
Studies in Language Structure using Deep
Learning

Adam Ek

Department of Philosophy, Linguistics and Theory of Science

I hereby declare that the work presented in this thesis is my own
work and that the research reported here has been conducted by
myself unless indicated otherwise in the preface of each chapter

[…] whatever happens.

Fyodor Dostoevsky
Notes from the Underground

Acknowledgemets

First and foremost I would like to express my gratitude and thanks
to my supervisors Jean-Phillipe Bernardy and Stergios Chatzikiri-
akidis, for helpful guidance, discussions, and extra-linguistic enter-
tainment. This thesis would also be improbable without the discus-
sions over food and coffee with my fellow Ph.D. students and col-
leagues at Gothenburg University.

Post-scribbling one should not forget to express gratitude to the
author, myself. Thank you Adam, for our unending curiosity and
the work put into this thesis.

A special thanks go out to the Climbing team, for the adventures
both on and above ground, with a good mixture of moods.

To all others whom it may concern, those who have been there
both directly and indirectly - Thank you.

Table of Contents

Table of Contents i

List of Figures v

List of Tables ix

I Preliminaries
1 Introduction 1

2 Neural Networks 6
2.1 Language modeling 7
2.2 Tokenization and word embeddings 10
2.2.1 Sentence embeddings 12
2.3 Linear and non-linear transformations 13
2.4 Learning 16
2.4.1 Backpropagation 17
2.4.2 Loss functions 18
2.4.3 Optimization 20
2.5 Attention 24
2.6 Neural Networks for Sequences 26
2.6.1 Recurrent architectures 26
2.6.2 Transformer architectures 29
2.7 Encoders and Decoders 33

i

TABLE OF CONTENTS ii

3 Linguistic Structures 37
3.1 Structure and Meaning 38
3.2 Grammatical Structures 42
3.3 Morphology 46
3.4 Dependency Grammar 50
3.4.1 Parsing Dependency Structures 52
4 Research questions 58
4.1 Summary of Papers 60

II Papers 68
5 Composing Byte-Pair Encodings for Morphological Se-

quence Classification 69
5.1 Introduction 70
5.2 Task 72
5.3 Data 72
5.4 Method 74
5.5 Results 80
5.6 Discussion 82
5.7 Conclusions and Future Work 89
6 Can the Transformer Learn Nested Recursion with Sym-

bol Masking? 91
6.1 Introduction 92
6.2 Data Sets 93
6.3 Model and masking strategy 94
6.4 Experiments & Results 95
6.5 Related work 100
6.6 Conclusion and future work 101

TABLE OF CONTENTS iii

7 Can Predicate-Argument relationships be extracted from
UD trees? 106

7.1 Introduction 107
7.2 Dataset 110
7.3 Task and Method 110
7.4 Results and Analysis 112
7.5 Suggested improvements to annotation schemes 120
7.6 Related Work 125
7.7 Conclusion and Future Work 125
8 Language Modelling with Syntactic and Semantic repre-

sentations for Acceptability Predictions 127
8.1 Introduction 128
8.2 Experimental Setup 129
8.3 Semantic Tags 131
8.4 Syntactic Tags 133
8.5 Syntactic Depth 134
8.6 Test Set 135
8.7 Results 137
8.8 Discussion 138
8.9 Related Work 145
8.10 Conclusions 146
9 How does Punctuation affect Neural Models in Natural

Language Inference 148
9.1 Introduction 149
9.2 Datasets and experiments 150
9.3 Models 153
9.4 Experimental setup 154
9.5 Results 155
9.6 Conclusions 160

TABLE OF CONTENTS iv

9.7 Future work 161
Bibliography 164

List of Figures

1.1 Subject-Verb-Object structure in English. 2

2.1 The flow of back (red arrows) and forward (green ar-
rows) propagation in a simple neural network with
two parameters, θ0 and θ1. 18

2.2 Local and global minima. 23
2.3 Generic structure for computing attention scores. 24
2.4 Schematic design of the RNN architecture. 26
2.5 The self-attention computation QK⊤

√
d

given the three
tokens w0, w1 and w2. 30

2.6 One layer in the transformer with h self-attention
heads. Here θ is a linear transformation that per-
forms the dimension reduction (|n|, h · d)→ (|n|, d)
that produces the representations w0, . . . , wn. The
final layer normalization step has been omitted. 32

2.7 A RNN based Encoder (Re) and Decoder (Rd) archi-
tecture for translating The cat runs to Swedish. 35

3.1 Interpretation of un-X-able adjectives. 41
3.2 Subject-verb number agreement. 45
3.3 The free morpheme write is inflected using to bound

morpheme -ing to express the progressive gram-
matical feature. 48

v

LIST OF FIGURES vi

3.4 Inflecting the word run to the past tense (PST) using
the copy mechanism. 49

3.5 Dependency fragment of “green cats”. 50
3.6 Dependency tree of the sentence The cat writes.. 51
3.7 Enhanced reperentations of the sentence Paul and

Mary eat. The additional arc introduced by the en-
hanced universal dependencies schema is shown in
blue. 52

3.8 Enhanced reperentations of the sentence The store
buys and sells cameras. The additional arcs intro-
duced by the enhanced universal dependencies schema
are shown in blue. 53

3.9 Dependency tree for the sentence the cat writes pre-
dicted by a (fictional) graph-based dependency parser. 54

3.10 Dependency tree for the sentence the cat writes pre-
dicted by a (fictional) transition-based dependency
parser. 55

5.1 Model outline for one input. A wordwn is tokenized
into k BPE tokens. The Transformermodel produces
one embedding per token per layer. We then calcu-
late a weighted sum over the layers to obtain one
representation per token. The resulting token em-
beddings are then passed to a composition function
f that combines the k different token embeddings
into aword embedding. Theword embedding is then
passed to an LSTM followed by a dense prediction
layer. 75

LIST OF FIGURES vii

5.2 Per-language accuracy on tokenswith different num-
bers of BPE components, for the finetuning train-
ing regime. The last data point on the x-axis refers
to all tokens composed of seven or more BPE to-
kens. We indicate the method by encoding First as
brown, summation as green, averaging as blue and
RNN as red. The accuracy is given on the y-axis.
We show the Agresti-Coull approximation of a 95%-
confidence interval for the RNNmethod (Agresti, Coull,
1998). We do not show the intervals for other meth-
ods to avoid excessive clutter. 85

5.3 The difference in accuracy between summation and
RNN plotted against average number of BPE tokens
per word in all languages, with a linear regression line. 86

6.1 Meanmodel accuracy for closing parenthesis depend-
ing on a distance to corresponding opening paren-
thesis, over 10 runs. Shaded areas correspond to
standard deviation. 97

6.2 Meanmodel accuracy for closing parenthesis depend-
ing on a distance to corresponding opening paren-
thesis over 10 runs. Shaded areas correspond to stan-
dard deviation. 98

6.3 Attention heatsmaps for the model with 4 heads and
4 layers on the input +-+<[+[([()])]-]>-. 103

6.4 Attention heatsmaps for the model with 2 heads and
8 layers on the input +-+<[+[([()])]-]>-. 104

6.5 Attention heatsmaps for the model with 8 heads and
2 layers on the input +-+<[+[([()])]-]>-. 105

8.1 Dependency Graph 134
8.2 Linearized dependency graph 135

LIST OF FIGURES viii

8.3 Scatter plots showing the weighted Pearson corre-
lation between human acceptability judgments (y-
axis) and model predictions (x-axis). 140

List of Tables

2.1 Activation functions. 15
2.2 An example of the softmax output for part-of-speech

tagging. 19

3.1 Possible word forms of the lexeme “walk” with re-
spect to the grammatical feature of tense. 48

3.2 Transition parsing actions given the sentence the cat
writes nothing. 55

5.1 Treebank statistics showing the language typology,
average number of BPE tokens per word, the num-
ber of (composite) morphological tags and the size
of the datasets in terms of words. 73

5.2 Hyperparameters used for training themodel. Slashed
indicates the value of a parameter when we finetune
or extract features. 79

5.3 Accuracy formorphological tagging. We show scores
both for finetuning the XLM-Rmodel and extracting
features. 80

5.4 Accuracy formorphological tagging on all words that
are composed of two or more BPE tokens. 81

ix

LIST OF TABLES x

5.5 The accuracy of morphological tagging when we pa-
rameterize the First, Sum and Mean method with a
non-linear transformation layer. 89

6.1 Mean accuracy and standard deviation over 10 runs
on generalisation to longer distances for each model
configuration. 96

6.2 Mean accuracy and standard deviation over 10 runs
on generalisation to deeper nesting for each model
configuration. 97

6.3 Hyperparameters used and the number of data ex-
amples used. 102

6.4 Model configurations and the number of parameters
in each configuration 102

7.1 Dependency parsers upper bound performance. 113
7.2 Accuracy of UD treeswith andwithout enhancements

using the Udify and Stanza parsers. 113

8.1 Mean judgments and standard deviation for the test
set. 136

8.2 Weighted Pearson correlation between prediction from
different models on the SMOG1 dataset. * indicates
that the tags have been shuffled. 136

8.3 Training loss and accuracy for the language model-
ing task. 137

8.4 Comparison of the average relative score assigned
by themodels and humans for the different sentences
in the test set. 142

8.5 Shared erroneous sentences between the models. 142
8.6 Human judgments and model scores for sentence (24). 143
8.7 Human judgments and model scores for sentence (25). 144

LIST OF TABLES xi

9.1 Count of punctuation symbols used in the training
examples of MNLI. 152

9.2 The effect on punctuation on all threemodels in terms
of accuracy of the MNLI dataset. MA indicate the
matched andMM themismatched test split. original
is trained on the unaugmented data, pmodels trained
with punctuation and¬pmodels trainedwithout punc-
tuation 155

9.3 Results on a subset of the examples in our constructed
dataset. E is entailment, N is neutral and C is contra-
diction. The model column indicate which HBMP
model configuration was used (trained with punctu-
ation p, or without ¬p). 157

9.4 Constructed dataset. E is entailment, N is neutral and C is
contradiction. The Model column indicate which model
was used (trained with punctuation p, or without ¬p). 163

Part I

Preliminaries

”When you think about it,
thinking about thinking is
the hardest sort of thinking
there is. Which makes you
think.”

Philomena Cunk

Chapter 1

Introduction

In recent years, the use of computers for analysing language have
become more and more prevalent. This rise of the machines for
processing language have been facilitated by advances in statistical
methods. But even with the field moving at a rapid pace several fun-
damental issues remain. In this thesis we are interested in the ability
of computers to construct meaning representations of language us-
ing grammatical information.

When a human encounters a piece of text the meaning can be
understood based on the linguistic competence and previous experi-
ences. Computers on the other hand need some set of instructions
to analyse language. For this purpose rule-based, statistical and neu-
ral network methods has been developed as generic procedures for
teaching computers to perform some language-based task.

As an example of a language task we can consider a basic type
of analysis: who did what to whom?. That is, given a sentence we
want to identify who did something, what they did, and to whom
they did it. For this analysis the grammar of the language help us
answer the question by considering the structure of the sentence. 1

For example, consider sentence (1) below:
1Grammar and structure are used interchangably throughout this thesis.

1

INTRODUCTION 2

(1) the cat chases a dog

The grammar of a language specifies how different linguistic
properties are expressed, such as the who, what, and whom. Using
our knowledge of English grammar then we see that the cat (who,
the subject) is chasing (what, the verb) a dog (whom, the object).
This is because in English syntax subjects are placed to the left of
the verb, and objects to the right as shown in Figure 1.1.

the cat chases a dog
- subject verb - object

Figure 1.1: Subject-Verb-Object structure in English.

We can also note that it is a specific cat that is chasing some
dog, which is expressed by a definite (the) or indefinite (a) article.
These relations are expressed by the relations between words, but
words themselves also have structure. A notion that becomes impor-
tant when considering the question of who did what to whom is the
predicate-argument structure. The predicate-argument struc-
ture is how a predicate (typically a verb) takes arguments, this can
both be expressed syntactically and semantically. In the example
above (Figure 1.1) the syntactic predicate-argument structure can
be formalized as the word chases takes two arguments (transitive);
the subject and the object. Other verbs do not have the same argu-
ments; for example give requires three arguments (ditransitive), the
subject gives the object an indirect object. There are also verbs
like ran that only take one argument (intransitive), the subject.

Consider the verb chases: it is indicating that something is hap-
pening currently. So going back to (1), we see that the cat currently
chases a dog. But many more fine-grained details can be expressed
by modifying the structure of chases. For example, if the chases hap-
pened in the past, this is expressed by changing the word form to
chased.

INTRODUCTION 3

Changing a word’s internal structure to indicate linguistic prop-
erties is a common process. Many languages in the world use this
instead of the order of the words in relation to other words for indi-
cating what is the subject and object. One such language is Russian
which uses a case-system to indicate this. In Russian the nomina-
tive case is used to indicate the subject, while the accusative case
is used to indicate the object. For example, if a cat is chasing a dog
this can be expressed as:

(2) Кошка
cat.NOM

преследует
chase

собаку
dog.ACC

‘the cat chases a dog’

In (2), the subject is expressed by the internal structure of the
word rather than by its positioning in relation to the verb. This
means that it is possible to rearrange their positioning without al-
tering the meaning:

(3) Собаку
dog.ACC

преследует
chase

кошка
cat.NOM

‘the cat chases a dog’

From this small comparison between Russian and English, we
can observe that the structure of the languages is different. Most
languages use different structures to indicate linguistic processes.
However, many languages use similar structures for expressing lin-
guistic properties. For example, both Swedish and English use word
order to indicate the subject and object. We can then see that gram-
mar is a set of rules (or conventions) for expressing information such
that it is successfully transmitted between two or more people.

But in analyzing language, we are often interested in more than
its structure. We want to find an interpretation of its meaning. Be-
cause simply knowing that cat is the subject and dog is the object,
without any information about what these two words refer to, does

INTRODUCTION 4

not help us ascertain what the sentence means. To find the meaning
we need to consider the lexical meaning of each word, then consider
how they relate to each other. Thus, to interpret the meaning of a
sentence both how words relate to each other, how the words’ inter-
nal structure looks, and what the words themselves mean have to
be considered.

However, for computers, this is a lot to take into account, es-
pecially when a computer only performs the actions specified by
its program. So to analyze a sentence, a computer would need a
full set of instructions both on how the language is structured and
some notion of the words meaning. But specifying this can be a dif-
ficult and tedious task. For some narrow problems it is sufficient
to find a smaller set of rules that can perform some tasks, but scal-
ing up presets issues. To circumvent this issue, statistical methods
have been used. The advantage of statistical methods for process-
ing natural language is that what a system learns is dependent on
the data, rather than rules. So statistical systems can be adapted to
whatever data is available, they can learn what statistical regulari-
ties occur, for example, that the subject is somewhere to the left of
the verb. These learned statistical regularities can then be used to
analyze new sentences that the system has not seen. In particular,
neural networks have been developed and used for learning how to
analyze (and produce) language in recent years. Neural networks
build vector representations of words and learn to produce informa-
tive vectors such that they are useful for the task at hand.

In this thesis, we explore how a computer can learn the struc-
ture of grammar, using both rule-based and neural methods. Addi-
tionally, we also investigate how grammatical information can help
computers understand the meaning of language. This leads us to
pose two general research questions, the first one concerns how to
discover grammatical structure, or more specifically, how we can
construct computational representations of grammatical structure:
RQ1 How to obtain representations of grammatical structure?

INTRODUCTION 5

The second research question concerns how to use the representa-
tions of grammatical structure to obtain semantic representations:

RQ2 How to predict semantic phenomena based on representa-
tions of grammatical structure?

This thesis is organized into two parts. In Part I, an introduction
to how neural networks learn to analyze language using statistical
methods is given in Chapter 2. Chapter 3 focuses on introducing
the relevant linguistic background for our investigations. Chapter 4
expands themotivation behind the research questions given the neu-
ral and linguistic preliminaries and also presents a summary of the
produced research along with how these answer the research ques-
tions. Part II presents the papers published towards addressing the
research questions.

“We don’t have time to be
ourselves. We only have time
to be happy.”

Albert Camus

Chapter 2

Neural Networks

In recent years neural networks have become the predominant way
to process language with computers. One of the main strengths
of neural networks over other statistical and rule-based methods
is their ability to effectively model and learn from large amounts
of data. This allows models to find answers1 to natural language
tasks, such as providing semantic and grammatical information
about words and sentences.

To successfully perform a task, neural networkmodels represent
words as vectors and sentences as matrices of word vectors. The vec-
tors are transformed in such a way that the objective of a task can
be predicted. The unreasonable effectiveness of neural networks (Se-
jnowski, 2020) comes from the ability to search for effective parame-
ters θ that transform the input to solve a task. The parameters used
by a model are found using gradient descent-based methods. Thus,
given some input x and parameters θ, an output ŷ is produced:

f(x, θ) = ŷ (2.1)
The remainder of this chapter is dedicated to exploring how rea-

1In different tasks there are many acceptable answers. When ”answer” or ”so-
lution” is used in this thesis we merely refer to one possible answer.

6

NEURAL NETWORKS 7

sonable outputs are obtained, how different neural architectures are
constructed for different tasks, and how parameters can be learned
from data.

2.1 Language modeling

One task that neural networks excel at is languagemodeling (Bengio
et al., 2000). In language modeling the objective is to predict missing
words2 of a sentence. For example, consider the following sentence
with a missing word:

(4) the cat sat on the [MASK]

The language modeling task predicts which word fits instead of the
[MASK] token. Formally, the language modeling objective for pre-
dicting the [MASK] token at position n in the sentence can be for-
mulated as:

P (wn|w<n) (2.2)

Of course, many different words fit as a continuation, but what
is considered correct is what appears in a reference sentence. A ref-
erence sentence is a naturally occurring sentence from a corpus.

To predict missing words in a sentence, a model builds contex-
tual representations of the words that occur before the mask token.
The representations are obtained by reading the sentence from right-
to-left (uni-directional), or by reading the sentence in both the right-
to-left and left-to-right directions (bi-directional). Typically, but not
necessarily, language modeling is based on co-occurrence statistics.
That is, how often does a word occur in the context of another word.
However, other approaches exist for modeling language. In particu-
lar, approaches that combine statistical methods with rules, as given

2[MASK] will be used to indicate an unknown word that should be predicted.

NEURAL NETWORKS 8

by a context-free grammar (Meteer, Rohlicek, 1993; Jurafsky et al.,
1995).

In Example (4) the missing word is the last word of the sentence.
But the language modeling objective can also be extended to
predicting a randomly missing word (masked language modeling)
in a sentence. For example:

(5) the [MASK] sat on the mat and purred

To predict the missing word in masked language modeling there
may be context both to the left and right of the missing word. Thus,
the objective for predicting the [MASK] token at position n in the
sentence can be formulated as:

P (wn|w<n, w>n) (2.3)
Thus, in masked language modeling, we are given the complete

sentence where the missing word needs to be predicted. Whereas in
standard language modeling, only context to the left is given. These
two formulations of language modeling give a model different con-
texts to represent. But to produce a reasonable word in place of the
missing word a model needs to use the representation of the context
to predict not only the word that fit semantically but also various
grammatical features3 and sentence structures such as punctuation.
When mentioning language modeling in the remained of this thesis
we refer to masked language modeling unless otherwise specified.

Language modeling has been used to construct models (Peters
et al., 2018a; Devlin et al., 2019; Liu et al., 2019b) trained on large
amounts of data. These models are trained end-to-end meaning that
given an input the output is produced with no intermediate process-
ing steps, such as explicitly extracting the important features. In-
stead, models are expected to learn what the important features are

3If the lemma run should be produced, which of the various word forms: runs,
ran, and so on, fit into the context.

NEURAL NETWORKS 9

from observing the data. The purpose of these models is not nec-
essarily to perform well in language modeling but on other tasks,
such as answering questions or generating utterances in a dialogue.
4 Training large models with the language modeling objective to
obtain representations is called pre-training. The model is then ap-
plied to another task; and if the representations are trained further
on the task, it is called fine-tuning. If the model is applied to an-
other task, and is not further trained, it is called zero-shot learning.
The intuition is roughly: are the representations obtained from the
pretraining sufficient to complete another task without informing
the model of the specifics of the task.

Language modeling can be seen as a general language under-
standing task. Many aspects of language are needed to perform
language modeling, such as knowledge of sentence structure and
semantic plausibility. For instance, if a model is passed the masked
sentence: A word is a collection of [MASK] and predicts that [MASK]
should be replaced with cats, this would indicate that the model
considers cats as a plausible continuation to the sentence, which of
course is nonsense. However, if the model predicts cats it did some-
thing right; it correctly predicts that a collection of something in-
deed is more than one thing. These two factors, awareness of gram-
mar and semantic plausibility, allow the representations obtained
from language models to be applied to other language tasks success-
fully. When the representations obtained from a language model
are used for another task, it is an example of transfer learning (Pan,
Yang, 2010; Howard, Ruder, 2018; Peters et al., 2019). Transfer learn-
ing is the ability to adapt representations learned in one language
from one task to another task, to a new writing style, or to a new
language.

4To evaluate thesemodels the GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019a) benchmarks are often used.

NEURAL NETWORKS 10

2.2 Tokenization and word embeddings

The goal of processing language is to build an understanding of its
meaning. As such, we must define and represent the different units
of language (Webster, Kit, 1992). This oftenmeans identifying words
and sentences and assigning a meaningful representation to them,
which parameters of a model can manipulate. Identifying words
in a text is called tokenization. The words we find are then repre-
sented as d-dimensional vectors, also known as embeddings (Rumel-
hart et al., 1986; Mikolov et al., 2013a,b), and sentences are repre-
sented as matrices of size (k, d), where k is the number of words in
the sentence and d the size of the word embeddings. However, it is
problematic to identify what a word is across languages. The prob-
lem with words is that there seem to be no good set of guidelines
for identifying them (Haspelmath, 2017). In this section, we briefly
explore this problem regarding tokenization.

An English sentence can be tokenized by identifying words as a
sequence of characters surrounded by white space. However, it is
problematic to assign a word embedding to the text fragment isn’t
surrounded by white space. The problem is that it is a contraction
of the two words is and not. So if an embedding is assigned to isn’t
this embedding has to represent two words. Therefore, it is good
to separate isn’t into is and not and assign an embedding to each.
This is because otherwise the embedding for isn’t will encode two
words, and then the information for the embedding of isn’t will not
share information with the embeddings for is and not. Another ex-
ample is proper names such as New York City. All the words in
the proper name carry meaning individually; however, the words
in combination have a specific meaning that would get lost if they
are assigned an embedding each. Thus, New York City should not
be split at white spaces and instead an embedding should be created
for the sequence. In the word New York City we do not obtain the
meaning from the composition of the parts but rather the parts as

NEURAL NETWORKS 11

one unit. This problem becomes more acute in other languages that,
for example, do not use white-space, like Mandarin (Huang et al.,
2007) or Thai (Haruechaiyasak, Kongthon, 2013). Another aspect of
language to keep inmind is how themeaning of words is augmented.
For example, in agglutinative languages (Pan et al., 2020; Li et al.,
2020) different parts of a word have distinct grammatical meanings.
A natural question is whether words should be represented as-is or
by splitting texts into smaller units such as sub-word or character
embeddings (Bojanowski et al., 2017; Martin et al., 2020).

A general problem for representing words is that the vocabulary
of a language is theoretically infinite, while a computer’s memory
is finite. As such, having a separate representation for each word
form (for example run, runs, running, …) becomes infeasible if we
want to capture as much as possible from the vocabulary of a lan-
guage. A recent approach to tackling this problem is considering
sub-word tokens (Sennrich et al., 2016; Kudo, 2018; Bojanowski et al.,
2017; Church, 2020) instead of words. A sub-word is a substring of
a word; for example, the word moreover can be separated into the
sub-word more and over. To create the word moreover we would
add the sub-words more and over together. Using sub-words allows
us to represent a larger vocabulary in the computer memory since
we can compose the sub-words to form larger words. Another ben-
efit of this method is that the sub-words more and over will obtain
the information from the cases when they do not occur in the word
moreover.

But words can be broken down into smaller units, the charac-
ters. By assigning a representation to each character the relations be-
tween them can be modeled accurately, but at the cost of additional
compute (Edman et al., 2022). Since character embeddings represent
words by considering all the characters, it has been used for fine-
grained word predictions such as word similarity (Chen et al., 2015)
and named entity recognition (Santos dos, Guimarães, 2015). Addi-
tionally, it has also been proposed as a technique for dealing with

NEURAL NETWORKS 12

languages that have very large vocabularies (Yu, Vu, 2017; Özates
et al., 2018).

In neural networks the embeddings ofwords, sub-words, or char-
acters are obtained from a matrix, typically called an embedding
layer, of size (n, d) where n is the number of items that have a rep-
resentation, and d is the dimensionality of the vectors. The embed-
dings are typically initialized from a standard normal distribution
N (0, 1) (Kocmi, Bojar, 2017), which is then trained on some task.

