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Abstract

Hate speech is a problem which puts its targets at risk of serious harm. It spreads fast and has a real
influence on the society because of the ubiquity of the internet and social media, and so various research
efforts have been put to find solutions to automatic hate speech detection. Despite major developments
in the field, challenges with data scarcity and characteristics often cause solutions reported in previous
research to overfit the datasets that were used to train and test them, which results in dramatic performance
losses and failures in generalization. This study addressed this issue, it tried to find a solution that would
mitigate overfitting effects originating from these issues and enhance language-based classifier with extra
user information concerning one’s social connections. It compared two single-source models – one based on
textual information, and the other based on information concerning one’s social connections and proposed
a joint decision engine that selects the model whose class assignment was more certain for a given instance.
Although the single-source models’ performance dropped drastically on test data, the joint decision engine
succeeded in reducing some of the issues related to overfitting, improving the overall performance. This
observation suggests that simple solutions might be efficient in reducing model overfit and paves the way
towards validating these findings.
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1 Introduction

Communication of today’s world is largely dependent on the internet which is nowadays becoming ubiqui-
tous and accessible for almost everyone in the western civilization. This information exchange tool allows
nearly all of its users, regardless of their origin and beliefs, to contribute to miscellaneous discussions and be
heard by others with almost no effort. The pace of information spread is staggering as through connections
between people, one message can reach thousands if not millions of users within a blink of an eye (Kovács
et al., 2021). This encourages internet users to freely express themselves on virtually any topic and publicly
convey their attitude towards various subjects, either positive or negative (Kovács et al., 2021; MacAvaney
et al., 2019). Additionally, the internet provides a certain degree of anonymity which is desirable by its
users not only to hinder linking an online account to who they really are but also to create fake personalities
so that various online groups with restricted access can be reached by the user (Kang et al., 2013). All these
factors: ubiquity, freedom of speech and anonymity make the internet an attractive place to get involved
into a wide range of topics with a low risk of potential consequences.

However, there is a major flipside of these features of online platforms. Since the internet allows users to
be anonymous, they feel like no one can draw any consequences from what they post, which leads to an
abuse of the freedom of speech (MacAvaney et al., 2019). This in turn leads to a spread of hate speech
which, although its definition is vague and varies across researchers and parties, can be roughly described
as a speech act that is intentionally harmful towards a certain societal group (Sellars, 2016). This offensive
content is particularly used by extremists and appears frequently across discussions touching on things one
cannot control such as race or religion and controversial topics like abortion or political preferences; this
is because extremists tend to strongly defend their claims, oftentimes using abusive and hateful language
against their opponents (Ribeiro et al., 2020). Online platforms, such as YouTube, can become a place
where extremism against given social groups or issues is rising ad spreading (Ribeiro et al., 2020).

Extremists’ claims can persuade people whose opinions on touchy topics are not as radical, leading to the
spread of extreme opinions (Ramos et al., 2015; Ribeiro et al., 2020). According to Ribeiro et al. (2020),
this phenomenon of extremism spread is particularly dangerous as the internet is becoming a primary in-
formation source, leading to possible misinformation and hatred spread outside the online world. In the
most extreme scenario, over time, it can eventually bring social movements and ideologies based on ex-
clusion of certain groups such as white supremacy back to life (Ribeiro et al., 2020). Moreover, it can
influence the outcome of various legal and democratic processes (Arango et al., 2019). Therefore, since use
of hate speech can characterize extremists – defenders of values whose magnitude on the opinion spectrum
markedly outlies from the population’s general view who are prone to promote violence against their oppo-
nents (Govers et al., 2023) – in order to alleviate the phenomenon of extremism spread, it is necessary to
identify haters, i.e. those that actively use offensive language against others, on the internet.

Identifying hate speech – one of key indicators of dangerous extreme movements – and its authors is not
a straightforward task. Manual labeling of hate speech is out of question due to the abundance of data on
the internet uploaded daily (Arango et al., 2019; Badjatiya et al., 2017) – there is no way human annota-
tors can keep up with the sheer volume of content that needs to be verified for the presence of hate, and
so automatization is needed. However, automatization also faces challenges, mostly linked to the lack of
consensus as to what hate speech actually is (Arango et al., 2019; MacAvaney et al., 2019). Hate speech is
often a subjective matter; while some content might be perceived as hateful by one individual, some other
individual might not consider the same content as such (Sellars, 2016). This does not allow defining its
consistent definition across different parties and researchers, which causes problems with data annotation,
an absolutely necessary step in introducing automatization (Founta et al., 2018; Kovács et al., 2021).

To solve these problems, researches use language models trained on datasets that are a result of merging
datasets from previous researches or that were annotated by crowdsourcing, i.e. multiple people deciding
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on the eventual label to reduce the subjectivity (Founta et al., 2018). However, there is yet another issue,
probably the most relevant one when it comes to language-based hate speech detection. Entries on social
media are usually short, as many platforms (e.g. Twitter) where hate speech is noticeably spread have
put constraints on the posts’ length (Tsourougianni & Ampazis, 2013). Additionally, users tend to use
abbreviations that are not understood by language models to overcome this limitation. This in turn, as
Tsourougianni & Ampazis (2013) emphasize, can cause language-based classifiers to produce unreliable
results since data available in each instance are limited. Considering that some users post relatively short
texts, even if the language-based hate speech classification model is well-built, this problem imposes the
necessity to use additional user data to determine whether or not someone is a hater.

One way to classify someone as a hater is analyzing their connections with other users, an approach inves-
tigated by Mishra et al. (2018). As Mishra et al. (2018) explain, it is possible to profile a user and assess
whether or not they produce abusive content by analyzing their social graph on the social network and check
who they follow. This is because of the phenomenon of homophily, which states that people tend to form
clusters with those who share similar beliefs and lead similar lifestyles, one is more likely to be a part of a
certain group if they behave like its members (McPherson et al., 2001; Mishra et al., 2018). The impact of
this phenomenon is visible not only among real life interactions like children and their decisions regarding
who to play with (McPherson et al., 2001) but also on social platforms like Twitter (Mishra et al., 2018).
This implies that haters do form clusters and groups since their behavior is similar, and that information on
cluster membership might constitute an additional point of reference aside from the output of a language-
based classifier. However, building a solid social graph often requires additional information on the users’
engagement in distinct groups as one might not be involved in all groups uniformly (Del Tredici et al., 2019).
These data, as MacAvaney et al. (2019) highlight, is not always accessible and its usage might be impossible
for external researchers working on new solutions.

The question is whether it is possible to develop a system that could exploit data on a certain user available
to all other users, such as post contents and followers lists, to alleviate issues that contemporary language
models face when it comes to overfitting which has been proven to be problematic with the state-of-art
solutions (Arango et al., 2019). Inspired by the work of Del Tredici et al. (2019) and findings of Arango et al.
(2019), the research described in this thesis addresses the problem and verifies if the decision of a language
model as to whether or not someone is a hater can be corrected using the decision of a model analyzing
one’s connections with other users, especially when the prediction of the language-based classifier makes
predictions with a greater degree of uncertainty. It also verifies which classifier: language-based or social
connection-based performs better. Therefore, this research instantiates the following research questions:

RQ1: Are there any differences in performance between the single-source models?

RQ2: Is it possible to combine those twomodels into one decision engine to improve the setup performance?

RQ1 imposes the following hypotheses to check:

• H0: there are no significant differences in the performance of both models.

• HA: there are significant differences in the performance of the models checked.

In the case of RQ2, the hypotheses are as follows:

• H0: the decision engine proposed does not produce better results than the single-source models on
their own.

• HA: the decision engine improves the metrics of the setup.
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The next section describes in-depth previous research touching on related matters and provides additional
background information that further motivates this research. Further sections describe in-detail the method-
ological approach, justify the choices made, and interpret the results of this experiment. Although the results
of this experiment suggest that the decision engine is able to catch a smaller fraction of hate speech than the
language model, such a solution improves the general performance of the setup in terms of the degree of
randomness and reduces the false positive (FP) rate. This might be beneficial in terms of creating a setup
that reduces the effects of overfitting which was commonly encountered in previous researches (Arango
et al., 2019) and which was unwillingly observed in this project as well.
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2 Related Work

2.1 Hate Speech: Definition and Spreading Mechanism

As aforementioned, there is no consensus when it comes to defining what hate speech actually is. This
mostly has to do with the subjectivity of the matter, which makes the definition of this term vary from across
researchers and organizations (Sellars, 2016). MacAvaney et al. (2019) gathered multiple definitions of hate
speech to establish their common points and highlight differences between them. The key characteristic all
of them were consistent about was that hate speech is an attack on the basis of some traits possessed by the
target. Sellars (2016) further specified that the feature distinguishing a certain group or individual is usually
something whose beholder cannot control, such as ethnicity, religion or sexual orientation, which makes
any act of such an attack painful and diminishing for the target recipient. Some differences across various
attempts to explain what this phenomenon is include the addressee – while some variants say hate speech
is targeted towards an individual, others say it is aimed against a whole group of people (MacAvaney et al.,
2019; Sellars, 2016).

