showed a significant impact, particularly on Recall (improving from 76%
to 96%), F1 (improving from 82% to 94%), and MCC (improving from
0.13 to 0.52).

The second finding is that applying MF and CF to the training data of
code review comments consistently improves the performance of MeBoTS
in predicting code change requests. In this context, applying MF was
found to improve Precision from 34% to 82%, Recall from 15% to 48%,
F1 from 17% to 53%, and MCC from -0.03 to 0.57. Similarly, applying
CF also showed to improve Precision from 34% to 70%, Recall from 15%
to 56%, F1 from 17% to 60%, and MCC from -0.03 to 0.61.

The third finding is that using DB would significantly improve the average
Recall of MeBoTS (improving from 15% to 25%) for predicting code
change requests, but not build outcomes. However, the performance
improvement that we gain by applying DB is less than those achieved by
applying MF and CF.

In practical terms, these findings suggest that by applying CF or MF
techniques to the training data, MeBoTS can make fewer false predictions
about successful and failing builds. Similarly, the prediction accuracy of
MeBoTS for predicting code change requests can be improved by exposing
the training data to MF, CF, or DB.

1.6 Research Validity

Wohlin et al. [46] identified four types of validity threats to empirical studies
in the area of software engineering. In our research, we carefully addressed
each of these threats to ensure the validity of our findings.

1.6.1 External Validity

External validity is concerned with generalization. It addresses the question
of is there a relation between the treatment and the outcome that allows the
findings to be generalized outside the scope of the current study?

The external validity of our studies is potentially threatened by the small
sample size utilized in the analysis of MeBoTS for test case selection. In Papers
A, B, and C, we conducted the analysis on a single industrial project written

1.6. RESEARCH VALIDITY 31

in the C language, with only twelve test cases, 82 code commits and test
executions. Additionally, the study presented in Paper D relied on the opinions
of a small number of testers. In the second experiment presented in Paper
G, the results were drawn based on the analysis of two open-source projects.
Hence, the generalizability of these findings beyond their specific context may
be limited due to the small sample size. Therefore, we minimized these threats
by randomly selecting the sample of test cases and recruiting testers from
various software companies to capture a broader range of perspectives.

1.6.2 Internal Validity

Internal validity concerns aspects in the analysis that indicates a causal rela-
tionship between independent and dependent variables, although they are not
causal.

The most severe threat to the internal validity of our studies is related to
the measurement of token frequency, frequency of code change types, and data
collection tools. To minimize the risk of this threat, we carefully inspected the
code and tested it using small samples of data points.

Another internal validity is related to the time gap between receiving survey
responses and conducting the workshop in the study presented in Paper D.
During this interval, participants who responded to the survey and participated
in the workshop might have changed their opinions about the dependency
patterns. Consequently, there is a possibility of misalignment between the
dependency links provided by the participants in the survey and those discussed
during the workshop. However, we reduced the likelihood of this threat by
thoroughly explaining all code change and test case types that were introduced
in the survey and during the workshop.

1.6.3 Construct Validity

Construct validity refers to the degree to which experimental variables accur-
ately measure the concepts they purport to measure.

In our research studies, the main threat to the construct validity is related
to whether the execution results of test cases and build outcomes that we use for
labeling are due to faulty code changes and not due to flakiness in the selected
tests, machinery failures, environment upgrades, etc. We minimized this threat
by randomly selecting test execution results from the pool of executed tests
at our industrial partners and by analyzing a large sample of build execution
outcomes (49,040).

Another threat to the construct validity is related to our measurement of
class noise, which is based on calculating the ratio of contradictory entries in
the data. Since class noise can occur among entries that are not necessarily
contradictory but rather inaccurately labeled, it is possible that our measure-
ment of class noise only captures a fraction of the total ratio of class noise in
the data. This implies that if we used alternative metrics for measuring class
noise, we might get different measurement results of noise. However, it is not
trivial to identify all inaccurately labeled entries in CI data since we do not

32 CHAPTER 1. INTRODUCTION

know the actual cause of noise. Hence, our measurement of noise can be seen
as a proxy measure of noise.

1.6.4 Conclusion Validity

Conclusion validity focuses on the ability to draw correct conclusions about
the relations between the treatment and the outcome of our study.

One potential threat to the conclusion validity in our research concerns
our choice of employing a random forest model for drawing conclusions about
the effects of class and attribute noise handling, and software metrics on the
predictive performance of MeBoTS in test case selection and build outcome
predictions. We minimized this threat in Paper G by training two additional
models (XGBoost and a neural network) on the build outcome data. The results
showed that random forest outperformed these two models in this context.

Another potential threat to conclusion validity concerns the lack of hyper-
parameter tuning performed before training the random forest model. We
minimized this threat by conducting additional training trials of the random
forest model, where we modified the number of trees from 100 to 300 in the
additional trial. The results demonstrated that the predictive performance of
the model for test case selection remained similar.

1.7 Discussion

The descriptive statistics and improvement ratios on the predictive perform-
ance of ML-based methods for CI are summarized in Table 1.4. All significant
findings are marked in bold. The presented summary of the results shows that
a significant improvement was achieved by applying the CF and MF algorithms
to the build and code change request data (MCC improvement in build pre-
dictions: 0.39 for CF vs. 0.45 for MF, MCC improvement in code change
request predictions: 0.61 for CF vs. 0.6 for MF). Likewise, an improvement
in the predictive performance of MeBoTS was achieved by applying the DB
to the test selection data (F1-score improvement: 59%). The hypotheses on
the effectiveness of DB on test case selection were not statistically tested since
we only worked with a small sample of twelve test cases, which is not a large
sample. However, the statistical test results reported in the study presented in
Paper B showed that seeding contradictory entries into the data has a negative
effect on the performance of MeBoTS in test selection. Hence, removing such
entries from the same data-set employed in Paper B with DB would signific-
antly improve the results. Contrary to the findings reported in previous studies
[50][51], which concluded that the impact of noise on classifier performance
is modest, our findings revealed that the impact of class noise is statistically
significant on classification performance when class noise ratio exceeds 20%.
In addition, we found that applying noise-handling algorithms to the training
data improves classification performance over unhandled noisy data. Sluban et
al. [52] showed that applying MF to noisy data leads to high Precision and
low Recall. This differs from our findings, which revealed that applying MF
improves both Precision and Recall in the context of CI.

1.7. DISCUSSION 33

The lack of statistical significance in the effectiveness of DB on build
outcome and code change request predictions can be possibly attributed to the
underlying assumption of DB, which states that faulty labeled entries (labeled
with 0) that are identical in features to non-faulty labeled entries (labeled with
1) should have their labels corrected from faulty to non-faulty. This assumption
may not hold true at all times and can potentially introduce class noise when
faulty entries are incorrectly relabeled to non-faulty. The summary results in
Table 1.4 indicates that applying DB to the build and code change data-sets
has potentially led to an increase in inaccurate labeling. These inaccurately
relabeled entries appear to have negatively influenced the model’s ability to
learn patterns in the code that trigger build failures and code change requests.
This can explain the lack of statistical significance found in Precision, F1-score,
and MCC – as summarized in Table 1.4.

Another possible reason for the lack of significance can be due to the
balancing algorithm used before applying DB to the data. In Paper C and G,
we used the random over-sampling technique [53] to balance the classes in the
training data. This technique creates new entries of the minority class in the
data to match the number of entries in the majority class. Nevertheless, we
cannot assert whether using other over or under sampling techniques will have
an impact on the effectiveness of DB, and consequently the performance of
the ML model. Therefore, future work needs to investigate the use of different
balancing algorithms before applying DB to examine the possible impact on
the effectiveness of DB.

As far as attribute noise-handling is concerned, the lack of improvement
achieved after applying the PANDA algorithm indicates that removing outliers
from code change data is not necessary. In fact, the unchanged predictive
performance of MeBoTS (Precision remained at 53%, Recall remained at
88%, and F1-score decreased by 1%) after applying PANDA implies that the
tolerance capability of the random forest model can sufficiently handle the
effect of outliers without the need to remove them. These results are in line with
the conclusions drawn by Brodley and Friedl, and Zhu and Wu [21][54], which
suggest that attribute noise is less harmful than class noise on classification
performance. It is important to note that in Paper C, we applied the PANDA
algorithm to a subset of the data that was exposed to the DB algorithm.
Consequently, the initial baseline under the column labeled ‘original’ differs
from the value reported under the ‘PANDA’ column in Table 1.4.

In terms of the improvement in the regression testing time, the results
presented in Paper E demonstrate that executing test cases of types that are in
dependency with the most occurring code change types reduces the total time
of regression testing compared to a retest-all approach as well as the approach
adopted by our industrial partner (regression testing time reduction: from
643,64 to 579.66 hours for retest-all, regression testing time reduction: from
170.01 to 146.72 hours for the approach adopted by our industrial partner).
While the study presented in Paper E employs a method that selects test cases
of types that are sensitive to the most occurring code changes, it highlights
the importance of using the dependency information presented in Paper D for
constructing the training data of ML-based methods for test case selection.

34 CHAPTER 1. INTRODUCTION

Table 1.4: Summary of the effect of noise-handling algorithms on the predictive
performance of ML-model for CI.

Original DB CF MF PANDA
(Removal ratio: 25%)

value value improvement value improvement value improvement value improvement

Paper C
(Test Selection)

Precision 44% 81% 37% - - - - 53% 0%

Recall 17% 87% 70% - - - - 88% 0%

F1-Score 25% 84% 59% - - - - 66% -1%

Paper G
(Build Outcome)

Precision 90% 89% -1% 93% 3% 96% 6% - -

Recall 76% 78% 2% 96% 20% 98% 22% - -

F1-Score 82% 82% 0% 94% 12% 97% 15% - -

MCC 0.13 0.08 -5% 0.52 0.39 0.58 0.45 - -

Paper G
(Change Request)

Precision 34% 39% 5% 70% 36% 82% 48% - -

Recall 15% 25% 10% 56% 41% 48% 33% - -

F1-Score 17% 27% 10% 60% 43% 53% 36% - -

MCC -0.03 0.17 20% 0.61 0.64 0.57 0.6 - -

Essentially, when building the training data, historical code changes should
be labeled with the execution results of test cases that belong to dependent
types. This would potentially reduce the ratio of class noise since it increases
the accuracy of labeling.

In general, handling class noise by applying removal-based methods to CI
data provides a more reliable improvement in the effectiveness of ML-based
methods within the context of CI over DB. Improvements were achieved in
the two experiments presented in Paper G after applying MF and CF to the
training data and all of the results were statistically significant, except for the
Precision after applying CF. This result aligns with earlier findings suggesting
that applying CF to noisy data often leads to lower precision improvement
compared with recall [22]. Nevertheless, experimental observations also showed
that having more diversity in the ensemble of classifiers in CF leads to achieving
higher precision [52]. In practical terms, the improvement results – in terms
of MCC – imply that software and DevOps engineers who are keen on using
ML-based methods for predicting faulty code changes can correctly identify
a higher number of actual faults when handling class noise with CF or MF
(MCC value for CF in build outcome: 0.52 vs. 0.58 for MF, MCC value for CF
in code change request: 0.61 vs. 0.6 for MF). Although an MCC value of 0.6
could still suggest the occurrence of false predictions concerning both faulty
and non-faulty code changes, it still implies a substantial improvement in the
model’s ability to predict the occurrence of faults, compared to -0.03 before
noise-handling. Similarly, software engineers can reduce the total regression
testing time without compromising the effectiveness of testing by using the
taxonomy of dependency for test type selection.

1.8 Conclusion and Future Work

The goal of the research presented in the thesis is to improve the effectiveness
of ML-based methods for predicting build outcomes, code change requests,
and test case execution outcomes by handling class and attribute noise. To

1.8. CONCLUSION AND FUTURE WORK 35

achieve this objective, a series of studies were conducted, as outlined in the
previous sections. These studies aimed at examining the effects of noise,
developing effective strategies, and evaluating the efficacy of existing approaches
in handling noise within the CI context. The culmination of these studies led
to the development of innovative methods for deselecting test cases that are
unlikely to reveal faults in the code and selecting specific types of test cases that
have a higher likelihood of revealing faults. Additionally, a class noise-handling
method was devised, leveraging our domain expertise in code changes.

The first method (MeBoTS) relies on measuring the token occurrence within
historical code commits. This measurement serves as an input for a machine
learning model for identifying patterns in the code that are faulty or non-
faulty. Our research demonstrates that the effectiveness of this method can be
improved when using small code commits for training. This would contribute
to predicting faults in the code and reducing the time required to execute test
cases during regression testing. Accordingly, software engineers are encouraged
to commit small code changes more frequently during their daily development
work to reduce the probability of introducing class noise in code commits.

The second method (HiTTs) is based on measuring the frequency of occur-
rences of code change types in code commits. This measurement is then used
to selectively execute test cases of types that are in dependency with the most
occurring code changes. We showed that by using dependency information from
the taxonomy presented in Paper D, software engineers can reduce the total
time of regression testing without compromising the effectiveness of testing.
This, however, requires engineers to continuously and accurately tag their test
cases with the correct types during the test creation time. It is important to
recognize that several test case types depicted in the taxonomy share com-
mon objectives, such as performance, load, soak, stress, volume, and capacity,
which involve evaluating the system’s performance under different workloads
or assessing its ability to handle a large number of requests simultaneously.
This can make the task of accurately tagging these overlapping test cases with
the correct type challenging. Therefore, software engineers need to familiarize
themselves and adhere to the ISO guidelines [55] before tagging test cases.

Finally, we showed that using removal-based techniques for noise-handling
improves the performance of MeBoTS in predicting build outcomes and code
change requests. While using the domain-knowledge-based method was found
to improve the effectiveness of test case selection, our findings revealed that this
method does not improve the prediction performance of build outcomes. This
disparity in the results between the effectiveness of the tool in test case selection
and build outcome predictions can be attributed to several reasons, such as
the programming languages, the specific domain of the analyzed applications,
and the distinct characteristics of open-source and industrial projects analyzed
in our research.

The results presented in this thesis provide opportunities for further research
in the context of CI and noise-handling. One direction for future research is to
examine the use of different metrics, such as TF-IDF, to extract features from
code. This approach goes beyond token frequency and considers the weight
assigned to tokens based on their occurrences in various code changes. The

36 CHAPTER 1. INTRODUCTION

results of such studies can then potentially be used to develop an extended
version of MeBoTS with other metrics.

Another avenue for future research is to measure the time required by
MeBoTS for test case selection and compare it with existing approaches for
regression testing. This comparative analysis would shed light on the practical
applicability of MeBoTS in CI.

Moreover, an additional avenue for future work is to analyze more depend-
ency relationships between different categories of code changes and test case
types. The results of such studies can potentially be used to extend the use
of HiTTs to cover a wider range of test case types and code changes. In
addition, future work needs to utilize the knowledge derived from the taxonomy
of dependencies to train MeBoTS on test cases that belong to one type of test
cases. The results of such studies can potentially be used by testers to decide
which test cases belonging to one type of test need to be executed or excluded
from execution during regression testing.

Regarding noise handling, future empirical studies need to utilize a larger
sample of projects for code change request predictions to provide a more
comprehensive understanding of the effectiveness of the examined techniques
and their generalizability. This would increase our confidence in the applicability
of those techniques in the context of CI. Moreover, it is important to examine
the effectiveness of additional class and attribute noise-handling techniques
beyond those examined in our research. This would help identify the most
suitable techniques for specific contexts and improve the overall decision-making
of which build and test cases need to be executed. Finally, it would be insightful
to examine whether the size of projects and the programming language play
a role in influencing the predictive performance of MeBoTS when applying
each noise-handling technique. By analyzing these factors, we can gain insights
into how project size and programming language influence the effectiveness of
noise handling, enabling us to make informed decisions and improve the overall
performance of MeBoTS.

Chapter 2

Paper A

Predicting Test Case Verdicts Using Textual Analysis of
Committed Code Churns

Al-Sabbagh, K.W., Staron, M., Hebig, R., Meding, W.

In IWSM-Mensura, pp. 138-153. 2019.

Abstract

Background: Continuous Integration is an agile software development prac-
tice that produces several clean builds of the software daily. The creation of
these builds involves running excessive executions of automated tests, which is
hampered by high hardware cost and reduced development velocity.

Goal: The goal of our research is to develop a method that reduces the
number of executed test cases at each CI cycle.

Method: We adopt a design research approach with an infrastructure provider
company to develop a method that exploits Machine Learning to predict test
case verdicts for committed source code. We train five different ML models
on two data sets and evaluate their performance using two simple retrieval
measures: precision and recall.

Results: While the results from training the ML models on the first data-set
of test executions revealed low performance, the curated data-set for training
showed an improvement in performance with respect to precision and recall.

Conclusion: Our results indicate that the method is applicable when training
the ML model on churns of small sizes.

2.1. INTRODUCTION 37

2.1 Introduction

CI is a modern software development practice, which is based on frequent
integration of codes from developers and teams into a product’s main branch
[56]. One of the cornerstones of its popularity is the promise of higher quality
delivered by frequent testing and the ability to quickly pinpoint the code that
does not meet quality requirements. To achieve this, CI systems execute tests
as part of the integration [57]. However, excessive execution of automated
software tests is penalized with high hardware cost and reduced development
velocity that may consequently hinder agility and time to market.

In order to address this challenge, a CI system should be able to pinpoint
exactly which test cases should be executed in order to maximize the probability
of finding defects (i.e. to reduce the “empty” test executions). To achieve
this, the CI system needs to be able to predict whether a given test case has
a chance of finding a defect or not, or at least whether it will fail or pass –
predict the verdict of a test case execution.

We set off to address the problem of predicting test case verdicts by training
five ML models on a large data set of historical test cases that were executed
against changes made to a software developed at company A. The term ”code
churn” is defined as a measure that quantifies these changes. Throughout the
remaining sections of this paper, we use this term to refer to committed code
made during different CI cycles.

Our research is inspired from a previous study conducted by Knauss et el.
[58], where the authors explored the relationship between historical code churns
and test case executions using a statistical model. Their method used precision
and recall metrics in predicting an optimal suite of functional regression tests
that would trigger failure. In this paper we expand on that approach by going
one step further – conducting a textual analysis of what is the code that is
actually being integrated. For example, instead of using code location as the
parameter, we use such measures as the number of ’if’ statements or whether
the code contains data definitions. Similarly, our choice of using code churns
is inspired from the work of Nagappan and Ball [59], in which the authors
presented a technique for early faults prediction using code churn measures.
In their publication, the authors identified a positive correlation between the
size of code churns and system defects density. Our method builds on this and
uses the Bag of Words (BOW) approach to extract features from code churns.
This enables the identification of statistical dependency between keywords and
test case verdicts. For example, a churn containing a frequent occurrence of
keywords like ‘new’ or ‘delete’ might trigger specific tests to fail. More precisely,
we aim at investigating the following research question:

How to reduce the number of executed test cases by selecting the
most effective minimal test suite when integrating new code churns
into the product’s main branch?

Our study was conducted in collaboration with a large Swedish-based
infrastructure providing company. We study a software product that has
evolved over a span of a decade by different cross functional teams. As a result

38 CHAPTER 2. PAPER A

of our study, we present a method that uses ML to predict test case verdicts
(MeBoTS).

To address this research question, we conduct a design research study, where
we develop a new method and evaluate it on the company’s data set. Our
method is based on the research by Ochodek et al. [42], which uses textual
analyses to characterize source code. Our MeBoTS method builds on that by
using historical test verdicts as predicted variables and uses Random Forest
algorithms to make the predictions.

The remainder of this paper is organized as follows: Section II provides
background information about two categories of ML. The sections that follow
provide: an overview of the most related studies in this area, a description
of the method that we developed in our study as well as the results, validity
analysis, recommendations, and finally, conclusion.

2.2 Background

2.2.1 Categories of Machine Learning

Machine learning is a class of Artificial Intelligence that provides systems the
ability to automatically make inferences, given examples relevant to a task [60].
The main advantage of using Machine learning over classical statistical analysis,
is its ability to deal with large and complex data-sets [61]. These systems
can be classified into four categories depending on the type of supervision
involved in training: a) Supervised, b) Unsupervised, c) Semi-supervised, d)
Reinforcement Learning [60]. Since we view the problem of predicting test case
verdicts as a classification problem, we briefly mention the supervised learning
category.

In supervised learning the training data-set fed into the ML model contains
the desired solution, called labels. The model tries to find a statistical structure
between these examples and their desired solutions [61]. A typical task for this
kind of learning is classification.

2.2.2 Tree-based and Deep Learning Models

In Machine learning, a decision tree is an algorithm that belongs to the family
of supervised learning algorithms. The algorithm has an inherent tree-like struc-
ture and is commonly used for solving classification and regression problems
[62]. Starting from the root node, the algorithm uses a binary recursive scheme
to repeatedly split each node into two child nodes, where the root node has the
complete training sample [63]. The resulting child nodes correspond to features
in the training data, whereas the leaf nodes correspond to class labels (binary
or multivariate). Other algorithms, such as Random Forest and Adaptive
Boosting, use Decision trees as a primary component in their structure. These
algorithms build a collection of decision trees, called an ensemble, to increase
the overall learning of the classification or regression task at hand [61].
Deep Learning is a branch of ML that was founded on the premise of using

2.3. RELATED WORK 39

successive learning ”layers” to achieve more useful representation of the data
[60]. The learning of these successive layers are achieved via models called
Neural Networks (NN) [60]. A multilayer NN is one that consists of at least
three layers: 1) one input layer, 2) at least one hidden layer, 3) and an output
layer of artificial neurons [64]. Similarly, a Convolutional network (CNN)
consists of a set of learning layers [60]. The main difference between the two
networks is in the way they search for patterns in the input space [61]. More
precisely, a CNN works by sweeping a matrix-like window, called filter, over
every location in every patch to extract patterns from the input data [61].
As opposed to Decision Trees, ANN have a black box nature, which means
that no insight about how their predictions were made can be easily accessible
[61]. Nevertheless, the main advantage of using deep learning comes from their
ability to handle large and complex data-sets of features.

2.2.3 Code Churns

The amount of changes made to software over time is referred to as code
churn [59]. As new churns are added, new risks of introducing defects into the
system emerge [65]. According to Y. Shin et al. [65], each check-in made into
a version control system includes newly added or deleted code that increase
the chances of triggering failures. At some point in time, an evolving system
may be vulnerable, on average, to one extra fault for every new additional
change [66]. For example, in C programming, the declaration of ’static’ local
and global variables are among the most confused keywords by developers, as
each static local and global declaration has a different effect on how the data
will be retained in the program’s memory [67].

2.3 Related Work

In the following we discuss related work on the specific use of machine learning
for test case selection or prioritization.

2.3.1 ML-based Test-Case Selection

Around 2015/16, we find the first machine learning based approaches for test-
case selection. With only 4 studies included in the systematic mapping study
by Durelli et al. [68], the use of machine learning for test case prioritization
seems to be new.

Busjaeger and Xie [69] present an industrial case study in which a linear
model is trained with the SVMmap algorithm using the features Java code
coverage, text path similarity, text content similarity, failure history, and test
age. The evaluation on the industrial case study, considering 2000 changes and
over 45 000 test executions shows an Average Percentage of Faults Detected
(APFD) of around 85%.

40 CHAPTER 2. PAPER A

Chen et al. [70] prioritize test programs for compilers ”identifies a set of
features of test programs, trains a capability model to predict the probability
of a new test program for triggering compiler bugs and a time model to predict
the execution time of a test program.”

Spieker et al. [71] introduced Retecs, a reinforcement learning-based ap-
proach to test case selection and prioritization. Retecs considers duration of
a test case’s execution, previous last execution and failure history. Online
learning is used to improve test case selection between continuous integration
cycles. The approach was evaluated on 3 industrial data sets, including together
more than 1.2 million verdicts, and achieved a normalized Average Percentage
of Faults Detected (APFD) of around 0.4 to 0.8 depending on the data set.

Most recently, Azizi and Do [72] perform test case prioritization by calculat-
ing a ranked list of components considering the access frequency of a component
as well as a fault risk. The fault risk for each component is thereby predicted
using a linear model of change and bug histories. Test cases associated with
highly ranked components are prioritized. The approach was evaluated on
three web-based systems and where it could reduce the number of test cases
by 20% while still finding over 80% of the errors.

Palma et al. [73] replicate and extend a work of Noor and Hemmati [74]
and [75], to predict test case failure based on a machine learned model basing
on test quality metrics as well as similarity-based metrics.

However, to the best of our knowledge, no other learning-based method
works for code-churns. The only exception is one of our previous collaboration
with Knauss et al. [58]. The introduced code-churn based test selection method
(CCTS) analyzes correlations between test-case failure and source code change.
The approach was evaluated in several configurations, leading to results ranging
from 26% precision up to a 54% with a 97% recall. We deem these results
promising and one of the main motivations for this study.

2.4 Method using Bag of Words for Test Selec-
tion (MeBoTS)

The following section is a description of the MeBoTS method used in this
research, which comprises of three sequential steps, as shown in Figure 2.1.
The method utilizes two Python programs and an open source textual analyzer
program, called CCFLEX [42].

2.4.1 Code Churns Extraction (Step 1)

A Python-based code churn extraction program was created to collect and
compile code churns committed in the source code repository. The program
takes one input parameter: a time ordered list of historical test case execution
results extracted from a database, where each element in the list represents an
instance of a previously run test case and holds information about: the name

2.4. METHOD USING BAG OF WORDS FOR TEST SELECTION (MEBOTS) 41

Figure 2.1: The MeBoTS method.

Table 2.1: An Excerpt of the Historical Test Case Executions List

Baseline Test Case Name Verdict
ca82a6dff817ec66f ST-case 22 FAILED
ca82a6dff817ec66f FT-case 42 PASSED
34bb5e22134200896 FT-case-333 FAILED
34bb5e22134200333 FT-case-3 PASSED

of the executed test case, the baseline code in Git against which the test case
was executed, and the verdict value - as shown in Table 2.1.

The program first loops through the extracted list of tests and looks at the
change history log maintained by Git and performs a file comparison utility
(diff) on a pair of consecutive baselines in the tests list. Note that each baseline
value is a hash representation of a revision (build), pointing to a specific
location in Git’s history log. The result is a fine-grained string that comprises
the committed code churns, where each LOC in the churn is compiled with its:
1) filename, 2) physical file path, 3) test case verdict, 4) baseline hash code.

The resulting string is then arranged in a table-like format and written in a
csv file, named as ’Lines of Code’ in Figure 2.1.

2.4.2 Textual Analysis and Features Extraction (Step 2)

The result of the extract from Git is saved as an array (code churn, filename,
physical file path, test case verdict and baseline). This file is the input to
our textual analysis and feature extraction. The textual analysis and feature
extraction use each line from the code churn and:

• creates a vocabulary for all lines (using the bag of words technique, with
a specific cut-off parameter),

• for the words that are used seldom (i.e. fall outside of the frequency
defined by the cut-off parameter of the bag of words), a token is created,

• finds a set of predefined keywords in each line,

42 CHAPTER 2. PAPER A

Table 2.2: Input to the textual analysis and feature extraction

Filename Path Content Hash

firstFile.c c:/folder if (condition == true)

printf(’Hello World’);

aa00111

firstFile.c c:/folder printf(’\n’); aa00111
secondFile.c c:/folder int i = 10; aa00111

Table 2.3: Output from the feature extraction algorithm

Filename Path if int a Aa Content

firstFile.c c:/folder 1 0 3 2 if(condition ==

true) printf("Hello

World");

firstFile.c c:/folder 0 0 2 0 printf("\n");
secondFile.c c:/folder 0 1 1 0 int i = 10;

• check each word in the line whether it is part of the vocabulary, it should
be tokenized or if it is a predefined feature.

An example input is presented in Table 2.2. The input contains an example
code in C.

For the textual analyses, we can pre-define (arbitrarily for this example)
two features: “if” and “int”. The bag of words analysis also found the word
“printf” as frequent. It has also defined the following tokens:

• “a” – to denote the words (of any length) that contain only lowercase
letters (e.g. “condition”),

• “Aa” – to denote the words that start with capital letters and continue
with lowercase letters (e.g. “Hello”),

• “0” – to denote the numbers, i.e. sequence of numbers of any length (e.g.
“10”)

The manual features and the bag of words results are then used as features
in the feature extraction. Table 2.3, which corresponds to the input from Table
2.2.

Table 2.3 is a large array with the numbers, each representing the number of
times a specific feature presents in the line. This way of extracting information
about the source code is new in our approach, compared to the most common
approaches of analyzing code churns. Compared to the other approaches,
MeBoTS recognizes what is written in the code, without understanding of the
syntax or semantics of the code. This means that we can analyze each line
of code separately, without the need to compile the code or without the need
to parse it. This means, that we can take code churns from different files in
the same baseline and analyze them together. MeBoTS also goes beyond such
approaches like Nagappan et al. [59], which characterizes churns in terms of
metrics like number of churned lines or churn size.

2.5. RESEARCH DESIGN 43

Table 2.4: Input to the Classifier Model

File Name Line Number F1 F2 F3 F4 F5 .. F500 Verdict

firstFile 1 0 0 6 1 0 .. 0 PASSED
firstFile 2 0 0 5 3 2 .. 0 PASSED

secondFile 1 0 0 6 1 0 .. 0 FAILED

2.4.3 Training and Applying the Classifier Algorithm
(Step 3)

We exploit the set of extracted features provided by the textual analyzer in
step 2 as the independent variables and the verdict of the executed test cases as
the dependant variable, which is a binary representation of the execution result
(passed or failed). The MeBoTS method uses a second Python program that
utilizes and trains an ML model to classify test case verdicts. The program
reads the BOW vector space file in a sequence of chunks, merging the extracted
feature vectors and the verdicts vector into a single data frame that gets split
into a training and testing set before it is fed into the models for training.
Table 2.4 shows an excerpt of the generated data frame.

2.5 Research Design

2.5.1 Collaborating Company

The study has been conducted at an organization, belonging to a large infrastruc-
ture provider company. The organization develops a mature software-intensive
telecommunication network product. The organization consists of several hun-
dred software developers, organized in several empowered agile teams, spread
over a number of continents. Given that they have been early adopters of lean
and agile software development methodologies, they have become mature in
these areas of work. They have also implemented CI and continuous deliveries.

The organization is also mature with regard to measuring. For instance
every agile team, as well as leading functions/roles, uses one or more monitors
to display status and progress in various development and devops areas. A well-
established and efficient measurement infrastructure, automatically collects and
processes data, and then distributes the information needed by the organization.

2.5.2 Dataset

The data-set provided by company A contained historical test case execution
results for a mature software product that has evolved for almost a decade. The
analyzed product consisted of over 10 thousand test cases and several million
lines of code written in the C language. We decided to test the MeBoTS on
a set of randomly selected tests that, presumably, reacted to changes in the
source code during different CI cycles. Our selection of test cases was based

44 CHAPTER 2. PAPER A

Figure 2.2: Churn Size per Test Execution Plot.

on the granularity of test executions whose verdicts changed from one state to
another(see Table 2.1).

The extracted data-set belonged to twelve test cases that were executed
82 times during different CI cycles. The size of the extracted churns was 1.4
million lines of code, among which 618 thousand lines were labeled as passed
and 776 thousand as failed. To better understand the shape of the data-set,
we visually inspected the size of code churns covered by each test execution.
The scatter plot in Figure 2.2 shows the distribution of the 82 extracted test
executions, belonging to the twelve test cases. Each mark on the plot represents
one test case execution. The x-axis represents the number of lines in the code
churn the test case was executed on. The y-axis represents the overall number
of test executions for the executed test case. Test executions of the same test
case are marked with the same symbol. The visual inspection of the scatter
plot suggests that our data-set comprised of churns of varying sizes (large and
small). We interpreted this distribution with uncertainty of whether large
churns contain additional noise that would adversely affect the training of the
ML models. As a result, we decided to curate the original data-set by filtering
out tests that were executed on churns whose total size exceeded 110 thousand
lines. The visual inspection of the curated data-set is represented in Figure 2.3,
which comprised of 290 thousand lines of code, containing a fairly balanced
representation of the binary classes (passed and failed), with 110 thousand
lines belonging to the passed class and 180 thousand lines belonging to the
failed class.

The two data-sets described above were used for training the ML models.

2.5. RESEARCH DESIGN 45

Figure 2.3: Churn Size per Test Execution After Curation Plot.

The first data-set was used in the first phase, whereas the second curated
data-set was used in the second phase of ML training, and ultimately became
our focus due to data size homogeneity.

2.5.3 Evaluating and Selecting a Classification Model

To select the most suitable model for classifying test verdicts, we selected five
different ML models and trained them sequentially. The five models are: 1)
Decision Tree, 2) Random Forest, 3) AdaBoost, 4) Multilayer NN, 5) CNN

The choice of selecting the three tree-based models was due to their low
computational cost and white box nature, whereas the selection of ANN models
were based on their ability to abstract large and complex number of features.
Each of the five classification models for test verdicts uses i) the historical test
case verdicts ii) the feature vectors in the bag of words table as the baseline of
prediction. The evaluation was done in two iterations. In the first iteration,
the five models were trained on the original data-set, which contained a mix of
large and small churns, comprising a total of 1.4m lines of code for 500 feature
vectors. The second iteration involved training the models on the curated
data-set, which almost contained 290 thousand lines for the same 500 features,
as in the first iteration. Both data sets, curated and original, were split as
follow: 70% for the training set and 30% for the test set.

To save the long run time required by automated hyper-parameter tuning
tools such as grid and random search, the configuration of the models was done
manually. Table 2.5 summarizes the hyper-parameters used for training the

46 CHAPTER 2. PAPER A

Table 2.5: The Evaluated Models and Their Hyper-Parameters

Classifier Random State Number of Trees Number of Layers Epochs

DT 123 - - -

RF - 50 - -

AdaBoost - 100 - -

NN - - 3 100

CNN - - 8 100

models. We used the implementation of Decision Tree, Random Forest, and
AdaBoost algorithms available in the Python scikit-learn library [76] and then
used the Keras library [77] for the implementation of Multilayer NN and CNN.

The hyper-parameters of the three tree-based models were kept in their
default state as found in the scikit-learn library. The only alterations made
were in the ’random state’ value in Decision Trees and the n estimator (number
of trees) in both Adaboost and Random Forest. With respect to the ANN
models, the architecture of the multilayer ANN was represented with three
sequential dense layers that consisted of: one input layer, one hidden layer, and
one output layer. For the CNN, the stack of layers comprised of: a Reshape
layer, a Convolution layer, a Maxpooling layer, and four Dense layers. The
learning in both models was induced over 100 epochs (iterations), as can be
seen in table 2.5

The performance of the classifiers were evaluated using simple retrieval
measure: recall and precision.

These measures are based on the following four categories of errors:

• True positives: correct prediction of test executions that pass

• True negatives: correct prediction of test executions that fail

• False positives: incorrect prediction of test executions that pass

• False negatives: incorrect prediction of test executions that fail

Precision is the number of correctly predicted tests divided by the total number
of predicted tests, calculated as follows:

precision =
|TruePositive|

|TruePositive|+ |FalsePositive|

Recall is the number of correctly predicted tests divided by the total number
of tests that should have been positive.

recall =
|TruePositive|

|TruePositive|+ |FalseNegative|

While recall and precision measures relate to one another, precision is a meas-
ure of exactness, whereas recall is a measure of completeness indicating the

2.6. RESULTS 47

Table 2.6: Models Evaluation before Data Curation

Model Precision Recall True Neg False Pos False Neg True Pos

DT 43.9% 17.2% 191,883 40,781 153,709 32,003

RF 44% 17.7% 190,864 41,800 152,794 32,918

AdaBoost 51.9% 6.5% 221,472 11,192 173,590 12,122

NN 50.3% 31% 226,994 5,670 179,954 5 758

CNN 50.7% 16.5% 202,745 29,919 154,890 30,822

percentage of all predicted failed tests in our case. Since the goal of this study
is to reduce the amount of test executions without altering the effectiveness of
testing, we needed to minimize the risk of missing tests that will actually fail
and, therefore, accept some false alarms in the prediction of failed tests. Thus,
we believe that the measure of the model’s precision is more important than
its recall.

2.6 Results

To answer the research question, we present the results of using MeBoTS for
predicting test case verdicts. We interpret the results of the analysis in light of
the reported rates of precision and recall and the values of the four categories
of errors: true negatives, false positives, false negatives, and true negatives, as
shown in Tables 2.6 and 2.7 list the results of training the five models using
the original and curated data sets.

2.6.1 Training the Models on Churns of Varying Sizes

The evaluation of the five models in the first iteration reports a mean precision
of 47% and a mean recall of 17%, suggesting that all models achieved low
performance. The best result was obtained by the Multilayer NN model with
a precision rate of 50.3% and a recall rate of 31%. The precision and recall
rates for the five models can be seen in Figure 4. The interpretation of these
values suggest that out of the 406,948 lines of code that actually triggered a
test case failure, the model correctly predicted test failure for 226,994 lines,
whereas it could correctly predict a passing test verdict for 5,758 out of 11,428
lines. Similarly, the results of the four categories of errors for the other models
can be seen in Table 2.6 and interpreted in the same fashion.

2.6.2 Training the Models on Churns of Small Sizes

The second iteration of analysis involved training the same set of models on the
curated data-set, which excluded tests covering churns with quantities above
110k lines of code. The results, shown in Figure 2.5, indicate an improvement
in precision and recall when compared to the results in the first iteration for

48 CHAPTER 2. PAPER A

Figure 2.4: Precision and Recall of The Models Before Data Curation

the same types of models. Table 2.7 reports the results from the second round
of training, showing a mean precision of 70% and a mean recall of 44.5%.
The Multilayer NN model performed best in prediction, such that, it correctly
predicted 48,755 lines that actually triggered a test case failure, out of 67,363
lines in the test set.

Table 2.7: Models Evaluation after Data Curation.

Model Precision Recall True Neg False Pos False Neg True Pos

DT 68% 48.4% 46,445 7,548 17,011 15,981

RF 67.9% 49.5% 46,252 7,741 16,637 16,355

AdaBoost 69% 36% 48,656 5,337 21,075 11,917

NN 73.3% 43.6% 48,755 5,238 18,608 14 384

CNN 71.75% 44.9% 48,162 5,831 18,179 14,813

2.6.3 Implication

The results show that we can predict the verdict of a test case with a precision
of 73.3%. This means that we can use the results to reduce the test suite by
excluding tests that are predicted to pass, but we need to know that there
is 26.7% probability that we miss a test case failure. This means that the
reduction of the test suite comes with a cost. This cost can be reduced, for
example, if we collect the test cases which were not executed and execute them
with lower frequency (e.g. during a nightly test suite instead of hourly builds).

2.7 Validity analysis

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [46]. We discuss the threats to validity in two categories:
internal and external. Typically, a number of internal threats to validity emerge
in studies that involve designing an ANN architecture, namely that the number
of hyper-parameters to tune is large that we cannot cover all combinations

2.8. RECOMMENDATIONS 49

Figure 2.5: Precision and Recall of The Models After Data Curation

to decide on the best configuration for the network. To minimize this threat,
we used two different multilayer neural networks and trained them during the
two iterations of analysis. This provided us with a sanity check on whether
the networks produce similar results. Another threat to internal validity is
in the random selection of test cases. There is a chance that the extracted
test executions contain one or more test that failed due to factors that do not
pertain to functional deficiencies, but due to, for instance, an environment
upgrade or machinery failure at execution time. Similarly, there is a chance
that the extracted test executions may have failed as a result of defects in
the test script code and not the base code. In order to minimize this threat,
we collected data for multiple test cases, thus minimizing the probability of
identifying test cases which are not representative.

The major threat to external validity for this study comes from the number
of extracted tests that were used for training the classifiers. We only studied
one company and one product and a limited number of test cases. This was a
design choice as we wanted to understand the dynamics of test execution and
be able to use statistical methods alongside the machine learning algorithms.
However, we are aware that the generalization of the results for different types
of systems require further investigations using tests and churns from different
systems.

2.8 Recommendations

In this section, we provide our recommendations for practitioners who would
like to utilize MeBoTS for early prediction of test case verdicts.

• The choice of using deep learning or tree-based models for solving this
supervised ML problem does not lead to better prediction performance.
For this reason, we suggest the use of Decision Trees, since they require
less computational time and provide knowledge as to how the results of
classification were derived.

• We suggest to only utilize code churns that are homogeneous and small in

50 CHAPTER 2. PAPER A

size prior to applying features extraction with BOW. Small code churns
introduce less noise and therefore the quality of the predictions is higher.
This can also save practitioners ample time for data curation.

• We recommend that practitioners only extract historical test executions
that have failed due to reasons related to functional defects for training
the ML model. This knowledge can be obtained from testers/developers
who are familiar with the recurrent issues in the source code.

2.9 Conclusion and Future Work

This paper has presented a method (MeBoTS) for achieving early prediction
of test case verdicts by training a machine learning model on historical test
executions and code churns. We have evaluated the method using two data sets,
one containing a variation of large and small churns, and a second containing
only small churns. The results from training the models on small churns
revealed a precision rate of 73% and a recall of 43.6%, suggesting that the
application of the method is promising, yet more investigation is required
to validate the findings. Moreover, contrary to other existing methods that
use statistical correlations for predicting test verdicts, the main advantage of
MeBoTS is the ability to predict verdicts of new code changes as they emerge
during development and before they get integrated into the main branch.

We believe that the results of this study open new directions for studies
to investigate the effectiveness of MeBoTS on different types of systems using
larger set of small churns with more test case executions. Finally, studies
that investigate the impact of using different feature extraction techniques,
such as word embedding are encouraged to identify any changes in the overall
performance of MeBoTS.

Acknowledgment

This research has been partially carried out in the Software Centre, University
of Gothenburg, and Ericsson AB.

Chapter 3

Paper B

The Effect of Class Noise on Continuous Test Case Selec-
tion: A Controlled Experiment on Industrial Data

Al-Sabbagh, K.W., Staron, M., Hebig, R.

In International Conference on Product-Focused Software Process
Improvement. Springer. 2020, pp. 287–303.

51

Abstract

Continuous integration and testing produce a large amount of data about
defects in code revisions, which can be utilized for training a predictive learner
to effectively select a subset of test suites. One challenge in using predictive
learners lies in the noise that comes in the training data, which often leads
to a decrease in classification performances. This study examines the impact
of one type of noise, called class noise, on a learner’s ability for selecting test
cases. Understanding the impact of class noise on the performance of a learner
for test case selection would assist testers decide on the appropriateness of
different noise handling strategies. For this purpose, we design and implement
a controlled experiment using an industrial data-set to measure the impact of
class noise at six different levels on the predictive performance of a learner. We
measure the learning performance using the Precision, Recall, F1-score, and
Mathew Correlation Coefficient (MCC) metrics. The results show a statistically
significant relationship between class noise and the learner’s performance for
test case selection. Particularly, a significant difference between the three
performance measures (Precision, F1-score, and MCC) under all the six noise
levels and at 0% level was found, whereas a similar relationship between recall
and class noise was found at a level above 30%. We conclude that higher class
noise ratios lead to missing out more tests in the predicted subset of test suite
and increases the rate of false alarms when the class noise ratio exceeds 30%.

3.1. INTRODUCTION 51

3.1 Introduction

In testing large systems, regression testing is performed to ensure that recent
changes in a software program do not interfere with the functionality of the
unchanged parts. Such type of testing is central for achieving continuous
integration (CI), since it advocates for frequent testing and faster release of
products to the end users’ community. In the context of CI, the number of test
cases increases dramatically as commits get integrated and tested several times
every hour. A testing system is therefore deployed to reduce the size of suites
by selecting a subset of test cases that are relevant to the committed code.
Over the recent years, a surge of interest among practitioners has evolved to
utilize machine learning (ML) to support continuous test case selection (TCS)
and to automate testing activities [78], [79], [80]. Those interests materialized
in approaches that use data-sets of historical defects for training ML models to
classify source code as defective or not (i.e. in need for testing) or to predict
test case verdicts [79], [81], [78].

One challenge in using such learning models for TCS lies in the quality of
the training data, which often comes with noise. The ML literature categorized
noise into two types: attribute and class noise [82], [83], [18]. Attribute
noise refers to corruptions in the feature values of instances in a data-set.
Examples include: missing and incomplete feature values [84]. Class noise, on
the other hand, occurs as a result of either contradictory examples (the same
entry appears more than once and is labeled with a different class value) or
misclassification (instances labeled with different classes) [54]. This type of
noise is self-evident when, for example, analyzing the impact of code changes
on test execution results. It can occur that identical lines are labeled with
different test outcomes for the same test. These identical lines become noise
when fed as input to a learning model.

To deal with the problem of class noise, testers can employ a number of
strategies. These can be exemplified by eliminating contradictory entries or
re-labeling such entries with one of the binary classes. These strategies have an
impact on the performance of a learner and the quality of recommendations of
test cases. For example, eliminating contradictory entries results in reducing the
amount of training instances, which might lead to a decrease in a learner’s ability
to capture defective patterns in the feature vectors and therefore decreases the
performance of a learner for TCS. Similarly, adopting a relabeling strategy might
lead to training a learner that is biased toward one of the classes and therefore
either include or exclude more tests from the suite. Excluding more tests
in CI implies higher risks that defects remain undetected, whereas including
more tests implies higher cost of testing. As a result, it is important for test
orchestrators to understand how much noise there is in a training data set and
how much impact it has on a learner’s performance to choose the right noise
handling strategy.

Our research study examines the effect of different levels of class noise on
continuous testing. The aim is to provide test orchestrators with actionable
insights into choosing the right noise handling strategy for effective TCS. For
this purpose, we design and implement a controlled experiment using historical

52 CHAPTER 3. PAPER B

code and test execution results which belong to an industrial software. The
specific contributions of this paper are:

• providing a script for creating a free-of-noise data-set which can facilitate
the replication of this experiment on different software programs.

• presenting an empirical evaluation of the impact of class noise under
different levels on TCS.

• providing a formula for measuring class noise in source code data-sets.

By seeding six variations of class noise levels (independent variable) into the
subjects and measuring the learning performance of an ML model (dependent
variables), we examine the impact of each level of class noise on the learning
performance of a TCS predictor. We address the following research question:

RQ: Is there a statistical difference in predictive performance for a
test case selection ML model in the presence and absence of class
noise?

3.2 Definition and Example of class Noise in
Source Code

In this study, we define noise as the ratio of contradictory entries (mislabelled)
found in each class to the total number of points in the data-set at hand. The
ratio of noise can be calculated using the formula:

Noise ratio =
Number of Contradictory Entries

Total Number of Entries

Since the contradictory entry can only be among two (or more) entries, the
number of all entries for which a duplicate entry exists with a different class
label. A duplicate entry is an entry that has the same line vector, but can
have different labels. For example, a data-set containing ten duplicate vectors
with nine that are labeled true and one labeled false has ten contradictory
entries. It is not trivial to define a general rule to identify which class label
is correct based on the number of entries. For example, noise sources might
systematically tend to introduce false ”false” labels. Since we do not know
exactly which class should be used in this context, we cannot simply re-label
any instance, as suggested by the currently used solutions (e.g. using majority
voting [85] or entropy measurements [52]) and therefore we count all such entries
as contradictory. As an illustration of the problem, in the domain of TCS,
Figure 3.1 shows how a program is transformed into a line vector and assigned
a class label. It illustrates how a data-set is created for a classification task to
predict whether lines of a C++ program trigger a test case failure (class 0) or
a test case pass (class 1). The class label for each line vector is determined by
the outcome of executing a single test case that was run against the committed
code fragment in CI. In this study, a class value of ’0’ annotates a test failure,
whereas a class value of ’1’ annotates a passed test. The Figure shows the

3.2. DEFINITION AND EXAMPLE OF CLASS NOISE IN SOURCE CODE 53

Figure 3.1: Class Noise in Code Base.

actual code fragment and its equivalent line vector representation achieved via
a statistical count approach (bag-of-words). The line vectors in this example
correspond to source code tokens found in the code fragment. Note how lines 5
and 11 are included in the vector representations, since brackets are associated
with loop blocks and function declarations, which can be important predictors
to capture defective patterns. All shaded vectors in the sparse matrix (lines 7
to 10) are class noise since pairs (7,9) and (8,10) have the same line vectors,
but different label class – 1 and 0. The green shaded vectors are ’true labeled
instances’ whereas the gray shaded vectors are ’false labeled instances’. Note
that the Table in Figure 3.1 shows an excerpt of the entries for this example.
Since there are 11 lines of code, the total number of entries is 11. The formula
for calculating the noise ratio for this example is thus:

Noise ratio =
4

11
= 0.36

If lines 7 to 10 are fed as input into a learning model for training, it is
difficult to predict the learner’s behavior. It depends on the learner. We also do
not know which case is correct – which lines should be re-labelled or whether
we should remove these lines. The behavior of the learner, thus, depends on
the noise removal strategy, which also impacts the test selection process. If we
choose to re-label lines 7 and 8 with class 0 (test case failure), this means that
the learner is biased towards suggesting to include the test in the test suite.
If we re-label lines 9 and 10 with class 1 (test case pass), then the learner is
biased towards predicting that a test case should not be included in a test
suite. Finally, if we remove all contradictory entries (7, 8, 9, and 10), then we
reduce the learner’s ability to capture the patterns in the feature vectors for
these lines – we have fewer training cases (11− 4 = 7 cases).

54 CHAPTER 3. PAPER B

3.3 Related Work

Several studies have been made to identify the effect of class noise on the
learning of ML models in several domains [86], [87], [88]. To our knowledge, no
study addresses the effect of class noise on the performance of ML models in
a software engineering context. Therefore, understanding the impact of class
noise in a software engineering context, such as testing, is important to utilize
its application and improve its reliability. This section presents studies that
highlight the impact of class noise on performances of learners in a variety of
domains. It also mentions studies that use text mining and ML for TCS and
defect prediction.

3.3.1 The Impact of Noise on Classification Performance

The issue of class noise in large data-sets has gained much attention in the ML
community. The most widely reported problem is the negative impact that
class noise has on classification performance.

Nettletonet et al. [86] examined the impact of class noise on classification of
four types of classifiers: naive Bayes, decision trees, k-Nearest Neighbors, and
support vector machines. The mean precision of the four models were compared
under two levels of noise: 10% and 50%. The results of the comparison showed
a minor impact on precision at 10% noise ratio and a larger impact at 50%.
In particular, the precision obtained by the Naive Bayes classifier was 67.59%
under 50% noise ratio compared with 17.42% precision for the SVM classifier.
Similarly, Zhang and Yang [87] examined the performance of three linear
classification methods on text categorization, under 1%, 3%, 5%, 10%, 15%,
20% and 30% class noise ratios. The results showed a dramatic, yet identical,
decrease in the classification performances of the three learners after noise ratio
exceeded 3%. Specifically the F1-score measures for the three models ranged
from 60% to 60% under 5% noise ratio and from 40% to 43% under 30% noise
ratio. Pechenizkiy et al. [89] experimented on 8 data-sets the effect of class
noise on supervised learning in medical domains. The kNN, Näıve Bayes and
C4.5 decision tree learning algorithms were trained on the noisy datasets to
evaluate the impact of class noise on accuracy. The classification accuracy
for each classifier was compared under eleven class noise levels 0%, 2%, 4%,
6%, 8%, 10%, 12%, 14%, 16%, 18%, and 20%. The results showed that when
the level of noise increases, all classifiers trained on noisy training sets suffer
from decreasing classification accuracy. Abellan and Masegosa [88] conducted
an experiment to compare the performance of Bagging Credal decision trees
(BCDT) and Bagging C4.5 in the presence of class noise under 0%,5%,10%,20%
and 30% ratios. Both bagging approaches were negatively impacted by class
noise, although BCDT was more robust to the presence of noise at a ratio
above 20%. The accuracy of BCDT model dropped from 86.9% to 78.7% under
a noise level of 30% whereas the Bagging C4.5 accuracy dropped from 87.5%
to 77.2% under the same level.