2.2.1 Sentence embeddings

Sentences are composed of words in a linear order, and neural
networks initially represent sentences in the same manner. That
is, a sentence is a matrix of size (n, d), where n is the number of
words in the sentence, and d the dimensionality of the embeddings
(Blacoe, Lapata, 2012; Mitchell, Lapata, 2010; Wieting et al., 2016).
For some tasks, we want to predict whether a sentence is positive or
negative (sentiment analysis), thus a sentence composed of nwords
or sub-words with a dimensionality of d should be compressed to
a single vector of size d. For this, we need to pool the information
contained in the word embeddings. One can also avoid pooling the
information from the word representations by using the final or
summary representation produced by some models. However, one
of the main motivations for pooling the information is composition-
ality. That is, by reiterating Partee (1995):

The meaning of a whole is a function of the meaning of the parts

By the same process, we can consider meaning in neural net-
works to be a function of the word embeddings of the sentence.
Where the function is the structure of the neural network alongwith
its parameters. By considering the sentence as word embeddings in
a matrix, we can compose and combine them with various methods

NEURAL NETWORKS 13

that allow us to have more control over how the meaning represen-
tation for the sentence is constructed.

Several pooling techniques have been developed, with popular
ones being themax, sum, ormean pooling (Reimers, Gurevych, 2019;
Ek, Bernardy, 2020a; Ács et al., 2021). These techniques, the max,
mean, or sum are computed over the columns to compress a matrix
of size (n, d) to size d (Conneau et al., 2017). A sentence X , com-
posed of three words with d dimensions, is shown in Equation (2.4).

X =

x0
0 . . . x

0
d

x1
0 . . . x

1
d

x2
0 . . . x

2
d

 (2.4)

A new vector X ′ (the sentence embedding) is computed that
represents the words in a sentence by passing each column in X
through a function f , which is a function that takes the input val-
ues and reduces them to one value. This is so that sentences that
have different lengths are compressed to the same size, regardless
of the sentence length. The size of the sentence representation will
be that of the dimension of the word embeddings it contains.

x = [f(x0
0, . . . , x

2
0), . . . , f(x

0
d, . . . , x

2
d)] (2.5)

When using pooling, a neural network learns to select informa-
tion from a particular dimension from all words, such that the se-
lected information is most predictive for the task. More advanced
sentence representation techniques such as Arora et al. (2017);Wang
et al. (2017) have also been developed.

2.3 Linear and non-linear transformations

The purpose of neural networks is to predict something, such as
which word completes a sentence. To do so, we must extract the in-
formation we want from the word embeddings. Crucial to this is the

NEURAL NETWORKS 14

so-called linear transformation.5 A linear transformation takes as in-
put a vector v that is multiplied with a parameter θ and parameter b
(the bias6) is added to the result. The goal of this transformation is
to manipulate the input such that it is easier to predict the expected
output.

A linear transformation can be written as f(v; θ, b) = v⊤θ + b,
where v is the input. We can think of the input (a word vector) as
occupying a region, or a set of points, in a vector space, where the
values in v define this region. The parameter θ then transforms this
region which v occupies by contracting or expanding it. Finally, the
bias parameter b is used in a linear layer to improve the general-
ization capabilities of the layer, for a more in-depth exposition of
the bias the interested reader is referred to Bishop, Nasrabadi (2006,
Chapter 3.1).

Linear transformations are used to manipulate the input to be-
come more informative for a given task. Another use of a linear
transformation is to make a prediction, for example, a label associ-
ated with the input. If we want to predict a label for some represen-
tation, we want the output to be of size l, where l is the number of
possible labels. A design choice in linear transformation predictions
is that they contain a parameter for each label l which we predict.
So, if our input is of size 2 and there are four possible outputs, the
operations performed7 are shown in Equation (2.6), where x is the
input and the w’s are the values of the parameter θ.

w0

0 w0
1

w1
0 w1

1

w2
0 w2

1

w3
0 w3

1

 · [x0

x1

]
=

x0 · w0

0

x0 · w1
0

x0 · w2
0

x0 · w3
0

+

x1 · w0

1

x1 · w1
1

x1 · w2
1

x1 · w3
1

 =

y0
y1
y2
y3

 (2.6)

5Linear transformation and linear layer will be used interchangeably.
6When adding the bias, we have an affine transformation.
7The bias parameter have been removed from the computation to simplify it.

NEURAL NETWORKS 15

The representation of the labels is each row in W . As such, we
can extract and inspect the parameters associated with each label
and compare their structures and similarities. When the scores for
the possible labels have been computed, the softmax (Equation (2.7))
function is applied. The label that is assigned the highest score is se-
lected as the predicted label.

Activation functions

In the previous section linear transformations were introduced, but
not all relationships are linear. To model relationships that are not
linear we can augment linear transformations with activation func-
tions. By adding an activation function to a linear transformation
we obtain a non-linear transformation. There are several activation
functions with different strengths and weaknesses for this purpose.
We briefly present some of the more common activation functions
below in Table 2.1.

Activation Function
Sigmoid 1

1+e−x

Tanh ex−e−x

ex+e−x

ReLU (Nair, Hinton, 2010) max(0, x)
Leaky ReLU (Maas et al., 2013) max(0, x) + 0.01w ×min(0, x)

Table 2.1: Activation functions.

The output of a linear layer is a vector containing some values.
However the purpose is to predict some labels, these values, the log-
its, are unbounded and can take on any value. For learning purposes,
we want to normalize the logits so they can be interpreted as prob-
abilities when predicting a label. We obtain a probabilistic interpre-
tation of the logits by using the softmax function Equation (2.7).

NEURAL NETWORKS 16

Softmax(x) = exi∑j=1
K exj

(2.7)

The softmax function takes a vector containing unbounded val-
ues as input and re-scales them into the range [0, 1]. The sum of
the values now sums to 1, allowing us to interpret each value as a
probability.

2.4 Learning

For now, we can consider a neural network simply as a function f ,
that takes as input some data x and produces an output ŷ. We can
formalize learning a task as finding a neural network f(x, θ) = ŷ
such that ŷ = y where y are what label a human would assign to
the input x given the parameters θ. Learning a task in its essence
is finding a suitable θ while finding f is the modeling process, i.e.,
finding suitable transformations f which produce an effective θ.

If we have annotated data, like in the example above, and at-
tempt to learn the mapping from x to y, we call it supervised learn-
ing. However, we may also want to learn without having annotated
data as annotating the data can be expensive to produce and includes
annotation biases, which in addition to producing poorly annotated
data where models learn the wrong thing, can result in social biases
such as racism and sexism. For an overview of this problem, the
interested reader is referred to (Blodgett et al., 2020).

Models learn their parameters based on the data used to train
them. From this it follows that for a model to learn efficiently, there
must be a sufficient amount of data for the model to learn from. But
the data available does not always allow for this. Training a model
in these cases is called low-resource learning (Magueresse et al., 2020;
Singh, 2008). For models to learn in these cases, heuristics and data
augmentation techniques can be used. We discuss several of these

NEURAL NETWORKS 17

techniques in Chapter 3 when describing approaches to natural lan-
guage processing.

The task of a neural network is to predict an ŷ from the data
presented to the model. Where the ŷ may be words, labels, or some-
thing else. Let us consider a task that has three labels (y1, y2, y3),
the model assigns a score to each of these labels. To obtain these
scores, the neural network passes the input x through a set of pa-
rameters θ0, . . . , θn. The goal of passing the data through the pa-
rameters θ0, . . . , θn is that the output should be as close as possible
to what a human annotator assigned to the example.

For the neural network to produce output labels that resemble
the human-assigned labels, the parameters θ0, . . . , θn have to trans-
form the input data in an informative manner. To accomplish this,
neural systems make use of three core components:

• Backpropagation: The backpropagation algorithm (Rumel-
hart et al., 1986) estimates how the values in the parameters
should change to produce a better output the next time it gets
input.

• Loss function: The loss function estimate how good or bad
the final prediction is.

• Optimizer: The optimizer applies the updates to the param-
eters that the backpropagation estimated based on the loss
function.

2.4.1 Backpropagation

In neural networks, learning from data means manipulating the pa-
rameters in the model such that they transform the input so that
the output gets closer and closer to our desired output. An outline
of how information flows in a neural network is given in Figure 2.1.

NEURAL NETWORKS 18

This neural network is composed of two parameters, θ0 and θ1 or-
dered sequentially. First, the input x, let us imagine it is a tokenized
sentence, is passed to an embedding layer (θ0) where word embed-
dings are extracted. Next, the word embeddings are transformed
with θ1 followed by a softmax activation function to produce an out-
put ŷ.

x θ0 θ1 ŷ

forward propagation

backpropagation

Figure 2.1: The flow of back (red arrows) and forward (green arrows)
propagation in a simple neural networkwith two parameters, θ0 and
θ1.

We compute the transformations that result in specific outputs
during the forward propagation. To estimate how well the neural
network performed in the task, we use a loss function. When calcu-
lating the loss, it becomes inefficient to do it one example at a time.
Instead of computing one example at a time, several examples are
collected into a batch for which the loss is calculated. With a loss for
a batch of examples, we can train a neural network by computing
the partial derivatives for each parameter given the value of the loss
function. When we have obtained this information, we can use an
optimizer to update the values in our parameters to produce a better
output next forward propagation.

2.4.2 Loss functions

A loss function is a way of quantifying or estimating how well the
model is performing on a task. To estimate how much a prediction
resembles the annotated labels, we want to estimate how wrong the

NEURAL NETWORKS 19

prediction is, then minimize the model’s errors. We often want to
predict some discrete categorical variable for which cross-entropy
loss can be used. For example, we might want to predict a relation-
ship between two sentences (classification) or the part-of-speech tag
associated with a word (sequence labeling). As a minimal example,
let us consider part-of-speech tagging with a subset of the parts-of-
speech labels (noun, verb, and determiner). For example, if we
want to tag the sentence

(6) The cat chases squirrels

with our set of labels, the neural network produces a score for each
label that is converted to a probability with the softmax function for
each word. We then obtain an output like Table 2.2.

Word Noun Verb Determiner
The 0.08 0.02 0.9
cat 0.7 0.25 0.05

chases 0.2 0.75 0.05
squirrels 0.9 0.02 0.08

Table 2.2: An example of the softmax output for part-of-speech tag-
ging.

The models’ output should then be compared to the labels in
the dataset. To do this we create a probability distribution with
all probability mass on the correct part-of-speech tag, e.g., cat =
[1.0, 0.0, 0.0]. To compare the output with the gold, we use the cross-
entropy equation, defined as:

LCross-Entropy = −
∑
i

p(yi) log p(ŷi|xi) (2.8)

Where i is the index of a label in the example, p(yi) is the probability
assigned by annotators of the dataset, and p(ŷi|xi) is the probabil-
ity estimated by the model. First, the negative sum of each pair of

NEURAL NETWORKS 20

word-gold probability distributions is computed and used to mea-
sure how wrong the model is, then the objective is to minimize this
value. This makes it possible to compute a distance measurement
between the probabilities an annotator has assigned and the proba-
bilities a model has estimated. For the interested reader, a more com-
prehensive description of the cross-entropy can be found in Good-
fellow et al. (2016, Chapter 3.13). Alternatively, when performing a
regression task, predicting a single number, the Mean Square Error
(MSE) can be used, defined as follows:

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.9)

The MSE loss calculates how far from the reference the model
is using the squared Euclidean distance. If ŷi is larger than yi, sub-
tracting one from the other will result in a negative term. However,
remember that our objective is to minimize the loss term. If we try
to minimize this term (which can be negative), our goal will be to
maximize the value of ŷi, which is not what we want.

2.4.3 Optimization

For optimization, the goal is to update the parameters of a neural net-
work such that we minimize the loss function. This requires some
method of estimating how the parameters θ should change given
the input and loss.

Stochastic Gradient Descent We can use backpropagation to es-
timate the importance of different parameters in the final output.
However, we also need an algorithm to update the parameters’ val-
ues. One of the earliest methods for doing this is the Stochastic Gra-
dient Descent (SGD) (Kiefer, Wolfowitz, 1952) method. SGD goes
over a dataset of examples (x0, y0), . . . , (xn, yn) and perform an up-

NEURAL NETWORKS 21

date of the parameters based on the loss obtained from each exam-
ple. The update performed for each example is the following, where
θ is the parameters of the model, η is the learning rate, L is the
loss function used, and ∇θL(xn, yn, θ) the gradient obtained form
the loss function over the example (xn, yn). The SGD algorithm is
shown in Algorithm 1.

Algorithm 1: Stochastic Gradient Descent
for 1 . . . N ∈ D do

θ ← θ − η∇θL(xn, yn, θ)

The learning rate η defines how large of a step we should take
in each parameter update. That is, we do not want to take too small
updates because it will take a long time to learn a task, but we also
do not want to make too large updates. The goal of updating the pa-
rameters is for the loss function to converge towards local or global
minima.

However, individual updates for each example (x, y) in the
dataset are costly when the dataset contains many examples. There-
fore, the loss is calculated over a mini-batch of examples to mitigate
this. To perform updates on mini-batches the dataset D is divided
into M mini-batches of examples. These examples can be sampled
randomly from the dataset or according to some schedule, for ex-
ample as suggested by Bengio et al. (2009). To perform an update,
we take a mini-batchM ′ from the dataset and calculate the updated
parameter θ according to Algorithm 2 (Goodfellow et al., 2016, Chap-
ter 8).
Mini-batch SGD thus calculates a loss for each example in a mini-
batch, then computes the mean of the losses. The parameters θ are
then updated based on this mean loss.

NEURAL NETWORKS 22

Algorithm 2: Mini-batch Stochastic Gradient Descent
for 1 . . .M ∈ D do

θ ← θ − η 1
|M ′|∇θ

∑
m∈M ′ L(xm, ym, θ)

Adam The Adam optimizer (Kingma, Ba, 2015) is a variant of the
SGD algorithm that combines two advances in optimization: Ada-
Grad (Duchi et al., 2011) and RMSProp (Tieleman et al., 2012). The
Adam update is defined as follows (Ruder, 2016):

θt+1 = θt −
η√

vt + ϵ
mt (2.10)

The Adam optimizer runs per-parameter learning rates, so each
neural network parameter has a specific learning rate. This learning
rate is then scaled based on the previous update steps. The advan-
tage of using per-parameter learning rates is that the learning rate
for each parameter can be adapted to how good the output is given
the importance of that parameter. There is no global learning rate
that has to be applied to all the parameters. This becomes important
when neural networks contain up to billions of parameters. Scaling
the learning rate for each parameter based on previous updates have
the advantage of being more flexible in local minima. The local min-
ima can be regarded as a point in the loss landscape where the loss
is lower than before. However, some updates will still result in a
lower loss. For the model to get to an even lower loss, it has to take
additional steps which move the loss out of the local minima. This
is illustrated in Figure 2.2.

Two parameters are used to scale the learning rate based on pre-
vious updates: mt and vt, where t is the current step. To estimate
the first moment, mt uses the mean of previous gradients, and the
second moment is estimated by vt, the uncentered variance of the
previous gradients.

NEURAL NETWORKS 23

0.3

0.32

0.34

0.36

0.38

0.4

Local minima

Global minima

Training step

Lo
ss

Figure 2.2: Local and global minima.

NEURAL NETWORKS 24

2.5 Attention

A strength of neural networks is their ability to select salient infor-
mation from embeddings. So that given word or sentence embed-
dings, we want to identify and keep the important information re-
lated to the task and discard the otherwise available information. A
powerful technique for this is using the attention mechanisms (Bah-
danau et al., 2015). The intuition behind the attention mechanism
is that we can use an embedding (k) to estimate the importance of
some other embeddings (S = (s0, s1, . . . , sn)). For this, some func-
tion f is used, that produces an output an that indicates the impor-
tance of each pair (k, sn). The process is illustrated in Figure 2.3.

s0 s1 sn

f(k, s0) f(k, s1) f(k, sn)…

a0 a1 an

K

Figure 2.3: Generic structure for computing attention scores.

These attention scores a0, . . . , an are not bounded and can po-
tentially take on any value. However, we are interested in how the
different inputs relate to the key k in log proportion to each other.
To compute this, we can apply the softmax function over the atten-
tion sequence:

A = softmax(a0, . . . , an) (2.11)

NEURAL NETWORKS 25

Because the softmax function scale values inA, their magnitudes are
now relative to each other in addition to being relative to k. If our
goal is to predict something for the whole sequence, the weighted
sum or mean can be used. Where we take the sum or mean of all
the embeddings s0, . . . , sn, and each embedding is multiplied by its
corresponding attention value. However, if we do not want a rep-
resentation for the whole sequence but a sequence of weighted em-
beddings, we multiply each s by its corresponding attention value.

When working with attention modules, we consider a key repre-
sentation k and a sequence s0, . . . , sn. For this, we want to compute
a value for every element in the sentence, such that the salient ele-
ments given k are assigned higher values. We describe some com-
monly used attention modules below:

Dot-product In dot-product (also known as general attention) (Lu-
ong et al., 2015), the attention score between two representations k
and s is calculated by considering the dot-product between the two
representations.

f(k, s) = k⊤s (2.12)

Cosine In cosine-based attention (Graves et al., 2014) the similarity
between the k and s is estimated through their cosine similarity.

f(k, s) = cosine(k, s) (2.13)

Additive/Concatenative In additive attention (Bahdanau et al.,
2015) (also known as concatenative attention) there are three learn-
able parameters, v, θa, and θb.

f(k, s) = v⊤tanh(θak + θbs) (2.14)

NEURAL NETWORKS 26

2.6 Neural Networks for Sequences

Processing natural language often involves a whole sequence of
words. Previously we have seen how to transform and learn things
about a single word embedding, but processing language typically
involves considering a sequence of words whose meanings depend
on each other.

When processing a sequence of words, twomain neural architec-
tures are used, namely Recurrent Neural Networks (RNN, (Elman,
1990)) and Transformers (Vaswani et al., 2017). In this section, we
describe the inner workings of RNNs and the transformer model in
the next section.

2.6.1 Recurrent architectures

The recurrent neural network architecture is composed of an RNN
cell R, which takes a word embedding as input, selects some infor-
mation from the input to keep in memory, and generates an output
h. A generic schema of an RNN is shown in Figure 2.4, where R is
the RNN cell.

R R R R

h0

x0

h1

x1

h2

x2

ht

xt…

…

Figure 2.4: Schematic design of the RNN architecture.

The RNN works sequentially: it takes one input and processes

NEURAL NETWORKS 27

it, then takes the following input and processes it. But crucially, the
input xn is contextualized by the previous inputs x0, . . . , xn−1 in
the RNN. As such, when the hidden state is computed for xn, this
computation considers the previous inputs seen. The simplest RNNs
(Elman, 1990) contain three parameters, W , U , and b, and for an
input xn the hidden state is calculated as follows, where σ is the
sigmoid activation function and t the current time step:

ht = σ(Wxt + Uht−1 + b) (2.15)
However, a problem simple RNNs have is long-range dependen-

cies (Bengio et al., 1993). As the name suggests, the problem con-
cerns how models can keep information from the input at time-step
t in memory such that it is available at a later timestep. This can be
difficult because there is a tendency to overwrite the information in
memory as more inputs are passed to the model. A related issue that
the simple RNN had to deal with was that of vanishing (the gradi-
ents become very close to 0 and only small updates are performed)
and exploding gradients (gradients become very big and large up-
dates are performed) (Pascanu et al., 2013). To tackle these issues
two architectures in particular have been suggested, GRU (Gated-
Recurrent Unit) (Chung et al., 2014) and LSTM (Long-Short Term
Memory) (Hochreiter, Schmidhuber, 1997). Both of these architec-
tures are based on the principle of a gating mechanism. The gating
mechanism alleviates the issue of vanishing gradient by allowing
the model to select information to retain, thus allowing the model
to ignore some of the input signals and not consider them when
computing the gradients. The problem of exploding gradients can
be tackled by imposing a constraint on how large gradients can be
(gradient clipping) or by using L1 or L2 weight regularization (Sali-
mans, Kingma, 2016).

In particular, we will outline the LSTM model here. To keep
track of the progress in the LSTM, there is the hidden state ht and
the cell state ct. In addition to these, there are four components

NEURAL NETWORKS 28

responsible, where each of the components has three parametersW ,
U , and b associated with it. To compute a new hidden state for the
input, first, there is the forget gate f which selects the information
to forget. Then there is the input gate i, which selects information to
keep. Next, we want to update the cell c̃ for the current time step to
keep track of the new information. Finally, we have an output gate
o, which selects information to include in the output. To update our
cell state, we multiply what should be forgotten with the previous
cell state ft ⊙ ct−1, and to this, we add the information we want to
keep by multiplying the current cell state it ⊙ c̃. Finally, the output
of the LSTM is computed by multiplying the output state ot with the
cell state tanh(ct). In all, the operations performed by the LSTM cell
are summarized in Equation (2.16).

ft = tanh(Wfxt + Ufht−1 + bf)

it = tanh(Wixt + Uiht−1 + bi)

ot = tanh(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(2.16)

The LSTM led to a surge of developments in a variety of NLP
topics, such as learning formal languages (Gers, Schmidhuber, 2001;
Bernardy, 2018), Language modeling (Sundermeyer et al., 2015; Ver-
wimp et al., 2017), Natural Language Inference (Bowman et al., 2015;
Chen et al., 2017), and others (Goldberg, 2017, Chapter 16).

The RNN in Figure 2.4 shows only that we read from left to right,
that is, a unidirectional RNN. However, we can also combine left-to-
right with a right-to-left reading by inverting the order of the input
elements and computing this new sequence with the RNN. Then,
we have all the word representations from the left-to-right direc-
tion

−→
h 0, . . . ,

−→
h t and from the right-to-left direction

←−
h 0, . . . ,

←−
h t.

NEURAL NETWORKS 29

To combine them, we can concatenate the forward and backward
pass of each word representation:

−→
h 0,
←−
h 0

...
−→
h t,
←−
h t

Note that the output is twice as large - we are concatenating the left-
to-right and right-to-left word representations. This allows a model
which reads a sentence in a linear order to consider both the left and
right context.

2.6.2 Transformer architectures

In recent years the transformer model (Vaswani et al., 2017) has
emerged as the dominant model in natural language processing
(Wolf et al., 2020). The transformer is based on the self-attention
architecture presented in the next section. The transformer is of-
ten trained with the MLM objective presented in Section 2.1. The
original transformer model used as a language model (Devlin et al.,
2019) was also trained with an additional objective, next sentence
prediction. This objective is to predict whether another sentence 7b
follows the masked sentence 7a:

(7) a. The bowl is [MASK] and of unknown origin.
b. It contained spices.

The benefit of the following sentence prediction objective is that
it allows a model to account for additional context beyond the sen-
tence level, making the representations consider what surrounding
context is relevant for the sentence. More recent models such as
(Liu et al., 2019b) exclude this objective.

The transformer uses some form of sub-words, for example,
Byte-Pair Encoding (Sennrich et al., 2016), WordPiece (Wu et al.,

NEURAL NETWORKS 30

2016), or SentencePiece (Kudo, Richardson, 2018), to split words
into sub-words and map them to vectors. Additionally, attention
generally does not encode positions, i.e., where in a sentence a
word occurs. To obtain positional information, the sub-word vec-
tors are concatenated with so-called positional encodings that help
the model determine what token occurs before or after another (Ke
et al., 2021).

w⊤
0 w2√
d

w⊤
1 w2√
d

w⊤
2 w2√
d

w⊤
0 w1√
d

w⊤
1 w1√
d

w⊤
2 w1√
d

w⊤
0 w0√
d

w⊤
1 w0√
d

w⊤
2 w0√
d

w
0

w
1

w
2

w
0

w
1

w
2

Figure 2.5: The self-attention computation QK⊤
√
d

given the three to-
kens w0, w1 and w2.

Self-attention Heads Self-attention is the basis of the transformer
model, defined as:

SelfAttention(Q,K, V) = softmax(QK⊤
√
d

)V (2.17)

Where Q (query), K (key), and V (value) are parameterized trans-
formations of the input. With these three representations, we first
compute the dot-product of all possible combinations and divide by
the square root of their dimension (

√
d). The QK⊤ part of the self-

attention formula can be visualized as Figure 2.5. Combined with

NEURAL NETWORKS 31

softmax along the rows in Figure 2.5, i.e. the cases when wn is the
key, gives us a matrix of attention scores between word combina-
tions. We then use these scores to scale the V representation, such
that V0 is scaled by the scores obtained from combining the input
s0 with the other words in the sentence. Thus, we take a scaled ver-
sion of the dot product and use the attention scores to compute a
weighted sum of V .

Transformer Structure Self-attention modules are organized in a
stacked fashion using different layers. Each layer in the transformer
is composed of m self-attention heads, such that each layer learns
m different self-attended variations of the input, which are then
combined and passed to the next layer. Before passing the output
to the next layer, we compute layer normalization (Ba et al., 2016)
on the concatenated representations from each attention head. A
schematic representation of the transformer architecture is shown
in Figure 2.6.

At each layer, the transformer learns different representations of
the input. Research has shown that at different layers and attention
heads, different linguistic patterns appear to be processed (Kovaleva
et al., 2019; Geva et al., 2021). For example, lower layers in the model
typically learn information about morphology Section 3.3 and syn-
tax Section 3.4. In contrast, the latter layers of the model learn se-
mantic and pragmatic aspects (Clark et al., 2019; Tenney et al., 2019).
In general, we can note that certain parameters appear to be better,
or worse, at encoding different parts of an input. Thus, isolating
which parameter is responsible for what in the output become diffi-
cult.