These acts of verbal abuse aimed at certain people, groups or organizations are generally characterized by an
extremely abusive and violent nature of their language (Sellars, 2016). One can thus infer that hate speech
must thus be extremely negative in terms of its sentiment. However, this does not necessarily have to be
the case and such an approach to defining hate speech is not accurate. This is because hate speech can in
certain cases take form of an appraisal and support of some group or organization that promotes violent
behaviors against some group/individual of interest (MacAvaney et al., 2019). Such cases would therefore
be mistakenly classified as non-hateful. Additionally, Matalon et al. (2021) observed that some messages
posted and shared in social media can get their sentiment inverted when put in a different context. This
can potentially lead to indirect hate speech that interprets a positive message in a negative way; as a result,
the original message can be accidentally misclassified as hate speech. Therefore, although hate speech is
in most cases associated with abusive language that promotes violence (Sellars, 2016), there are situations
where its sentiment might contradict this claim, and so identifying hate speech sheerly via sentiment analysis
is insufficient.

Gathering all the information, hate speech can be said to be an attack whose goal is to hurt the recipient in
as many aspects as possible, sometimes even prompting physical acts against the target. The target usually is
chosen on the basis of some characteristics they were born with and that cannot be changed such as ethnicity,
religion or sexual orientation, which makes hate speech closely related to extreme alt-right movements – an
ensemble of strong and controversial opinions that claim supremacy of people who belong to a certain race
and adhere to values considered traditional in a given society (Ribeiro et al., 2020; Sellars, 2016). As Sellars
(2016) notices, hate speech acts often promote violence, which further highlights their dangerous nature.

By saying that violence is the only way of dealing with the targeted group/individual, haters can lead to
actually committing violent acts in the real world by themselves or their adherents and marginalizing targets
in the society (Ribeiro et al., 2020; Sellars, 2016). It might even be the case that, as Arango et al. (2019)
mention, hate speech can spread to such a degree that it influences the external world of politics, which
can harmfully impact targeted groups legally and politically. These characteristics of hate speech make
it related to two closely related terms – extremism and radicalization – that are centered around similar
concepts (Govers et al., 2023; Ribeiro et al., 2020). While extremism stands for holding opinion whose
strength is outstandingly large compared with the population, radicalization is a process during which one’s
viewpoint becomes more and more extreme (Govers et al., 2023). Given the relatedness of hate speech to
these two key notions, it becomes apparent that it might have detrimental effects on the society.

Hate speech on online platforms spreads fast, and there are several phenomena underlying its staggering
pace, mostly concerned with the characteristics of social networks. Since the internet allows joining virtually
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any social circle, one’s social network can grow substantially, as people become connected to more and
more individuals which allows any opinion to be heard by a greater social circle (Ribeiro et al., 2020). This
convenience of information sharing internet platforms offer, connected with the small world phenomenon
described by Watts (1999), allows even faster information spread than it would be the case without internet
as more each person, thanks to online platforms, is connected to more clusters. Even without the internet,
the information would spread fast as according to Watts (1999), any person is connected to every member
of the whole society through just a few intermediate connections, and the ease of opinion sharing offered by
the World Wide Web seems to catalyze the spread due to a larger number of connections across individuals
(Ribeiro et al., 2020).

The spread of hate speech, just like extremism and radicalization, can also be caused by the recommendation
algorithms used by social platforms to make the user access content tailored to their points of interest.
Ribeiro et al. (2020) explained this phenomenon through analyzing how YouTube users switch to racist and
hateful alt-right content over time. They concluded that one of the key reasons why users of this platform
are becoming more and more extreme is in the dynamics of users’ activity. People holding extreme views
tend to be persuasive and they strongly defend their claims, which can be visible through one’s vivid activity
caused by the need of substantiating their opinions and beliefs (Ramos et al., 2015; Ribeiro et al., 2020). As
Ribeiro et al. (2020) noticed, this causes the extreme and dangerous content to exhibit an extremely high
activity of users watching it, which is reflected in the ratio of comments per view. This in turn can make
the algorithms decide that it is a good-quality content because it attracts a lot of attention, which results in
recommending it to users whose preferences are also conservative but not as hateful and extreme as those
presented in that content (Ribeiro et al., 2020). And since among those extreme communities there is a
feeling of reassurance that the claims supported by these groups are the only right ones, users gradually get
fed with more and more extreme content, and are more and more strongly convinced that they are right
(Ribeiro et al., 2020).

Ramos et al. (2015) pointed out yet another factor that contributes to the spread of extremism which, as
Govers et al. (2023) mention, can be to a certain degree distinguished by characteristics comparable to
those of hate speech, many of which are associated with expressing hostility towards the target group whose
characteristics are opposed to the hater’s group. After analyzing the ratio of extreme opinions on various
matters among numerous communities across several years, they found out that the increase in the share of
extreme opinion beholders is linked to some triggering events like an economic crisis which makes more
people dissatisfied with the status quo of their lives. However, this is not the only necessary factor as it is
also required that the population contain at least some individuals who already hold extreme opinion on the
matter of interest and whose claims become convincing at the time the touchy issue is raised by the key
event (Govers et al., 2023; Ramos et al., 2015). Therefore, one can infer that hate speech becomes more
apparent and spreads more easily in similar circumstances.

2.2 Goals Behind Labeling Hate Speech

All of the characteristics of hate speech described above along with the ease with which it spreads present
how it threatens the safety of the society, especially when it comes to thosemembers of it who aremore prone
to be the targets of hate speech because of their personal characteristics. They highlight why identifying
hate speech is necessary and show potential consequences of not doing so, and they allow listing some key
goals of such a classification. The primary goal behind identifying and labeling hate speech, as well as its
authors, is to reduce the pace with which it spreads (MacAvaney et al., 2019; Wich et al., 2021). Since this
phenomenon can spread through recommendations on social media, this goal can be achieved via refraining
identified hate speech from appearing in user recommendations (Badjatiya et al., 2017; Ribeiro et al., 2020).
This way, users would not be recommended sources and authors that are labeled as hateful, which should
slow down the pace with which hate speech spreads on the internet as access to such content would be
hindered.
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Humans, however, are not the only ones that are put at risk of being influenced or targeted by hate speech.
As Badjatiya et al. (2017) mention, hate speech can also affect contemporary language models that are
trained on content scraped from various social media sites. This is particularly concerning when taking
various kinds of conversational agents into account where training data quality matters. An example of a
considerable influence of hate speech is described by van Rijmenam & Schweitzer (2018) who brought a
chatbot developed by Microsoft corporation for Twitter that was supposed to tailor its behavior to the users
it interacted with. It was taken down just a few hours later because as it was exposed to hate speech from
the side of its users, it started producing hateful and racist content. Through this example, van Rijmenam
& Schweitzer (2018) highlighted the importance of training algorithms on unbiased data. Filtering hate
speech before passing language content as training data to conversational agents and other language-based
models has a potential of making these algorithms less biased, and this is another reason why the problem
of hate speech identification needs to be tackled efficiently (Badjatiya et al., 2017).

Additionally, it is pivotal that this hate speech detection process be automated. The main motivation behind
this is the immense volume of data that are uploaded to the internet daily; skimming through these resources
in the search of hate speech is physically unfeasible using human labor force (Arango et al., 2019; Kovács
et al., 2021). This need is also strengthened by the aforementioned fact that due to no consensus across
researchers when it comes to defining hate speech, manual annotation is prone to subjectivity (Founta et al.,
2018). Such a subjectivity can result in failing to capture some hate speech instances that one did not
consider hurtful due to personal point of view. Usually, multiple annotators are employed to avoid this
human bias through voting on what is the most appropriate label but this requires more human force, not to
mention time resources (Founta et al., 2018; Kovács et al., 2021). Automatized techniques overcome these
challenges as not only are they able to process the immensity of data uploaded daily within reasonable time
but also they are less likely to be subjective as they their main goal is to find characteristics of data that are
generalizable to all instances (Goodfellow et al., 2016; Kovács et al., 2021). Although automatization still
requires some manual work with training dataset preparation, it eventually makes the task of hate speech
classification scalable and doable.

2.3 Contemporary NLP-Based Approaches to Hate Speech Classification

One of the simplest approaches to automatizing hate speech detection relies on keywords related to hateful
content such as curse words related to one’s personal characteristics (Pereira-Kohatsu et al., 2019; MacA-
vaney et al., 2019). Although solutions based on this kind of word matching provide an easy to understand
decision engine, they have several drawbacks that make them unpreferred in contemporary hate detection
systems. First of all, keyword-based algorithms fail to catch those instances of hate speech where none of
the keywords are used (MacAvaney et al., 2019). Additionally, since the selection of keywords is performed
by humans, this approach brings drawbacks related to keyword choice as selecting only some certain words
expressing hatred can restrict the whole system to be sensitive to only a fraction of all groups affected by hate
speech (MacAvaney et al., 2019). For example, selecting words related solely to one’s ethnicity will result
in algorithm’s inability to detect hate speech acts aimed at LGBT people. Manual selection of keywords
also disregards the fact that words can change meaning depending on the context they are used in which
can lead to many false positives generated by the system (Pereira-Kohatsu et al., 2019; MacAvaney et al.,
2019). Therefore, more up-to-date solutions are not entirely based on keyword matching; instead, more
sophisticated techniques are used.