3.4. EXPERIMENT DESIGN 55

3.3.2 Text Mining for Test Case Selection and Defect
Prediction

A multitude of early approaches have used text mining techniques for leveraging
early prediction of defects and test verdicts using ML algorithms. However,
these studies omit to discuss the effect of class noise on the quality of the
learning predictors. In this paper, we highlight the results of some of these
work and validate the impact of class noise on the predictive performance of a
model for TCS using the method proposed in [78].

A previous work on TCS [78] utilized text mining from source code changes
for training various learning classifiers on predicting test case verdicts. The
method uses test execution results for labeling code lines in the relevant tested
commits. The maximum precision and recall achieved was 73% and 48% using
a tree-based ensemble. Hata et al. [79] used text mining and spam filtering
algorithms to classify software modules into either fault-prone or non-fault-
prone. To identify faulty modules, the authors used bug reports in bug tracking
systems. Using the ’id’ of each bug in a given report, the authors tracked files
that were reported as defective, and consequently performed a ‘diff’ command
on the same files between a fixed revision and a preceding revision. The evalu-
ation of the model on a set of five open source projects reported a maximum
precision and recall values of 40% and 80% respectively. Similarly, Mizuno el
al. [90] mined text from the ArgoUML and Eclipse BIRT open source systems,
and trained spam filtering algorithms for fault-prone detection using an open
source spam filtering software. The results reported precision values of 72-75%
and recall values of 70-72%. Kim et al. [80] collected source code changes,
change metadata, complexity metrics, and log metrics to train an SVM model
on predicting defects on file-level software changes. The identification of buggy
commits was performed by mining specific keywords in change log messages.
The predictor’s quality on 12 open source projects reported an average accuracy
of 78% and 60% respectively.

3.4 Experiment Design

To answer the research question, we worked with historical test execution data
including results and their respective code changes for a system developed
using the C language in a large network infrastructure company. This section
describes the data-set and the hypotheses to be answered.

3.4.1 Data Collection Method

We worked with 82 test execution results (passed or failed) that belonged to
12 test cases and their respective tested code (overall 246,850 lines of code)1.
First, we used the formula presented in section 3.2 to measure the level of class

1Due to non-disclosure agreements with our industrial partner, our data-set can unfortu-
nately not be made public for replication.

56 CHAPTER 3. PAPER B

noise in the data-set - this would help us understand the actual level of class
noise found in real-world data-sets. Applying the formula indicated a class
noise level of 80.5%, with 198,778 points identified as contradictory. For the
remainder of this paper, we will use the term ’code changes data-set’ to refer
to this data-set. Our first preparation task for this experiment was to convert
the code changes data-set into line vectors. In this study, we utilized a bi-gram
BoW model provided in an open source measurement tool [42] to carry out the
vector transformation. The resulting output was a sparse matrix with a total
of 2251 features and 246,850 vectors. To eliminate as many confounding factors
as possible, we used the same vector transformation tool and learning model
across all experimental trials, and fixed the hyper-parameter configurations
in both the vector transformation tool and the learning model (see section 3.5.3)

3.4.2 Independent Variable and Experimental Subjects

In this study, class noise is the only independent variable (treatment) examined
for an effect on classification performance. Seven variations of class noise (treat-
ment levels) were selected to support the investigation of the research question.
Namely, 0%, 10%, 20%, 30%, 40%, 50%, 60%. To apply the treatment, we used
15-fold stratified cross validation on the control group (see section 3.5.1) to gen-
erate fifteen experimental subjects. Each subject is treated as a hold out group
for validating a learner which gets trained on the remaining fourteen subjects.
A total of 105 trials derived from the 15-folds were conducted. Each fifteen tri-
als was used to evaluate the performances of a learner under one treatment level.

3.4.3 Dependent Variables

The dependent variables are four evaluation measures used for the performance
of an ML classifier – Precision, Recall, F1-score, and Matthews Correlation
Coefficient (MCC) [91]. The four evaluation measures are defined as follows:

• Precision is the number of correctly predicted tests divided by the total
number of predicted tests.

• Recall is the number of correctly predicted tests divided by the total
number of tests that should have been positive.

• The F1-score is the harmonic mean of precision and recall.

• The MCC takes the four categories of errors and treats both the true
and the predicted classes as two variables. In this context, the metric
calculates the correlation coefficient of the actual and predicted test cases
for both classes.

3.5. EXPERIMENT OPERATIONS 57

3.4.4 Experimental Hypotheses

Four hypotheses are defined according to the goals of this study and tested
for statistical significance in section 6. The hypotheses were based on the
assumption that data-sets with class noise rate have a significantly negative
impact on the classification performance of an ML model for TCS compared
to a data-set with no class noise. The hypotheses are as follow:

• H0p: The mean Precision is the same for a model with and without noise

• H0r: The mean Recall is the same for a model with and without noise

• H0f: The mean F1-score is the same for a model with and without noise

• H0mcc: The mean MCC is the same for a model with and without noise

For example, the first hypothesis can be interpreted as: a data-set with a higher
rate of class noise will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment
level with those at 0% level.

3.4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library with Python
[76]. To begin, a normality test was carried out using the Shapiro-Wilk test to
decide whether to use a parametric or a non-parametric test for analysis. The
results showed that the distribution of the four dependent variables did not de-
viate significantly from a normal distribution (see section 3.6.2 for details). As
such, we decided to use two non-parametric tests, namely: Kruskal-Wallis and
Mann-Whitney. To evaluate the hypotheses, the Kruskal-Wallis was selected
for comparing the median scores between the four evaluation measures under
the treatment levels. The Mann–Whitney U test was selected to carry out a
pairwise comparison between the evaluation measures under each treatment
level and the same measures at a 0% noise level.

3.5 Experiment Operations

This section describes the operations that were carried out during this experi-
ment for creating the control group and seeding class noise.

3.5.1 Creation of The Control Group

To support the investigation of the hypotheses, a control group was needed
to establish a baseline for comparing the evaluation measures under the six
treatment levels. This control group needs to have a 0% ratio of class noise,
i.e. without contradictory entries. To have control over the noise ratio in the

58 CHAPTER 3. PAPER B

treatment groups, these will then be created by seeding noise into copies of the
control group data-set (see Section 3.5.2). The classification performance in
the treatment groups will then be compared to that in the control group (see
Section 3.5.3). In addition, the distribution of data points in the control group
is expected to strongly influence the outcome of the experiment. To control
for that we aim to create optimal conditions for the algorithm. ML algorithms
can most effectively fit decision boundary hyper-planes when the data entries
are similar and linearly separable [92]. Therefore, we decided to start from our
industrial code changes data-set (See Section 3.4.1) and extract a subset of
the data, by detecting similar vectors in the ”Bag of Words” sparse matrix.
In this study, we decided to identify similarity between vectors based on their
relative orientation to each other. What follows is a detailed description of
the algorithm used for constructing the control group. The algorithm starts
by loading the feature vectors from our industrial code changes data-set and
their corresponding label values (passed or failed) into a data frame object. To
establish similarity between two vectors we use the cosine similarity function
provided in the scikit learn library [76] working with a threshold of 95%. For
each of the two classes (passed or failed), one sample feature vector is randomly
picked and used as a baseline vector to compare its orientation against the
remaining vectors within its class. The selection criterion of the two baseline
vectors is that they are not similar. This is important to guarantee that the
derived control group has no contradictory entries (noise ratio = 0). Each of the
two baseline vectors is then compared with the remaining vectors (non-baseline)
for similarity. The only condition for selecting the vectors is based on their
similarity ratio. If the baseline and the non-baseline vectors are similar more
than the predefined ratio of 95%, then the non-baseline vector is added to
a data frame object. Table 3.1 shows the two baseline entries before being
converted into line vectors. Due to non-disclosure agreement with our industrial
partner, words that are not language specific such as variable and class names
are replaced with other random names.

Table 3.1: The Two Baseline Entries Before Coversion

Line of Code Class
measureThreshold(DEFAULT MEASURE) 1

if (!Session.isAvailable()) 0

The script for generating the datasets is found at the link in the footnote2.
The similarity ratio of 95% was chosen by running the above algorithm a
multiple times using five ratios of the predefined similarity ratio. The criterion
for selecting the optimal threshold was based on the evaluation measures of
a random forest model, trained and tested on the derived control data-set.
That is, if the model’s Precision and Recall reached 100%, i.e. made neither
false positive nor false negative predictions, then we know that control group
has reached sufficient similarity for the ML algorithm to work as efficient as
possible. The following threshold values of similarity were experimented using

2https://github.com/khaledwalidsabbagh/noise free set.git

3.5. EXPERIMENT OPERATIONS 59

the above algorithm: 75%, 80%, 85%, 90%, and 95%. Experimenting on these
ratios with a random forest model showed that a ratio of 95% cosine similarity
between the baseline vector and the rest yield a 100% of Precision, Recall,
F1-score, and MCC. As a result, we used a ratio of 95% to generate the control
group. The resulting group contained 9,330 line vectors with zero contradictory
entries between the two classes. The distribution of these entries per class was
as follow:

• Entries that have at least one duplicate within the same class: 3,679
entries labeled as failed and 4,280 entries as pass.

• Entries with no duplicates in the data-set: 1 entry labeled as failed and
1,370 entries as passed.

3.5.2 Class Noise Generation

To generate class noise into the experimental subjects, we followed the definition
of noise introduced in section 3.2 by carrying out the following two-steps
procedure:

1. Given a noise ratio Nr, we randomly pick a portion of Nr from the
population of duplicate vectors within each class in the training and
validation subjects.

2. We re-label half of the label values of duplicate entries selected in step
1 to the opposite class to generate Nr noise ratio. In situations where
the number of duplicate entries in Nr are uneven, we re-label half of the
selected Nr portion minus one entry.

In this experiment, a design choice was made to seed each treatment level (10%,
20%, 30%, 40%, 50%, and 60%) into both the training and validation subjects.
This is because we wanted to reflect a real-world scenario where the data in
both the training and test sets comes with class noise. The above procedure
was repeated 15 times for each level, making a total of 90 trials.

A common issue in supervised ML is that the arithmetic classification
accuracy becomes biased toward the majority class in the training data-set,
which might lead to the extraction of poor conclusions. This effect might be
magnified if noise was added without checking the balance of classes after
generating noise. In this experiment, due to the large computational cost
required to check the distribution of classes across 90 trials, we only checked
the distribution under 10% noise ratio. Figure 3.2 shows how the classes in the
training and validation subjects were distributed across 15 trials for a 10% noise
ratio. The x-axis corresponds to the binary classes and the y-axis represents
the number of entries in the training and validation sets. The Figure shows a
fairly balanced distribution in the training subjects with an average of 3,421
entries in the passed class and 3,993 entries in the failed class.

60 CHAPTER 3. PAPER B

Figure 3.2: The Distribution of The Binary Classes After Generating Noise at
10% Ratio.

3.5.3 Performance Evaluation Using Random Forest

We evaluate the effect of each noise level on learning by training a random
forest model. The choice of using a random forest model was due to its low
computational cost compared to deep learning models. The hyper-parameters
of the model were kept to their default state as found in the scikit-learn
library (version 0.20.4). The only configuration was made on the n estimator
parameters (changed from 10 to 100), which corresponds to the number of trees
in the forest. We tuned this parameter to minimize chances of over-fitting the
model.

3.6 Results

This section discusses the results of the statistical tests conducted to evaluate
hypotheses H0p, H0r, H0f, and H0mcc and to answer the research question.

3.6.1 Descriptive Statistics

The descriptive statistics are presented in Tables 3.2, 4.5, 3.4, and 3.5 indi-
vidually for each dependent variable. The values for Precision (Table 3.2),
Recall (Table 3.3), F1-score (Table 3.4), and MCC (Table 3.5) are shown for
each of the noise ratio (0%, 10%, 20%, 30%, 40%, 50%, and 60%). A first
evident observation from the tables is that there is a statistically significant
relationship between the mean values of the four dependent variables and the
noise ratio, where a lower value of a given dependent variable indicates higher
noise ratio. Three general observations can be made by examining the data
shown in the four tables:

• There is an inverse trend between noise ratio and learning precision,
F1-score, and MCC. That is, when the noise level increases, the classifier
trained on noisy instances suffers a small decrease in the four evaluation

3.6. RESULTS 61

measures. Figure 3.3 shows this relationship where the x-axis indicates
the noise ratio and the y-axis represents the evaluation measures.

• There exists a higher dispersion in the evaluation scores when the noise
level increases (i.e. higher standard deviation [SD]).

• The mean difference between the recall values under each noise ratio is
relatively smaller than those with the other three dependent variables.

Table 3.2: Descriptive Stats For Precision.

Noise N Mean SD SE 95% Conf

0% 15 0.997 0.000 0.000 0.997

10% 15 0.966 0.009 0.002 0.961

20% 15 0.933 0.019 0.005 0.923

30% 15 0.900 0.029 0.007 0.884

40% 15 0.867 0.039 0.010 0.846

50% 15 0.834 0.048 0.012 0.808

60% 15 0.801 0.059 0.015 0.770

Table 3.3: Descriptive Stats For Recall.

Noise N Mean SD SE 95% Conf.

0% 15 1.000 0.000 0.000 1.000

10% 15 0.984 0.032 0.008 0.967

20% 15 0.970 0.061 0.015 0.937

30% 15 0.955 0.086 0.022 0.910

40% 15 0.940 0.109 0.028 0.883

50% 15 0.931 0.134 0.034 0.860

60% 15 0.897 0.144 0.037 0.821

Table 3.4: Descriptive Stats For F1-score.

Noise N Mean SD SE 95% Conf

0% 15 0.998 0.000 0.000 0.998

10% 15 0.974 0.013 0.003 0.967

20% 15 0.949 0.025 0.006 0.936

30% 15 0.923 0.034 0.008 0.905

40% 15 0.897 0.044 0.011 0.873

50% 15 0.871 0.055 0.014 0.842

60% 15 0.836 0.059 0.015 0.805

3.6.2 Hypotheses Testing

We begin the evaluation of the hypotheses by checking whether the distribution
of the dependent variables deviates from a normal distribution. The Shapiro-

62 CHAPTER 3. PAPER B

Table 3.5: Descriptive Stats For MCC.

Noise N Mean SD SE 95% Conf.

0% 15 0.996 0.000 0.000 0.996

10% 15 0.946 0.030 0.007 0.930

20% 15 0.894 0.060 0.015 0.863

30% 15 0.841 0.088 0.022 0.795

40% 15 0.790 0.119 0.030 0.727

50% 15 0.742 0.156 0.040 0.660

60% 15 0.674 0.181 0.046 0.579

Figure 3.3: Mean Distribution of the Evaluation Measures.

Wilk test results were statistically significant for all the evaluation measures
in the majority of the noise ratios. Table 8.12 shows the statistical results of
normality for the dependent variables on all noise ratios. These results indicate
that the assumption of normality in the majority of the samples can be rejected,
as indicated by the p-value (p <0.05) in Table 8.12. Since we have issues with
normality in the majority of samples, we decided to run a non-parametric test
for comparing the difference between the performance scores under the six
noise ratios.

To examine the impact of class noise on the four dependent variables,
the Kruskal-Wallis test was conducted. Table 3.7 summarizes the statistical
comparison results, indicating a significant difference in Precision, F1-score,
and MCC. Specifically, the results of the comparison for precision showed a test
statistics of 56.8 and a p-value below 0.001. Likewise, a significant difference
in the comparisons between the evaluation measures of F1-score and MCC
(F1-score Results: Test Statistics = 54.172, p-value <0.005, MCC Results:
Test Statistics = 53.398, p-value <0.005) groups was found. In contrast, no
significant difference between the Recall measures was identified.

The Mann–Whitney U test with Precision, F1-score, and MCC as the
dependent variables and noise ratio as the independent variable revealed a
significant difference (p-value below 0.005) under each of the six levels when
compared with the same measures in the no-treatment sample. However,
the statistical results for recall only showed a significant difference when the

3.7. THREATS TO VALIDITY 63

Table 3.6: Statistical Results For Normality.

0% 10% 20% 30% 40% 50% 60%

Prec
S=0.59
p<0.005

S=0.82
p=0.02

S=0.87
p=0.11

S=0.91
p=0.28

S=0.91
p=0.32

S=0.88
p=0.13

S=0.92
p=0.40

Recall
S=1.00
p=1.00

S=0.36
p<0.005

S=0.50
p<0.005

S=0.50
p<0.005

S=0.54
p<0.005

S=0.56
p<0.005

S=0.53
p<0.005

F1-
score

S=0.59
p<0.005

S=0.78
p=0.009

S=0.67
p<0.005

S=0.74
p=0.003

S=0.83
p=0.037

S=0.69
p=0.001

S=0.8
p=0.02

MCC
S=0.68
p=0.001

S=0.77
p=0.01

S=0.65
p<0.005

S=0.69
p=0.001

S=0.77
p=0.01

S=0.63
p<0.005

S=0.69
p=0.001

Table 3.7: Statistical Comparison Between the Evaluation Measures at All
Noise Levels.

p-value statistics
precision p<0.005 Statistics=56.858
recall p=0.164 Statistics=9.180

F1-score p<0.005 Statistics=54.172
mcc p<0.005 Statistics=53.398

noise level exceeded 30%. Table 3.8 summarizes the statistical results from
the Mann–Whitney test under the six treatment levels. The analysis results
from this experiment indicate that there is a statistical significant difference
in predictive performance for a test case selection model in the presence and
absence of class noise. The results from the Kruskal-Wallis test were in line
with the expectations for hypotheses H0p, H0f, H0mcc, which confirm that
we can reject the null hypotheses for H0p, H0f, H0mcc, whereas no similar
conclusion can be drawn for hypothesis H0r. While no significant difference
between the recall values was drawn from the Kruskal-Wallis test, the Mann-
Whitney test indicates that there is a significant inverse causality between class
noise and recall when noise exceeds 30%. In the domain of TCS, the practical
implications can be summarized as follow:

• Higher class noise slightly increases the predictor’s bias toward the pass
class (lower precision rate), and therefore leads to missing out tests that
should be included in the test suite.

• A class noise level above 30% has a significant effect on the learner’s
Recall. Therefore, the rate of false alarms (failed tests) in TCS increases
significantly above 30% noise ratio.

3.7 Threats to Validity

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [46]. We discuss the threats to validity in four categories:
external, internal, construct, and conclusion.

64 CHAPTER 3. PAPER B

Table 3.8: The Comparison Results From Mann-Whitney Test

10% 20% 30% 40% 50% 60%

Prec
Stat=7.5,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

Recall
Stat=45,
p=0.184

S=40.000,
p=0.084

S=40.000,
p=0.084

S=35.000,
p<0.005

S=30.000,
p=0.017

S=25,
p=0.007

F1-
score

S=7.5,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

MCC
S=7.5,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

S=0.000,
p<0.005

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practice.

Test cases. Since our experimental subjects belong to twelve test cases
only, it is difficult to decide whether the sample is representative. However,
to increase the likelihood of drawing a representative sample and to control
as many confounding factors, we randomly selected a small sample of 12 test
cases. Also, the random selection of tests has the potential of increasing the
probability of drawing a representative sample.

Control group. The study employed a similarity based mechanism to derive
the control group, which resulted in eliminating many entries from the original
sample. This might affect the representativeness of the sample. However, our
control group contained points that belong to an industrial program, which is
arguably more representative than studying points that we construct ourselves.
This was a trade-off decision between external and internal validity, since we
wanted to study the impact of class noise on TCS in an industrial setting and
therefore maximize the external validity.

Nature of test failure. There is a probability of mis-labelling code changes
if test failures were due to factors external to defects in the source code (e.g.,
machinery malfunctions or environment upgrades). To minimize this threat,
we collected data for multiple test executions that belong to several test cases,
thus minimizing the probability of identifying tests that are not representative.

Internal Validity Internal validity refers to the degree to which conclusions
can be drawn about the causal effect of independent on dependent variables.

Instrumentation. A potential internal threat is the presence of undetected
defects in the tool used for vector transformation, data-collection, and noise
injection. This threat was controlled by carrying out a careful inspection of
the scripts and testing them on different subsets of data of varying sizes.

Use of a single ML model. This study employed a random forest model to
examine the effect of class noise on classification performances. However, the
analysis results might differ when other learning models are used. This was a
design choice since we wanted to study the effect of a single treatment and to
control as many confounding factors as possible.

3.8. CONCLUSION AND FUTURE WORK 65

Construct Validity Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

Noise ratio algorithm. Our noise injection algorithm modifies label values
without tracking which entries that are being modified. This might lead
to relabeling the same duplicate line multiple times during noise generation.
Consequently, the injected noise level might be below the desired level. Thus,
our study likely underestimates the effects of noise. However, the results
still allowed us to identify a significant statistical difference in the predictive
performance of TCS model, thereby to answer the research question.

Majority class problem. Due to the large computational cost required to
check the balance of the binary classes under the six treatment levels, we only
checked for the class distributions for one noise level - 10%. Hence, there is
a chance that the remaining unchecked trials are imbalanced. Nevertheless,
the downward trend in the predictive performances as noise ratio increases
indicates that the predictor was not biased toward a majority class.

Conclusion Validity Conclusion validity focuses on how sure we can be
that the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we
have a few outliers in the sample. Therefore, we ran the analysis twice (with
and without outliers) to examine if they had any impact on the results. Based
on the analysis, we found that dropping the outliers had no effect on the results,
thus we decided to keep them in the analysis.

3.8 Conclusion and Future Work

This research study examined the effect of different levels of class noise on
the predictive performance of a model for TCS using an industrial data-
set. A formula for measuring the level of class noise was provided to assist
testers gain actionable insights into the impact of class noise on the quality
of recommendations of test cases. Further, quantifying the level of noise
in training data enables testers make informed decisions about which noise
handling strategy to use to improve continuous TCS if necessary. The results
from our research provide empirical evidence for a causal relationship between
six levels of class noise and Precision, F-score, and MCC, whereas a similar
causality between class noise and recall was found at a noise ratio above 30%. In
the domain of the investigated problem, this means that higher class noise yields
to an increased bias towards predicting test case passes and therefore including
more of those tests in the suite. This is penalized with an increased hardware
cost for executing the passing tests. Similarly, as class noise exceeds 30%, the
prediction of false alarms with the negative class (failed tests) increases.

There are still several questions that need to be answered before concluding
that class noise handling strategies can be used in an industrial setting. A first
question is about finding the best method to handle class noise with respect to
efficiency and effectiveness. Future research that study the impact of attribute
noise on the learning of a classifier and how that compares with the impact of

66 CHAPTER 3. PAPER B

class noise are needed. Other directions for future research include evaluating
the level of class noise at which ML can be deemed useful by companies in
predicting test case failures, evaluate the relative drop of performance from a
random sample of industrial code changes and compare the performance of the
learner with the observations drawn from this experiment, study and compare
the effect of different code formatting on capturing noisy instances in the data
and the performance of a classifier for TCS. Finally, we aim at comparatively
exploring the sensitivity of other learning models to class and attribute noise.

Chapter 4

Paper C

Improving test case selection by handling class and attrib-
ute noise

Al-Sabbagh, K.W., Staron, M., Hebig, R.

Journal of Systems and Software, 183, 111093.

67

Abstract

Big data and machine learning models have been increasingly used to support
software engineering processes and practices. One example is the use of ma-
chine learning models to improve test case selection in continuous integration.
However, one of the challenges in building such models is the large volume of
noise that comes in data, which impedes their predictive performance. In this
paper, we address this issue by studying the effect of two types of noise, called
class and attribute, on the predictive performance of a test selection model.
For this purpose, we analyze the effect of class noise by using an approach that
relies on domain knowledge for relabeling contradictory entries. Thereafter, an
existing approach from the literature is used to experimentally study the effect
of attribute noise removal on learning. The analysis results show that the best
learning is achieved when training a model on class-noise cleaned data only
– irrespective of attribute noise. Specifically, the learning performance of the
model reported 81% precision, 87% recall, and 84% F1-score compared with
44% precision, 17% recall, and 25% F1-score for a model built on uncleaned
data. Finally, no causality relationship between attribute noise removal and
the learning of a model for test case selection was drawn.

4.1. INTRODUCTION 67

4.1 Introduction

Machine Learning (ML) models have been increasingly used for automating
software engineering activities [80], [93]–[95]. One example for the use of ML
models is optimizing software regression testing in continuous integration (CI),
where ML is used to recommend which test cases should be included in test
suites to reduce the cost overhead for testing resources. Since regression testing
is performed frequently (after every commit), they result in large quantities of
data that include test execution results. This poses an opportunity to utilize
ML when such large data is available for analyses.

Figure 4.1 illustrates a CI pipeline that includes a number of accrued test
suites of different sizes - the every-build, daily, and weekend. These suites
are organized to regressively verify that no new faults in the system arise as
a consequence of new code check-ins, with the goal of reducing the cost of
regression testing. The CI system tries to identify and select a small subset of
test cases from the pool of available tests to perform regression testing. These
test cases are added to the every-build suite and get executed as soon as new
code check-ins are submitted to the code repository. Failure to detect faults in
this early phase of testing will prolong their discovery until larger suites (the
daily or weekend suites) are executed.

Orchestrating test cases in this way allows for an increased development
speed and a reduced cost of regression testing, since faults are being continuously
discovered and fixed as soon as they are introduced into the code base. Figure
4.1 exemplifies a scenario where the CI system misses adding test case 2 (Tc2)
to the build suite. This gets penalized by an increased time of testing and
faults fixing, since (Tc2) will get executed in the daily or the weekend suite.
Therefore, it is important to find an effective approach for test case selection
to maximize the probability of detecting faults as early as new code check-ins
are made.

Several approaches in the literature sought to address the problem of defects
prediction and test case selection in CI. Examples include static code analysis
[96], [97], static code metrics [74], [59], natural language processing (NLP) [78],
[98]. These approaches use data-sets with historical defects for training machine
learning (ML) models to classify code as either non-defective or defective (i.e.
in need for testing) or to predict whether test cases will fail. In our previous
work [78], we studied an industrial case of the use of ML classifiers and textual
analysis to predict test case execution results. The method was evaluated on a
data-set whose size was 1.4m lines of code (LOC).

However, one of the challenges in building a learner for predicting test
case execution results lies in the amount of noise that comes in the data. This
challenge is particularly important in the domain of testing, since frequent
automated executions of test cases can introduce noise in an uncontrolled
way. A complete taxonomy of noise types is still an open research issue [41].
However, two categories of noise types are most commonly addressed in the
literature - class and attribute noise [14], [40], [54], [99]. Class noise (also
known as label or annotation noise) occurs as a result of either contradictory
entries or mislabeling training entries [54], whereas attribute noise occurs due

68 CHAPTER 4. PAPER C

Figure 4.1: CI Pipeline with Test Case Selection.

to either selecting attributes that are irrelevant for characterizing the training
instances and their relationship with the target class, or using redundant or
empty attribute values [54], [100].

In the domain of TCS, the class noise can be observed when, for example,
a code line in the data appears more than once with different class labels
(test outcomes) for the same test. These duplicate appearances for the same
line become class noise for predictors and would consequently hamper their
classification accuracy. Similarly, one example of attribute noise in the same
domain (TCS) occurs when similar code lines are written in different coding
styles. Code lines written in the less frequently used style will be characterized
with attributes whose frequency deviates from similar code lines written in
the majority styles. These deviations can make code lines written in the less
frequently used coding styles become outliers in the data at hand and thereby
can negatively affect the learning performance.

A number of research studies proposed several techniques for handling class
and attribute noise [14], [15], [16], [17]. Those can be classified into three broad
categories: tolerance, elimination/filtering, and correction/polishing. In the
tolerance category, imperfections in the data are dealt with by leaving the noise
in place and designing ML algorithms that can tolerate a certain amount of
noise. Approaches in the elimination category seek to identify noisy entries and
remove them from the data set. Entries that are suspected to be spurious (e.g.,
mislabelled or redundant) are discarded and removed from the training data.
In the last category, instead of removing the corrupted entries, those entries
get repaired by replacing their values with more appropriate ones. There are
a number of advantages and disadvantages associated with each one of these
approaches. In the tolerance category, no time needs to be invested on cleaning
the data, but a learner built from uncleaned data might be less effective. By
filtering noisy instances, we compromise information loss in the interest of
retaining cleaner instances of the data. By carrying out correction of noisy
instances, we introduce risks of presenting undesirable attributes but preserve
maximal information in the data.

4.2. RELATED WORK 69

In a previous work [98], we introduced an approach for addressing the
problem of annotation noise by relabeling contradictory entries and removing
duplicate ones in one of the classes. The empirical evaluation of applying the
technique was measured with respect to precision, recall, and F1-score using
an industrial data. In this study, we extend that work by examining the effect
of applying an attribute noise elimination approach, called Pairwise Attribute
Noise Detection Algorithm (PANDA) [13], on the performance of a TCS learner
using the class-noise cleaned data reported in [98]. The purpose is to provide
testers with insights into choosing the right noise handling strategies and to
counteract exhaustive efforts on noise cleaning for more effective TCS. For this,
we design and implement a controlled experiment on the same industrial data-
set used in our previous study [98] and examine the effect of removing training
observations that come with high attribute noise on learning. Specifically, we
address the following research question:

RQ: How can we improve the predictive performance of a learner
for test selection by handling class and attribute noise?

In this study, we focus on examining the effect of handling both class and
attribute noise on the performance of an ML classifier for selecting regression
tests on both functional and integration testing levels. The sample data-set
used belongs to a large telecommunication program written in the C language
and consists of 82 test execution results for twelve test cases. We validate the
findings by comparing the performance results of three learners with respect to
precision, recall, and F1-score. These learners are trained on: original (uncleaned
data), class-noise cleaned data, and class and attribute noise cleaned data.

Hereafter, Section 2 will correspond to the related work highlighting studies
made on class and attribute noise handling. Then, Section 3 presents background
information, providing core concept, a description of the TCS method used in
the paper, and examples and definitions on class and attribute noise in code
changes data. Section 4 describes the two approaches used in this study for
handling class and attribute noise. Section 5 describes the research methodology.
Then, Section 6 presents the evaluation results of the effect of class and
attribute noise. Thereafter, Section 7 answers the research question and presents
recommendations to testers. Section 8 addresses the threats to validity of this
study. Finally, Section 9 concludes the findings and highlights future work.

4.2 Related Work

Many research efforts have been made to handle class and attribute noise for
improving the predictive quality of learners. However, studies that investigate
the impact of class and attribute noise handling in the domain of software
engineering is lacking [7]. In this section, we begin by highlighting work that
leverage the use of ML models for early prediction of defects and test case
verdicts for test selection. Thereafter, we highlight related work that examine
the effect of class and attribute noise on learning performances.

70 CHAPTER 4. PAPER C

4.2.1 Text Mining For Defect Prediction and Test Case
Selection

Table 4.1: Results Summary For Defects Prediction and Test case Selection
Research

Study Type Systems Predictors Results

[79]
Defects
Prediction

BIRT, ECLP,
MODE, TPTP,
and WTP

Spam Filter
Precision 40%,
Recall 80%

[90]
Defects
Prediction

ArgoUML
and BIRT

Spam Filter

Precision 72%,
Recall 70%

Precision 75%,
Recall 72%

[81]
Defects
Prediction

JHotDraw
and DNS

Regression,
ADABoosting,
C4.5, SVM,
K-NN

K-NN:
Precision 59%,
Recall 69%

Precision 59%,
Recall 23%

[80]
Defects
Prediction

Apache 1.3,
Bugzilla,
Columba,
Gaim, GForge,
JEdit, Mozilla,
Eclipse JDT, Plone,
PostgreSQL,
Scarab,
and Subversion

SVM
Accuracy 78%,
Recall 60%

[78] TCS Industrial Software RF
Precision 73%,
Recall 48%

A multitude of early approaches have used text mining techniques for
leveraging early prediction of defects and test case verdicts using various
learning algorithms and statistical approaches. However, these studies omit to
discuss the effect of class noise on the quality of the learning predictors. As a
result, in this paper, we mention some of these previous work, as summarized
in Table 4.1

A previous work on test case selection [78] utilized text mining from source
code changes for training various learning classifiers on predicting test case
verdicts. The method uses test execution results for labelling code lines in
the relevant tested commits. The maximum precision and recall achieved was
73 and 48 percent using a tree-based ensemble. Hata et al. [79] used text
mining and spam filtering algorithms to classify software modules into either
fault-prone or non-fault-prone. To identify faulty modules, the authors used bug
reports in bug tracking systems. Using the ’id’ of each bug in a given report,
the authors tracked files that were reported as defective, and consequently
performed a ‘diff’ command on the same files between a fixed revision and a
preceding revision. The evaluation of the model on a set of five open source
projects reported a maximum precision and recall values of 40 and 80 percent
respectively.

4.2. RELATED WORK 71

Similarly, in an earlier work, Mizuno el al. [90] mined text from the
ArgoUML and Eclipse BIRT open source systems, and trained spam filtering
algorithms for fault-prone detection using an open source spam filtering software.
The results reported a precision of 72-75 percent and a recall of 70-72.

Aversano et al. [81] extracted a sequence of source code snapshots from two
version control systems and trained five learning algorithm to predict whether
new code changes are defective or not. The K-Nearest Neighbor predictor
performed better than the other algorithms with a good trade-off between
precision and recall, yielding precision and recall values of 59-69 percent and
59-23 percent respectively.

Kim et al. [80] collected source code changes, change metadata, complexity
metrics, and log metrics to train an SVM model on predicting defects on
file-level software changes. The identification of buggy commits was performed
by mining specific keywords such as ‘Fixed’ or ‘Bug’ in change log messages.
Once a keyword is found, the assumption that changes in the associated commit
comprise a bug fix is made, and hence used for labelling code instances in the
relevant commit. The predictor’s quality on 12 open source projects reported
an average accuracy of 78 and 60 percents respectively.

4.2.2 Class Noise Handling Research

Brodley et al. [15] uses an ensemble of classifiers, named Consensus Filter
(CF), to identify and remove mislabeled instances. Using a majority voting
mechanism with the support of several supervised learning algorithms, noisy
instances are identified and removed from the training set. If the majority of
the learning algorithms fail to correctly classify an instance, a tag is given to
label the misclassified instance as noisy and later tossed out from analysis. The
evaluation results show that when the class noise level is below 40%, filtering
results in better predictive accuracy than not filtering. On the basis of their
experiments, the authors suggest that using any types of filtering strategies
would improve the classification accuracy more than not filtering.

Al-Sabbagh et al. [101] conducted a controlled experiment to examine the
effect of class noise at six levels on the learning performance for a test selection
model. The analysis was done on an industrial data for a software program
written in the C++ language. The results revealed a statistically significant
relationship between class noise and the precision, F1-score, and Mathew
Correlation Coefficient under all the six noise levels. Conversely, no similar
relationship was found between recall and class noise under 30% noise level.
The conclusion drawn suggested that higher class noise ratio leads to missing
out more tests in the predicted subset of test suite. Moreover, it increases the
rate of false alarms when the class noise ratio exceeds 30%.

Guan et al. [14] introduced CFAUD, a variant of the approach proposed
by Brodley et al. [15], which involves a semi-supervised classification step in
the original approach to predict unlabeled instances. The approach was tested
for an effect on learning for three ML algorithms (1-NN, Naive Bayes, and
Decision Tree) using benchmark data-sets. The empirical results indicate that
both majority voting and CFAUD have a positive effect on the learning of

72 CHAPTER 4. PAPER C

the three ML algorithms under four noise levels (10%, 20%, 30%, and 40%).
However, averaged on the four noise levels, the improvement that CFAUD
provides over CF is around 12% for each of the three classifiers.

Muhlenbach et al. [40] introduced an outlier detection approach that uses
neighbourhood graphs and cut edge weight algorithms to identify mislabeled
entries. Instances identified as noisy are either removed or relabeled to the
correct class value. Relabeling is done for instances whom neighbours are cor-
rectly labeled, whereas entries whom neighbouring classes are heterogeneously
distributed get eliminated. Evaluated on ten domains from a machine learning
repository, three 1-NN models were built using the following training Trials:
1) without filtering, 2) by eliminating suspicious instances, 3) by relabeling or
else eliminating suspicious instances. The general observation drawn from the
analysis showed that starting from 4% noise removal level and onward, using
the filtering approach yielded better performance in 9 out of 10 of the domains
data-sets.

4.2.3 Attribute Noise Handling Research

Khoshgoftaar et al. [41] presented a rule-based approach that detects noisy
observations using Boolean rules. Observations that are detected as noisy
are removed from the data before training. The approach was compared for
efficiency and effectiveness against the C4.5 consensus filter algorithm presented
in [15]. The results drawn from the case study suggests that when seeding
noise in 1 to 11 attributes at two noise levels, the consensus filter outperforms
the rule-based approach. Conversely, the rule-based approach outperforms the
other approach with respect to efficiency.

Khoshgoftaar et al. [16] proposed an approach that computes noise ranks
of observations relative to a user defined attribute of interest. A case study for
evaluating the approach was conducted on data derived from a software project
written in C and consists of 10,883 modules. In their study, the attribute
of interest was chosen to be the class attribute. A comparison between the
efficiency and effectiveness of the method in detecting noise and a popular
classification filter algorithm [15] was made. The results reported different
effectiveness scores ranging from 24% to 100% effectiveness.

Khoshgoftaar et al. [102] extended their work in [13] and proposed an
approach that identifies noisy attributes in the data. Upon identifying attributes
that are least correlated with the target class, those attributes get eliminated
from the analysis. The approach is based on the Kendall’s Tau rank correlation
to identify weakly correlated attributes with the target attribute. In terms of
evaluation, the effectiveness of the technique was studied using two data-sets
belonging to assurance software projects, where an inspection of a software
engineering expert was done to judge the performance of the approach. The
overall results suggest a strong match between the output of the approach and
the observations drawn from an expert in the field.

Teng [103] studied the effectiveness of three noise handling approaches,
namely robustness, filtering, and correction using decision trees built by C4.5.
Twelve machine learning data sets were used for the evaluation. The classifica-

4.3. BACKGROUND, DEFINITIONS, AND EXAMPLES 73

tion accuracy of the learners suggest that elimination and correction are viable
mechanisms for minimizing the negative impact of noise. In particular, using
an elimination approach before building a classifier reported an accuracy score
that ranged from 77% to 100%.

Quinlan [104] demonstrated that as the noise level in the data increases,
removing attribute noise information from the data decreases the predictive
performance of inductive learners if the same attribute noise is present in
other attributes in the data to be classified. Similarly, Zhu and Wu concluded,
following a number of experiments, that attribute noise is not as harmful as
class noise on the predictive performance of ML models [54].

While the majority of these work emphasize on the importance of handling
both class and attribute noise in data for improving the predictive perform-
ance, the results from our study provide counter-evidence that opposes these
findings when it comes to attribute noise. More precisely, the analysis results
demonstrate that removing training observations that come with high attribute
noise has no effect on the predictive performance of an ML classifier. These
results are in line with the findings drawn by Quinlan, Brodley and Friedl, and
Zhu and Wu [104], [21], [54].

4.3 Background, Definitions, and Examples

This section presents the core concepts needed to facilitate the reading of the
paper. It also describes the TCS method used for the evaluation of the study,
and provides definitions and examples on class and attribute noise in code
churns data.

4.3.1 Core Concepts

In our approach, we use the definition of a software program P to be a collection
of functions F <F1, . . . , Fn >. Each function in P consists of a sequence of
statements S <S1,. . . ,Sn>. P’ denotes a modified reversion of P, and includes
one or more combinations of added, removed, modified statements distant from
P. In the work here, we use the term ‘old revision’ to refer to P and ‘new
revision’ to refer to P’. The amount of code changes between P and P’ is
denoted as code churn and consists of a one or more statements S <S1,. . . ,Sn>.
A test case, denoted by tc, is a specification of the inputs and expected results
that defines a single test to verify that P’ complies with a specific requirement.
The result of executing a single test case tc is referred to as ‘test case verdict’
(passed or failed) and is denoted with tcv. The value of tcv changes depending
on the code against which tc was executed. The execution of tc is denoted
with tce.

In this study, we use the tcv value of one tce to label each Sx in the analyzed
code churn. A set of test cases T = <tc1, tc2, . . .> is the test suite for testing
P’. Regression test selection refers to the strategy of testing P’ using a subset

74 CHAPTER 4. PAPER C

of available tc in T. A duplicate entry, denoted as de, is the appearance of two
or more combinations of syntactically identical S in one or more code churns.
A set of de has contradictory entry if one or more combinations of de in the
set are labeled with different test verdicts. Pairs of contradictory entries are
treated as class noise.

4.3.2 Method Using Bag of Words For Test Case Selection
(MeBoTS)

MeBoTS is a machine learning based method that functions as a predictor of
test case verdicts [78]. The method employs a predictive model that learns
from historical code churns and their relevant test case verdicts for predicting
lines that would trigger test case failures. The method is described in 3 steps.

Code Changes Extractor (Step 1) The first step involves collecting code
churns from designated source code repositories. To automate the collection
process, we implemented a program that takes a time ordered list of historical
test case execution results queried from a database. Each element in the list
represents a metadata state of a previously executed test case, containing a
hash reference that points at a specific location in Git’s history. The program
then performs a file comparison utility (diff) between pairs of consecutive hash
references to extract a corpora of code churns between different revisions. All
empty lines that exist in the extracted code churns are filtered out from the
data before they are passed to the second step of the processing pipeline in
MeBoTs.

Textual Analysis and Features Extraction (Step 2) The second step
in the method involves transforming the collected code changes into feature
vectors. For this purpose we used an open source tool [42] that utilizes the Bag
of Words (BoW) approach for modelling textual input. The tool uses each line
from the extracted code churns in step 1 and:

• creates a vocabulary for all LOC (using the bag of words technique, with
a cut-off parameter of how many words should be included1)

• creates a token for words that fall outside of the frequency defined by the
cut-off parameter of the bag of words

• finds a set of predefined keywords in each line

• checks each word in the line to decide if it should be tokenized or if it is
a predefined feature

1BoW is essentially a sequence of words/tokens, which are descendingly ordered according
to frequency. This cut-off parameters controls how many of the most frequently used words
are included as features – e.g. 10 means that the 10 most frequently used words become
features and the rest are ignored.

4.3. BACKGROUND, DEFINITIONS, AND EXAMPLES 75

Table 4.2: Comparing Popular Defect and Test Prediction Approaches with
MeBoTs.

Method Description Pros and Cons MeBoTs

Code
metrics

Uses code static
metrics, such as code
complexity, size, churn
metrics to train
machine learning
models on classifying
defective code.
Examples: [105],
[106]

Pros:
- Strong empirical
evidence that supports
the use of some code
metrics for defects
prediction for Java
programs.

Cons:
- Static metrics need
to be decided a priori,
and they depend on
the size.

- language agnostic
and can be
applied on any
programming
language.
- The features from
MeBoTS are not
decided a priori,
and are not
dependent on size

Static
Code

Analysis

Uses machine learning
models to learn
semantic features
derived from abstract
syntax trees.
Examples: [96], [97],
[107]

Pros:
- Characterize defects
using abstract syntax
tree information from
the code.

Cons:
- Code needs to be
compiled.
- Does not scale well
when the number of
tree nodes increases.

- Generates
feature vectors
from the actual
program using
textual analysis
-Does not require
the code to be
compiled.
- Uses statistics
to generate its
feature vectors.

Dynamic
Analysis

This category relies on
executing the program
and comparing its
actual with expected
behavior.
Examples: [108], [109]

Pros:
-Allows for analysis
of the program
without having access
to the code.

Cons:
- If the code does
not run, no analysis
is done

- Analyzes the code
before compiling
the program.

Therefore, MeBoTs treats code tokens as features and represents a code line
with respect to its tokens’ frequencies. To our knowledge, this way of extracting
feature vectors from the source code is new in our approach, compared with
other popular approaches for defects and test prediction. In particular, MeBoTS
can directly recognize what is written in the code without the need to compile
the code and access its abstract syntax tree for generating feature vectors. Table
4.2 lists and describes some of the most popular approaches for defects and
test prediction using source code analysis. It also highlights a few advantages
and disadvantages of these approaches and contrasts them with MeBoTs.

Training and Applying the Classifier Algorithm (Step 3) We exploit
the set of extracted features provided by the textual analyzer in step 2 and the
verdict of the executed test cases for training a predictive model on classifying
LOC into either triggering to test case failure or not.

76 CHAPTER 4. PAPER C

4.3.3 Noise Definitions and Examples

Noisy observations are commonly determined by two factors: 1) the correctness
of the class values, and 2) by how well the selected attributes describe learning
instances in the training data. This section provides a definition and an example
for each type of noise (class and attribute) found when analyzing input data
that corresponds to code churns (attributes) and tcv (class).

4.3.3.1 Example of the dependency between code churns and test
case verdict

In this subsection, we present an example that illustrates the dependency
between code churns and test case verdicts. The example shows how a unit
test case will react to a code change in P ’ of P. Figure 4.2 shows two revisions
of an example program P written in the C++ language. The modified revision
P ’ in the Figure includes the same code fragments in P except for the two
framed statements S1 and S2. S1 is a declaration of an array of type int*,
whereas S2 is an assignment of value 0 to the array element pointers[2] in
F1:getpointersArray. In the C++ language, pointers that are assigned the
value of 0 are called null pointers because a memory location of address 0 does
not exist and therefore a run-time exception will be thrown when executing
the program. To avoid such assignments in the code base, a unit test case
tc1:testTaskArrayDeclarations is created to assert that all elements in the
pointers’ array are not set to null (assigned 0), as shown in Figure 4.2. By
executing tc1 against P’, we observe from the that the code churn S1 and S2
triggered the tcv of tc1 to change from a Pass to a Failing state. The reaction
of tc1 to the churned P showcases the dependency between code churns and
test case verdict. Therefore, the underlying theory that test cases would react
to code churns is worth exploring for predicting test case verdicts for test case
selection.

4.3.3.2 Definition and Example of Class Noise in Code Churns Data

In this study, class noise is defined as the ratio of contradictory entries de
to the overall number of entries in the analyzed data. Since a contradictory
entry can only occur among two (or more) de, the number of all duplicate
entries for which an entry is assigned a different class label is identified as a
contradictory entry. More formally, the formula for calculating this noise ratio
can be expressed as follow:

Class Noise ratio =
Number of Contradictory Entries

Total Number of Entries

For example, a data-set containing six de with five de labeled as true and
one labeled as false has six contradictory entries. Finding a rule to identify
which class should be used to correct a mislabelled entry is not trivial, since
we do not know the context in which these entries occurred nor the sources of
noise that triggered the differential class labels.

4.3. BACKGROUND, DEFINITIONS, AND EXAMPLES 77

Code Changes
Original Revision Modified Revision CPPUnit Test

pointer set to null

Figure 4.2: Example On the Relationship Between Code Churns and Test Case
Verdicts

As an illustration of the class noise problem in a data-set consisting of code
churns, Figure 4.3 shows a sample C++ program transformed into feature
vectors using the BoW approach. Each line of code in the sample program is
transformed into a line vector which gets assigned a class value based on a tce
result for the committed code. These transformed lines and their relevant tce
get fed as input into an ML model for training. The model is used to predict
which lines in the program will trigger a test case failure or success.

The feature vectors in Figure 4.3 characterize code lines in the sample
program. All shaded lines in the sparse matrix (lines 8, 9, 10, 13, 14, and 15)
are contradictory entries since each of the pairs (8 and 13), (9 and 14), and (10
and 15) have the same vectors but different class values (pass and fail). The
formula for calculating the class noise ratio in this example is:

Class Noise ratio =
6

16
= 0.375

78 CHAPTER 4. PAPER C

Figure 4.3: Class Noise Example in Code Base.

4.3.4 Definition and Example of Attribute Noise in Code
Churns Data

The definition of attribute noise in this paper follows the one proposed by Van
Hulse et al. [13], which suggests that a noisy observation appears when one or
more of its attributes deviates from the general distribution of other attributes.
The larger the deviation is for one or more observations, the more evidence
there is that they are noisy. In the context of the given problem (i.e., TCS),
a deviation between attributes can occur when the general distribution of S
follows a standard coding style, whereas a smaller fraction of S deviates from
the standard.

As an illustration of those deviations in code churns, Figure 4.4 exemplifies
two coding styles used for expressing case blocks in a C++ program. By
examining the case blocks in the run check1, run check2, and run check3

functions, we notice that the first and most reoccurring style uses a line space
to separate statements in a case block, as shown in the run check1 and
run check3 methods. Conversely, the other coding style used in run check2

aligns all set of S in a case block on one line. The attributes in this example
are feature vectors that correspond to tokens in the code fragment. Note how
S21 and S22 are characterized by additional attribute that deviate from the

4.4. NOISE HANDLING AND REMOVAL APPROACHES 79

majority of attributes in the remaining case blocks at S9, S12, S28, and S30.
Those deviations in S21 and S22 from the rest case statements are considered
suspicious and therefore irrelevant.

Figure 4.4: Attribute Noise Example in Code Base.

4.4 Noise Handling and Removal Approaches

The problem of achieving a good learning performance in the presence of noisy
environments has been widely highlighted in the ML literature. Several ap-
proaches have been built to enhance the learning performance of ML classifiers
[84], [54], [40]. Nevertheless, the presence of class and attribute noise have
been reported to still have a negative influence on the learning, and thus needs
to be handled before training. In this section, we describe an approach that
we introduced in the baseline study [98] to handle the problem of class noise.
Thereafter, an existing elimination based approach from the literature for
handling attribute noise is described.

80 CHAPTER 4. PAPER C

4.4.1 Class Noise Approach

Our approach for handling annotation noise relies on relabeling repeated code
lines that come with different class values. These repeated lines can potentially
occur in code churns due to several scenarios, such as 1) copying of code [110],
and 2) merge transactions [99]. The first scenario manifests itself in the event of
’copy-paste’ reuse of code check-ins that had previously passed the testing and
integration phases. In such scenario, the developers explicitly duplicate source
code fragments to adapt the duplicates for a new purpose in a quick fashion
[110]. The second scenario appears when developers in one or more teams work
on dedicated branches for features development and use similar code phrases
as to those committed and merged from different branches [99] e.g., x = x +

1;. When extracting such code check-ins with duplicate code phrases for TCS,
inconsistent observations with different class values might occur.

To address the problem of contradictory code lines in code churns data, we
present an approach that relies on domain knowledge for identifying instances
(code lines) that require relabeling. We use the phrase class-noise cleaned to
refer to a data-set on which the class noise handling approach was applied. A
step-by-step description of the approach is as follow:

• sequentially assign a unique 8-digit hash value for each line of code in
the original data set

• create an empty dictionary for storing unfiltered lines of code.

• iterate through the set of hashed lines in the original data set and save
non-repeated (syntactically unique) lines of code in the dictionary.

• compare the annotation values of each pair of duplicate lines in the
original and dictionary sets. If the annotation value of the repeated
instance in the original set is annotated with 1 (passed) and the annotation
value of the same instance in the dictionary is annotated with 0 (failed),
then relabel the annotation value for the instance in the dictionary from
0 to 1. If the annotation values of both duplicate lines are annotated
with ’1’ then skip adding the entry from the original set into the dictionary.

This way of handling annotation noise can be seen as both corrective and
eliminating, since it 1) corrects the label of duplicate entries that first appears
as failing and then pass the test execution, and 2) removes duplicate lines that
are labeled as passing.

Defective lines often occupy a small proportion of the overall fragment of
code changes. Thus, a random line from a fragment, which was overall labeled
as failing is more likely not to be the cause of the failure. Therefore, our design
decision is to relabel lines as ’passed’, if they have already been seen as part of
non-failing fragments before. Thus, we select a more conservative approach
when it comes to labeling lines as failing, in order to minimize the likelihood of
mislabeling training entries2.

2https://github.com/khaledwalidsabbagh/Annotation Noise

4.5. RESEARCH METHODOLOGY 81

4.4.2 Selected Attribute Noise Handling Approach

As mentioned earlier, attribute noise can occur due to selecting attributes that
are irrelevant for characterizing the training instances. In the domain of TCS,
those attributes can materialize when, for example, the analyzed code consists
of fragments that are written using different coding styles or when a small
number of statements/conditions/function declarations etc deviate in syntax
from the majority of similar lines in the code.