NEURAL NETWORKS 32

Q0 K0 V 0 Qh Kh V h. . .

w0, . . . , wn

softmax(Q0K0⊤
√
d

)V 0 softmax(QhKh⊤
√
d

)V h. . .

e00, . . . , e
0
n eh0 , . . . , e

h
n

. . .

cat(e00, . . . , eh0)θ...
cat(ehn, . . . , ehn)θ

w0, . . . , wn

Figure 2.6: One layer in the transformer with h self-attention heads.
Here θ is a linear transformation that performs the dimension re-
duction (|n|, h · d) → (|n|, d) that produces the representations
w0, . . . , wn. The final layer normalization step has been omitted.

One popular technique for this is freezing layers of the trans-
former (Michel et al., 2019; Lee et al., 2019) to asses how the model
perform while only training parts of the model on a downstream
task. Besides probing a model by manipulating its parameters, Ala-
jrami, Aletras (2022) explores how different pre-training objectives
influence a model’s capacity to learn linguistic properties. They per-

NEURAL NETWORKS 33

form their experiments by consideringmasking strategieswhich can
be categorized as linguistically motivated or not. Their findings sug-
gest that the largest factor in how well models learn linguistic prop-
erties lies in the data used to train and the architecture of the model,
rather than the pre-training objective.

Multilingual Transformer Models As the transformer models
gain-ed popularity and showed an impressive performance for a
variety of tasks, a line of research began exploring the possibility
of constructing a multi-lingual transformer model (Xue et al., 2021;
Conneau et al., 2020; Liu et al., 2020b). That is, a transformer-based
language model that can process many different languages simulta-
neously. Generally, these models are trained in the same manner as
monolingual models but with data from many languages.

This allows us, for example, to fine-tune a multilingual model
on an English dataset and evaluate it on a Greek test set. Briefly,
because all languages share a single vector space when this space
is adapted to English data when fine-tuning, an effect of this is that
the word representations in another language are also modified. As
a result, these models generally show strong performance and an
impressive ability to model many languages. A question that nat-
urally arises with multilingual transformer models is how does it
work, and in what scenarios can these models transfer information
successfully between languages; this has been investigated by (Pires
et al., 2019) among others. Additionally, multilingual models have
been shown to encode some language-specific properties in their
representations (Rama et al., 2020).

2.7 Encoders and Decoders

As of yet, we have seen models that encode words in a sentence as
representations, which are then used to predict a label.

NEURAL NETWORKS 34

The neural architectures we have seen are able to generate a
fixed set of predictions, and the number of outputs the models
should produce is known. But in the cases where this information is
not known a different type of architecture has to be employed. For
this, encoder-decoder (also known as sequence-to-sequence)models
(Sutskever et al., 2014) can be used. Encoder-decoder models are par-
ticularly useful for tasks that require models to produce new words,
such as machine translation, where a sentence in one language is
to be translated into another language, or image captioning, where
the model is to generate a description for an image. In these cases,
there is no strict correspondence between the words which should
be generated and the input size. In Example (8) when translating
from English (in this case, the source sequence) to Swedish (the tar-
get sequence), we can note that the determiner (the) is encoded in
the word katten in Swedish. This means that there is not a 1-1 cor-
respondence between the words in the source and target sentence.

(8) Katten
cat.DET

springer
run.PRS

The cat runs

To translate, a model needs to generate n representations, where
n is the number of words in the target sentence. To do this sentences
are encoded with the start- and end-of-sequence special tokens sur-
rounding the sentence. The purpose of these special tokens is to
inform the model where the sentence starts and ends. The end to-
ken also functions as a command to the model to stop generating
representations.

The decoder is anothermodel with independent parameters, that
produce a sequence of new representations. Put simply, the final
state of the encoded sequence is passed through the decoders’ pa-
rameters that produce a new representation. This new representa-
tion is then decoded into a token and passed as the next input to the
decoder. The decoder will continue to produce new representations

NEURAL NETWORKS 35

until one is decoded as the end-of-sequence token. Figure 2.7 shows
how the encoder-decoder model generates a translation using an
RNN model.

the cat runs <eos>

katten springer <eos>

Re Re Re Rd Rd Rd

Figure 2.7: A RNN based Encoder (Re) and Decoder (Rd) architec-
ture for translating The cat runs to Swedish.

The objective of an decoder is to produce the most likely target
sequence y1, . . . , y′t given the source sequence x1, . . . , xt as shown
in Equation (2.18).

p(y1, . . . , yT |x1, . . . , xT) =
T∏
t=1

p(yt|x1, . . . xt, y1, . . . , yt−1) (2.18)

To produce the most probable sequence, a decoding algorithm
is employed on the generated representations. For this many differ-
ent algorithms can be used but commonly greedy- or beam-search
(Dept., 1977) is used. Greedy search selects the most likely token
at each time-step. To make the decoding more varied and take the
previously generated tokens into account beam search is commonly

NEURAL NETWORKS 36

used. Beam search operates by finding several possible decoding
sequences and then selecting the most probable one.

These types of models produce a sequence of new representa-
tions, rather than predicting a label for the input representations.
However, the models can be effectively used for tasks that tradition-
ally require the model to predict labels. Examples of this include T5
(Raffel et al., 2020) and its multilingual versionmT5 (Xue et al., 2021).
The advantage of this approach is that a model may be trained on
many tasks simultaneously, using the same learning objective, train-
ing procedure, and decoding strategy (Raffel et al., 2020). This allows
a model to transfer information learned in one task to another.

“We are not interested in the
fact that the brain has the
consistency of cold porridge.”

Alan Turing

Chapter 3

Linguistic Structures

In language, the lexical meaning of a word is the word meaning in
the absence of contextual information. Typically, what this mean-
ing is can be found in a dictionary. But the dictionary meaning (the
lemma) can also be modified by contextual and non-linguistic infor-
mation. For example, consider the word warm, it may both refer
to temperature (It is warm outside) and to clothing that makes you
feel warm (This fleece is warm) (Lee, 2021). However, structures in
language can further specify the semantic or syntactic properties of
the word and relate it to other words in a sentence. The meaning
expressed by a word in a sentence is an interplay between the se-
mantics of the word, word, and sentence structures. This interplay
between meaning and structure allows language to express a wide
variety of concepts and situations. For example, while the noun cat
denotes the concept of a cat, this tells us nothing about the real-
world situation that elicited the occurrence of cat in the language.
Without any specification describing the concept’s details, we can
only make a semantic interpretation based on the lexical meaning.

Languages contain many different structures that help shape
the meaning expressed; this section is dedicated to exploring them.
Thro-ughout the presented papers only a limited number of these

37

LINGUISTIC STRUCTURES 38

structures are explored. Following the themes explored in the pub-
lished papers, this section is dedicated to grammatical structures
such as morphology and syntax, and how they relate to meaning.

3.1 Structure and Meaning

A core property of language is that words carry lexical meaning,
the concept or function a word signifies. However, language is
more than a collection of lexical meanings; it is lexical meanings
augmente-d to express more fine-grained properties and aspects,
organized in a particular way in the context of other words to re-
late their lexical meanings. However, to talk about how meaning
and structure relate, we need to consider compositionality and the
syntax-semantics homomorphism. This homomorphism postulates
that there is a mapping of the syntactic structure to the semantic
meaning (Partee, 2014). In particular, this notion was formalized by
Montague (Montague, 1970), stating that we can analyze the struc-
ture of words in a sentence to derive its semantic meaning. That is,
themeaning of a sentence can be viewed as a function that composes
the elements of its syntactic structure.

In linguistics, when talking about the structure of a language,
the morphological and syntactic patterns are often referred to. On
an approximate level, we can draw a line between morphology and
syntax by saying that morphology deals with structures within
a single word and that syntax deals with how a collection of
words are structured. But looking closer at the separation between
morphology and syntax, this line becomes less clear. For example,
how words express fine-grained meaning can influence the word
form and how it should be placed in a sentence, for example, by
agreement. An example of agreement is shown later in Figure 3.2.
This is an example of when morphology influences how syntactic
structures are realized. Instead of considering morphology and

LINGUISTIC STRUCTURES 39

syntax as two separate areas of study, we can consider them jointly
as morpho-syntax. We further discuss the interactions between
morphology and syntax in Section 3.3.

The question of how these different morphological, syntactic,
and morpho-syntactic structures give rise to complex meaning is
still an open question. One way of exploring this is through entail-
ment problems. Entailment problems can generally be formulated
as follows: one sentence (the premise, denoted as P), does this give
sufficient evidence to claim that another sentence (the hypothesis,
denoted as H) is True. For example:

(9) P John sees Mary playing
H Mary is playing

Here we can see that John is doing some action (sees), and the thing
John is seeing is Mary playing. The premise, in this case, gives suf-
ficient evidence that Mary is playing because that is what John is
seeing 1. We can say that the premise is sufficient to justify the hy-
pothesis because of word order. If the order of John and Mary were
swapped, it would not justify the premise, as the subject of an ac-
tion is given by its position relative to the verb, i.e., to the left of the
verb.

Languages such as English mainly rely on syntactic structures
to evoke meaning representations, and its morphological system is
relatively weak. This is in sharp contrast to agglutinative languages
such as Turkish or Finnish, which rely mainly on the morphological
structure to evoke meaning representations. However, in any lan-
guage, words carry meaning, and the word-internal structure fur-
ther modifies that meaning. For example, the word-internal struc-
ture can help us disambiguate when something happens as shown
in Example (10).

1We assume here that John is not hallucinating.

LINGUISTIC STRUCTURES 40

(10) P The cat chased after the mouse fast
H The cat is running

In this example, we can note that in the verb chased, the inflec-
tion indicates that it happened in the past (past tense, PST). While in
the hypothesis, we have a sentence about something that is going on
at this moment (progressive tense, PROG), which forces us to eval-
uate the entailment problem as False given that premise says that
something happened before, while the hypothesis says that some-
thing is happening now.

While syntactic ambiguity in English is common, morphologi-
cal ambiguity can be difficult to find, as the morphological system
is minimal at best. However, one type of ambiguity surrounds ad-
jectives of the form un-X-able (Vikner, Vikner, 2008):

(11) P The chest is unlockable
H Someone can open the chest

Where the adjective ”unlockable” can be interpreted in two ways,
depending on how the morphemes are attached to each other:

• that which cannot be locked

• that which can be unlocked

We have to use the second interpretation to evaluate the entail-
ment problem as True. However, this interpretation depends on
which part of the word the prefix un- is attached to. Thus, how
morphemes are attached changes the semantic meaning of the word.
The difference between the two interpretations is shown in Fig-
ure 3.1.

We can also consider cases where syntactic structures, such as
word order, gives rise to ambiguous meaning of a sentence. We can
consider an entailment problem that is determined by how the En-
glish syntactic structure is interpreted, such as Example (12).

LINGUISTIC STRUCTURES 41

ADJ

ADJ

Affix

able

V

lock

Affix

un

(a) The X cannot be locked

ADJ

Affix

able

V

V

lock

Affix

un

(b) The X can be unlocked

Figure 3.1: Interpretation of un-X-able adjectives.

(12) P John saw the girl with a smile
H John had a smile

To determine whether this entailment problem should be evalu-
ated as True or False, the syntactic structure needs to be considered
to parse this problem as True or False. To make the entailment True,
the parse of the first sentence needs to attach with a smile to John,
as the hypothesis says that John is the one who was smiling. If, on
the other hand, ”with a smile” is attached to the girl, then John is
not the one who is smiling, and we have to evaluate the problem
as False. So, to make a meaningful judgment of Example (12), a hu-
man reader of these two sentences needs tomake a decisionwhether
with a smile is modifying John or the girl which adds another layer
of complexity.

We can also consider cases where different syntactic structures,
gives rise to the same meaning representations. Consider the two
sentences in Example (13).

(13) a. The man painted the house
b. The house was painted by the man

Themeaning of the two sentences is the same, but theword order
is different. So we cannot merely make the judgment that because

LINGUISTIC STRUCTURES 42

two sentences have different word orders, they also have different
meanings. Crucially, the semantic interpretation that the syntactic
structure evokes needs to be taken into account.

3.2 Grammatical Structures

Besides lexical meaning, words in sentences have indicators that
help identify the category of words (part-of-speech), specify the
meaning of the inflection of a word (grammatical features), and how
words modify each other (grammatical relations).

Part of Speech Part of Speech (POS), also known as lexical cat-
egories, broadly categorize the role of a word in a sentence. But
in addition to describing how a word can be used in a sentence,
it also informs us what grammatical features can be added to the
word. POS tags can be divided into two categories, open and closed
sets. This means that closed POS tags, such as pronouns (e.g. he,
she) and conjunctions (e.g. and, or), have a fixed vocabulary size.
These classes do not generally allow for newwords to be added. This,
of course, is contentious as both Swedish and English (Hord, 2016)
have recently been enhanced with various new pronouns that mit-
igate gender connotations. On the other hand, open word classes
allow for new words (also called neologisms) to be added. The POS
tags that are typically considered to be open are verbs (actions),
nouns (things), adjectives (descriptions of things), and adverbs
(descriptions of actions). Thus when encountering a new unknown
word, we can generally say that it belongs to one of the open word
classes.

The task of assigning POS tags has been one of the first tasks
to be explored in NLP; one reason for this is the usefulness of shal-
low syntactic analyses, which can either be used in other systems
(Marcheggiani et al., 2017; Ren et al., 2017; Cheng et al., 2020) or used

LINGUISTIC STRUCTURES 43

as a preprocessing and analysis tool for text (Östling, Wirén, 2013;
Saphra, Lopez, 2018; Oktavianti, Ardianti, 2019). Systems have be-
come good at predicting POS tags, reaching up to 97% accuracy on
English data (Manning, 2011). Common approaches to POS tagging
using neural networks are to pass a sentence through a bidirectional
LSTM network and then run the outputs through a linear transfor-
mation to obtain POS labels (Wang et al., 2015; Yasunaga et al., 2018).

In recent times, the transformer model has become more popu-
lar, especially for extending POS tagging capabilities beyond English
(Kondratyuk, Straka, 2019). Other languages with many available
resources are also performing well, but for low-resource languages,
the accuracy of POS taggers still lags behind larger languages such
as English. For low-resource languages, several techniques have
been developed to overcome this. For example, by infusing lexi-
cal knowledge into models (Plank, Klerke, 2019), or by including
character-level information in the training objective (Kann et al.,
2018). These are examples where additional information can be ob-
tained from the same language. Another method is to use untagged
data to project labels from one language to another (Fang, Cohn,
2016) or incorporate data from other languages using transfer learn-
ing techniques (Vries de et al., 2022).

Grammatical Features In the previous section, we introduced
how words can be categorized, both in terms of how a word can be
used in a sentence and simultaneously distinguishing between what
things a word signifies. The notion of POS encodes howwords work
in language, that is, how they relate to sentence structure. To facili-
tate communication about the particular details of a word, speakers
can attach properties to words, namely grammatical features. For
example, verbs refer to actions, and when communicating that an
action was undertaken, an essential piece of information is when it
took place, that is, the tense. Additionally, a verb may take sev-
eral other grammatical features, such as mood (how the verb is ex-

LINGUISTIC STRUCTURES 44

pressed, for example, whether it is a command, imperative, or that
the verb is possible, potential) and evidentiality (what evidence
exist from the speaker point of view of the event) among others. For
example, the Finnish verb ”palai” in (14) has a number of grammati-
cal features associated with it.

(14) Tietokone
computer.NOM.SING

palai
burn.IND.SING.3PRS.PST.FIN.ACT

täysin
down
en: The computer burned completely down

This expresses the concept of burn, and also indicate that the burn-
ing happened previously (PST), that it is a completed action (FIN),
it is in the third person perspective (3PRS), that it happened (IND),
that the subject of the sentence is the agent of the verb (ACT) and
agreement with the number of the subject (SING).

The features a particular word can take varies between lan-
guages. In many languages, the tense of a verb is expressed with
inflection (that is, by adding a morpheme representing when an ac-
tion took place). However, for isolating languages that do not em-
ploy morphology to a large extent, for example, Mandarin Chinese,
other devices than inflection are used. In some cases, the context
can help disambiguate the tense of a verb. In other cases, lexical
items denoting time (such as yesterday and now) are used.

Grammatical features can be of a syntactic (morpho-syntactic) or
a semantic (morpho-semantic) nature (Kibort, Corbett, 2010, Chap-
ter 4). Syntactic features are those which are influenced by syntax,
for example, number in English and Finnish are involved in agree-
ment. When assigning number to a word the value of this feature
then influences the number feature in other words in the sentence.
An example in English of this is shown in Figure 3.2, where the num-
ber of the subject and verb have to be the same. Another example

LINGUISTIC STRUCTURES 45

of this we saw previously in Example (14).

The cats think it matter
- plural - - plural

Same number

Figure 3.2: Subject-verb number agreement.

In this case, because the subject has the number feature of plu-
ral, the verb also has to have it. If the subject would be singular
instead cat, then the verb must take the singular formmatters. How-
ever, some features are not influenced by syntax, for example, tense.
When tense is assigned to a word to indicate when it took place,
there are no syntactic constraints that prevent a certain tense as-
signment.

In computational linguistics, discovering the grammatical fea-
tures of a word have many applications. For example, in machine
translation, it can help with the translation of low-resource andmor-
phologically rich language with many inflections (Ataman et al.,
2020), or in Named Entity Recognition (Güngör et al., 2019). Ad-
ditionally, grammatical features are essential in typological studies,
where they often help distinguish languages from each other (Ponti
et al., 2019). Approaches to tagging grammatical features are sim-
ilar to those of POS tagging. In both tasks, the goal is to assign a
tag (part-of-speech) or a set of tags (grammatical features). In gram-
matical feature tagging2 systems generally rely on character embed-
dings (Matteson et al., 2018) or sub-word embeddings (Kondratyuk,
Straka, 2019) to identify inflectional features. Then the embeddings
are passed through a model to obtain hidden states from which the
grammatical features can be predicted.

2Sometimes referred to as morphological tagging or morphological analysis.

LINGUISTIC STRUCTURES 46

Grammatical Relations Grammatical relations concern how
words are related to each other. This is in contrast to grammati-
cal features, which primarily augment the meaning of a single word.
For example, verbs describe an action, and actions typically have
someone doing something. Thus, a relation exists between the doer
(the subject) and the action (the verb). Additionally, the action per-
formed may be performed to something (the direct object) and per-
haps with something (the indirect object). For example, in English,
the subject, direct object, and indirect object are given by the word
order, so we can annotate a sentence as follows:

(15) Adam
SUBJECT

gives Bill
Dir-OBJECT

a megaphone
Ind-OBJECT

However, in other languages this information is given by case
markings on words, for example in Russian as we saw in the intro-
duction:

(16) Кошка
SUBJECT

преследует собаку
Dir-OBJECT

‘the cat chases a dog’

Depending on the language, there are different ways of identify-
ing subjects, direct and indirect objects. There are many grammati-
cal relations that all describe how words are related to each other in
a sentence. This is further discussed in Section 3.4.

3.3 Morphology

Aswe have seen, the notion of aword is integral to the study of struc-
tures in language. Many strategies we have looked at use words to
build structures that give rise to semantic meaning. Besides being
used to build structure, words themselves have internal structures.

LINGUISTIC STRUCTURES 47

The study of their structure is commonly called morphology. How-
ever, the notion of words and their structure is problematic. We
saw a consequence of this when describing how neural networks
tokenize text. Trying to define word boundaries (even in English
which has very limited morphology) using whitespace leads to non-
intuitive “words” which in turn yields non-intuitive representations
in computers. To some extent, the separation between morphology
and syntax across the languages in the world has no basis (Haspel-
math, 2017). Instead, a common domain for the study of words and
sentences has been proposed, morpho-syntax. While there may not
be a clear boundary between morphology and syntax on a larger
scale, we can speak about words given a specific language. In our
exploration of morphology, we consider words not as a universal
linguistic unit but rather as a language-specific phenomenon.

Words as a language-specific phenomenon can be viewed in two
different ways, as a lexeme (the abstract meaning of a word) and as
a lemma (the dictionary form of the word). The lemma of a lexeme
expresses the main source of semantic meaning, which can then be
further modified by other morphological processes to generate the
different word forms, which can express more fine-grained informa-
tion as we saw in Section 3.2. The structure of a word can be broken
down into two units, the free morpheme, and the boundmorphemes.
A free morpheme is a unit that can occur independently of other
morphemes, while bound morphemes can not.

As an example of how free and boundmorphemeswork together
to create the word forms of a lexeme, we can consider a partial mor-
phological paradigm (Blevins, 2001) of the verb walk, shown in Ta-
ble 3.1. In Table 3.1, walk is a free morpheme, while -s is a bound
morpheme expressing that only one person is involved in the activ-
ity of walking. To express the Plural feature instead, that several
people are involved in the activity, the null morpheme (∅) is used.

LINGUISTIC STRUCTURES 48

Inflectional Morphology The meaning of a lexeme can be mod-
ified to express more fine-grained information. For example, by
adding the bound morpheme, -ing to the free morpheme, write. This
process augments the meaning of write with the progressive gram-
matical feature. We illustrate this example in Figure 3.3, where the
root is a free morpheme, and the affix is a bound morpheme.

VERB

AFFIX

ing
PROG

ROOT

write

Figure 3.3: The free morpheme write is inflected using to bound
morpheme -ing to express the progressive grammatical feature.

Building a word form is called inflection, or inflectional morphology.
The purpose of inflectional morphology is to augment a word so that
in addition to expressing the lexical meaning, it also expresses some
grammatical meaning, in this case, that the activity of writing is
ongoing (progressive, abbreviated as PROG).

Morphological inflection is the task of producing the resulting
word form (the target) given a word (the source) and a set of gram-
matical features. For example, the Finnish lemma palaa which
is a verb, should be transformed with the grammatical features

Free morpheme Bound morpheme Feature
walk -s Singular
walk ∅ Plural

Table 3.1: Possible word forms of the lexeme “walk” with respect to
the grammatical feature of tense.

LINGUISTIC STRUCTURES 49

IND.SING.3PRS .PST.FIN.ACT to produce its inflected form palai.
Approaches to this task generally use a sequence-to-sequencemodel
that generates a new word, character by character, given the lemma
of a word and a set of grammatical features as input (Faruqui et al.,
2016; Aharoni, Goldberg, 2017; Anastasopoulos, Neubig, 2019). The
model can either proceed in a standard fashion and output charac-
ters, or it can produce edit-operations (Makarov et al., 2017) that pre-
dict actions to take given the lemma and grammatical features. This
approach has the advantage of modeling the copy mechanism (Fig-
ure 3.4) explicitly in its training objective, which is a core problem
facing all systems which attempt to generate morphological inflec-
tion.

Source Action Target

r

u

n

r

a

n

copy

replace(u→ a)

copy

Figure 3.4: Inflecting the word run to the past tense (PST) using the
copy mechanism.

Systems for morphological inflection generally perform well,
achie-ving high accuracy for many of the languages it has been
tested on. However, the number of languages these systems have
been tested on is only a fraction of the languages in the world.
Thus, truly how applicable these systems are to unseen languages
remains to be shown. As with POS tagging, the performance on low-
resource languages is lower than for high-resource ones. Concern-
ing learning morphological inflection for low-resource languages,
several techniques have been developed that mainly focus on artifi-
cially increasing the amount of training data, for instance by gener-

LINGUISTIC STRUCTURES 50

ating data hallucinations (Anastasopoulos, Neubig, 2019) or gener-
ating random new examples based on corpus statistics (Bergmanis
et al., 2017).

3.4 Dependency Grammar

Dependency grammar is a way of formalizing syntax in natural lan-
guage (Tesnière, 1959). The theory posits that the central notion in
syntax is the relationship between two lexical items. This is opposed
to constituency grammar which considers groups of lexical items
to be the central notion. To represent relations between words, di-
rected trees are used. The relationship between two lexical items
is shown by an arc connecting them. The item from which the arc
originates is the head of the relationship, and the target of the arc is
the dependent. In plain language, the dependent modifies the head
in some way. How one item modifies another item is indicated by
attaching a label to the arc connecting them. For example, in the
dependency fragment in Figure 3.5, the word “cats” is modified by
“green”, which is indicated by the syntactic relation of nominal mod-
ifier nmod.

green cats

nmod

Figure 3.5: Dependency fragment of “green cats”.

Heads, Dependents and Grammatical relations Grammatical re-
lations are formalized as head-dependent relations in a dependency
grammar. This means that one lexical item (the dependent) modi-
fies another lexical item (the head). For example, this is shown in
Figure 3.6.

LINGUISTIC STRUCTURES 51

The cat writes .

ROOT

det nsubj punct

Figure 3.6: Dependency tree of the sentence The cat writes..

The word the is modifying cat while cat and . are modifying writes.
From this, we see how the lexical items modify each other. Depen-
dency structures are fundamentally about connecting two words.
But in addition to realizing that two words are connected, we also
want to know how they depend on each other. In other words, what
is the relationship between, for example, cat andwrites in Figure 3.6.
In the tree above, cat is the subject of the verb writes.

A special and important relation is the root relation. The root
identifies the sentences’ main, if any, verb and acts as the top node
in the dependency tree. Verbs typically have subjects, objects, and
indirect objects attached to them. The subject is coded as nsubj, the
object as obj, and the indirect object and other auxiliary arguments
as obl. In English, determiners indicate the grammatical feature
of definiteness of a noun and are encoded as the det relation. To
facilitate research into dependency structures the Universal Depen-
dencies (UD) (Nivre et al., 2016) dataset is commonly used.