A vast part of currently used solutions to automatizing hate speech detection seems to be based on various
techniques that put Machine Learning (ML) tools in practice. Badjatiya et al. (2017) claim these techniques
overcome human bias in determining what is a relevant feature of hate speech and what is not. They can
capture different forms hate speech can take without the need of human intervention in the process – all
that suffices is data and the classifier determines what causes a given instance to be considered hateful
automatically. Such solutions resolve the issues mentioned by MacAvaney et al. (2019) with limitations
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of using keywords and manual annotation. Pereira-Kohatsu et al. (2019) provided a thorough overview of
studies on identifying hate speech using ML techniques that focus primarily on language characteristics,
showing that hardly are other approaches to this problem used nowadays. They also showed the diversity of
algorithms that can be applied in handling the task of detecting hate on the internet.

Some of the most popular ML algorithms used in hate speech detection include Support Vector Machines
(SVMs) that are capable of distinguishing data with non-linear boundaries between two classes (Goodfel-
low et al., 2016; Pereira-Kohatsu et al., 2019). Other widely used techniques include neural networks and
decision trees-based approaches, and some of them constitute a hybrid of these two approaches (Badjatiya
et al., 2017). With their flexibility, neural networks overcome the problems faced by many classic MLmeth-
ods with data non-linearity that is particularly common in language (Badjatiya et al., 2017). In addition to
that, through backpropagation, they can improve themselves, which makes them better than classic Machine
Learning algorithms (Goodfellow et al., 2016). In natural language data preprocessing, neural networks can
also be used to extract abstract linguistic features that can than be encoded in embeddings and used to train
task-specific classifiers (Jurafsky & Martin, 2021).

Speaking of embeddings – numerical vectors representing a given concept or a document that contain se-
mantical information (Jurafsky & Martin, 2021) – there are also multiple ways they can be generated. Any
textual document can be represented using such a vector, and the characteristics encoded within this kind of
numerical representation can later be used to categorize text and speech, treating vector values as features
or dimensions (Jurafsky & Martin, 2021). Basic methods involve computation of TF-IDF values or even
simple frequency rates for words that appear in the data and putting them together into a vector (Badjatiya
et al., 2017; Jurafsky & Martin, 2021). While the former technique usually outperforms the latter as it can
assess the importance of a given term in the context it is found in, their major drawback is that vectors they
produce can be large and sparse, which is computationally inefficient (Jurafsky &Martin, 2021). Therefore,
more sophisticated techniques of embedding generation are used, and they are proven to cause hate speech
classifiers perform better (Badjatiya et al., 2017). These include such techniques as FastText proposed by
Bojanowski et al. (2017), which is described in-detail in Section 3. Combined with contemporary classifiers,
such embeddings can help achieve satisfactory results (Badjatiya et al., 2017).

Previous studies have reported achieving good and robust performance. According to the overview provided
by Pereira-Kohatsu et al. (2019), in some hate speech-related tasks, models like SVMs can reportedly attain
impressive performancemetrics on test sets, with precision and recall scoring up to 0.97. Another example is
the model developed by Badjatiya et al. (2017) whose precision and recall both equal to 0.93; their proposed
architecture was a decision tree-based model that used gradient boosting, a technique closely related to
backpropagation that reduces the model’s error over time through operations that aim to reduce the value of
the loss function (Goodfellow et al., 2016; Ye et al., 2009). This model, along with randomly trained word
embeddings, outperformed other algorithms on the dataset used and this achievement was highlighted in
multiple other researches (Pereira-Kohatsu et al., 2019). However, it turns out that the models proposed in
previous studies might not be as generalizable and robust as they seem to be on the basis of metrics reported,
especially when new data are introduced, which causes performance metrics such as precision and recall to
go down by even thirty percent (Arango et al., 2019).

2.4 Challenges of Language-Based Approaches

Despite impressive developments in the field, all contemporary solutions suffer from similar weaknesses,
many of which are related to data quality, quantity, diversity and availability. Arango et al. (2019) highlight
the issue that was underestimated by many researchers, namely the problems that arise when the classifier
is trained on a dataset with various limitations. This is generally concerned with poor generalizability of the
models and difficulties with applying them to new data as their training is usually restricted to some specific
structure of the data imposed by its source (Arango et al., 2019). For example, user entries on Twitter
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have a limitation on their length set, which restrains the models from generalizing onto a broader linguistic
context (Tsourougianni & Ampazis, 2013). To provide a further justification for this claim, Arango et al.
(2019) trained multiple models trained by previous researches, including Badjatiya et al. (2017), on datasets
that differed from those used in the original studies to evaluate those classifiers. It turned out that none of
the models tested, even the apparently sound model built by Badjatiya et al. (2017), made good predictions
on unseen data instances as their metrics dropped substantially compared with the results presented in the
original papers. This suggests that the problem of overfitting is common across models that primarily rely
on analyzing textual content to make predictions on hate speech.

Data scarcity and problems with their quality are partially the reason why models overfit, i.e. perform
poorly in classifying unseen instances. Founta et al. (2018) touched on the latter problem and state that
apart from the lack of agreement across researchers when it comes to defining hate speech is a problem
with consistency when it comes to labeling data. Not only is hate speech definition a subjective matter
but also some labels are used interchangeably: for example, racist is often confused with hateful (Founta
et al., 2018). Additionally, given that multiple researchers (e.g. Founta et al. (2018), Pereira-Kohatsu et al.
(2019), Kovács et al. (2021)) mentioned that many algorithms, including those trained by themselves, are
built on commonly used datasets that contain just a few thousand entries, the problem of generalization
onto all possible hate speech scenarios becomes apparent. To make matters worse, it can be the case that
multiple entries in the dataset originate from merely a few users, which further downgrades the ability of
the models to generalize on new data because language content coming from one user is consistent in style
and target (Arango et al., 2019). Combined with the fact that datasets based on social media channels like
Twitter where data quality is questionable due to considerable length constraints (Tsourougianni &Ampazis,
2013), all these issues contribute to model overfitting and unsatisfactory results.

Arango et al. (2019) specified that even if data are enriched with additional instances, particularly those
labeled as hateful due to their general scarcity, the issues with overfitting are alleviated but not resolved.
The problem of data imbalance is not helpful regarding this matter – a small ratio of hate speech to non-
hate speech instances causes the models to not generalize well on data as there are not enough positives
(i.e. hate speech labels) for models to learn characteristics of hatred in text (Kovács et al., 2021). All of
this suggests that pure text data might be insufficient in correctly classifying hate speech, and that more
than just linguistic content is needed, particularly when data quality is questionable due to their length and
amount (Arango et al., 2019; Del Tredici et al., 2019; Mishra et al., 2018). This imposes the necessity to
explore additional information on users to determine whether or not they are haters with a greater degree
of certainty.

2.5 Solution: Extra User Data

Mishra et al. (2018) saw room for improvement in classifying abusive language through applying princi-
ples of homophily. According to McPherson et al. (2001), homophily is a term referring to a phenomenon
of people forming groups primarily with people who cherish similar values and have mutual points of in-
terests. The bases of distinctions between groups are broad, ranging from the origin and socioeconomic
background to political preferences (McPherson et al., 2001). Such groups are therefore uniform, which
makes people not matching their characteristics rarely constitute their part (McPherson et al., 2001). As
evidence shows, people form clusters according to this principle not only in the physical world, but also
on social media platforms, which was observed by Zook (2012) who noticed that haters commenting on
the U.S. presidential elections of 2012 were connected to each other rather than distributed evenly across
the society. Additionally, as Dobnik et al. (2022) mentioned, people interacting with each other seem to
use similar language style through semantic alignment, and so it might be that people using similar forms
of hate speech are more likely to interact. Mishra et al. (2018) used this knowledge to build a model that
apart from analyzing the one’s language, analyzed also one’s neighborhood in the network to compute an
embedding representing the given user. Their results showed that information on social relations with other
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users can indeed help in identifying authors of Tweets whose nature is abusive.

Using information on social connections also provides additional insights on the situation context. According
to Dobnik et al. (2022), it is often the case that even whole phrases might change their meaning according
to the context of a given situation. Since social connections of a given person more or less reflect the world
that person is surrounded with (Mishra et al., 2018), information on them can be used to define the most
probable context of a given utterance. They can be compared to the observations of the real worldmentioned
by Dobnik et al. (2022) as they help in contextualization. This is because social connections can explicitly
present which social circles one is active in, reducing the number of possible contexts, they can be compared
to selecting domains associated with a given person.

The idea of using social connections to better classify users into several groups is not new. Tsourougianni &
Ampazis (2013) analyzed social connections between users to tailor follow recommendations to the struc-
ture of one’s social graph. Although the goal of the task tackled by Tsourougianni & Ampazis (2013) is
different from detecting haters and hateful content they produce, the principle stays the same: users with
similar attitudes stay together. This is reflected in who follows whom as connections on social media do not
necessarily represent actual friendships; apart from that, they can also show what the given user is interested
in (Tsourougianni & Ampazis, 2013). Given this fact and observations made by Zook (2012) on the way
haters form clusters on the internet, this implies that it is possible to identify such users using information
on their connections. This was confirmed by Wich et al. (2021) who conducted an experiment using in-
formation on social connections aside from linguistic content produced by users. They analyzed if the fact
that a user follows some accounts annotated as hateful might be useful information in hate speech detection
task, and they managed to build a model that achieved satisfactory performance on a custom dataset.