To address the problem of attribute noise in training data, we decided to
use an existing elimination based approach called PANDA [13] that identifies
training instances with large deviations from normal. The PANDA algorithm
identifies such instances by comparing pairs of attributes in the space of feature
vectors. The output is an ordered list of noise scores for each code line - the
higher the noise score for a code line, the higher it deviates from normal. Upon
ranking noisy instances, the generated list can be used to toss out instances
(code lines) that come with the highest rank with respect to attribute noise.

The algorithm starts by iterating through all attributes in the input feature
vectors. In each iteration, a single attribute xj gets partitioned into a number of
bins, based on a predefined bin value that is set by the user. Each bin will have
the same amount of instances, given that the number of input observations
is divisible by the number of partitions. In the absence of tied values, the
algorithm includes all boundary instances that fall outside the range of the
bin size in the last bin. After the partitioning is complete, the mean and
standard deviation for instances in each bin are calculated and used to derive a
standardized value for each instance in attribute xk. The standardized value is
then calculated by subtracting the ratio of mean to standard deviation in the
bin relative to xj from each instance value in xk. This approach is repeated
for all attributes in the input space of vectors. Finally the MAX or the SUM
value of each observation is calculated. Large sum or max values indicate an
observation that has a high attribute noise value.

Figure 4.5 exemplifies the output produced by the PANDA algorithm
when applied on the code fragment presented in Section 4.3.4. Note that in
this example, only lines that start with the keyword ’case’ were input to the
algorithm, whereas in our experiment, all code lines in the sample data-set
were input. The bins’ size in the example program was set to 1 and the output
produced is a list of observations ordered from the most noisy to the least noisy
using the MAX function. Note that the highest noise scores in the sample data
were identified for lines 21 and 22 as their attribute values deviate from the
remaining majority of the ’case’ statements in lines 9, 12, 28, and 30.

4.5 Research Methodology

The goal of this paper is to examine the effect of handling class and attribute
noise in code change data-sets for improving test case selection. This section
describes the design and operations carried out for analyzing the impact of
class and attribute noise handling on the predictive performance of a learner

82 CHAPTER 4. PAPER C

Figure 4.5: An Excerpt of PANDA’s Output

for test selection.

4.5.1 Original Data Set

In the baseline paper [98], we worked with a data set of code churns that belong
to a legacy system written in the C language. A total of 82 test case execution
results (35 passed tests and 47 failed tests) for 12 test cases and their relevant
set of code changes (1.4 million LOC) were collected. The system from which
the sample data was extracted belongs to a large Swedish telecommunication
company and has the size of several million lines of code. The feature vectors
generated from the data-set in [98] using a bi-gram BoW model comprised a
total of 2251 features/attributes. The distribution of the binary classes in the
collected data was fairly balanced, with 44% of the code lines belonging to the
’passed’ class and 56% to the ’failed’ class 3.

3Due to non-disclosure agreements with our industrial partner, our data-set can not be
made public for replication.

4.5. RESEARCH METHODOLOGY 83

4.5.2 Random Forest For Evaluation

In this study, the MeBoTS method described in Section 4.3 was used as an
example of a TCS approach. The selected learning model for the evaluation was
random forest (RF), mainly due to its low computational cost and white-box
nature compared with deep learning models. In the context of MeBoTS, using
a white-box model, such as RF, is important since it can showcase the feature
importance charts. These charts can provide practitioners with insights into
the tokens that led to the prediction of failing test cases.

The hyper-parameters of the model were kept in their default state as found
in the scikit-learn library (version 0.20.4). The only configuration made was in
the n estimator (the number of trees) parameter, where we changed it from 10
to 100. We did not experimentally seek to tune the n estimater value in the RF
model, since the goal of this study is not to optimize the predictive performance
of the model, but rather to examine the effect of attribute and class noise on
TCS. However, we experimented the use of another variation of the n estimater
in the RF model (n estimater=300) in order to get an understanding of whether
this would affect the model’s predictive performance. The performance results
produced by the model with 300 trees can be found in Appendix A.

4.5.3 Class Noise

The evaluation of the presented class noise approach was done by comparing
the learning performance of the ML model in MeBoTS under two training trials
1) using the original (uncleaned) data, and 2) using a class-noise cleaned data.
For each training trial, we measured the performance in terms of precision,
recall, and F1-score, for an ML model.

Applying the class noise handling approach (described in Section 4.4.1)
on the original (uncleaned) data-set resulted in a reduced set, comprising of
140,130 LOC. We use the adjective ‘class-noise cleaned’ to refer to this reduced
set. The number of lines labelled as passing in the cleaned set were 46%,
whereas the remaining 54% of the lines were labelled as failing. A random split
of the class-noise cleaned data was performed to generate s training and testing
sets. The size of the training set comprised of 112,104 line vectors, whereas
the remaining 28,026 line vectors were used for evaluating the learning of the
model.

4.5.4 Attribute Noise

The extension provided in the study focuses on examining the effect of elimin-
ating instances with attribute noise on the learning performance for TCS. To
identify possible causality between attribute noise and learning performance, a
controlled experiment was carried out. This subsection describes the experi-
mental design and operations conducted to examine the causality.

84 CHAPTER 4. PAPER C

4.5.4.1 Adopted Data-Set

In this study we wanted to get an initial understanding of the effect of attribute
noise on the learning performance of an ML model for TCS. Therefore, we
experimented the effect of attribute noise removal on a subset of observations
and attributes from the class-noise cleaned data. The selected subset was
created by randomly selecting 19,815 instances and 800 attributes. This data-
set will act as the control group and will be used as a baseline for class-noise
cleaned data.

According to Ganganwar and Vaishali [111], a data-set is called imbalanced
when it contains many more samples under one class than from the rest of the
classes. Accordingly, we inspected the distribution of the samples in the control
group with respect to the binary classes (defective and non-defective) in order
to determine the balance of classes. Figure 4.6 shows that the distribution
of instances in the non-defective class contains many more samples than the
defective class (14,400 to 5,415 samples). Based on this distribution and given
that we only have two classes (binomial distribution), we consider the control
group to be imbalanced. To overcome this problem, we chose to upsample
instances in the minority class using the ’resample’ module provided in the
Scikit-learn library [76]. The idea of oversampling is to randomly generate
samples from the minority class instances until the number of minority class is
the same as the number of majority class.

Figure 4.6: The Distribution of Classes In The Adopted Data-Set

4.5.4.2 Independent Variable and Experimental Subjects

In this study, attribute noise removal was the only independent variable (treat-
ment) examined for an effect on classification performance. Ten variations of
the treatment were selected. Namely, 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45%, 50%. Each treatment level corresponds to a fraction size of observa-
tions that gets eliminated before training the ML model in MeBoTS. We used

4.5. RESEARCH METHODOLOGY 85

25-fold stratified cross validation on the control group to derive 25 experimental
subjects on which the treatment is applied. Each subject is treated as a hold
out group for validating an RF model which gets trained on the remaining 24
training subjects. A total of 275 trials derived from the 25-folds were conducted
- each 25 trials for evaluating the performances of a learner under one treatment
level.

4.5.4.3 Dependent Variables

The dependent variables are three evaluation measures used for the performance
of an ML classifier – Precision, Recall, and F1-score. The three evaluation
measures are defined as follows:

• Precision is the fraction of passing-classified tests that are actually passing.

• Recall is the fraction of really passing tests that are classified as passing.

• The F1-score is a harmonic mean between precision and recall.

When the precision of a classifier is high, less test cases that do not detect
faults in the system under test are executed, whereas when the recall is high
less false alarms about detected faults are produced. Therefore, the higher the
precision and recall a classifier gets, the better the test selection process.

4.5.4.4 Experimental Hypotheses

Three hypotheses are defined according to the goals of this study and tested
for statistical significance in Section4.5.4.5. The hypotheses were based on
the assumption that data-sets with more attribute noise have a significantly
negative impact on the classification performance of an ML model for TCS
compared to data with no attribute noise. The hypotheses are as follow:

• H0p: The mean Precision is the same for a model with and without
attribute noise

µ1p = µ2p (4.1)

• H0r: The mean Recall is the same for a model with and without attribute
noise

µ1r = µ2r (4.2)

• H0f: The mean F1-score is the same for a model with and without attribute
noise

µ1f = µ2f (4.3)

For example, the first hypothesis can be interpreted as: a data-set with a higher
attribute noise ratio will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment
level with those at 0% attribute noise removal level.

86 CHAPTER 4. PAPER C

4.5.4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library [76]. To
decide whether to use a parametric or non-parametric test for the analysis, a
normality test was carried out. First, we plotted the frequency distribution
graphs for the three dependent variables under each treatment level to see
if they deviate from a normal distribution. To further validate the visual
inspection, a Shapiro-Wilk test was carried out. The results showed that 3
dependent variables are not normally distributed (see Section 4.6.2 for details).
Based on the normality test results, we decided to use two non-parametric
tests, namely: Kruskal-Wallis and Mann-Whitney. To evaluate the hypotheses,
the Kruskal-Wallis was selected for comparing the median scores between the
three evaluation measures under the 11 treatment levels. The Mann–Whitney
U test was selected to perform a pairwise comparison between the evaluation
measures under each treatment level and the same measures with no treatment
(0% noise removal).

4.5.4.6 Attribute Noise Removal

As mentioned earlier, the adopted data-set acts as the control group in this
experiment. This control group is used to examine the effect of the treatment
on the learning performance of the ML model in MeBoTS (RF). Moreover, we
use this group as a baseline for comparing the effect of class noise handling
and the attribute noise removal approaches on learning.

To apply the treatment, we began by running the PANDA algorithm on the
control group. The output is an ordered list of observations that are ranked with
respect to the amount of noise identified in their attributes. Table 4.3 shows
an excerpt of the three top ranked observations generated in the ordered list.
Note that due to the non-disclosure agreement with our industrial partner, all
original keywords in the ‘Code Line’ column, such as variable and class names,
are replaced with artificial variable names. The indexes in the first column of
the list are used to retrieve and eliminate a fraction of observations from the
training subjects. The size of the fraction depends on the desired treatment
level. For instance, a treatment of 5% implies retrieving 5% of observations
that are top ranked in the PANDA’s list (5% of 19,815 LOC) and from the
training subjects and removing them. In this experiment, ten variations of the
treatment was applied (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and
50%). For each treatment, a fraction of observations that is equivalent in ratio
to the treatment level is fetched and removed from the training subjects. As
soon as those observations are removed, the training subjects are fed into an
ML model for training and the precision, recall, and F1-score are recorded for
the model.

In this experiment, a bin size of five was used in the PANDA. This means
that each attribute in the analyzed data is split into five bins and the com-
parison between each pair of attributes is done relative to those bins. The
implementation of the PANDA algorithm used in this study can be found at

4.6. EVALUATION RESULTS 87

the link in the footnote4.

Table 4.3: An Excerpt Of the Output Generated From PANDA

Index Code Line Noise Score
1181 class ((constructor)) 518
1056 if (!isNotEmpty() && sharedPool) 518
1051 // addPoolConfig return value 518

4.6 Evaluation Results

In this section, we present and compare the results of learning obtained from
training on 1) the original and class-noise cleaned data, and 2) the class-noise
cleaned data and the class and attribute noise cleaned data-sets. We report
the learning in terms of precision, recall, and F1-score.

4.6.1 Original vs. Class Noise Cleaned Data

The performance measurements of the RF classifier built on the class-noise
cleaned data is plotted using a confusion matrix, as shown in Figure 4.7. The
Figure shows a non-normalized matrix for the predicted and actual values of
test case verdicts for all lines in the test set. The first cell on the upper left
hand side corresponds to the number of lines (6,543) that are predicted to
trigger test case failures and are actually true. On the same diagonal, the last
cell to the bottom right of the matrix indicates the number of lines (15,688)
that are predicted to be non-defective and are actually true, and require no
testing. The remaining entries in the test set correspond to the number of
misclassified lines.

The bar chart in Figure 4.8 illustrates the performance measures of the
classifier built on the original and class-noise cleaned data. The results reveal
that handling class noise in the uncleaned data improves the learning perform-
ance by 70% recall, 37% precision, and 59% F1-score compared to the learning
achieved on the original data.

4.6.2 Class Noise Cleaned vs. Class and Attribute Noise
Cleaned Data

This subsection discusses the results of the descriptive statistics and statistical
tests conducted to evaluate hypotheses H0p, H0r, and H0f presented in Section
4.5.4.4. The results reported in this section are used for drawing a comparison
between the effectiveness of handling class noise and attribute noise on the
learning performance. Figures 4.9, 4.10, and 4.11 show three box-plot graphs,
which were plotted to visually inspect the effect of removing observations with
attribute noise at each treatment level on the dependent variables. A first

4https://github.com/khaledwalidsabbagh/Handling Attribute Noise PANDA

88 CHAPTER 4. PAPER C

Figure 4.7: Confusion Matrix For a Classifier Trained on Class Noise cleaned
Data

Figure 4.8: Learning Performance On the Original and the Class Noise cleaned
Data Sets

4.6. EVALUATION RESULTS 89

observation from the graphs suggests a lack of causality between the treatment
and the three dependent variables. This observation was further supported
by examining the mean scores of each dependent variable in the descriptive
statistics, as shown in Tables 4.4, 4.5, and 4.6. Note that the precision, recall,
and F1-score reported in the three tables under 0% treatment level are different
than those obtained from training on the class-noise cleaned data. This is
because the control group was used as a baseline for the class-noise cleaned
data from which the ML model was built.

Figure 4.9: The Distribution of Precision Values Under the Treatment Levels

Figure 4.10: The Distribution of Recall Values Under the Treatment Levels

To begin the evaluation of the hypotheses, we start by checking the normality
in the distribution of the three dependent variables. The frequency distribution

90 CHAPTER 4. PAPER C

Figure 4.11: The Distribution of F1-score Values Under the Treatment Levels

Table 4.4: Descriptive Statistics For Precision.

Treatment N Mean SD SE 95% Conf. Interval
0% 25 0.53 0.05 0.01 0.51 0.55
5% 25 0.53 0.03 0.01 0.51 0.54
10% 25 0.51 0.1 0.02 0.47 0.55
15% 25 0.51 0.12 0.02 0.46 0.56
20% 25 0.5 0.09 0.02 0.47 0.54
25% 25 0.52 0.02 0.0 0.51 0.53
30% 25 0.5 0.08 0.02 0.47 0.53
35% 25 0.51 0.07 0.01 0.48 0.54
40% 25 0.53 0.05 0.01 0.51 0.55
45% 25 0.53 0.04 0.01 0.51 0.54
50% 25 0.53 0.05 0.01 0.51 0.55

of the variables were plotted for the 275 trials (25 trials for each treatment level)
to visually inspect normality, as shown in Figures 4.12, 4.13, and 4.14. Then,
the Shapiro-Wilk test was carried out to further support the observations drawn
from the graphs. As can be seen from the graphs, the distributions appear to
be negatively skewed (asymmetric), and thereby the assumption of normality
in the distribution of the three variables do not hold. The Shapiro-Wilk test
results supported the observation drawn from the graphs and revealed that the
null hypotheses of normality for the three dependent variables can be rejected
(p-value <0.05), as shown in Tables 4.74.8. Since we have issues with normality
in the samples, we decided to run a non-parametric test for comparing the
difference between the performance measures under the 10 treatment levels.

To examine the effect of removing observations with top rank attribute
noise on the learning, the Kruskal-Wallis test was conducted. Table 4.9 sum-

4.6. EVALUATION RESULTS 91

Figure 4.12: Frequency Plot For the Precision Scores

Figure 4.13: Frequency Plot For the Recall Scores

92 CHAPTER 4. PAPER C

Table 4.5: Descriptive Statistics For Recall.

Treatment N Mean SD SE 95% Conf. Interval
0% 25 0.88 0.13 0.03 0.83 0.93
5% 25 0.83 0.17 0.03 0.76 0.9
10% 25 0.8 0.25 0.05 0.7 0.9
15% 25 0.78 0.27 0.05 0.67 0.89
20% 25 0.8 0.25 0.05 0.7 0.9
25% 25 0.88 0.17 0.03 0.81 0.95
30% 25 0.84 0.23 0.05 0.75 0.93
35% 25 0.85 0.22 0.04 0.76 0.94
40% 25 0.77 0.23 0.05 0.67 0.86
45% 25 0.82 0.21 0.04 0.74 0.9
50% 25 0.8 0.22 0.04 0.72 0.89

Table 4.6: Descriptive Statistics For F1-score.

Treatment N Mean SD SE 95% Conf. Interval
0% 25 0.66 0.04 0.01 0.64 0.67
5% 25 0.64 0.06 0.01 0.61 0.66
10% 25 0.61 0.14 0.03 0.55 0.66
15% 25 0.6 0.16 0.03 0.53 0.66
20% 25 0.61 0.14 0.03 0.55 0.66
25% 25 0.65 0.06 0.01 0.62 0.67
30% 25 0.62 0.13 0.03 0.57 0.67
35% 25 0.63 0.12 0.02 0.58 0.68
40% 25 0.61 0.1 0.02 0.57 0.65
45% 25 0.63 0.1 0.02 0.59 0.67
50% 25 0.62 0.1 0.02 0.58 0.66

Table 4.7: The Shapiro-Wilk Results For Normality From 5% to 25% Treatment
Levels.

5% 10% 15% 20% 25%

Precision
Stat=0.91,
p=0.03

Stat=0.51,
p<0.05

Stat=0.61,
p<0.05

Stat=0.57,
p<0.05

Stat=0.85,
p <0.05

Recall
Stat=0.87,
p<0.05

Stat=0.78,
p<0.05

Stat=0.79,
p<0.05

Stat=0.72,
p<0.05

Stat=0.69,
p<0.05

F1-score
Stat=0.75,
p<0.05

Stat=0.55,
p<0.05

Stat=0.65,
p<0.05

Stat=0.59,
p<0.05

Stat=0.76,
p<0.05

marizes the statistical comparison results, indicating no significant difference
in Precision, Recall, and F1-score. Specifically, the results of the comparison
for precision showed a test statistics of 7.96 and a p-value of 0.63. Likewise, a
significant difference in the comparisons between the evaluation measures of
Recall and F1-score (Recall Results: Test Statistics = 8.62, p-value = 0.56 ,
F1-score Results: Test Statistics = 8.56, p-value = 0.57) values were not found.

4.7. DISCUSSION 93

Figure 4.14: Frequency Plot For the F1-score Scores

Table 4.8: The Shapiro-Wilk Results For Normality From 30% to 50% Treat-
ment Levels.

30% 35% 40% 45% 50%

Precision
Stat=0.48,
p<0.05

Stat=0.57,
p<0.05

Stat=0.89,
p=0.01

Stat=0.78,
p<0.05

Stat=0.85,
p<0.05

Recall
Stat=0.69,
p<0.05

Stat=0.67,
p<0.05

Stat=0.87,
p<0.05

Stat=0.76,
p<0.05

Stat=0.82,
p<0.05

F1-score
Stat=0.55,
p<0.05

Stat=0.6,
p<0.05

Stat=0.89,
p=0.01

Stat=0.74,
p<0.05

Stat=0.78,
p<0.05

Table 4.9: Statistical Results For the Comparison Between the Evaluation
Measures Under All Treatment Levels.

p-value statistics
Precision p=0.63 Stat=7.96
Recall p=0.56 Stat=8.62
F1-score p=0.57 Stat=8.56

Therefore, no statistical evidence could be found to support the rejection of
the null hypotheses H0p, H0r, H0f.

4.7 Discussion

To answer the research question of how to improve test case selection by handling
class and attribute noise?, we compare the results reported in Sections 4.6.1
and 4.6.2, and draw a comparison between the effectiveness of handling class
noise and attribute noise. The comparison results are achieved by examining

94 CHAPTER 4. PAPER C

the precision, recall, and F1-score in Tables 4.4, 4.5, and 4.6, and Figure 4.8.
Recall from Section 4.5.4.1 that the performance measures obtained at 0%
treatment level (control group) are treated as the baseline measures. The
remaining treatment levels are used to examine the effectiveness of handling
attribute noise at different levels on the performance of the ML model used in
MeBoTS.

By examining the performance measures in the Tables and Figure, the
following observations are drawn from the comparison:

• compared with the other two trials of training, using an uncleaned data-set
for training provides the lowest learning performance.

• training a learner on a class-noise cleaned data would improve the per-
formance of the learner by 70% recall, 37% precision, and 59% F1-score,
compared to a learner built on uncleaned data.

• training a learner on a class and attribute noise cleaned data results in
almost no change in the prediction of passing test cases that are really
passing (recall drop of 4%).

These observations imply that training a classifier on a class-noise cleaned data
will yield to a better performance with respect to precision and recall than the
other two Trials of training. Particularly, the results suggest that building a
learner on class-noise cleaned data will allow testers to correctly exclude 8 out
of 10 actually passing test cases from execution (81% precision). In addition,
the results reveal that training a learner on a PANDA cleaned data would result
in building a learner that is biased towards the positive class. The implication
that these results bring in the domain of TCS are that tester would falsely
exclude 5 out of every 10 actually passing test cases from execution. These
results are in line with the conclusions drawn by Brodley and Friedl, and Zhu
and Wu [21][54], which suggest that attribute noise is less harmful than class
noise on the inductive performance.

Based on the results and discussion points, the following recommendations
are suggested to testers:

• To avoid randomness in the prediction of test case verdicts, uncleaned
data should not be used for building a learner for TCS.

• Testers should consider measuring the ratio of class noise in the data
at hand before building a model for TCS. This would direct the testing
effort by choosing an appropriate noise handling strategy. For example,
if the ratio of class noise is small, then testers can rely on the robustness
of ML algorithms without correcting or eliminating training instances.
If the noise ratio is large, then testers would decide on a correction or
elimination based strategy for cleaning noise.

• Testers should focus on cleaning class noise from the training data, but
not necessarily the attribute noise.

4.8. THREATS TO VALIDITY 95

4.8 Threats to Validity

When analyzing the threats to validity of our study, we followed the framework
recommended by Wohlin et al. [46] and discuss the validity in terms of: external,
internal, construct, and conclusion.

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practices.

Test Cases Sample. Since our original uncleaned data are related to twelve
test cases only, it is difficult to decide whether the studied sample of code
churns is representative to the overall population. However, the selection of the
studied sample was done randomly. This increases the likelihood of drawing a
representative sample.

Control group. The control group used in this study consisted of a relatively
small number of observations and attributes (19,815 observations and 800
attributes). This may pose a risk on the representativeness of the sample with
respect to the overall population. However, the derivation of the control group
was done by randomly selecting attributes and observations from the class-noise
cleaned data. This increases the likelihood of drawing a representative sample
in the control group.

Source code. In this study, we only used a single industrial program to
examine the effect of class and attribute noise on the learning performance of a
classifier. Therefore, we acknowledge that the generalization of the findings is
difficult. However, since the goal of this paper is to gain an initial understanding
of the effect of attribute and class noise, we accept this threat.

Nature of test failure. There is a probability of mis-labelling code changes
in the original data if test failures were due to factors external to defects in
the source code (e.g., machinery malfunctions or environment upgrades). To
minimize this threat, we collected data for multiple test executions that belong
to several test cases, thus minimizing the probability of identifying tests that
are not representative.

Internal Validity Internal validity refers to the degree to which conclusions
can be drawn about the causality between independent and dependent variables.

Configuration. In this study, the ranking of noisy observations produced
by PANDA was determined using a bin size of five. Since the binning size in
PANDA may affect the ranking of noisy observations [13], there is a likelihood
that we chose a bin size that does not identify the highest noisy observations in
the sample data. As a result, the applied treatment may not have eliminated
all observations that come with the highest attribute noise. This may have an
effect on the learning. However, our results showed that the standard deviations
in the learning scores were not largely despaired across the 25 subjects, which
means that the effect of the chosen bin size had a similar effect on learning
across all experimental subjects.

Instrumentation. A potential internal threat is the presence of undetec-
ted issues in the scripts used for vector transformation, data-collection, and

96 CHAPTER 4. PAPER C

PANDA’s implementation. This threat was controlled by carrying out a careful
inspection of the scripts and testing them on small subsets.

Machine Learning Model. The evaluation of learning was done using Random
Forest only - the results were drawn from a single type of ML model. Hence,
the tolerance of RF to noise and its performance will differ when using other
types of learning algorithms. However, in this study, we focus on improving
the learning performance by handling class and attribute noise irrespective of
which model is most suited for noise tolerance.

Construct Validity Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

The Binning Algorithm. The binning algorithm used in the original work of
PANDA was not explicitly stated in the original publication [13]. As a result,
we used the sort values function in the PANDA module of the scikit learn
library to discretize attribute values into bins of predefined sizes. Thus, our
implementation of the algorithm may differ than the one used in the original
work. However, the authors of the original publication state that any binning
algorithm can be used without affecting the performance.

The Calculation of Noise Score. The description for calculating the standard-
ized noise score in the original publication of PANDA [13] created a confusion
with respect to whether the mean and standard deviation should be calculated
for each partition in xj or xk. On the one hand, the description states that
the standardized noise score for attribute value xik is calculated relative to the
partitioned attribute value for instance i,x̂ik. On the other hand, the description
states that ‘the mean and standard deviation of the non-partitioned attributes
xk,k ̸=j relative to each bin x̂j=0,...,L′ is calculated’. In our implementation, we
interpreted the relativeness between an attribute value xik with the partitioned
attribute value for instance i, x̂ik by subtracting the attribute value xik from
the mean to standard deviation ratio of the bin in xj relative to xik. The
alternative interpretation would be to subtract xik from the mean to standard
deviation ratio of the elements in xk relative to the bin in xj . Nevertheless,
our implementation was manually inspected on a small set of line vectors (as
shown in Section 4.3.4) and the ranking of noisy observations were in line with
the definition of attribute noise provided in the original publication [13].

Majority class problem. Upon applying the treatment on the experimental
subjects under the 10 levels, there is a chance that the prediction was biased
towards one of the classes due to an imbalance in the distribution of classes.
Due to the computational cost required to check the balance across 25 subjects
for 10 treatment levels (250 trials), we could not validate that the post treat-
ment subjects are balanced. Nevertheless, the results drawn from the learner’s
precision and recall (mean precision= 52, mean recall= 81) indicate that the
learner was not biased towards a particular class.

Conclusion Validity Conclusion validity focuses on how sure we can be
that the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we
have a few outliers in the sample. Therefore, we ran the analysis twice (with

4.9. CONCLUSION AND FUTURE WORK 97

and without outliers) to examine if they had any impact on the results. Based
on the analysis, we found that dropping the outliers had no effect on the results,
thus we decided to keep them in the analysis.

4.9 Conclusion and Future Work

In this paper, we set off to study the effect of class and attribute noise in
data on the learning performance of an ML model for test case selection. We
chose to study the effect of handling the two noise types (class and attribute)
using a correction and an elimination-based approaches. The results drawn
suggest that handling class noise yields to a substantial improvement in the
prediction of test case verdicts, whereas no similar conclusion could be drawn
with respect to attribute noise. Our study provides empirical evidence which
suggests that handling attribute noise is not necessarily important for building
an effective learner for test case selection. This finding is counter-intuitive when
considering the majority of related literature on attribute noise, which suggest
that handling attribute noise improves the learning performance. This calls for
more studies that need to examine the effect of handling attribute noise on
learning in software engineering contexts.

There are still several questions that need to be addressed before concluding
that handling class noise is more important than attribute noise. A first
question is about finding whether other elimination approaches for identifying
and handling attribute noise can have a different effect on learning than PANDA.
A second question is whether similar results about the effect of class and
attribute noise handling can be generalized when using other data-sets. Future
research about the impact of class and attribute noise should experimentally
explore the effect of both noise types by seeding class and attribute noise into
a clean data-set and evaluating the learning effect. Other research directions
include testing different approaches for handling class and attribute noise such
as tolerance of different ML algorithms.

98 CHAPTER 4. PAPER C

4.10 Appendix A

Attribute Noise
Performance

metrics
Random Forest
n estimater=100

Random Forest
n estimater=300

0%

Acc
Prec
Rec

F-score
MCC

0.54
0.53
0.88
0.66
0.13

0.53
0.50
0.82
0.62
0.10

5%

Acc
Prec
Rec

F-score
MCC

0.54
0.53
0.83
0.64
0.1

0.53
0.52
0.84
0.64
0.10

10%

Acc
Prec
Rec

F-score
MCC

0.53
0.51
0.80
0.61
0.09

0.52
0.51
0.87
0.64
0.09

15%

Acc
Prec
Rec

F-score
MCC

0.53
0.51
0.78
0.60
0.08

0.52
0.51
0.93
0.66
0.10

20%

Acc
Prec
Rec

F-score
MCC

0.52
0.50
0.80
0.61
0.07

0.52
0.51
0.95
0.66
0.1

25%

Acc
Prec
Rec

F-score
MCC

0.53
0.52
0.88
0.65
0.10

0.52
0.51
0.95
0.66
0.07

30%

Acc
Prec
Rec

F-score
MCC

0.52
0.50
0.84
0.62
0.06

0.52
0.51
0.94
0.66
0.074

35%

Acc
Prec
Rec

F-score
MCC

0.53
0.51
0.85
0.63
0.1

0.53
0.51
0.91
0.65
0.11

40%

Acc
Prec
Rec

F-score
MCC

0.53
0.53
0.77
0.61
0.09

0.53
0.51
0.78
0.61
0.08

45%

Acc
Prec
Rec

F-score
MCC

0.54
0.53
0.82
0.63
0.13

0.53
0.52
0.85
0.63
0.10

50%

Acc
Prec
Rec

F-score
MCC

0.54
0.53
0.80
0.62
0.11

0.54
0.52
0.83
0.64
0.11

Chapter 5

Paper D

A Classification of Code Changes and Test Types De-
pendencies for Improving Machine Learning Based Test
Selection

Al-Sabbagh, K.W., Staron, M., Hebig, R. and Gomes, F.

In Proceedings of the 17th International Conference on Predictive
Models and Data Analytics in Software Engineering, pp. 40-49.
2021.

99

Abstract

Machine learning has been increasingly used to solve various software engin-
eering tasks. One example of their usage is in regression testing, where a
classifier is built using historical code commits to predict which test cases
require execution. In this paper, we address the problem of how to link specific
code commits to test types to improve the predictive performance of learning
models in improving regression testing. We design a dependency taxonomy
of the content of committed code and the type of a test case. The taxonomy
focuses on two types of code commits: changing memory management and
algorithm complexity. We reviewed the literature, surveyed experienced testers
from three Swedish-based software companies, and conducted a workshop to
develop the taxonomy. The derived taxonomy shows that memory management
code should be tested with tests related to performance, load, soak, stress,
volume, and capacity; the complexity changes should be tested with the same
dedicated tests and maintainability tests. We conclude that this taxonomy can
improve the effectiveness of building learning models for regression testing.

5.1. INTRODUCTION 99

5.1 Introduction

Software testing has evolved to successfully accommodate for the growing
demand of higher product quality and faster delivery of releases [112]. Neverthe-
less, testing has been notoriously costly for its massive resource consumption -
accounting for more than 50% of the development life cycle. Therefore, optim-
izing testing processes becomes pivotal for companies of all sizes to reduce the
cost overhead and increase the velocity of software development.

An essential yet costly activity in any testing process is to perform regression
testing, which ensures that no new faults in the system arise due to making new
changes to the code base. However, performing regression testing demands a
large amount of resources and a long execution time, which makes it infeasible
to run all impacted test cases on each committed code change.

To address this problem of regression testing, a number of test case selection
approaches have been proposed in the literature [58], [78], and [113]. These
approaches seek to improve the effectiveness of test case selection by inferring
statistical models that can potentially predict affected test cases given changes
in the code base. However, a mutual drawback among these approaches is
that they omit to take into account the dependencies between specific types
of code changes (e.g., memory and algorithmic changes) and test case types
(e.g., performance and security tests) when training predictive models. For
example, Al-Sabbagh et al. [78] proposed building a machine learning (ML)
model for test selection by mapping history executions of test cases and their
relevant code changes without considering what types of test cases are sensitive
to the changes in the source code. Similarly, Knauss et al. [58] proposed an
automatic recommender that analyzes the frequency in which test cases fail
on a particular day given code changes made to software modules irrespective
of the types of changes made in the code and their dependencies with specific
test case types.

Therefore, in this paper, we set off to fill this gap by developing a facet-based
taxonomy of dependencies between code changes and test cases of specific types.
We define a dependency as a relation where a change in the source code of a
given type that triggers a failure in one or more test cases of different types.
The contribution of this work is two-fold. First, it gears the testing efforts at
software companies by allowing the execution of test cases that are in relation
with the submitted code changes to the development repositories - thereby
potentially reduce the time for testing. Second, it lays down the foundation for
researchers to investigate, expand, and refine the identified dependencies. The
addressed research question is:

RQ: To which degree do software testers perceive content of a code commit
and test case types as dependent?

To address this research question, we constructed a taxonomy, linking the
test case types and the categories of source code that can trigger these test
cases. First, we began the taxonomy building by identifying and extracting data
from the literature to find the test types and categories of code changes and
to identify potential synergies between them. Then, we surveyed testers from
software companies to construct and design the faceted taxonomy [114] Finally,

100 CHAPTER 5. PAPER D

for two categories, where the survey results were inconclusive, we conducted a
workshop with the testers to find the strength of these dependencies.

5.2 Related Work

Our work is related to studies on defect and testing taxonomies.

5.2.1 Defect Taxonomies

A widely applicable taxonomy in the software testing literature is Orthogonal
Defect Classification (ODC), which was designed by Chillarege et al. [115].
The ODC taxonomy defines attributes for the classification of failures. Its
main purpose was to identify the root cause of defects and to provide quick
feedback to developers about defects’ cause in the software process. The ODC
can also be used for early detection of faults in static analysis. Several defect
taxonomies have been built on the ODC as a starting point to develop different
domain-specific taxonomies. For example, Li et al. [116] presented an extended
taxonomy of ODC and named it Orthogonal Defect taxonomy for Black-box
Defects (ODC-BD). The taxonomy was designed by the motive of increasing
testing efficiency and improving the analysis of black-box defects. Evaluated
on the analysis of 1860 black-box defects that belong to 40 software projects,
the results showed that using ODC-BD reduced the testing effort by 15% in
one month compared to the testing efficiency when not using the ODC-BD.
Another work conducted by Li et al. [117] adopted ODC to classify web errors
for an improved reliability. Their taxonomy classified web errors according to
their response code, file type, referrer type, agent type, and observation time.

The primary focus of all related work described above is to improve the
quality of the code base by identifying the root cause of defects and to gain
insights into the types of commits that developers commit. However, our
work aims to improve the testing process by providing a taxonomy of code
changes and test cases that can be used to build classifiers for test case selection.

5.2.2 Taxonomies in Software Testing

Software testing has often been confronted with the challenge of unveiling
software defects under sever time pressure and limited hardware resources. Due
to its importance and practical relevance, several software testing taxonomies
have been proposed in the literature. In a systematic literature review study
[118], Britto identified a number of studies that present taxonomies in the area
of software testing. The majority of these taxonomies, however, provides a
classification of the suitability of testing techniques in different contexts. For
example, Novak et al. [119] developed a tree-based classification of features
that are attributed to existing static code analysis tools. The taxonomy offers
a classification of existing static analyzers based on the technology, availability
of rules, and the programming languages that each tool supports. Similarly,

5.3. RESEARCH METHOD 101

Vegas et al. [120] classified a set of unit testing techniques and mapped their
characteristics with project characteristics to aid the selection of suitable testing
approaches based on the project’s characteristics. The presented taxonomy
comprised a number of criteria such as when to use the testing approach,
who to use it, and where it can be used. Felderer et al. [121] presented a
classification for supporting the categorization of risk-based testing approaches
and tailoring their usages depending on the context and purpose. The taxonomy
classifies different risk drivers, risk assessments, risk-based test processes. All of
these taxonomies provide a generic classification of the applicability of testing
techniques in different software engineering projects. However, no taxonomy
discusses the dimension of dependencies between code commits and test case
types. Classifying these dependencies can potentially aid in the identification
and execution of tests that are relevant to the committed code and hence
counteract exhaustive testing efforts. The taxonomy presented in this study
aims at filling this gap by identifying facets of dependency connections from
the viewpoints of software testers.

5.3 Research Method

In this study, we follow the method proposed by Usman et al. [48] to guide
the construction of the taxonomy. The method comprises of four phases: i)
planning, ii) identification and extraction, iii) design and construction, and iv)
validation.

5.3.1 Planning

The first phase in the adopted method involves six activities for planning the
context of the taxonomy and defining its initial settings. Table 5.1 illustrates
the outcome of each planning activity. Since the ultimate goal of this study
is to gear the testing efforts by improving the selection of test cases, then the
the knowledge area associated to the taxonomy is in the domain of software
testing (A1). The second activity (A2) defines the objective of the taxonomy,
which in our case is to identify the degree at which testers perceive dependency
patterns between code changes and test case types. The subject matters (units
of classifications) are categories of code changes and test case types (A3).
A faceted-based approach is devised for creating the taxonomy (A4). The
procedure for classifying the subject matters are qualitative and quantitative -
literature review, survey, and discussions with testers in a workshop setting
(A5). Finally, the basis of the taxonomy consists of categories of code changes
and test case types drawn from the literature (A6).

5.3.2 Identification and Extraction

The identification and extraction phase involves identifying the main categories
and terms used in the taxonomy. We begin the implementation of this phase by

102 CHAPTER 5. PAPER D

Table 5.1: Planning Activities

Id Planning Activity

A1 The software engineering knowledge associated to the designed tax-
onomy is software testing.

A2 The main objective of the proposed taxonomy is to identify dependency
patterns between code changes and test case types from the perspective
of testers.

A3 The subject matters of the designed taxonomy are categories of code
changes and test case types.

A4 The taxonomy was designed using a facet-based structure.

A5 The procedure used for classifying the subject matters was qualitative
and quantitative.

A6 The basis of the taxonomy consists of code change categories and test
case types drawn from the literature.

reviewing the literature in search for knowledge about the subject matters. For
this purpose, we account for two inclusion criteria in our literature search. First,
we wanted to include papers that discuss the impact of specific changes in the
code on the quality of the system. Second, we were only interested in papers
that were written in English and accessible. The challenge in this phase was
to extract terms that are consistent and not interchangeably used in different
research studies. Therefore, to overcome this challenge we based our literature
search on the set of recognized test case types defined in the international
standard ISO/IEC/IEEE CD 2911901:2020(E) document [55] (presented in
Section 5.4.1). That is, for each test case type in the ISO document, we searched
for relevant papers that empirically investigate or theoretically discuss types
of code changes that trigger a reaction among the test cases. The outcome of
this phase was a list of six categories of code changes and 18 test case types.
Further, and based on our literature search, we identified synergy links between
the six code categories and the 18 test types (as depicted in Fig 5.2).

5.3.3 Design and Construction

This phase presents the relationships between the identified categories and
describes how they were connected. Since the goal of the taxonomy is to
answer the question of To which degree do software testers perceive content of
a code commit and a test case types as dependent?, we decided to open up for
the community of testers to seek their opinions about potential dependency
patterns between the categories of code changes and test case types and to
identify the strengths of the identified dependencies.

5.3. RESEARCH METHOD 103

5.3.3.1 Survey

We began this phase by creating a survey and distributing an invitation email
to software development companies that are affiliated to a Swedish consortium
called ’Software Center’. The consortium comprises a total of fifteen companies
and five universities that collaborate together to advance knowledge in seven
different software engineering themes.

To mitigate the risk of receiving responses from different domain perspectives
(e.g., web development), we decided to focus on surveying testers that specialize
in the same domain area. Therefore, we sent the invitation email to five
companies that are active in the development of embedded systems. The survey
comprised two column lists. The first list included definitions of the test case
types (see Section 5.4.1), whereas the second list included the categories of
code changes (see Section 5.4.2). As a first task, all invitees were asked to
provide a mapping between each test case type and category of code changes,
where a mapping corresponds to a dependency between a single test case type
and a category of code change.

The second task was for testers to propose and map additional test case
types with categories of code changes that were not provided in the survey.
The purpose was to mitigate the risk of missing out dependency patterns that
testers perceive as important.

Finally, to achieve a better understanding of our target group of testers,
all invitees were asked to mark the test case types that they exercise in their
workplaces. Overall, we received a total of nine responses from nine testers
working at the three software development companies. A general overview of
the number of experienced testers for each test case type is provided in Fig 5.1.

Figure 5.1: Number of Experienced Testers Per Each Test Type.

5.3.3.2 Workshop with Testers

The data from the survey provided us with the understanding of the dependen-
cies. However, these dependencies could be of different strength and therefore
we organized a workshop with the respondents to assess the strengths of depend-
encies for each test type to code changes. Three out of the nine respondents,

104 CHAPTER 5. PAPER D

who participated in the survey, and three other testers from another software
company attended the workshop. Our analysis of the survey responses showed
that the strongest dependencies were concentrated around the memory man-
agement and complexity categories of code changes. Therefore, we decided to
focus on assessing the dependency strengths between these two categories of
code changes and test case types in the workshop.

During the workshop, the entire group of testers discussed how sensitive
each test type to the change of source code that affects 1) memory management
or 2) complexity. The goal of the discussion was to gain an understanding of
the dependency strengths from the viewpoint of testers, in the following scale:

1. Not sensitive at all. This level was used when the testers judged that
such a change would not trigger the test case to fail.

2. Not very sensitive. This level was used when the testers judged that
triggering a failure would be coincidental.

3. Somewhat sensitive. This level was used when the testers judged that
triggering would be under specific conditions.

4. Sensitive. This level was used by the testers to indicate that a change
under most conditions triggers a test case failure.

5. Very sensitive. This level was used when the change should trigger the
failure of the test case.

After discussing the sensitivity strengths, using the above scale, we asked
the testers to justify their views about the sensitivity of each dependency by
providing explanations for their ranking.

5.3.4 Validation

This phase ensures that the selected subject matters are clear and thoroughly
classified [48]. This can be achieved using three distinct methods: Ortho-
gonality demonstration, benchmarking and utility demonstration. Most of
the taxonomies proposed in Software Engineering are evaluated via an util-
ity demonstration, i.e., authors apply their taxonomy to an example [48].
In turn, benchmarking is used to compare the classification capabilities of
different taxonomies. In both cases, the taxonomy needs to be applied in
actual software artefacts. For this study, we cannot perform those types of
validation because we do not have access to test cases or code changes from our
industry partners. Therefore, we validate our taxonomy using an orthogonality
demonstration. That is, we demonstrate and discuss the orthogonality between
strongly dependent categories from the viewpoints of testers. The goal is to
illustrate the unique classifications offered by our taxonomy. Based on this
demonstration, we aim to highlight which types of tests map to unique types
of code changes, as well as those dependencies that cover multiple types of tests.

5.4. RESULTS 105

5.4 Results

This section presents the findings for the research question To which degree
do software testers perceive content of a code commit and a test case types as
dependent?

5.4.1 Test Case Types

In this paper, we decided to base our literature search for extracting code
change categories on the list of test case types defined in this ISO/IEC/IEEE
CD 2911901:2020(E) document [55]. This was done to overcome the challenge of
encountering different terms of test case types that are used interchangeably in
published articles. For example, the terms ‘back to back’and ‘differential’testing
can be found and used interchangeably in the literature. Table 5.2 lists the
definitions of all test case types that we used in our literature search. We used
each test case type in the Table to search for relevant papers that empirically
investigate or theoretically discuss the dependency between the relevant test
case type and code changes.

5.4.2 Code Change Categories and Dependencies with
Test Case Types

Our literature search returned a set of 16 relevant papers from which we
could extract six different categories of code changes. These categories were: 1)
Memory Management, 2) Complexity, 3) Design, 4) Dependency, 5) Conditional,
6) Data. Based on the literature search, we identified 21 dependency links
between the six drawn categories of code and eight out of the 18 test case
types defined in the ISO document, as shown in Fig 6.1. Each dependency
corresponds to a relation where a change in one of the code category results in
a failure of a test case of specific type.

We now define the identified categories of code changes and illustrate the
effect of each on test case types by means of code examples written in the C++
language.

Memory management: This category of change involves groups that are con-
cerned with the management of memory occupied by the system during run-time.
Such changes include introducing/fixing memory leaks, buffer overflow, dangling
pointers, and resource interference with multi-threading. The following test
types would react to this category of change: performance [122], load [123],
security [124][125], soak [126], stress [127], reliability [128] tests. A common
memory leak scenario occurs when a developer allocates memory space using
the new or malloc keywords, and misses freeing memory space after they were
used. As the program grows in size, less memory becomes available and thereby
a performance degradation is encountered. The code example in Fig 5.3 shows

106 CHAPTER 5. PAPER D

Table 5.2: Definitions of Test Case Types

Test Type Definition

Smoke Initial testing of the main functionality of a test item to
determine whether subsequent testing is worthwhile.

Soak Testing performed over extended periods to check the effect
on the test item of operating for such long periods.

Stress Testing performed to evaluate a test item’s behaviour under
conditions of loading above anticipated requirements.

Volume Testing performed to evaluate the capability of the test item
to process specified volumes of data in terms of capacity.

Load Testing performed to evaluate the behaviour of a test item
under anticipated conditions of varying loads.

Statement Test design technique in which test cases are constructed
to force execution of individual statements in a test item.

Maintainability Evaluate the degree of effectiveness and efficiency with
which a test item may be modified.

Security Evaluate the degree to which a test item, and associated
data, are protected against unauthorized access.

Performance Evaluate the degree to which a test item accomplishes its
designated functions within given time.

Capacity Evaluate the level at which increasing load affects a test
item’s ability to sustain required performance.

Portability Evaluate the ease with which a test item can be transferred
from one environment to another.

Installability Testing conducted to evaluate whether a set of test items
can be installed as required in all specified environments.

Compatibility Measure the degree to which a test item can function along-
side other independent products.

Reliability Evaluate the ability of a test item to perform its required
functions under stated conditions for a period of time.

Accessibility Determine the ease by which users with disabilities can use
a test item.

Back-to-back An alternative version of the system is used as an oracle
to generate expected results for comparison from the same
inputs.

Backup and recov-
ery

Measures the degree to which a system state can be restored
from backup within specified time in the event of failure.

Procedure Evaluate whether procedural instructions for interacting
with a test item to meet user requirements.

5.4. RESULTS 107

Figure 5.2: Extracted Categories of Code Changes and Their Dependency with
Test Case Types.

Figure 5.3: Code Example For Memory Management Change.

how the memory space allocated for pointer pListElementNext was unfreed
from the memory after being used in revision 2.

Complexity: This category represents changes that add/reduce the time com-
plexity of the program. It includes changes such as adding or removing loops,
conditional statements, nesting blocks and/or recursions. The following test
types have been identified to react to this category of change: performance
[129], [130], maintainability [131], [132] tests. Fig 5.4 shows a code example
for finding the maximum integer element in an array. The function in the first
revision takes a one dimensional array as input, whereas the second revision
is modified to accept two-dimensional arrays. The nested loop added to the
function in revision 2 would result in an increased time complexity order.
Similar changes can potentially trigger performance degradation and thereby
performance test failures.

Design: This category involves changes that include code refactoring, adding or
removing methods, classes, interfaces, and enumerators, and code smells. The
following test types have been identified to react to this category of change:

108 CHAPTER 5. PAPER D

Figure 5.4: Code Example For Complexity Change.

maintainability [131], performance [131], security [133], and reliability [134].
The code example in in Fig 5.5 illustrates a design change in a program that
computes the sum of an array elements. The function ’CalculateRank’ was
added in the modified revision to handle the task of summing up the array
elements. Such design decisions reduce the amount of code lines in the program
and thus improves its maintainability.

Figure 5.5: A Code Example For Design Change.

Dependency: This category describes a code change that involves adding/
removing/ modifying a dependency to another module/ library. It can be
importing/ removing/ modifying a new library, a new namespace, or a new
class. Changes in the dependencies between software artefacts can trigger
the following tests: maintainability [135], security [124], procedure [136], and
performance [130].
Conditional: This category of change occurs when a logical operator or a
comparative value in a condition is modified. A misuse of logical expressions
might result in generating the wrong outputs. Performance and procedure tests
[130][136] were identified as dependent on this category of change.
Data change: This category involves 1) changing functions’ parameters, 2)

5.4. RESULTS 109

passing parameters of incompatible types to modules/ functions, and 3) adding/
fixing assignments of incompatible types to variables, casting statements, and
array size allocations, and 4) modifying variable declarations. The following
tests would react to such code changes: security [137], performance [130], and
procedure [136].

5.4.3 Dependency Patterns and Strengths

5.4.3.1 Survey.

Based on the types of tests and code changes extracted in the previous step,
we created the survey. We sent our survey to 15 industry practitioners and
received responses from nine participating testers (i.e., 60% response rate).
Our analysis focuses on 1) examining whether testers had proposed additional
types of test cases or categories of code change, and 2) examining the level of
agreement and disagreement between the testers’ perceived connections of types
of tests and code changes. For instance, whether testers expect a connection
between design changes and maintainability tests, as reported in the literature.
Fig 5.6 is a contingency table that depicts the testers’ opinions about potential
dependencies. Our analysis of the responses revealed the following observations:

• The strongest dependency patterns were mostly concentrated around the
memory management and complexity categories of code changes.

• There was a general consensus between the testers about the mappings
between performance, soak, load, stress, capacity, and volume tests and
the six types of code change categories.

• Most of the discrepancies in the responses were in the classification of
the design, dependency, and data categories.

• Two additional test types, i.e., not found in our literature extraction,
were proposed by the testers: Regression and functional tests. The
ISO/IEC/IEEE CD 2911901:2020(E) considers these two types of tests as
testing activities, since these can be applied at any point in time irrespect-
ive of the testing level (unit, integration, system, and user acceptance)
[55].

Due to the agreement between most testers about the connection between
the complexity and memory management categories of code changes, we decided
to focus the workshop on exploring the deeper connections between these two
types of code changes and all types of tests. Focusing on only those two
categories allowed us to capture the details of practitioners’ perception about
the connections between code changes and many types of tests such as process
or human factors related to identifying those changes, or code constructs used
in industry to classify those changes.

110 CHAPTER 5. PAPER D

Figure 5.6: Testers’ classifications of code changes and test case types. Each
cell indicates the number of testers that perceive a relationship between the
corresponding type of code changes and tests. Darker cells indicate stronger
level of agreement between testers.

5.4.3.2 Workshop

We now present the results of the dependency scores given by the testers during
the workshop. Figs 5.7 and 5.8 are diverging plots that show the sensitivity
strengths of each test type to the memory management and complexity cat-
egories. By examining the sensitivity strength scores, of each test case type in
Fig 5.7, we observe that the majority of the testers perceived six tests types to
be mostly sensitive to memory management changes. Namely, performance,
load, soak, stress, volume and capacity tests. Similarly, Fig 5.8 shows that
performance, soak, load, statement, stress, volume, and maintainability tests
were perceived as mostly sensitive to complexity related changes. In the re-
mainder of this subsection, we present the main results of the discussions with
the testers that explain their perspective on those connections.

5.4.3.3 Memory Management

Smoke, back-to-back, and statement tests: The respondents justified the low
sensitivity strengths of these three test types to the fact that they focus on the
functionality of the software system, rather than its qualities. One respondent
linked the sensitivity of smoke tests to memory management changes to two
specific scenarios: 1) when changing from one programming language to another,
or 2) when doing major code refactoring.

“It’s not that often that the smoke tests will break due to memory management
changes but one possible scenario for this to happen is when we switch from C
to C++ first we changed the compiler, then we started modernizing the code
to use smart pointers. Another scenario is when we do major refactoring to
optimize the code base.” — Participant 1

5.4. RESULTS 111

Figure 5.7: Diverging plot showing the strength of perceived connections
between each test type and memory management changes. The percentages to
the right indicate the proportion of testers that see a stronger relationship, in
contrast to those that see a weaker relationship. Testers with a neutral view
are shown as the percentage in the middle.