Enhanced Dependency Grammar For Natural Language Under-
standing tasks, the basic structure and relations proposed in Nivre
et al. (2016) (Universal Dependencies) can be underwhelming, as the
basic structure mainly focuses on strict syntactic relations. But for
the understanding of language, we are more concerned with dis-
covering relations between content words which are often omitted.
(Schuster, Manning, 2016) propose an extension to the schema of

LINGUISTIC STRUCTURES 52

(Nivre et al., 2016) by includingmore semantically relevant relations.
In particular, these extensions focus on adding nsubj and obj rela-
tions to sentences with conjunctions. An example of this can be
found in Figure 3.7.

Paul and Mary eat

conj

cc

nsubj

nsubj

root

Figure 3.7: Enhanced reperentations of the sentence Paul and Mary
eat. The additional arc introduced by the enhanced universal depen-
dencies schema is shown in blue.

In this case, the conjunction indicates that both Paul and Mary
are eating, so they are both the subject of the verb eat. The en-
hanced universal dependencies schema makes this explicit. Simi-
larly, in cases where two verbs share the same subject and/or ob-
ject, this is not shown in the universal dependency schema but is
made explicit in the enhanced universal dependencies, as shown in
Figure 3.8.

More types of arcs are introduced, that follow the theme of mak-
ing the semantically relevant relations more prominent. The inter-
ested reader is referred to (Schuster, Manning, 2016) for further in-
formation.

3.4.1 Parsing Dependency Structures

There are two general approaches to dependency parsing: graph and
transition parsing. Both types of parsers provide a syntactic analysis
of a sentence, however, they use different methods to do so.

LINGUISTIC STRUCTURES 53

The store buys and sells cameras

det nsubj

nsubj

obj

conj

cc

obj

root

Figure 3.8: Enhanced reperentations of the sentence The store buys
and sells cameras. The additional arcs introduced by the enhanced
universal dependencies schema are shown in blue.

Graph parsing In neural graph-based dependency parsing, a neu-
ral network outputs a graph matrix of size (n + 1, n + 1), where
n is the sentence length, the additional row, and the column is the
entry of the root token, and each cell indicates the predicted score
that the word is its head. An example of this is shown in Figure 3.9.
However, because the output of the model is a matrix, there is noth-
ing that ensures that the resulting parse tree is connected, which is
a requirement of a dependency tree, i.e. that each node is reachable
from the root node. To address this issue, the Chu-Liu-Edmonds
algorithm (Chu, 1965; Edmonds, others, 1967) is used when decod-
ing the matrix into a tree. The loss is then calculated between the
predicted tree and the annotated tree from the dataset. Arguably, us-
ing neural network for graph dependency parsing have been spear-
headed by two parsers in particular, that of (Kiperwasser, Goldberg,
2016) which introduced a method for parsing text using a bidirec-
tional LSTM network. This work was further built upon in (Dozat,
Manning, 2017) where deep affine attention was introduced which
improved the performance further. Since, the ideas introduced by
(Dozat, Manning, 2017) were used by (Kondratyuk, Straka, 2019)

LINGUISTIC STRUCTURES 54

root 0.8 1.3 2.5 4.3

the 1.8 1.3 4.5 2.1

cat 3.5 2.3 3.5 7.1

writes 5.5 1.9 3.2 0.3

root the cat writes

(a) Matrix representation of a dependency tree.

root The cat writes

(b) Dependency tree of Figure 3.9a.

Figure 3.9: Dependency tree for the sentence the cat writes predicted
by a (fictional) graph-based dependency parser.

where the bidirectional LSTM network was replaced by the popu-
lar Transformer architecture, in particular the BERT variant.

Transition parsing In transition parsing 3, instead of outputting a
tree represented as a matrix the system outputs a series of actions
which corresponds to building the dependency tree from the input
words. A dependency tree can be constructed by using a stack that
reads and adds the input words, which are contained in the buffer,
to a list. Words are then removed from the stack using two different
actions, the left-arc action, which connects the stack’s top-most
word to the stack’s second top-most word and pops the second top-
most word. Then there is the right-arc action, which does the

3There are many variants of transition parsers, here we give a summary of the
arc-standard transition parser (Nivre et al., 2006).

LINGUISTIC STRUCTURES 55

same operation in reverse: the second top-most word is connected
to the top-most word, and the top-most word is popped from the
stack. Additionally, there is onemore action, shift. The shift action
reads another symbol from the input sentence and adds it to the
stack. The loss is then computed between the predicted actions and
actions from a gold standard. An example of how these actions are
used to parse a sentence is given in Table 3.2.

Step Action Stack Buffer Result
1 shift root the cat writes
2 shift root, the cat writes
4 shift root, the, cat writes
5 l-arc root, cat writes the← cat
6 shift root, cat, writes
7 l-arc root, writes cat← writes
8 r-arc root root→ writes

Table 3.2: Transition parsing actions given the sentence the cat
writes nothing.

There are many variants of the transition parser (Attardi, 2006;
Nivre, Fernández-González, 2014), mainly these variants introduce
new actions that can be performed.

root The cat writes

Step 8

Step 7 Step 5

Figure 3.10: Dependency tree for the sentence the cat writes pre-
dicted by a (fictional) transition-based dependency parser.

Other approaches In addition to these systems, there have been
several other proposed methods, among others using a sequence-to-

LINGUISTIC STRUCTURES 56

sequence (Strzyz et al., 2019b,a) model, and a stack-pointer network
(Vinyals et al., 2015; Ma et al., 2018; Fernández-González, Gómez-
Rodríguez, 2019) inspired from learning graph structures. Common
to many dependency parsers is that POS tags are used in the input
to help disambiguate which words are connected. There are two
general approaches to using POS tags; either the POS tags are taken
from the data annotations, or the model predicts them. Another di-
rection that has gained traction is simply parsing dependency trees
without any POS tags (Lhoneux de et al., 2017). In the approach
where POS tags are selected from the data, we can only parse texts
with POS tags annotated, limiting the system to sentences that have
POS information available.

Probing models for dependency structures Comparing the per-
formance of graph and transition parsers reveals that when using
bidirectional LSTM networks there are distinct differences between
the approaches (Kulmizev et al., 2019). In particular, transition-
based parsers tend to have lower accuracy than graph-based parsers
on long-range dependencies and dependencies that occur close to
the root. But, recent transformer appears to have changed these
differences, bringing the performance of the two approaches closer
to each other with respect to the types of errors they tend to make.

The internal structure of the transformermodel has been used by
Htut et al. (2019); Raganato, Tiedemann (2018) to create dependency
trees (See Section 3.4) by running, for example, the Maximum Span-
ning Tree (Chu, 1965; Edmonds, others, 1967) algorithm over the
attention matrix. The results from the experiments can be used to
assess whether the attention scores of different attention heads in
the transformer correspond to linguistically motivated word-word
combinations. Similarly, Hewitt, Manning (2019) explores how the
L2 distance between token representations allows a model to re-
construct dependency trees. This line of work naturally connects
with the work of (Michel et al., 2019; Lee et al., 2019), since it also

LINGUISTIC STRUCTURES 57

explores how different parts and representations of a model result
in interpretable outputs. (Søgaard et al., 2018) show that additional
work needs to be put on how to process punctuation.

“I stick my finger into
existence and it smells of
nothing.”

Sören Kierkegaard

Chapter 4

Research questions

In NLP there is a recent growing trend of producing systems end-
to-end; systems are trained to take a text as input and are expected
to produce an output. These end-to-end systems show an impres-
sive performance on a variety of NLP tasks, and new varieties are
continuously being produced. This approach has produced systems
that appear to perform language tasks on a near human-level perfor-
mance. However, when looking more closely at what systems are
doing on a per-example basis it becomes clear that while impressive
these systems also fail on many simple examples. This gives rise to
our research questions, namely; given that end-to-end systems per-
form well on a global metric but seems to fail on certain types of
examples, what are the factors which are responsible for this behav-
ior.

Our main contributions to NLP research in this thesis are an ex-
ploration of how these systems can be used effectively to encode
the structure of the input, and how the structure of the input result
in meaningful representations. To reiterate, we posed the following
research questions in the introduction:

RQ1 How to obtain representations of grammatical structure?

58

RESEARCH QUESTIONS 59

RQ2 How to predict semantic phenomena based on representa-
tions of grammatical structure?

The first research question concerns how representations of
grammatical structure can be obtained. That is, the input to end-
to-end trained models is a piece of text that has some implicit gram-
matical structure, and humans use these cues to build a meaning
representation of a text. So, these structures seem to be relevant for
processing language. The first research question targets whether
this grammatical structure can be predicted from the representa-
tions obtained by passing input through a model. In particular, we
explore whether and how grammatical properties can be encoded in
the models’ representations.

The second research question concerns how representations of
grammatical structure can be used to analyze and obtain meaning
representations. That is, technically models are able to minimize the
loss of an objective and show an impressive performance if we only
consider global metrics, which indicate that they are successful at
the tasks presented. But, looking more closely at the performance of
these models it appears as if models resort to simple patterns of rea-
soning to analyze meaning. The patterns of reasoning used by these
models can produce proper results, but it is by no means guaranteed.
In particular, it has been shown for a number of tasks that models
exploit statistical patterns that appear in the data (Poliak et al., 2018;
Gururangan et al., 2018), patterns that correspond to biases present
in the data. Exploiting statistical patterns can reveal insights about
how some language phenomenon is used and constructed, but one
has to be careful so that the patterns exploited are truly representa-
tive of the phenomena. That is, models should learn from patterns
that reveal insights about language, and not from those patterns
which are spurious. To circumvent this behaviour we are interested
in exploring how grammatical pattern help improve the semantic
capabilities of these models.

RESEARCH QUESTIONS 60

4.1 Summary of Papers

In this section, the published papers are summarised. Each paper is
summarised as follows: First, a general introduction to the problem
and the approach taken is given. Then how the paper answers the
research questions is presented. Some ideas for future research are
then given. Finally, the current authors’ contributions to the papers
are declared.

The conclusions we come to with respect to the research papers
are presented on a per-paper basis. Because as it stands, this the-
sis opened more questions than it answered. This is to be expected
given the complexity and rapid advancements recently in the field.

Composing Byte-Pair Encodings for Morphological Se-
quence Classification

In this paper, we tackle the task of morphological sequence tagging,
or simply morphological tagging. Because modern transformer
models use Byte-Pair encodings a “word” can be composed of two
different vectors. Previous work has used the first Byte-Pair token
to predict morphological features and has ignored the remaining
ones. In this paper, we build a transformer model that combines all
Byte-Pairs a word consists of and then predicts the morphological
features. As combining embeddings is not trivial we consider three
different methods and contrast the results with simply using the
first Byte-Pair in a word.

Contributions: The first research question is addressed as follows:

• We show that the way of constructing word representations
from sub-word representations proposed by Devlin et al.
(2019) produces sub-par word representations with respect to
predicting morphological features.

RESEARCH QUESTIONS 61

• We find that simple methods that take the information con-
tained in each sub-word into account are more effective than
relying on the transformers’ ability to pool the predictive in-
formation into a representation.

• By using the sub-word representations obtained from our
methods, it is possible to produce representations that better
encode grammatical features, by more carefully considering
how to combine sub-word representations.

Future directions A natural extension of our work is to evaluate
what method of constructing word embeddings is appropriate given
the task, and the linguistic information that should be used. That is,
we show that for a specific task, our three methods perform better
than the default method for constructing word representations.
However, how dependent is this on the task, and are there certain
characteristics of the task, both in terms of machine learning
objective and the linguistic information we are after, which favors
certain methods.

Statement of contribution In this project I came up with the idea of
composing Byte-Pair encodings, implemented the model, and per-
formed all experiments. The analysis was done jointly with Jean-
Phillipe Bernardy.

Can the Transformer Learn Nested Recursion with
Symbol Masking?

In this paper, we consider the popular transformer model and
how well it can learn nested recursive structures which commonly
occur in language (Hauser et al., 2002; Dehaene et al., 2015). As
we are specifically interested in the transformers’ ability to learn
a certain type of structure, we train and test the model on the

RESEARCH QUESTIONS 62

Dyck language which constructs strings using opening and closing
pairs of characters. A benefit of the Dyck language is that we
can easily control the levels of nested recursion and investigate at
what point it becomes difficult to learn. In addition to this, we also
investigate how the structure of the transformer in terms of layers
and attention heads influences the performance.

ContributionsThefirst research question is addressed by the follow-
ing findings

• Aminimal version of the transformermodel is able to produce
representations from which nested structures in a formal lan-
guage can relatively confidently be predicted.

• We find that to achieve this the model resort to a simple rea-
soning strategy that does not allow for generalization to more
complex instances of the same phenomena.

• Thus, to obtain informative representations given a semantic
phenomenon attention needs to be put on how the training is
set up, which ensures that the model obtains strategies that
can generalize.

Future directions Based on our conclusions with respect to
the research question a line of work that could be pursued is
a more detailed analysis of how tasks are set up and how this
influences the learning strategies models obtain. This could shed
more light on how models can be improved by biasing models to
learn or find, appropriate strategies for a task. This can be done
by constructing test sets that require generalizable methods to solve.

Statement of contribution In this project I implemented the trans-
former model from scratch and performed the experiments. The

RESEARCH QUESTIONS 63

idea for the experiments and the analysis were done jointly with
Jean-Phillipe Bernardy and Vlad Maraev.

Can Predicate-Argument relationships be extracted
from UD trees?

In this paper, we explore how predicate-argument structures can
be extracted from a QA-SRL (Question-Answering Semantic Role
Labeling) dataset. To extract predicate-argument structures we
produce enhanced UD graphs for each sentence in the dataset.
We then consider another rule-based system for extracting the
predicate-argument structures. To ascertain the effectiveness
of enhanced UD we contrast the results by extracting predicate-
argument structures from UD trees. Additionally, we explore the
difference between two UD parsers.

Contributions The second research question is addressed by the fol-
lowing findings

• In principle, we find that the upper bound of a rule-based
model exceeds 98% given that the correct rules are found.

• We find that enhancing UD parsers with semantic informa-
tion performs better than not enhancing them for the task of
extracting semantic predicate-argument structures.

• We find that the inventory of phenomena used to enhance the
parsers with semantic information lacks some components
which are crucial for extracting additional semantic predicate-
argument structures.

Future directions This project led to several interesting findings
regarding what phenomena to represent in a syntax-semantic
schema. One future direction that can be pursued is to what extent

RESEARCH QUESTIONS 64

these different phenomena are relevant for a certain task. That
is, given that we want to train a model to do some task, can we a
priori identify what part of a syntax-semantics schema is relevant
to accomplish the task. This could be accomplished by discovering
some form of weight of the different phenomena.

Statement of contribution In this paper, I came up with the idea
for the investigation. I did the initial parsing of the dataset into
UD trees. The rule-based system for extracting predicate-argument
structures was jointly developed with Jean-Phillipe Bernardy, and
the analysis of the rule-based system and dataset was done jointly
with Jean-Phillipe Bernardy and Stergios Chatzikiriakidis.

Language Modelling with Syntactic and Semantic rep-
resentations for Acceptability Predictions

This project explores unsupervised prediction of acceptability
judgments using syntactic and semantic representations. The idea
is that if this structure is explicitly modeled it could help systems
better predict the acceptability. We consider both grammatical
relations and tree structures, as well as semantic labels. In particu-
lar, we investigate how adding these components individually and
combined affects the performance of our model.

Contributions The second research question is addressed by the fol-
lowing findings

• We note that neither syntactic nor semantic information im-
proves the correlation between model and human acceptabil-
ity judgments.

• We find that enhancing LSTM languagemodels with syntactic
information can provide useful information, while the seman-
tic information does not, in terms of model perplexity.

RESEARCH QUESTIONS 65

• Thus, we find that in terms of perplexity, the model’s perfor-
mance has improved, but not in terms of its performance on
the task.

Future directions Given that there is a vast amount of structured
information available, what are the plausible strategies for includ-
ing this in a model for a given task. That is, while the information
may not directly improve the global metric of the task, it can still
provide useful information. How can this resource be leveraged in
such a way that the undesirable effects are minimized while the
desired effects are maximized?

Statement of contribution In this project the idea was developed
jointly by me, Jean-Phillipe Bernardy, and Shalom Lappin. I did the
implementation of the models and performed the experiments. The
analysis was done jointly with Jean-Phillipe Bernardy and Shalom
Lappin.

How does Punctuation affect Neural Models in Natural
Language Inference

In this paper, we explore a very common phenomenon in written
language, namely the usage of punctuation symbols. While being
common, the research about the effect it has on predictions given
by neural models has not been explored much. In particular, we
consider the influence of punctuation in the task of natural lan-
guage inference. We analyze this in two ways, we add missing final
stops to sentences that do not already have them, and we remove
all punctuation as most of it does not have a direct influence on the
sentences meaning. Furthermore, we also develop a small dataset
to investigate fine-grained shifts in meaning that punctuation may
introduce.

RESEARCH QUESTIONS 66

Contributions The second research question is addressed by the fol-
lowing findings

• We find that differentmodels produce sub-par representations
of punctuation for predicting types of inference. Similar re-
sults are obtained in (Søgaard et al., 2018), but for the task of
dependency parsing.

• RNN representations are sensitive to irrelevant punctuation
when producing meaning representations, while BERT is not,
showing that BERT produces more informative representa-
tions in this aspect.

• We note that neither model appears to produce representa-
tions that properly take into account semantically relevant
punctuation symbols.

Future directions A question that arises from this project is
why systems produce such strange behavior to the common
phenomena of punctuation. Because, it is used in basically every
text to indicate various structures, but models do not seem to
pick up on this. This is rather strange given how good of a repre-
sentation these models generally are able to create for common
phenomena, so a productive future direction would be to inves-
tigate how, and why, punctuation is so hard for models to represent.

Statement of contribution In this projectme and Stergios Chatzikiri-
akidis jointly came up with the idea, I implemented the model and
ran the experiments, and the analysis was done jointly with Jean-
Phillipe Bernardy and Stergios Chatzikiriakidis.

Papers not included in this thesis

During my Ph.D., I was also a part of other papers that were not
included in this thesis. The reason for not including these papers

RESEARCH QUESTIONS 67

is that my contribution to these papers was minor, they were writ-
ten before my Ph.D. started but published during or they were not
related to my main interests/research topics.

• Vector Norms as an Approximation of Syntactic Complexity
(Ek, Ilinykh, 2023)

• Fine-grained Entailment: Resources for GreekNLI and Precise
Entailment (Amanaki et al., 2022)

• We went to look for meaning and all we got were these lousy
representations: aspects of meaning representation for com-
putational semantics (Dobnik et al., 2022)

• UniMorph 4.0: Universal Morphology (Batsuren et al., 2022)

• Training Strategies for Neural Multilingual Morphological In-
flection (Ek, Bernardy, 2021)

• SIGMORPHON 2021 Shared Task on Morphological Reinflec-
tion: Generalization Across Languages (Pimentel et al., 2021)

• Howmuch of enhanced UD is contained in UD? (Ek, Bernardy,
2020b)

• Annotation Guideline No. 7: Guidelines for annotation of nar-
rative structure (Wirén et al., 2020)

• Synthetic propaganda embeddings to train a linear projection
(Ek, Ghanimifard, 2019)

• Distinguishing narration and speech in prose fiction dialogues
(Ek, Wirén, 2019)

Part II

Papers

68

Chapter 5

Composing Byte-Pair
Encodings for Morphological
Sequence Classification

Abstract

Byte-pair encodings is a method for splitting a word into sub-word
tokens, a language model then assigns contextual representations
separately to each of these tokens. In this paper, we evaluate four
different methods of composing such sub-word representations into
word representations. We evaluate the methods on morphological
sequence classification, the task of predicting grammatical features
of a word. Our experiments reveal that using an RNN to compute

Published in the article: Adam Ek and Jean-Philippe Bernardy. 2020. Com-
posing Byte-Pair Encodings for Morphological Sequence Classification. In Pro-
ceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), pages
76–86, Barcelona, Spain (Online). Association for Computational Linguistics.

69

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 70

word representations is consistently more effective than the other
methods tested across a sample of eight languages with different
typology and varying numbers of byte-pair tokens per word.

5.1 Introduction

After its introduction, the Transformer model (Vaswani et al., 2017)
has emerged as the dominant architecture for statistical language
models, displacing recurrent neural networks, in particular, the
LSTM and its variants. The Transformer owes its success to several
factors, including the availability of pretrained models, which ef-
fectively yield rich contextual word embeddings. Such embeddings
can be used as is (for so-called feature extraction), or the pre-trained
models can be finetuned to specific tasks.

At the same time as Transformer models became popular, the to-
kenization of natural language texts have shifted away from meth-
ods explicitly oriented towards words or morphemes. Rather, sta-
tistical approaches are favoured: strings of characters are split into
units which are not necessarily meaningful linguistically, but rather
have statistically balanced frequencies. For example, the word “sci-
entifically” may be composed of the tokens: “scient”, “ifical”, “ly” —
here the central token does not correspond to a morpheme. That
is, rather than identifying complete words or morphemes, one aims
to find relatively large sub-word units occurring significantly often,
while maximizing the coverage of the corpus (the presence of the
“out of vocabulary” token is minimized). Approaches for composing
words from sub-word units have focused on combining character n-
grams (Bojanowski et al., 2017), while other approaches have looked
at splitting words into roots andmorphemes (El Kholy, Habash, 2012;
Chaudhary et al., 2018; Xu, Liu, 2017), and then combining them.

In this paper, we consider Byte-Pair Encodings (BPE) (Sennrich
et al., 2016). BPE has been popularized by its usage in translation

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 71

and the BERT Transformer model (Devlin et al., 2019). The BPE al-
gorithm does not specifically look for either character n-grams or
morphs, but rather it aims at splitting a corpus C into N tokens,
where N is user defined. Even though BPE is not grounded in mor-
phosyntactic theory, the characteristics of the sub-word units gen-
erated by BPE will be directly influenced by morphosyntactic pat-
terns in a language. In particular, it is reasonable to expect that the
statistical characteristics of BPE to be different between languages
with different typologies. One issue with this tokenization scheme
is that models based on BPE provide vector representations for the
BPE tokens (which we call token embeddings from now on), while
one is typically interested in representations for the semantically
meaningful units in the original texts, words. In sum, one wants to
combine token embeddings into word embeddings.

Our main goal is to explore how to best combine token embed-
dings in the context of sequence classification on words, that is, the
task of assigning a label to every word in a sentence. Coming back
to our example, we must combine the token embeddings assigned to
the BPE tokens ”scient”, ”ifical” and ”ly” to form a word representa-
tion of “scientifically” (as a vector) which we can then assign a label
to.

To our knowledge, this is a little-studied problem. For the orig-
inal BERT model Devlin et al. (2019) simply state that for named
entity recognition the first sub-word token is used as the word rep-
resentation. For morphological sequence classification Kondratyuk,
Straka (2019); Kondratyuk (2019) report that only small differences
in performance were found between averaging, taking the max-
imum value or first sub-word token. In this paper we explore
the problem in further detail and identify the effect that different
methods have on the final performance of a model. Additionally,
with the increased interest in multilingual NLP it becomes impor-
tant to explore how different computational methods perform cross-
linguistically. That is, because languages are different morphosyn-

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 72

tactically, one can expect various computational methods not to be
uniformly effective.

5.2 Task

To investigate composition methods for token embeddings we focus
on the task of morphological sequence classification. The task is to
assign a tag to a word that represent its grammatical features, such
as gender, number and so on. In addition to the word-form, the
system can use information from context words as cues. While the
grammatical features primarily are given by the word-form, useful
information is also found in the context.

Thus, we have to identify k different tags for a word, each with
Ci possible classes, making the task a multi-class classification prob-
lem. We simplify the classification problem by combining the differ-
ent tags into a composite tag with up to

∏k
i Ci classes (instead of

making k separate predictions). This task is suitable for our goal
as the output space is large, ranging from 100 to 1000 possible tags
for a word, depending on the grammatical features present in the
language1, and is directly linked to the affixes in the word-form. A
system must efficiently encode information about the structure of
the target words as well as the context words to be able to predict
the correct grammatical features.

5.3 Data

For both training and testing data, we use the Universal Dependen-
cies dataset (Nivre et al., 2018) annotatedwith the UniMorph schema
(McCarthy et al., 2018). We are mainly interested in how the accu-

1For practical reasons, we only consider tag combinations observed in the
dataset

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 73

Language Typology BPE
word Tags Train Validation Test

Basque-BDT Agglutinative 1.79 919 97336 12206 11901
Finnish-TDT Agglutinative 1.98 591 161791 19876 20541
Turkish-IMST Agglutinative 1.73 1056 46417 5708 5734
Estonian-EDT Agglutinative 1.86 512 346986 43434 43825
Spanish-AnCora Fusional 1.25 177 439925 55196 54449
Arabic-PADT Fusional 1.39 300 225494 28089 28801
Czech-CAC Fusional 1.77 990 395043 50087 49253
Polish-LFG Fusional 1.75 634 104730 13161 13076

Table 5.1: Treebank statistics showing the language typology, av-
erage number of BPE tokens per word, the number of (composite)
morphological tags and the size of the datasets in terms of words.

racy is influenced by different composition methods, but also con-
sider the type of morphology a language uses as a factor in this task.
With this in mind, we consider both languages that use agglutina-
tive morphology where each morpheme is mapped to one and only
one grammatical feature, and languages that use fusional morphol-
ogy where a morpheme can be mapped to one or more grammat-
ical features. The fusional languages that we consider are Arabic,
Czech, Polish and Spanish, and the agglutinative languages that we
consider are Finnish, Basque, Turkish, and Estonian. We show the
size, the average number of BPE tokens per word, and the number
of morphological tags for each treebank in Table 5.1.