However, hardly ever are people members of only one social circle, they usually contribute to multiple
groups at once to various degree. According to Del Tredici et al. (2019), this poses a challenge for social
connection-based approaches as it is never the case that people treat all groups evenly; rather than that,
they contribute to some of them to a greater extent than to others. This fact is often omitted in approaches
focused on social connections, and so Del Tredici et al. (2019) focused on taking that factor into account. In
their experiment, they computed embeddings that represented social relations of a given person on the basis
of the importance of connections between the users. The importance of such connections can be determined
by analyzing one’s behavior through retweeting and following other users on the platform (Del Tredici et al.,
2019). The work of Del Tredici et al. (2019) showed that an approach that merges information on one’s
language in their posts and that on their social connections can bring a substantial improvement in user
classification task, including hate speech classification.

However, there is a major drawback when it comes to the feasibility and reproducibility of the approach
to hate speech detection described by Del Tredici et al. (2019) that has to do with data accessibility. Data
regarding the user’s activity are often inaccessible as most datasets contain only direct links to social media
posts or a single post per user, as it is the case with the dataset proposed by Founta et al. (2018), which does
not allow mapping user’s network characteristics to so fine a degree like previous research (e.g. Del Tredici
et al. (2019), MacAvaney et al. (2019)). Data accessibility was also the problem in this thesis project (see
Section 3 for more details) and so the question is how accurate a model that is trained on basic information
about the post’s author such as the language they use and the list of people they follow on the platform can
be. Another question is whether or not it is possible to correctly identify haters when language information
is impoverished or even missing; given the nature of the homophily phenomenon (McPherson et al., 2001),
it is certain that an analysis of one’s social connections might provide some additional information on the
user. Del Tredici et al. (2019) investigated how accurate the language model is when social connection
information is missing but they did not analyze the social connection model’s performance on its own.

The research presented in this thesis addresses these two issues. First, it analyzes whether a simple model
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that uses nothing but basic information on who follows whom can distinguish haters from non-haters. Since
models based on one’s language properties are the primary focus in the field of hate speech identification
(Mishra et al., 2018), and since they suffer from problems with data quality and quantity (Kovács et al.,
2021; Tsourougianni & Ampazis, 2013), another thing this study checks is whether or not it is possible to
correct the prediction of the language model using the prediction of the social connection-based classifier,
particularly in situations where the language-based classifier’s decision is close to the boundary separating the
two classes or where the size of the language data available is small. To verify whether or not such a solution
would bring any benefit to the hate speech classification setup, this research is based on an experiment
that compares two single-source models: language-based and social connection-based, and then puts them
together into one joint decision engine to see if one can improve the performance of the other. The following
sections describe how this task was approached and the results of the experiment conducted.
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3 Methods

Data preprocessing and model building were performed using a number of scripts. They are available under
the following link: https://github.com/milanstanisic/MLT-Thesis-LT2215

3.1 Dataset and Data Extraction

Considering the aforementioned drawbacks of contemporary hate speech classifiers linked to problems with
data annotation and given that the aim of this experiment was to construct a model that classifies something
as either hate speech or not, it was necessary to find a dataset whose labels matched those needed for the
conduction of the study and were defined in a clear and concise way. Eventually, as in the case of the
research carried out by Del Tredici et al. (2019), the dataset prepared by Founta et al. (2018) was selected.
It is a dataset designated for hate speech-related tasks storing IDs of several thousands of tweets – short
entries from the Twitter platform that usually express the author’s attitude towards a certain issue (Pereira-
Kohatsu et al., 2019) – each of which is labeled with one of four tags: normal, abusive, hateful or spam
(Del Tredici et al., 2019; Founta et al., 2018). There were several reasons substantiating this choice, they
key one was related to the way the dataset was labeled. As Founta et al. (2018) described, their goal was to
create a publicly available dataset whose labels were consistent in what they actually describe and unbiased
by human annotators, and so they used crowdsourcing to determine for each tweet which label was selected
the most frequently. This way, they reduced bias that could have occurred in labeling should only one
annotator label the given data instance and ensured that the quality of annotations was sound.

Following the data selection process of Del Tredici et al. (2019), tweets whose labels were other than hateful
or normal were removed from the initial dataset. This was done to tailor the data to the exact goal of the
research and to avoid mixing closely related terms (e.g. abusive language and hate speech are not the
same) which, as Founta et al. (2018) stated, was commonly encountered among work of their predecessors.
Instances with missing data were also removed from the dataset. This resulted in obtaining a dataset that
contained a total of 33,422 tweets, 1,947 (5.83%) of which were labeled as hate speech. Compared with
other researches (see Pereira-Kohatsu et al. (2019) for more details), this number of tweets seemed sufficient
to train a language-based classifier.

In the next step, data were extracted from raw tweet IDs so that all information that was needed for the
research – username, tweet contents, and the lists of people followed by the user – was gathered in one
place. Most of these data are publicly available for any Twitter user, and to access them, a Twitter account
was created specifically for the purpose of data crawling. Data were collected in accordance with Twitter’s
Terms of Service available under the link https://twitter.com/en/tos which allowed use of
users’ data by other individuals, and the preprocessing of data was conducted using a series of algorithms
to minimize direct human interaction with users’ information, resulting in irreversibly encoding all data,
including usernames (see Section 3.2 for details). Additionally, data collection process was conducted in
accordance with GDPR guidelines concerning personal data use for research purposes. To further protect
the privacy of users whose tweets were contained in the original dataset, neither names nor tweet examples
are displayed in this paper. Original, unencoded data were permanently destroyed once the research was
concluded.

Due to problems encountered with accessing tools available via Twitter API, alternative methods were used.
Data were crawled using two Python extensions that were publicly available on GitHub under a GNU license
and a MIT license. The first of the extensions – snscrape – was developed by JustAnotherArchivist (2023)
and served the purpose of collecting basic information on each tweet in the dataset, namely its textual
contents and its author. The other extension used was Scweet (Jeddi, 2022) and its source code was used
to extract names of users followed by each author in the dataset. Source codes of both extensions were
modified to satisfy local system requirements and the way data were organized during the research process.
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However, due to the slow pace of the latter extension and the fact that for some users data concerning their
following lists were not accessible, information on lists of followed people and channels was available for
only 399 users. This was a major limitation in this research but nevertheless, it allowed a small-scale analysis
of whether or not the solution proposed in this paper works for analyzing a small subset of users and whether
or not it could be scalable for larger datasets.

3.2 Preprocessing and Cleansing

To transform raw and scraped contents into a machine-readable form, it was necessary to undertake further
steps with regards to data preparation. Using NLTK, a Python extension developed by Bird et al. (2009)
for miscellaneous Natural Language Processing tasks, the first step involved encoding raw text from each
tweet in the dataset so that it could be fed as a set of features to the model. To extract and quantify infor-
mation contained within each tweet, a Bag-of-Words approach was used; such approaches assess semantic
information on the basis of words that are contained in the linguistic production at hand, disregarding their
order (Jurafsky & Martin, 2021). This way of dealing with hate speech classification and detection has
already been used in the field (Kovács et al., 2021). To do this, raw tweets were first tokenized and then
lemmatized – this process ensured that no word is deemed as multiple independent words due to various
inflectional forms it can take in both written and spoken language (Jurafsky & Martin, 2021). This proce-
dure transformed each tweet into a list of lemmatized words, which made these data ready for the next step
of preprocessing.

The key stage of data preparation involved transforming tweets and their constituent words into word and
document embeddings that could be read by models as features (Jurafsky & Martin, 2021). Since there
are multiple ways such embeddings could be generated (Badjatiya et al., 2017; Jurafsky & Martin, 2021),
it was necessary to decide which of them would be the most suitable. As Badjatiya et al. (2017) report,
classifiers that use embeddings generated through Machine Learning and Deep Learning outperform those
generated in amanual way, and so the focus was put onMachine Learning-basedmethods of computing such
embeddings for eachword. Eventually, FastText embeddings, originally defined by Bojanowski et al. (2017),
were used in this research. This choice was motivated by the fact that such embeddings are resistant to the
problem of OOV (Out-Of-Vocabulary) words that could appear in the test set as each word is represented
by a sum of its n-gram vectors, which allows computing an embedding even if the word did not originally
appear in the training set (Bojanowski et al., 2017). This was a crucial matter in this research since tweets
and other kinds of content on social media often contain slang words and abbreviations that are not present
in regular corpora (Tsourougianni & Ampazis, 2013). Additionally, FastText embeddings, contrarily to
frequency-based embeddings or TF-IDF vectors, are not sparse, which makes computations more efficient
(Bojanowski et al., 2017; Jurafsky & Martin, 2021).