112 CHAPTER 5. PAPER D

Figure 5.8: Diverging plot showing the strength of perceived connections
between each test type and complexity changes. The percentages to the right
indicate the proportion of testers that see a stronger relationship, in contrast
to those that see a weaker relationship. Testers with a neutral view are shown
as the percentage in the middle.

5.4. RESULTS 113

Compatibility and portability tests: All testers agreed that these two types
of tests are not sensitive at all to memory changes. The testers explained
that these tests may only be triggered in the event of hardware failure in
the environment. One opposing viewpoint considered memory management
changes to have an effect on the stability of APIs used for information exchange
in a shared environment, and thereby can trigger a failure in the two tests.

“Failure in these two types of tests can be explained by a device failure or in
the way the APIs in the shared environments are handling concurrent requests,
which often requires memory management changes.” — Participant 1

Load, stress, soak, capacity, and volume tests: The majority of testers
considered these test types to be very similar to performance tests. As a result,
most of the justifications given about the sensitivity strengths of the five tests
are somewhat similar. The testers explained that, in general, failure in one of
the five test types can be triggered by memory related changes when expanding
the functionality of existing classes.

“if you allocate more memory to expand an existing class then failure among
performance tests might be triggered.” — Participant 2

In addition, one tester emphasized that failure in any of these tests depends
on the amount of changes made between releases and the information specified
in the test oracle. That is, failures can only be captured when the amount of
code changes made between releases is large.

“Failure in these tests depends on the oracle. If you just use the performance
test to compare performance from the latest release then there might be no
issues because the changes are too small, but if you do big changes then you
might spot memory problems.” — Participant 2

Installability tests: The sensitivity of this test type was perceived as mod-
erate (somewhat sensitive) by 50% of the testers. These testers argued that
installability testing is sensitive to memory management changes in situations
where the development team decides to change from one operating system to
another.

“When porting from a Windows environment to a Linux environment, we
should make some memory changes, which trigger installability tests to fail.”
— Participant 3

Security tests: There was a disparity in the views of testers regarding the
sensitivity of this test type. 33% of the testers perceived this test to be sensitive
to memory changes, 17% perceived it to be somewhat sensitive, whereas 50%
of testers perceive a low sensitivity to this type of test. Testers who considered
this test type to be sensitive argued that memory changes lead to memory leaks
which, if not properly managed, might expose the system to security breaches.

“I think that memory management changes could lead to things being exposed
that should not be. For example exposing kernels space memory to be violated.”
— Participant 1

114 CHAPTER 5. PAPER D

Disagreeing participants argued that resource leaks result in performance
issues rather than security breeches. Further, they linked the sensitivity of
security tests to the program domain.

“In specific domains, memory management is mostly handled on the cloud side
providing the service. Internally, memory is not something that will trigger
security tests to fail.” — Participant 4

5.4.3.4 Complexity code changes

Performance, soak, load, volume, and stress tests: The majority of the testers
ranked these types of tests to be either sensitive or very sensitive to complexity
changes. As an argument for their ranking, the testers discussed that adding
complexity changes such as nested loops will increase the cyclomatic complexity
size in the system, which would in turn affects the system’s response time.

“As the cyclomatic complexity increases, the response time of the system will
also get impacted.” — Participant 2

The remaining minority of the testers argued that developers are aware
of the impact of adding complexity changes on performance. As such, it is
highly unlikely that developers will commit complexity code changes without
optimizing their code before testing.

“If developers are adding complexity consciously then there will be performance
issues, but often the times, developers will address these complexity before even
pushing their code for testing.” — Participant 3

Maintainability test: All of the participants perceived this test type to be
either sensitive or very sensitive to complexity changes in the code. One of
the participants argued that adding more control paths in the system, such as
loops and case blocks, leads to the development of larger and poorly structured
software, which makes it more difficult and less efficient to maintain.

“Adding things like loops or method calls into the program increases its size
and makes the task of debugging more difficult as the program evolves over
time.” — Participant 5

Security test: 50% of the participants indicated that security tests are
somewhat sensitive to complexity changes. This was explained by the fact
that adding recursion calls and loops to the code can potentially increase
the size and modularity of the system under test, thus it will increase risk of
missing security vulnerabilities. Conversely, around 30% of the participants
believed that security tests are not sensitive at all to complexity changes.
This contrasting view indicates that the links between security threats and
increasing/decreasing code complexity are not clear for testers.

“I think it’s not really a good thing to add complexity for security aware
purposes. It is very important to understand what’s going on in the code to be
able to deal with things like security.” — Participant 2

“adding loops will in no way expose the system to external threats and therefore
no security tests will break if more loops are added - adding loops will not cause
any vulnerabilities in the system.” — Participant 6

5.4. RESULTS 115

The remaining 20% of the participants considered security tests to be
sensitive to complexity changes, but did not provide any justification for this
rank.

5.4.4 Resulting Taxonomy

The constructed taxonomy is based on the analysis of the overall agreement
between testers who participated in the workshop and their justifications about
each dependency. A test case type whose overall sensitivity to a code change
was ranked as either sensitive or very sensitive by the majority of the testers
was added to the taxonomy - provided that a justification for the dependency
was made by one or more of the agreeing testers. Our analysis results of the
workshop discussions show that testers have an aligned viewpoint with the
classifications drawn from the literature in six of the dependency connections.
Namely between: 1) memory management code and performance, load, soak,
and stress tests, 2) complexity code and performance and maintainability tests.
Beside these aligned dependencies, testers perceive six other dependencies to
be in a strong causality relationship with the two categories of code. Those de-
pendencies were between 1) memory management code changes and volume and
capacity tests, 2) complexity code changes and load, soak, stress, and volume
tests. Fig 5.9 shows the constructed taxonomy. We identify the strong and weak
relationships mentioned by practitioners. Overall, the results show that the
memory management code should be tested with tests related to performance,
load, soak, stress, volume and capacity; the complexity changes should be
tested with the same and additionally with the dedicated maintainability tests.

Figure 5.9: The final taxonomy of code changes and test case types. The solid
connectors represent strong dependencies perceived by practitioners, whereas
the dashed connectors correspond to those dependencies perceived as weak.

116 CHAPTER 5. PAPER D

5.5 Taxonomy Validation

We evaluate our taxonomy by discussing the orthogonality of its classification.
In other words, we illustrate how the chosen facets can support the prediction of
connections between types of tests and code changes. Particularly, we emphas-
ize the unique combinations found in our facets for supporting testers to classify
the tests in connection with the code changes made. We frame the applicability
of our taxonomy in relation to automated prediction of relationships between
code and tests to support effective test orchestration.

5.5.1 Orthogonality of the Taxonomy’s Facets

The majority of relationships are connected to the memory management code
changes (11/18). That is not surprising as most of the types of tests found in
literature cover system qualities. In fact, during workshops, practitioners rarely
mention updates in functionalities (e.g., system requirements), except when
discussing complexity changes. Memory management is exclusively connected
with 5 test types, such that only 1 of those connections is strong (capacity tests).
Consequently, those weak connections can be used to avoid overhead in test
executions when focusing the verification of changes in memory management
of software systems. Changes in complexity have fewer connections and most
of them are actually shared with memory management (6/7), hence indicating
a confounding factor between verifying changes in complexity to their impact
on verifying memory management. Maintainability is only associated with
complexity which is not surprising, since the complexity of a source code has
impact on core aspects of maintainability such as testability and debugging
[138]. The results show one weak connection shared between both types of code
changes, which is related to security testing. Still, practitioners did not seem
to have a consensus on how to handle security tests. Note that on Figs 5.3
and 5.4, security is ranked in the middle between the more explicit agreement
and disagreements for both code categories. These contrasting views from
practitioners on the purpose of security tests align with the findings drawn by
Morrison et al. [139], where the authors highlighted a number of factors that
impede the construction of effective vulnerability ML models.

5.5.2 Instrumenting Prediction of Dependencies

Table 5.3 breaks down memory management and complexity changes into
specific types and their connection to specific code constructs. We choose
C++ constructs because our study encompasses the domain of embedded
systems. Future work aims at expanding the constructs to other programming
languages such as Java or Python. Associating these code changes to specific
code constructs enables automatic extraction and identification of code changes
by using information from control version systems, such as git. The process
of identifying and classifying code lines into their relevant categories can be

5.5. TAXONOMY VALIDATION 117

Table 5.3: Types and Constructs Related to Memory Management and Com-
plexity Code Changes.

Memory Management

Subcategory Description Code Constructs

Dangling/
Wild point-
ers

occurs when deleting an object
from memory without altering
the pointer that points to the
object’s location.

&variable, *vari-
able, NULL, free

Memory
leaks

occur when memory space is al-
located but not freed. If such in-
cidents occur, leaks will happen
and could eventually cause the
program to run out of memory
resulting in a program halt.

delete, free, new,
malloc

Buffer over-
flow

occurs when the data gets writ-
ten past the boundaries of the
buffer allocated in memory.

malloc, strcpy, gets,
strcmp

Complexity

Subcategory Description Code Constructs

Loops and
conditions

repeating a sequence of instruc-
tions for n times until one or
more conditions are satisfied.
The repetition can occur in the
form of multiple nested loops.

for, while, do, if,
switch, case, break

recursion Occurs when a function calls it-
self until an exit condition is
satisfied.

instrumented using, for example, a tokenizer and a lexicon of vocabulary
that contains a mapping between code tokens (constructs) and their relevant
categories of code. For example, a code line that appears with a combination
of the tokens ’delete, free, new, and malloc’ can be used to classify a code line
as memory management related, since these tokens are used during objects’
creation/destruction (Table 5.3). In contrast, automatically identifying and
extracting types of tests is more challenging because those tests are used
across different levels (e.g., unit or system) such that keyword extraction is
inaccurate, particularly for higher levels of testing where tests are written in
natural language (e.g., acceptance tests). Therefore, for this study, we assume
that practitioners have access to the types of their tests, as part of their test
process.

RQ. To which degree do software testers perceive content of a
code commit and test case types as dependent?

The measured degree of perception among software testers suggests a strong
dependency between performance, load, soak, stress, and volume tests and

118 CHAPTER 5. PAPER D

memory management related code changes. On the other hand, testers believe
that soak, statement, back to back, security and installability tests are in
weak dependencies with memory management code. Similarly, the majority of
testers perceive the same set of strongly dependent test types with memory
management changes to be dependent on complexity changes; in addition to
maintainability tests and excluding capacity tests.

Based on these findings, test orchestrators that are keen on using ML
models for test selection are encouraged to build their ML models on data
that reflects the dependency patterns depicted in the presented taxonomy (Fig
5.9). Particularly, by mapping memory management and algorithmic complex-
ity related code changes to the verdict of the strongly dependent test case types.

5.6 Threats to validity

In this section, we briefly discuss the limitations of our paper using the frame-
work recommended by Wohlin et al. [46].

Conclusion Validity: Since this paper does not aim to provide a systemic
survey, we did not use a formal protocol for conducting the literature review.
Therefore, we cannot ensure that the selection of the code categories and test
case types was unbiased. However, we minimize this risk by inviting testers
to propose other types of code changes and test cases that are not provided
in the survey invitation email. Moreover, there is a likelihood that we missed
adding valid dependencies in the taxonomy as a result of 1) not discussing the
sensitivity of all test types with testers, and 2) lack of experience among testers
in some test case types. However, since the goal of this work is to study the
dependency between code changes and test types, we accept this risk.

External Validity: The sample size of testers who participated in the survey
and the workshop was small. Therefore, we acknowledge that the generalization
of our findings might be delimited. However, the survey data and the workshop
discussion provided some valuable insights into understanding the dependencies
and sensitivity strengths of different test case types and code changes.

Internal Validity: The time span between the distribution of the survey and
the the workshop was almost two months. This poses a threat with respect to
the testers’ comprehension of the terms and definitions that were used during
the workshop (e.g., test case types). We mitigated this threat by providing
definitions for all the terms used in the workshop. Another internal threat to
validity is the likelihood that testers were influenced by the opinions of each
other. However, since we construct our taxonomy based on a triangulated
approach, we minimize the likelihood of this risk.

Construct Validity: This study builds on the assumption that there exists
a dependency between code changes and test types. Nevertheless, there is a
chance that such a dependency does not exist and that what we found was
coincidental. We minimize this risk by constructing the taxonomy from the
viewpoints of practitioners.

5.7. CONCLUSION AND FUTURE WORK 119

5.7 Conclusion and Future Work

The taxonomy presented in this paper aims at classifying dependencies between
categories of code changes and test case types. Exploring these dependencies
can potentially contribute to the improvement of ML based test case selection
approaches that use code analysis and test execution results. In this paper, we
have observed strong dependencies between two categories of code changes and
seven test case types. This knowledge can gear the test orchestration efforts
by pinpointing and executing test cases that are in relation with the relevant
changes in the source code. The strongest dependencies were captured between
performance, load, stress, soak, volume and the two categories of code changes:
memory management and complexity. On the opposite end of the spectrum, the
weakest dependencies were found between smoke, back-to-back, installability,
accessibility, portability, compatibility, and backup and recovery tests, and the
two categories of code changes. Those test cases can be excluded from the suite
when the tested code contains memory management and complexity changes
only. As a future work, we plan to continue working on refining the presented
taxonomy by investigating additional dependency patterns between other test
case types and categories of code changes. Another important future work is
to investigate potential dependency links between test script constructs and
test execution outcomes of different types. Finally, we aim at evaluating the
taxonomy presented in this study by using utility demonstrations on different
software projects and programming languages.

120 CHAPTER 5. PAPER D

Chapter 6

Paper E

Improving Software Regression Testing Using a Machine
Learning-Based Method for Test Type Selection

Al-Sabbagh, K.W., Staron, M., and Hebig, R.

In Product-Focused Software Process Improvement: 23rd Interna-
tional Conference, PROFES 2022, Proceedings (pp. 480-496).

121

Abstract

Since only a limited time is available for performing software regression testing,
a subset of crucial test cases from the test suites has to be selected for execution.
In this paper, we introduce a method that uses the relation between types of
code changes and regression tests to select test types that require execution.
We work closely with a large power supply company to develop and evaluate
the method and measure the total regression testing time taken by our method
and its effectiveness in selecting the most relevant test types. The results show
that the method reduces the total regression time by an average of 18.33%
when compared with the approach used by our industrial partner. The results
also show that using a medium window size in the method configuration results
in an improved recall rate from 61.11% to 83.33%, but not in considerable time
reduction of testing. We conclude that our method can potentially be used to
steer the testing effort at software development companies by guiding testers
into which regression test types are essential for execution.

6.1. INTRODUCTION 121

6.1 Introduction

Modern software development projects evolve rapidly as software engineers add
new features, fix faults, or refactor code smells. To prevent faults from breaking
existing functionality in the evolving system, software engineers frequently
perform software regression testing. A safe and straightforward approach to
perform regression testing is to execute a pre-defined set of test cases, usually a
selection of unit, system and function tests. Such an approach is often referred
to as a retest-all strategy. Despite benefits in set-up time, this strategy does
not take into consideration changes done to the system – these are often tested
during system or function test phases. The frequent execution of these retest-all
test suites can also be extremely time and resource consuming. As a remedy
to this, a number of Test Case Selection (TCS) methods have been developed,
e.g., selecting tests based on their relevance to the modifications made in the
SUT (System Under Test), in this way reducing the time and cost of testing.

A recent family of approaches for TCS employs statistical models to predict
test cases based on their historical verdicts [58], [78], and [113]. These ap-
proaches are based on the assumption that a dependency between code changes
and test case execution results (pass/fail) exists. For example, Knauss et al.
[58] proposed an automatic recommender that analyzes the frequency in which
test cases fail on a particular day given code changes made to software modules,
achieving 78% reduction in the studied test suite. Similarly, one of the first
implementations of ML for test case selection was presented in our previous
work [78], where we introduced a TCS method that utilizes textual analysis
and a conventional tree-based model to predict test case execution results.

All of these approaches create a prediction model using historical test
execution results and the code changes against which these tests were exercised.
However, there are several inherent challenges to the application of these
approaches. One of the major challenges is the need to develop a database of
source code changes over time and a database of the related test case verdicts.

In response to this challenge, we have been investigating strategies for
applying test selection without the need to use historical information about test
execution results. Instead of the historical verdicts, we focus on the relation
between types of code changes (e.g., including new conditional statements)
and type of regression tests (e.g., statement test, [55]). We have constructed
a facet-based taxonomy of dependencies between code changes and test cases
of specific types [140]. The knowledge presented in the dependency taxonomy
is used to instrument tools for TCS by only analyzing the content of code
changes, and thus determine which set of test types will be affected by the
change. We address the following research question:

How to reduce the time of regression testing by selecting only the
most relevant test types?

We address this question by developing a machine learning-based method
(and a tool) – HiTTs (Human-in-the-loop Approach for Test Type Selection)–
that automatically identifies types of code changes and then selects the relevant
types of tests. By using test types and source code changes types, we do not

122 CHAPTER 6. PAPER E

require historical data about the test case verdicts and therefore, HiTTs can
be used already from the start of software development.

We work closely with a large power supply provider that develops software
solutions to revise the taxonomy and validate the results. To evaluate our
method, we used an embedded system that is owned and developed by our
industrial partner. The results of this study show that our method has promising
potentials in reducing the regression testing time at a high fault detection rate.

6.2 Related Work

Previous studies have been conducted to examine SW regression testing ap-
proaches, as surveyed in [141] and [68]. The majority of these approaches
differ from our approach in their used artifacts (i.e., they require information
about test cases) and the underlying concepts (i.e., they operate on a test
level granularity). Unlike our approach, existing approaches require updating
dependency graphs or coverage information to select or prioritize tests. In this
section, we discuss some of these approaches and report their time usage of
testing.

Greedy-based Chi et al. [142] proposed an algorithm that traces method
call sequences under each test case to construct a call graph. The call graph is
then used to sample the testing order based on method call sequence coverage
criterion. The method was valuated and compared for effectiveness in terms
of of fault detection and time usage against 22 state-of-the-art techniques.
The results showed that the algorithm outperformed the other 22 techniques
in terms of fault detection, but not in time usage. Specifically, the proposed
technique was found to take 20.5% more than the next best technique compared
for effectiveness.

Similarity-based De Oliveira Neto et al. [143] conducted a case study
to investigate the efficiency of 3 similarity-based approaches for test selection,
namely, the Normalised Levenshtein, Jaccard Index, and Normalised Compres-
sion Distance. The results showed that using the Normalized Levenshtein and
Jaccard Index outperformed the Normalised Compression Distance in terms of
their coverage rate of test requirements, dependencies, and steps. Specifically,
the Normalized Levenshtein reduced the amount of executed tests by 65% and
could still cover distinct combinations of test dependencies required to execute
test cases. In terms of the saved time, the results showed that the Normalized
Levenshtein reduced the testing time by 15.1% compared to random selection.

ML-based: Bertolino et al. [144] proposed an approach that seeks to find
transitively dependent classes on changed ones in new versions of the SUT
along with their associated test classes. The approach prioritizes the selected
tests based on several code and test metrics which then get fed into an ML
model for training. The evaluation of the approach was done by comparing 10
ML algorithms using 6 Java projects in terms of the Rank Percentile Average
metric and the sum of time required for ranking the selected tests. The results
showed that using the MART algorithm outperforms the others in terms of
Rank Percentile Average, whereas the Coordinate ASCENT performed best in

6.3. CORE CONCEPTS AND BACKGROUND 123

terms of ranking time.
Graph-based: Orso et al. [145] proposed a two-phase algorithm that builds

a graph representation of the SUT and then identifies, based on information
on changed classes, the parts of the SUT that need to be tested. As a result,
tests that traverse the changed parts of the SUT are selected for execution.
The authors compared the regression testing time of their approach against a
retest-all baseline on 3 programs. The results showed that using their approach
reduced the regression testing time between 5.9% to 89.7%, with an average of
42.8%.

6.3 Core Concepts and Background

This section presents core concepts and defines several types of code changes
and tests presented in [140].

6.3.1 Core Concepts

We use the definition of a software program P to be a collection of lines of
code L <L1,. . . ,Ln>. P’ denotes a modified revision of P, and includes one
or more combinations of added/removed/modified L, distant from P. We use
the term ‘revision’ to refer to a modified version of P. A test case, denoted
by tc, is a specification of the inputs and expected results to verify that P’
complies without issues. The result of executing a tc is referred to as ‘test
case verdict’ (passed or failed) and is denoted with te. A set of test cases T =
<tc1, tc2, . . .> is the test suite for testing P’. Regression test selection refers
to the strategy of testing that given a P’ selects a subset of tc that is crucial
for execution.

6.3.2 The Dependency Taxonomy

The method presented in this study is based on the knowledge depicted in the
dependency taxonomy that we created in collaboration with SW testers from
the industry [140]. Each branch in the taxonomy refers to a single dependency
between a test and a code change type, where a dependency means that a
change in a code type results in a failure of tests of a specific type. In this
study, we utilize and validate 8 dependency links from the original taxonomy
since our industrial partner could only provide us with information about 4
test types.

Figure 6.1 illustrate the 8 dependency links between the test and code types.
All dependencies in the original taxonomy were identified from two sources of
information - SW testers and literature studies. The solid connectors in Figure
6.1 correspond to dependencies that were identified by testers, whereas dotted
lines correspond to dependencies that were identified from the literature. Table
6.1 summarizes the definitions of the 4 test types depicted. We refer the reader
to [140] for more details about each type of code and test.

124 CHAPTER 6. PAPER E

Figure 6.1: The taxonomy of dependency between code and test types.

Memory management: This category concerns the management of system
memory during run-time. Changes in this category include introducing/fixing
memory leaks, buffer overflow, dangling pointers, and resource interference
with multi-threading.

Design: This category involves changes that include code refactoring,
adding or removing methods, classes, interfaces, enumerators, or code smells.

Complexity: This category represents changes that add to or reduce the
time complexity of the SUT. It includes changes such as adding or removing
loops, conditional statements, nesting blocks or recursive functions.

Dependency: This category describes a change where a dependency between
a module/fragment/library is added/modified. It can be importing a new
library, a namespace, or a class.

Conditional: This category occurs when a logical operator or in a condi-
tional statement is added/modified.

Data: This category involves changing 1) function parameters, 2) value
assignment to variables, 3) casting, 4) array allocations, or 5) declaring variables.

Table 6.1: Definitions of test case types in the taxonomy of dependency.

Test Case Type Definition

Statement Constructed to force execution of individual statements.

Performance
Evaluate the degree to which a test item accomplishes
its designated functions within a given time.

Capacity
Evaluate the level at which increasing load affects
a test item’s ability to sustain required performance.

Procedure
Evaluate whether procedural instructions for interacting
with a test item to meet user requirements.

6.4 Research Design

In this section, we describe how our method was designed and implemented.

6.4. RESEARCH DESIGN 125

6.4.1 HiTTs Implementation

The basic idea behind HiTTs is to utilize the relations presented in the de-
pendency taxonomy for automating the classification of L in P’ into several
code types, and as a result select regression test types that are sensitive to the
changes introduced in the code. To achieve this, we use a three-phase process,
which we call 1) Annotation and Training, 2) Calibration, and 3) Selection.

Figure 6.2: Human in the loop for test type selection.

6.4.1.1 Annotation and Training (Phase 1):

The first phase in HiTTs consists of 4 steps that concern the extraction of code
changes, annotation and class balancing, features extraction, and building a
classifier. A step-by-step description of each step in this phase is as follows:

1. Code change extraction: the method starts by extracting historical
code changes between pairs of consecutive versions of P, P’ from the
version control system (e.g., git). Only modified and added L at different
P’ are retained, whereas all deleted L are discarded since the scope of this
study is to identify regression tests that will react to new/modified code
changes. The tool then parses the content of extracted L and filters out
all L that belong to configuration files (e.g., .xml and .json), comments,
empty and unit test L. Once the filtering step is complete, we save the
extracted set of L for each P’ in a ‘csv’ file.

2. Annotation and class balancing: each L in the ‘csv’ file is then
annotated by two or more SW architects into one of the 6 categories of
code change. L that are annotated with the same code types are retained,
and the remaining ones get discarded. Once the annotation is complete,
we inspect the distribution of instances under the 6 code types. If the
number of instances in one code type heavily outnumbers those in the
other types, we oversample instances in the minority class to balance out
the data. This activity is necessary to mitigate the effect of introducing
a classification bias toward one of the classes [146].

3. Features extraction: In this step, we transform the collected revision
files into feature vectors using the bag of words (BoW) approach. We
use a tool that, for each L in the collected revision files:

126 CHAPTER 6. PAPER E

• creates a vocabulary for all L (using the BoW technique, with a
cut-off parameter of how many words should be included1)

• creates a token for words that fall outside of the frequency defined
by the cut-off parameter of the bag of words

• finds a set of predefined keywords in each line,

• checks each word in the line to decide if it should be tokenized or if
it is a predefined feature.

The output of this step is a large array of numbers, each representing
the the token frequency of a specific feature in the bag of words space of
vectors.

4. Building a multi-class model: the final step in this phase concerns
feeding the set of extracted feature vectors into a multi-class ML model
for training.

6.4.1.2 Calibration (Phase 2):

In order for HiTTs to select crucial regression test types for execution, it
requires knowledge about the types of tc that are available in the suites. Thus,
the pool of tc from which HiTTs can operate must include information about
the type of the tc. This requires SW architects to calibrate the type of test in
every new/existing tc. This can be done, for example, by creating a variable in
each test class and use it to tag/calibrate the test type of the tc. Note that
this step can be performed independently from phase 1.

6.4.1.3 Selection (Phase 3):

The final phase of HiTTs concerns the analysis of code types that are found in
new code revisions and selecting regression test types that are sensitive to the
changes. The phase can be described in two steps:

1. Classification of lines of code: The first step in this phase utilizes the
trained model in phase 1 for classifying L that appear in P’ into one of
the 6 code types. As soon as the classification is complete, the method
measures the count of L under each code type and generates a list of
ranked code types from highest to lowest in terms of L count.

2. Test type selection: The next step in this phase is to select regression
test types that are important for execution. For this, HiTTs uses a set
of predefined rules that specify which test types are sensitive to what
code types. These rules are derived from the taxonomy of dependency
(see Section 6.3.2) and their usage is determined by a window size. The
larger the window size, the more code types that HiTTs will use for

1BoW is essentially a sequence of words/tokens, which are descendingly ordered according
to frequency. This cut-off parameters controls how many of the most frequently used words
are included as features – e.g. 10 means that the 10 most frequently used words become
features and the rest are ignored.

6.5. EVALUATION OF HITTS 127

selecting test types. Specifically, HiTTs will select all test types that are
in dependency with the code types that fall within the window boundary.
For example, a window size of 1 would trigger HiTTs to select test types
that are in dependency with the first top ranked code type only. Since the
taxonomy of dependency consists of 6 code types, HiTTs can currently
utilize a window size between 1 and 6.

Note that the first phase of HiTTs needs to be performed only once for
training the classifier. Similarly, the second phase is performed only when a
new tc is created or existing tc requires calibration.

6.4.2 Usage Scenario

In this section, we describe a usage scenario to show how test orchestrators can
use HiTTs. The scenario assumes that the first and second phases of HiTTs
were performed and a classifier was already built.

Suppose that Bob is a SW architect who is modifying a feature in the
SUT. After Bob concludes his implementation, he commits his code changes
to the development repository (step 1 in Figure 6.3). Lines 3, 4, and 5 in
Figure 6.3 corresponds to the modified L that Bob submitted in his commit.
At this point, HiTTs will analyze Bob’s commit by classifying each L into one
of the 6 categories of code changes (step 2 in Figure 6.3). After classifying the
modified/added L, HiTTs will measure the count of classifications made with
respect to each code type and accordingly generates a ranked list of code types
based on their lines’ count. In this example, HiTTs classified two-third of the
L in Bob’s commit as memory management related and one-third as design.
Assuming that the test orchestrators at Bob’s company set the window size of
HiTTs to 1, then HiTTs will decide to select regression test types that are in
dependency with the memory management code only (step 3 in Figure 6.3).
As a result, performance, load, soak, stress, volume, and capacity tests will be
executed to test Bob’s commit. Now suppose that the test orchestrators at
Bob’s company decide to change the window size of HiTTs to 2. In this case,
HiTTs will decide to select test types that are dependent on both memory
management and design code types. Consequently, performance, load, soak,
stress, volume, capacity, back-to-back, portability, and backup and recovery
tests will be executed.

6.5 Evaluation of HiTTs

In this section, we present the evaluation results of our method.

6.5.1 Annotation and Training (Phase 1)

This study was performed over a period of two weeks at a large power supply
provider organization that develops software solutions for managing energy

128 CHAPTER 6. PAPER E

Figure 6.3: An illustrative example of a usage scenario for HiTTs.

consumption in different products. The organization provided us with access to
a data-set that belonged to an embedded system written in the C++ language.

6.5.1.1 Code Change Extraction (step 1)

In this study, a total of 9 code revisions were extracted from the SUT repository.
We restricted the extraction of revisions to 9, since we were mainly interested
in understanding the effectiveness of our method in reducing the regression
testing time. The extracted revisions comprised a total of 2,103 modified and
added L from which 1,321 L belonged to source code files (‘.cpp’ and ‘.h’) 2.

6.5.1.2 Annotation and Class Balancing (step 2)

Five SW architects that work at the collaborating company were employed
to perform the annotations. First, we organized a workshop with the SW
architects, where we began by presenting definitions and code examples for
each code type in the dependency taxonomy. This was necessary to ensure
that all architects posses a good understanding of each type of code change
in the dependency taxonomy before starting the annotation. At the end of
the workshop, architects were asked to individually annotate each L in the 9
revision files and to send us the annotated L. After receiving the annotated
L, we filtered out L that were not mutually annotated by the 5 architects and
retained L that were annotated with the same code types. In total, we found
523 L in the annotated files to be similar in their annotation values (level of
agreement = 40%). While a common rule of thumb in the literature demands
a higher level of agreement between annotators, several studies have shown
that comparing annotations by independent and multiple annotators can yield
agreement rates as low as 22% [147] and [148].

Figure 6.4 shows the distribution of code types in the set of annotated L.
The Figure shows that the majority of L belonged to the ‘Design’ code type
(25%), whereas the minimal count of L belonged to the ‘Conditional’ type
(4%). The ‘Other’ category is used by the annotators when encountering L

2Due to non-disclosure agreements with our industrial partner, our data-set can not be
made public for replication

6.5. EVALUATION OF HITTS 129

that does not belong to the 6 code categories. Since the distribution of code
types is imbalanced, we decided to use the SMOTE module available in the
Scikit-learn library [76] to balance the distribution of L in the code types.
Applying SMOTE to the data-set resulted in oversampling instances in the
minority code types to the same number of instances in the ’Design’ code type
(the majority class). As a result, we retrieved a total of 903 annotated L.

Figure 6.4: The distribution of code types in the annotated lines.

6.5.1.3 Features Extraction and Building the Classifier (step 3)

HiTTs employs a textual analysis technique that extracts features from the set
of annotated code, where each feature corresponds to a code token that appears
in the input file. In this study, we employ the tool proposed by Ochodek et al.
[42] to perform the features extraction using the BoW model. Applying BoW
on the annotated set of L resulted in a multi-dimensional array that consisted
of 895 feature tokens.

HiTTs employs a multi-class classifier that classifies L into one of 6 code
change types. This study employed a random forest (RF) model as the multi-
classifier in HiTTs. Our choice of using RF was mainly due to the promising
potentials that it showed in our recent series of publications (e.g., in [78]). In
this study, the hyper-parameters of the RF model were kept in their default
state as found in the scikit-learn library (version 0.20.4). The only alteration
that we made was in the n estimator (the number of trees) parameter, where
we changed its value from 10 to 100. This was a design choice that we adopted
based on our findings in [78], where we experimented the use of an RF model
for TCS without tuning the model’s parameters. Our findings showed that
using untuned parameters in RF would yield better predictive performance for
TCS than the other four deep-learning and tree-based models.

6.5.2 Calibration (Phase 2)

In this study, we decided to calibrate tests whose execution verdicts changed
from one state to another (e.g., from ‘passed’ to ‘failed’), at least once, during
the last six months from the time of conducting this study. This was done to
maximize the probability of working with tests that are sensitive to changes in
the code-base. As a result, information about 868 tests were extracted from the

130 CHAPTER 6. PAPER E

test logs of the SUT. Architects were required to jointly agree on an ISO test
type [55] that best describes each extracted test, and then use that test type for
annotation. The keyword ‘Other’ was used by the architects to annotate tests
whose specifications do not match the description of any ISO test types. Four
distinct test types were used for annotating the 868 tests. The distribution of
the annotated tests was as follows: procedure tests had the highest proportion
with a total of 546 tests (62.9%); statement tests had the second highest
proportion with 302 tests (34.7%); performance and capacity tests had the
lowest proportion with one test respectively; 18 tests (2%) were annotated with
the ‘Other’ keyword. We discarded all tests that were annotated with ’Other’,
as we do not know which types of code changes would trigger these tests to react.

6.5.3 Selection (Phase 3)

To evaluate the effectiveness of HiTTs, we extracted code changes committed
to the SUT repository and their associated test information after the time
of performing the annotation and training phase. A total of 9 code revisions
and 26,576 executions of the 868 calibrated tests were extracted. Each code
revision was fed into the trained RF model for classifying L into their relevant
code types. Figure 6.5 shows, for each code revision, the number of classified
L under each category of code type. All L that were classified as ’Other’ by
the model were removed from the next step of the selection phase. For the
remainder of this paper, we refer to these revisions as ‘evaluation revisions’.

Figure 6.5: The distribution of code types in the evaluation revision.

6.5.4 Baseline Construction

To understand whether our method is effective in reducing the regression testing
time, we needed to measure and compare its performance against one or more
baseline measures. For this purpose, two baselines were used in this study - the

6.5. EVALUATION OF HITTS 131

actual and retest-all. The actual baseline is a measure of the total time taken
to execute all tc that we calculated from the test logs of the build server of the
SUT. The retest-all baseline is a measure of the total time taken to execute all
available tc under the four test types in similar ratios.

6.5.4.1 Actual

Table 6.2 summarizes the information of the execution times of the four test
types. The Table shows, for each revision, the number of non-commented lines
of code (column 2). The ‘actual baseline’ column corresponds to the total te
time taken to execute all tc of the four test types, as found in the test log
files of the SUT. Total execution times spans from 0.91 hours to several days.
Columns 4 to 7 summarize the actual te for capacity, procedure, statement,
and performance tests respectively, whereas columns 8 to 12 show the number
of te performed for each test type. By observing the number of te under each
test type, we notice that not all test types are executed against the majority of
the evaluation revisions. For example, capacity tc were only exercised against
revisions 1, 2, 3, 5, 8 and 9 (as denoted with ‘-’ in the ‘nu. Capacity’ column).

Table 6.2: Information about the actual test execution (in hour) for every
revision.

Revision
Lines
of code

Actual
baseline

Capacity Procedure Statement Performance
nu.

Capacity
nu.

Procedure
nu.

Statement
nu.

Performance
nu.

Others

1 51 5.73 0.02 3,25 1.77 0.00 5 510 260 - 45
2 53 20.66 0.02 11.02 8.50 0.03 5 1990 1320 5 80
3 201 87.57 0.06 58.23 25.23 0.09 14 9366 1320 14 266
4 65 20.46 0.00 11.68 8.09 0.00 - 2030 2281 - 42
5 10 7.67 0.02 4.08 3.03 0.00 4 816 468 - 44
6 354 22.10 0.00 15.52 5.93 0.00 - 2303 882 - 42
7 19 0.91 0.00 0.91 0.00 0.00 - 192 - - -
8 520 12.08 0.03 5.36 6.00 0.00 8 1040 936 - 56
9 19 1.14 0.00 1.14 0.00 0.00 - 240 - - -

6.5.4.2 Retest-all

Since we do not have information about the actual te times of every test
type across all revisions, we needed to normalize the te times of capacity,
performance, procedure, statement in order to simulate a retest-all scenario on
the 9 evaluation revisions. The normalized te times for capacity, performance,
procedure, statement tests are presented in Table 6.2 using the following
procedure. First, we calculate the average time required to execute a tc under
each type in every evaluation revision. Second, for each evaluation revision, we
subtract the number of executed tests from those executed against the revision
with the highest number of te. Third, we multiply the number of missing te
under each test type with the average te time for the same test type. Finally,
we add the te time of the estimated tc to the actual te time that we found in
the test log data. The advantage of retaining the actual te time of existing
tests lies in minimizing the probability of using over/under-estimated te time.
Table 6.3 summarizes the normalized te times for all test types across the 9
evaluation revisions. The ‘Retest-all baseline’ column in Table 6.3 corresponds

132 CHAPTER 6. PAPER E

to the total te time calculated by summing up the normalized values under
each test type.

Table 6.3: Normalized execution times (in hour) for each test types in all
revisions.

Revision
Retest-all
baseline

Capacity Procedure Statement Performance

1 70.63 0.06 56.51 10.09 0.09
2 67.81 0.06 55.38 8.50 0.08
3 87.57 0.06 58.23 25.23 0.09
4 67.97 0.06 55.80 8.09 0.09
5 69.12 0.06 55.51 9.72 0.09
6 71.40 0.06 58.00 9.37 0.09
7 70.44 0.06 56.09 10.35 0.09
8 68.32 0.06 55.44 9.01 0.09
9 70.38 0.06 56.03 10.35 0.09

6.5.5 Results and Analysis

The goal of the evaluation is to identify the total amount of reduced time
in performing regression testing. To that end, we compare the testing time
required by HiTTs with the two baseline measures. We use a window size of
1, 2, and 3 {w1, w2, w3} respectively for the comparison. Results of applying
HiTTs with each window size are depicted in Table 6.4. The Table shows, for
each revision and window size, the types of selected tc (column 3), the actual
failing test types (column 4), the actual te time for all tc (column 5), the te
time of a retest-all approach (column 6), the amount of reduced time relative
to the retest-all (column 8) and the actual baseline (column 10) time.

The results reported in Table 6.4 suggest that using any window size in
HiTTs reduces the total testing time by more than eight hours across the
majority of evaluation revisions. The total reduced time, as measured by
correct deselection of passing test types, reached 52.94% when compared with
the actual baseline. Similarly, the percentages of improvement in time reduction
relative to the retest-all baseline reached between 0.18% and 15.78%. This
reduced time can potentially save architects the hurdle of doing large code
rework after testing, since bugs found earlier in the development cycle are
often easier to fix than bugs found after the time of adding new code. For
instance, applying HiTTs with a window size of 1 on revision 8 was found
to reduce the testing time by 6.03 hours compared with the actual baseline.
Hence, instead of waiting for 11.4 hours to execute integration and system level
tests, architects will wait for 5.37 hours to receive feedback about their code.
This allows architects to spare 6.03 hours for bug fixing, feature development,
or executing other types of test suites. Further, by comparing the values in
the ’selected test types’ and the ’failing test types’ columns, we notice that
the selection rate of fault-revealing tests was best when using w2 in HiTTs.

6.6. THREATS TO VALIDITY 133

However, what stands out in the results is that statement and capacity test
types were only selected once for revision 6 when using w3. This can be due
to missing dependency links in the taxonomy or code types. Hence, future
work need to investigate additional dependencies between the capacity and
statement tests, and existing code types.

To gain a better understanding of the method’s effectiveness, we measured
its fault detection capability in terms of recall and precision when using the
three window sizes. While precision is the proportion of correctly identified test
types, recall is the proportion of relevant test types that were identified as such.
Having both precision and recall high ensures the detection of larger amount of
test types that will reveal faults in the SUT. Further, we calculated the mean
reduced time by HiTTs using the three window sizes and compared the results
with the two baselines. Figure 6.6 shows a bar chart that depicts the results of
the comparison. The results indicate that using w2 or w3 improves the rate of
faults detection by 22.2% compared to when using w1 (recall improvement from
61% to 83.33%). Conversely, the precision rate remained unchanged for w2
(77.78%) and dropped to 69.44% for w3. Taken together, these results suggest
that using w3 leads to the least effective performance of HiTTs, whereas w2
yields the highest performance. On the other hand, the mean reduced times
attained when using w1 or w2 was found to be similar, which implies that
using either of the two window sizes leads to a similar reduction rate of the
testing time.

Figure 6.6: Mean performance and reduced testing time using three windows.

RQ. How to reduce the time of regression testing by selecting
only the most relevant test types?
The results confirm that using our method with a window size of 2 reduces
the time of regression testing by 9.94% on average compared to a retest-all
approach and by 18.33% compared to the testing approach adopted by
our industrial partner.

6.6 Threats to Validity

We use the framework in [46] to discuss the limitations of our paper.

134 CHAPTER 6. PAPER E

Table 6.4: The evaluation results of HiTTs compared to two baselines.

Window size of 1, 2, and 3

Revision window
selected
test types

failing
test types

actual
baseline

retest-all
baseline

reduced time
(retest-all)

% of reduced
time (retest-all)

reduced time
(actual)

% of reduced
time (actual)

1

w1 Procedure
Procedure,
Statement

5,04 66,74 0,14 0,22 0,02 0,40

w2 Procedure
Procedure,
Statement

5,04 66,74 0,14 0,22 0,02 0,40

w3
Procedure,
Performance

Procedure,
Statement

5,04 66,74 0,06 0,08 0,02 0,40

2

w1 Procedure
Procedure,
Statement

19,56 64,02 0,14 0,22 0,05 0,24

w2
Procedure,
Performance

Procedure,
Statement

19,56 64,02 0,06 0,09 0,02 0,10

w3
Procedure,
Performance

Procedure,
Statement

19,56 64,02 0,06 0,09 0,02 0,10

3

w1 Procedure
Procedure,
Statement

83,61 83,61 0,15 0,18 0,15 0,18

w2 Procedure
Procedure,
Statement

83,61 83,61 0,15 0,18 0,15 0,18

w3 Procedure
Procedure,
Statement

83,61 83,61 0,15 0,18 0,15 0,18

4

w1 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93
w2 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93
w3 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93

5

w1 Performance Procedure 7,13 65,37 9,77 14,95 3,05 42,76

w2
Performance,
Procedure

Procedure 7,13 65,37 9,77 14,95 3,05 42,76

w3
Performance,
Procedure

Procedure 7,13 65,37 9,77 14,95 3,05 42,76

6

w1 Procedure Procedure 21,45 67,51 9,51 14,09 5,93 27,65
w2 Procedure Procedure 21,45 67,51 10,50 15,55 5,93 27,65

w3

Procedure,
Performance,
Capacity,
Statement

Procedure 21,45 67,51 0,00 0,00 0,00 0,00

7

w1 Performance Procedure 0,91 66,59 10,41 15,63 0,00 0,00

w2
Performance.
Procedure

Procedure 0,91 66,59 10,41 15,63 0,00 0,00

w3
Performance.
Procedure

Procedure 0,91 66,59 10,41 15,63 0,00 0,00

8

w1 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94
w2 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94
w3 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94

9

w1 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00
w2 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00
w3 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00

External validity We evaluated the effectiveness of HiTTs on 9 revisions
that belong to a single industrial system. Thus, we cannot claim that our
findings generalize well to other types of systems. However, we increase
the likelihood of drawing a representative sample by using all revisions that
were committed to the development repository after the time of building
HiTTs. Further, we trained the classifier in HiTTs on a small sample of data,
which could have resulted in a lower classification performance than what we
could achieve with a larger sample. However, our evaluation shows that the
performance of HiTTs is high.

Construct validity The dependency links used for defining the static
rules of procedure tests were drawn from the literature, and thus not validated.
However, our evaluation results showed that HiTTs was effective in selecting
this type of tests across the 9 evaluation revisions.

Internal validity An internal threat is the presence of undetected defects
in the tools that we used for features extraction, code change extraction, and
baseline measurements. To increase our confidence in the tools’ implementation,
we tested our code on smaller examples. The results might differ if we employ
other types of models. However, in this study we were only interested in
understanding the effectiveness of HiTTs in reducing the regression testing
time.

6.7. CONCLUSION AND FUTURE WORK 135

Conclusion validity There is a probability that some tests failed due to
non-deterministic executions (i.e., flaky tests) or environmental factors (e.g.,
a hardware element goes offline). As a result, the test execution times that
we used for calculating the baselines may belong to tests that failed due to
factors unrelated to code changes, and thus lead us to wrong conclusions. To
minimize this threat, we collected data of several thousand test executions
and minimized the probability of selecting tests that have non-deterministic
behaviors.

6.7 Conclusion and Future Work

In this paper, we introduced HiTTs - a machine learning based method that
selects regression test types based on their relation with code types that appear
in new revisions without the need of history test information. The presented
method was evaluated on an industrial data-set for effectiveness in reducing
the regression testing time and faults detection. The results of the study are
encouraging: 1) for the subject considered, our method showed considerable
time reduction in regression testing - up to 52.94%, 2) increasing the window size
of HiTTs to a medium level improves the effectiveness rate of faults detection
and still reduces the total time of regression testing.

The results of our study suggest several avenues for future work. First,
working on refining and extending the taxonomy to capture more dependencies
between the statement and capacity test types and existing code types is needed
to improve the effectiveness of the method in TCS. Second, we plan to extend
HiTTs by adding an ensemble of classifiers to predict the verdict of tests that
belong to each selected test type. This allows HiTTs to operate on a finer-level
of granularity (i.e., test case level). Finally, future work needs to compare the
effectiveness of HiTTs with state-of-the-art approaches for TCS.

136 CHAPTER 6. PAPER E

Chapter 7

Paper F

Predicting Build Outcomes in Continuous Integration Us-
ing Textual Analysis of Source Code Commits

Al-Sabbagh, K.W., Staron, M., and Hebig, R.

In Proceedings of the 18th International Conference on Predictive
Models and Data Analytics in Software Engineering (pp. 42-51).

137

Abstract

Machine learning has been increasingly used to solve various software engin-
eering tasks. One example of its usage is to predict the outcome of builds
in continuous integration, where a classifier is built to predict whether new
code commits will successfully compile. The aim of this study is to investigate
the effectiveness of fifteen software metrics in building a classifier for build
outcome prediction. Particularly, we implemented an experiment wherein we
compared the effectiveness of a line-level metric and fourteen other traditional
software metrics on 49,040 build records that belong to 117 Java projects. We
achieved an average precision of 91% and recall of 80% when using the line-level
metric for training, compared to 90% precision and 76% recall for the next best
traditional software metric. In contrast, using file-level metrics was found to
yield a higher predictive quality (average MCC for the best software metric=
68%) than the line-level metric (average MCC= 16%) for the failed builds.
We conclude that file-level metrics are better predictors of build outcomes for
the failed builds, whereas the line-level metric is a slightly better predictor of
passed builds.

7.1. INTRODUCTION 137

7.1 Introduction

Continuous integration (CI) is a modern software engineering practice in which
developers integrate their code into a shared repository to enable swift detection
of quality issues and bugs before releasing new features to end users [149].

A CI system typically attempts to launch a build job multiple times a day,
either for each new commit submitted to the version control system or at set
time intervals during the day [150]. The goal of these jobs is to notify software
engineers about faults in the source code as quickly as possible in order to
quickly fix them. A typical build server runs tools such as compilers and static
analyzers to detect styling and quality related problems in the code that get
reported to developers. Failures produced by any of these tools result in a
build failure.

The completion of build jobs in a fast manner directly affects the productivity
of programmers [151], as they might get distracted by other tasks while waiting
for the build job to finish. As a consequence, the number of code changes
committed by developers during a day will be reduced. For this reason, keeping
a high pace of the build job, and understanding the root cause of build failures
is key to improve the development productivity. In fact, a previous analysis on
the TravisTorrent database image, created on February 8, 2017, showed that
the median time to build Java projects took over 900 seconds (15 minutes)
[152]. This means that developers will incur, on average, a time latency of 15
minutes before receiving feedback about their committed code from the CI
environment. Therefore, reducing the time-feedback to developers is necessary
to allow them to immediately start working on new development tasks with
confidence that their previously committed code will pass the build phase.

To address the problem of time latency and reduced development productiv-
ity in CI, several researchers utilized machine learning (ML) models to predict
the outcome of build jobs using a diversity of product and process software
metrics, such as code churn size, number of commits, team size etc as features
for characterizing build outcome (failed/passed). For example, Hassan and
Zhang [3] mined a diversity of product and process metrics in historical projects,
such as the number of modified subsystems and certification results of previous
build for constructing an ML model for build prediction. Their results indicate
that training a decision tree classifier on such information can yield to a correct
prediction for 95% of passing builds and 69% of failing builds. Xia and Li
[4] evaluated the use of nine classifiers on 20 software metrics for 126 open
source projects. Their results show that using the examined metrics result
in an F1-score higher than 0.7 for 21 of build outcomes. Thus, product and
process metrics have shown promising results when it comes to prediction of
build outcomes. In this study, we refer to these metrics by using the term
traditional software metrics (TSM).

Despite these promising results of TSM-based approaches, they can only
provide indications about which parts of the system, e.g. what file, causes
the build to fail. However, they cannot locate the source of the failure, e.g.
by indicate which lines of code might potentially cause build failures. This
research aims at filling this gap. Using a textual analysis (TA) approach, we

138 CHAPTER 7. PAPER F

measure the frequency count of token appearances in the source code (e.g.,
if and while) on a line of code level. We use the term token frequency (TF)
metric to refer to the measurements produced by the TA approach. However,
in the context of build outcome prediction, it is unclear whether a prediction
of build failure made using a line-level metric, such as TF, can be as precise
and good as a prediction made using TSM, which can use per file information.

Therefore, in this study we set off to examine the effectiveness of the TF
metric by empirically comparing its effectiveness against a set of TSM in build
outcome prediction for 117 Java open source projects. We record the precision,
recall, F1-score, and Mathews Correlation Coefficient (MCC) measures attained
after training a classifier on each metric respectively. More concretely, we design
and implement a controlled experiment wherein fourteen different TSM metrics
extracted from the TravisTorrent [49] data-set, created on February 8, 2017,
and the token frequency metric are examined for effectiveness across 49,040
builds. In our study, we address the following research question:

How effective is the token frequency metric in comparison with
traditional software metrics for predicting build outcomes in CI?

The specific contributions of this paper are as follows:

• we empirically investigate the effectiveness of a line-level metric in learning
build outcomes in CI, and compare its effectiveness with a diversity of
traditional software metrics using 117 Java based open source projects.

• we found that using TF for training a classifier slightly outperforms the
effectiveness of file-level TSMs in predicting passing builds, with a small
effect size difference.

• we found that using file-level metrics is more effective than TF in pre-
dicting build failures.

• we complement the TravisTorrent data-set from 2017 with a new data-set
that contains TSM and TF metrics for historical code changes made in
117 Java based projects 1.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work that propose approaches for CI build prediction. In
Section 3 we present the experimental design and operations carried out in
this study. Section 4 presents the results of our study. Section 5 discusses the
threats to validity. Finally, Section 6 concludes the paper and outlines future
work.

7.2 Related Work

In this section, we present related work on build outcome prediction and reasons
of build failures in CI.

1https://doi.org/10.5281/zenodo.6784987

7.2. RELATED WORK 139

7.2.1 Software Metrics for Build Prediction

Several studies have proposed approaches for modelling the relationship between
build statuses (passed/failed) and software metrics [153], [152], and [4]. Ni
and Li [153] adopted cascaded classifiers to predict build outcomes using 18
software metrics to characterize historical build jobs for 532 Java and Ruby
projects. The results showed that using ‘Historical Statistic’ metrics are the
most useful features in predicting the build outcome with an accuracy rate
of 75.3%. Hassan and Wang [152] employed a random forest classifier for
predicting build outcomes using features derived from error logs in historical
build records. The results of their work showed an average F-score rate of 87%
in the prediction of build outcomes. Another example is the work conducted by
Xia and Li [4], where the authors evaluated the performance of nine different
classifiers using traditional software metrics in build predictions. Their results
showed that a Decision tree, gradient boosting and random forest classifiers
outperform the other algorithms in F1-score, achieving a 17% more F-score on
average. With these classifiers, build outcomes for a quarter of the analyzed
projects can be predicted with F1-score over 60%. In another empirical study
conducted by Xia et al. [154], the authors evaluated the performance of six
classifiers for build outcome prediction. The results of their study revealed
that a Decision Tree classifier performs the best in comparison with the other
five classifiers with a score of 17% for F1-score on average.