The fusional languages were chosen such that two of them
(Czech and Polish) have a higher BPE per word ratio than the other
two (Arabic and Spanish). We make this choice because one factor
that impacts the accuracy obtained by a compositionmethodmay be
the BPE per word ratio. By having both fusional and agglutinative
languages with similar BPE per word ratio we can take this variable
into account properly in our analysis.

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 74

5.4 Method

In this section we present the model used for morphological se-
quence classification, the methods that we use to compose token
embeddings, and how the model is trained. 2

5.4.1 Model

Our model is composed of three components, each of them detailed
below. First, the input sequence of BPE tokens is fed to a Trans-
former model, which yields a contextual vector representation for
each BPE token. The contextual information here is the surround-
ing BPE tokens in the sentence. Then, the token embeddings are
combined using a composition module, which we vary for the pur-
pose of evaluating each variant. This component yields one embed-
ding per original word. Then we pass the word embeddings through
a bidirectional LSTM, which is followed by two dense layers with
GELU (Hendrycks, Gimpel, 2016) activation. These dense layers act
on each word embedding separately (but share parameters across
words). An outline of the model is presented in Figure 5.1, where f
represents the different methods we use to combine token embed-
dings.

5.4.1.1 Underlying Transformer Model

To extract a embeddings for each BPE token, we use the XLM-
RoBERTa (Conneau et al., 2020) model3. XLM-R is a masked lan-
guage model based on the Transformer, specifically RoBERTa (Liu
et al., 2019b), and trained on data from 100 different languages, using

2Our code is available at: https://github.com/adamlek/
ud-morphological-tagging

3We use the huggingface implementation https://huggingface.co/
transformers/model_doc/xlmroberta.html

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 75

bpe0 bpe1 bpe2

xn

Transformer model

wn

LSTM()hn… …

f(⋅)

y = p()hn

+

Figure 5.1: Model outline for one input. Awordwn is tokenized into
k BPE tokens. The Transformer model produces one embedding per
token per layer. We then calculate a weighted sum over the layers
to obtain one representation per token. The resulting token embed-
dings are then passed to a composition function f that combines the
k different token embeddings into a word embedding. The word em-
bedding is then passed to an LSTM followed by a dense prediction
layer.

a shared vocabulary of 250000 BPE tokens. All the languages that
we test are included in the XLM-R model. In this experiment we
use the XLM-Rbase model with 250M parameters. It has 12 encoder
layers, 12 attention heads and use 768 dimensions for its hidden size.

5.4.1.2 Feature extraction

The XLM-R model uses 12 layers to compute a vector representa-
tion for a BPE token. It has been shown in previous research (Kon-
dratyuk, Straka, 2019; Raganato, Tiedemann, 2018; Liu et al., 2019a)
that the different layers of the Transformer model encode different
types of information.

To take advantage of this variety, we compute token embeddings
as a weighted sum of the layer representation (Kondratyuk, Straka,
2019), using a weight vector w, of size l, where l is the number of
layers in the Transformer model. The weight vector w is initialized
from a normal distribution of mean 0 and standard deviation 1. If

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 76

rji is the layer representation at layer j and token position i, we
calculate the weighted sum as follows:

xi =
l∑

j=1

softmax(w)jrji (5.1)

Consequently, in end-to-end training, the optimiser will find
a weight for extracting information from each layer (softmax(w)j)
which maximizes performance.

5.4.1.3 Composition of BPE token embeddings

The weighted sum yields a token embedding for each BPE token.
We proceed to combine them into words as they appear in the data.
The model that we use to combine token embeddings is as follows.
For each sentence we extract n token embeddings x0 to xn−1 from
XLM-Rbase, and then align them to words. We then pass all token
embeddings in a word to a function f which combines the tokens
into a word embedding.

We consider four methods for composing token embeddings:
taking the first token embedding, summation, averaging, and using
an RNN. Taking the first token embedding, summation and aver-
aging have been used in previous work (Sachan et al., 2021; Kon-
dratyuk, 2019; Devlin et al., 2019), but using an RNN has not been
explored before to our knowledge.

First: The first method is the standard one used by Devlin et al.
(2019), which is to use the first token embedding in a word.

Sum: For the Sum method, we use an element-wise sum. That is,
we calculate the vector sum of the token embeddings. Assuming
that we have T token embeddings in a wordX (the word is a matrix

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 77

of size (T, 768)), for dimension i we calculate the word embedding
by summing the token embeddings:

f(X)i =
T∑

j=1

xj
i (5.2)

Mean: In the mean method we calculate the sum as above and di-
vide by the number of BPE tokens in the word. Thus, for word X
we calculate the word embedding by averaging over the sum:

f(X)i =
1

T

T∑
j=1

xj
i (5.3)

RNN: For this method we employ a bidirectional LSTM to com-
pose the token embeddings. For each word, we pass the sequence
of token embeddings through an LSTM and use the final output as
the word representation.

5.4.1.4 Word-level features and classification

The above methods of composing BPE tokens produce one con-
textual embedding per word. We then pass the word embeddings
through an LSTM to take into account the word contexts. While the
BPE token embeddings are already contextual, they are conditioned
on the BPE token context, not word context. We pass the hidden
states for each word to a residual connection with the pre-LSTM
representation. We then pass this to two dense layers with GELU
activation followed by a dense layer that computes class-scores for
each word. We then use a softmax layer to assign probabilities and
compute the loss accordingly.

Commonly, systems analyzing morphology use character em-
beddings as an additional source of information. We opted not to

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 78

include character embeddings because this would obfuscate the ef-
fect of the composition method and may mask some of the effects
of the different methods.

5.4.1.5 Label smoothing

Given that many of the languages have a large number of morpho-
logical tags, we want to prevent the model from growing overcon-
fident for certain classes. To address this issue we introduce label
smoothing Szegedy et al. (2016), that is, instead of the incorrect
classes having 0% probability and the correct class 100% probabil-
ity we let each of the incorrect classes have a small probability.

Let α be our smoothing value, in our model we follow (Kon-
dratyuk, Straka, 2019) and use α = 0.03, and C the number of
classes, then given a one-hot encoded target vector t of size C , we
calculate the smoothed probabilities as:

tsmooth = (1− α)t+
α

C
(5.4)

In words, we remove α from the correct class then distribute α uni-
formly among all classes.

5.4.2 Training

In our experiments we consider two possible training regimes. In
the first regime we finetune the XLM-R model’s parameters, in the
second we only extract weights for BPE tokens, that is, we use the
model as a feature extractor. In all cases, we use end-to-end training.

When finetuning the model we freeze the XLM-R parameters for
the first epoch, effectively not finetuning at first. When training the
model we use a cosine annealing learning rate (Loshchilov, Hutter,
2017) with restarts every epoch, that is, the learning rate starts high
then incrementally decreases to 1× 10−12 over N steps, where N
is the number of batches in an epoch. We use the Adam optimizer

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 79

Parameter Value
Epochs 15
Batch size 4 / 32
Word LSTM size 768
Linear transform size 1536
Optimizer Adam
Learning rate 0.001
Learning ratexlmr 1× 10−6

Weight decay 0.05
Label smoothing 0.03

Table 5.2: Hyperparameters used for training the model. Slashed
indicates the value of a parameter when we finetune or extract fea-
tures.

with standard parameters, with a learning rate of 0.001 for layer
importance parameter (w in Section 5.4.1.2), the parameters of the
Word-LSTM, of the classification layer, and of the BPE-combination
module (when an RNN is used). For the Transformer parameters,
we use a lower learning rate of 1× 10−6. We summarize the hyper-
parameters used in Table 5.2.

As an additional regularization in addition to weight decay and
adaptive learning rate, we use dropout throughout the model. Gen-
erally, we apply dropout before some feature is computed. Initial
experiments revealed that a high dropout yielded the best results.
We summarize the dropout used as: We replace 20 percent of the
BPE tokens with <UNK>. Then, we compute a weighted sum of the
layer representations, to regularize this operation we apply dropout
on layer representations with a probability of 0.1, that is we set all
representations in the layer to 0. We then combine the token embed-
dings into word embeddings and apply a dropout of 0.4%, and pass
these into theWord-LSTM. Before the contextualized representation

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 80

Finetuning Feature extraction
Treebank Baseline First Sum Mean RNN First Sum Mean RNN
Basque-BDT .676 .857 .884 .877 .901 .759 .789 .780 .834
Finnish-TDT .751 .961 .958 .960 .965 .853 .856 .847 .899
Turkish-IMST .620 .848 .859 .855 .884 .742 .741 .735 .775
Estonian-EDT .740 .956 .955 .955 .961 .855 .856 .853 .901
Spanish-AnCora .842 .977 .977 .977 .979 .951 .954 .952 .962
Arabic-PADT .770 .946 .946 .947 .951 .920 .923 .920 .936
Czech-CAC .771 .968 .968 .968 .975 .863 .887 .881 .924
Polish-LFG .657 .956 .953 .953 .959 .828 .844 .840 .878
Average .728 .933 .937 .936 .946 .846 .856 .851 .888

Table 5.3: Accuracy for morphological tagging. We show scores
both for finetuning the XLM-R model and extracting features.

is passed to the classification layer, we apply a dropout of 0.4%.

5.5 Results

Even though our aim is to compare the relative performance of var-
ious BPE-combination methods rather than to improve on the state
of the art in absolute terms, we compare our results against the base-
line reported by McCarthy et al. (2019). This comparison serves the
purpose of checking that our system is generally sound. In particu-
lar, the actual state of the art, as reported by McCarthy et al. (2019);
Kondratyuk (2019), uses treebank concatenation or othermethods to
incorporate information from all treebanks available in a language,
which means that results are not reported on a strict per-treebank
basis and thus our numbers are not directly comparable. We report
the accuracy of prediction morphological tags for each of our com-
position methods, and for our two training regimes in Table 5.3.

Our system performs better than the baseline. As a general trend
we see that the RNN method tends to perform better than all other
tested methods. This trend is consistent across both language fami-
lies (agglutinative and fusional) and training regimes showing that,
while the advantage of the RNN is small, it occurs consistently. In

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 81

Finetuning Feature extraction
Treebank First Sum Mean RNN First Sum Mean RNN
Basque-BDT .739 .802 .790 .835 .657 .715 .703 .774
Finnish-TDT .940 .946 .946 .952 .780 .805 .794 .861
Turkish-IMST .730 .780 .778 .818 .653 .683 .664 .711
Estonian-EDT .938 .939 .939 .949 .779 .805 .803 .868
Spanish-AnCora .956 .961 .959 .964 .922 .937 .930 .947
Arabic-PADT .889 .896 .898 .907 .902 .909 .906 .923
Czech-CAC .940 .947 .947 .959 .786 .849 .840 .900
Polish-LFG .917 .920 .918 .927 .696 .761 .752 .812
Average .881 .899 .897 .913 .772 .808 .799 .849

Table 5.4: Accuracy for morphological tagging on all words that are
composed of two or more BPE tokens.

general we find that finetuning yields higher accuracy than plain
feature extraction, on average the difference is about 5.8 percentage
points. This difference is to be expected when finetuning has 250M
more parameters tuned to the task than the feature extraction.

Focusing on the finetuning regime only, we see the largest ben-
efits of the RNN method for Basque with an increased performance
of 3.25 points, and 2.7 points for Turkish over using mean or av-
eraging. The First method for Basque and Turkish performs worse
with a decrease of 4.4 percentage points for Basque and 3.6 points
for Turkish compared to the RNN method. In the bare features ex-
traction regime, we see a larger benefit for the RNN, of 3.7 percent-
age points (Turkish) and 4.95 points (Basque). Again, this is not
unexpected: When finetuning the error rate is smaller, and there-
fore there is a smaller margin for a subsequent phase to yield and
improvement.

Table 5.3 reports average accuracy for every word, including
those which are only composed of a single BPE token. To highlight
the strengths and weaknesses of each composition method, we also
compute the accuracy for longer words only (composed of two or
more BPE tokens). The results can be seen in Table 5.4. We see the

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 82

same trend for accuracy on words that are composed of two or more
BPE tokens, as in the overall accuracy, where the RNN outperforms
all other methods. We can also see that the average increase in accu-
racy when using an RNN is larger. This holds both when finetuning
or extracting bare features. Given that the number of BPE tokens per
word varies in the different languages, we also look at the accuracy
of the different methods given the number of BPE tokens. We show
per-language performance with the different methods in Figure 5.2.

5.6 Discussion

For predicting morphological features, the RNN method is more ef-
fective than the other proposed methods (summing, averaging or
taking the first BPE token). This holds regardless of training regime
(finetuning versus feature extraction) and across languages with dif-
ferent BPE per word ratios.

As we see it, the advantage of the RNN over commutative meth-
ods (Sum, Mean) and taking the first BPE token is that it can take the
order of elements into account. In broad terms, information about
the order of elements in morphology allows a system to determine
what is a stem, prefix, or suffix. Thus allowing a model to collect
more predictive information from token embeddings.

We can suspect that the average BPE per word ratio in a lan-
guage affects the performance of the composition method used. To
further control this variable, in Figure 5.3 we plot the average num-
ber of BPE tokens per word in each language (x-axis), and compare
this average against the gain in accuracy yielded by using the RNN
method over summation (y-axis). For finetuning we see that in gen-
eral the average number of BPE tokens does not matter that much.
The two cases where it does matter is for Turkish and Basque, where
we see a substantial improvement of about 3 percentage points. We
note however that these are also the languages with the lowest

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 83

1 2 3 4 5 6 ≥7
0.9
0.92
0.94
0.96
0.98

1
Finnish-TDT

1 2 3 4 5 6 ≥7
0.6

0.7

0.8

0.9

1

Basque-BDT

1 2 3 4 5 6 ≥7
0.6

0.7

0.8

0.9

1
Turkish-IMST

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 84

1 2 3 4 5 6 ≥7
0.9
0.92
0.94
0.96
0.98

1
Estonian-EDT

1 2 3 4 5

0.8

0.9

1
Arabic-PADT

1 2 3 4 5 6 ≥7
0.7

0.8

0.9

1

Spanish-ANCORA

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 85

1 2 3 4 5 6
0.8

0.85

0.9

0.95

1
Polish-LFG

1 2 3 4 5 6 ≥7
0.85

0.9

0.95

1
Czech-CAC

Figure 5.2: Per-language accuracy on tokens with different num-
bers of BPE components, for the finetuning training regime. The
last data point on the x-axis refers to all tokens composed of seven
or more BPE tokens. We indicate the method by encoding First as
brown, summation as green, averaging as blue and RNN as red. The
accuracy is given on the y-axis. We show the Agresti-Coull approx-
imation of a 95%-confidence interval for the RNN method (Agresti,
Coull, 1998). We do not show the intervals for other methods to
avoid excessive clutter.

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 86

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

2

4

6

·10−2

BPE per word ratio

Finetuning
Feature extraction

Figure 5.3: The difference in accuracy between summation and RNN
plotted against average number of BPE tokens per word in all lan-
guages, with a linear regression line.

amount of training data. For the other languages the improvements
lie in the range .6 to 1.2 percentage points. This indicates that when
finetuning, the model can provide information that allows commu-
tative methods to properly compose BPE tokens. However, looking
at bare feature extraction we see that there is a larger gap between
the low BPE-ratio and the high BPE-ratio languages.

Our sample of languages contain both fusional and agglutina-
tive languages, and the typology does not appear to have an effect
in our experiments. We see about the same trends for the fusional
languages with a high BPE per word ratio as the agglutinative lan-
guages.

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 87

5.6.1 First method

The idea behind the First method is that the Transformer is suffi-
ciently powerful to pool the relevant information into the first BPE
token embedding. However, our experiments reveal that it is less ef-
ficient than any other method we tested for morphological sequence
classification across languages. We see in Table 5.3 that the method
is, on average, .4 and 1 percentage points lower than the next lowest
scoring method for finetuning and feature extraction respectively.
This effect is further enhanced when we consider the accuracy of
words composed of more than two BPE tokens in Table 5.4, where
the difference is 1.6 and 2.7 points, compared against the next low-
est scoring method, for finetuning and feature extraction respec-
tively. When we compare the performance against the RNN this
difference only increases, showing a gain of 3.2 percentage points
and 7.7 points for finetuning and feature extraction respectively.

While the First method may be effective, primarily because of
the expressivity of the Transformer architecture, the method forces
the model to push the predictive information of several BPE token
embeddings into the first one. This puts an additional burden on the
Transformermodel, andwe believe that this is the reason for the per-
formance degradation which we observe. Besides, putting this bur-
den on themodel is not necessary: pooling information from several
BPE embeddings can be done effectively using additional layers.

5.6.2 Sum and Mean

When we consider the commutative methods of combining token
embeddings, summation or averaging, we see no clear advantage
for either of them over the other one, when doing finetuning. How-
ever, when extracting features only we see hints that summation is
more effective than averaging. For feature extraction, summation is
.5 percentage points better than averaging, and words composed of

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 88

two or more BPE tokens exhibit an advantage of .9 point for sum-
mation.

This discrepancy suggests that by averaging, we are removing
some predictive information from the pretrained BPE token embed-
dings, that is, by reducing the values in the token embeddings uni-
formly across a sequence of token embeddings we lose useful infor-
mation. We believe that some token embeddings contain more pre-
dictive information than others, and by summing them we retain
all the information. But when we finetune, the difference between
summing and averaging almost disappears: the model appears to
learn how to distribute the information uniformly across the token
embeddings that compose a word and is thus able to retain the in-
formation better. Interestingly, the model learns to distribute the
information across multiple BPE token embeddings more efficiently
than pushing the information into the first token. This is shown
by the large difference in accuracy between finetuning and feature
extraction for the First and averaging method.

5.6.3 Parameterization of First, Sum and Mean

One question that arises when looking at Figure 5.2, specifically con-
sidering the performance onwords composed of only one BPE token
is the following: can the superiority of the RNNs be attributed to its
ability to take context into account, or simply to containing more
parameters and extra layers? We would expect that for the words
with only one BPE token, the performance of themodel would be the
same for all methods. For practical reasons, we push all word embed-
dings through an RNN, effectively doing a non-linear transforma-
tion with tanh activations on the words composed of only one BPE
token. Typically, the difference in accuracy between various meth-
ods for one-BPE-token words is small (barely visible in Figure 5.2).
But for example in Finnish, we see a larger difference. Although in
general if we perform better on longer words consisting of BPE to-

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 89

kens that also appear as words in the data, we could also expect the
performance to be better for words of BPE length one, because we
will have more accurate representations of the contextual words.

Finetuning Feature extraction
Treebank Baseline First Sum Mean RNN First Sum Mean RNN
Basque-BDT .676 .864 .894 .890 .901 .772 .793 .794 .834
Finnish-TDT .751 .958 .959 .961 .965 .857 .856 .855 .899
Turkish-IMST .620 .850 .875 .867 .884 .742 .722 .729 .775
Estonian-EDT .740 .956 .958 .958 .961 .865 .856 .853 .901
Spanish-AnCora .842 .978 .977 .978 .979 .953 .954 .952 .962
Arabic-PADT .770 .949 .945 .947 .951 .925 .923 .920 .936
Czech-CAC .771 .969 .972 .972 .975 .873 .887 .881 .924
Polish-LFG .657 .957 .953 .955 .959 .832 .844 .840 .878
Average .728 .935 .942 .941 .946 .852 .854 .853 .888

Table 5.5: The accuracy of morphological tagging when we param-
eterize the First, Sum and Mean method with a non-linear transfor-
mation layer.

We test this hypothesis by parameterizing the First, Sum, and
Mean method. Essentially, we need to increase the capabilities of
these methods. This is done by passing all BPE token embeddings
through a non-linear transformation with ReLU activation before
we compute the Sum, Mean, or select the first BPE-token. Our ex-
periment, whose results are shown in Table 5.5, shows that while
adding parameters to the First, Sum, and Mean method generally
improve their performance slightly, ranging between a change of
−0.2 and +0.6 percentage points, but their performance never ex-
ceeds that of the RNN method.

5.7 Conclusions and Future Work

In conclusion, our results indicate that using an RNN to compose
word representations from token representations, obtained from a
large Transformer model, is more efficient than two commutative

COMPOSING BYTE-PAIR ENCODINGS FOR MORPHOLOGICAL
SEQUENCE CLASSIFICATION 90

methods, summing and averaging, and also more effective than let-
ting a Transformer model automatically pool the predictive word-
level information into the first BPE token embedding. We show this
for the task of morphological sequence classification, in eight differ-
ent languages with varying morphology and word-lengths in term
of BPE tokens, as well as for two training regimes, finetuning and
feature extraction.

In future work, we want to continue experimenting with the
different BPE token embedding composition methods, specifically
looking at more complex syntactic and semantic tasks, such as
dependency and/or constituency parsing, semantic role labeling,
named entity recognition, and natural language inference. We also
wish to run our experiments on the hundreds of available UD tree-
banks to improve the robustness of our results.

Chapter 6

Can the Transformer Learn
Nested Recursion with Symbol
Masking?

Abstract

We investigate if, given a simple symbol masking strategy, self-
attention models are capable of learning nested structures and gen-
eralise over their depth. We do so in the simplest setting possible,
namely languages consisting of nested parentheses of several kinds.
We use encoder-only models, which we train to predict randomly
masked symbols, in a BERT-like fashion. We find that the accuracy
is well above random baseline, with accuracy consistently above 50%
both when increasing nesting depth and distances between training

Published in the article: Bernardy, Jean-Philippe, Adam Ek, and Vladislav
Maraev. ”Can the Transformer Learn Nested Recursion with Symbol Masking?.”
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.

91

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 92

and testing. However, we find that the predictions made correspond
to a simple parenthesis counting strategy, rather than a push-down
automaton. This suggests that self-attention models are not suitable
for tasks which require generalisation to more complex instances of
recursive structures than those found in the training set.

6.1 Introduction

Self-attention models (Vaswani et al., 2017) enjoy broad use in NLP
tasks. The best attention-basedmodels can tackle several tasks using
a unified sentence encoding (and perhaps decoding) module Raffel
et al. (2020), with applications ranging from classification to infer-
ence and generation. They provide state of the art results for all
such tasks, displacing the already very successful recurrent neural
networks, in particular the LSTM and its variants. The availability of
large pretrained models (Devlin et al., 2019) is another strong point
in their favour.

However, the generalisation capabilities of self-attention models
are still not well understood, and the present work is part of an on-
going effort to understand their capabilities. We study in particular
their ability to learn context-free languages, which are characterised
by the nested structures. For this purpose, we control the inputs to
the model to the maximum, while focusing on the defining char-
acteristic of context-free languages, namely matching opening and
closing brackets. This corresponds to learning generalised Dyck lan-
guages (see table 6.2). In particular, we investigate the following
questions:

1. Can self-attention generalise to matching open/close paren-
thesis at longer distances?

2. Can self-attention generalise to matching open/close paren-
thesis at deeper nesting levels distances?

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 93

There is a already a small body of work dealing with this ques-
tion (see sec. 6.5), but our contribution is specific in the following
two respects: i) We use the popular BERT-like training regime (pre-
dict a percentage of randomly masked tokens), ii) We concentrate
on generalising to (much) deeper nesting.

Beyond theoretical considerations, matching brackets have ap-
plications in the NLP-style treatment of constructed languages (in
particular) programming languages, for example translating be-
tween programs and their natural language descriptions.

6.2 Data Sets

We define the language Dn as the set of strings generated by the
following context-free rules: E ::= ;E ::= EE;E ::= oEc, where
(o, c) stands for a pair of matching parenthesis pairs. The index n
stands for the number of possible pairs. In all of our tests, we will
use n = 5 (corresponding for example to the pairs () , [], {}, <>
and «»), and thus we drop the subscript from now on.

We are interested in various characteristics of the strings of
D. First, we consider the distance between a closing parenthesis
and the corresponding opening parenthesis. Given a string s of
length 2N (N is the number of matching pairs), we will call (s)
an array of length 2N such that if si is a closing parenthesis, (s)i
is the distance between si and the closing parenthesis. If si is an
opening parenthesis, (s)i is 0. For example, if s =“{()<[](«»)>}”,
(s) = [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 9, 11]. The second characteristic that
we consider is the amount of nesting between closing and open-
ing parentheses. We call this characteristic η(s), and likewise we
define it for each closing parenthesis, and let it be zero for open-
ing parentheses. For example, if s =“{()<[](«»)>}”, (s) =
[0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 3, 4].

To generate a string with N matching pairs, we perform a ran-

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 94

dom walk between opposite corners of a square grid of width and
height N , such that one is not allowed to cross the diagonal. When
not restricted by the boundary, a step can be taken either along the
x or y axis with equal probability. A step along the x axis corre-
sponds to open a parenthesis, and one along the y axis corresponds
to closing one. The kind of parenthesis pair is chosen randomly
and uniformly. We call the distribution of input strings sampled by
this procedure D. In all our experiments we set N = 10 (which is
enough to illlustrate our points) and we thus omit the superscript in
what follows.