Although it is possible to download pre-trained FastText embeddings that are publicly available, this ap-
proach was not selected in this research. Instead, custom word embeddings based on the entirety of data
preprocessed in earlier steps were generated during the next preparation stage. This was because the pre-
trained embeddings that were accessible online were based corpora formed from Wikipedia data whose
language characteristics are markedly different from those of data typically encountered in social media
(Jurafsky & Martin, 2021). Training embeddings on the data gathered by Founta et al. (2018) allowed
them to reflect true word interdependencies encountered on online communication channels, and allowed
encoding slang words and abbreviations that would possibly not appear among the pre-trained embeddings.
Before training embeddings, all punctuation marks and link fragments that resided after tokenization and
lemmatization procedures were removed to further cleanse the data from irrelevant elements. To save com-
putational resources, the length of each word embedding was fixed at 50. Then, to capture general semantics
of the whole linguistic production, each tweet was represented as an average embedding of representations
of all words that were found in it. Embeddings generated this way were then used as feature vectors for the
language-based classifier.
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A slightly different approach was taken when data concerning the lists of accounts followed by the given
user were preprocessed. In accordance with the homophily principle defined by McPherson et al. (2001),
it was inferred that haters would likely be following similar, if not the same, accounts. However, due to
the abundance of users of social media, checking these connections across all users would quickly become
intractable. Because of that, it was necessary to select a suitable subset of accounts that were followed by a
considerable part of the users in the dataset and check if there were any patterns through training a classifier.
An algorithm was used to select the most popular accounts. First, it gathered all accounts that appeared in
users’ following lists, and then for each account, it counted how many users follow it. The next step involved
getting rid of less popular accounts by cutting off all those whose number of followers was below 0.999
quantile of the sample, particularly those that were followed by only one user. This procedure reduced the
number of accounts taken into consideration in pattern seeking, and it was inspired by the methodology
of Del Tredici et al. (2019) who removed solitary authors from the dataset since they did not have any
connections with others.

After the initial reduction of the list of all accounts followed down to a list containing accounts with the
greatest popularity across the dataset, vectors storing information on social connections were computed
from the followed lists of each user. Each account was treated as a token that was encoded as a binary value
in a fixed position in the vector. Each value in such a vector was set for 1 when a given user followed the
corresponding account and 0 otherwise. Their length equaled the size of the list containing the most popular
accounts, with each number corresponding to the respective account in the list. However, considering the
collective number of distinct accounts in the list, even after this initial follow list size reduction, it was
necessary to reduce the size of the vectors further.

Further reduction was done by computing the mutual information metric between each account encoded
in so far obtained vectors and a prediction produced by the social connection-based model. Mutual infor-
mation is a measure that allows quantifying the degree to which a given variable explains the other – the
greater its value, the greater is the degree of relatedness between the two variables (Latham&Roudi, 2009).
Computing this measure for each account in the list allowed further selection of only those accounts that
seemed to contribute to the social connection-based model’s decision to the greatest degree. In other words,
accounts whose mutual information score was the highest were more probable to be linked with either haters
or non-haters, and thus they provided information that helped distinguish between the two classes of con-
cern. This procedure resulted in producing vectors of zeros and ones that contained information on only
those accounts whose mutual information value was above the 0.75 percentile of all mutual information
values. For almost all users, with a negligible number of exceptions, those vectors were non-zero, which
allowed using them as input data for the social connection-based classifier. This ensured that accounts with
this metric equal to zero or relatively low, nearly negligible values were not taken into account by the models.

3.3 Data Splits

The last step of preprocessing involved splitting the data into training and test sets. The blatantly small num-
ber of training examples available for the connection-based classifier posed a major risk of model metrics
being highly biased and dependent on the contents of each subset. Therefore, the splits were customized to
make sure subsequent analyses of the results were inferred on data instances that belonged to the test set
in both the language-based classifier and the social connection-based model. Additionally, the experiment
was run 30 times so that models’ metrics presented would be less biased by a specific split structure, and for
each repetition, these splits were different. This subsection describes the exact way data were split at each
of the 30 cycles.

Before each cycle, all (399) instances for which the information on lists of followed accounts was available
were assigned to the test set for the language-based model, and all other instances became a part of the
training set. This operation made it certain that regardless of the way the data would be split into training
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and test sets in the social connection-based model, the test data for that model would also be the test data
for the language-based model; consistency across samples was the key to conduct a reliable analysis of
model performance given the shortage of data that was faced in this study. When it comes to the training
set preparation, one issue with the dataset that had to be approached was the class imbalance. The fact
that only 5.83% of instances were labeled as hate speech posed a major risk of the language model failing
to capture the characteristics of hateful language as they would be overshadowed by the majority class
(Daumé III, 2017). To reduce the effect of class imbalance, a random undersampling procedure was carried
out. Although Daumé III (2017) suggested that oversampling of the minority class can be used to alleviate
this effect, this solution was not used to reduce the risk of overfitting to specific examples or specific authors
(Arango et al., 2019). After the procedure, the number of instances that belonged to the negative class (i.e.
normal) was approximately equal to the number of positive (hateful) examples, which made the number of
records in the training set of the language-based classifier equal to approximately 3,500.

Undersampling procedure was not performed on the data fed to the social connection-based algorithm since
in that dataset excerpt, the class imbalance was not an issue as nearly 25% of 399 records used were labeled
as hateful. This proportion ensured that a lack of either positive (i.e. hateful) and negative (i.e. normal)
data instances in one of the sets caused by split’s randomness would be very unlikely. When it comes to
the split of the data available for the social connection-based classifier, a random split was performed with
around 75% of the data being assigned to the training set, and the remainder being assigned to the test
set. This means that eventually, there were a total of 100 data instances that the analyses of the results were
based on. The differences between proportions of each class in traning sets for each of the two single-source
models were present because for the language-based model, an approximate fifty-fifty proportion gave the
best results.

3.4 Models

To answer both research questions, a total of three solutions were built, two of which were the single-source
models already mentioned: the language-based and the social connection-based classifier. Both of these
models were binary classifiers that produced either 0 or 1 as their output value, standing for normal and
hateful labels, respectively. Both single-source models classified data independently of each other as they
relied on different kinds of information to make their predictions. While the first of them – the language-
based classifier – used values stored in generated tweet embeddings, the second one, namely the social
connection-based model, relied on features stored in vectors containing simplified and encoded list of fol-
lowed accounts. These differences between kinds of data were also the reason why each of the single-source
algorithms was trained independently of the other.

There is a plethora of Machine Learning algorithms that can be used in classification tasks, and plenty of
these classifiers have been used in hate speech detection (Arango et al., 2019; Badjatiya et al., 2017; Good-
fellow et al., 2016). Following the results presented by Badjatiya et al. (2017) regarding the performance
of various language-based classifiers, it was decided that the most promising results can be obtained using a
gradient-boosted decision tree (GBDT). The use of artificial neural networks (ANNs) that are the state-of-
art solutions was also considered as such techniques are proven to outperform standard, non-netwirk-based
classifiers (Del Tredici et al., 2019). However, given that neural networks need abundant data resources to
be trained effectively (Goodfellow et al., 2016), this approach was eventually not selected in this research
as there were just a few hundreds of examples the networks could be trained on. The problem of hate
speech classification could have also been tackled using Naïve Bayes classifiers which have been proven to
be successful in this task (Fatahillah et al., 2017) but eventually they were not used due to some advantages
of using decision trees-based methods (see below).

GBDT is an algorithm based on ensembles of decision trees, with a difference that it uses gradient boosting
to make each subsequent tree better than the preceding one, which generally makes the model predict
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better than random forests, the original algorithm it is based on (Goodfellow et al., 2016; Ye et al., 2009).
The selection of these algorithms was justified by their relative transparency as they allow tracing the way
the model made its decision explicitly, contrarily to Naïve-Bayes classifiers which are not as explainable
(Goodfellow et al., 2016; Ye et al., 2009). Another reason why this classification method was chosen as the
baseline one was that for each data point, it gives out its probabilities of belonging to each class, and that
information was necessary for the third algorithm, namely the decision engine. For this particular reason
and given that the classification goal was identical across both single-source classifiers, the social connection-
based model was also a gradient-boosted decision tree. In both cases, the maximal depth of a decision tree
equaled 4 as this value brought the most satisfactory results in initial tests.

The third solution, namely the aforementioned decision engine, was essentially composed of the two single-
source models. The logic behind it was fairly simple: as each single-source model produced a list of class
membership probabilities, it analyzed the list of these probabilities for each model. Then, for each data
point, it extracted the highest probability and checked which single-source model it comes from and which
class it was assigned to. In other words, the decision engine verified which of the two single-source classifiers
showed a greater degree of certainty when making its predictions; the higher the probability observed, the
greater certainty. The final decision was the decision of the classifier that produced the highest probability.
Such an approach was motivated by the fact that two fairly different kinds of characteristics - language and
social connections - had to be combined. This resolved the issue brought by Tsourougianni & Ampazis
(2013) that had to do with the tweet length which might produce unreliable results, and helped determine
whose prediction was more reliable. Figure 1 illustrates this logic with an example.

Figure 1: an example of the logic behind the decision engine. Out of all four probability values, the highest
one was generated by the social connection-based model. Therefore, the decision engine let the social
connection-based model assign the eventual class.