Despite the promising results that the majority of these studies achieved,
non of them has investigated the effectiveness of metrics that operate on a
line of code level for build prediction. In this paper, we characterize historical
changes of source code on a line-level of abstraction and analyze its effectiveness
in predicting build failures.

7.2.2 Reasons of Build Failure in CI

Over the recent years, studies on identifying factors that result in build failures
are increasingly gaining more attention by researchers [155], [150], [156]. Rausch
et al. [155] investigated factors that result in build failures. The findings drawn
from the analyses of historical build logs suggest that failing integration tests,
code quality, and compilation errors are the most common factors that lead to
build failures. Luo et al. [156] used the TravisTorrent data-set to investigate
factors that cause build failures. They found that in our study, the number of
commits in a build (git num all built commits) is the most important factor
that has a significant impact on the build result. Beller et al. [150] conducted
an in-depth quantifiable study using TravisTorrent data-set to investigate the
effect of testing on build failures. The results of their work concluded that
testing is the most important factor that leads to build failure. Moreover,
the programming language has a strong impact on the number of executed
tests, the time they take to execute, and their proneness to fail. In this paper,
we expand on these empirical studies by examining the effectiveness of a new
metric (token frequency) which can potentially identify the root cause of build
failures in the source code.

140 CHAPTER 7. PAPER F

7.3 Experiment Design and Operations

This section describes the experiment design, the data-sets, and the operations
carried out to implement this experiment.

7.3.1 Data Collection and Preprocessing

TravisTorrent is a synthesized open-source data-set that consists of 2,640,825
build job records belonging to 1,300 projects (402 Java projects and 898 Ruby
projects) [49]. Every build job record in the data-set synthesizes information
from three data sources: The project’s git repository, data extracted from
GitHub, and data from Travis’s API. In total, the data-set provides 55 software
metric values for each historical build.

7.3.1.1 Traditional Software Metrics

In this study, we utilized the BigQuery interface for the TravisTorrent data-set,
created on February 8, 2017, to mine historical build records for fourteen
traditional software metrics. Table 7.3 provides a brief summary of each metric.
We chose to only examine the effectiveness of these metrics as they characterize
changes made to the source code (product specific) and the process, whereas
the remaining metrics in TravisTorrent characterize test related aspects (e.g.,
tests added and tests deleted). Further all the selected traditional software
metrics were previously examined in different build prediction studies such as
[153] and [152].

Since the goal of this study is to evaluate the effectiveness of different
software metrics in learning build outcome (pass/fail), we restrict the sample
of collected historical build records and projects to fulfill the following two
criteria. First, we filtered out all records whose build status (tr build) values
resolved to errored or canceled, and only kept track of those that resolved
to passed/failed. Second, we only queried projects that were written in the
Java programming language and included at least one failing/passing build
job record. The outcome was a data-set that comprised of 117 Java projects
with a total of 49,040 build records. Information about the distribution of the
collected build status records and project names are summarized in columns
‘Failing Builds’ and ‘Passing Builds’ in Table 7.1.

7.3.1.2 The Token Frequency Metric

To instrument the measurement of the token frequency metric, we implemented
a TA based tool that follows the procedure introduced in [98]. The procedure
enacts three sequential steps that can be summarized as follows:

Step 1 (extraction of code changes): This step involves extracting code
changes committed to the development repository of each analyzed project.
For each project, we extract modified/added lines of code between pairs of

7.3. EXPERIMENT DESIGN AND OPERATIONS 141
T
ab

le
7.
1:

D
is
tr
ib
u
ti
o
n
of

B
u
il
d
O
u
tc
o
m
es

a
n
d
L
in
es

o
f
C
o
d
e
C
h
a
n
g
es

in
th
e
A
n
a
ly
ze
d
P
ro
je
ct
s

Id
P
r
o
je

c
t

B
u
il
d
s
F
a
il
in

g
b
u
il
d
s

P
a
s
s
in

g
b
u
il
d
s

li
n
e
s

e
x
t
r
a
c
t
e
d

F
a
il
in

g
li
n
e
s

p
a
s
s
in

g
li
n
e
s

Id
P
r
o
je

c
t

B
u
il
d
s
F
a
il
in

g
b
u
il
d
s

P
a
s
s
in

g
b
u
il
d
s

L
in

e
s

e
x
t
r
a
c
t
e
d

F
a
il
in

g
li
n
e
s

P
a
s
s
in

g
li
n
e
s

1
O

p
e
n
R
e
fi
n
e

1
9
2

1
4

1
7
8

3
6
8
4

3
3
2

3
3
5
2

6
1

p
ic

a
r
d

2
8
4

1
1

2
7
3

1
0
3
0
6

3
7
8

9
9
2
8

2
p
s
i-
p
r
o
b
e

2
0
0

4
1
9
6

5
0
4
7
1

1
0
0

5
0
3
7
1

6
2

h
iv

e
m

a
ll

1
7
3

1
7

1
5
6

2
0
2
1
9

1
5
9

2
0
0
6
0

3
e
r
r
o
r
-p

r
o
n
e

1
5
2

3
1
4
9

9
1
0
7
2

2
6

9
1
0
4
6

6
3

s
e
y
r
e
n

2
8
1

1
4

2
6
7

7
1
4
1

1
3
6

7
0
0
5

4
u
2
0
2
0

2
4
5

8
2
3
7

4
4
0
4

1
3
5

4
2
6
9

6
4

le
n
s
k
it

2
7
4

2
2

2
5
2

5
4
6
0
1

8
0
8

5
3
7
9
3

5
m

e
t
r
ic

s
2
7
9

2
3

2
5
6

8
5
0
4

1
6
6
7

6
8
3
7

6
5

s
p
r
in

g
s
id

e
4

2
2
6

5
7

1
6
9

1
9
1
2
1

6
2
7
9

1
2
8
4
2

6
r
e
w
r
it
e

1
8
4

7
2

1
1
2

1
3
3
9
9

3
6
9
3

9
7
0
6

6
6

o
n
e
b
u
s
a
w
a
y
-

a
n
d
r
o
id

1
8
7

9
1
7
8

1
9
7
4
3

6
3

1
9
6
8
0

7
c
h
e
c
k
s
t
y
le

1
3
6
8

3
0

1
3
3
8

9
3
4
3
5

3
5
7

9
3
0
7
8

6
7

r
x
ja

v
a
-j
d
b
c

1
9
2

2
1
9
0

7
8
4
7

1
7

7
8
3
0

8
P
r
o
je

c
t
R
e
d

2
6
8

6
6

2
0
2

1
0
7
5

3
8
5

6
9
0

6
8

c
o
r
e

5
1
6

6
5
1
0

7
5
5
6
9

3
7
5

7
5
1
9
4

9
b
r
ig

h
t
s
p
o
t
-c

m
s

5
4
8

6
2

4
8
6

8
7
3
7

2
7
5
3

5
9
8
4

6
9

s
e
le

n
d
r
o
id

4
4
5

4
7

3
9
8

5
8
6
5
0

1
7
9
4
4

4
0
7
0
6

1
0

a
s
s
e
r
t
j-
a
n
d
r
o
id

1
1
8

3
6

8
2

1
4
2
6
7

3
3
4
9

1
0
9
1
8

7
0

n
u
t
z

9
2
4

3
6
7

5
5
7

5
7
7
9
3

2
0
2
4
3

3
7
5
5
0

1
1

L
it
t
le

P
r
o
x
y

2
8
7

4
2

2
4
5

7
8
0
6

9
1
6

6
8
9
0

7
1

jp
h
p

3
0
0

3
4

2
6
6

1
4
2
5
5
2

1
8
0
6
3

1
2
4
4
8
9

1
2

b
lu

e
p
r
in

t
s

4
3
2

1
2
7

3
0
5

4
1
2
1
7

1
5
1
0
6

2
6
1
1
1

7
2

o
w
n
e
r

3
8
7

7
3
8
0

2
0
2
4
8

2
4
0

2
0
0
0
8

1
3

c
a
s
s
a
n
d
r
a
-r

e
a
p
e
r

2
6
2

2
0

2
4
2

7
6
8
8

1
0
0
4

6
6
8
4

7
3

t
w
il
io

-j
a
v
a

2
2
1

8
2
1
3

2
8
0
0
5

5
5
4
7

2
2
4
5
8

1
4

r
e
s
t
le

t
-f
r
a
m

e
w
o
r
k

-j
a
v
a

4
3
6

2
7
7

1
5
9

1
0
9
0
3
8

4
8
7
0
1

6
0
3
3
7

7
4

r
e
s
t
le

t
-f
r
a
m

e
w
o
r
k

-j
a
v
a

4
3
6

2
7
7

1
5
9

1
0
9
0
3
8

4
8
7
0
1

6
0
3
3
7

1
5

n
o
d
e
c
li
p
s
e
-1

2
3
8

1
3

2
2
5

2
1
2
7
4

2
4

2
1
2
5
0

7
5

a
z
k
a
b
a
n

1
7
6

8
1
6
8

5
6
9
7
6

6
0
2
6

5
0
9
5
0

1
6

r
u
lt
o
r

1
1
5
6

2
7
5

8
8
1

3
3
0
2
3

1
0
1
8
5

2
2
8
3
8

7
6

n
o
d
e
c
li
p
s
e
-1

2
3
8

1
3

2
2
5

2
1
2
7
4

2
4

2
1
2
5
0

1
7

jm
o
n
k
e
y
e
n
g
in

e
7
1
4

9
7
0
5

6
9
4
6
6

7
8
2

6
8
6
8
4

7
7

id
e
a
-g

it
ig

n
o
r
e

1
8
7

4
5

1
4
2

2
6
4
7
7

4
1
4
8

2
2
3
2
9

1
8

p
d
fs
a
m

3
3
6

9
1

2
4
5

1
0
8
8
8
2

2
0
2
3
5

8
8
6
4
7

7
8

k
e
y
w
h
iz

2
4
0

2
2
3
8

1
2
1
2
8

5
1
2
1
2
3

1
9

r
o
b
o
s
p
ic

e
7
4

2
9

4
5

1
3
3
0
7

7
5
7
5

5
7
3
2

7
9

js
p
r
it

2
1
0

4
2
0
6

2
0
9
5
0

1
1
8

2
0
8
3
2

2
0

p
u
s
h
y

3
3
3

2
1

3
1
2

4
2
8
1

9
4
2
7
2

8
0

s
t
u
b
b
y
4
j

5
7
1

1
4
4

4
2
7

3
6
5
1
0

1
2
3
4
6

2
4
1
6
4

2
1

p
a
r
c
e
le

r
2
2
7

4
2
2
3

1
5
6
4
5

2
3
2

1
5
4
1
3

8
1

q
u
li
c
e

4
1
3

3
3

3
8
0

1
0
8
8
5

2
4
3

1
0
6
4
2

2
2

d
y
n
js

3
2
0

2
0

3
0
0

3
2
8
3
3

8
9
9

3
1
9
3
4

8
2

ji
n
ja

v
a

2
2
7

3
2
2
4

1
1
0
9
2

8
1
1
0
8
4

2
3

m
y
b
a
t
is
-3

4
7
1

1
5

4
5
6

9
4
6
3
0

5
7
2

9
4
0
5
8

8
3

a
u
t
o

2
5
1

3
4

2
1
7

1
1
9
1
2

1
2
6

1
1
7
8
6

2
4

H
ik

a
r
iC

P
3
2
6

1
7

3
0
9

2
9
1
5
3

3
4
9
0

2
5
6
6
3

8
4

x
t
r
e
e
m

fs
2
7
2

4
1

2
3
1

5
0
0
4
8

2
0
9
7

4
7
9
5
1

2
5

t
h
r
e
d
d
s

3
3
3

1
0
0

2
3
3

2
4
6
2
5

6
3
0
8

1
8
3
1
7

8
5

jm
x
t
r
a
n
s

4
0
0

2
2

3
7
8

7
7
5
2

1
7
3

7
5
7
9

2
6

m
a
v
e
n
-g

it
-c

o
m

m
it

-i
d
-p

lu
g
in

2
0
1

3
1

1
7
0

1
4
0
3
0

1
4
9
9

1
2
5
3
1

8
6

le
s
s
4
j

6
4
7

7
1

5
7
6

7
2
7
4
5

7
4
2
6

6
5
3
1
9

2
7

d
a
g
g
e
r

3
0
2

2
4

2
7
8

3
2
0
5

1
0
5

3
1
0
0

8
7

c
a
s
-a

d
d
o
n
s

2
2
9

7
2
2
2

7
0
2
2

6
3

6
9
5
9

2
8

ja
d
e
4
j

2
0
7

1
1

1
9
6

1
5
0
5
9

2
6
5

1
4
7
9
4

8
8

g
o
c
li
p
s
e

2
2
8

2
0

2
0
8

6
6
4
5
3

4
6
2

6
5
9
9
1

2
9

js
o
n
ld

-j
a
v
a

1
9
6

1
3

1
8
3

3
2
6
3
0

7
6

3
2
5
5
4

8
9

c
c
w

3
3
1

1
4
2

1
8
9

1
3
8
5
9

3
6
7
8

1
0
1
8
1

3
0

w
e
b
c
a
m

-c
a
p
t
u
r
e

3
4
2

2
2

3
2
0

3
2
3
8
6

2
2
7

3
2
1
5
9

9
0

u
n
ir
e
s
t
-j
a
v
a

3
0
1

1
7

2
8
4

3
5
5
8

2
2
5

3
3
3
3

3
1

jI
n
s
t
a
g
r
a
m

2
1
9

7
2
1
2

1
8
1
0
3

2
4
2

1
7
8
6
1

9
1

w
a
ff
le

2
0
3

2
3

1
8
0

1
9
2
0
7

1
6
0

1
9
0
4
7

3
2

s
p
r
in

g
-c

lo
u
d
-c

o
n
fi
g

2
5
1

2
2

2
2
9

2
2
7
3
4

1
2
0
6

2
1
5
2
8

9
2

M
o
z
S
t
u
m

b
le

r
5
1
7

1
2

5
0
5

7
7
0
7

1
5

7
6
9
2

3
3

g
p
s
lo

g
g
e
r

2
6
5

3
6

2
2
9

1
4
2
3
8

9
1
8

1
3
3
2
0

9
3

H
e
a
r
t
h
S
im

2
3
4

1
1

2
2
3

5
9
6
8
1

3
4
7

5
9
3
3
4

3
4

jc
a
b
i-
h
t
t
p

2
2
1

3
4

1
8
7

4
3
2
9

5
9
6

3
7
3
3

9
4

r
e
x
s
t
e
r

3
2
4

2
3

3
0
1

3
4
9
0
9

4
6
4

3
4
4
4
5

3
5

p
6
s
p
y

3
3
3

1
0
0

2
3
3

1
3
5
8
4

5
9
2
0

7
6
6
4

9
5

r
e
t
r
o
fi
t

7
4
7

5
7
4
2

1
7
6
5
6

3
3
5

1
7
3
2
1

3
6

h
t
m

.j
a
v
a

4
4
2

4
4
3
8

4
9
9
3
1

4
1
3

4
9
5
1
8

9
6

D
S
p
a
c
e

1
2
4
2

4
3

1
1
9
9

7
7
4
4
7

2
0
9
9

7
5
3
4
8

3
7

g
o
-l
a
n
g
-

id
e
a
-p

lu
g
in

7
8
0

8
1

6
9
9

3
1
4
7
6

1
2
1
2

3
0
2
6
4

9
7

s
t
r
u
c
t
r

7
4
0

2
5
2

4
8
8

1
0
5
6
0
5

5
8
8
0
3

4
6
8
0
2

3
8

S
in

g
u
la

r
it
y

1
5
2

3
6

1
1
6

7
3
0
2

1
8
6
1

5
4
4
1

9
8

a
ir
li
ft

2
5
3

1
2
3

1
3
0

2
1
9
1
6

1
3
6
0
9

8
3
0
7

3
9

a
n
d
r
o
id

6
7
1

4
6

6
2
5

1
3
8
5
7

3
8
8
5

9
9
7
2

9
9

t
r
a
c
c
a
r

1
3
2
4

2
4

1
3
0
0

6
7
6
6
6

1
3
8

6
7
5
2
8

4
0

jc
a
b
i-
g
it
h
u
b

5
0
2

1
4
6

3
5
6

1
7
0
5
2

5
7
6
5

1
1
2
8
7

1
0
0

q
u
e
r
y
d
s
l

1
1
5
3

1
9
4

9
5
9

3
3
9
2
6

8
0
9

3
3
1
1
7

4
1

s
m

s
-b

a
c
k
u
p
-p

lu
s

2
4
8

2
0

2
2
8

1
4
9
2
1

1
9
5

1
4
7
2
6

1
0
1

y
o
b
i

2
4

2
2
2

9
0
7
9
0

3
5
3
1

8
7
2
5
9

4
2

t
r
u
t
h

9
6

1
8

7
8

1
7
9
0
7

1
2
6
0

1
6
6
4
7

1
0
2

o
p
e
n
w
a
y
b
a
c
k

2
2
9

2
9

2
0
0

1
0
9
7
6

3
0

1
0
9
4
6

4
3

jo
d
a
-t

im
e

1
8
6

5
1
8
1

1
8
1
5
3

3
4

1
8
1
1
9

1
0
3

c
lo

u
d
if
y

4
1
3
7

7
1
7

3
4
2
0

2
8
7
8
1
0

5
0
3
3
9

2
3
7
4
7
1

4
4

lo
g
b
a
c
k

1
8
3

4
9

1
3
4

6
6
3
1
1

1
7
7
5

6
4
5
3
6

1
0
4

p
la

y
-

a
u
t
h
e
n
t
ic

a
t
e

1
7
8

2
7

1
5
1

4
8
2
3

2
9
5

4
5
2
8

4
5

m
o
c
k
it
o

3
2
0

5
6

2
6
4

6
6
6
8
7

2
7
7
4

6
3
9
1
3

1
0
5

R
o
a
r
in

g
B
it
m

a
p

2
4
7

2
1

2
2
6

3
8
9
9
4

6
8
5

3
8
3
0
9

4
6

H
y
s
t
r
ix

5
0
8

2
0
2

3
0
6

3
8
6
3
3

1
6
5
3
6

2
2
0
9
7

1
0
6

jP
O

S
2
8
5

1
0

2
7
5

3
6
0
3
3

1
4
8

3
5
8
8
5

4
7

b
lu

e
fl
o
o
d

7
4
4

8
0

6
6
4

3
9
2
0
9

4
1
6
0

3
5
0
4
9

1
0
7

ja
v
a
s
la

n
g

7
2
2

8
7
1
4

3
8
4
9
6
7

3
9
9
7

3
8
0
9
7
0

4
8

ja
v
a
-d

e
s
ig

n
-

p
a
t
t
e
r
n
s

6
3
0

5
6
2
5

6
9
9
6
7

5
1

6
9
9
1
6

1
0
8

fr
o
n
t
e
n
d
-m

a
v
e
n
-

p
lu

g
in

2
7
3

2
7

2
4
6

2
5
9
8

1
0
6

2
4
9
2

4
9

D
D

T
1
8
3

6
2

1
2
1

5
5
7
0
2

1
0
3
7
5

4
5
3
2
7

1
0
9

jo
d
d

4
3
9

2
3

4
1
6

1
4
1
9
8
7

1
3
6
3

1
4
0
6
2
4

5
0

d
r
o
p
w
iz

a
r
d

1
0
4
8

6
4

9
8
4

4
8
8
3
0

1
0
7
0

4
7
7
6
0

1
1
0

q
u
ic
k
m

l
2
2
2

4
3

1
7
9

1
3
6
7
0

4
2
1

1
3
2
4
9

5
1

n
o
k
o
g
ir
i

4
3
9

1
1
7

3
2
2

2
3
5
7
2

9
5
2
0

1
4
0
5
2

1
1
1

o
k
h
t
t
p

1
3
4
1

3
3
5

1
0
0
6

6
4
7
5
5

1
5
7
5
6

4
8
9
9
9

5
2

a
n
d
r
o
id

-m
a
v
e
n
-p

lu
g
in

2
2
4

1
4
1

8
3

7
4
2
5
9

4
0
9
6

7
0
1
6
3

1
1
2

b
n
d

4
5
9

2
4

4
3
5

3
1
4
3
4

3
3
5
5

2
8
0
7
9

5
3

jc
a
b
i-
a
s
p
e
c
t
s

3
0
4

3
4

2
7
0

5
3
5
4

8
5
8

4
4
9
6

1
1
3

A
c
D

is
p
la

y
3
7
1

1
8
7

1
8
4

3
1
4
5
3

1
7
5
6
9

1
3
8
8
4

5
4

in
t
e
ll
ij
-e

li
x
ir

1
0
7

2
1
0
5

2
3
7
1
8
4

9
5
2

2
3
6
2
3
2

1
1
4

je
d
is

4
2
7

6
1

3
6
6

3
6
3
6
1

8
7
8

3
5
4
8
3

5
5

js
o
n
s
c
h
e
m

a
2
p
o
jo

2
9
4

1
2
9
3

1
2
9
8
5

3
1
2
9
8
2

1
1
5

H
y
d
r
a

2
1
0

3
5

1
7
5

6
6
6
2

5
2
5

6
1
3
7

5
6

lo
r
s
o
u
r
c
e

1
4
7
0

5
8

1
4
1
2

3
1
9
7
0

6
5
6

3
1
3
1
4

1
1
6

s
t
o
r
io

1
9
2

1
1

1
8
1

1
3
0
5
8

7
4
7

1
2
3
1
1

5
7

a
n
a
ly

t
ic

s
-a

n
d
r
o
id

2
0
6

1
7

1
8
9

6
8
9
6

4
9
0

6
4
0
6

1
1
7

J
e
s
t

3
7
0

7
1

2
9
9

2
2
4
1
4

2
4
6
0

1
9
9
5
4

5
8

s
t
o
r
m

6
5

3
6

2
9

2
8
3
1
7

1
6
6
2
2

1
1
6
9
5

5
9

b
a
s
e
x

3
2
2

4
0

2
8
2

5
6
4
8
1

1
9
4
7

5
4
5
3
4

6
0

s
p
a
r
k

2
4
9

1
3

2
3
6

5
5
0
7

8
3

5
4
2
4

142 CHAPTER 7. PAPER F

Table 7.2: Output From the Feature Vectors Using Bag of Words

Filename Path if int a Aa Content

firstFile.c c:/folder 1 0 3 2 if(condition==true) printf("Hello");

firstFile.c c:/folder 0 0 2 0 printf("\n");
secondFile.c c:/folder 0 1 1 0 int i = 10;

consecutive builds. All extracted lines between each pair are then labeled
with the execution outcome (passed/failed) of the newer build. The build
execution outcomes are provided in TravisTorrent under the field ‘build status’.
Thereafter, we save the extracted lines of code for every project in a ‘csv’ file
for every analyzed project. A total of 117 csv files (one file for each project)
were collected and stored locally before being processed in step 2 of the TA
procedure2.

Step 2 (features extraction): The second step utilizes a textual analysis
tool [42] to convert the corpus of extracted code changes in step 1 into feature
vectors. For each line of code in the collected corpus, the tool:

• creates a vocabulary for all lines of code (using the BoW technique, with
a cut-off parameter of how many words should be included3)

• creates a token for words that fall outside of the frequency defined by the
cut-off parameter of the bag of words

• finds a set of predefined keywords in each line,

• checks each word in the line to decide if it should be tokenized or if it is
a predefined feature.

The output of this step is a large array of numbers, each representing the
the token frequency of a specific feature in the bag of words space of vectors.
Table 7.2 illustrates an exemplary output of the bag of words vectors for a
simple code fragment written in the C language. In this study, we chose to
use a bi-gram model for representing the feature vectors, as it was previously
shown to produce good learning performance in a similar context (e.g., [98]).
Notice how the feature values in Table 7.2 correspond to the frequency counts
of each token that appears in every line of code in the code example.

Step 3 (training a classifier): Finally, the extracted set of feature vectors
from step 2 are fed into an ML model for learning how to classify new lines
of code as triggering to CI builds pass/failure. The result of applying the
TA technique on the collected projects resulted in extracting historical code

2https://anonymous.4open.science/r/CIbuilds TSM TF-CE19/
3BoW is essentially a sequence of tokens, which are descendingly ordered according to

frequency. This cut-off parameters controls how many of the most frequently used words are
included as features – e.g. 10 means that the 10 most frequently used words become features
and the rest are ignored.

7.3. EXPERIMENT DESIGN AND OPERATIONS 143

Table 7.3: Descriptions of The Examined Software Metrics

Id Metric Description

1 gh num commits in push
Number of commits in the push that

started the build

2 git prev commit resolution status
String, ”merge found” if this build is a

merge otherwise ”build found”

3 gh team size
Size of the team contributing to this

project within 3 months of last commit
4 git num all built commits Number of all commits in this build

5 gh num commit comments
The number of comments on

git commits on GitHub

6 git diff src churn
How much (lines) production code
changed by the new commits in this

build

7 gh diff files added
Number of files added by the new

commits in this build

8 gh diff files deleted
Number of files deleted by the new

commits in this build

9 gh diff files modified
Number of files modified by the new

commits in this build

10 gh diff src files
Number of production files in the new

commits in this build

11 gh diff doc files
Number of documentation files in the new

commits in this build

12 gh diff other files
Number of remaining files which are neither
production code nor documentation in the

new commits in this build

13 gh num commits on files touched
Number of unique commits on the
files included in this build within 3

months of last commit

14 gh sloc
Number of executable production source
lines of code, in the entire repository

15 token frequency
The frequency count of code tokens in the

analyzed source code.

changes made to every collected project, as summarized in Table 7.1 under the
‘Lines’ column. The distribution of classes assigned to the extracted lines is
specified under the columns ‘Failing lines’ and ‘Passing lines’ in Table 7.1.

7.3.2 Independent Variables

In this study, software metric is the only independent variable (treatment)
examined for effectiveness on the performance of a build prediction model.
A total of 15 variations (software metrics) to the independent variable were
examined, as summarized in Table 7.3. Detailed description about metrics 1
to 14 can be found in the TravisTorrent database [49], whereas metric fifteen
(token frequency) is a measure of the frequency count of code tokens in the
analyzed programs using textual analysis.

144 CHAPTER 7. PAPER F

7.3.3 Evaluation Metrics

We chose four state-of-the-art metrics to evaluate the performance of a classifier
for build outcome prediction that we train on the TSM and TF metrics
respectively. The four metrics are precision, recall, F1-score, and Matthews
Correlation Coefficient.

While precision is the proportion of correctly identified passing builds, recall
is the proportion of relevant builds that were identified as such. Having both
precision and recall high ensures the detection of larger amount of passing
builds and the reduction of false alarms about failing builds.

The F1-score indicates whether the predictive model is performing well in
identifying builds that are actually passing (high precision) and generating
little false alarms about failing builds (high recall). One drawback in using
the F1-score metric is the fact that it only accounts for three elements in the
confusion matrix (true positives, false positives, and false negatives), which
might lead to misleading conclusions if the distribution of the binary classes in
the training data is imbalanced [157].

To mitigate these drawbacks that suffice in F1-score, we decided to measure
the model’s MCC, which takes into account the four elements in the confusion
matrix [157]. In the context of build outcome prediction, a high MCC indicates
that the predictions obtained by the model are good in both classes (passing
and failing builds), as MCC takes the four elements of the confusion matrix
into account. Thus, MCC considers what share of the elements (builds or lines)
in the failing class are correctly identified as failing. If the share is low then
MCC is worse than if the share is high.

7.3.4 Experimental Hypotheses

We hypothesize that using token frequency features for constructing a predictive
model is more effective in learning build prediction than traditional software
metrics. The hypotheses are based on the assumption that build failures
are triggered when faults in the code base are introduced. Accordingly, four
hypotheses are defined and tested for statistical significance. The hypotheses
are formally defined as follows:

• H0p: The mean precision is the same for a model trained on token
frequency and each traditional software metrics.

µ1p = µ2p (7.1)

• H0r: The mean recall is the same for a model trained on token frequency
and each traditional software metrics.

µ1r = µ2r (7.2)

• H0f: The mean F1-score is the same for a model trained on token frequency
and each traditional software metrics.

7.3. EXPERIMENT DESIGN AND OPERATIONS 145

µ1f = µ2f (7.3)

• H0mcc: The mean MCC is the same for a model trained on token frequency
and each traditional software metrics.

µ1mcc = µ2mcc (7.4)

7.3.5 Data Analysis Methods

To decide whether to run a parametric or non-parametric statistical test for
analysis, we begin the analysis by running a normality test on the distribution of
the four evaluation metrics under the 15 treatment levels. We chose to use the
Shapiro Wilk test to evaluate the normality of the distributions. Based on the
normality test results, we decided to run the Kruskal-Wallis (a non-parametric
test) for comparing the precision, recall, F1-score, and MCC values between
the different treatment levels.

While the Kruskal-Wallis statistical test is used to determine statistical
significance between the treatment levels and the evaluation metrics (i.e., if
the treatment has an effect on precision, recall, F1-score, and MCC), they do
not quantify the amount of difference between the groups. Hence, we decided
to complement the analysis by calculating the effect size between the precision,
recall, F1, and MCC scores attained when using the TF and the next best
traditional software metric. For this purpose, we used the ‘effsize’ library
available in R-studio (release 2022.02.3). We used the Cliff’s Delta analysis
method (a non-parametric statistical test) to measure the effect size. An effect
size of +1.0 or -1.0 indicates that there is no overlap between the distribution
of precision, recall, F1-score, and MCC. An effect size of 0.0 indicates that the
distribution between each pair of evaluation metrics overlaps completely.

7.3.6 Prediction Model

In this study, we chose to employ a random forest (RF) model for learning
build outcome prediction. This was mainly because RF 1) has a white-box
nature that can be utilized to extract the set of features that influences the
prediction, and 2) tends to perform well with discrete and high-dimensional
input data [158]. The hyper-parameters of the model were kept in their default
state as found in the scikit-learn library (version 0.20.4). The only alteration
that we made was in the n estimator (the number of trees) parameter, where
we changed its value from 10 to 100. This was a design choice that we made
based on the findings reported in a previous study [78] in which the authors
experimented the use of an RF for predicting test case execution outcomes.
The findings showed that using an RF model with the same default parameters
would outperform four other deep learning and tree models in test case outcome
prediction.

146 CHAPTER 7. PAPER F

7.3.7 Experimental Subjects and Class Balancing

We began the experiment by applying 10-fold stratified cross-validation on the
build records to create the experimental subjects. Each generated subject (fold)
was used for validating the RF classifier, which we trained on the remaining
nine folds for each TSM metric. Similarly, 10-fold stratified cross-validation
was applied on the set of code changes that we extracted from each project.

One aspect that is known to affect the performance of predictive models
is related to class imbalance, where the number of training instances in the
data for one class outnumbers instances that belong to the other class [146].
The effect of training a model on imbalanced data-set lies in creating a model
that is biased towards one of the classes. In order to control the effect of this
aspect, we achieved a balanced distribution of build records and lines of code
in the minority class of of each training fold in every analyzed project. To
that end, we used the ‘resample’ module provided in the Scikit-learn library
[76] whenever more than 50% of build records or lines of code at each project
belonged to either one of the binary classes. Note that the resampling procedure
was applied to the training data-sets only, as we wanted to evaluate the model’s
generalizability on real-world scenarios where data-sets come unbalanced.

7.4 Results

This section describes the results of the statistical tests conducted to evaluate
the four hypotheses and answer the research question.

7.4.1 Evaluation of Metrics effectiveness

To evaluate the effectiveness of the TSM and TF metrics, we begin by cal-
culating the descriptive statistics of the precision, recall, F1-score, and MCC
for the RF model that we trained on each fold in every analyzed project.
Table 7.4 presents descriptive statistics describing the mean and standard
deviation (SD) of precision, recall, F1-score, and MCC for the total number
of folds (N) in the entire set of analyzed projects. The descriptive stat-
istics reveal that learning build prediction is most effective when using the
token frequency and the gh num commits on files touched metrics 4. While
the token frequency metric slightly outperformed the gh num commits on

files touched metric with respect to precision, recall, and F1-score, the
gh num commits on files touched metric surpassed the latter with respect
to MCC. A big difference between F1 and MCC can happen if the classes in
the data-set are not balanced. While we balanced the training data-set, we
did not for the test data-set as explained above. Hence, the number of failing
lines that are falsely predicted as passing by TF is fairly small compared to
the lines correctly predicted to pass and incorrectly predicted to fail, a line

4We are aware of the wide spread in the distribution of precision, recall, F1-score, and
MCC (high SD) values. Therefore, we used non-parametric statistical tests for comparing
the distribution of values.

7.4. RESULTS 147

Table 7.4: Descriptive Statistics for the Precision, Recall, F1-score, and MCC

Precision Recall F1-score MCC
Metric N Mean SD Mean SD Mean SD Mean SD

gh num commit
comments 1170 0.38 0.35 0.48 0.49 0.348 0.353 0.03 0.08
gh num commits
in push 1170 0.66 0.25 0.52 0.33 0.516 0.257 0.24 0.25
gh num commits
on files touched 1170 0.90 0.15 0.76 0.17 0.816 0.157 0.68 0.27
gh prev commit
resolution status 1170 0.50 0.30 0.48 0.39 0.427 0.288 0.08 0.18
gh sloc 1170 0.84 0.27 0.60 0.36 0.653 0.325 0.55 0.41
gh team size 1170 0.48 0.35 0.52 0.43 0.470 0.357 0.15 0.40
git diff doc
files 1170 0.36 0.33 0.47 0.48 0.354 0.350 0.03 0.10
git diff files
added 1170 0.62 0.27 0.58 0.41 0.495 0.287 0.19 0.20
git diff files
deleted 1170 0.52 0.33 0.55 0.47 0.422 0.334 0.10 0.16
git diff files
modified 1170 0.68 0.21 0.60 0.27 0.601 0.209 0.31 0.26
git diff other
files 1170 0.63 0.22 0.60 0.33 0.558 0.240 0.23 0.23
git diff src churn 1170 0.82 0.18 0.67 0.22 0.715 0.176 0.52 0.26
git diff src files 1170 0.68 0.20 0.61 0.26 0.614 0.198 0.31 0.25
git num all
built commits 1170 0.57 0.30 0.54 0.44 0.440 0.311 0.13 0.18
token fre-
quency

1170 0.91 0.13 0.80 0.15 0.846 0.133 0.16 0.21

that is failing is not unlikely to be predicted as passing using TF. Figure 7.1
is a bar plot that visualizes the mean scores of the four evaluation metrics
for each software metric across the 117 projects. The x-axis represents the
metric names, and the y-axis corresponds to the evaluation metrics’ values.
From the dotted frame in Figure 6.2, it can be seen that by far the greatest
mean precision, recall, and F1-score were achieved when using the gh num
commits on files touched and the token frequency metrics.

To gain a better understanding of the effectiveness of each metric, we plotted
the distribution of precision, recall, F1-score and MCC values for every project.
Figures 7.2(a), 7.2(b), 7.2(c) and 7.2(d) are boxplot charts that visualize the
distributions. By inspecting the distributions, we observe the following:

• there exists a large disparity in the distribution of the four evaluation
metrics with respect to the majority of the examined software metrics.

• the TF metric yields better MCC scores than all the other metrics in
several other projects.

• the lowest attained precision, recall, and F1-score values when using TF is
higher than the lowest value attained when using the other TSM metrics.

148 CHAPTER 7. PAPER F

Figure 7.1: Mean Performance Scores of Each Metric.

7.4.2 Hypotheses Testing

7.4.2.1 Significance Testing

We begin the hypotheses testing by conducting a normality test for the distri-
bution of the four evaluation metrics. The statistical test results of normality
for the four evaluation metrics when learning a classifier from the 15 software
metrics show that the assumption of normality can be rejected for all the four
evaluation metrics (p <0.05). Therefore, we decided to use a non-parametric
statistical test for testing the hypotheses. To answer the research question
of How effective is the token frequency metric in comparison with traditional
software metrics for predicting build outcomes in CI?, we started the analysis by
running the Kruskal-Wallis test for comparing the distribution of the evaluation
metrics attained when using the TSM and TF metrics. The Kruskal-Wallis
test results show that there is a statistically significant difference between the
precision, recall, F1-score, and MCC variables with respect to the 15 software
metrics (p-value <0.05). Table 7.5 summarizes the Kruskal-Wallis test results
for each evaluation metric respectively. Since the Kruskal-wallis test is an
omnibus statistical test i.e., it cannot tell which variable is statistically sig-
nificantly different, we decided to run a Dunn’s post hoc statistical test. To
control possible family-wise error rate that may occur as a result of performing
multiple pairwise comparisons, we used the Bonferroni correction method for
adjusting the p-values.

Figures 7.3(a), 7.3(b), 7.3(c) and 7.3(d) are heatmap plots that visualize

7.4. RESULTS 149

(a) Precision. (b) Recall.

(c) F1-score. (d) MCC.

Figure 7.2: The Distribution of the Evaluation Metrics For the TSM and TF
metrics Across All Analyzed Projects.

Table 7.5: The Kruskal-Wallis Test Results For Comparing the Performance
Values of All Software Metrics.

Evaluation Metric Precision Recall F1-score MCC

Kruska Wallis H 5096.809 442.331 4212.293 6134.276

Sig. <0.05 <0.05 <0.05 <0.05

150 CHAPTER 7. PAPER F

(a) Precision. (b) Recall.

(c) F1-score. (d) MCC.

Figure 7.3: Heatmaps showing the distribution of p-values when performing
pairwise comparisons between the scores of each evaluation metric for each
pair of metrics. Darker cells indicate smaller p-values, and lighter cells indicate
larger p-values. Orange cells indicate no statistically significant difference.

the distribution of p-values obtained from each post hoc pairwise comparison
between the precision, recall, F1-score and MCC variables. The lower the
p-value between each pair of software metrics (<0.05), the more confident we
can be that there is a statistically significant difference between them.

By inspecting the p-values in Figures 7.3(a), 7.3(b), 7.3(c) and 7.3(d), we
draw the following observations:

• predicting build outcomes using the token frequency or the gh num commits

on files touched metrics results in a statistically significantly different
recall and F1 scores than those attained when using each of the other
TSM metric (with p <0.05).

• the precision scores attained when using the token frequency metric is
significantly different compared to the precision scores attained when
using the majority of the other software metrics. The only two exceptions
were with the git diff src churn and the gh sloc metrics, where no
statistically significant difference could be drawn.

• using the gh num commits on files touched results in a statistically

7.4. RESULTS 151

significant difference with respect to MCC compared with all the other
examined metrics (p <0.05).

Based on these observations, the hypothesis that The mean precision is
the same for a model trained on token frequency and each traditional software
metrics (H0p) can be rejected except for the git diff src churn and the
gh sloc metrics, since no significant difference was captured with these. This
observation brings us to believe that using the token frequency metric is more
effective than twelve of the fourteen other traditional software metrics in
identifying passing builds. Similarly, our results reveal that the precision scores
recorded when training a model on the gh num commits on files touched

metric were significantly different than all the other precision scores attained
when using each software metric. Thus, we observe that using the count of
unique commits on the files included in builds within 3 months of last commit
is a more reliable predictor for identifying passing builds, compared to the
other metrics.

On the other hand, the hypotheses that The mean recall and F1-score are
the same for a model trained on token frequency and each traditional software
metrics (H0r and H0f) can be rejected. This is because a statistically significant
difference was captured between the recall scores attained when using token
frequency and every other software metric. Hence, using the token frequency
metric for training a classifier on predicting build outcomes is more effective
for identifying the highest amount of relevant builds that will pass.

Similarly, the hypothesis that the mean MCC is the same for a model trained
on token frequency and each traditional software metrics (H0mcc) can be rejected
for all of the other traditional software metrics except for the gh team size

and the gh num all built commits, which were not statistically significantly
different with the MCC scores attained by the token frequency metric.

7.4.2.2 Effect Size

Table 7.6 summarizes the effect size results for the TF and gh num commits on

files touched metrics. The gh num commits on files touched metric was
chosen since it outperformed the other TSMs with respect to precision, recall, F1-
score, and MCC. While the calculated p-values in Figures 7.3(a), 7.3(b), 7.3(c),
and 7.3(d) indicate that there is a statistically significant difference between the
precision, recall, and F1-score produced when using TF and gh num commits

metrics, the Cliff’s Delta analysis shows that the difference in effect size
between the two metrics is relatively small (<|0.3|). On the other hand, the
effect size between the MCC scores was found to be large, indicating a large
difference when using the two metrics respectively (>|0.8|).

While the difference in effect size between TF and gh num

comments on files touched is small with respect to precision, recall, and
F1-score, the advantage that TF has over the TSM is the fact that it operates
on a fine-grained level, which allows developers to pinpoint lines of code
that require debugging before committing new code changes. A line of code

152 CHAPTER 7. PAPER F

Table 7.6: The Cliff’s Delta Analysis Results Between the Four Evaluation
Metrics, Comparing Token Frequency and gh num commits on files touched

Name
Effect size

(delta estimate)
Lower Upper

Precision -0.23 -0.28 -0.18
Recall 0.12 0.07 0.17
F1 0.09 0.04 0.14

MCC -0.83 -0.85 -0.80

example from the ‘Cloudify’ project 5 that was correctly identified by the
TF-trained model to trigger a build failure is ”\t\t\t\t\tif (!(Boolean)

session.get(Constants.INTERACTIVE MODE)) {".

RQ. How effective is the token frequency metric in comparison
with traditional software metrics for predicting build outcomes
in CI?

Our experiment on 117 Java projects revealed that using the token
frequency metric for training a classifier on build outcome prediction yields
a slightly better predictive quality for the passed builds than when using
the best traditional software metrics. On the other hand, the majority
of the examined traditional software metrics were found to yield higher
predictive quality than the token frequency metric when it comes to the
failed builds.

Overall, the findings of this study suggest that both line and file level metrics
are effective for learning build outcome predictions in CI. However, the usage of
each metric type may vary depending on the business needs and target domain
in which the system operates. For instance, practitioners that would prioritize
fast releases over capturing issues in the system might opt to use line-level
metric for training as it allows developers to be more confident to start using
the code base for implementing new features without waiting for the build
to finish running if it was predicted to pass. This assumption needs to be
validated in future studies. On the other hand, if practitioners are working on
developing safety critical systems, then capturing all issues in the system is
prioritized over fast releases. In this case, using the file level metrics is more
desirable since those were shown to yield higher effectiveness rate in alerting
developers about issues in the code that require fixing.

7.5 Threats to Validity

In this section, we discuss the limitations of our paper using the framework
recommended by Wohlin et al. [46].

5https://github.com/CloudifySource/cloudify

7.6. CONCLUSION AND FUTURE WORK 153

External Validity: Our study investigates the effectiveness of fifteen different
software metrics in predicting build outcomes for 117 Java projects. Hence,
we are aware that we can not generalize the conclusions drawn in this study
to projects that are written in different programming languages. The results
reported in this study may vary if we observe projects that are written in other
languages or ones that are linked with different CI services. New studies are
needed to validate the effectiveness of the TF metric for projects written in
different languages and CI services.

Construct validity: The most tangible threat to construct validity is that
we can not assert whether all collected build records with ‘failed’ status were
due to, for example, environmental breakages or faults in the code. Hence,
the likelihood of analyzing build records that failed due to factors that are
not related to the code-base can not be ruled out. Another threat lies in the
validity of the number of build records that we extracted from the TravisTorrent
data-set, and whether these records truly mirror the actual builds in Github.
However, we minimize these threats by collecting and analyzing a large sample
of build records and lines of code from 117 projects.

Internal Validity: A potential internal threat is the presence of undetected
flaws in the measurement tools used for extracting both the TSM and the TF.
This threat was reduced by carefully inspecting the scripts and testing them
on different subsets of data.

Conclusion validity: The main conclusion drawn from this empirical study
suggests that using the a line-level metric produces similar predictive quality
as file-level metrics in predicting passing builds. This conclusion is based on
measuring the effect size of TF and one file-level metric on four predictive
performance metrics. Hence, the results might differ if we measure the effect
size of TF and another file-level metric, such as gh sloc. However, we chose
the gh num comments on files touched metric since it scored highest in mean
precision, recall, F1-score, and MCC values, and since it showed a significant
difference with almost every metric.

7.6 Conclusion and Future work

In this paper, we conducted an empirical study to examine the effectiveness
of a line-level metric in learning build outcome prediction, and compared
its effectiveness with fourteen traditional software metrics. We found a a
small difference in effect size between token frequency and the best traditional
software metrics metric for the passed builds, and a large difference for the failed
builds. We conclude that using the line-level metric for training a classifier on
build outcome prediction is slightly more effective than the file level metrics for
the passed builds, but substantially less effective when it comes to the failed
builds. The benefit that token frequency has over traditional software metrics
is its ability to pinpoint lines of code that require fixing.

154 CHAPTER 7. PAPER F

While our analysis revealed promising results regarding the effectiveness of
line-level metric for build prediction, future work aims at analyzing additional
software metrics such as those related to testing (e.g., gh tests added) and
others that operate on line-level. Another future direction is to experiment the
use of token frequency on software written in different programming languages.
Finally, we would like to evaluate the effectiveness of using both types of metrics
- line and file levels - on the predictive quality of a model for build outcome
predictions in CI.

Chapter 8

Paper G

The Impact of Class Noise-handling on the Effectiveness
of Machine Learning-based Methods for Build Outcome
and Code Change Request Predictions

Al-Sabbagh, K.W., Staron, M., and Hebig, R.

Submitted to ACM Transactions on Software Engineering and Meth-
odology.

155

Abstract

Machine learning-based methods are commonly used to expedite feature delivery
to end-users. These methods leverage large amounts of historical code changes
to train models on predicting issues in the code-base that can lead to delays in
the delivery of features. However, the presence of noise in such data impedes
the predictive performance of these methods. In this study, we explore the
effectiveness of two statistical-based techniques and a domain knowledge-based
technique to handle class noise in predicting build outcomes and code change
requests. Our experiments use data from 112 Java open-source projects. The
results show that the two statistical-based techniques have a positive impact
on the model’s performance in both contexts. Specifically, in build outcome
prediction, applying the ’majority filter’ improves F1-score from 82% to 97%,
and MCC from 0.13 to 0.58. Similarly, in code change request predictions,
the ’majority filter’ improves the F1-score from 17% to 53%, and MCC from
-0.03 to 0.57. On the other hand, using the domain-knowledge-based technique
was found to impact the prediction of code change requests only. We conclude
that applying statistical-based techniques to the training data of code changes
is necessary to leverage the prediction of build outcomes and code change
requests.

8.1. INTRODUCTION 155

8.1 Introduction

Software engineering companies are under increasing pressure to deliver high-
quality software products to the end-users as quickly as possible [159]. To meet
these demands, companies are adopting the practice of continuous integration
(CI), which promotes for frequent integration and testing of code changes [2].
This practice has become an integral part of modern software development pro-
cesses as it offers various advantages, such as streamlining workflows, fostering
collaboration between team members, and improving software quality.

Despite these benefits that CI offers to companies, it poses the challenge of
minimizing the feedback latency between CI and software engineers without
compromising fault detection capability. The growing complexity of features
and the lengthy compilation time that CI takes underline the need for tools that
can expedite the feedback time to software engineers and effectively pinpoint
faults in the code. These tools aim to promptly identify and report code
changes that are likely to contain faults to software engineers, ensuring rapid
detection and fixing of faults.

Machine learning (ML)-based methods have proven effective in accelerating
code integration by predicting fault-prone software modules [160][161]. By
analyzing code commit histories and build execution outcomes, these methods
can identify patterns in code changes that may lead to build failures [162].
However, recent studies have shown that code commits data come with large
amounts of inaccurate class values, known as class noise, which can impede the
predictive performance of ML models [6]. In the context of CI, these inaccurate
values can originate from several factors, such as machinery failure, flaky test
cases, data collection methods, etc.

To address the problem of class noise, researchers have proposed several
techniques that can be divided into three categories: 1) tolerance, 2) removal,
and 3) correction. The tolerance-based techniques focus on designing machine
learning models that are robust and capable of tolerating a certain level of noise
in the data [54]. The removal-based techniques seek to identify entries with
class noise and then remove them from the data-set. The main advantage of
using such techniques is that they retain cleaner entries of the data and discard
unclean ones. However, using removal-based techniques can lead to losing
valuable information that can be used by the model to learn important patterns.
Finally, techniques in the correction category seek to correct mislabeled entries
by replacing their values with ones that are more appropriate. These techniques
are particularly appealing when the training data is small since no removal of
data entries is required. However, by correcting mislabeled entries we introduce
a risk of bias toward one of the classes [7].

Several SE researchers have investigated the use of different noise-handling
techniques to improve the detection of fault-prone software modules. For
example, Khoshgoftaar and Rebours [39] conducted a case study to investigate
the effectiveness of two removal-based techniques in improving the identification
of fault-prone software modules. The evaluation was performed using a data-set
of 10.883 software modules. The results showed that the models’ performances
improve the most when using a conservative technique where fewer entries in

156 CHAPTER 8. PAPER G

the data are removed. In another research study, Hulse et al. evaluated a
correction-based technique that uses Bayesian multiple imputation to combat
the problem of class noise in faulty software modules [163]. Using a data-set
of 282 software program modules, the authors evaluated the error rate of the
technique in correcting noisy entries. The results showed that 60% of the
mislabeled entries were correctly relabeled. Khoshgoftaar et al. [164] proposed
a removal-based technique that uses a statistical model and Boolean rules to
improve the prediction of faulty software modules. The evaluation results was
done using seven software programs from the NASA data-set. The results
showed that the approach was effective in detecting all known noisy entries in
6/7 examined software projects.

From this brief review of research studies, we see that that most studies
have used statistical-based models to battle the problem of class noise and
evaluated their effectiveness using relatively small samples of software programs.
This poses a challenge in the ability to generalize the findings outside their SE
contexts. We also observe that little emphasis has been given to investigate
and compare the impact of different strategies of class noise-handling in the
same SE data-sets. These shortcomings indicate a need to understand the
impact of class noise-handling techniques in more SE contexts and using bigger
samples of SE data.

These limitations highlight the need for a deeper understanding of the effects
of class noise-handling techniques in a wider range of software engineering
contexts and with larger data-sets. In light of this need, we set out to examine
the effectiveness of three class noise-handling techniques on the performance
of a machine learning-based method for predicting fault-prone code changes
using large data-sets of code commit histories. The aim is to provide actionable
insights to DevOps and software engineers with the most effective class noise-
handling technique for building accurate models in predicting fault-prone code
changes.

To achieve this goal, we design and implement two computationally con-
trolled experiments wherein we examine the effectiveness of two statistical-based
techniques and a domain knowledge based technique in the context of CI. In
the first experiment, we examine the impact of applying each of the three tech-
niques to a training data of code commits and build job execution outcomes for
build outcome prediction. We perform the evaluation using a large data-set of
110 Java Open-source projects. The goal is to examine whether applying any
of the three class noise-handling techniques improves the prediction of build
job outcomes.

RQ1: What is the impact of applying class noise-handling techniques on
predicting the outcome of builds in continuous integration?

The second experiment examines how each class noise-handling technique
affects the performance of an ML-based method in predicting code change
requests during code review. We select a sample of 5066 lines of code and
corresponding code comments from two open-source projects for evaluation.
These code commits are manually labeled based on the sentiment expressed by
reviewers regarding the readiness of the code for integration or the need for

8.2. RELATED WORK 157

changes. Consequently, we pose the following research question:

RQ2: What is the impact of applying class noise-handling techniques on
predicting code change requests?