We also want control the maximum distance between opening
and closing parentheses (so that we never train on too long dis-
tances). We do so by discarding elements s of D such that (s)i > d
for some i, and call the resulting distribution D[MaxDist = d].

Often we want to control the maximum depth that our model is
trained or tested on. For this purpose, we generate strings s which
exhibit at least one index i such that (s)i = d, but no index j such
that (s)j > d. These paths can be generated by constraining the path
on the grid to touch a diagonal at distance d to the origin diagonal,
and we call the corresponding distribution D[MaxDepth = d].

6.3 Model and masking strategy

We implement a variation of the transformermodel as introduced by
(Vaswani et al., 2017). In the model each input symbol is associated
with a vector embedding of size K . A sequence of opening and
closing brackets is represented by a matrix of size (N,K).

Following Devlin et al. (2019), our model then applies a series
of multi-head self-attention layers organised in a hierarchical struc-
ture, such that the second layer operates on the representations gen-
erated in the first layer, and so on. We use a BERT-like, non auto-
regressive architecture: each layer attends to every position in the

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 95

input, including itself. Then a softmax classifier is employed to pre-
dict the symbol at the current position. Hence, we use a masking
strategy to train and test the model (otherwise it could simply use
the current symbol for prediction).

For training, we follow the masking strategy presented by De-
vlin et al. (2019). We mask 15% of the closing parenthesis tokens
at random, where in 80% of the cases we replace the token with a
mask token, in 10% of the cases with a random token, and in the
remaining 10% of the cases we replace it with the same token.

For testing, after sampling a string s, we pick a random position
i such that si is a closing parenthesis. Then we mask all subsequent
symbols, and let the model predict si. There is a single possible clos-
ing parenthesis type for si, corresponding to the opening parenthe-
sis found earlier in the string. The prediction is considered success-
ful if the model predicts the right type of closing parenthesis.

6.4 Experiments & Results

Our experiments consists in training the language model for a lim-
ited version of the Dyck family (for example by limiting nesting
depth () or maximum distance ()), and testing what the performance
is in a more general case. Thus, because there are five types of paren-
thesis pairs in all our experiments, the random baseline is 1

5
= 20%.

6.4.1 Generalisation to Longer Distances

In the first experiment we investigate whether the model is capa-
ble of predicting closing parenthesis at long distance from the cor-
responding opening parentheses, whereas it has only seen short-
distances in the training data. More precisely, we train the model
on strings fromD[MaxDist = 9] and test it onD[MaxDist = 19].

We present an overview of the results in table 6.1. Our experi-

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 96

Table 6.1: Mean accuracy and standard deviation over 10 runs on
generalisation to longer distances for each model configuration.

Layers Heads Accuracy
4 4 0.814(± 0.013)
8 2 0.643(± 0.005)
2 8 0.844(± 0.008)

ments show that the (2 layers, 8 heads) model generalises the best.
Using fewer heads appears to be more detrimental to the model’s
accuracy than the number of layers. This is true even though the
(8,2) model has many more parameters than the (2,8) model (see ap-
pendix).

The aggregated numbers however hide much of the reality of
the generalisation capabilities as a function of distance. Therefore
we further break down the accuracy by distance to the correspond-
ing opening parenthesis in figure 6.1. The (8,2) model fails to learn
parenthesis matching at short distances, but its accuracy is better for
longer distances. In contrast the (4,4) and (2,8) models do well for ad-
jacent parentheses, but their accuracy drops quickly until reaching
a minimum at distance 13, dipping below 50% accuracy —however
still above chance. Perhaps surprisingly, all models do very well at
very long distances. These very long distances correspond to match-
ing parentheses at the beginning of the input with parentheses at the
end (that is, when we mask the fewest number of input symbols).

6.4.2 Generalisation to Deeper Nesting

In the second experiment we test whether the model can gener-
alise to deeper nesting depths. That is, we train the model on
D[MaxDepth = 3] and test it on D[MaxDepth = 9]

We present an overview of the results in table 6.2. Looking at
the results we see a similar pattern in terms of aggregated accuracy

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 97

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19

Distance

(4,4)

(8,2)

(2,8)

Figure 6.1: Mean model accuracy for closing parenthesis depending
on a distance to corresponding opening parenthesis, over 10 runs.
Shaded areas correspond to standard deviation.

Table 6.2: Mean accuracy and standard deviation over 10 runs on
generalisation to deeper nesting for each model configuration.

Layers Heads Accuracy
4 4 0.654(± 0.012)
8 2 0.518(± 0.005)
2 8 0.672(± 0.008)

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 98

as in the previous experiment: the (2,8) setup performs the best, fol-
lowed by (4,4) and finally (8,2). Breaking down accuracy by nesting
depth (figure 6.2) reveals that the difference resides chiefly in the
(8,2) model failing to predict shallow nesting.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

Nesting

(4,4)

(8,2)

(2,8)

Figure 6.2: Mean model accuracy for closing parenthesis depending
on a distance to corresponding opening parenthesis over 10 runs.
Shaded areas correspond to standard deviation.

6.4.3 Analysis of attention heads

We have analysed attention heads by manual inspection of softmax
score for attention heads for each layer, on several sequence from
our training set (see Appendix for the corresponding heat maps).

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 99

Looking at the behaviour of the attention heads we note that
the first layer in the (2,8) and (4,4) models focuses its attention on
the previous symbol. Then, in the final layer of the (2,8) model the
attention of the start of the sequence focuses on the end, and vice-
versa.

In the (4,4) model, the second layer appears to often focus on
the non-masked symbols while in the third layer the attention is
distributed more evenly between masked and non-masked symbols.
A notable feature of the third layer is that a lot of self-attention oc-
curs on the masked symbols. In the final layer, the attention of all
symbols is put almost exclusively on the masked symbols.

The (8,2) model is the only model which does not have a clear
layer that looks at the preceding token. It appears that in the (8,2)
model, the earlier layers focus their attention on the beginning of the
sequence, then it moves towards the latter part of the sequence. The
heat maps also show that the (8,2) model focuses heavily on certain
symbols, which are the least frequent symbols used in the sequence,
for later layers. In earlier layers the model appears to focus on the
frequent symbols. This analysis is compatible with the (8,2) model
using a symbol counting method.

In summary, the (4,4) model appears to first look at the previous
symbol in the sequence. There are two steps of searching where first
the model ignores the masked symbols and distributes the attention
over the other symbols. In the second step, the model again focuses
all around the sequence, but the masked symbols receive a lot of at-
tention. For the (2,8) model, the behaviour is more straightforward.
First it looks at the previous symbol, then all around the sequence.
To the best of our knowledge, the (8,2) model is counting symbols
by distributing its attention on frequent and less frequent symbols.

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 100

6.5 Related work

Studying the ability of language models to learn Dyck languages
is emerging as a standard way to test the ability to generalise to
deeper nesting levels. Before self-attention, this test was applied
to RNNs. Bernardy (2018) proposed non-standard stack-based RNN
models, which can approach perfect accuracy for generalised Dyck-
language, although the accuracy of standard RNNs was higher than
random but far from perfect. Hewitt et al. (2020) presented a theo-
retical proof that RNNs are able to learn Dyck languages with max-
imum nesting depth m using O(m) memory. Sennhauser, Berwick
(2018) present contrasting evidence, concluding that LSTMs can
learn very limited range of rules.

A number of studies have considered self-attention models, es-
pecially in the past year. Ebrahimi et al. (2020) investigated self-
attention models using Dyck languages, and claimed that self-
attention models with a starting symbol are able to generalise to
longer sequences and deeper structures without learning recursion,
as competitive LSTMmodels do. In contrast to us, they studied mod-
els trained autoregressively only. Bhattamishra et al. (2020) studies
how autoregressive Transformer architecture learns a subset of for-
mal languages, including Dyck language and its generalisations. In
contrast to our study, they examine Shuffle-Dyck languages, which
allows constructions like “([)]” and provide theoretical and exper-
imental evidence that the Transformer is capable of learning such
a language. On the other hand, Hahn (2020) points at the limita-
tion of using self-attention models. He indicates that in theory the
LSTM should perform better than the autoregressive Transformer,
because the transformer cannot emulate a stack, general finite-state
automata, or use recursion.

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 101

6.6 Conclusion and future work

Our experiments show that, with a random masking strategy, the
transformer is able to discover away tomake good predictionswhen
generalising to longer distances and deeper nesting. However, this
strategy is not using the history of opening and closing parentheses
in a way a push-down automaton would.

Indeed, the analysis reveals that the best accuracy is obtained
when few symbols have been masked. This can be explained by the
model having learned a counting strategy. When a single symbol
is masked, predicting the kind of missing parenthesis can be done
by subtracting the number of closing parentheses by the number
of opening parentheses for each type, and predict the type which
exhibits a discrepancy. For short distances our (2,8) and (4,4) mod-
els were able to learn to remember preceding symbols and act ac-
cordingly. We suspect that for intermediate levels of nesting and
distance, the models act according to a mixture of the above two
strategies.

In consequence, we recommend not to use a BERT-like masking
strategy for applications where generalising to longer distances or
deeper nesting is critical. Rather, auto-regressive models should be
used, such as auto-regressive attention or RNNs.

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 102

Appendix A: Experimental setup and repro-
ducibility information

Our implementation is based on pytorch, with a custom re-
implementation of the transformer architecture, exactly following
(Vaswani et al., 2017). The runtime is under one day for the whole
set of experiments using a Titan X (Pascal) GPU.

The hyperparameters we use are listed in table 6.3.

Table 6.3: Hyperparameters used and the number of data examples
used.

Parameter Value
Optimiser Adam
Learning rate 0.0001
Epochs 10
Batch size 512
Training examples 102400
Validation examples 20480

In our experiments we consider three different transformer ar-
chitectures, corresponding to different values for the number of
multi-head self-attention layers, and the size of the heads. Specif-
ically, we considers the setups presented in section 6.4

Table 6.4: Model configurations and the number of parameters in
each configuration

Layers Heads Parameters
8 2 897 292
4 4 1 191 820
2 8 1 781 452

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 103

In each case, we have used 64-dimensional embeddings through-
out the models.

Appendix B: Attention heat-maps

Figure 6.3: Attention heatsmaps for the model with 4 heads and 4
layers on the input +-+<[+[([()])]-]>-.

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 104

Figure 6.4: Attention heatsmaps for the model with 2 heads and 8
layers on the input +-+<[+[([()])]-]>-.

CAN THE TRANSFORMER LEARN NESTED RECURSION WITH
SYMBOL MASKING? 105

Figure 6.5: Attention heatsmaps for the model with 8 heads and 2
layers on the input +-+<[+[([()])]-]>-.

Chapter 7

Can Predicate-Argument
relationships be extracted from
UD trees?

Abstract

In this paper we investigate the possibility of extracting predicate-
argument relations from UD trees (and enhanced UD graphs). Con-
cretely, we apply UD parsers on an English question answering/se-
mantic role labeling data set FitzGerald et al. (2018) and check if the
annotations reflect the relations in the resulting parse trees, using
a small number of rules to extract this information. We find that
79.1% of the argument-predicate pairs can be found in this way, on

Published in the article: Adam Ek, Jean-Philippe Bernardy, and Stergios
Chatzikyriakidis. 2021. Can predicate-argument relationships be extracted from
UD trees?. In Proceedings of the Joint 15th Linguistic Annotation Workshop
(LAW) and 3rd Designing Meaning Representations (DMR) Workshop, pages 46–
55, Punta Cana, Dominican Republic. Association for Computational Linguistics.

106

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 107

the basis of Udify Kondratyuk, Straka (2019). Error analysis reveals
that half of the error cases are attributable to shortcomings in the
dataset. The remaining errors are mostly due to predicate-argument
relations not being extractible algorithmically from the UD trees (re-
quiring semantic reasoning to be resolved). The parser itself is only
responsible for a small portion of errors. Our analysis suggests a
number of improvements to the UD annotation schema: we propose
to enhance the schema in four ways, in order to capture argument-
predicate relations. Additionally, we propose improvements regard-
ing data collection for question answering/semantic-role labeling
data.

7.1 Introduction

Universal Dependencies (UD), can be seen as a compromise, a bal-
ancing act between six principles, referred to as Manning’s law
Nivre et al. (2016):

1. UD needs to be satisfactory for analysis of individual lan-
guages

2. UD needs to be good for linguistic typology

3. UD must be suitable for rapid, consistent annotation

4. UD must be suitable for computer parsing with high accuracy

5. UD must be easily comprehended and used by a non-linguist

6. UD must provide good support for downstream language un-
derstanding tasks

Support for natural language understanding downstream tasks
in the UD schema has been shown in a number of studies includ-
ing event extraction, negation scope detection and opinion analysis

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 108

Fares et al. (2018), information extraction Angeli et al. (2015), im-
age retrieval Schuster et al. (2015), question-answering Reddy et al.
(2017), and Natural Language Inference Mishra et al. (2020), among
many others.

However, certain syntactic dependencies relevant to semantics
are not included in the original formulation of UD. For example, a
word may be the subject of two conjoined verbs, but in UD the sub-
ject is only connected to one of the verbs. To discover that the word
is the subject of two verbs it has to be inferred from the conjunction.
However, this creates unnecessary burdens for models using the UD
schema. The enhanced UD schema (EUD) Schuster, Manning (2016)
includes such edges, with the aim to make semantics more explicit.
Recently there has been a surge of interest and development of EUD,
spurred on by its applicability on semantic downstream tasks such
as information extraction Tiktinsky et al. (2020); Sun et al. (2020). Re-
search into EUD has also be facilitated recently by two shared tasks
on EUD parsing Bouma et al. (2020, 2021), which has resulted in a
mix of machine learning and rule-based approaches for producing
EUD graphs. We come back to an evaluation of the EUD schema in
Section 7.5.1.

The support provided by UDw.r.t. downstream NLU tasks raises
the question of how much “semantics” UD actually contains, or bet-
ter put, howmuch semantic reasoning can one perform by using just
the information provided by UD. This is also related to the question
of whether UD dependencies should be seen as semantic, syntactic,
or maybe something between the two. To some extent all three pos-
sibilities have been considered. One way to approach this question
is to check the amount of semantic knowledge that UD exhibits, ex-
plicitly or implicitly, in relation to specific semantic tasks or features.
Silveira (2016) argues that the way to see UD is as a representation
“for” semantics, not “of” semantics. Under this view, UD can be seen
as a kind of scaffolding where some proper semantic backbone will
be built upon. Again, however, this begs the question of the na-

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 109

ture of the scaffolding. Silveira (2016) claims that UD has implicit
semantic role information and also shows that their enhanced ver-
sion, which, as they argue, mirror semantic relations more closely,
perform better than normal UD in an event extraction task involv-
ing a model that extracts dependency features from different parses.
Previous research has shown the opposite to be the case, i.e. UD
performing better than the enhanced version in this task Miwa et al.
(2010a,b); Buyko, Hahn (2010), even though these pieces of work
are not directly tested on enhanced UD, but on previous related ef-
forts to expand basic UD (Silveira, 2016). UD has been also criti-
cized by researchers working in Theoretical Linguistics (Osborne,
Gerdes, 2019). According to them, UD fails to observe Manning’s
first desideratum because “UD annotation choices are not satisfac-
tory on linguistic analysis grounds because they result from a mix-
ture of semantic and syntactic criteria”. Lastly, one could argue that
approaches that attempt to combine UD with an explicit logical se-
mantics interface implicitly assume that UD is syntactic and/or miss-
ing crucial semantic information.

In this paper, we propose a way to test the semantic capabilities
of UD parsers for English by using their output to infer answers in a
Question-Answering task. More precisely, what we want to investi-
gate is the question of whether predicate-argument relations are cor-
rectly captured by UD parsers. We believe that this is an important
question to be posed, because, if this is the case and there is enough
ground/scaffolding, then a more fine-grained semantic representa-
tion may be build on top of UD (for example, some correspondence
between UD syntactic trees and logical semantics). A related ques-
tion is to what extent enhanced dependencies are better, if at all, in
precisely encoding predicate-argument relations.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 110

7.2 Dataset

We perform experiments on the question-answering/semantic-role-
labeling dataset of (FitzGerald et al., 2018), which is based on the
work of (He et al., 2015), simply referred to as “QA-SRL” below. The
rationale is that, in the QA-SRL dataset, question-answers pairs are
directly concerning predicate-argument structures. Each question
has a passage which it refers to. For example, the dataset might
contain the passage “UN published a report” together with the ques-
tion “What did something publish?”. The answers are provided by
annotators selecting a contiguous span of text in the passage which
answers the question, in this case the object “a report”.

The dataset contains passages from 3 domains in English:
Wikipedia, Wikinews and science, with questions and answers gen-
erated by crowdsourcing. For each verbal predicate in the passage,
questions about one of the arguments are constructed by the anno-
tators using question templates. In total the dataset contain 265156
valid questions over 76397 passages. The QA-SRL dataset also con-
tains an automatically generated dataset. However, we have not
included this part and only consider the crowdsourced part.

7.3 Task and Method

Themost obvious way to test whether UD parsers can correctly iden-
tify the semantic arguments of verbs would be to map the form of
a QA-SRL question to an UD role, then retrieve the subtree of the
argument from the UD tree and check if it matches the human an-
notations.

Unfortunately it is not easy to map the argument types of the
QA-SRL dataset to UD roles. One difficulty is the mismatch of pas-
sive and active voice between questions and answers. Another prob-
lem is that the non-subject UD roles (obj/obl/advcl/etc) are in n-to-n

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 111

correspondence with the QA-SRL argument types (locations, time,
etc). Converting these relationship to a functional mapping would
require the use of some statistical model to extract these features
from the sentence. Using a statistical model would make unclear
whether it is UD that captures argument-predicate relationships, or
the model. Thus, to keep the method simple we resort to checking if
the UD trees obtained from a parser contains the annotated QA-SRL
argument. To avoid the question of which semantic role should be
extracted, we check if any of the children of the verb matches the
answer. We make two further amendments to the task: 1. we en-
hance UD trees with EUD arcs and 2. we check for arguments in the
parent position.

The second amendment helps with cases when the sentence has
the form of a copula or when the verb plays the role of adjectival
phrase. For example, given the passage “Paleontologists are inter-
ested in fossils” and the question “Who is interested in something?”,
then one should be able to recover “Paleontologists” as an argu-
ment. However, in the UD tree, “Paleontologists” is the parent of
“interested”. Likewise, given “The observed animals were tortoises.”
and the question “What was observed?” should point to “animals”;
which is the parent of “observed” in the UD tree.

The first amendment is to use the EUD schema rather than plain
UD. While the state-of-the-art UD parsers do not provide this infor-
mation, it is possible to automatically add most EUD edges using
a number of rules Silveira (2016); Ek, Bernardy (2020b). Thus our
pipeline consists in first running a plain UD parser, we test both
the Stanza parser (Qi et al., 2020) and the Udify parser (Kondratyuk,
Straka, 2019), and then we apply the following enhancements to the
UD trees, using the system developed in (Ek, Bernardy, 2020b):

1. Propagation of incoming dependencies to conjuncts;

2. Propagation of outgoing dependencies from conjuncts;

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 112

3. Propagation of subject relations for direct control and raising
constructions;

4. Addition of co-reference arcs in relative clause constructions

To recapitulate, after adding enhanced edges for each question in
the test set, we proceed to:

1. Find the verb index relevant to the question. Generally this in-
formation is given by the QA-SRL data. In rare cases some ad-
justments need to be made, for example if the parser counted
words differently than the dataset we adjust the verb index
accordingly;

2. Collect all possible arguments according to the EUD graph;

3. Extract the constituent for each argument by following the
child edges;

4. Normalize the text of each constituent by removing punctua-
tion, leading prepositions, and determiners. Indeed, the anno-
tations are inconsistent regarding whether prepositions and
determiners should be part of the argument or not;

5. If any of the gold answers match any of the arguments re-
trieved, we consider the argument retrieval a success

7.4 Results and Analysis

In this section we present the results obtained from extracting
predicate-argument relations, and provide an analysis of the errors
observed.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 113

7.4.1 Baseline

As a side experiment, we have attempted to find if the argument can
be found anywhere as a constituent in the UD parse tree.

Model Upper bound
Udify 98.9%
Stanza 98.6%

Table 7.1: Dependency parsers upper bound performance.

Table 7.1 shows that in 98.9 and 98.6 of the cases, it is possible
to extract the semantic arguments from the syntactic structure by
finding an appropriate root of the tree. Thus, the above numbers
place a theoretical upper bound on the method, as the accuracy that
we could achieve if arguments were always correctly attached to
their predicate. This means that the above numbers provide a sanity
check for the approach: in 98.9% of the cases, the gold correspond
to something which Udify has identified somewhere in the sentence.

7.4.2 Extracting predicate-argument relations

In Table 7.2 we report the accuracy for both parsers, with and with-
out the applying the enhancements described in Section 7.3. The

Parser Plain UD EUD
Udify 0.683 0.791
Stanza 0.722 0.744

Table 7.2: Accuracy of UD trees with and without enhancements
using the Udify and Stanza parsers.

results show a clear superiority for Udify, which is more than 4 per-
centage points above Stanza in both configurations. Taking into ac-

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 114

count enhancement edges gives a large benefit to Udify parser, and
a small benefit to Stanza.

To get a better sense of where the errors are coming from, we
have performed manual analysis as follows. Focusing on the best
performing configuration (Udify with enhanced dependencies), we
picked 100 test cases at random, and, by manual inspection, we de-
termined if the error is imputable to either the parser, the dataset or
the method. Our classification criteria are as follows:

Parser If the used UD parser produced a wrong parse tree.

Dataset If either the passage or the question is incorrect, either syn-
tactically or semantically; or if the annotations do not contain
the answer according to the question and passage.

Method If both the dataset and the parse tree are correct, but the
argument is not related to the verb in the UD tree.

We found the following results: out of 100 cases, 49 errors were
attributable to the dataset, 13 to the parser and 38 to the method.
In terms of percentage points of lost accuracy, this means that 10.2
points are attributable to the dataset, 2.7 points to the parser and 7.9
points to the method. We further analyze error cases below.

7.4.3 Shortcomings of the data set

We found 49 errors imputable to shortcomings in the QA-SRL
dataset in our sample. In 20 cases out of those, we found that the an-
notators chose an answer which is a semantic superset of the answer
found in the passage. This situation is illustrated in Section 7.4.3.

(17) An error due to a superset relation between the gold and the
retrieved answer

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 115

Passage: Placards on the courtyard wall explain it
served as headquarters for Field marshal Kollowrat-
Krakowsky battlingNapoleonic forces in the 1796 Siege
of Kehl
Question: Where was someone battling?
Gold: ‘Siege of Kehl’
Retrieved: in the 1796 Siege of Kehl

In this example, the correct answer is only “Kehl”, as the “siege
of” indicates something which happened at “Kehl”. Thus, the gold
provided by the annotators include the actual gold answer, but pro-
vide additional information.

Another issue that arises in the dataset (7 cases in our sample) is
incorrect or incomprehensible questions. This is frequently caused
by considering a word which is a noun or an adjective in the pas-
sage as verb (or part of a verb, e.g. a past participle in a passive
verbal form) about which to ask questions. This concerns either ho-
mophonous forms or forms that can be formed by using a base form
which is a homophone to the word in the passage. An example is
shown below:

(18) An error due to changing the POS of a word in the passage
Passage: In 1977 a swamp created by heavy rains was
found to contain 8 toxic materials, including 11 sus-
pected cancer-causing chemicals
Question: When was something being swamped?
Gold: ‘in 1977’

In this example the noun ‘swamp’ is turned to a past partici-
ple, part of the passive past continuous verbal form “was being
swamped”.

In the following example the incomprehensibility is caused by
plain ungrammaticality:

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 116

(19) An error due to an ungrammatical question
Passage: A Texas man was rescued earlier this week
after being adrift at sea for 31 hours, according tomedia
reports on Monday
Question: Who was something according to?
Gold: ‘media reports’

Lastly, in 9 cases the actual answer is just not in the provided passage.
Despite this problem, annotators did provide a gold answer. The
following is such an example:

(20) An example where the answer is not in the passage
Passage: What this entails is a more complex rela-
tionship to technology than either techno-optimists or
techno-pessimists tend to allow.
Question: What isn’t being allowed?
Gold: ‘complex relationship to technology’, ‘a more
complex relationship to technology’, more complex re-
lationship to technology’

Here the passage tells us that “techno-optimists” allow do not allow
simple (or less complex) relationships to technology. However neither
the word “less” or “simple” or equivalent are found in the passage.
Thus, the gold simply cannot be annotated as a span in the passage,
even though annotators did attempt to do so.

Another notable issue is the incorrect identification of a verb oc-
currence which occurs more than once in the passage (the question
is about one occurrence and the answer about another), accounting
for two cases in our sample. In another two cases, the syntax of the
passage was plainly incorrect, and thus the parser could not recover
any useful UD tree.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 117

7.4.4 Shortcomings of the parser

Inmost cases, parsing errors are attributable to difficulty in handling
punctuation (in particular quotes)- and attachment errors.

In 5 out of the 13 parse error cases in our sample, Udify inter-
preted quotation marks as sentence final markers and terminated
the parsing, as in the sentence: After summarizing his career , Ma-
tisse refers to the possibilities the cut-out technique offers , insisting “
[…] ” where the parser stops after the first quotation mark.