After data preprocessing, a series of the aforementioned 30 experimental cycles was run. Section 4 exten-
sively describes the outcome of the experiment.
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4 Results

Due to the aforementioned problems with data scarcity, it was likely that the results would be largely de-
pendent on the way the train-test split was performed. Therefore, to mitigate bias that could have been
introduced by the structure of each subset, each of the two single-source models was trained multiple times,
with a different data split at each training cycle. Although due to limited data, the test set of the language-
based model had to remain identical in each simulation (see Section 3.3 for more details), its training set
differed because undersampling at each run was random and resulted in the set containing different data
instances. In the case of the social connection-based model, since data were not numerous, both training
and test sets differed at each simulation as the same data batch was split randomly. The training-test cy-
cle of both single-source models and the decision engine was performed 30 times, which allowed a better
generalization of the results and avoided the potential bias caused by the structure of splits.

Overall, both single-source models struggled with overfitting as their performance metrics were much lower
for new data instances. Overfitting occurs when the model relies too much on the training data it has already
seen, which makes it predict poorly on unseen instances (Goodfellow et al., 2016; Daumé III, 2017). This
was most probably caused by insufficient data resources, an issue already observed by Arango et al. (2019)
and Pereira-Kohatsu et al. (2019) which was beyond the control in this experiment due to limitations with
data accessibility. Even though data undersampling alleviated this issue and improved general setup perfor-
mance, overfitting was still apparent to a various extent across the two single-source models. Nevertheless,
both of them exhibited some predictive power and each of them was able to classify some fraction of hate
speech.

All three setups were compared and evaluated on the basis of four metrics: precision, recall, F1 and ROC
AUC scores. Precision stands for the fraction of correct assignments to the target class out of all assign-
ments to that category and recall reflects the fraction of target class instances that were caught by the model
(Goodfellow et al., 2016). While these two indicators explicitly show the characteristics of data assignment,
the other two metrics - F1 (a tradeoff between precision and recall) and ROC AUC - show how the model
generally performs. Out of these two, given limited data resources and overfitting issues encountered, the
latter was especially relevant for model evaluation in this study as it allowed determining whether or not
the model’s decision is random (Goodfellow et al., 2016). The following sub-sections describe the results
in-detail and make a comparison across different setups tested.

4.1 Language-Based Classifier

Metric Average Value - training Average Value - test
precision 0.81 0.38
recall 0.86 0.88

ROC AUC 0.81 0.7
F1 0.83 0.52

Table 1: Average performance metrics of the language-based classifier.

On average, the language-based classifier was able to catch a vast majority of hate speech both during
training and test, which was reflected by relatively good recall scores. However, the precision of the model
dropped significantly from 0.81 down to merely 0.38, which means that despite the model’s ability to catch
nearly all hate speech in the data, it became oversensitive and produced lots of false positives. This entails
that the model assigned the majority of data points to a positive class, which is undesirable in terms of the
model’s behavior; in hate speech classification, the classifier should not label the majority of data points as
positive. Considering that the size of the test set the metrics were computed on equaled 100 with around
25 hate speech instances, the values of precision and recall shown in Table 1 entail that approximately
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recall∗n
precision = 0.86∗25

0.38 ≈57 data instances, thus the majority, would be labeled as positive; this would generate
32 false positives, nearly a third of the whole set examined. Were the model comparably good on the test
set as on the training set, it would classify a comparable number of examples but it would produce much
fewer false positives. The additional drop by approximately 0.12 of the ROC AUC value also suggested
that the model became oversensitive and that its predictions became more random for the test set, which
highlighted the problem of overfitting.

4.2 Social Connection-Based Classifier

Metric Average Value - training Average Value - test
precision 0.98 0.55
recall 0.59 0.29

ROC AUC 0.8 0.6
F1 0.74 0.37

Table 2: Average performance metrics of the social connection-based classifier.

The issue of overfitting was even more apparent in the social connection-based classifier as merely a third
of all hate speech instances was classified correctly, which is visible in Table 2. This was certainly caused
by insufficient data resources the model was trained on; a lack of diversity in data made the model learn
what connection patterns of haters look like on the basis of too few training examples, which made it not
generalize well when new data were encountered. This lack of predictive power is also reflected by low ROC
AUC and the remarkable difference in the value of this indicator between the training and the test set, which
suggests that the model’s strength was not satisfactory and that predictions were much more random for the
new data. However, this weak performance of the model did not necessarily mean that its predictions would
not be beneficial to a combined setup as it might have been that the classifier produced strong predictions
for correctly classified data points. To verify whether or not this was the case, the predictions on the test set
were analyzed further.

Figure 2: the histograms showing values of class probabilities assigned by the model. The left histogram
shows values for the correctly classified data points while the right one shows values for incorrectly classified
data points.

Figure 2 shows how probabilities of the classes, i.e. actual model predictions, were distributed across one
of the test sets simulated. It quickly becomes noticeable that for correct predictions, the probability of the
predicted class appears higher. To verify this, given that these probabilities were not normally distributed,
a Kruskal-Wallis test was carried out to see whether or not average prediction values are different between
correct and incorrect predictions of the model. The results showed a significant difference between the two
samples (H = 7.92, p = 0.005, df = 1), which, considering that the average prediction value was higher for
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the correct predictions, confirms the hypothesis that the model was more certain when it guessed the class
membership correctly. This entailed that even though this classifier performed poorly, it could positively
impact the performance of the joint solution (i.e. decision engine) where it was correct.

4.3 Decision Engine; Comparison Across Models

Metric Average Value
precision 0.58
recall 0.53

ROC AUC 0.7
F1 0.55

Table 3: Average performance metrics of the joint decision engine on the test set.

Before running analyses across models, it was verified whether or not samples of each of the metrics ana-
lyzed were distributed normally. A series of normality checks was run to verify whether or not normality
assumptions are met, which allowed choosing appropriate statistical tests in later stages of the analysis. The
tests were carried out using algorithms developed by Virtanen et al. (2020) that are available under Python
scipy module. The distribution of all metrics in the tests set, regardless of the algorithm, appeared normal
(all p-values of normality tests were above 0.05), which allowed applying a series of Student’s t-test to com-
pare metrics across models (see appendix A for a table summarizing all metrics obtained in each of the 30
simulations run). All conclusions that follow were inferred with a confidence interval (CI) equal to 0.95.

Since multiple pairwise comparisons were conducted, original p-values were corrected through applying a
Bonferroni correction. This correction did not affect the results, all inferences on differences and indiffer-
ences remained intact. Table 4 summarizes the results of the series of t-tests described below before and
after Bonferroni correction. LB, SCB and DE abbreviations stand for the language-based model, social
connection-based model and the decision engine, respectively.

Metric Models Compared t(58) p-value p-value Bonferroni
recall SCB and DE -9.149059 <0.0001 <0.0001
recall LB and DE 14.888286 <0.0001 <0.0001

ROC AUC LB and DE -0.105638 0.9162 1.0
ROC AUC SCB and DE -6.798296 <0.0001 <0.0001
precision LB and DE -8.023940 <0.0001 <0.0001
precision SCB and DE -0.939987 0.3511 0.7022

F1 LB and SCB 7.807772 <0.0001 <0.0001
F1 SCB and DE -7.148629 <0.0001 <0.0001
F1 LB and DE -0.932093 0.3552 1.0

Table 4: A summary of the results of statistical tests. LB, SCB and DE stand for the language-based model,
the social connection-based model, and the decision engine, respectively.

The decision engine that made the final decision on the basis of which model was more certain about its
prediction (see Section 3.4 for details) was able to catch around a half of all hate speech instances in the
test set, which was reflected by its recall value. This is a significantly better score than that of the social
connection-based model (t(58) = 9.15 , p < 0.0001) but also a significantly worse result than the one of
the language model (t(58) = 14.89, p < 0.0001). Its ROC AUC value appeared statistically indifferent
from the one of the language model, which was confirmed by a Student’s t-test that was run on the two
samples of ROC AUC values from all simulations run (t(58) = -0.11, p = 0.91). While the decision engine’s
predictive power, expressed through the ROC AUC score, was comparable with the language-based model,
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it was significantly better than the one of the social connection-based model (t(58) = 6.80, p < 0.0001).
Additionally, the decision engine managed to produce less false positives than the language-based model.
This is visible through a significant increase in precision on the same data excerpt, which was confirmed
by yet another Student’s t-test (t(58) = 8.02, p < 0.0001). Precision of the decision engine was statistically
indifferent from precision of the social connection-based model alone (t(58) = -0.94 , p = 0.35).

To determine whether or not one solution outperformed another, additional two-sided Student’s t-tests were
carried out to see if there are any significant differences between their F1 scores. F1 score is a tradeoff
between precision and recall that allows assessing general performance of the model (Goodfellow et al.,
2016). The results showed significant differences between the performance of the single-source models
(t(58) = -7.81, p < 0.0001), meaning that the language-based classifier generally performed better than
the social connection-based classifier, which was most probably linked to the size of the datasets used
to train each of the models. The results also showed significant differences in performance between the
social connection-based model and the decision engine (t(58) = 7.15, p < 0.0001), which shows that the
decision engine also performed better than that single-source classifier. However, the difference between
the performances of the decision engine and the language-based model was statistically insignificant (t(58)
= 0.98, p = 0.35), which entails that these two solutions performed comparably well.

Figure 3: the histograms showing distributions of values of probabilities of the classes assigned by each
of the single-source models. These figures were generated from one of the simulations run. Note how the
probability mass is shifted towards the highest values in the left histogram compared with the right one.