We evaluate the impact of the three class noise-handling techniques in
the two experiments by measuring the predictive performance of a random
forest (RF) model in terms of Precision, Recall, F1, and MCC. We evaluate
the effectiveness of each technique by comparing the four performance metrics
before and after applying each technique respectively.

Our results from the first experiment suggest that applying the removal-
based techniques would consistently improve the predictive performance of the
model in terms of Precision, Recall, F1, and MCC. In addition, the results
from the second experiment suggest that applying any of the three class noise-
handling techniques will consistently improve the the predictive performance
of the model, albeit to a varying degree.

The remainder of this paper is structured as follows: Section 2 discusses
previous research studies that are related to the study presented in this paper.
Section 3 presents background information, covering core concepts and a formal
definition of how class noise is measured in code commits data. Section 4
describes the research design. Section 5 presents the evaluation results of the
impact of class noise-handling techniques on the performance of the ML-based
method for build outcome and negative review comment predictions. Section 6
answers the research questions and discusses general observations. Section 7
addresses the threats to validity of this study. Finally, Section 8 presents the
findings and concludes the paper.

8.2 Related Work

The literature provides several techniques for handling class noise, including
removal, correction, and tolerance-based ones. In our research, we specific-
ally focus on removal and correction-based techniques as they pertain to our
analysis. Therefore, we highlight some of the most popular and widely used
techniques that fall under these two categories.

8.2.1 Removal and correction based techniques for class
noise-handling

Removal based techniques Brodley and Friedl [21] proposed a method
for identifying and handling noise in training data using three or five learning
algorithms as filters. These filters employ majority voting or consensus filter
mechanisms to identify potentially noisy instances. The effectiveness of their
approach was assessed using five different data-sets. The evaluation results
indicated that, when dealing with noise levels of 20% and higher, the majority
filter exhibited slightly better prediction accuracy compared to the consensus

158 CHAPTER 8. PAPER G

filter. However, for noise levels below 20%, both filters demonstrated similar
accuracy scores ranging from 79% to 82%.

Guan et al. [14] proposed a variant of the majority and consensus filters
that incorporated a semi-supervised classification step to aid in predicting class
values for unlabeled instances. The technique was tested on 20 benchmark data-
sets and evaluated by measuring the classification error rate. The comparisons
demonstrated that the technique improved the classification performance of
machine learning models across four different noise ratios. Specifically, when
the noise ratio was 10%, the technique reduced the classification error rate by
4.5%, while at a noise ratio of 40%, the improvement significantly increased to
25.6%.

Wilson and Martinez [165] introduced an instance-based technique called
DROP3, which aims to remove noisy entries from the data. This technique
employs a distance function to determine the proximity of each input vector in
a subset of the training data to the entire data-set. To evaluate its effectiveness,
DROP3 was compared with ten other techniques across 31 classification tasks.
The comparison results based on average accuracy demonstrated that DROP3
ranked 5th in terms of its improvement effect on accuracy, with an average of
81.14%.

Correction based techniques Muhlenbach et al. [40] introduced a al-
gorithm that allows users to filter and polish noisy instances. The algorithm
utilizes neighbourhood graphs and cut edge weight algorithms to identify noisy
suspects in the data. An instance is considered noisy when its class value is
different than one of the examples belonging to its geometrical neighbourhood.
Once noisy suspects are identified, they can be either removed or removed
and relabelled. Muhlenbach et al. evaluated their algorithm using data-sets
extracted from 10 benchmark ML repositories. The findings suggest that
removing noisy suspects from the training data produces better results in 9
out of 10 data-sets compared to removing and relabelling noisy suspects at a
noise level between 4% and 10%.

Teng [20] introduced a noise correction technique that exploits the interde-
pendence relationship between the attribute and class values to identify and
correct inaccurate values. The idea is to use an ensemble classifier to predict
noisy suspects in the data. Some entries that were incorrectly classified by the
ensemble (using a voting scheme) are tagged as noisy and then corrected. The
author evaluated the effectiveness of her technique by measuring the prediction
accuracy of Decision Trees before and after correction was applied. The results
showed that at an intermediate noise level (20–30%), the improvements in
accuracy were significant. However, at 40% noise level, the improvements in
accuracy were inconsistent.

In comparison with the correction-based noise-handling techniques high-
lighted above, the domain knowledge-based technique that we use in this study
is lightweight and less complex since it relies on our knowledge in the domain
of code changes. An earlier investigation on the effectiveness of the technique
was presented in our recent work [98]. There, we demonstrated that applying
the technique to industrial data of code changes and test execution outcomes

8.2. RELATED WORK 159

Table 8.1: Results summary for class noise experimentation in software engin-
eering research

Study
SE

context
Data-sets

Noise
approach(s)

Results

Kim et al.
[166]

Defects
Prediction

- Columba,
- Eclipse 3.4,
- Scarab,
- SWT,
- Debug

- Removal F1= 71%

Liebchen et al.
[167]

Effort
Estimation

- EDS
- Removal
- Correction

% of remaining
noise:
Removal: 11.24%
Correction: 365%

Zhong et al.
[168]

Defects
Prediction

- NASA:
JM1 and KC2

- Removal

Noise Recall
performance:
77% in JM1 -
91% in KC2

Seiffert et al.
[169]

Defects
Prediction

- CCCS - Tolerance
AUC:
ranged from
97% to 100%

improves the predictive performance of a model for test case selection from 44%
to 81% Precision and 17% to 87% Recall. In this study, we extend the evalu-
ation of the technique by comparing its effectiveness with two statistical-based
models in improving the prediction of build job outcomes and code change
requests.

8.2.2 Class noise-handling in software engineering con-
texts

The most related studies to our work concern the analysis of the impact of
class noise-handling on the predictive performance of ML models for solving
SE tasks. This section highlights research studies that examine the effect of
class noise-handling techniques on the predictive performance of ML models in
SE contexts.

Table 8.1 summarizes previous research studies that examined the effect of
class noise-handling techniques on the predictive performance of ML models in
SE contexts.

Kim et al. [166] proposed the Closest List Noise Identification technique for
removing mislabelled entries in software defect data sets. The technique uses
Euclidean Distance for measuring similarities between entries in the training
data and comparing their class values. If the percentage of entries that have
different class values, relative to an entry, is above a predefined threshold,
then that entry is treated as noisy and, thus, removed from the data-set. The
technique was evaluated on data-sets from the Eclipse 3.4 SWT and Debug
open-source projects. The prediction results attained by an SVM model showed
that F1 improves from 34% to 71% when the noise level is exactly at 30%. On
the other hand, F1 decreased for the same SVM model when the noise level
was higher than 30% (F1 decreased from 35% to 24%).

160 CHAPTER 8. PAPER G

Liebchen et al. [167] conducted an experiment to assess the performance
of three class noise-handling techniques using a sample of 8888 entries. The
sample data describes completed software projects whose attributes capture
projects’ characteristics (e.g., project names and types). The examined class
noise-handling techniques were 1) filtering, 2) robust filtering, and 3) filtering
and polishing. The results of the experiment showed that using a robust
filtering technique could eliminate 88% of noisy entries found in the initial
data-set. Conversely, the filtering and polishing technique resulted in tripling
the amount of noisy entries compared to the amount of noise found in the
initial data.

Zhong et al. [168] proposed using an unsupervised learning technique
followed by manual labeling by experts to deal with the problem of class noise
and missing class labels in software-fault measurement data. The idea is based
on the assumption that fault-prone software modules will have similar software
measurements and, thus, can likely form clusters. The authors classified their
technique as a removal-based approach since it offers experts the ability to
decide whether all grouped fault-prone software modules should be labelled as
such or not, and accordingly decide whether to keep or remove them from the
data. The evaluation of the technique was done by comparing the mislabeled
software modules by SE experts with software modules tagged by another
removal-based technique, described in [24]. The evaluation was done using
two software projects (written in C++) from the NASA software projects.
The results showed that their clustering technique achieved a noise Recall
performance of 77% in the first project and 91% in the second project.

Seiffert et al. [169] conducted a series of experiments to investigate the
impact of both class noise and class imbalance on the predictive performance of
models built to predict fault-prone program modules. The authors investigated
the robustness of 11 ML models in tolerating class noise when using 7 data-
sampling techniques. By seeding class noise into a data-set that contains 282
program modules written in Ada, the authors examined the impact of applying
the 7 sampling techniques in the presence of four different class noise levels on
the performance of the 11 models. The average Area under the ROC Curve
(AUC) showed that the Naive Bayes model performs better than all others
at all noise levels and is relatively unaffected by the increase in noise ratio.
Specifically, the average AUC of the Naive Bayes model ranged from 97% to
100% at the four seeded noise levels.

From this brief overview, we observe that the evaluation of the techniques
was performed using small sample data-sets (one or a few software programs)
and mainly focused on improving defects prediction. Therefore, the study
presented in this paper adds to the literature by examining the effectiveness of
three techniques using: 1) large real-world data-sets of historical code commits
in two unexplored SE contexts (i.e., build outcome and code change requests),
and 2) a reliable performance measure – MCC – which reveals more truth
about the bias introduced by the noise-handling techniques.

8.3. BACKGROUND 161

8.3 Background

This section provides the definition of class noise that we used in this study. It
also explains how the code review process in Gerrit is carried out, and describes
the three class noise-handling techniques that we examine for effectiveness in
this study.

8.3.1 Definition and example of class noise

In this study, we define class noise as the ratio of contradictory entries in each
class to the total number of entries in the data. contradictory entries are
entries that have the same vector representation and are labeled with different
class values. Based on this definition, we use the following formula to measure
the ratio of class noise in the data:

Noise ratio =
Number of Contradictory Entries

Total Number of Entries

Since a contradictory entry can only be among two or more entries, thus
their total count in the data is calculated by summing up the number of the
same entries that appear with one or more different class value(s). For example,
a data-set containing six of the same entries with five that are labeled with True

and one labeled that is labeled with False has six contradictory entries. It is
not possible to define a general rule to identify which class label is correct based
on the number of entries [167]. For example, noise sources might systematically
tend to introduce False ”False” class values. Since we do not know exactly
which class value should be used in a specific context, we cannot simply re-label
any entry, as suggested by the currently used solutions (e.g. using entropy
measurements [52]), and therefore we count all such entries as contradictory.

8.3.2 Code review process in Gerrit

Over the last few decades, the process of code review has started to become
more prevalent in the software engineering community. Big companies like
Google started adopting lightweight tools to accelerate the review process [170].
A reviewer process typically enacts four sequential steps: 1) the author of a
commit submits it to the code review tool, 2) the reviewers review the changes
introduced in the submitted commit, 3) the reviewers can then either initiate a
discussion thread on specific lines/blocks in the committed code or approve
the changes, 4) the author of the commit either responds by addressing the
comments raised by the reviewers or arguing against the proposed changes.
This feedback loop between team members remains active until the majority
of the reviewers are satisfied with the discussion/modifications or until the
submitted commit gets discarded.

Gerrit is an example of such tools that have recently gained popularity in
OSS projects and several other Google projects (e.g., Chromioum). In Gerrit,
any submitted commit is only merged into the master branch if the assigned

162 CHAPTER 8. PAPER G

reviewers and the automatic checker have explicitly approved the changes in
the submitted commits. Gerrit utilizes a voting mechanism that enables code
reviewers to indicate their level of approval on merging new code changes. The
voting mechanism uses a scale of intervals that span between -2 and +2. An
interval of:

• +2 indicates that the change looks good and is approved.

• +1 indicates that the change looks good, but someone else must approve
it.

• 0 indicates no score.

• -1 indicates that it is not preferable to submit this commit.

• -2 indicates that the change is rejected.

This voting mechanism, together with the code review discussions, consti-
tutes the evidence needed by team members to either integrate or rework the
proposed change.

8.3.3 Class noise example in code review data

Figure 8.1 exemplifies a scenario in which class noise can be introduced into
a code review data-set. The Figure shows two code commits written in Java
– commit 1 and commit 2 – submitted for peer review inspection via Gerrit.
The assigned reviewers to commit 1 agree to decline the merge request – the
majority of reviewers voted with a score below 0 – and start a discussion thread
with the author, requesting a fix to the code. On the other hand, the assigned
reviewers to commit 2 agree to accept the commit – the majority of reviewers
voted with a score above 0 – and, hence, merge it into the master branch.

If we use the sentiment of reviewers to label each line of code in the two
commits, then every line of code in commit 1 will be labeled with ’disapproved’
and every line of code in commit 2 will be labeled as ’appproved’. Note that
in this example, we use a class value of ’0’ to annotate a line of code that is
disapproved and a class value of ’1’ to annotate a line of code that is approved.
Accordingly, the following pairs of lines from commits 1 and 2 can be classified
as contradictory, since they are duplicates and hold different class labels:

• line 8 from commit 1 and line 9 from commit 2.

• line 9 from commit 1 and line 11 from commit 2.

• line 10 from commit 1 and line 13 from commit 2.

Since there are a total of 19 lines of code in the changes of commits 1 and
2, then the total number of entries in the training data is 19. The formula for
calculating the noise ratio for this example is thus:

Noise ratio =
6

19
= 31.5%

8.3. BACKGROUND 163

Figure 8.1: Class noise in code review data.

8.3.4 Noise-handling techniques

In our work, we examine the effectiveness of two removal-based techniques and a
domain-knowledge-based class noise-handling technique. We begin this section
by describing the two removal-based techniques and then turn to describe the
third technique.

8.3.4.1 Removal-based noise-handling techniques

From a wide range of existing class noise-handling techniques, we chose to
examine two of the most widely used and reported in the literature. Namely the
consensus (CF) and majority filter (MF) introduced by Brodley et al. [21]. The
two techniques employ an ensemble of ML models for classifying noisy entries in
the training data using a voting mechanism: a univariate decision tree (C4.5),
a K-Nearst Neighbors (KNN), and a linear regression model (LR). Figure 8.2
illustrates the main procedure of the techniques for identifying and removing
noisy entries. The techniques work in a k-fold cross-validation manner, where
for k repetitions k-1 folds are used for training each model in the ensemble.
Each model is then used to tag each entry in the remaining hold-out fold as
either noisy or clean. At the end of the k repetitions, each entry in the entire
data-set is tagged with a label that denotes whether the entry is noisy or not.
Finally, a decision about which entries should be treated as noisy – and thus
removed – or not is made using a voting mechanism and accordingly. It is
worth noting that CF is considered more aggressive than MF, since it removes
a higher proportion of entries from the data [24].

Based on the majority voting mechanism described in [21], an entry that
gets tagged as noisy by more than 50% of the models must be treated as such
and thus removed from the data. On the other hand, the consensus filter voting
mechanism follows a more conservative approach suggesting that if an entry
gets tagged by one or more models as noisy then it should be treated as such

164 CHAPTER 8. PAPER G

Figure 8.2: noise-handling procedure using the statistical-based techniques.

and removed from the data-set.

8.3.4.2 Domain knowledge-based noise-handling technique (DB)

We complement the analysis by examining the effectiveness of another technique
– termed domain knowledge base (DB) – that we developed and published in a
previous study [98]. Unlike statistical-based techniques (such as CF and MF),
the DB was designed based on our knowledge in the domain of source code
changes to correct and remove noisy entries. The procedure of the technique
can be summarized by the following steps:

• sequentially assigns a unique 8-digit hash value for each line of code in
the original data set.

• creates an empty dictionary for storing unfiltered entries.

• iterate through the set of hashed entries in the original data set and save
syntactically unique entries into the dictionary.

• compare the class values between each pair of duplicate entries, both in
the original and dictionary sets. If the two values are different and the
value of the entry in the original set is annotated with the ’positive’ class,
then relabel the entry in the dictionary from ’negative’ to ’positive’ and
discard the entry in the original set. If both entries have the same class
values, then add the entry from the original set to the dictionary.

This way of handling class noise can be seen as both corrective and removal,
since it 1) corrects the class value of the same entries that first appear in the
’negative’ class and then the ’positive class’, and 2) removes one entry in each
pair of contradictory entries.

In the context of code reviews and build predictions, problematic lines of
code often occupy a small proportion of the overall code fragment of commits.

8.4. RESEARCH DESIGN 165

Figure 8.3: Illustration of the research design activities.

Thus, a code fragment that was negatively perceived by a reviewer (i.e., needs
to be fixed) is not likely to have issues in every line of code. Similarly, a line of
code that appears as part of a passing build is not likely to trigger failure in a
build job. Hence, the DB technique ensures to relabel contradictory lines of
code from ’disapproved’ to ’approved’ in code reviews data and from ’failing’
to ’passing’ in build jobs data – if those lines have already been seen as part of
approved reviewed fragments or passing builds.

8.4 Research Design

In the following, we describe the preparation, design, and operations that we
carried out for answering RQ1 and RQ2. The first section (8.4.1) describes the
independent and dependent variables and how we collected the sample data
for answering the research questions. The second section (8.4.2) discusses the
design and operations that we carried out.

Figure 8.3 presents the procedure that we performed in each experiment
and the main sequence of activities. What follows is a detailed description of
each activity presented in Figure 8.3.

8.4.1 Data collection and preparation (Part one)

We begin this section by describing the independent and dependent variables
of this study. Then, we describe the data collection and the feature extraction
methods that we used to prepare our data.

8.4.1.1 Experiment variables

Independent variables noise-handling technique is the only independent
variable (treatment) examined for an impact on the performance of an ML
model. Three variations (treatment levels) of the independent variable is
examined, namely the CF, MF, and DB techniques. The CF and MF techniques
rely on statistics to detect noisy entries, whereas the DB technique relies on
domain knowledge to relabel contradictory entries. Note that each treatment
level is independent from one another and no cross-level effects are possible.

166 CHAPTER 8. PAPER G

Dependent variables The dependent variables in this study are four state-
of-the-art metrics that we use to evaluate the impact of each treatment level in
experiments 1 and 2. The four metrics are Precision, Recall, F1, and MCC.

In the context of build outcome prediction, Precision expresses the pro-
portion of correctly predicted lines of code that do not trigger build failures
to the total number of lines predicted as such. A high Precision means that
the model performs well in predicting lines that do not trigger build failures.
Recall expresses the proportion of correctly predicted lines that do not trigger
build failures to the total number of lines that actually do not trigger build
failures. A high Recall indicates that many of the passing builds are correctly
recognized by the model.

In the context of code change request prediction, Precision expresses the
proportion of correctly predicted lines of code that do not contain quality issues
to the total number of lines predicted as such. Recall expresses the proportion
of correctly predicted lines of code to the total number of lines in the program
that actually do not contain quality issues.

The F1-score is considered as one of the most popular metrics to evaluate
the classification performance of ML models [171]. It uses three elements in
the confusion matrix (True positives, False positives, and False negatives) to
provide a harmonic mean between Precision and Recall. However, F1-score
can sometimes lead to misleading conclusions, as it does not take the fourth
element (True negatives) in the confusion matrix into account [171]. Therefore,
we decided to complement the analyses of the effectiveness of the three noise-
handling techniques by measuring the MCC. A high MCC indicates that the
performance of the model is good in predicting the binary classes. Thus, MCC
considers what share of the elements in the negative class is correctly identified
as negative.

8.4.1.2 Collection of build outcomes data (Experiment 1)

The study subjects used in the first experiment were extracted from a public
repository that we published in a previous work [162] The repository comprised
a total of 49,040 build records that belong to 117 Java projects and their
corresponding code change commits. Each record holds information about the
execution outcome of a build job (passed/failed) executed against a commit.
The repository also contains all added/modified code changes that were built
by the CI server used in each project. In addition, the repository includes a set
of feature vectors that represent the extracted code changes using the token
frequency metric described in [162].

In the empirical study presented in this paper, we began the analysis by
using build information and historical code changes of all 117 Java projects.
However, when applying the DB technique to the code change data we observed
that the distribution of the binary classes in seven projects reached a class
ratio close to [0% to 100%]. Since using such imbalanced data for training
would lead to creating a model that either makes pessimistic or optimistic
decisions (i.e., always considering any entry as belonging to one of the classes),
we decided to exclude these projects from the analysis and work on examining

8.4. RESEARCH DESIGN 167

Table 8.2: Excluded projects from the analysis due to class imbalance after
applying the DB technique

Project class 0 class 1 class ratio
azkaban 6817 58539 11.64%

intellij-elixir 985 242697 0.4%
java-design-patterns 55 23249 0.24%

jinjava 8 12747 0.06%
jsonschema2pojo 3 15091 0.02%

nodeclipse-1 27 23959 0.11%
picard 378 11017 3.43%

the impact of the class noise-handling techniques in the remaining 110 projects.
Table 8.2 summarizes the distribution of classes in the seven excluded projects.

The distribution of classes and their ratios in each analyzed project can be
found in Table 8.20 in Appendix 8.9. The original and curated versions of the
dataset, which contain the data after applying the noise-handling techniques,
are available on Zenodo 1.

8.4.1.3 Collection of code reviews data (Experiment 2)

The results presented in this paper for answering RQ2 are based on two Java
open-source projects, namely ’Wireshark’ and ’Google sources’. Our data
collection process began by searching for publicly accessible projects that
utilize Gerrit as their code review platform. We chose Gerrit for two main
reasons. Firstly, it provides a REST API that facilitates the development of a
mining tool for code review comments. Secondly, it provides a web interface
that allows for tool validation.

In total, we collected code commit and code review data from 16 projects,
obtained from two different sources. The first source was a public repository
where we collected a total of 144,706 code review comments and their cor-
responding code changes from 15 Java-based projects [172]. This repository
contains a set of ’json’ files that provide mapping information, linking review
comments to specific locations within patch files where the reviewed lines of
code are found. By accessing this mapping information, we developed a tool
for mapping code review comments and committed code changes into the same
files. A summary of the project names and the number of extracted lines of
code from the repository can be found in Table 8.3.

The second source of data is a Gerrit repository that hosts a project called
‘Google Sources’ 2. To extract code review comments and their corresponding
code changes, we developed a another tool for mining code commits and review
comments from this Gerrit repository.

The design of the tool focused on extracting data only from code that was
either modified or added, excluding deleted code, as predicting issues in deleted

1https://doi.org/10.5281/zenodo.8023970
2’https://gerrit-review.googlesource.com’

168 CHAPTER 8. PAPER G

Table 8.3: The study subjects extracted from the first data source.

Id Project
Number of lines of

code and their review comments
1 acumos 1305
2 android 19977
3 asterix 22305
4 carbonrom 28
5 cloudera 7855
6 eclipse 16602
7 fd.io 830
8 gerrithub 1978
9 googlereview 22837
10 iotivity 1244
11 omnirom 358
12 opencord 89
13 polarsys 371
14 unicorn 25
15 wireshark 48902

changes falls outside the scope of this study. Following the approach of previous
studies [101], [98], and [173], we were particularly interested in examining the
impact of class noise-handling techniques on modified and added lines of code.
The implementation procedure of the code mining tool can be summarized as
follows:

• The tool sends an API request to retrieve all review, change, and file IDs.

• For each change and revision ID, it requests the IDs of all reviewed files
and their corresponding review comments.

• For each reviewed file, the tool sends a get request to retrieve all code
changes that were either added or modified.

• The retrieved code changes in a reviewed file are then mapped with the
review comment made by the reviewer.

Applying this tool to the ’Google Sources’ repository resulted in the collec-
tion of a total of 74,003 lines of code and their associated review comments.
To ensure the accuracy of our tool, we cross-verified the review comments of
two file IDs in a revision with those manually extracted using the Gerrit web
interface.

Labeling code review comments After collecting the data-sets, we decided
to manually label a sample of the collected code comments from each projects.
The labeling guideline was as follows:

• If a code comment explicitly requested a change to the code, it was
labeled as ’0’.

8.4. RESEARCH DESIGN 169

• If a code comment accepted the change or expressed praise for it, it was
labeled as ’1’.

• If a code comment suggested an optional change or raised a question, it
was labeled as ’neutral’.

To ensure inter-annotator agreement and to refine the guideline, a pilot
annotation was conducted. In this step, the three authors of this paper
independently annotated a sample of 200 code comments. The sample was
randomly selected and included a mix of comments that requested a change
and ones that did not. The comparison between the annotations revealed
a 95% agreement for comments requesting a change and an 80% agreement
for comments approving the code change for integration. Accordingly, we
considered this rate of inter-annotator agreement to be sufficient and decided
to proceed with annotating a larger sample of the data.

Table 8.4: The distribution of the annotated comments with respect to the ’0’,
’1’, and ’neutral’ classes

Id Project class 0 class 1 class neutral
1 unicorn 16 1 8
2 wireshark 267 110 67
3 googlesources 166 66 62
4 asterix 341 5 142
5 googlereview 276 0 96
6 acumos 405 8 57
7 iotivity 1001 2 131
8 fd.io 284 9 95
9 android 329 12 152
10 carbonrom 13 2 14
11 opencord 53 0 33
12 omnirom 131 0 41
13 gerrithub 291 9 94
14 eclipse 504 84 188
15 polarsys 167 0 28
16 cloudera 377 5 113

Subsequently, the three authors collectively annotated a total of 6,255
code comments, with each author annotating approximately a third of the
comments. After completing the annotations, an analysis of the distribution of
labeled comments was performed. It was observed that, on average, 95% of
the annotated comments fell into the ’0’ and ’neutral’ classes as summarized in
Table 8.4.

Considering the imbalanced nature of the data-sets, we decided to annotate
a larger sample of comments. After reviewing all code comments within the
16 collected projects, we found that only two projects, namely Wireshark and
Google sources, contained a fairly balanced distribution of comments requesting

170 CHAPTER 8. PAPER G

Table 8.5: The distribution of annotated code comments.

Project Class 0 Class 1
Wireshark 1665 897

Google sources 1552 894

a code change and accepting a change. Therefore, we decided to focus on these
two projects and annotate a larger sample of comments from these projects.
A total of 2,562 code comments were annotated in the Wireshark project,
while 2,446 code comments were annotated in the Google Sources project. The
distribution of the annotated comments is summarized in Table 8.5.

8.4.1.4 Feature extraction

In this study, we employ a textual analysis technique that extracts features from
the extracted set of code changes. Each feature corresponds to a code token
that appears in the extracted code. In this study, we utilize a tool proposed by
Ochodek et al. [42] to perform the features extraction using the bag of words
(BoW) model. The textual analysis tool follows the below procedure to extract
features:

• creates a vocabulary for all lines of code (using the BoW technique, with
a cut-off parameter of how many words should be included3)

• creates a token for words that fall outside of the frequency defined by the
cut-off parameter of the bag of words

• finds a set of predefined keywords in each line,

• checks each word in the line to decide if it should be tokenized or if it is
a predefined feature.

The output of this step is a large array of numbers, each representing the
the token frequency of a specific feature in the bag of words space of vectors.
In this study, we chose to use a bi-gram model for representing the feature
vectors, as it was previously shown to yield good learning performance in a
similar context (e.g., [98]). Our experimental raw and feature vector data are
accessible at 4.

8.4.2 Design of the experiments

In this section, we discuss the design of the two experiments that we carried
out to answer RQ1 and RQ2. To ensure uniformity and to control as many
confounding factors, we use the same variables and activities in the design and
execution of both experiments. The following five activities are carried out:

3BoW is essentially a sequence of tokens, which are descendingly ordered according to
frequency. This cut-off parameters controls how many of the most frequently used words are
included as features – e.g. 10 means that the 10 most frequently used words become features
and the rest are ignored.

4https://doi.org/10.5281/zenodo.7527590

8.4. RESEARCH DESIGN 171

1. cross validation.

2. measurement method.

3. analysis of individual improvement.

4. analysis of effect size.

5. analysis of significance testing.

8.4.2.1 Cross validation

We applied a 10-fold stratified cross validation partitioning scheme on each
data-set in both experiments, i.e., ten random partitions of each project data-set
with a combination of nine of them (90%) as training set and the remaining
one as a test set (10%). A total of 1,100 training and testing trials were
carried out in experiment 1, and 160 training and testing trials in experiment
2. The distribution of the classes in each training fold is then evaluated to
decide whether subsequent balancing of the classes for each training fold is
required. If the distribution of one class exceeds 60%, then the minority class
is over-sampled until all data points in the minority class even out with the
number of entries in the majority class. We used the generated testing folds
from the original data to evaluate the performance of the ML model before
and after applying each treatment level on the training folds respectively.

8.4.2.2 Measurement method

To examine the impact of the three class noise-handling techniques, we con-
ducted an evaluation using a sample of twelve data-sets and three classifiers:
Random Forest (RF), Extreme Gradient Boosting (XGBoost), and a two-dense
Neural Network (NN). The goal of this evaluation was to identify a suitable
classifier for measuring the impact of the class noise-handling techniques.

We selected these classifiers based on their unique characteristics and
strengths in capturing patterns in data. RF was chosen for its robustness in
predicting similar SE tasks, such as test case selection [98]. XGBoost is an
optimized implementation of gradient boosting, and it is widely recognized for
its high predictive performance and scalability in different applications, such
as [174]. Additionally, neural networks are renowned for their ability to learn
intricate representations within the data [175]. The RF and XGBoost models
were kept at their default parameter values, as provided by the scikit-learn
library (version 0.20.4) [76]. The NN model was a sequential model, consisting
of two dense layers, and was implemented using the Keras library [77].

During the evaluation, each of the three models was trained on both the
experimental data (exposed to the treatment) and the control data (before
applying the treatment). The evaluation results, presented in Table 8.15
in Appendix A, revealed that RF outperformed the other two models when
trained on the CF and MF experimental data, as well as when trained on the
control data. Consequently, we decided to select RF as the primary method
for measuring the impact of the three class noise-handling techniques on the

172 CHAPTER 8. PAPER G

predictive performance of a model for build outcome and code change request
predictions.

8.4.2.3 Individual improvement

To understand the impact of each class noise-handling technique on the predict-
ive performance of a model for build outcome and negative review comment
predictions, we examine improvement trends in the four dependent variables
before and after applying the treatment on each study subject. Another im-
portant measurement that we make is the ratio of class noise, as defined in
Section 8.3.1, before and after applying the treatment to the training data.
The individual impact of each treatment level on the four dependent variables
and class noise ratio is visually analyzed using scatter plots.

8.4.2.4 Effect size

To summarize the effect of the three noise-handling techniques on the predictive
performance of the RF model in each experiment, we calculate the descriptive
statistics of the four dependent variables before and after applying the treatment
to the training data. The effect of each technique is visualized by plotting the
mean scores and distributions of the four dependent variables.

8.4.2.5 Significance testing

We hypothesize that using any of the three class noise-handling techniques,
described in Section 8.3.1, would improve the performance of a model for
predicting code change requests and build outcomes, compared to when leaving
noisy entries in the training data. Accordingly, twelve hypotheses are formally
defined and tested for statistical significance in each experiment. Table 8.6
lists and defines the hypotheses.

All of the hypotheses listed in Table 8.6 are two-tailed, since we are mainly
interested in understanding whether the value of each dependent variable
would be impacted by any of the three class noise-handling techniques. Each
hypothesis is defined in terms of one variation of the independent and dependent
variables. For example, the first hypothesis under column ’Precision’ suggests
that applying MF (a variation of the independent variable) on the training data
will result in a significantly different Precision (a dependent variable) score
compared to when leaving noisy entries in the training data.

Normality test To determine whether to use parametric or non-parametric
statistical tests, we checked for the normality assumption of the four dependent
variables using the Shapiro-Wilk test available in the scikit learn library [76].
The results showed that the distribution of the four dependent variables was
not normally distributed. Based on the normality test results, we decided to
run the Kruskal-Wallis (a non-parametric test) for comparing the Precision,
Recall, F1-score, and MCC values between the different treatment levels. The
Mann–Whitney U test was then run to perform a pairwise comparison between

8.5. RESULTS 173

Table 8.6: The hypotheses for the effects of noise handling techniques on build
outcome and code change request predictions.

Precision Recall F1 MCC
H0p m: The
mean Precision
is the same
for a model
trained on MF-
curated and non-
curated data.
µ0p m = µ1p m

H0r m: The
mean Recall
is the same
for a model
trained on MF-
curated and non-
curated data .
µ0r m = µ1r m

H0f m: The
mean F1 is the
same for a model
trained on MF-
curated and non-
curated data.
µ0f m = µ1f m

H0m m: The mean
MCC is the same
for a model trained
on MF-curated and
non-curated data.
µ0m m = µ1m m

H0p c: The
mean Precision
is the same
for a model
trained on MF-
curated and non-
curated data.
µ0p c = µ1p c

H0r c: The mean
Recall is the
same for a model
trained on MF-
curated and non-
curated data .
µ0r c = µ1r c

H0f c: The mean
F1 is the same
for a model
trained on MF-
curated and non-
curated data.
µ0f c = µ1f c

H0m c: The mean
MCC is the same
for a model trained
on MF-curated and
non-curated data.
µ0m c = µ1m c

H0p d: The
mean Precision
is the same
for a model
trained on MF-
curated and non-
curated data.
µ0p d = µ1p d

H0r c: The mean
Recall is the
same for a model
trained on MF-
curated and non-
curated data .
µ0r d = µ1r d

H0f d: The mean
F1 is the same
for a model
trained on MF-
curated and non-
curated data.
µ0f d = µ1f d

H0m d: The mean
MCC is the same
for a model trained
on MF-curated and
non-curated data.
µ0m d = µ1m d

the dependent variables under each treatment level and the same measures
that we recorded after training on the original data-set.

8.5 Results

This section reports the results of the two experiments to answer the two
research questions.

8.5.1 The impact of class noise-handling on predicting the
outcome of builds in continuous integration (RQ1)

To address our research question of What is the impact of applying class noise-
handling on predicting the outcome of builds in continuous integration?, we
structure our results into three analyses:

• Individual improvements per noise-handling technique and data-set, Sec-
tion 8.5.1.1.

• Effect size of the improvements per technique, Section 8.5.1.2.

• Significance analysis of the effects per technique, Section 8.5.1.3.

174 CHAPTER 8. PAPER G

(a) after using MF. (b) after using CF.

(c) after using DB.

Figure 8.4: Precision scores after applying the treatment. The x-axis cor-
responds to the ratio of class noise, whereas the y-axis corresponds to the
mean Precision scores. Blue marks represent the mean Precision scores before
applying the treatment and the ratio of class noise. Red marks represent the
mean performance score after applying the treatment and the new ratio of
class noise.

8.5.1.1 Individual improvements

Figure 8.4 illustrates the impact of each technique on the Precision measure
across the examined study subjects. In general, we can observe that both MF
and CF consistently improve the Precision measure of the RF model in the
majority of the study subjects. This observation is supported by the diagonal
upward trend observed in most of the lines depicted in Figure 8.4. Specifically,
we can observe that:

• MF resulted in a Precision improvement for 100/110 study subjects.

• CF resulted in a Precision improvement for 74/110 study subjects.

• DB resulted in a Precision improvement for 34/110 study subjects.

These observations imply that using the MF or CF techniques would consistently
lead to an improvement in Precision.

Another important observation is the effect of the techniques on the class noise

8.5. RESULTS 175

(a) after using MF. (b) after using CF.

(c) after using DB.

Figure 8.5: Recall scores after applying the treatment. The x-axis corresponds
to the ratio of class noise, whereas the y-axis corresponds to the mean Precision
scores. Blue marks represent the mean Precision scores before applying the
treatment and the ratio of class noise. Red marks represent the mean perform-
ance score after applying the treatment and the new ratio of class noise.

ratio – i.e., how many contradictory entries they actually remove/correct.
There, we can observe that the three techniques are consistent in reducing the
ratio of class noise. Specifically, we found that:

• MF reduced the ratio of class noise in 87/110 study subjects.

• CF reduced the ratio of class noise in 103/110.

• DB reduced the ratio of class noise in all study subjects.

Figure 8.5 illustrates the impact of each technique on the Recall measure
across the examined study subjects. In general, we can observe that MF and CF
are consistent in the effect and have a positive impact on the Recall measure in
the majority of study subjects – most lines are diagonal in an upward direction.
On the other hand, DB is less consistent in its effect on Recall. Specifically, we
found that:

• MF resulted in a Recall improvement for 109/110 study subjects.

• CF resulted in a Recall improvement for 108/110 study subjects.

176 CHAPTER 8. PAPER G

(a) after using MF. (b) after using CF.

(c) after using DB.

Figure 8.6: F1 scores after applying the treatment. The x-axis corresponds to
the ratio of class noise, whereas the y-axis corresponds to the mean Precision
scores. Blue marks represent the mean Precision scores before applying the
treatment and the ratio of class noise. Red marks represent the mean perform-
ance score after applying the treatment and the new ratio of class noise.

• DB resulted in a Recall improvement for 76/110 study subjects.

The above observations imply that MF and CF leads to a more consistent
improvement in Recall compared to DB.

Figure 8.6 illustrates the impact of each technique on the F1 measure
across the examined study subjects. Consistent with the findings observed
for Precision and Recall, it can be observed that both MF and CF lead to a
consistent improvement in F1. In contrast, applying DB does not consistently
lead to an improvement in F1. Specifically, we found that:

• MF resulted in an F1 improvement for 110/110 study subjects.

• CF resulted in an F1 improvement for 109/110 study subjects.

• DB resulted in an F1 improvement for 76/110 study subjects.

The above observations imply that MF and CF leads to a more consistent
improvement in F1 compared to DB.

8.5. RESULTS 177

(a) after using MF. (b) after using CF.

(c) after using DB.

Figure 8.7: MCC scores after applying the treatment. The x-axis corresponds
to the ratio of class noise, whereas the y-axis corresponds to the mean Precision
scores. Blue marks represent the mean Precision scores before applying the
treatment and the ratio of class noise. Red marks represent the mean perform-
ance score after applying the treatment and the new ratio of class noise.

Figure 8.7 presents the impact of each technique on the MCC measure for
each study subject. From the Figure, we can observe that all techniques are
consistent in the effect on MCC, but in opposite directions. In general, we can
observe that both MF and CF exhibit a consistent positive impact on MCC,
while DB consistently leads to a negative improvement in MCC.

• MF resulted in an MCC improvement for 110/110 study subjects.

• CF resulted in an MCC improvement for 108/110 study subjects.

• DB resulted in an MCC improvement for 33/110 study subjects only.

These observations imply that applying MF or CF to the training data can
consistently lead to an improvement in MCC.

8.5.1.2 Descriptive statistics

Figure 8.8 is a bar plot that visualizes the mean percentages of Precision, Recall,
and F1 scores before and after applying the three treatment levels respectively.

178 CHAPTER 8. PAPER G

Figure 8.8: Mean Precision, Recall, F1, and MCC after using each noise-
handling technique on build outcomes data

The x-axis represents the treatment levels, and the y-axis corresponds to the
three dependent variable values.

Applying the three class noise-handling techniques on the control group
data had the following impact on Precision, on average:

• MF resulted in improving Precision from 90% to 96%.

• CF resulted in improving Precision from 90% to 93%.

• DB resulted in a slight decrease in Precision from 90% to 89%.

Applying any of the three class noise-handling techniques to the control
group data resulted in improved Recall values. Specifically, on average:

• MF resulted in improving Recall from 76% to 98%.

• CF resulted in improving Recall from 76% to 96%.

• DB resulted in improving Recall from 76% to 78%.

Applying any of the three class noise-handling techniques to the control
group data resulted in improved F1 values. Specifically, on average:

• MF resulted in improving F1 from 82% to 97%.

• CF resulted in improving F1 from 82% to 94%.

• DB resulted in no improvement in F1.

Applying the three class noise-handling techniques on the control group
data had the following impact on MCC, on average:

• MF resulted in improving MCC from 0.13 to 0.58.

• CF resulted in improving MCC from 0.13 to 0.52.

8.5. RESULTS 179

• DB resulted in a deterioration of MCC from 0.13 to 0.08.

To gain a better understanding of the impact of each class noise handling
technique, we plotted the distribution of each dependent variable for all the
study subjects. The violin-plot graphs, namely Figures 8.9(a), 8.9(b), 8.9(c),
and 8.9(d), illustrate the distribution of the dependent variables for the three
treatment levels (MF, CF, and DB) as well as the control group data, labeled
as ”none”. Four observations can be made from the four graphs:

• After applying MF and CF, the distribution of the Precision values
become less dispersed and more concentrated around the median.

• After applying MF, the distribution of the Recall and F1 values became
less dispersed. However, after applying DB and CF, the distribution of
the F1 values became more dispersed, leading to a wider range of values.

• After applying the three treatment levels, the distribution of the MCC
values became less dispersed.

• After applying MF and CF, the distribution of the MCC values became
above 0.40 for the majority of cases.

These observations were further supported by examining the descriptive
statistics of the dependent variables summarized in Tables 8.16, 8.17, 8.18,
8.19.

(a) Precision. (b) Recall.

(c) F1. (d) MCC.

Figure 8.9: Distribution of dependent variables for the three noise-handling
techniques.

180 CHAPTER 8. PAPER G

Table 8.7: The Shapiro-Wilk analysis results for each dependent variable after
applying the noise-handling techniques to the build data.

Dependent
variables

Control group DB CF MF

Precision
Stats= 0.74,

p<0.05
Stats= 0.73,

p<0.05
Stats= 0.8,
p<0.05

Stats= 0.79,
p<0.05

Recall
Stats= 0.98,

p<0.05
Stats= 0.89,

p<0.05
Stats=5,
p<0.05

Stats= 0.5,
p<0.05

F1
Stats= 0.95,

p<0.05
Stats=0.83 ,

p<0.05
Stats= 0.68,

p<0.05
Stats= 0.69,

p<0.05

MCC
Stats= 0.82,

p<0.05
Stats= 0.75,

p<0.05
Stats= 0.995,

p=0.95
Stats= 0.96,

p<0.05

In general, the descriptive statistics suggest that applying MF and CF leads to
improved predictions of build outcomes. While the results suggest that DB
improves the prediction performance for builds that will pass (improved Recall
and F1), it tends to negatively affect the prediction accuracy for builds that
will fail (lower MCC).

8.5.1.3 Hypotheses testing

To evaluate the hypotheses, we begin by checking the assumption of normality
for the distribution of the four dependent variables. The Shapiro-Wilk test
was carried out for testing the assumption of normality. As can be seen from
Table 8.7, the null hypotheses of normality for the four dependent variables can
be rejected (p-value <0.05). Since we have issues with normality in the four
dependent variables, we decided to run a non-parametric test for comparing the
difference between each dependent variable under the three treatment levels
and the control group.

Table 8.8 summarizes the statistical comparison results between the four
dependent variables for the three treatment levels and the control group using
the Kruskal-Wallis analysis test. Each column provides the test statistics and
the associated p-value for one dependent variable separately. The results in
Table 8.8 reveal that there is a statistically significant difference between the
four dependent variables (p<0.05).

Table 8.8: Statistical comparison results between the dependent variables after
applying the treatment levels on the build data.

Precision Recall F1 MCC
Kruskal Wallis H 12.74 241.89 166.47 334.17

Sig. p<0.05 p<0.05 p<0.05 p<0.05

Table 8.9 presents the results of conducting the Mann-Whitney test to
evaluate the twelve hypotheses in Experiment 1. The pairwise comparisons
between the four dependent variables indicate a significant difference between
the control group and the experimental subjects exposed to MF (Precision:

8.5. RESULTS 181

statistics = 4650, Recall: statistics = 420, F1: statistics = 974, MCC: statistics
= 444, all with p<0.05). These findings provide statistical evidence to reject
the null hypotheses H0p m, H0r m, H0f m, and H0m m, suggesting that MF
has a significant impact on the predictive performance of the model for Build
outcome prediction.

Table 8.9: Pairwise comparison between the dependent variables for each
treatment level and the control group using the Mann-Whitny U test

DB CF MF

Precision
Stats= 6147,

p=0.49
Stats= 5619
p= 0.64

Stats= 4650
p<0.05

Recall
Stats= 4712

p<0.05
Stats= 829
p<0.05

Stats= 420
p<0.05

F1
Stats= 5020
p= 0.07

Stats= 1831
p<0.05

Stats= 974
p<0.05

MCC
Stats= 7698

p<0.05
Stats= 58
p<0.05

Stats= 444
p<0.05

Similarly, the results suggest that there is a statistically significant difference
between the Recall, F1, and MCC scores achieved when training a model on the
control group subjects and the experimental subjects exposed to CF (Recall:
statistics= 829 with, F1: statistics= 1831, MCC: statistics= 58 with p<0.05).
We also found a statistically significant difference between the Recall and MCC
achieved when training on the control group subjects and the experimental
subjects exposed to DB (Recall: statistics= 4712 with, MCC: statistics= 7698
with p<0.05). These results suggest that there is statistical evidence to support
the rejection of the null hypotheses H0r d, H0r c, H0f c, H0m d, and H0m c.
However, no statistical evidence was found to support the rejection of the
hypotheses H0p d, H0p c, and H0f d.

To summarize, in the context of build outcome predictions, MF has a stat-
istically significant positive impact on the four dependent variables. CF has
a statistically significant positive impact on Recall, F1, and MCC. DB has a
statistically significant positive impact on Recall and a statistically significant
negative impact on MCC.

8.5.2 The impact of class noise-handling on predicting
code change requests (RQ2)

To address the question ”What is the impact of class noise handling on pre-
dicting code change requests?”, we structure our results into two analyses:

• Effect size of improvements per technique, Section 8.5.2.1.

• Significance analysis of the effects per technique, Section 8.5.3.

182 CHAPTER 8. PAPER G

8.5.2.1 Descriptive statistics

To evaluate the impact of the three noise handling techniques on the per-
formance of a model for predicting negative review comments, we calculate
the descriptive statistics of the four dependent variables after training on the
control group data and each treatment level data respectively. Figure 8.10 is
a bar plot that visualizes the mean percentages of Precision, Recall, F1, and
MCC variables. The bar plot illustrates an improvement in the four variables.
Specifically:

Applying the three class noise-handling techniques on the control group
data had the following impact on Precision, on average:

• MF resulted in improving Precision from 34% to 83%.

• CF resulted in improving Precision from 34% to 70%.

• DB resulted in improving Precision from 34% to 39%.

Applying the three class noise-handling techniques on the control group
data had the following impact on Recall, on average:

• MF resulted in improving Recall from 15% to 48%.

• CF resulted in improving Recall from 15% to 56%.

• DB resulted in improving Recall from 15% to 25%.

applying the three class noise-handling techniques on the control group
data had the following impact on F1, on average:

• MF resulted in improving F1 from 18% to 54%.

• CF resulted in improving F1 from 18% to 60%.

• DB resulted in improving F1 from 18% to 27%.

applying the three class noise-handling techniques on the control group
data had the following impact on MCC, on average:

• MF resulted in improving MCC from -0.03 to 0.57.

• CF resulted in improving MCC from -0.03 to 0.61.

• DB resulted in improving MCC from -0.03 to 0.17.

To better understand the impact of each class noise handling technique, we
plotted the distribution of each dependent variable before and after applying
the treatment levels to the control group data. Figures 8.11(a), 8.11(b), 8.11(c),
and 8.11(d) show four violin-plot graphs that illustrate the distribution of each
dependent variable for each treatment level. Three observations can be made
from the violin-plot graphs:

8.5. RESULTS 183

Figure 8.10: Mean Precision, Recall, F1, and MCC after using each noise-
handling technique on code review data

(a) Precision. (b) Recall.

(c) F1. (d) MCC.

Figure 8.11: Distribution of dependent variables for the three noise-handling
techniques.

184 CHAPTER 8. PAPER G

• In terms of the Precision values, applying MF leads to the least dispersion
compared to CF and DB.

• In terms of the Recall and F1 values, the distribution after applying the
CF and MF ranges from 0 to 1 for some folds in the study subjects. Thus,
there is a wide disparity in the distribution of these variables.

• In terms of the MCC values, applying DB leads to the least dispersion
compared to MF and CF.

Table 8.10 shows the descriptive statistics of the dependent variables before
and after applying the treatment. The table describes the mean and standard
deviation (SD) of the dependent variables across the ten folds for every study
subject. The data in the table shows that both MF and CF improved the four
dependent variables in both study subjects, whereas DB improved the four
variables in one study subject, and slightly reduced them in the other subject.

Table 8.10: Descriptive statistics of the dependent variables for an RF model
before and after applying the treatment levels

Precision Recall F1 MCC

Noise
algorithm

project N Mean SD Mean SD Mean SD Mean SD

None
googlesources 10 0.41 0.41 0.2 0.26 0.2 0.22 0.01 0.28

wireshark 10 0.27 0.1 0.11 0.05 0.15 0.06 -0.07 0.08

MF
googlesources 10 0.99 0.04 0.83 0.31 0.86 0.28 0.87 0.24

wireshark 10 0.67 0.41 0.14 0.13 0.22 0.18 0.27 0.2

CF
googlesources 10 1.0 0.0 0.94 0.12 0.96 0.07 0.96 0.07

wireshark 10 0.4 0.52 0.18 0.25 0.25 0.33 0.27 0.35

DB
googlesources 10 0.57 0.4 0.46 0.36 0.47 0.35 0.35 0.41

wireshark 10 0.22 0.26 0.05 0.08 0.08 0.12 -0.02 0.15

In general, the descriptive statistics suggest that applying any of the three
noise-handling techniques improves the performance of an ML model for build
outcome predictions.

8.5.3 Hypotheses testing

To evaluate the hypotheses, we ran a Shapiro-Wilk analysis test to check the
assumption of normality for the distribution of the dependent variables. Table
8.12 summarizes the normality test results for the four dependent variables.

8.5. RESULTS 185

Table 8.11: The Shapiro-Wilk analysis results for each dependent variable after
applying the noise-handling techniques to the code review data.

Dependent
variables

Control group DB CF MF

Precision
Stats= 0.82 ,

p<0.05
Stats= 0.86,

p<0.05
Stats= 0.58,

p<0.05
Stats= 0.59,

p<0.05

Recall
Stats= 0.72,

p<0.05
Stats=0.76 ,

p<0.05
Stats= 0.79,

p<0.05
Stats= 0.79,

p<0.05

F1
Stats= 0.86,

p<0.05
Stats= 0.8,
p<0.05

Stats= 0.76,
p<0.05

Stats= 0.82,
p<0.05

MCC
Stats= 0.87,

p<0.05
Stats=0.85 ,

p<0.05
Stats= 0.75,

p<0.05
Stats= 0.86,

p<0.05

Since we have issues in normality for the four dependent variables (p-value
¡0.05), we decided to compare the differences between each dependent variable
under the three treatment levels and the control group with the aid of a
non-parametric statistical analysis test.

Table 8.12 summarizes the statistical comparison results between the four
dependent variables for the MF, CF, DB, and the control group using the
Kruskal-Wallis test. The results from Table 8.12 reveal a statistically significant
difference (p ¡ 0.05) between the four dependent variables. This suggests that
the ML model’s predictive performance for code change request predictions
is different when trained on the control group compared to the experimental
groups.

Table 8.12: Statistical comparison results between the dependent variables
after applying the treatment levels on the code review data.

Precision Recall F1 MCC
Kruskal Wallis H Stats= 20.02 Stats= 11.06 Stats= 14.09 Stats= 34.89

Sig. p<0.05 p<0.05 p<0.05 p<0.05

In addition, the results from Table 8.13 indicate a statistically significant
difference (with p<0.05 for all pairwise comparisons) among the four dependent
variables when training the ML model for build outcome predictions on data
that has been exposed to MF and CF, as opposed to data that has not been
exposed to any treatment.

Similarly, the results show that there is a statistically significant difference
between the Recall values achieved when training the model on data that has
been exposed to DB and those achieved when training on the control group
data (Stats = 199,5, p<0.05). On the other hand, there was no statistically
significant difference observed when comparing the Precision, F1, and MCC
variables attained when training a model on data that has been exposed to DB
and the control group data (p>0.05).