Another common error (6 cases out of 13) is incorrect attach-
ment. That is, a subtree of the dependency tree is attached to the
wrong head, as in: Churchill was a prolific writer, often under the pen
name “ Winston S. Churchill ” , which he used […] where “used” is
attached to “writer” rather than “name”. Of course, in this case, a
correct attachment demands a fine understanding of the sentence,
so one might wonder if this it reasonable to expect such precision
from the parser. Indeed, this is precisely what we intend to estimate
by our experiment.

7.4.5 Shortcomings of the method

Seen as a way to test parsers, our method relies on the assumption
that predicate-argument relationships are either directly encoded in
the UD syntax, or can be directly inferred from it. Thus, conversely,
the predicate-argument relationship can serve as a proxy for testing
UD parser. Even though the assumption generally holds (not with-
standing parsing errors), it sometimes fails. In the rest of the section
we analyze the cases when this happens.

Insufficient propagation of arguments The first class of issues is
related to the propagation of argument to all the predicates where
they apply. This sort of situation accounts roughly for one third of
the errors attributable to shortcomings of the method. While EUD

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 118

mandates subject control propagation, there are other kinds of argu-
ment propagation which can apply.

The first main case occurs when purpose clauses are present.
Consider the following passage and question: “Public officials in
Texas have urged citizens to receive a flu shot. Who receives some-
thing?” Here the answer can be retrieved from a relation between
citizens and receive, but the relationship is not direct: it is mediated
by a purpose clause, and this mediation is not identified explicitly
in the UD representation.

The second main case involves topicalization of prepositional
phrase. The following example illustrates. “In the summer, the
glacier melts rapidly, producing a thick deposit of sediment. When
is something produced?” In this case the temporal clause is not syn-
tactically attached to producing. Rather, it is topicalized and thus
attached to the top level node.

Semantic or pragmatic reasoning is necessary In the second class
of issues, some sort of semantic and/or pragmatic reasoning is nec-
essary to understand the relationship between arguments and their
predicates. The following passage illustrates the problem: “New
SouthWales premierMike Baird said people should leavework early
and arrive home before dark, as storms were predicted to intensify.
Why did someone say something?” Here the cause is not syntac-
tically related to the verb “say”. Furthermore, locating the cause
cannot be a matter of traversing the syntax tree, using any method.
Instead, proper identification of the answer relies on the lexical se-
mantics of the passage. We attribute roughly one fourth of the short-
comings of the methods to this class. We stress however that the
lines are blurred between various classes of errors. Even though the
classification is done according to the best of our judgement it is not
easy to make the difference between this case and the previous one.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 119

Anaphora resolution Another cause of errors is the lack of
anapho-ra resolution layer in the processing pipeline. For example,
the search for syntactic arguments may find the pronoun “it”, but
the annotators could have resolved the anaphora to a noun phrase
(say “the power plant”). This class of errors causes only a tenth of
the method shortcomings. This low number may come as a surprise.
Its relatively low weight can be explained by two factors: the first
one is that annotators are allowed to point to pronouns when iden-
tifying arguments. In this case anaphora resolution plays no role.
Additionally, each passage is only one sentence long. Therefore, the
possibilities for anaphora resolution are limited.

Shortcomings of the parent heuristic When the answer is one of
the children, we consider the whole subtree as a candidate answer.
When the answer should be looked up in the parent node, we can-
not do the same thing: the parent node would contain the whole
phrase, which is wrong. For example, when trying to answer “Who
observed?” given “The observed animals were tortoises”, the parent
is “animals”, which is the root of the sentence. The heuristic that we
apply is to subtract the subtree which contains the verb to obtain
the candidate answer. Often, this works well, but in this example
we obtain nonsense. This problem accounts roughly for 15 percent
of method errors.

Other issues The above list covers roughly 80 percent of errors.
The remaining issues include various idiosyncratic interpretations
of passages and questions (parataxis, non-deterministic selection of
non-specific relative clauses, etc.). Some of them seem as if they
could be handled by special rules to identify arguments, but we have
preferred not to implement such rules in order to keep the results
more directly linked to the syntactic trees which we analyze.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 120

7.5 Suggested improvements to annotation
schemes

In this section we leverage our understanding of EUD and QA-SRL,
and provide advice to creators of datasets featuring either annota-
tion schema.

7.5.1 EUD

While the main UD format prescribes dependency trees, UD also
specifies an enhanced format which allows for additional semanti-
cally relevant edges to be added (thus obtaining a graph). As Candito
et al. (2017) among others note, different tasks seem to require dif-
ferent semantic representations. Thus, our suggestions to the EUD
schema focus on how to extract arguments indicated by some ques-
tion.

Our analysis shows that EUD is able to model the predicates
and arguments in QA-SRL to a high degree (when probed with our
fairly straightforward rule-based system) providing an appreciable
increase in accuracy compared to plain UD, see Table 7.2. Yet, as far
as we understand, the EUD annotation standard is lacking in clarity
when it comes to how much semantic relations should be reflected
in the structure. The standard reference appears to be the UD web-
site1, where all enhancements seem to be deducible algorithmically
from the plain UD tree. However, as seen in Section 7.4.5, certain
predicate-argument relationships are not present in the dependency
structure, even after applying the algorithmic enhancements.

We believe that a variant of the EUD scheme with full reflection
of predicate-argument structure would be beneficial for many down-
stream tasks. In the light of our experiment, we propose a number

1https://universaldependencies.org/u/overview/
enhanced-syntax.html

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 121

of following arcs to be added, as we list below.
EUD mandates the propagation of subjects through control

verbs. As an illustration, consider the sentence “John wants to eat.”.
The UD tree contains the arcs in black, and EUD mandates to add
the blue arc:

John wants to eat

root

nsubj
xcomp

xsubj

However, we have found that the predicate, the argument and the
control verb are not arranged in fixed syntactic patterns, which
makes adding the relevant arcs difficult. The main source of diffi-
culties appear to be that the relationship between the argument and
predicate can be mediated by a purpose clause.

To illustrate the complexity of the problem, we show two typical
examples.

The government published legislation to allow it.

det nsubj

root

obj mark
acl

obj

xsubj

Above, the (semantic) subject of “allow” is “government”, which is
syntactically a grandfather node of allow. (“Legislation” is another
candidate, but it also cannot be identified using a simple syntactic
pattern.)

In the example below, we face two difficulties. First, “take” is not
a control verb. Second, even though the desired argument of “main-
tain” (which is “arrangement”) can be identified as an argument of
“take”, this can only be done via a relative clause. Third, the roles do
not match (a subject becomes an object).

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 122

This gives an arrangement that takes less energy to maintain

root

nsubj det
obj

nsubj
acl:relcl

amod
obj

mark

advcl

obj

In sum, we purport that, in general, the semantic subject (or object)
of a predicate can be found anywhere in the sentence.

Another shortcoming observed is regarding topicalization. Top-
icalization occurs when a phrase in a sentence is moved to the front
of the sentence, to make the phrase more prominent. In the case of
prepositional phrases, often indicating semantic roles pertaining to
the location, time, or manner in which something happens, is typ-
ically expressed with the role obl. However, two verbs may be as-
sociated with a prepositional phrase indicating time. Thus, the obl
argument should be propagated similarly to how the subject and
object roles are propagated in control-like verb construction. An
example from the dataset, with out proposed enhancement in blue:

In the summer , the glacier melts rapidly , producing …

obl

case

det

obl

punct det nsubj

root

advmod

punct

advcl

…

This addition allows for a straightforward interpretation of “when”
things happen, by associating both “melts” and “producing” (which
is a consequence of “melts”) with the phrase “in the summer”. This
allows us to more easily extract the answer to the question: “when
was something produced?”.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 123

Finally, anaphoric relationships should be noted as well. This is
a well-studied topic which we won’t comment further upon, how-
ever, we refer readers to the Universal Anaphora project Poesio et al.
(1999).

It should be noted that, contrary to the algorithmic transforma-
tions of UD trees, some of the above arcs cannot be deduced without
a certain amount of semantic understanding of the sentence (in the
sense that substituting lexemes by others with the same POS would
change the structure). However, this kind of effect is already present
when deciding the attachment of constituents, and therefore already
affects plain UD.

7.5.2 QA-SRL

We have discovered several possible improvements regarding the
QA-SRL data collection. One prevalent source of ambiguity regards
the selection of a general or specific phrase, as in Example (7.4.3).
A way to remedy this ambiguity in future versions of the QA-SRL
datasets is to give annotatorsmore specific instructions for cases like
these. A solution that seems to be viable is to instruct annotators to
give the most specific answer as this is found in the text, which cor-
rectly answers the question. In plain words, this is the longest possi-
ble substring that correctly answers the question. In the case of Ex-
ample (7.4.3), that would be the substring “in the 1796 Siege of Kehl”.
Note that the relations subset and superset have a more restricted
meaning here, as they are bound by the specific syntax found in the
passage. As such, the gold and the retrieved answer stand in a sub-
set relation, if the former is a superstring (thus, more specific) of the
latter and, vice versa, in a superset relation, if the former is a sub-
string of the latter. An instruction to select the longer string would
also lift the ambiguity inherent to selection of non-specific relative
clauses. To illustrate, consider the passage-question pair “Matisse’s
wife Amélie , who suspected that he was having an affair, ended

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 124

their 41-year marriage. Who ended something?” For this example
the annotators marked ‘Amélie’ and ‘Matisse’s wife Amélie’ as pos-
sible answers, but ‘Matisse’s wife Amélie , who suspected that he
was having an affair’ is the longest acceptable string.

To prevent incomprehensible questions (like Section 7.4.3), ad-
ditional validation tests should be run to safeguard against the for-
mation of ungrammatical questions. One way to do this is to val-
idate at least part of the questions in the dataset using a syntactic
acceptability task. This helps identify the ungrammatical questions
and replace them with grammatical ones. We observed that anno-
tators tend to make attempts at such meaningless questions as well
as questions which do not have an answer in the passage. This is
presumably caused by annotators “trying their best”, but results in
bogus answers. One idea to filter those would be to turn proposed
answers into inference problems, as suggested by Demszky et al.
(2018). If the constructed problem is not an entailment, then the
answer should be rejected. For instance, Example 7.4.3 would be
turned into the following problem:

(21) NLI pair for Example (Section 7.4.3
Premise: What this entails is a more complex rela-
tionship to technology than either techno-optimists or
techno-pessimists tend to allow.
Hypothesis: Complex relationship to technology isn’t
being allowed.

Even though the double-negation complicates reasoning, in this
case, one can reasonably expect that the absence of entailment could
be detected. This could be done by another round of annotations,
perhaps helped by a statistical model which would select doubtful
cases.

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 125

7.6 Related Work

In addition to our suggestions, there has been several other propos-
als to extend syntactic dependency trees to more explicitly cover
semantic phenomena, including the work of Silveira (2016), already
discussed in the introduction. Additionally, Candito et al. (2017) no-
tably propose additions to the EUD schema mainly focusing on ex-
tracting the arguments of non-finite verbs and dealing with syntac-
tic alterations in a French treebank. The Universal Decompositional
Semantics project (White et al., 2016; Zhang et al., 2017) is another
attempt at extending the UD framework to cover semantic phenom-
ena. They develop the Semantic proto-role labeling protocol (SPR1
and SPR2), to find proto-semantic roles by decomposing semantic
roles such as “Agent” into more fine-grained properties. Working
more generally on dependency trees, Stanovsky et al. (2016) develop
a framework to enhance dependency trees such that semantic propo-
sitions aremore easily recoverable which includes a similar propaga-
tion of subjects and objects as in EUD. However they do not appear
to take any special note of purpose clauses or topicalization.

7.7 Conclusion and Future Work

We have found that a state-of-the-art UD parser such as Udify only
fails to produce a semantically correct UD trees in rare cases. If we
exclude difficulties in handling quotes, only 8 cases out of 100 errors
are imputable to the parser.

However, in a lot of cases the semantic relationship cannot possi-
bly be present in the UD format, due to its tree structure. To express
this, enhancing the structure with additional arcs is needed. Some
of those arcs can be found by algorithmic means (as listed in Sec-
tion 7.3), boosting the accuracy by a several points, see Table 7.2.
One could expect that the EUD schema would mandate the addition

CAN PREDICATE-ARGUMENT RELATIONSHIPS BE
EXTRACTED FROM UD TREES? 126

of all semantically relevant arcs, but this is not the case. We have
advocated for an update to the EUD standard which fills this gap, as
discussed in Section 7.5.1.

While the goals of the QA-SRL appear to align perfectly with
ours, and the annotation for QA-SRL was both effective and rela-
tively cheap, we notice some shortcomings in the annotations (Sec-
tion 7.4.3). Sometimes annotators get something wrong because
of a tricky phenomena or they are presented with a badly formu-
lated question about the passage. We have proposed a number of
strategies to improve data collection for future similar datasets (Sec-
tion 7.5.2). Another point to consider is that it is much cheaper to an-
notate QA-SRL than full EUD parse trees. Therefore QA-SRL could
be a proxy for training EUD parsers on predicate-argument struc-
tures, together with for example multi-task learning. That is, in ad-
dition to training a system to predicting arcs, the system would be
optimized on selecting the spans of text corresponding to the argu-
ments of predicates.

Chapter 8

Language Modelling with
Syntactic and Semantic
representations for
Acceptability Predictions

Abstract

In this paper, we investigate the effect of enhancing lexical embed-
dings in LSTM language models (LM) with syntactic and semantic
representations. We evaluate the language models using perplex-
ity, and we evaluate the performance of the models on the task of
predicting human sentence acceptability judgments. We train LSTM

Published in the article: Adam Ek, Jean-Philippe Bernardy, and Shalom Lap-
pin. 2019. Language Modeling with Syntactic and Semantic Representation for
SentenceAcceptability Predictions. In Proceedings of the 22ndNordic Conference
on Computational Linguistics, pages 76–85, Turku, Finland. Linköping University
Electronic Press.

127

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 128

language models on sentences automatically annotated with univer-
sal syntactic dependency roles (Nivre et al., 2017), dependency tree
depth features, and universal semantic tags (Abzianidze, Bos, 2017)
to predict sentence acceptability judgments. Our experiments indi-
cate that syntactic depth and tags lower the perplexity compared
to a plain LSTM language model, while semantic tags increase the
perplexity. Our experiments also show that neither syntactic nor
semantic tags improve the performance of LSTM language models
on the task of predicting sentence acceptability judgments.

8.1 Introduction

Lau et al. (2014) show that human acceptability judgments are
graded rather than binary. It is not entirely obvious what deter-
mines sentence acceptability for speakers and listeners. However,
syntactic structure and semantic content are clearly central to ac-
ceptability judgments. In fact, as Lau et al. (2015, 2017) show, it is
possible to use a language model, augmented with a scoring func-
tion, to predict acceptability. Standard RNN language models per-
form fairly well on the sentence acceptability prediction task.

By experimenting with different sorts of enrichments of the
training data, one can explore their effect on both the perplexity
and the predictive accuracy of the LM. For example, Bernardy et al.
(2018) report that including contextual information in training and
testing improves the performance of an LSTM LM on the acceptabil-
ity task, when contextual information is contributed by preceding
and following sentences in a document.

Here we report several experiments on the possible contribution
of symbolic representations of semantic and syntactic features to the
accuracy of LSTM LMs in predicting human sentence acceptability
judgments. 1

1Our training and test sets, and the code for generating our

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 129

For semantic tags, we use the Universal Semantic Tagging
scheme, which provides language independent and fine-grained se-
mantic categories for individual words (Abzianidze et al., 2017). We
take our syntactic roles from the Universal Dependency Grammar
scheme (Nivre et al., 2016). This allows us to assign to each word in
a sentence a semantic and a syntactic role, respectively.

Our working hypothesis is that for a language model the syntac-
tic and semantic annotations will highlight semantic and syntactic
patterns observed in the data. Therefore sentences that exhibit these
patterns should be more acceptable than sentences which diverge
from them. One would expect that if we get lower perplexity for
one of the tagging scheme LMs, then its performancewould improve
on the acceptability prediction task. Clearly, better performance on
this task indicates that tagging supplies useful information for pre-
dicting acceptability.

8.2 Experimental Setup

First, we train a set of language models, some of them on tag an-
notated corpora, and some on plain text. While we are interested
in the effect of the tags on model perplexity, our main concern is
to measure the influence of the tags on an LSTM LM’s predictive
power in the sentence acceptability task.

We implement four variants of LSTM language models. The first
model is a plain LSTM that predicts the next word based on the previ-
ous sequence of words. The second, third and fourth models predict
next thewordwi conditioned on the previous sequence of words and
tags, for which we write PM(wi). For a model M that use syntactic
or semantic information:

PM(wi) = P (wi|(wi−1, ti−1), ..., (wi−n, ti−n)) (8.1)

LSTM LM models are available at https://github.com/GU-CLASP/
predicting-acceptability.

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 130

We stress that the current tag (ti) is not given when the model
predicts the current word (wi). Following a previous similar exper-
iment (Bernardy et al., 2018), all language models use a unidirec-
tional LSTM of size 600. We apply a drop-out of 0.4 after the LSTM
layer. The models are trained on a vocabulary of 100,000 words. We
randomly initialise word embeddings of size 300 dimensions, and
tag embeddings of size 30 dimensions. Each model is trained for 10
epochs.

Following the literature on acceptability (Lau et al., 2015, 2017;
Bernardy et al., 2018), we predict a judgment by applying a variant
of the scoring function SLOR (Pauls, Klein, 2012) to a model’s pre-
dictions.

8.2.1 SLOR

To estimate sentence acceptability, we use a length-normalized syn-
tactic log-odds ratio (hereafter simply referred to as SLOR). We use
SLOR rather than any other measurements since it was shown to
have the best results in a previous study (Lau et al., 2015). It is cal-
culated by taking the logarithm of the ratio to the probability of
the sentence s predicted by a model M (PM) with the probability
predicted by the unigram model (PU), divided by the length of the
sequence |s|.

SLORM(s) =
log(PM(s))− log(PU(s))

|s|
(8.2)

wherePM(s) =
∏|s|

i=1 PM(wi) andPU(s) =
∏|s|

i=1(PU(wi)). This for-
mula takes into account the effect of both word frequency and sen-
tence length on the acceptability score that it assigns to the sentence.
SLOR has been found to be a robustly effective scoring function for
the acceptability prediction task (Lau et al., 2015).

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 131

8.2.2 Model evaluation

We evaluate the model by calculating the Weighted Pearson correla-
tion coefficient between the SLOR score assigned by the model and
the judgments assigned by the annotators. Even though we show
only the mean judgment in Figure 8.3, each data point comes also
with a variance (there is heteroscedasticity). Thus we have chosen
to weight the data points with the inverse of the variance when com-
puting the Pearson correlation, as is standard when computing least
square regression on heteroscedastic data.

We report the weighted correlation point wise between all mod-
els, and between each model and the human judgments. Addition-
ally, we perform three experiments where we shuffle the syntactic
and semantic representations in the test sentences. This is done to
evaluate if the tags provide useful information for the task.

8.2.3 Language Model Training Data

For training the LMs we selected the English part of the CoNLL 2017
dataset (Nivre et al., 2017). The input sentences were taken from a
subset of this corpus. We used only 1/10 of the total CoNNL 2017
Wikipedia corpus, randomly selected. We took out all sentences
whose dependency root is not a verb, thus eliminating titles and
other non-sentences. We also removed all sentences longer than 30
words. After filtering, the training data contained 87M tokens and
5.3M sentences.

8.3 Semantic Tags

We train a LSTM model for predicting semantic tags. We use this
model to tag both the training set extracted from the CoNLL 2017
corpus, and the crowdsource annotated test set (described in Section
6).

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 132

TheUniversal semantic tagging scheme provides fine-grained se-
mantic tags for tokens. It includes 80 different semantic labels. The
semantic tags are similar to Part-of-Speech (POS) tags, but they are
intended to generalise and to semantically disambiguate POS tags.
For many purposes, POS tags do not provide enough information
for semantic processing, and this is where semantic tags come into
play. A significant element of POS disambiguation consists in as-
signing proper nouns to semantic classes (named entities). In this
way, the scheme also provides a form of named entity recognition.
The scheme is designed to be language independent. Annotations
currently exist for English, German, Dutch and Italian, but we only
use the English labels in our model.

The corpus of semantically tagged sentences that we use comes
from the Parallel Meaning Bank (PMB) (Abzianidze et al., 2017). It
contains 1.4M tagged tokens divided into 68,177 sentences2. The
datas-et is extracted from a variety of sources: Tatoeba, News Com-
mentary, Recognizing Textual Entailment (RTE), Sherlock Holmes
stories, and the Bible. The sentences are split into gold and silver
annotations, where the gold have been manually annotated, and the
silver has been annotated by a parser with manual corrections. The
silver annotations are mostly correct, but may contain some errors.

Example 22 below is a semantically tagged sentence, taken from
the PMB corpus. It includes two pronouns ’he’ and ’his’.

(22) He
PRO

took
EPS

his
HAS

book
CON

.
NIL

Both of these instantiate the same POS, but their semantic classes
are distinct. The first is a simple third person pronoun, while the
second is a possessive pronoun. Semantic tags are able to handle this
distinction, by assigning PRO (pronoun) to the third person pronoun,
and HAS (possessive) to the possessive pronoun.

2Available for download at https://pmb.let.rug.nl/releases/sem-0.
1.0.zip

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 133

8.3.1 Semantic Tagging Model

To assign semantic tags to the CoNNL 2017 training corpus and our
training set we use a bidirectional LSTM of size 256, with a stan-
dard configuration. The model is trained with a batch size of 512
sentences. The word embeddings are of size 256 and are randomly
initialized. The model is implemented with keras Chollet, others
(2015). We stress that this model is separate from the language mod-
els used to predict sentence acceptability.

The semantic tagging model is trained for a maximum of 1024
epochs, with early stopping if the validation loss does not improve
after 32 epochs. For each epoch, we feed the model 64 batches of 512
randomly selected sentences. For each epoch, the model observes
32,768 sentences (e.g. roughly half of the corpus). To select the best
model we left out 1024 gold annotated sentences, randomly selected,
and we used them for validation.

Performance The model was validated on 1.5% of the sentences
with gold annotations. The remaining data were used for training.
This split was chosen because the primary goal of this model is a
downstream task, namely tagging data for language modeling. We
wish to maximise the number of sentences in the training data. The
model finished after 33 epochs, with a final validation loss of 0.317
and a validation accuracy of 91.1%. The performance of our model
is similar to that of (Bjerva et al., 2016).

8.4 Syntactic Tags

To introduce syntactic information to our model in an explicit way,
we provide it with Universal Dependency Grammar (UD) roles. The
UD annotation scheme seeks to develop a unified syntactic anno-
tation system that is language independent (Nivre et al., 2016). UD
implements a syntactic annotation through labelled directed graphs,

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 134

where each edge represents a dependency relation. In total, UD
contains 40 different dependency relations (or tags). For example,
the sentence ’There is no known cure’ (taken from the CoNLL2017
Wikipedia corpus) is annotated as the dependency graph shown in
Figure 1.

There is no known cure .

ROOT

expl

neg

amod

nsubj
punct

Figure 8.1: Dependency Graph

The model gives the label of the dependency originating from
each word, which we call the syntactic role of the word. This label is
provided as an additional feature for each word in the input to our
language model. The model does not attempt to predict these roles.
For the above sentence, the information given to our syntactic tag
trained models would be:

(23) There
expl

is
root

no
neg

known
amod

cure
nsubj

We use the Stanford Dependency Parser to generate syntactic
tags for the training and test sets (Chen, Manning, 2014).

8.5 Syntactic Depth

In addition to using syntactic and semantic tags, we also experiment
with syntactic depth. To assign a depth to word n, we compute the
number of common ancestors in the tree between word n and word
n + 1. The last word is arbitrarily assigned depth 0. This method

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 135

was proposed by Gómez-Rodríguez, Vilares (2018) for constituent
trees, but the method works just as well for dependency trees. An
example tree is shown below:

There is no known cure .
1 1 2 2 1 0

ROOT

expl

neg

amod

nsubj
punct

Figure 8.2: Linearized dependency graph

8.6 Test Set

The test set for evaluating our LMs comes from the work of Lau
et al. (2015, 2017). 600 sentences were extracted from the BNC cor-
pus (BNC Consortium, 2007) and filtered for length (8 < |s| < 25).
After this filtering 500 sentences remained and were put through a
round-trip machine translation process, from English to Norwegian,
Spanish, Chinese or Japanese, and then back to English. In total, the
test set contains 2500 sentences: 500 original sentences and 500 from
each language used for round-trip translation (i.e. Norwegian, Span-
ish, Chinese and Japanese). The purpose of using round-trip MT is
to introduce a wide variety of infelicities into some of the sentence
in our test set. This insures variation in acceptability judgements
across the examples of the set.

We used Amazon Mechanical Turk (AMT) crowdsourcing to ob-
tain acceptability judgments. The annotators were asked to rate the
sentences based on their naturalness (as opposed to the theoretically
committed notion of well-formedness) on a scale of 1 to 4. On av-

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 136

erage, each sentence had 14 annotators after filtering (for a more
detailed description see (Lau et al., 2017)).

The results are shown in Table 8.1. The original sentences, and
the sentences that were round-trip translated through Norwegian
and Spanish have a highermean rating than the sentences translated
through Japanese and Chinese. The standard deviation is slightly
higher for all the sentences which underwent round-trip translation,
which is to be expected.