An additional comparison of probabilities of assigned classes generated by the models underlying the de-
cision engine (see Figure 3), regardless of their correctness, was carried out to determine whether or not
one of the models was more certain than the other. Such an analysis allowed determining which of the
two models, if any, had a statistically greater influence on the decision engine. Since neither of the two
distributions shown in Figure 3 was normal, a Wilcoxon test was carried out to determine whether or not
the difference in the average prediction value across the two models was significant. The test conducted
revealed a statistically significant difference between the two samples (W = 505, p < 0.0001). This means
that the social connection-based model whose average prediction value was higher assigned classes with sta-
tistically greater certainty. This means that the decision engine relied on the social connection-based model
even though its performance was poorer with regards to classifying hate speech.
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5 Discussion

The results obtained in this study were generally not satisfactory, mostly due to issues with data that were
encountered along the way. Their insufficient volume and limitations concerned with their characteristics,
such as restricted text input length (Tsourougianni & Ampazis, 2013) or access to nothing but lists of
followers that do not reflect actual relations between users and their strengths (Del Tredici et al., 2019),
caused the models to perform worse than in studies preceding the one described in this paper. The low
values of ROC AUC provide additional insights on the setups’ performance as they show that the models’
predictive power was not great, and that probably it was difficult for the models to discriminate between the
two target classes. This might have been a result of two possible factors, one of which being the possible
unrepresentativeness of data with regards to the population; even though the dataset collected by Founta et al.
(2018) was carefully gathered through crowdsourcing, it might still have been the case that they included
only a subset of all hate speech forms. Another plausible explanation is that they did not have any features
that allowed a strong discrimination between the two classes. Nevertheless, although the performance of
the models presented in this study was not impressive, their metrics managed to present some noteworthy
insights.

This experiment, like many others preceding it, e.g. Mishra et al. (2018) or Del Tredici et al. (2019),
showed that semantic content of one’s linguistic production is not the only information that can be used to
determine whether or not someone is a hater. This was visible through the ROC AUC scores that, although
they were not high, were above 0.5 (i.e. the predictions were not random) for all the three solutions tested,
solidifying thus findings of previous research on such a possibility. For instance, information concerning
social connections of an individual can provide insights on one’s group membership – this is thanks to
the homophily phenomenon which is also present across online platforms (McPherson et al., 2001; Zook,
2012). Given that accessibility of data resources regarding hate speech and social connections of users
can be limited (MacAvaney et al., 2019), this research checked if even the most basic user information,
namely their list of followers, can enhance hate speech classification setup in the event of data scarcity.
Although both constituents of the joint decision engine overfitted, the proposed decision engine merging
their predictions still managed to bring some insights concerning whether or not performance metrics could
be improved.

The most intriguing observations can be drawn on false positives i.e. instances where the classifier labels
something as the target – hate speech in this particular example – while the given instance is actually not the
target (Goodfellow et al., 2016). Section 4 revealed that they were the issue particularly in the language-
based classifier as its precision was low. Considering the test size and class proportions, it resulted in the
classifier labeling themajority of data points as hate speech. This was undesired since hate speech constitutes
theminority class not only in the dataset themodels were trained and tested on but also across datasets used in
previous research (Founta et al., 2018). Low precision meant that the language-based model overestimated
the probability that a given tweet is hateful and that it assigned too many instances to the hate speech
class. The low value of this metric was a result of overfitting; while the model performed fairly well on the
training set and distinguished tweets between hateful and non-hateful accurately, its performance in terms
of precision dropped due to not generalizing well; instead, the model learned the characteristics of training
data too finely.

Even though the social connection-based model performed worse on the same data excerpt in terms of the
fraction of hate speech it was able to catch (aka recall), it did not produce as many false positives as the
language-based classifier. This generally entailed that the model made a decision to classify something as
hate speech only if it was strongly convinced that the author’s social connections clearly exhibit patterns
related to haters. This was confirmed in the distribution of prediction probabilities shown in Figure 3 (the
left histogram) which was shifted towards higher values, which meant that hardly ever did the model classify
something with the prediction value almost on the edge of the decision boundary (i.e. P(class) ≈ 0.5). This
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fact, although the predictive power of the model was not satisfactory since it did not catch many hate speech
instances, implied that once it made a decision about something belonging to the hateful class, this prediction
was strong. It was inferred that using the model’s predictions might then be useful in correcting the decisions
of the language-based classifier which was less certain about its predictions (see the right histogram in Figure
3).

Combining the predictions of these two models and selecting the one with the highest probability score
resulted in partially resolving the issue with low precision that was faced by the language-based model as
this metric increased to a level comparable with the social connection-based model. Although this caused
recall of the joint setup to be lower than the one exhibited by the language-based model, the decision engine
producedmuch fewer false positives while also being able to catchmore hate speech instances than the social
connection-based model. This can be said to be the improvement in performance that was sought as the
problem that comes with overfitting, namely a large drop in precision, was mitigated. Given that the decision
engine improved precision of the language-based model and recall of the social connection-based model,
the answer to the research question regarding whether or not the proposed decision engine can improve the
general setup performance (RQ2) is yes, a solution that combines predictions of multiple models, each of
which relies on different information, can mitigate issues linked to overfitting that manifest themselves in
poor metrics.

The answer to the first research question concerning the differences between the single-source models,
RQ1, is yes since statistical tests that compared average F1 scores of the two single-source models revealed
significantly higher performance of the language-based model. However, it is not so straightforward to say
that that model was actually better. This is because model’s performance can be defined using multiple
metrics, each of which explains precisely what the given model is good at and what it has problems with.
The first classifier – the language-based one – exhibited substantially better recall, meaning that it was able to
catch more hate speech instances in the same dataset. However, as it is mentioned earlier, its precision was
low which resulted in unwillingly classifying too many non-hateful tweets as hate speech. The other model
– the social connection-based classifier – suffered from the opposite issues; although its precision was better
which means that more of its assignments to the hate speech class were correct and that it produced less
false positives. Unfortunately, its recall was not satisfactory. This lack of straightforwardness in answering
this research question is caused by not only different weaknesses of the two models, but also the fact that
they faced major issues with overfitting that severely hampered them in achieving satisfactory performance.
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6 Limitations

The primary reason behind the problems with overfitting that, despite the best efforts, were encountered
in this research was concerned with insufficient data resources. The single-source models were trained
on blatantly scarce data resources composed of merely a few hundreds, and even fewer – just 399 – in
the case of the social connection-based model. Machine learning models generally need substantial data
resources to generalize well (Daumé III, 2017; Goodfellow et al., 2016), and this could not be provided in
this experiment due to technicalities beyond the control of this research. This in turn made the classifiers
overfit as they failed to generalize on data; having been trained on an insufficient number of examples, the
models captured nothing but characteristics of a small number of instances. When faced with new data
whose characteristics reflect a greater degree of diversity, both models failed in being accurate in their
predictions since they learned only a few characteristics of haters, their social connections and the language
they use.

Had the data resources been larger, the performance of the single-source models would probably have been
much better and the overfitting issues would have been less persistent in both of them. Consequently, the
decision engine based on these models would have reached much more impressive results; considering that
it managed to increase the general performance of the setup even when the models were poor, it can be
guessed that it would bring a comparable improvement for models of better quality as well. Another aspect
that exacerbated the problem of insufficient data resources was their nature. As aforementioned, tweets,
due to their constraints in length and use of slang words and abbreviations to make up for the text volume
make their readability and semantical processing difficult and are thus challenging for the models to classify
(Tsourougianni & Ampazis, 2013). Additionally, limited information on social connections of people made
the social connection-based model quite constrained. But even if the data resources were sufficient, it might
still be the case that the model would fail to capture lots of instances of hate speech due to the subjectivity
of this notion (MacAvaney et al., 2019). It is not known whether a larger data source would capture all
instances of hate speech, as labeling of such terms would inevitably include human bias which would most
likely restrict the number of hate speech types down to a few subtypes. Therefore, there are three crucial
factors that limited this study and might also impair the results of further studies: data quantity, the amount
of information they capture and their labeling.

Yet another limitation of this project lied in the way textual data were preprocessed. Even though the
document embeddings were generated on the basis of nothing but the dataset used to ensure that they capture
all the characteristics of the online language and that they are more tailored to this type of content, their
quality was not actually verified. It might have been the case that the quality of the embeddings generatedwas
actually poor due to limitations of tweet data brought by Tsourougianni & Ampazis (2013). The quality of
data after preprocessing was not compared with the quality of data that could use pre-processed embeddings.
Such a comparison could have brought essential insights as to which embeddings should have been used to
encode data but was omitted because of the reasoning at the time of conducting the experiment. It might
have been that the language-based model trained on data encoded using pre-trained word representations
would have performed better. Unfortunately, this was not verified and leaves room for improvement.

An additional constraint of this experiment could be identified in the structure and logic behind the joint
decision engine that let the model with a greater confidence score (i.e. prediction closer to 1) decide which
class a given instance belongs to. This architecture was supported by an observation explained in section 4.2
where correct predictions had greater prediction scores than those incorrect. Although this indeed reduced
some issues related to overfitting, it remains unsure whether or not such an approach was entirely correct as
incorrect predictions might also have remarkably high confidence scores. Moreover, this architecture did
not allow using both information sources simultaneously, which did not allow using social connections as
contextual information for language content; this did not conform with the necessity of contextualization
mentioned by Dobnik et al. (2022). This could also be said about the single-source models implemented as

22



they were not compared with other kinds of classifiers, which strengthens the necessity of validating (and
possibly improving) the findings presented in this study through a comparison of various solutions.