These results suggest that there is statistical evidence to support the
rejection of the null hypotheses H0p m, H0p c, H0r m, H0r c, H0r d, H0f m, Hf c,
H0m m, and H0m c. In contrast, we did not find an evidence to support the
rejection of the hypotheses H0p d, 0f d, and H0MCC d.

186 CHAPTER 8. PAPER G

To summarize the results, MF and CF have a statistically significant impact
on Precision, Recall, F1, and MCC. However, DB is not has a statistically
significant effect on Recall only.

Table 8.13: Pairwise comparison between the dependent variables for each
treatment level and the control group using the Mann-Whitney U test

DB CF MF

Precision
Stats= 206.5,

p=87
Stats= 124
p<0.05

Stats= 62,
p<0.05

Recall
Stats= 199.5

p<0.05
Stats= 119
p<0.05

Stats= 109
p<0.05

F1
Stats= 194.5

p= 0.89
Stats= 113
p<0.05

Stats= 82.5
p<0.05

MCC
Stats= 151.5

p= 0.19
Stats= 45.0

p<0.05
Stats= 27.5

p<0.05

8.6 Discussion

In this section, we answer the two research questions and provide insights into
the characteristics of lines of code that were identified as noisy by the three
examined class noise-handling techniques.

8.6.1 RQ1- What is the impact of applying class noise-
handling techniques on predicting the outcome of
builds in continuous integration?

The evaluation results of this study reveal that applying removal-based tech-
niques to the training data have a consistent positive impact on the predictive
performance of the ML model for build outcome predictions. Specifically, the
more conservative technique, known as the majority filter, was found to be more
effective compared to the aggressive technique, referred to as the consensus
filter. This suggests that by employing techniques that preserve a larger portion
of the data, the model benefits from a more comprehensive analysis of the
underlying patterns and trends, resulting in improved predictions. In addition,
the evaluation showed that leaving the noise intact and relying on the toler-
ance capability of the model leads to a higher predictive performance of build
outcomes compared to when applying the domain-knowledge based technique
to the training data. This can be associated to several factors. Firstly, the
domain-knowledge-based technique These findings align with previous studies
that have advocated for the use of less rigid noise removal techniques to enhance
the performance of ML models [176]. By employing techniques that preserve
a larger portion of the data, the model benefits from a more comprehensive
understanding of the underlying patterns and trends, resulting in improved
predictions.

8.6. DISCUSSION 187

8.6.2 RQ2: What is the impact of applying class noise-
handling techniques on predicting code change re-
quests?

In line with the evaluation results for RQ1, our findings demonstrate that the
removal-based techniques consistently improve the predictive performance of
an ML model for change request predictions. Additionally, we observed that
the domain-knowledge based technique improves the overall performance of
the model, albeit to a lower extent compared to the removal-based techniques.
Notably, the improvements achieved by applying the domain-knowledge tech-
nique were in the prediction of comments that request a code change, rather
than comments that are accepted for integration. This was materialized in the
significant improvements gained in MCC, but could not be found in F1.

However, it is important to interpret the evaluation results for both RQ1
and RQ2 in light of the noise ratios present in the data. In this study, the
highest observed noise ratio among all analyzed projects did not exceed 40%.
This implies that the findings may vary if the ratio of class noise exceeds this
threshold. According to Teng [20], when applying noise-handling techniques to
data with class noise exceeding 40%, the improvement in accuracy becomes
inconsistent. Therefore, it is crucial to consider the noise ratio when applying
these techniques in practice.

8.6.3 Characteristics of noisy lines of code

To gain a better understanding about the nature of lines of code that are
classified as noisy, we observed patterns in the analyzed lines of code and
sought to identify characteristics of lines that are treated as noisy by the three
algorithms. Note that the analyzed lines of code are atomic parts of larger
code-fragments. Hence, without the complete context, it is difficult to draw
definitive conclusions about the characteristics of noisy lines. However, we
discuss a few syntax-related characteristics observed among a sample of noisy
lines identified by the three noise-handling techniques.

Table 8.14 provides a sample of 20 lines of code that we randomly selected
and analyzed from the ’Wireshark’ project. By examining the lines of code in
the table, we can identify common patterns and trends about the characteristics
of lines of code that are classified as noisy by the MF, CF, and dB.

One notable observation is that the lines labeled as noisy (True) by both the
MF and CF, but not DB, tend to be lengthy and encompass logical conditions
denoted by the presence of ’&&’. These lines often involve logical operations,
indicating a higher level of complexity in the logic of the program. The MF
and CF algorithms seem to identify such lines as potentially noisy, possibly due
to the increased likelihood of encountering change requests or inconsistencies
in similar lines of code in the training data.

In contrast, the DB algorithm assigns the noisy label to lines that exhibit
nested depth and contain short statements, primarily ’if’ conditions. This
suggests that the DB algorithm identifies noise within code blocks with intricate

188 CHAPTER 8. PAPER G

Table 8.14: An excerpt of lines of code classified by the examined noise-handling
techniques.

id line of code DB CF MF Actual class

1
\tFILE(READ ”${CMAKE CURRENT BINARY DIR}

/version.h” VERSION H FILE CONTENT)
False True True 0.0

2
cause item = proto tree add item(sub tree,

hf gsm r chpc cause, tvb, curr offset,
1, ENC NA)

False True True 0.0

3 static void add item(proto tree *tree, int hf, tvbuff t *tvb, False True True 0.0

4

if ((octets to next header == 0) &&
(version >= 0x0200) &&

(submessageId != SUBMESSAGE PAD) &&
(submessageId != SUBMESSAGE INFO TS))

False True True 0.0

5 if (pinfo-fd-pkt len = 60 frame without trailer 60) { False True True 0.0

6 manuf = get ether name(tap device-bd addr) False True True 0.0

7 { ”unit”, ”ivi.unit”, True False False 0.0

8 \t\t\t\t\t\t\t”[unknown]”, True False False 1.0

9 if (req resp) { True False False 1.0

10 master split .show() True False False 1.0

11 return memcmp(buf, ”SSTARRPC”, 8) == 0 True False False 1.0

12 offset += 1 + point len True False False 0.0

13 } True True True 1.0

14 { True True True 1.0

15 p add proto data(pinfo-pool, pinfo, proto a rr, 23, ppi) True True True 1.0

16 \t\t\tDISSECTOR ASSERT(pdata != NULL) True True True 1.0

17 return NULL True True True 1.0

18 \t\t False False False 0.0

19 case PAXOS LEARN: False False False 0.0

20 #include stdint.h False False False 0.0

control flow structures. It considers the presence of nested conditions and short
’if’ statements as indicators of potential noise, highlighting areas that might
require closer attention or further investigation.

Interestingly, all three algorithms agree on certain characteristics that they
classify as noisy. These include the presence of open and close brackets, function
calls, and short return statements. Lines containing these elements are classified
as noisy by all three algorithms, possibly due to the expectation of increased
complexity in code fragments that follow open and closing brackets.

On the other hand, the algorithms unanimously classify lines that involve
importing libraries and case statements as non-noisy. This agreement suggests
that these elements are generally considered stable in their assigned class values,
contributing to a lower likelihood of noise or error within these code segments.

By examining these common characteristics of lines classified by the MF,
CF, and DB algorithms, we gain valuable insights into the characteristics of
lines of code that are prone to be mislabeled.

8.6.4 Confounding factors

It is important to note that the effectiveness of the examined class noise
handling techniques is subject to several factors related to the pre-processing
activities performed on the training data. Three key activities were identified
as potential influencers: data collection, feature extraction, and class balancing
techniques.

Data collection as a crucial aspect of the study, relies on the reliability
of the build records obtained from TravisTorrent. However, it is important
to acknowledge that the accuracy of all the collected build job outcomes

8.7. RESEARCH VALIDITY 189

and commit hashes cannot be guaranteed. This introduces the possibility of
inaccurate mappings between code changes and target class values within the
data-set, potentially impacting the effectiveness of the noise handling techniques
under examination.

Feature extraction. the choice of feature extraction technique can influence
the predictive performance of the random forest (RF) model in both contexts.
The specific method used to measure the frequency of tokens in the input
code, such as word embeddings or TF-IDF, and variations in the configuration
of the Bag-of-Words (BoW) model, including n-gram settings, may have an
impact on the performance of the consensus filter (CF), majority filter (MF),
and domain-knowledge based (DB) techniques. Exploring different feature
extraction algorithms and BoW configuration parameters is an avenue for
future research to better understand their influence on the effectiveness of the
examined techniques.

Class balancing. the selection of a class balancing technique can also affect
the performance of noise handling techniques. Different methods for balancing
the classes should be empirically investigated to assess their impact on the
effectiveness of CF, MF, and DB.

Considering these factors, it is crucial to interpret the study results with
an awareness of the potential influence that these pre-processing activities.
Thus, future research should focus on investigating different feature extraction
techniques, and comparing different class balancing methods.

8.7 Research Validity

When analyzing the threats to validity of our study, we follow the framework
recommended by Wohlin et al. [46] and discuss the validity in terms of external,
internal, construct, and conclusion.

8.7.1 External validity threats

External validity refers to the degree to which the results can be generalized
outside the context of the current study.

Sample size. the study subjects used in experiment 2 belong to two projects
only. Hence, it is difficult to know whether the results drawn from this
experiment can be generalized to the overall population of projects. However,
we increase the likelihood of generalizability by using two different data sources
to collect our sample projects and by randomly selecting a sample of code
comments for annotation.

Programming Languages A potential threat to external validity in em-
pirical SE research is the representativeness of the study subjects to other
programming languages. However, we used a language-agnostic tool for ex-
tracting features from the study subjects. Hence, the probability that our

190 CHAPTER 8. PAPER G

findings apply to other programming languages in the two SE contexts increases.

8.7.2 Internal validity threats

Internal validity refers to the degree to which conclusions can be drawn about
the causality between independent and dependent variables.

Instrumentation. A potential internal threat is the presence of undetected
issues in the scripts we implemented and used for collecting code reviews and
build data. This threat was controlled by carrying out a careful inspection of
the scripts and testing them on small subsets.

Reuse of public data-sets. Since the analysis results of this study are
based on public data-sets, we can not rule out the possibility of encountering
erroneous data entries in the collected build and code review comment data-sets.
However, we minimize this threat by manually validating a few of the collected
review comments by our mining tools using the Gerrit web interface.

8.7.3 Construct validity threats

Construct validity refers to the degree to which experimental variables accur-
ately measure the concepts they purport to measure.

Choice of the machine learning model. This study employed a random forest
model as the final learner for evaluating the impact of class noise handling
techniques in both SE contexts. It is difficult to assert whether tuning the
parameters of the model or using different types of models (e.g., convolutional
neural networks) would change the predictive performance results. To min-
imize this threat, we compared the performance of three different models in
predicting build outcomes. The comparison results showed that random forest
outperformed a two-dense layered neural network and an XGBoost model.
Therefore, we decided to use random forest for measuring the effects of class
noise-handling.

Data balancing technique. In this study, we used an over-sampling technique
to deal with the problem of imbalanced training data. Using other techniques
such as down-sampling or hybrid ones may change the reported results and,
thereby, the conclusions. However, we chose to use an oversampling technique
based on the recommendations of Mendoza et al. [177], which suggests that
using oversampling yields better results than down-sampling and hybrid tech-
niques.

8.7.4 Conclusion validity threats

Conclusion validity focuses on how sure we can be that the treatment we use
really is related to the actual outcome we observe.

Class noise measurement. Our measurement of class noise is based on the
ratio of contradictory entries in the data. However, inaccurate class values

8.8. CONCLUSION AND FUTURE WORK 191

can also appear among entries that are not necessarily contradictory. This
means that if we use different metrics for measuring class noise, we might reach
different conclusions about the effect of each technique. However, our choice
of using this metric for measuring class noise is motivated by our findings in
previous research [173][98], where we identified a large number of contradictory
entries in a regression testing data-set.

Compatibility of class noise handling techniques. This study examined the
impact of three class noise handling techniques that handle class noise in
different ways. That is, the removal-based techniques (MF and CF) utilize
statistical measures to determine the accuracy of code labeling. In contrast,
DB leverages domain knowledge regarding code changes to identify lines of
code that require labeling. As a result, comparing the three techniques may
pose challenges due to their inherent differences. Nonetheless, the objective of
our study was to investigate how these diverse techniques impact the predictive
performance of machine learning models when applied to software engineering
data.

8.8 Conclusion and Future Work

In conclusion, our evaluation results highlight the consistent improvement in
predictive performance achieved when applying the removal-based techniques
for build outcome and code change request predictions. The domain-knowledge-
based technique also shows potential in predicting code change requests, but not
in build outcomes. In general, the effectiveness of the majority filter technique
proved more effective than the consensus filter and domain-knowledge-based,
particularly in build outcome predictions, suggesting that removing entries with
class noise to a certain threshold leads to improved predictions in build outcome.
On the other hand, the consensus filter technique proved slightly more effective
than the majority filter in the context of code change request predictions. In
addition, the results reveal that leaving the noise intact and relying on the
model’s tolerance capability outperformed a domain-knowledge-based technique
for build outcome predictions.

There are several avenues for future work that would enhance our under-
standing of noise-handling techniques and their impact in CI contexts. Firstly,
a larger sample of projects within the context of code change request predictions
is needed to provide a more comprehensive understanding of the generalizability
of the effectiveness of the techniques on predicting code change request predic-
tion. Secondly, examining the impact of alternative noise-handling techniques
beyond those examined in this study is needed. While this study focused
on the Majority Filter, Consensus Filter, and Domain-knowledge-based tech-
niques, there may be other techniques that can provide improved predictive
performance for CI tasks. Thirdly, examining the effects of the examined
noise-handling techniques under a higher ratio of class noise is needed. In this
study, the highest ratio of class noise among all the analyzed projects did not
exceed 40%. However, different projects or contexts may exhibit higher ratios
of class noise. Thus, understanding how the examined techniques perform

192 CHAPTER 8. PAPER G

under higher levels of class noise would provide insights into their robustness
and scalability. Finally, it would be insightful to examine whether the size of
projects plays a role in influencing the accuracy improvement achieved by each
noise-handling technique. As larger projects often involve a larger complexity
of code and a higher number of potential noise sources, there is a probability
that the examined techniques would behave differently when applied to projects
of varying sizes. Thus, investigating whether the effectiveness of the techniques
would vary based on project size is needed to understand the generalizability
of the three examined techniques.

8.9. APPENDIX A 193

8.9 Appendix A

Table 8.15: The Evaluation Results for Comparing the Effectiveness of Random
Forest, Extended Gradient Boosting, and Neural Network

index noise alg classifier Precision Recall F1 MCC
0 CF RF 0.85 0.86 0.85 0.23
1 CF nn 0.85 0.86 0.85 0.22
2 CF xgb 0.83 0.91 0.84 0.17
3 DB RF 0.83 0.83 0.8 0.12
4 DB nn 0.83 0.64 0.69 0.15
5 DB xgb 0.85 0.64 0.68 0.15
6 MF RF 0.85 0.88 0.86 0.26
7 MF nn 0.85 0.88 0.86 0.22
8 MF xgb 0.83 0.9 0.84 0.15
9 none RF 0.86 0.9 0.87 0.23
10 none nn 0.86 0.88 0.87 0.2
11 none xgb 0.85 0.92 0.87 0.17

Table 8.16: Descriptive statistics of the dependent variables for an RF model
before applying any treatment levels.

Project Precision Recall F1 MCC
Mean SD Mean SD Mean SD Mean SD

AcDisplay 0.47 0.02 0.55 0.03 0.51 0.02 0.06 0.04
DDT 0.83 0.02 0.55 0.15 0.66 0.11 0.05 0.08

HearthSim 1.0 0.0 0.62 0.14 0.76 0.1 0.04 0.03
HikariCP 0.91 0.03 0.66 0.2 0.75 0.15 0.17 0.17
Hydra 0.94 0.01 0.7 0.1 0.8 0.07 0.09 0.08
Hystrix 0.63 0.07 0.67 0.13 0.65 0.09 0.15 0.17
Jest 0.89 0.01 0.62 0.09 0.72 0.06 0.0 0.06

LittleProxy 0.9 0.01 0.69 0.11 0.78 0.08 0.06 0.05
MozStumbler 1.0 0.0 0.97 0.02 0.98 0.01 0.09 0.13
OpenRefine 0.96 0.03 0.86 0.06 0.91 0.04 0.33 0.22
ProjectRed 0.88 0.08 0.85 0.17 0.86 0.12 0.67 0.23

RoaringBitmap 0.99 0.0 0.74 0.08 0.85 0.05 0.15 0.05
Singularity 0.79 0.09 0.59 0.06 0.68 0.06 0.13 0.19
Dspace 0.97 0.0 0.99 0.01 0.98 0.01 0.08 0.16
auto 0.99 0.0 1.00 0.00 0.99 0.00 0.16 0.17
airlift 0.68 0.24 0.87 0.05 0.74 0.15 0.51 0.32

analytics-android 0.95 0.02 0.81 0.09 0.87 0.06 0.17 0.17
android 0.94 0.07 0.8 0.06 0.86 0.05 0.62 0.19

android-maven-plugin 0.96 0.01 0.82 0.16 0.88 0.11 0.17 0.16
assertj-android 0.92 0.05 0.57 0.18 0.69 0.14 0.38 0.17

basex 0.97 0.0 0.79 0.04 0.87 0.02 0.01 0.01
blueflood 0.93 0.03 0.67 0.07 0.77 0.05 0.14 0.13
blueprints 0.71 0.1 0.73 0.11 0.71 0.04 0.16 0.19

bnd 0.93 0.02 0.64 0.08 0.76 0.05 0.14 0.07
brightspot-cms 0.87 0.08 0.85 0.06 0.85 0.04 0.51 0.2
cas-addons 1.0 0.0 0.91 0.02 0.95 0.01 0.13 0.13

cassandra-reaper 0.88 0.04 0.68 0.12 0.76 0.1 0.07 0.14
ccw 0.76 0.02 0.72 0.05 0.74 0.03 0.08 0.08

194 CHAPTER 8. PAPER G

checkstyle 1.0 0.0 0.87 0.06 0.93 0.03 0.04 0.05
cloudify 0.82 0.02 0.56 0.11 0.66 0.07 0.04 0.07
core 1.0 0.0 0.58 0.05 0.73 0.04 0.02 0.03

dagger 0.97 0.01 0.77 0.05 0.86 0.03 0.05 0.07
dropwizard 0.99 0.01 0.75 0.06 0.85 0.04 0.09 0.08

dynjs 0.98 0.01 0.73 0.16 0.83 0.1 0.17 0.27
error-prone 1.0 0.0 0.99 0.01 0.99 0.0 0.07 0.05

frontend-maven-plugin 0.98 0.01 0.8 0.06 0.88 0.04 0.19 0.12
go-lang-idea-plugin 0.97 0.01 0.76 0.14 0.85 0.09 0.13 0.08

goclipse 0.99 0.0 0.8 0.06 0.89 0.04 0.03 0.02
gpslogger 0.96 0.01 0.77 0.08 0.85 0.05 0.18 0.11
hivemall 0.99 0.0 0.88 0.06 0.93 0.03 0.06 0.06
htm.java 1.0 0.0 0.88 0.09 0.93 0.05 0.28 0.3

idea-gitignore 0.85 0.02 0.64 0.11 0.73 0.09 0.04 0.08
jInstagram 1.0 0.0 0.76 0.14 0.85 0.1 0.17 0.09

jPOS 1.0 0.0 0.79 0.1 0.88 0.06 0.0 0.04
jade4j 0.98 0.01 0.65 0.23 0.76 0.18 0.02 0.07

javaslang 1.0 0.0 0.91 0.13 0.95 0.08 0.26 0.22
jcabi-aspects 0.89 0.04 0.65 0.17 0.74 0.12 0.19 0.14
jcabi-github 0.76 0.14 0.77 0.08 0.76 0.08 0.23 0.34
jcabi-http 0.86 0.03 0.62 0.12 0.72 0.09 -0.01 0.1

jedis 0.99 0.0 0.85 0.13 0.91 0.08 0.19 0.12
jmeter-plugins 0.92 0.06 0.96 0.02 0.94 0.04 0.46 0.43
jmonkeyengine 0.99 0.0 0.8 0.02 0.89 0.01 0.1 0.06

jmxtrans 0.98 0.0 0.76 0.07 0.86 0.04 0.07 0.07
joda-time 1.0 0.0 0.88 0.05 0.94 0.03 0.02 0.04

jodd 0.99 0.0 0.7 0.22 0.8 0.16 0.11 0.13
jphp 0.9 0.04 0.64 0.14 0.75 0.09 0.15 0.22

jsonld-java 1.0 0.0 0.94 0.04 0.97 0.02 0.13 0.09
jsprit 1.0 0.0 0.89 0.06 0.94 0.03 0.16 0.09

keywhiz 1.0 0.0 0.99 0.01 1.0 0.0 -0.0 0.0
lenskit 0.99 0.0 0.81 0.12 0.88 0.09 0.01 0.04
less4j 0.92 0.03 0.85 0.03 0.89 0.02 0.17 0.2

logback 0.98 0.01 0.73 0.08 0.83 0.06 0.08 0.06
lorsource 0.98 0.0 0.72 0.09 0.83 0.06 0.05 0.05

maven-git-commit-id-plugin 0.92 0.02 0.64 0.13 0.75 0.1 0.15 0.14
metrics 0.91 0.05 0.8 0.08 0.85 0.04 0.37 0.18
mockito 0.97 0.01 0.86 0.11 0.91 0.06 0.19 0.1
mybatis-3 1.0 0.0 0.75 0.1 0.85 0.07 0.07 0.04
nokogiri 0.71 0.11 0.76 0.12 0.73 0.09 0.28 0.24
nutz 0.66 0.03 0.61 0.06 0.63 0.04 0.01 0.08

okhttp 0.76 0.03 0.69 0.05 0.72 0.03 -0.01 0.09
onebusaway-android 1.0 0.0 0.93 0.06 0.96 0.03 0.16 0.16

openwayback 1.0 0.0 0.97 0.02 0.99 0.01 0.14 0.13
owner 0.99 0.0 0.81 0.06 0.89 0.04 0.04 0.08
p6spy 0.84 0.16 0.82 0.08 0.81 0.06 0.53 0.28
parceler 0.99 0.0 0.68 0.1 0.8 0.08 0.07 0.05
pdfsam 0.8 0.14 0.56 0.2 0.65 0.19 0.02 0.22

play-authenticate 0.97 0.01 0.91 0.08 0.94 0.05 0.36 0.22
psi-probe 1.0 0.0 0.92 0.08 0.96 0.04 0.14 0.21
pushy 1.0 0.0 0.99 0.01 0.99 0.0 0.37 0.33

querydsl 0.98 0.01 0.75 0.12 0.85 0.08 0.05 0.08
quickml 0.98 0.01 0.71 0.06 0.82 0.04 0.12 0.1
qulice 0.98 0.0 0.8 0.05 0.88 0.03 -0.01 0.05

restlet-framework-java 0.57 0.06 0.54 0.16 0.55 0.11 0.06 0.15
retrofit 0.99 0.0 0.89 0.04 0.94 0.02 0.15 0.1

8.9. APPENDIX A 195

rewrite 0.76 0.06 0.57 0.29 0.63 0.2 0.19 0.27
rexster 0.99 0.01 0.79 0.15 0.88 0.09 0.12 0.17

robospice 0.46 0.06 0.48 0.11 0.46 0.07 0.04 0.11
rultor 0.72 0.02 0.62 0.12 0.66 0.07 0.07 0.04

rxjava-jdbc 1.0 0.0 0.84 0.04 0.91 0.02 0.03 0.04
selendroid 0.73 0.03 0.68 0.12 0.7 0.08 0.12 0.09
seyren 0.99 0.01 0.73 0.07 0.84 0.05 0.14 0.09

sms-backup-plus 0.99 0.0 0.77 0.09 0.86 0.06 0.0 0.03
spark 0.99 0.0 0.83 0.04 0.9 0.02 0.08 0.07

spring-cloud-config 0.95 0.02 0.62 0.14 0.74 0.1 0.02 0.08
springside4 0.73 0.07 0.56 0.15 0.63 0.12 0.17 0.15

storio 0.97 0.02 0.65 0.07 0.78 0.05 0.17 0.11
storm 0.52 0.13 0.57 0.17 0.53 0.1 0.17 0.19
structr 0.57 0.12 0.43 0.11 0.48 0.1 0.18 0.17
stubby4j 0.75 0.07 0.6 0.09 0.66 0.06 0.2 0.12
thredds 0.74 0.03 0.64 0.08 0.69 0.06 -0.0 0.11
traccar 1.0 0.0 0.84 0.02 0.91 0.01 0.05 0.03
truth 0.97 0.02 0.74 0.06 0.84 0.04 0.26 0.14

twilio-java 0.85 0.03 0.67 0.08 0.75 0.05 0.14 0.11
u2020 0.98 0.01 0.75 0.1 0.85 0.07 0.13 0.13

unirest-java 0.93 0.01 0.59 0.07 0.72 0.05 -0.0 0.03
waffle 1.0 0.0 0.86 0.06 0.92 0.03 0.1 0.08

webcam-capture 1.0 0.0 0.89 0.04 0.94 0.02 0.07 0.04
wire 1.0 0.0 0.98 0.02 0.99 0.01 0.03 0.05

xtreemfs 0.98 0.02 0.83 0.12 0.9 0.08 0.31 0.27
yobi 1.0 0.0 0.9 0.05 0.94 0.03 0.06 0.03

Table 8.17: Descriptive statistics of the dependent variables for an RF model
after applying DB.

Project Precision Recall F1 MCC
Mean SD Mean SD Mean SD Mean SD

AcDisplay 0.45 0.02 0.86 0.04 0.59 0.02 0.01 0.08
DDT 0.83 0.03 0.54 0.12 0.65 0.09 0.05 0.09

DSpace 0.98 0.0 0.9 0.09 0.93 0.05 0.05 0.05
HearthSim 0.99 0.0 0.92 0.06 0.96 0.04 0.0 0.02
HikariCP 0.87 0.01 0.85 0.07 0.86 0.04 -0.05 0.08
Hydra 0.93 0.01 0.92 0.02 0.92 0.01 0.06 0.07
Hystrix 0.57 0.03 0.61 0.07 0.59 0.05 -0.01 0.09
Jest 0.89 0.01 0.82 0.08 0.85 0.05 0.0 0.05

LittleProxy 0.89 0.01 0.68 0.06 0.77 0.04 0.04 0.06
MozStumbler 1.0 0.0 0.98 0.01 0.99 0.01 0.08 0.17
OpenRefine 0.91 0.01 0.83 0.06 0.87 0.04 -0.03 0.08
ProjectRed 0.91 0.1 0.81 0.16 0.85 0.11 0.67 0.22

RoaringBitmap 0.98 0.0 0.99 0.01 0.99 0.0 0.01 0.04
Singularity 0.79 0.06 0.66 0.08 0.71 0.05 0.14 0.14
DSpace 0.98 0.0 0.90 0.09 0.93 0.05 0.05 0.05
auto 0.99 0.0 0.88 0.03 0.93 0.02 0.06 0.06
airlift 0.63 0.23 0.14 0.12 0.23 0.17 0.16 0.18

analytics-android 0.94 0.01 0.87 0.08 0.9 0.05 0.13 0.15
android-maven-plugin 0.95 0.01 0.77 0.06 0.85 0.04 0.06 0.05

android 0.95 0.06 0.83 0.05 0.88 0.04 0.67 0.15

196 CHAPTER 8. PAPER G

assertj-android 0.91 0.04 0.66 0.19 0.75 0.13 0.41 0.16
auto 0.99 0.0 0.88 0.03 0.93 0.02 0.06 0.06
basex 0.97 0.0 0.86 0.05 0.91 0.03 0.04 0.05

blueflood 0.89 0.01 0.81 0.06 0.85 0.03 0.02 0.06
blueprints 0.71 0.11 0.68 0.08 0.69 0.06 0.16 0.22

bnd 0.93 0.02 0.75 0.07 0.83 0.04 0.18 0.1
brightspot-cms 0.84 0.1 0.89 0.04 0.86 0.05 0.43 0.31
cas-addons 1.0 0.0 0.94 0.02 0.97 0.01 0.2 0.11

cassandra-reaper 0.89 0.03 0.71 0.13 0.79 0.1 0.09 0.13
ccw 0.76 0.03 0.81 0.07 0.78 0.04 0.09 0.13

checkstyle 1.0 0.0 0.99 0.01 1.0 0.0 -0.0 0.0
cloudify 0.84 0.02 0.57 0.07 0.68 0.05 0.04 0.05
core 1.0 0.0 0.68 0.08 0.81 0.05 0.02 0.04

dagger 0.97 0.01 0.83 0.05 0.9 0.03 0.07 0.09
dropwizard 0.98 0.0 0.72 0.05 0.83 0.04 -0.01 0.02

dynjs 0.98 0.01 0.85 0.09 0.91 0.05 0.11 0.12
error-prone 1.0 0.0 0.99 0.0 1.0 0.0 0.09 0.08

frontend-maven-plugin 0.96 0.01 0.92 0.06 0.94 0.03 0.03 0.12
go-lang-idea-plugin 0.96 0.02 0.72 0.14 0.82 0.1 0.03 0.18

goclipse 0.99 0.0 0.89 0.03 0.94 0.01 0.03 0.02
gpslogger 0.96 0.01 0.85 0.05 0.9 0.03 0.17 0.14
hivemall 0.99 0.0 0.89 0.06 0.94 0.04 -0.0 0.04
htm.java 0.99 0.0 0.96 0.04 0.98 0.02 0.04 0.06

idea-gitignore 0.83 0.02 0.74 0.19 0.77 0.13 -0.01 0.09
jInstagram 1.0 0.0 0.76 0.15 0.85 0.1 0.18 0.09

jPOS 1.0 0.0 0.88 0.09 0.93 0.05 0.0 0.03
jade4j 0.98 0.01 0.73 0.26 0.81 0.19 -0.02 0.08

javaslang 1.0 0.0 0.93 0.09 0.96 0.05 0.16 0.16
jcabi-aspects 0.83 0.03 0.74 0.13 0.78 0.08 -0.02 0.13
jcabi-github 0.65 0.05 0.56 0.1 0.6 0.08 -0.02 0.12
jcabi-http 0.85 0.04 0.66 0.11 0.74 0.08 -0.05 0.13

jedis 0.98 0.0 0.9 0.11 0.94 0.06 0.17 0.12
jmeter-plugins 0.86 0.09 0.61 0.29 0.69 0.22 0.14 0.4
jmonkeyengine 0.99 0.0 0.97 0.01 0.98 0.01 -0.0 0.02

jmxtrans 0.98 0.0 0.97 0.02 0.97 0.01 -0.0 0.03
joda-time 1.0 0.0 0.94 0.03 0.97 0.01 -0.01 0.01

jodd 0.99 0.0 0.78 0.18 0.86 0.11 0.07 0.07
jphp 0.91 0.03 0.77 0.16 0.82 0.11 0.21 0.24

jsonld-java 1.0 0.0 0.97 0.03 0.98 0.02 0.12 0.11
jsprit 1.0 0.0 0.92 0.06 0.95 0.03 0.01 0.04

keywhiz 1.0 0.0 1.0 0.0 1.0 0.0 -0.0 0.0
lenskit 0.99 0.0 0.87 0.08 0.92 0.05 0.02 0.04
less4j 0.89 0.01 0.73 0.06 0.8 0.04 -0.03 0.07

logback 0.98 0.0 0.83 0.06 0.9 0.04 0.08 0.06
lorsource 0.98 0.0 0.79 0.07 0.87 0.04 0.03 0.04

maven-git-commit-id-plugin 0.92 0.03 0.61 0.16 0.72 0.12 0.15 0.16
metrics 0.9 0.05 0.85 0.07 0.87 0.05 0.4 0.2
mockito 0.97 0.01 0.9 0.08 0.93 0.04 0.13 0.14
mybatis-3 0.99 0.0 0.68 0.04 0.8 0.03 0.01 0.06
nokogiri 0.71 0.16 0.47 0.32 0.53 0.26 0.23 0.29
nutz 0.65 0.02 0.64 0.06 0.64 0.04 -0.0 0.05

okhttp 0.76 0.02 0.74 0.06 0.75 0.03 -0.0 0.08
onebusaway-android 1.0 0.0 0.97 0.03 0.98 0.02 0.08 0.09

openwayback 1.0 0.0 0.99 0.01 1.0 0.0 0.24 0.27
owner 0.99 0.0 0.97 0.04 0.98 0.02 -0.01 0.02
p6spy 0.83 0.16 0.8 0.08 0.8 0.07 0.51 0.28

8.9. APPENDIX A 197

parceler 0.99 0.0 0.71 0.09 0.82 0.07 0.06 0.05
pdfsam 0.82 0.04 0.82 0.18 0.81 0.1 0.02 0.23

play-authenticate 0.95 0.02 0.88 0.11 0.91 0.06 0.12 0.17
psi-probe 1.0 0.0 0.96 0.03 0.98 0.02 0.21 0.19
pushy 1.0 0.0 0.99 0.01 0.99 0.0 0.1 0.24

querydsl 0.97 0.01 0.75 0.17 0.84 0.12 -0.02 0.05
quickml 0.98 0.01 0.76 0.05 0.85 0.03 0.12 0.12
qulice 0.98 0.0 0.78 0.05 0.87 0.03 -0.03 0.04

restlet-framework-java 0.52 0.31 0.24 0.39 0.26 0.37 0.09 0.45
retrofit 0.99 0.0 0.93 0.04 0.96 0.02 0.13 0.09
rewrite 0.78 0.08 0.48 0.35 0.54 0.28 0.21 0.3
rexster 0.99 0.01 0.86 0.1 0.92 0.06 0.14 0.17

robospice 0.47 0.14 0.26 0.07 0.32 0.07 0.02 0.14
rultor 0.69 0.06 0.5 0.08 0.58 0.06 -0.0 0.14

rxjava-jdbc 1.0 0.0 0.87 0.04 0.93 0.02 0.04 0.04
selendroid 0.75 0.07 0.54 0.12 0.62 0.09 0.09 0.14
seyren 0.98 0.0 0.81 0.05 0.89 0.03 0.02 0.04

sms-backup-plus 0.99 0.0 0.95 0.03 0.97 0.01 0.01 0.05
spark 0.99 0.0 0.82 0.08 0.89 0.05 0.05 0.05

spring-cloud-config 0.95 0.01 0.72 0.09 0.82 0.06 0.04 0.09
springside4 0.72 0.07 0.66 0.14 0.68 0.1 0.16 0.19

storio 0.98 0.02 0.66 0.08 0.79 0.05 0.19 0.11
storm 0.4 0.08 0.43 0.14 0.41 0.1 -0.02 0.15
structr 0.42 0.12 0.21 0.14 0.26 0.12 -0.0 0.1
stubby4j 0.75 0.1 0.57 0.09 0.64 0.08 0.2 0.19
thredds 0.74 0.04 0.63 0.09 0.68 0.06 -0.0 0.12
traccar 1.0 0.0 0.89 0.03 0.94 0.02 0.04 0.03
truth 0.93 0.0 0.98 0.02 0.95 0.01 -0.03 0.02

twilio-java 0.85 0.05 0.59 0.1 0.69 0.08 0.14 0.16
u2020 0.98 0.01 0.9 0.08 0.93 0.05 0.09 0.11

unirest-java 0.94 0.01 0.88 0.08 0.9 0.05 0.03 0.14
waffle 0.99 0.0 0.87 0.05 0.93 0.03 0.05 0.03

webcam-capture 0.99 0.0 0.89 0.08 0.94 0.05 0.07 0.05
wire 1.0 0.0 0.99 0.0 1.0 0.0 0.04 0.09

xtreemfs 0.96 0.0 0.97 0.02 0.96 0.01 0.0 0.05
yobi 1.0 0.0 0.91 0.05 0.95 0.03 0.03 0.05

Table 8.18: Descriptive statistics of the dependent variables for an RF model
after applying MF.

Project Precision Recall F1 MCC
Mean SD Mean SD Mean SD Mean SD

AcDisplay 0.84 0.05 0.72 0.08 0.77 0.04 0.62 0.06
DDT 0.9 0.02 0.96 0.05 0.93 0.02 0.61 0.04

DSpace 0.99 0.0 1.0 0.0 1.0 0.0 0.8 0.06
HearthSim 1.0 0.0 1.0 0.0 1.0 0.0 0.52 0.19
HikariCP 0.94 0.01 0.97 0.07 0.95 0.03 0.61 0.12
Hydra 0.97 0.01 1.0 0.0 0.98 0.0 0.78 0.05
Hystrix 0.85 0.04 0.9 0.07 0.87 0.03 0.69 0.06
Jest 0.95 0.01 0.99 0.01 0.97 0.01 0.68 0.08

LittleProxy 0.95 0.01 1.0 0.01 0.97 0.01 0.75 0.07
MozStumbler 1.0 0.0 1.0 0.0 1.0 0.0 0.78 0.31

198 CHAPTER 8. PAPER G

OpenRefine 0.98 0.01 1.0 0.0 0.99 0.01 0.86 0.09
ProjectRed 1.0 0.01 0.97 0.03 0.98 0.02 0.96 0.04

RoaringBitmap 0.99 0.0 0.99 0.02 0.99 0.01 0.62 0.15
Singularity 0.9 0.04 0.96 0.04 0.93 0.02 0.72 0.11
DSpace 0.99 0.0 1.0 0.0 1.0 0.0 0.80 0.06
auto 1.00 0.0 1.0 0.0 1.0 0.0 0.78 0.14
airlift 0.9 0.06 0.85 0.16 0.87 0.11 0.8 0.16

analytics-android 0.98 0.01 1.0 0.0 0.99 0.01 0.85 0.09
android 0.94 0.02 0.97 0.03 0.95 0.02 0.83 0.05

android-maven-plugin 0.98 0.01 1.0 0.01 0.99 0.01 0.73 0.12
assertj-android 0.88 0.03 0.96 0.01 0.92 0.02 0.62 0.11

auto 1.0 0.0 1.0 0.0 1.0 0.0 0.78 0.14
basex 0.99 0.0 1.0 0.01 0.99 0.0 0.72 0.09

blueflood 0.95 0.01 1.0 0.0 0.97 0.0 0.71 0.05
blueprints 0.9 0.05 0.94 0.04 0.92 0.02 0.77 0.07

bnd 0.96 0.01 1.0 0.0 0.98 0.0 0.77 0.03
brightspot-cms 0.94 0.04 0.98 0.02 0.96 0.01 0.86 0.06
cas-addons 1.0 0.0 1.0 0.0 1.0 0.0 0.89 0.14

cassandra-reaper 0.95 0.02 0.99 0.0 0.97 0.01 0.77 0.1
ccw 0.92 0.02 0.98 0.01 0.95 0.01 0.8 0.05

checkstyle 1.0 0.0 1.0 0.0 1.0 0.0 0.81 0.12
cloudify 0.9 0.01 0.98 0.01 0.94 0.01 0.57 0.06
core 1.0 0.0 1.0 0.0 1.0 0.0 0.47 0.2

dagger 0.99 0.01 1.0 0.0 0.99 0.0 0.8 0.15
dropwizard 0.99 0.0 1.0 0.0 0.99 0.0 0.7 0.05

dynjs 0.99 0.01 1.0 0.0 0.99 0.0 0.79 0.13
error-prone 1.0 0.0 1.0 0.0 1.0 0.0 0.81 0.15

frontend-maven-plugin 0.98 0.0 1.0 0.0 0.99 0.0 0.7 0.06
go-lang-idea-plugin 0.99 0.01 1.0 0.0 0.99 0.0 0.8 0.12

goclipse 1.0 0.0 1.0 0.0 1.0 0.0 0.66 0.13
gpslogger 0.98 0.01 1.0 0.0 0.99 0.0 0.79 0.08
hivemall 1.0 0.0 1.0 0.0 1.0 0.0 0.8 0.15
htm.java 1.0 0.0 1.0 0.0 1.0 0.0 0.81 0.21

idea-gitignore 0.9 0.03 0.99 0.02 0.94 0.01 0.52 0.18
jInstagram 0.99 0.0 1.0 0.0 1.0 0.0 0.72 0.1

jPOS 1.0 0.0 1.0 0.0 1.0 0.0 0.76 0.2
jade4j 0.99 0.0 1.0 0.0 0.99 0.0 0.38 0.3

javaslang 1.0 0.0 1.0 0.01 1.0 0.01 0.79 0.2
jcabi-aspects 0.93 0.03 0.99 0.01 0.96 0.01 0.71 0.1
jcabi-github 0.91 0.07 0.97 0.02 0.94 0.05 0.8 0.15
jcabi-http 0.96 0.03 0.99 0.0 0.97 0.01 0.79 0.11

jedis 0.99 0.0 0.99 0.03 0.99 0.01 0.72 0.16
jmeter-plugins 0.98 0.02 0.97 0.05 0.97 0.03 0.85 0.14
jmonkeyengine 1.0 0.0 1.0 0.0 1.0 0.0 0.75 0.13

jmxtrans 0.99 0.0 1.0 0.0 1.0 0.0 0.82 0.1
joda-time 1.0 0.0 1.0 0.0 1.0 0.0 0.73 0.22

jodd 1.0 0.0 1.0 0.0 1.0 0.0 0.74 0.13
jphp 0.95 0.02 1.0 0.0 0.97 0.01 0.73 0.1

jsonld-java 1.0 0.0 1.0 0.0 1.0 0.0 0.76 0.1
jsprit 1.0 0.0 1.0 0.0 1.0 0.0 0.83 0.24

keywhiz 1.0 0.0 1.0 0.0 1.0 0.0 0.5 0.53
lenskit 0.99 0.0 1.0 0.0 1.0 0.0 0.73 0.1
less4j 0.96 0.02 1.0 0.0 0.98 0.01 0.74 0.12

logback 0.99 0.0 1.0 0.0 0.99 0.0 0.74 0.07
lorsource 0.99 0.0 1.0 0.01 0.99 0.0 0.7 0.09

maven-git-commit-id-plugin 0.96 0.01 0.99 0.01 0.98 0.01 0.76 0.06

8.9. APPENDIX A 199

metrics 0.96 0.05 0.98 0.01 0.97 0.03 0.81 0.19
mockito 0.99 0.01 1.0 0.0 0.99 0.0 0.78 0.1
mybatis-3 1.0 0.0 1.0 0.0 1.0 0.0 0.65 0.24
nokogiri 0.92 0.04 0.94 0.05 0.93 0.03 0.82 0.06
nutz 0.86 0.03 0.94 0.04 0.9 0.02 0.69 0.05

okhttp 0.91 0.02 0.96 0.04 0.93 0.01 0.7 0.05
onebusaway-android 1.0 0.0 1.0 0.0 1.0 0.0 0.77 0.15

openwayback 1.0 0.0 1.0 0.0 1.0 0.0 0.87 0.14
owner 1.0 0.0 1.0 0.0 1.0 0.0 0.73 0.19
p6spy 0.92 0.05 0.91 0.08 0.91 0.03 0.8 0.06
parceler 0.99 0.0 1.0 0.0 1.0 0.0 0.65 0.13
pdfsam 0.89 0.04 0.96 0.04 0.92 0.03 0.53 0.16

play-authenticate 0.98 0.01 1.0 0.01 0.99 0.01 0.8 0.11
psi-probe 1.0 0.0 1.0 0.0 1.0 0.0 0.91 0.17
pushy 1.0 0.0 1.0 0.0 1.0 0.0 0.6 0.52

querydsl 0.99 0.0 1.0 0.0 0.99 0.0 0.71 0.09
quickml 0.99 0.0 1.0 0.0 0.99 0.0 0.72 0.04
qulice 0.99 0.0 1.0 0.0 0.99 0.0 0.72 0.18

restlet-framework-java 0.85 0.11 0.92 0.07 0.88 0.09 0.71 0.23
retrofit 1.0 0.0 1.0 0.0 1.0 0.0 0.88 0.1
rewrite 0.91 0.05 0.96 0.05 0.93 0.04 0.74 0.15
rexster 1.0 0.0 1.0 0.0 1.0 0.0 0.82 0.1

robospice 0.85 0.05 0.76 0.1 0.8 0.06 0.67 0.08
rultor 0.86 0.06 0.94 0.04 0.9 0.03 0.63 0.13

rxjava-jdbc 1.0 0.0 1.0 0.0 1.0 0.0 0.72 0.29
selendroid 0.95 0.06 0.97 0.04 0.96 0.05 0.86 0.16
seyren 0.99 0.01 1.0 0.0 0.99 0.0 0.51 0.37

sms-backup-plus 1.0 0.0 1.0 0.0 1.0 0.0 0.78 0.09
spark 0.99 0.0 1.0 0.0 1.0 0.0 0.71 0.14

spring-cloud-config 0.98 0.01 1.0 0.0 0.99 0.0 0.72 0.08
springside4 0.86 0.05 0.92 0.04 0.89 0.03 0.65 0.1

storio 0.97 0.0 1.0 0.0 0.99 0.0 0.72 0.06
storm 0.86 0.07 0.8 0.1 0.83 0.06 0.72 0.1
structr 0.82 0.1 0.76 0.13 0.78 0.06 0.63 0.1
stubby4j 0.85 0.03 0.96 0.02 0.9 0.02 0.69 0.07
thredds 0.92 0.03 0.97 0.03 0.94 0.02 0.76 0.09
traccar 1.0 0.0 1.0 0.0 1.0 0.0 0.59 0.15
truth 0.97 0.01 1.0 0.0 0.98 0.01 0.72 0.1

twilio-java 0.9 0.02 0.98 0.01 0.94 0.01 0.62 0.05
u2020 0.99 0.01 0.99 0.03 0.99 0.02 0.74 0.19

unirest-java 0.97 0.01 0.98 0.04 0.97 0.02 0.62 0.17
waffle 1.0 0.0 1.0 0.0 1.0 0.0 0.75 0.11

webcam-capture 1.0 0.0 1.0 0.0 1.0 0.0 0.7 0.05
wire 1.0 0.0 1.0 0.0 1.0 0.0 0.6 0.52

xtreemfs 0.99 0.0 1.0 0.01 0.99 0.0 0.84 0.05
yobi 1.0 0.0 1.0 0.0 1.0 0.0 0.73 0.19

Table 8.19: Descriptive statistics of the dependent variables for an RF model
after applying CF.