Nevertheless, these limitations highlighted the problems that previous research struggledwith and underlined
the necessity of resolving them in the future, and even succeeded to propose a new direction in tackling these
challenges. For instance, overfitting that according to Arango et al. (2019) affects nearly all recent work
and impoverishes the results of even the most efficient algorithms like those built by Badjatiya et al. (2017),
was also apparent in the experiment described here. Therefore, this research confirmed the observations
of Arango et al. (2019) regarding the usability of training datasets and models’ predictive power when
new data are encountered. Apart from that, this project managed to suggest a solution to the problem
of overfitting whose effect on the performance can be diminished by combining multiple models that use
numerous modalities in hate classification. The solution, even though its logic was simple, worked fairly
well and improved general setup performance, at least when compared with the performance metrics of
each single-source model, which sheds some light on possible expansions of the research.
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7 Ethical Considerations

Before considering what could be done next, it is necessary to highlight that this research, along with all
studies preceding it and those that could expand it in the future, raises several ethical issues that need to
be taken into account. Hate speech is a touchy issue surrounded by controversial topics, such as white
supremacy, homophobia, racism, abortion or religion (Ribeiro et al., 2020; Sellars, 2016), which requires
approaching this subject with additional care. Moreover, it is a phenomenon that directly affects its targets
and has an undeniably strong influence on the society (MacAvaney et al., 2019; Wich et al., 2021) so it is
essential that the matter of this study and solutions presented in this paper be reviewed regarding potential
repercussions of applying the proposed algorithms or using general insights brought by this experiment to
continue research in this area and/or enhance the presented findings.

The most critical ethical concerns regarding this studies lied in what happens with the data of users whose
tweets were analyzed. Since tweets were collected from already existing resources that have been gathered
years ago by Founta et al. (2018), users whose content was used to train the models were unaware of the fact
that the content they had created was used to build a solution that tries preventing hatred on online platforms.
Even though, as mentioned in Section 3.1, the data were collected in accordance with Twitter’s Terms of
Service and GDPR guidelines concerning data collection for research purposes, this unawareness of users
regarding what their data are used for is undoubtedly something that cannot take place if solutions proposed
in this study were to be introduced on some online platform. According to Prabhu (2019), people whose
data are in use should be informed explicitly as to what happens to the information they give, which is often
not the case as these disclaimers are too general. When looking at Twitter’s Terms of Service, this social
platform informs users that what they make publicly available can be used by third parties or individuals,
which, although it allowed this research to be conducted, is a vague explanation as to what actually happens
to the information they give. In spite of that, before gathering data to build an actual solution that could
bring profit, one should always inform users explicitly about what their information will be used for (Prabhu,
2019).

As far as hater labeling is concerned, another major ethical issue comes with controversies around freedom
of expression (MacAvaney et al., 2019). While one might say that haters should not be allowed to express
themselves to stop the spread of hate speech, others argue that it might be against the freedom of speech,
according to which everyone is allowed to express themselves on any topic they want, and so it is not possible
to fully exclude such people from social media (MacAvaney et al., 2019). Ostracizing one from the online
world is a radical and controversial solution to hate speech suppression, especially since the algorithms are
still not fully accurate. Such an exclusion could be interpreted by somebody as a violation of their freedom
of speech and could even lead to suing the party responsible for hate speech detection solutions. This
would likely to be the case frequently since the definition of hate speech is subjective, meaning that what is
considered an abuse of the freedom of speech by one person might be perceived as an opinion that is not
abusive of this right (Founta et al., 2018; MacAvaney et al., 2019). Considering that the models presented
in this paper overfitted the data, it is likely that data scarcity had caused them to have identified only specific
kinds of hate speech which might not be considered hateful by some people – as already mentioned, defining
hate speech is often the matter of subjectivity. To avoid potential unwanted consequences concerning the
controversy around hate speech and the freedom of speech, solutions for hate speech detection should be
used to prevent other users and algorithms from accessing such content (as suggested by (Badjatiya et al.,
2017)) rather than excluding creators of controversial content from the internet.

Even if users whose content was considered hateful by the algorithmwould not be excluded from the internet,
they might still want to find out why their content was considered as such. However, this is where one of the
greatest drawbacks ofMachine Learning models, namely limited explicability of their decision-making pro-
cess, comes in. As highlighted by Prabhu (2019), Artificial Intelligence tools used in automatizing numerous
mundane tasks that involve data annotation work like a black box, which means that the transformations of
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data are often not clear. Therefore, it often becomes impossible to determine why something was labeled
as hateful since it is not known which exact features of a given instance contributed to the model’s decision.
Considering the abstractness of encoded data used in this research and the way information as encoded,
hardly would it be possible to fully explain the model’s reasoning. Although metrics such as mutual infor-
mation can be used to determine which factors contribute to the model’s decision to the greatest degree,
the exact logic behind the decision remains hard to explain (Latham & Roudi, 2009; Prabhu, 2019). This
might raise controversies around model’s explicability and should also be taken into account, especially in
future research and potential developments and applications of the solutions presented in this study.
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8 Future Work

Future developments of the ideas conceptualized in this research are largely dependent on the limitations
of this experimentation which prioritizes overcoming all constraints. Since the greatest limitation of this
research was concerned with data resources whose volume was insufficient to train robust models, the con-
tinuation of this research should undoubtedly follow the direction of repeating this experiment with a greater
volume of data, particularly when it comes to those data concerning social connections. Such a re-running
of this experiment would most probably alleviate overfitting and lead to more reliable results as the findings
of this research only suggest that the solution proposed might indeed improve the metrics of the setup. This
hypothesis needs to be verified through a repetition of this research on datasets whose quality is generally
better, and the first steps in expanding the ideas and verifying insights brought in this paper should be con-
centrated around data quality and quantity improvement. Only after overcoming these crucial challenges
that seriously affected the results of the research can there be room for further experimentation with various
model variants and setup enhancements.

Once problems that constituted major limitations of this research are resolved, next steps could involve test-
ing various model architectures available. Running an experiment similar to the one conducted by Badjatiya
et al. (2017) where various architectures were compared with each other could give a broader perspective on
what kinds of models actually give the best results when joined with the decision engine. Should the problem
with user data accessibility be overcome as well, the research would open up to replacing the single-source
models proposed in this paper with more sophisticated architectures and checking how the proposed de-
cision engine would affect their predictions. Data accessibility would not only allow testing various model
architectures but it would also pave the way for testing different modalities that could also be used to see
what other user information sources could facilitate identification of haters on the internet. Linguistic and
social information is not the only source that could shed light on haters’ characteristics.

Touching on the issue concerned with the way data were generated, further research could test other ways
of data encoding and feeding the single-source models with data generated in a different way. Subsequent
research could also verify if pre-trained embeddings outperformed the custom ones that were generated and
used in this research; this could actually constitute the first step of such an analysis of the influence of the way
data were preprocessed. It might turn out that some ways of data preprocessing are more efficient. To sum
everything up, the key direction that work that would follow this experiment should take lies in solidifying
and validating the decision engine proposed, as well as mitigating all the issues that this research failed to
overcome. Given the promising results obtained with such constraints around, future improvements could
bring lots of beneficial insights regarding constructing robust hate speech detection models that would be
more resistant to overfitting than state-of-art solutions. In other words, the findings described here open a
plethora of possibilities regarding expanding simple, yet efficient ways of reducing the effects of overfitting
and inaccuracy in classifying hateful content.
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9 Conclusion

Hate speech is a problem that has been becoming more and more widespread on social media platforms.
It aims to demean its addressees and has potentially dangerous consequences for the society. To diminish
its influence on the internet as well as outside virtual communities, efforts of numerous researchers have
resulted in developing multiple solution to automatic hate speech detection. However, many of them have
been proven to be prone to issues with data overfitting and a lack of generalizability, which imposed the
necessity of finding a solution that would reduce the impact of these pitfalls. The study presented in this
thesis described a solution which reduces the impact of overfitting on the eventual hate speech classification
results. It checked whether or not it is possible to combine two models, each of which relied on different
types of data concerning haters’ language and social traits, into one decision engine to alleviate issues faced
by many other preceding solutions.

Although the single-source classifiers overfitted the data, this research managed to prove that a joint solution
based on class probability comparison across models can select the best prediction, reducing the effects of
overfitting that manifest themselves in low performance metrics and large false positive rates that contrast
with algorithms’ performance during training. The decision engine proposed, considering the performance
of the models at hand, managed to alleviate effects directly linked to overfitting and performed relatively
well. This suggests that the solution to improving the performance of currently used algorithms might be
simpler than one might think and that it does not have to involve a complex setup architecture. This can be
roughly compared to one of machine learning maxims that sometimes, a simpler algorithm is better than an
overly complex one, and this is what this thesis can be concluded with.
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A APPENDIX A: metrics obtained in all experimental trials

This appendix is available under the linkhttps://github.com/milanstanisic/MLT-Thesis-LT2215/
blob/main/trials_metrics.xlsx
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