Project Precision Recall F1 MCC
Mean SD Mean SD Mean SD Mean SD

200 CHAPTER 8. PAPER G

AcDisplay 0.7 0.07 0.48 0.13 0.56 0.08 0.34 0.07
DDT 0.85 0.01 0.98 0.01 0.91 0.01 0.39 0.06

DSpace 0.98 0.0 1.0 0.0 0.99 0.0 0.56 0.1
HearthSim 0.99 0.0 1.0 0.0 1.0 0.0 0.31 0.23
HikariCP 0.91 0.02 0.99 0.01 0.95 0.01 0.45 0.12
Hydra 0.95 0.01 1.0 0.0 0.97 0.0 0.54 0.07
Hystrix 0.75 0.09 0.76 0.17 0.74 0.08 0.41 0.07
Jest 0.92 0.01 0.99 0.01 0.95 0.01 0.48 0.08

LittleProxy 0.92 0.01 0.99 0.01 0.95 0.01 0.49 0.06
MozStumbler 1.0 0.0 1.0 0.0 1.0 0.0 0.44 0.48
OpenRefine 0.97 0.02 1.0 0.01 0.98 0.01 0.76 0.15
ProjectRed 0.9 0.09 0.96 0.06 0.92 0.05 0.8 0.15

RoaringBitmap 0.99 0.0 1.0 0.0 0.99 0.0 0.42 0.08
Singularity 0.82 0.05 0.94 0.08 0.87 0.04 0.45 0.15
Dspace 0.98 0.0 1.0 0.0 0.99 0.0 0.56 0.10
auto 0.99 0.0 1.0 0.0 1.00 0.0 0.59 0.15
airlift 0.77 0.19 0.77 0.14 0.76 0.15 0.61 0.26

analytics-android 0.96 0.01 1.0 0.0 0.98 0.0 0.6 0.1
android 0.87 0.05 0.97 0.06 0.92 0.02 0.7 0.09

android-maven-plugin 0.96 0.01 0.98 0.04 0.97 0.02 0.43 0.09
assertj-android 0.81 0.02 0.98 0.01 0.89 0.01 0.4 0.08

auto 0.99 0.0 1.0 0.0 1.0 0.0 0.59 0.15
basex 0.98 0.0 1.0 0.01 0.99 0.0 0.5 0.13

blueflood 0.92 0.01 1.0 0.0 0.96 0.0 0.51 0.06
blueprints 0.83 0.06 0.9 0.07 0.86 0.03 0.6 0.1

bnd 0.93 0.01 1.0 0.0 0.96 0.0 0.56 0.04
brightspot-cms 0.88 0.04 0.96 0.03 0.92 0.02 0.71 0.07
cas-addons 1.0 0.0 1.0 0.0 1.0 0.0 0.72 0.22

cassandra-reaper 0.91 0.02 0.99 0.01 0.95 0.01 0.53 0.14
ccw 0.85 0.02 0.97 0.02 0.91 0.02 0.6 0.08

checkstyle 1.0 0.0 1.0 0.0 1.0 0.0 0.59 0.12
cloudify 0.86 0.01 0.96 0.07 0.9 0.03 0.32 0.08
core 1.0 0.0 1.0 0.0 1.0 0.0 0.31 0.23

dagger 0.98 0.01 1.0 0.0 0.99 0.0 0.64 0.12
dropwizard 0.99 0.0 1.0 0.0 0.99 0.0 0.53 0.09

dynjs 0.98 0.01 1.0 0.0 0.99 0.0 0.59 0.21
error-prone 1.0 0.0 1.0 0.0 1.0 0.0 0.31 0.41

frontend-maven-plugin 0.97 0.0 0.99 0.02 0.98 0.01 0.48 0.1
go-lang-idea-plugin 0.98 0.01 0.99 0.03 0.98 0.01 0.59 0.15

goclipse 1.0 0.0 1.0 0.0 1.0 0.0 0.5 0.15
gpslogger 0.96 0.01 1.0 0.01 0.98 0.01 0.55 0.13
hivemall 1.0 0.0 1.0 0.0 1.0 0.0 0.61 0.14
htm.java 1.0 0.0 1.0 0.0 1.0 0.0 0.68 0.22

idea-gitignore 0.87 0.01 0.99 0.01 0.92 0.01 0.35 0.14
jInstagram 0.99 0.0 1.0 0.0 0.99 0.0 0.53 0.09

jPOS 1.0 0.0 1.0 0.0 1.0 0.0 0.62 0.15
jade4j 0.99 0.0 1.0 0.0 0.99 0.0 0.35 0.23

javaslang 1.0 0.0 1.0 0.0 1.0 0.0 0.65 0.18
jcabi-aspects 0.9 0.03 0.99 0.01 0.94 0.02 0.53 0.17
jcabi-github 0.86 0.08 0.86 0.16 0.86 0.11 0.61 0.25
jcabi-http 0.91 0.01 0.99 0.02 0.95 0.01 0.55 0.09

jedis 0.98 0.0 0.99 0.02 0.99 0.01 0.5 0.1
jmeter-plugins 0.97 0.03 0.99 0.01 0.98 0.01 0.83 0.12
jmonkeyengine 0.99 0.0 1.0 0.0 1.0 0.0 0.6 0.14

jmxtrans 0.99 0.01 1.0 0.0 0.99 0.0 0.56 0.23
joda-time 1.0 0.0 1.0 0.0 1.0 0.0 0.58 0.36

8.9. APPENDIX A 201

jodd 0.99 0.01 0.81 0.41 0.81 0.39 0.38 0.24
jphp 0.92 0.02 0.99 0.02 0.95 0.01 0.54 0.12

jsonld-java 1.0 0.0 1.0 0.0 1.0 0.0 0.62 0.17
jsprit 1.0 0.0 1.0 0.0 1.0 0.0 0.74 0.21

keywhiz 1.0 0.0 1.0 0.0 1.0 0.0 0.5 0.53
lenskit 0.99 0.0 1.0 0.0 1.0 0.0 0.55 0.09
less4j 0.95 0.02 1.0 0.0 0.97 0.01 0.64 0.17

logback 0.98 0.0 1.0 0.0 0.99 0.0 0.49 0.08
lorsource 0.99 0.0 1.0 0.0 0.99 0.0 0.52 0.17

maven-git-commit-id-plugin 0.92 0.01 0.99 0.01 0.96 0.01 0.49 0.07
metrics 0.9 0.05 0.98 0.01 0.94 0.03 0.6 0.23
mockito 0.98 0.01 0.99 0.02 0.98 0.01 0.55 0.13
mybatis-3 1.0 0.0 1.0 0.0 1.0 0.0 0.5 0.28
nokogiri 0.84 0.06 0.89 0.04 0.86 0.03 0.65 0.1
nutz 0.78 0.04 0.87 0.07 0.82 0.03 0.43 0.09

okhttp 0.84 0.01 0.95 0.06 0.89 0.03 0.49 0.09
onebusaway-android 1.0 0.0 1.0 0.0 1.0 0.0 0.57 0.14

openwayback 1.0 0.0 1.0 0.0 1.0 0.0 0.7 0.19
owner 0.99 0.0 1.0 0.0 1.0 0.0 0.44 0.19
p6spy 0.72 0.12 0.92 0.12 0.8 0.07 0.39 0.29
parceler 0.99 0.0 1.0 0.0 0.99 0.0 0.49 0.16
pdfsam 0.85 0.05 0.94 0.13 0.89 0.05 0.28 0.1

play-authenticate 0.97 0.01 1.0 0.01 0.98 0.01 0.64 0.14
psi-probe 1.0 0.0 1.0 0.0 1.0 0.0 0.81 0.26
pushy 1.0 0.0 1.0 0.0 1.0 0.0 0.2 0.42

querydsl 0.98 0.0 1.0 0.0 0.99 0.0 0.59 0.08
quickml 0.98 0.0 1.0 0.0 0.99 0.0 0.51 0.12
qulice 0.99 0.0 1.0 0.0 0.99 0.0 0.61 0.17

restlet-framework-java 0.8 0.13 0.64 0.25 0.67 0.14 0.42 0.17
retrofit 0.99 0.0 1.0 0.0 0.99 0.0 0.62 0.11
rewrite 0.82 0.04 0.89 0.12 0.85 0.05 0.43 0.13
rexster 0.99 0.0 1.0 0.0 1.0 0.0 0.61 0.15

robospice 0.69 0.07 0.62 0.14 0.64 0.09 0.41 0.12
rultor 0.8 0.06 0.89 0.09 0.83 0.04 0.41 0.14

rxjava-jdbc 1.0 0.0 1.0 0.0 1.0 0.0 0.52 0.37
selendroid 0.82 0.06 0.95 0.02 0.88 0.03 0.55 0.14
seyren 0.98 0.01 1.0 0.0 0.99 0.0 0.27 0.32

sms-backup-plus 0.99 0.0 1.0 0.0 1.0 0.0 0.66 0.18
spark 0.99 0.0 1.0 0.0 0.99 0.0 0.42 0.22

spring-cloud-config 0.96 0.01 1.0 0.0 0.98 0.0 0.51 0.15
springside4 0.78 0.04 0.83 0.19 0.79 0.11 0.42 0.12

storio 0.96 0.01 1.0 0.0 0.98 0.0 0.47 0.09
storm 0.73 0.1 0.67 0.19 0.68 0.11 0.49 0.14
structr 0.65 0.12 0.66 0.23 0.62 0.1 0.36 0.1
stubby4j 0.77 0.03 0.92 0.08 0.83 0.03 0.47 0.08
thredds 0.85 0.03 0.96 0.03 0.9 0.02 0.56 0.11
traccar 1.0 0.0 1.0 0.0 1.0 0.0 0.41 0.18
truth 0.95 0.01 1.0 0.0 0.98 0.0 0.57 0.1

twilio-java 0.84 0.01 0.99 0.01 0.91 0.01 0.38 0.06
u2020 0.98 0.01 1.0 0.0 0.99 0.0 0.48 0.21

unirest-java 0.95 0.01 1.0 0.0 0.98 0.01 0.49 0.15
waffle 0.99 0.0 1.0 0.0 1.0 0.0 0.45 0.22

webcam-capture 1.0 0.0 1.0 0.0 1.0 0.0 0.56 0.09
wire 1.0 0.0 1.0 0.0 1.0 0.0 0.6 0.52

xtreemfs 0.98 0.01 0.99 0.01 0.99 0.0 0.69 0.14
yobi 1.0 0.0 1.0 0.0 1.0 0.0 0.62 0.16

202 CHAPTER 8. PAPER G

Table 8.20: The distribution of build outcomes within the analyzed subjects.

project class0 class1 class ratio
AcDisplay 19424 15461 44.319
DDT 11929 51879 18.695
DSpace 2330 83544 2.713
HearthSim 400 66046 0.601
HikariCP 3952 28938 12.015
Hydra 623 7270 7.893
Hystrix 18558 24944 42.66
Jest 2862 22863 11.125
LittleProxy 1025 7737 11.698
MozStumbler 15 8625 0.173
OpenRefine 357 3814 8.559
ProjectRed 450 702 39.062
RoaringBitmap 788 41989 1.842
Singularity 2267 6257 26.595
airlift 14632 9380 39.063
analytics-
android

507 6926 6.820

android 4587 11046 29.341
android-maven-
plugin

4598 80031 5.433

assertj-android 3798 12111 23.873
auto 137 12917 1.049
basex 2030 57303 3.421
blueflood 4886 40437 10.78
blueprints 16890 29439 36.456
bnd 3852 31838 10.7929
brightspot-cms 2981 7040 29.747
cas-addons 66 8049 0.813
cassandra-
reaper

1082 7324 12.871

ccw 4070 11538 26.076
checkstyle 370 103059 0.357
cloudify 56428 265933 17.504
core 420 84118 0.496
dagger 119 3355 3.425
dropwizard 1154 54038 2.090
dynjs 1033 35286 2.844
error-prone 26 101295 0.025
frontend-maven-
plugin

110 2774 3.814

go-lang-idea-
plugin

1319 32505 3.899

goclipse 509 76552 0.66
gpslogger 1009 15405 6.147
hivemall 169 22752 0.737
htm.java 470 53930 0.863
idea-gitignore 4641 24359 16.003
jInstagram 294 20225 1.432
jPOS 160 38231 0.416
jade4j 283 16171 1.719

8.9. APPENDIX A 203

java-design-
patterns

55 23249 0.236

javaslang 1151 193409 0.591
jcabi-aspects 904 4669 16.221
jcabi-github 5937 11839 33.399
jcabi-http 624 3913 13.753
jedis 984 40365 2.379
jinjava 8 12747 0.062
jmeter-plugins 8995 56751 13.681
jmonkeyengine 928 77326 1.185
jmxtrans 198 8497 2.277
joda-time 37 19276 0.191
jodd 1546 153410 0.997
jphp 20586 141821 12.675
jsonld-java 78 34127 0.228
jsonschema2pojo 3 15091 0.0198
jsprit 118 23640 0.496
keywhiz 5 12791 0.039
lenskit 848 58210 1.435
less4j 8259 73837 10.060
logback 2046 71501 2.781
lorsource 751 34964 2.102
maven-git-
commit-id-
plugin

1714 14099 10.839

metrics 1778 7857 18.453
mockito 2976 71665 3.987
mybatis-3 604 105989 0.566
nodeclipse-1 27 23959 0.112
nokogiri 10368 15481 40.109
nutz 22390 42002 34.771
okhttp 17121 53828 24.1314
onebusaway-
android

66 22335 0.294

openwayback 31 12905 0.239
owner 266 23163 1.135
p6spy 6353 8975 41.447
parceler 284 17457 1.6
pdfsam 24027 106294 18.436
picard 378 11017 3.317
play-
authenticate

330 5229 5.936

psi-probe 100 57045 0.174
pushy 9 4705 0.19
querydsl 929 38383 2.363
quickml 486 14942 3.15
qulice 253 11216 2.205
restlet-
framework-java

52947 65339 44.761

retrofit 358 18901 1.858
rewrite 4091 10717 27.627
rexster 515 37728 1.346
robospice 8475 6487 43.356
rultor 10632 23676 30.989
rxjava-jdbc 20 8677 0.229
selendroid 18702 42747 30.435

204 CHAPTER 8. PAPER G

seyren 166 8447 1.927
sms-backup-
plus

215 16358 1.297

spark 94 6345 1.459
spring-cloud-
config

1368 23983 5.396

springside4 7317 14330 33.801
storio 911 14309 5.985
storm 18316 12936 41.392
structr 73595 57331 43.788
stubby4j 14505 27490 34.539
thredds 6920 20015 25.691
traccar 144 76165 0.188
truth 1351 17931 7.006
twilio-java 6285 25939 19.504
u2020 149 4729 3.0545
unirest-java 262 3803 6.445
waffle 168 20320 0.8199
webcam-capture 267 38456 0.689
wire 11 52079 0.0211
xtreemfs 2494 53452 4.457
yobi 106 23134 0.4561

Bibliography

[1] A. Brand, L. Allen, M. Altman, M. Hlava and J. Scott, ‘Beyond au-
thorship: Attribution, contribution, collaboration, and credit,’ Learned
Publishing, vol. 28, no. 2, pp. 151–155, 2015 (cit. on p. vii).

[2] I.-C. Donca, O. P. Stan, M. Misaros, D. Gota and L. Miclea, ‘Method
for continuous integration and deployment using a pipeline generator for
agile software projects,’ Sensors, vol. 22, no. 12, p. 4637, 2022 (cit. on
pp. 1, 155).

[3] A. E. Hassan and K. Zhang, ‘Using decision trees to predict the certific-
ation result of a build,’ in 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06), IEEE, 2006, pp. 189–198
(cit. on pp. 1, 137).

[4] J. Xia and Y. Li, ‘Could we predict the result of a continuous integration
build? an empirical study,’ in 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), IEEE,
2017, pp. 311–315 (cit. on pp. 2, 137, 139).

[5] Z. Nazari, M. Nazari, M Sayed and S Danish, ‘Evaluation of class noise
impact on performance of machine learning algorithms,’ IJCSNS Int. J.
Comput. Sci. Netw. Secur, vol. 18, p. 149, 2018 (cit. on p. 2).

[6] S. Gupta and A. Gupta, ‘Dealing with noise problem in machine learning
data-sets: A systematic review,’ Procedia Computer Science, vol. 161,
pp. 466–474, 2019 (cit. on pp. 2, 155).

[7] G. A. Liebchen, ‘Data cleaning techniques for software engineering
data sets,’ Ph.D. dissertation, Brunel University, School of Information
Systems, Computing and Mathematics, 2010 (cit. on pp. 2, 14, 69, 155).

[8] I. Saidani, A. Ouni and M. W. Mkaouer, ‘Improving the prediction of
continuous integration build failures using deep learning,’ Automated
Software Engineering, vol. 29, no. 1, p. 21, 2022 (cit. on pp. 4, 12).

[9] S. Arachchi and I. Perera, ‘Continuous integration and continuous
delivery pipeline automation for agile software project management,’
in 2018 Moratuwa Engineering Research Conference (MERCon), IEEE,
2018, pp. 156–161 (cit. on p. 4).

205

206 BIBLIOGRAPHY

[10] T. Yu and T. Wang, ‘A study of regression test selection in continuous
integration environments,’ in 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), IEEE, 2018, pp. 135–143
(cit. on p. 5).

[11] S. Garćıa, J. Luengo and F. Herrera, ‘Dealing with noisy data,’ in Data
Preprocessing in Data Mining. Cham: Springer International Publishing,
2015, pp. 107–145, isbn: 978-3-319-10247-4. doi: 10.1007/978-3-319-
10247-4_5 (cit. on p. 5).

[12] A. Ahmad, F. G. de Oliveira Neto, Z. Shi, K. Sandahl and O. Leifler, ‘A
multi-factor approach for flaky test detection and automated root cause
analysis,’ in 2021 28th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, 2021, pp. 338–348 (cit. on p. 7).

[13] J. D. Van Hulse, T. M. Khoshgoftaar and H. Huang, ‘The pairwise at-
tribute noise detection algorithm,’ Knowledge and Information Systems,
vol. 11, no. 2, pp. 171–190, 2007 (cit. on pp. 8, 9, 16, 23, 69, 72, 78, 81,
95, 96).

[14] D. Guan, W. Yuan, Y.-K. Lee and S. Lee, ‘Identifying mislabeled training
data with the aid of unlabeled data,’ Applied Intelligence, vol. 35, no. 3,
pp. 345–358, 2011 (cit. on pp. 9, 13, 67, 68, 71, 158).

[15] C. E. Brodley, M. A. Friedl et al., ‘Identifying and eliminating mis-
labeled training instances,’ in Proceedings of the National Conference
on Artificial Intelligence, 1996, pp. 799–805 (cit. on pp. 9, 13, 68, 71,
72).

[16] T. M. Khoshgoftaar and J. Van Hulse, ‘Identifying noise in an attribute
of interest,’ in Fourth International Conference on Machine Learning
and Applications (ICMLA’05), IEEE, 2005, 6–pp (cit. on pp. 9, 68, 72).

[17] K.-A. Yoon and D.-H. Bae, ‘A pattern-based outlier detection method
identifying abnormal attributes in software project data,’ Information
and Software Technology, vol. 52, no. 2, pp. 137 –151, 2010, issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2009.08.005 (cit.
on pp. 9, 68).

[18] D. Gamberger, N. Lavrac and S. Dzeroski, ‘Noise detection and elimina-
tion in data preprocessing: Experiments in medical domains,’ Applied
artificial intelligence, vol. 14, no. 2, pp. 205–223, 2000 (cit. on pp. 9, 51).

[19] D. Gamberger and N. Lavrač, ‘Conditions for occam’s razor applicability
and noise elimination,’ in European Conference on Machine Learning,
Springer, 1997, pp. 108–123 (cit. on p. 9).

[20] C.-M. Teng, ‘Correcting noisy data.,’ in ICML, Citeseer, 1999, pp. 239–
248 (cit. on pp. 9, 158, 187).

[21] C. E. Brodley and M. A. Friedl, ‘Identifying mislabeled training data,’
Journal of artificial intelligence research, vol. 11, pp. 131–167, 1999
(cit. on pp. 10, 11, 33, 73, 94, 157, 163).

BIBLIOGRAPHY 207

[22] M. Samami, E. Akbari, M. Abdar et al., ‘A mixed solution-based high
agreement filtering method for class noise detection in binary classifica-
tion,’ Physica A: Statistical Mechanics and its Applications, vol. 553,
p. 124 219, 2020 (cit. on pp. 10, 34).

[23] T. M. Khoshgoftaar, V. Joshi and N. Seliya, ‘Detecting noisy instances
with the ensemble filter: A study in software quality estimation,’ Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 16, no. 01, pp. 53–76, 2006 (cit. on p. 10).

[24] P. Rebours and T. M. Khoshgoftaar, ‘Quality problem in software
measurement data,’ in Advances in Computers, vol. 66, Elsevier, 2006,
pp. 43–77 (cit. on pp. 11, 160, 163).

[25] E. Giger, M. D’Ambros, M. Pinzger and H. C. Gall, ‘Method-level bug
prediction,’ in Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement, 2012, pp. 171–180
(cit. on p. 11).

[26] A. Perera, A. Aleti, B. Turhan and M. Böhme, ‘An experimental as-
sessment of using theoretical defect predictors to guide search-based
software testing,’ IEEE Transactions on Software Engineering, vol. 49,
no. 1, pp. 131–146, 2022 (cit. on p. 11).

[27] B. Caglayan, B. Turhan, A. Bener, M. Habayeb, A. Miransky and
E. Cialini, ‘Merits of organizational metrics in defect prediction: An
industrial replication,’ in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, IEEE, vol. 2, 2015, pp. 89–98 (cit.
on p. 11).

[28] V. R. Basili, L. C. Briand and W. L. Melo, ‘A validation of object-
oriented design metrics as quality indicators,’ IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996 (cit. on p. 12).

[29] A. Bernstein, J. Ekanayake and M. Pinzger, ‘Improving defect prediction
using temporal features and non linear models,’ in Ninth international
workshop on Principles of software evolution: in conjunction with the
6th ESEC/FSE joint meeting, 2007, pp. 11–18 (cit. on p. 12).

[30] A. E. Hassan, ‘Predicting faults using the complexity of code changes,’
in 2009 IEEE 31st international conference on software engineering,
IEEE, 2009, pp. 78–88 (cit. on pp. 12, 13).

[31] E. Arisholm and L. C. Briand, ‘Predicting fault-prone components in a
java legacy system,’ in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, 2006, pp. 8–17 (cit. on
p. 12).

[32] A. Groce, T. Kulesza, C. Zhang et al., ‘You are the only possible oracle:
Effective test selection for end users of interactive machine learning
systems,’ IEEE Transactions on Software Engineering, vol. 40, no. 3,
pp. 307–323, 2013 (cit. on p. 12).

208 BIBLIOGRAPHY

[33] T. Zimmermann, N. Nagappan, H. Gall, E. Giger and B. Murphy, ‘Cross-
project defect prediction: A large scale experiment on data vs. domain
vs. process,’ in Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, 2009, pp. 91–100 (cit. on
p. 12).

[34] B. Chen, L. Chen, C. Zhang and X. Peng, ‘Buildfast: History-aware
build outcome prediction for fast feedback and reduced cost in continu-
ous integration,’ in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 42–53 (cit. on
p. 12).

[35] L. Zhang, B. Cui and Z. Zhang, ‘Optimizing continuous integration by
dynamic test proportion selection,’ in 2023 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
IEEE, 2023, pp. 438–449 (cit. on p. 12).

[36] J. Van Hulse and T. Khoshgoftaar, ‘Knowledge discovery from imbal-
anced and noisy data,’ Data & Knowledge Engineering, vol. 68, no. 12,
pp. 1513–1542, 2009 (cit. on p. 13).

[37] A. Folleco, T. M. Khoshgoftaar, J. Van Hulse and L. Bullard, ‘Software
quality modeling: The impact of class noise on the random forest classi-
fier,’ in 2008 IEEE congress on evolutionary computation (IEEE world
congress on computational intelligence), IEEE, 2008, pp. 3853–3859
(cit. on p. 13).

[38] T. M. Khoshgoftaar and N. Seliya, ‘The necessity of assuring quality
in software measurement data,’ in 10th International Symposium on
Software Metrics, 2004. Proceedings., IEEE, 2004, pp. 119–130 (cit. on
p. 13).

[39] T. M. Khoshgoftaar and P. Rebours, ‘Improving software quality pre-
diction by noise filtering techniques,’ Journal of Computer Science and
Technology, vol. 22, no. 3, pp. 387–396, 2007 (cit. on pp. 13, 155).

[40] F. Muhlenbach, S. Lallich and D. A. Zighed, ‘Identifying and hand-
ling mislabelled instances,’ Journal of Intelligent Information Systems,
vol. 22, no. 1, pp. 89–109, 2004, issn: 1573-7675. doi: 10.1023/A:
1025832930864. [Online]. Available: https://doi.org/10.1023/A:
1025832930864 (cit. on pp. 13, 67, 72, 79, 158).

[41] T. M. Khoshgoftaar, N. Seliya and K. Gao, ‘Rule-based noise detection
for software measurement data,’ in Proceedings of the 2004 IEEE Inter-
national Conference on Information Reuse and Integration, 2004. IRI
2004., IEEE, 2004, pp. 302–307 (cit. on pp. 14, 67, 72).

[42] M. Ochodek, M. Staron, D. Bargowski, W. Meding and R. Hebig, ‘Using
machine learning to design a flexible loc counter,’ in 2017 IEEE Work-
shop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE), IEEE, 2017, pp. 14–20 (cit. on pp. 15, 38, 40, 56, 74,
129, 142, 170).

BIBLIOGRAPHY 209

[43] I. Saidani, A. Ouni, M. Chouchen and M. W. Mkaouer, ‘Predicting con-
tinuous integration build failures using evolutionary search,’ Information
and Software Technology, vol. 128, p. 106 392, 2020 (cit. on p. 17).

[44] L. Zhang, J.-H. Tian, J. Jiang, Y.-J. Liu, M.-Y. Pu and T. Yue, ‘Empir-
ical research in software engineering—a literature survey,’ Journal of
Computer Science and Technology, vol. 33, pp. 876–899, 2018 (cit. on
p. 19).

[45] P. Runeson, E. Engström and M.-A. Storey, ‘The design science paradigm
as a frame for empirical software engineering,’ in Contemporary em-
pirical methods in software engineering, Springer, 2020, pp. 127–147
(cit. on p. 19).

[46] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A.
Wesslén, Experimentation in software engineering. Springer Science &
Business Media, 2012 (cit. on pp. 19, 20, 30, 48, 63, 95, 118, 133, 152,
189).

[47] S. Yoo and M. Harman, ‘Regression testing minimization, selection and
prioritization: A survey,’ Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012 (cit. on p. 21).

[48] M. Usman, R. Britto, J. Börstler and E. Mendes, ‘Taxonomies in soft-
ware engineering: A systematic mapping study and a revised taxonomy
development method,’ Information and Software Technology, vol. 85,
pp. 43–59, 2017 (cit. on pp. 24, 101, 104).

[49] M. Beller, G. Gousios and A. Zaidman, ‘Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,’
in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), IEEE, 2017, pp. 447–450 (cit. on pp. 25, 138, 140,
143).

[50] S. Yatish, J. Jiarpakdee, P. Thongtanunam and C. Tantithamthavorn,
‘Mining software defects: Should we consider affected releases?’ In 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, 2019, pp. 654–665 (cit. on p. 32).

[51] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara and K.
Matsumoto, ‘The impact of mislabelling on the performance and inter-
pretation of defect prediction models,’ in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, IEEE, vol. 1, 2015,
pp. 812–823 (cit. on p. 32).

[52] B. Sluban and N. Lavrač, ‘Relating ensemble diversity and performance:
A study in class noise detection,’ Neurocomputing, vol. 160, pp. 120–131,
2015 (cit. on pp. 32, 34, 52, 161).

[53] Y. Ma and H. He, ‘Imbalanced learning: Foundations, algorithms, and
applications,’ 2013 (cit. on p. 33).

[54] X. Zhu and X. Wu, ‘Class noise vs. attribute noise: A quantitative
study,’ Artificial intelligence review, vol. 22, no. 3, pp. 177–210, 2004
(cit. on pp. 33, 51, 67, 68, 73, 79, 94, 155).

210 BIBLIOGRAPHY

[55] ‘Iso/iec/ieee international standard - software and systems engineering
–software testing–part 1: Concepts and definitions,’ Tech. Rep., 2020,
pp. 1–50 (cit. on pp. 35, 102, 105, 109, 121, 130).

[56] D. St̊ahl and J. Bosch, ‘Experienced benefits of continuous integration
in industry software product development: A case study,’ in The 12th
IASTED International Conference on Software Engineering,(Innsbruck,
Austria, 2013), 2013, pp. 736–743 (cit. on p. 37).

[57] G. Çalikli, M. Staron and W. Meding, ‘Measure early and decide fast:
Transforming quality management and measurement to continuous
deployment,’ in Proceedings of the 2018 International Conference on
Software and System Process, ACM, 2018, pp. 51–60 (cit. on p. 37).

[58] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson and M. Castell,
‘Supporting continuous integration by code-churn based test selection,’ in
Proceedings of the Second International Workshop on Rapid Continuous
Software Engineering, IEEE Press, 2015, pp. 19–25 (cit. on pp. 37, 40,
99, 121).

[59] N. Nagappan and T. Ball, ‘Use of relative code churn measures to
predict system defect density,’ in Proceedings of the 27th international
conference on Software engineering, ACM, 2005, pp. 284–292 (cit. on
pp. 37, 39, 42, 67).

[60] F. Chollet, Deep Learning with Python. Manning, 2017 (cit. on pp. 38,
39).

[61] A. Géron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow. Oreilly, 2015 (cit. on pp. 38, 39).

[62] R. Saxena, Introduction to decision tree algorithm, 2017. [Online]. Avail-
able: https://dataaspirant.com/2017/01/30/how-decision-tree-
algorithm-works/ (visited on 24/04/2019) (cit. on p. 38).

[63] M. Awad and R. Khanna, Efficient learning machines: theories, concepts,
and applications for engineers and system designers. Apress, 2017 (cit.
on p. 38).

[64] I. Gondra, ‘Applying machine learning to software fault-proneness pre-
diction,’ Journal of Systems and Software, vol. 81, no. 2, pp. 186–195,
2008 (cit. on p. 39).

[65] Y. Shin, A. Meneely, L. Williams and J. A. Osborne, ‘Evaluating com-
plexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,’ IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011, issn: 0098-5589. doi: 10.1109/TSE.
2010.81 (cit. on p. 39).

[66] T. L. Graves, A. F. Karr, J. S. Marron and H. Siy, ‘Predicting fault
incidence using software change history,’ IEEE Transactions on Software
Engineering, vol. 26, no. 7, pp. 653–661, 2000, issn: 0098-5589. doi:
10.1109/32.859533 (cit. on p. 39).

BIBLIOGRAPHY 211

[67] J. Beningo, Using the static keyword in c, https://community.arm.
com/developer/ip- products/system/b/embedded- blog/posts/

using-the-static-keyword-in-c, 2014 (cit. on p. 39).

[68] V. H. Durelli, R. S. Durelli, S. S. Borges et al., ‘Machine learning applied
to software testing: A systematic mapping study,’ IEEE Transactions
on Reliability, 2019 (cit. on pp. 39, 122).

[69] B. Busjaeger and T. Xie, ‘Learning for test prioritization: An industrial
case study,’ in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ACM, 2016,
pp. 975–980 (cit. on p. 39).

[70] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang and B. Xie, ‘Learning to
prioritize test programs for compiler testing,’ in Proceedings of the 39th
International Conference on Software Engineering, IEEE Press, 2017,
pp. 700–711 (cit. on p. 40).

[71] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige, ‘Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,’ in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ACM, 2017, pp. 12–22
(cit. on p. 40).

[72] M. Azizi and H. Do, ‘A collaborative filtering recommender system
for test case prioritization in web applications,’ in Proceedings of the
33rd Annual ACM Symposium on Applied Computing, ser. SAC ’18,
Pau, France: ACM, 2018, pp. 1560–1567, isbn: 978-1-4503-5191-1. doi:
10.1145/3167132.3167299. [Online]. Available: http://doi.acm.
org/10.1145/3167132.3167299 (cit. on p. 40).

[73] F. Palma, T. Abdou, A. Bener, J. Maidens and S. Liu, ‘An improvement
to test case failure prediction in the context of test case prioritization,’
in Proceedings of the 14th International Conference on Predictive Models
and Data Analytics in Software Engineering, ser. PROMISE’18, Oulu,
Finland: ACM, 2018, pp. 80–89, isbn: 978-1-4503-6593-2. doi: 10.1145/
3273934.3273944. [Online]. Available: http://doi.acm.org/10.
1145/3273934.3273944 (cit. on p. 40).

[74] T. B. Noor and H. Hemmati, ‘Studying test case failure prediction for test
case prioritization,’ in Proceedings of the 13th International Conference
on Predictive Models and Data Analytics in Software Engineering, ACM,
2017, pp. 2–11 (cit. on pp. 40, 67).

[75] T. B. Noor and H. Hemmati, ‘A similarity-based approach for test
case prioritization using historical failure data,’ in 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2015, pp. 58–68 (cit. on p. 40).

[76] F. Pedregosa, G. Varoquaux, A. Gramfort et al., ‘Scikit-learn: Machine
learning in Python,’ Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011 (cit. on pp. 46, 57, 58, 84, 86, 129, 146, 171, 172).

[77] F. Chollet et al., Keras, https://keras.io, 2015 (cit. on pp. 46, 171).

212 BIBLIOGRAPHY

[78] K. W. Al-Sabbagh, M. Staron, R. Hebig and W. Meding, ‘Predicting test
case verdicts using textual analysis of committed code churns,’ in Joint
Proceedings of the International Workshop on Software Measurementand
the International Conference on Software Process and Product Meas-
urement (IWSM Mensura 2019), vol. 2476, 2019, pp. 138–153 (cit. on
pp. 51, 55, 67, 70, 74, 99, 121, 129, 145).

[79] H. Hata, O. Mizuno and T. Kikuno, ‘Fault-prone module detection using
large-scale text features based on spam filtering,’ Empirical Software
Engineering, vol. 15, no. 2, pp. 147–165, 2010 (cit. on pp. 51, 55, 70).

[80] S. Kim, E. J. Whitehead Jr and Y. Zhang, ‘Classifying software changes:
Clean or buggy?’ IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008 (cit. on pp. 51, 55, 67, 70, 71).

[81] L. Aversano, L. Cerulo and C. Del Grosso, ‘Learning from bug-introducing
changes to prevent fault prone code,’ in Ninth international workshop on
Principles of software evolution: in conjunction with the 6th ESEC/FSE
joint meeting, ACM, 2007, pp. 19–26 (cit. on pp. 51, 70, 71).

[82] G. H. John, ‘Robust decision trees: Removing outliers from databases.,’
in KDD, vol. 95, 1995, pp. 174–179 (cit. on p. 51).

[83] Q. Zhao and T. Nishida, ‘Using qualitative hypotheses to identify inac-
curate data,’ Journal of Artificial Intelligence Research, vol. 3, pp. 119–
145, 1995 (cit. on p. 51).

[84] J. A. Sáez, J. Luengo and F. Herrera, ‘Evaluating the classifier behavior
with noisy data considering performance and robustness: The equalized
loss of accuracy measure,’ Neurocomputing, vol. 176, pp. 26–35, 2016
(cit. on pp. 51, 79).

[85] D. Guan, W. Yuan and L. Shen, ‘Class noise detection by multiple
voting,’ in 2013 Ninth International Conference on Natural Computation
(ICNC), IEEE, 2013, pp. 906–911 (cit. on p. 52).

[86] D. F. Nettleton, A. Orriols-Puig and A. Fornells, ‘A study of the effect
of different types of noise on the precision of supervised learning tech-
niques,’ Artificial intelligence review, vol. 33, no. 4, pp. 275–306, 2010
(cit. on p. 54).

[87] J. Zhang and Y. Yang, ‘Robustness of regularized linear classification
methods in text categorization,’ in Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 190–197 (cit. on p. 54).

[88] J. Abellán and A. R. Masegosa, ‘Bagging decision trees on data sets
with classification noise,’ in International Symposium on Foundations
of Information and Knowledge Systems, Springer, 2010, pp. 248–265
(cit. on p. 54).

[89] M. Pechenizkiy, A. Tsymbal, S. Puuronen and O. Pechenizkiy, ‘Class
noise and supervised learning in medical domains: The effect of feature
extraction,’ in 19th IEEE symposium on computer-based medical systems
(CBMS’06), IEEE, 2006, pp. 708–713 (cit. on p. 54).

BIBLIOGRAPHY 213

[90] O. Mizuno, S. Ikami, S. Nakaichi and T. Kikuno, ‘Spam filter based
approach for finding fault-prone software modules,’ in Proceedings of
the Fourth International Workshop on Mining Software Repositories,
IEEE Computer Society, 2007, p. 4 (cit. on pp. 55, 70, 71).

[91] S. Boughorbel, F. Jarray and M. El-Anbari, ‘Optimal classifier for
imbalanced data using matthews correlation coefficient metric,’ PloS
one, vol. 12, no. 6, 2017 (cit. on p. 56).

[92] B. Frénay and M. Verleysen, ‘Classification in the presence of label noise:
A survey,’ IEEE transactions on neural networks and learning systems,
vol. 25, no. 5, pp. 845–869, 2013 (cit. on p. 58).

[93] E. Knauss, S. Houmb, K. Schneider, S. Islam and J. Jürjens, ‘Supporting
requirements engineers in recognising security issues,’ in International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality, Springer, 2011, pp. 4–18 (cit. on p. 67).

[94] M. Ochodek, R. Hebig, W. Meding, G. Frost and M. Staron, ‘Recognizing
lines of code violating company-specific coding guidelines using machine
learning,’ Empirical Software Engineering, vol. 25, no. 1, pp. 220–265,
2020 (cit. on p. 67).

[95] H. Sajnani, ‘Automatic software architecture recovery: A machine learn-
ing approach,’ in 2012 20th IEEE International Conference on Program
Comprehension (ICPC), IEEE, 2012, pp. 265–268 (cit. on p. 67).

[96] S. Wang, T. Liu and L. Tan, ‘Automatically learning semantic features
for defect prediction,’ in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), IEEE, 2016, pp. 297–308 (cit. on pp. 67,
75).

[97] Z. Cai, L. Lu and S. Qiu, ‘An abstract syntax tree encoding method for
cross-project defect prediction,’ IEEE Access, vol. 7, pp. 170 844–170 853,
2019 (cit. on pp. 67, 75).

[98] K. W. Al-Sabbagh, M. Staron, R. Hebig and W. Meding, ‘Improving
data quality for regression test selection by reducing annotation noise,’ in
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE, 2020, pp. 191–194 (cit. on pp. 67, 69, 79,
82, 140, 142, 158, 164, 168, 170, 171, 191).

[99] T. Zimmermann and P. Weißgerber, ‘Preprocessing cvs data for fine-
grained analysis.,’ in MSR, vol. 4, 2004, pp. 2–6 (cit. on pp. 67, 80).

[100] C. M. Teng, ‘Combining noise correction with feature selection,’ in In-
ternational Conference on Data Warehousing and Knowledge Discovery,
Springer, 2003, pp. 340–349 (cit. on p. 68).

[101] K. W. Al-Sabbagh, R. Hebig and M. Staron, ‘The effect of class noise
on continuous test case selection: A controlled experiment on industrial
data,’ in International Conference on Product-Focused Software Process
Improvement, Springer, 2020, pp. 287–303 (cit. on pp. 71, 168).

214 BIBLIOGRAPHY

[102] T. M. Khoshgoftaar and J. Van Hulse, ‘Empirical case studies in attribute
noise detection,’ IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 39, no. 4, pp. 379–388, 2009
(cit. on p. 72).

[103] C.-M. Teng, ‘A comparison of noise handling techniques.,’ in FLAIRS
Conference, 2001, pp. 269–273 (cit. on p. 72).

[104] J. R. Quinlan, ‘Induction of decision trees,’ Machine learning, vol. 1,
no. 1, pp. 81–106, 1986 (cit. on p. 73).

[105] R. Moser, W. Pedrycz and G. Succi, ‘A comparative analysis of the
efficiency of change metrics and static code attributes for defect predic-
tion,’ in Proceedings of the 30th international conference on Software
engineering, 2008, pp. 181–190 (cit. on p. 75).

[106] S. Amasaki, Y. Takagi, O. Mizuno and T. Kikuno, ‘A bayesian belief
network for assessing the likelihood of fault content,’ in 14th Interna-
tional Symposium on Software Reliability Engineering, 2003. ISSRE
2003., IEEE, 2003, pp. 215–226 (cit. on p. 75).

[107] J. Deng, L. Lu, S. Qiu and Y. Ou, ‘A suitable ast node granularity
and multi-kernel transfer convolutional neural network for cross-project
defect prediction,’ IEEE Access, vol. 8, pp. 66 647–66 661, 2020 (cit. on
p. 75).

[108] T. B. C. Arias, P. Avgeriou and P. America, ‘Analyzing the actual execu-
tion of a large software-intensive system for determining dependencies,’
in 2008 15th Working Conference on Reverse Engineering, IEEE, 2008,
pp. 49–58 (cit. on p. 75).

[109] A. Hamou-Lhadj and T. C. Lethbridge, ‘A survey of trace exploration
tools and techniques,’ in Proceedings of the 2004 conference of the Centre
for Advanced Studies on Collaborative research, 2004, pp. 42–55 (cit. on
p. 75).

[110] M. Balint, R. Marinescu and T. Girba, ‘How developers copy,’ in 14th
IEEE International Conference on Program Comprehension (ICPC’06),
IEEE, 2006, pp. 56–68 (cit. on p. 80).

[111] V. Ganganwar, ‘An overview of classification algorithms for imbalanced
datasets,’ International Journal of Emerging Technology and Advanced
Engineering, vol. 2, no. 4, pp. 42–47, 2012 (cit. on p. 84).

[112] A. Axelrod, Complete Guide to Test Automation. Springer, 2018 (cit. on
p. 99).

[113] K. Wang, C. Zhu, A. Celik, J. Kim, D. Batory and M. Gligoric, ‘Towards
refactoring-aware regression test selection,’ in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), IEEE, 2018,
pp. 233–244 (cit. on pp. 99, 121).

[114] B. H. Kwasnik, ‘The role of classification in knowledge representation
and discovery,’ 1999 (cit. on p. 99).

BIBLIOGRAPHY 215

[115] R. Chillarege, I. S. Bhandari, J. K. Chaar et al., ‘Orthogonal defect
classification-a concept for in-process measurements,’ IEEE Transactions
on software Engineering, vol. 18, no. 11, pp. 943–956, 1992 (cit. on
p. 100).

[116] N. Li, Z. Li and X. Sun, ‘Classification of software defect detected by
black-box testing: An empirical study,’ in 2010 Second World Congress
on Software Engineering, IEEE, vol. 2, 2010, pp. 234–240 (cit. on p. 100).

[117] L. Ma and J. Tian, ‘Web error classification and analysis for reliability
improvement,’ Journal of Systems and Software, vol. 80, no. 6, pp. 795–
804, 2007 (cit. on p. 100).

[118] R. Britto, ‘Knowledge classification for supporting effort estimation
in global software engineering projects,’ Ph.D. dissertation, Blekinge
Tekniska Högskola, 2015 (cit. on p. 100).

[119] J. Novak, A. Krajnc et al., ‘Taxonomy of static code analysis tools,’ in
The 33rd International Convention MIPRO, IEEE, 2010, pp. 418–422
(cit. on p. 100).

[120] S. Vegas, N. Juristo and V. R. Basili, ‘Maturing software engineering
knowledge through classifications: A case study on unit testing tech-
niques,’ IEEE Transactions on Software Engineering, vol. 35, no. 4,
pp. 551–565, 2009 (cit. on p. 101).

[121] M. Felderer and I. Schieferdecker, ‘A taxonomy of risk-based testing,’
arXiv preprint arXiv:1912.11519, 2019 (cit. on p. 101).

[122] Y. Liu, C. Xu and S.-C. Cheung, ‘Characterizing and detecting per-
formance bugs for smartphone applications,’ in Proceedings of the 36th
international conference on software engineering, 2014, pp. 1013–1024
(cit. on p. 105).

[123] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, ‘Automatic
identification of load testing problems,’ in 2008 IEEE International
Conference on Software Maintenance, IEEE, 2008, pp. 307–316 (cit. on
p. 105).

[124] F. Cohen, ‘Information system attacks: A preliminary classification
scheme,’ Computers & Security, vol. 16, no. 1, pp. 29–46, 1997 (cit. on
pp. 105, 108).

[125] R. C. Seacord and A. D. Householder, ‘A structured approach to clas-
sifying security vulnerabilities,’ CARNEGIE-MELLON UNIV PITT-
SBURGH PA SOFTWARE ENGINEERING INST, Tech. Rep., 2005
(cit. on p. 105).

[126] T. Karttunen, ‘Implementing soak testing for an access network solution,’
Ph.D. dissertation, HELSINKI UNIVERSITY OF TECHNOLOGY,
2009 (cit. on p. 105).

[127] J. Zhang, S.-C. Cheung and S. T. Chanson, ‘Stress testing of distributed
multimedia software systems,’ in Formal Methods for Protocol Engin-
eering and Distributed Systems, Springer, 1999, pp. 119–133 (cit. on
p. 105).

216 BIBLIOGRAPHY

[128] D. Cotroneo, R. Pietrantuono, L. Mariani and F. Pastore, ‘Investiga-
tion of failure causes in workload-driven reliability testing,’ in Fourth
international workshop on Software quality assurance: in conjunction
with the 6th ESEC/FSE joint meeting, 2007, pp. 78–85 (cit. on p. 105).

[129] A. Nistor, P.-C. Chang, C. Radoi and S. Lu, ‘Caramel: Detecting and
fixing performance problems that have non-intrusive fixes,’ in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, IEEE, vol. 1, 2015, pp. 902–912 (cit. on p. 107).

[130] J. P. Sandoval Alcocer, A. Bergel and M. T. Valente, ‘Learning from
source code history to identify performance failures,’ in Proceedings
of the 7th ACM/SPEC on International Conference on Performance
Engineering, 2016, pp. 37–48 (cit. on pp. 107–109).

[131] L. Jiang, Z. Su and E. Chiu, ‘Context-based detection of clone-related
bugs,’ in Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007, pp. 55–64 (cit. on pp. 107,
108).

[132] R. D. Banker, S. M. Datar and D. Zweig, ‘Software complexity and
maintainability,’ Age, vol. 11, no. 5.6, p. 3, 1989 (cit. on p. 107).

[133] T. Aslam, ‘A taxonomy of security faults in the unix operating system,’
Master’s thesis, Purdue University, vol. 199, no. 5, 1995 (cit. on p. 108).

[134] Y Levendel, ‘Defects and reliability analysis of large software systems:
Field experience,’ in 1989 The Nineteenth International Symposium on
Fault-Tolerant Computing. Digest of Papers, IEEE Computer Society,
1989, pp. 238–239 (cit. on p. 108).

[135] E. Razina and D. S. Janzen, ‘Effects of dependency injection on main-
tainability,’ in Proceedings of the 11th IASTED International Conference
on Software Engineering and Applications: Cambridge, MA, 2007, p. 7
(cit. on p. 108).

[136] A. Sawant, P. H. Bari and P. Chawan, ‘Software testing techniques and
strategies,’ 2012 (cit. on pp. 108, 109).

[137] Z. Yan, D. Guowei, G. Tao and Y. Jianyu, ‘Taxonomy of source code
security defects based on three-dimension-tree,’ in International Confer-
ence on Computer and Computing Technologies in Agriculture, Springer,
2013, pp. 232–241 (cit. on p. 109).

[138] M. Felderer, B. Marculescu, F. G. de Oliveira Neto, R. Feldt and R.
Torkar, ‘A testability analysis framework for non-functional properties,’
in 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), IEEE, 2018, pp. 54–58 (cit. on
p. 116).

[139] P. Morrison, K. Herzig, B. Murphy and L. Williams, ‘Challenges with
applying vulnerability prediction models,’ in Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, 2015, pp. 1–9
(cit. on p. 116).

BIBLIOGRAPHY 217

[140] K. Al-Sabbagh, M. Staron, R. Hebig and F. Gomes, ‘A classification
of code changes and test types dependencies for improving machine
learning based test selection,’ in Proceedings of the 17th Int. Conference
on Predictive Models and Data Analytics in Software Engineering, 2021,
pp. 40–49 (cit. on pp. 121, 123).

[141] O. Dahiya and K. Solanki, ‘A systematic literature study of regres-
sion test case prioritization approaches,’ Int. Journal of Engineering &
Technology, vol. 7, no. 4, pp. 2184–2191, 2018 (cit. on p. 122).

[142] J. Chi, Y. Qu, Q. Zheng et al., ‘Relation-based test case prioritization for
regression testing,’ Journal of Systems and Software, vol. 163, p. 110 539,
2020 (cit. on p. 122).

[143] F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl and E.
Enoiu, ‘Improving continuous integration with similarity-based test
case selection,’ in Proceedings of the 13th International Workshop on
Automation of Software Test, 2018, pp. 39–45 (cit. on p. 122).

[144] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono and S. Russo,
‘Learning-to-rank vs ranking-to-learn: Strategies for regression testing
in continuous integration,’ in Proceedings of the ACM/IEEE 42nd Int.
Conference on Software Engineering, 2020, pp. 1–12 (cit. on p. 122).

[145] A. Orso, N. Shi and M. J. Harrold, ‘Scaling regression testing to large
software systems,’ ACM SIGSOFT Software Engineering Notes, vol. 29,
no. 6, pp. 241–251, 2004 (cit. on p. 123).

[146] G. E. Batista, R. C. Prati and M. C. Monard, ‘A study of the behavior
of several methods for balancing machine learning training data,’ ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004 (cit. on
pp. 125, 146).

[147] P. S. Bayerl and K. I. Paul, ‘What determines inter-coder agreement
in manual annotations? a meta-analytic investigation,’ Computational
Linguistics, vol. 37, no. 4, pp. 699–725, 2011 (cit. on p. 128).

[148] A Esuli and F Sebastiani, ‘Proceedings of the 5th conference on language
resources and evaluation,’ 2006 (cit. on p. 128).

[149] M. Zolfagharinia, B. Adams and Y.-G. Guéhénuc, ‘Do not trust build
results at face value-an empirical study of 30 million cpan builds,’ in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), IEEE, 2017, pp. 312–322 (cit. on p. 137).

[150] M. Beller, G. Gousios and A. Zaidman, ‘Oops, my tests broke the build:
An analysis of travis ci builds with github,’ PeerJ Preprints, Tech. Rep.,
2016 (cit. on pp. 137, 139).

[151] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian and R. Bowdidge,
‘Programmers’ build errors: A case study (at google),’ in Proceedings
of the 36th International Conference on Software Engineering, 2014,
pp. 724–734 (cit. on p. 137).

218 BIBLIOGRAPHY

[152] F. Hassan and X. Wang, ‘Change-aware build prediction model for
stall avoidance in continuous integration,’ in 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE, 2017, pp. 157–162 (cit. on pp. 137, 139, 140).

[153] A. Ni and M. Li, ‘Cost-effective build outcome prediction using cascaded
classifiers,’ in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), IEEE, 2017, pp. 455–458 (cit. on pp. 139,
140).

[154] J. Xia, Y. Li and C. Wang, ‘An empirical study on the cross-project
predictability of continuous integration outcomes,’ in 2017 14th Web
Information Systems and Applications Conference (WISA), IEEE, 2017,
pp. 234–239 (cit. on p. 139).

[155] T. Rausch, W. Hummer, P. Leitner and S. Schulte, ‘An empirical analysis
of build failures in the continuous integration workflows of java-based
open-source software,’ in 2017 IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), IEEE, 2017, pp. 345–355
(cit. on p. 139).

[156] Y. Luo, Y. Zhao, W. Ma and L. Chen, ‘What are the factors impacting
build breakage?’ In 2017 14th Web Information Systems and Applications
Conference (WISA), IEEE, 2017, pp. 139–142 (cit. on p. 139).

[157] J. Yao and M. Shepperd, ‘Assessing software defection prediction per-
formance: Why using the matthews correlation coefficient matters,’ in
Proceedings of the Evaluation and Assessment in Software Engineering,
2020, pp. 120–129 (cit. on p. 144).

[158] M. Feurer and F. Hutter, ‘Hyperparameter optimization,’ in Automated
machine learning, Springer, Cham, 2019, pp. 3–33 (cit. on p. 145).

[159] M. Kuutila, M. Mäntylä, U. Farooq and M. Claes, ‘Time pressure in
software engineering: A systematic review,’ Information and Software
Technology, vol. 121, p. 106 257, 2020 (cit. on p. 155).

[160] N. Pritam, M. Khari, R. Kumar et al., ‘Assessment of code smell for
predicting class change proneness using machine learning,’ IEEE Access,
vol. 7, pp. 37 414–37 425, 2019 (cit. on p. 155).

[161] A. Hovsepyan, R. Scandariato, W. Joosen and J. Walden, ‘Software
vulnerability prediction using text analysis techniques,’ in Proceedings
of the 4th international workshop on Security measurements and metrics,
2012, pp. 7–10 (cit. on p. 155).

[162] K. Al-Sabbagh, M. Staron and R. Hebig, ‘Predicting build outcomes in
continuous integration using textual analysis of source code commits,’ in
Proceedings of the 18th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2022, pp. 42–51 (cit. on
pp. 155, 166).

BIBLIOGRAPHY 219

[163] J. Van Hulse, T. M. Khoshgoftaar, C. Seiffert and L. Zhao, ‘Noise cor-
rection using bayesian multiple imputation,’ in 2006 IEEE International
Conference on Information Reuse & Integration, IEEE, 2006, pp. 478–
483 (cit. on p. 156).

[164] T. M. Khoshgoftaar, N. Seliya and K. Gao, ‘Detecting noisy instances
with the rule-based classification model,’ Intelligent Data Analysis, vol. 9,
no. 4, pp. 347–364, 2005 (cit. on p. 156).

[165] D. R. Wilson and T. R. Martinez, ‘Reduction techniques for instance-
based learning algorithms,’ Machine learning, vol. 38, no. 3, pp. 257–286,
2000 (cit. on p. 158).

[166] S. Kim, H. Zhang, R. Wu and L. Gong, ‘Dealing with noise in defect pre-
diction,’ in 2011 33rd International Conference on Software Engineering
(ICSE), IEEE, 2011, pp. 481–490 (cit. on p. 159).

[167] G. Liebchen, B. Twala, M. Shepperd, M. Cartwright and M. Stephens,
‘Filtering, robust filtering, polishing: Techniques for addressing quality in
software data,’ in First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), IEEE, 2007, pp. 99–106
(cit. on pp. 159–161).

[168] S. Zhong, T. M. Khoshgoftaar and N. Seliya, ‘Analyzing software meas-
urement data with clustering techniques,’ IEEE Intelligent Systems,
vol. 19, no. 2, pp. 20–27, 2004 (cit. on pp. 159, 160).

[169] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse and A. Folleco, ‘An empir-
ical study of the classification performance of learners on imbalanced and
noisy software quality data,’ Information Sciences, vol. 259, pp. 571–595,
2014 (cit. on pp. 159, 160).

[170] C. Sadowski, E. Söderberg, L. Church, M. Sipko and A. Bacchelli,
‘Modern code review: A case study at google,’ in Proceedings of the 40th
International Conference on Software Engineering: Software Engineering
in Practice, 2018, pp. 181–190 (cit. on p. 161).

[171] D. Chicco and G. Jurman, ‘The advantages of the matthews correlation
coefficient (mcc) over f1 score and accuracy in binary classification
evaluation,’ BMC genomics, vol. 21, no. 1, pp. 1–13, 2020 (cit. on
p. 166).

[172] F. Huq, M. Hasan, M. A. P. Haque, S. Mahbub, A. Iqbal and T. Ahmed,
Review4Repair: Code Review Aided Automatic Program Repairing, ver-
sion 1.0, Jan. 2021. doi: 10.5281/zenodo.4445747. [Online]. Available:
https://doi.org/10.5281/zenodo.4445747 (cit. on p. 167).

[173] K. W. Al-Sabbagh, M. Staron and R. Hebig, ‘Improving test case
selection by handling class and attribute noise,’ Journal of Systems and
Software, vol. 183, p. 111 093, 2022 (cit. on pp. 168, 191).

[174] C Bentéjac, A Csörgo and G Mart́ınez-Muñoz, ‘A comparative analysis
of xgboost,’ ArXiv abs, 1911 (cit. on p. 171).

220 BIBLIOGRAPHY

[175] Y. Singh, P. K. Bhatia, A. Kaur and O. Sangwan, ‘Application of neural
networks in software engineering: A review,’ in Information Systems,
Technology and Management: Third International Conference, ICISTM
2009, Ghaziabad, India, March 12-13, 2009. Proceedings 3, Springer,
2009, pp. 128–137 (cit. on p. 171).

[176] N. E. Fenton and M. Neil, ‘A critique of software defect prediction
models,’ IEEE Transactions on software engineering, vol. 25, no. 5,
pp. 675–689, 1999 (cit. on p. 186).

[177] J. Mendoza, J. Mycroft, L. Milbury, N. Kahani and J. Jaskolka, ‘On the
effectiveness of data balancing techniques in the context of ml-based test
case prioritization,’ in Proceedings of the 18th International Conference
on Predictive Models and Data Analytics in Software Engineering, 2022,
pp. 72–81 (cit. on p. 190).