Sentences Mean st-dev
en 3.51 0.46
en-no-en 3.13 0.70
en-es-en 3.12 0.69
en-zh-en 2.42 0.72
en-ja-en 2.14 0.74

Table 8.1: Mean judgments and standard deviation for the test set.

Human LSTM +Syn +Syn* +Sem +Sem* +Depth +Depth*
Human 1.00
LSTM 0.58 1.00
+Syn 0.55 0.96 1.00
+Syn* 0.39 0.76 0.75 1.00
+Sem 0.54 0.81 0.78 0.61 1.00
+Sem* 0.52 0.81 0.78 0.63 0.96 1.00
+Depth 0.56 0.97 0.97 0.74 0.79 0.79 1.00
+Depth* 0.46 0.87 0.85 0.73 0.72 0.72 0.86 1.00

Table 8.2: Weighted Pearson correlation between prediction from
different models on the SMOG1 dataset. * indicates that the tags
have been shuffled.

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 137

8.7 Results

Below we denote the plain LSTM LM by LSTM, the LM with syn-
tactic tags as +Syn, the LM with semantic tags as +Sem and the LM
with syntactic tree depth as +Depth. We denote the models with
shuffled tags by using the star (*) as a modifier.

8.7.1 Language Model Perplexity

We report in Table 8.3 the training loss for the plain-LSTM language
model, and for the LSTM language models enhanced with syntactic
and semantic tags.

Model Loss Accuracy
LSTM 5.04 0.24
+Syn 4.79 0.26
+Sem 5.23 0.21
+Depth 4.88 0.27

Table 8.3: Training loss and accuracy for the language modeling
task.

At the end of the training, the language model conditioned on
syntactic tags shows the lowest loss. By definition loss is the loga-
rithm of the perplexity. The semantic tag LM exhibits the highest
degree of loss. It seems that the syntactic tags reduce LM perplexity,
while the semantic tags increase it.

8.7.2 Acceptability Predictions

The matrix in Table 8.2 gives the results for the sentence acceptabil-
ity prediction task. Each entry rij indicates the weighted Pearson
correlation r between SLORi and SLORj . Scatter plots showing

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 138

the correlation between human and model predictions are given in
Figure 8.3.

The plain LSTM performs close to the level that Bernardy et al.
(2018) report for the same type of LM, trained and tested on English
Wikipedia data. This indicates the robustness of this model for the
sentence acceptability prediction task, given that, unlike the LSTM
of Bernardy et al. (2018), it is trained on Wikipedia text, but tested
on a BNC test set. Therefore, it sustains a relatively high level of
performance on an out of domain test set.

We also tested a model that combined depth markers and syn-
tactic tags, which is, in effect, a full implicit labelled dependency
tree model. Interestingly, the correlation (0.54) was lower than the
ones achieved by the syntactic tag and depth LSTM LMs individu-
ally. None of the enhanced language models increases correlation
with human judgments compared to the plain LSTM. Neither does
the additional information significantly reduce correlation.

Shuffling the tags causes a drop of 0.16 in correlation for syntac-
tic tags, and a drop of 0.1 for tree depth. Shuffling the semantic tags
also lowers the correlation, but only by a small amount (−0.02).

8.8 Discussion

8.8.1 Semantic Tags

As can be observed in Table 8.3, the semantic tags show the highest
loss during training. This indicates that semantic tags increase the
perplexity of the model, and do not help to predict the next word
in a sentence. Despite this, +Sem correlates fairly well with human
judgments (r = 0.54).

The results obtained with shuffled semantic tags (+Sem*) are re-
vealing. They yield a correlation factor nearly as high as the non-
shuffled tags (r = 0.53). This suggests that the semantic tags do

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 139

not provide any useful information for the prediction task. This hy-
pothesis is further confirmed by the high correlation between the
non-shuffled and the shuffled semantic tag LMs (r = 0.96).

The question of why semantic tags do not reduce perplexity, or
why randomly assigned semantic tags are almost as good as non-
shuffled tags at predicting acceptability requires further study. One
possibility is that the tagging model does not perform as well on
the ConLL 2017 Wikipedia subset, or the BNC test set, as it does
on the PMB corpus. It may be the case that since the domains are
somewhat different, the model is not able to accurately predict tags
for our training and test sets. Similarly, we do not know the accuracy
of the Stanford Dependency Parser on the BNC test set.

8.8.2 Syntactic Tags

Providing syntactic tags improves the language model, but not the
correlation of its predictions with mean human acceptability judg-
ments. However, shuffling the syntactic tags does lower the corre-
lation significantly. This indicates that syntactic tags significantly
influence the predictions of the language model.

8.8.3 Tree Depth

The depth marker enriched LSTM performs best of all the feature
enhanced models. Shuffling the markers significantly degrades the
accuracy, and it achieves a reduction in perplexity. However, it
still performs below the simple LSTM on the acceptability predic-
tion task

It may be the case that the plain LSTM already acquires a signifi-
cant amount of latent syntactic information, and adding explicit syn-
tactic role labeling does not augment this information in a way that
is accessible to LSTM learning. This conclusion is supported by the
work of Bernardy, Lappin (2017) on syntactic agreement. They ob-

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 140

1 0 1 2 3 4 5
Model score

1

2

3

4
Hu

m
an

 ju
dg

m
en

t

(a) Human - LSTM

1 0 1 2 3 4 5
Model score

1

2

3

4

Hu
m

an
 ju

dg
m

en
t

(b) Human - Syn

0 1 2 3 4
Model score

1

2

3

4

Hu
m

an
 ju

dg
m

en
t

(c) Human - Sem

0 1 2 3 4 5
Model score

1

2

3

4
Hu

m
an

 ju
dg

m
en

t

(d) Human - Depth

Figure 8.3: Scatter plots showing the weighted Pearson correlation
between human acceptability judgments (y-axis) and model predic-
tions (x-axis).

serve that replacing a significant portion of the lexicon of an LSTM
with POS tags degrades its capacity to predict agreement.

In general, our results do not show that syntactic and seman-
tic information plays no role in the performance of any LM for the
acceptability prediction task. It seems clear that the simple LSTM
model learns both semantic and syntactic relations among words
and phrases, but represents these in a distributed way through the
encoding of lexical embeddings in vectors. In fact, there is a body

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 141

of work which shows that such LSTMs recognise complex long-
distance syntactic relations (Lakretz et al., 2019; Bernardy, Lappin,
2017; Gulordava et al., 2018; Linzen et al., 2016).

8.8.4 Error analysis

We analyse the models in two ways. First, we explore how they
score sentences in the test set as categorised by the round-trip trans-
lation language that the sentences went through. Second, we look
at two example sentences for which no model did particularly well.

8.8.4.1 Model performance on test sentences

To analyse the scores assigned by the model in comparison to the
human judgments we first need to normalise the scores. We do this
by dividing the score assigned to each sentence by the maximum
score assigned. Thus, the relative score of a sentence indicates how
close it is to the highest acceptability judgment.

The mean relative score of the human judgments and model
scores are presented in Table 8.4. We observe that the models gen-
erally appear to assign a lower relative score than humans. But all
models also appear to follow the general trend of human judgments
and assign a lower score to the Chinese and Japanese round-trip
translated sentences compared to the Spanish, Norwegian and orig-
inal sentences. However, looking at the numbers the difference in
magnitude for Chinese and Japanese sentences is rather large. The
Chinese and Japanese sentences have a lower relative score of 0.27
and 0.35 respectively. But for models, this difference is only ≈ 0.07
and ≈ 0.12 respectively. This indicates that while the models are
able to see some acceptability differences between the subclasses of
test sentences, the models do not penalize these sentences as much
as humans.

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 142

Model En No Es Zh Ja
Human 0.88 0.78 0.78 0.61 0.53
LSTM 0.41 0.40 0.40 0.34 0.29
+Syn 0.46 0.44 0.45 0.39 0.35
+Sem 0.39 0.36 0.37 0.30 0.28
+Depth 0.45 0.43 0.44 0.38 0.34

Table 8.4: Comparison of the average relative score assigned by the
models and humans for the different sentences in the test set.

We also note that the models consistently assign much lower
relative scores than the human annotators do to most of the
sentences. This, biases their scores in favour of the Chinese and
Japanese target sentences, since these are typically ’worse’ than
their original English sources, or the Norwegian and Spanish
targets, according to the human judges (see Table 8.1).

As an additional analysis of the models we compare the worst
scoring sentences between the models. This was done by splitting
the predictions into two sets: (a) model scores above the average3
and (b) model scores below the average. We sort these sets by their
difference to the humans and select the top 20 sentences for each
model. Table 8.5 shows the intersection of sentence sets for the dif-
ferent models.

Model LSTM +Syn +Sem +Depth
LSTM 40
+Syn 30 40
+Sem 19 15 40
+Depth 30 28 17 40

Table 8.5: Shared erroneous sentences between the models.
3We compare scores by dividing each score by it’s maximum value, as de-

scribed previously.

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 143

We observe that the syntactic tag and depth models share many
sentences with each other, andwith the plain LSTM, but not asmany
with the semantic model. This shows that the difficult sentences for
the semantic model are different than those for the syntactic and
plain models.

8.8.4.2 Model and human performance

We use the relative scores from the previous section to select sen-
tences for examination. We look at two types of cases, one in which
the model predicts a higher score than the human judgments, and
the other where the model predicts a lower score than human judg-
ments. For both cases we select a sentence at random.

We begin by considering an example to which the model assigns
a higher score than humans do. The sentence went through Chinese:

(24) ’1.5% Hispanic or Latino of any race population.’

The sentence lacks a verb, and the modifier-noun construction
’race population’ is lexically strange. It is interesting to note that
our syntactic models (+Syn and +Depth) both assign a high score to
this sentence, while the semantic and plain LM assign a lower score
(which is closer to the human judgment). We would think that the
model using syntactic tags would pick up on the missing verb, and
so penalize the sentence. The scores for the sentence (24) are shown
in Table 8.6:

Model Relative Absolute
Human 0.40 1.62
LSTM 0.77 3.74
+Syn 0.90 4.47
+Sem 0.71 3.29
+Depth 0.85 4.17

Table 8.6: Human judgments and model scores for sentence (24).

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 144

For (1), the LM enhanced with semantic tags gave the sentence
the lowest score. The syntactic and depth model gave the sentence
a high score (0.90 and 0.85 respectively). This indicates that while
still assigning the sentence a relatively high score, the semantic and
plain LM rate the sentence closer to humans than the syntactical
LM.

In the second case (25), the sentence is one of the original English
sentences:

(25) ’ACS makes a special ”FAT” heavy duty BMX freewheel in
14T and 16T with 3/16 ”teeth compatible only with 3/16”
chains.’

The human annotators gave it an appropriately high score, but
the models did not, as indicated in table Table 8.7.

Model Relative Absolute
Human 0.80 3.23
LSTM -0.007 -0.03
+Syn 0.002 0.01
+Sem 0.26 1.20
+Depth 0.02 -0.01

Table 8.7: Human judgments and model scores for sentence (25).

Again, we can see that the LM enhanced with semantic tags per-
formed the best (i.e. assigned the sentence the highest score). The
sentence has a few features which might make it difficult for the
standard LM and syntactically enhanced language models. The sen-
tence contains a high number of quotations, acronyms (e.g. ACS)
and specialized terms (e.g. 3/16). The dependency tags do not treat
these words in any special way. Because the words are rare they
are not likely candidates. The semantic tags will treat these words
in a different manner, since it contains tags for named entities and
quantities.

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 145

8.8.5 Pre-Trained Language Models

Recently several large pre-trained language models using transfor-
mation architecture, like BERT (Devlin et al., 2019), or bidirectional
LSTM with attention, such as ELMo (Peters et al., 2018a), have
achieved state of the art results across a variety of NLP tasks. We
opted not to experiment with any of these pre-trained language
models for our task. The LSTM architecture of our LMs is far sim-
pler, which facilitates testing the contribution of explicit feature rep-
resentation to correlation in the acceptability prediction task, and
perplexity for the language modeling task.

8.9 Related Work

There has been a considerable amount of work showing that en-
coding tree representations in deep neural networks, particularly
LSTMs, improves their performance on semantic relatedness tasks.
So, for example, Tai et al. (2015) show that Tree-LSTMs outperform
simple LSTMs on SemEval 2014 Task 1, and sentiment classification.
Similarly, Gupta, Zhang (2018) argue that by adding progressive at-
tention to a Tree-LSTM it is possible to improve its performance on
several semantic relatedness tasks.

Williams et al. (2018a) describes a number of experiments with
latent tree learning RNNs. Thesemodels learn tree structures implic-
itly, rather than through training on a parse annotated corpus. They
construct their own parses. Williams et al. (2018a) state that they
outperform Tree-LSTM and other DNNmodels on semantic related-
ness applications, and the Stanford Natural Language Inference task.
Interestingly, the parse trees that they construct are not consistent
across sentences, and they do not resemble the structures posited in
formal syntactic or semantic theories. This result is consistent with
our finding that LSTMs learn syntactic and semantic patterns in a
way that is quite distinct from the classifications posited in classical

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 146

grammatical and semantic systems of representation.
Finally, Warstadt, Bowman (2019) discuss the performance of

several pre-trained transformer models on classifying sentences in
their Corpus of Linguistic Acceptability (CoLA) as acceptable or not.
These models exhibit levels of accuracy that vary widely relative
to the types of syntactic and morphological pattern that appears in
CoLA.

It is important to recognise that CoLA is a very different sort of
test set from the one thatwe use in our experiments. It is drawn from
linguists examples intended to illustrate particular sorts of syntactic
construction. It is annotated for binary classification according to
linguists’ judgments. By contrast, our BNC test set consists of natu-
rally occurring text, where awide range of infelicities are introduced
into many of the sentences through round trip machine translation.
It is annotated through AMT crowd sourcing with gradient accept-
ability judgments. Given these significant differences in design and
annotation between the two test sets, applying our models to CoLA
would have taken us beyond the scope of the sentence acceptability
task, as specified in Lau et al. (2015, 2017); Bernardy et al. (2018),

Moreover, our experiments are not focused on identifying the
best performing model as such. Instead, we are interested in as-
certaining whether enriching the training and test data with ex-
plicit syntactic and semantic classifier representations contributes
to LSTM learning for the sentence acceptability prediction task.

8.10 Conclusions

We present experiments that explore the effect of enhancing lan-
guage models with syntactic and semantic tags, and dependency
tree depth markers, for the task of predicting human sentence ac-
ceptability judgments. The experiments show that neither syntactic
nor semantic tags, nor tree depth indicators improve the correlation

LANGUAGE MODELLING WITH SYNTACTIC AND SEMANTIC
REPRESENTATIONS FOR ACCEPTABILITY PREDICTIONS 147

between an LSTM LM and human judgments. Our experiments also
show that syntactic tags provide information that is useful for lan-
guage modeling, while semantic tags do not. However, further ex-
periments are needed to verify our results for semantic tags. The
model that we used for tagging, rather than the information in the
tags themselves, may be responsible for the observed result.

Surprisingly our initial hypothesis that lower training perplexity
produces better acceptability prediction has been overturned. We
have not observed any correlation between the perplexity of an LM
and its accuracy in acceptability prediction. The SLOR scoring func-
tion may disrupt this connection.

Our tentative conclusion from these experiments is that simple
LSTMs already learn syntactic and semantic properties of sentences
through lexical embeddings only, which they represent in a distribu-
tional manner. Introducing explicit semantic and syntactic role clas-
sifiers does not improve their capacity to predict the acceptability of
sentences, although such information may be useful in boosting the
performance of deep neural networks on other tasks.

In future work, we plan to test other sources of information for
the language models. One possibility is to use constituency, rather
than dependency, tree depth. We will also plan to experiment with
different combinations of tags for the language models, for example
semantic and syntactic roles.

Chapter 9

How does Punctuation affect
Neural Models in Natural
Language Inference

Abstract

Natural Language Inference models have reached almost human-
level performance but their generalisation capabilities have not been
yet fully characterized. In particular, sensitivity to small changes in
the data is a current area of investigation. In this paper, we focus
on the effect of punctuation on such models. Our findings can be
broadly summarized as follows: (1) irrelevant changes in punctua-
tion are correctly ignored by the recent transformer models (BERT)

Published in the article: Adam Ek, Jean-Philippe Bernardy, and Stergios
Chatzikyriakidis. 2020. How does Punctuation Affect Neural Models in Natural
Language Inference. In Proceedings of the Probability and Meaning Conference
(PaM 2020), pages 109–116, Gothenburg. Association for Computational Linguis-
tics.

148

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 149

while older RNN-based models were sensitive to them. (2) All mod-
els, both transformers and RNN-based models, are incapable of tak-
ing into account small relevant changes in the punctuation.

9.1 Introduction

In recent years models for Natural Language Inference (NLI) have
reached almost human-level performance. These models frame in-
ference as a classification problem, whose input is a premise/hypoth-
esis pair. It has been noted that small changes in the pair, can flip the
prediction (Glockner et al., 2018). In this paper, we explore the effect
of punctuation1 in neural models in natural language inference.

Small changes in a premise/hypothesis pair are of two kinds.
First, the change can be of an irrelevant kind. For example, we
can expect that removing a sentence-final stop should not change
the meaning of a (final) sentence. Second, a textually small change
could flip the relationship between hypothesis and premise. For ex-
ample, adding a negation word is a small textual change that has
a lot of semantic content. But it is not only words that can have a
large impact on the meaning of a sentence. Commas, for example,
may indicate which words belong together and which do not in a
list. Ideally, an NLI model should be insensitive to changes of the
first kind, but still, properly recognize changes of the second kind.

In this paper, we test both hypotheses for the case of punctuation.
Namely:

• (H1) Deep-learning based classifiers are sensitive to irrelevant
punctuation.

• (H2) Deep-learning classifiers take relevant punctuation into
account correctly.

1The set of punctuation symbols we consider are:
'!"#$%&()*+,-./:;<=>?@[]_̂`{}| '

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 150

This work is part of the larger question concerning the ability
of NLI models to generalize. There are a number of papers that re-
port several problems of generalizability: Glockner et al. (2018) have
shown that several NLI models break considerably easily when, in-
stead of tested on the original SNLI (Bowman et al., 2015) test set,
they are tested on a test set which is constructed by taking premises
from the training set and creating several hypotheses from them by
changing at most one word within the premise. Talman, Chatzikyr-
iakidis (2019) show that NLI models break down when one trains
in one dataset, but then test on the test set of a similar dataset (e.g.
training onMNLI (Williams et al., 2018b) and testing on SNLI).Wang
et al. (2019b) report problems in generalizability when the two pairs
are swapped. The idea is that one should expect the same accuracy
for contradiction and neutral when the pairs are swapped (neutral
remains neutral, and contradiction remains a contradiction2), and a
lower accuracy for entailment (given that entailment turns neutral
when the pairs are swapped).

9.2 Datasets and experiments

Our experiments are performed on the Multi-Genre Natural Lan-
guage Inference (MNLI) corpus (Williams et al., 2018b) (and variants
thereof, as described below). MNLI consists of 433k human-written
sentence pairs labeled with entailment, contradiction and neutral.
MNLI contains sentence pairs from ten distinct genres3 of both writ-
ten and spoken English. Only five genres are included in the training
set. The development and test sets have been divided into matched
andmismatched, where the former includes only sentences from the

2Even though one can imagine exotic, non-symmetric definitions of “neutral”
and “contradiction”, we are not aware of any syste or dataset using such a defini-
tion.

3face to face conversations, telephone ones, letters, oxford university press
publications, etc.

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 151

same genres as the training data and the latter include sentences
from the remaining genres not present in the training data.

We consider three variants of MNLI:

(orig) This variant is the original MNLI with no changes whatso-
ever.

(p) To obtain this variant we make punctuation consistent through-
out examples by adding full stops at the end of each sentence.

(¬p) To obtain this variant we remove all non-alphanumeric charac-
ters from each sentence. This also remove special characters
that are sometimes not classified as punctuation, such as the
dollar sign. However, such characters occur so seldom that
they have little influence on the results, either way (see Ta-
ble 9.1).

Appending a sentence-final stop is in general reasonable, espe-
cially for the non-dialogue examples. For the dialogue part of the
MNLI dataset, this is unnatural as final stops typically are not ex-
pressed in dialogue.

To convey an idea of the amount of data that our transformation
impact, we show the raw and relative count4 of punctuation symbols
in Table 9.1. In total, relative to word-tokens, punctuation symbols
account for about 11.5% of the tokens.

9.2.1 Experiments

We perform two sets of experiments. In the first set, designed to
test (H1), we train NLI models for either of the three (orig, p, ¬p)
variants and test on either the p or ¬p variants. Additionally, we
train on orig and test on orig, as a baseline result.

4Relative to the number of total tokens in the MNLI dataset

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 152

Symbol Count % Symbol Count %
, 672354 3.544] 1872 0.010
. 632460 3.334 & 1032 0.005
’ 426014 2.246 % 1014 0.005
- 188124 0.992 _ 666 0.003
) 66498 0.351 * 186 0.001
(66210 0.349 @ 162 0.001
? 41530 0.219 = 150 0.001
” 27246 0.144 # 114 0.001
; 18182 0.096 + 66 0.0003
! 11384 0.060 ‘ 24 0.0001
$ 8724 0.046 ~ 12 6.32e-05
: 6162 0.033 \ 12 6.32e-05
/ 5746 0.030 { 12 6.32e-05
[1920 0.010

Table 9.1: Count of punctuation symbols used in the training exam-
ples of MNLI.

In the second set, we designed a dataset to test (H2), that is,
whether NLI models are able to detect semantically relevant punc-
tuation. This experiment is performed the same way as the first set,
but we replace the MNLI test data with our own dataset. The dataset
we constructed for this contain a number of problems whose correct
label depends on the presence or absence of punctuation. Here are
some representative examples (& separates the premise from the hy-
pothesis, label follows in parentheses):

(26) I thank, my mother, Anna, Smith and John & I thank four
people (E)

(27) I thank, my mother Anna, Smith and John & I thank two
people (C)

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 153

(28) The notion of good, god, is incomprehensible & Good is in-
comprehensible (E)

(29) The notion of good, god, is incomprehensible & Good god is
incomprehensible (C)

The first two examples are cases where the commas are used to
denote the conjunction of more than one conjunct. Removing the
comma between “my mother” and “Anna” in (27) has a significant
effect on counting: what is taken to be two entities in (26), are one in
(27). In (28) and (29), we get a different label depending on whether
the hypothesis refers to the property “good” (E) or the adjectival
modification “good god” (C). The test set consists of 18 examples
which can be seen in Table 9.4.

9.3 Models

The experiments are performed using three models:

BiLSTM The simplest model is a bidirectional LSTM that encodes
the premise and hypothesis, then applies max pooling. The model
then concatenates the premise and hypothesis in the standard fash-
ion (Conneau et al., 2017; Talman et al., 2019): [p;h; p−h; p∗h]where
p is the premise representation and h the hypothesis representation.
A three-layer perceptron with leaky ReLU activation between the
layers then assigns a class to the example.

HBMP The second model is described by Talman et al. (2019). The
model is a three-layer bidirectional LSTM, wherein between the lay-
ers a representation is extracted through max pooling. The final
representation for each sentence is the concatenation of all interme-
diate representations [h0;h1, h2]. The same representation as with
the BiLSTM, [p;h; p − h; p ∗ h] where p and h respectively is the

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 154

concatenation of all intermediate representations, is then passed to
a three-layer perceptron with leaky ReLU activation and dropout.

BERT Our third model is a transformer model, BERT (Devlin et al.,
2019). We use the BERT base model from the transformer library
(Wolf et al., 2020). To train BERT we use a three layer perceptron
with Leaky ReLU activations on top of the BERT model and fine-
tune. The BERT model process the premise and hypothesis is par-
allel and there is no need to explicitly combine them as with the
previous models. For the classification of a sentence pair, we use
the CLS token generated by BERT that contain information about
both sentences.

9.4 Experimental setup

For each architecture (BERT, HBMP, and BiLSTM) we perform ex-
periments by training four models, two trained and validated on
the dataset with punctuation and two models trained and validated
on the dataset without punctuation. To asses the effect of our data
augmentation we test the model on the other dataset, i.e. a model
trained and validated without punctuation is tested on the dataset
with punctuation. We measure the performance in terms of accu-
racy.

For HBMP and the BiLSTM models we use the default hyperpa-
rameters reported by Talman et al. (2019) with GloVe (Pennington
et al., 2014) word embeddings5. The BERT model is fine-tuned with
the default model hyperparameters. We use the Adam optimizer
with a learning rate of 0.00002 and a batch size of 24.

5Trained on 840 billion tokens.

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 155

9.5 Results

9.5.1 First experiment set

The results from the first experiment are shown below in Table 9.2.
The experiment shows the accuracy for the models trained on the
MNLI variations with and without punctuation and their accuracy
on all variations.

Model Test MA MM
BiLSTMorig .724 .723
BiLSTMp p .723 .724
BiLSTMp ¬p .428 .414
BiLSTM¬p ¬p .714 .727
BiLSTM¬p p .424 .430
HBMPorig .729 .733
HBMPp p .728 .729
HBMPp ¬p .430 .408
HBMP¬p ¬p .729 .732
HBMP¬p p .436 .427
BERTorig .833 .839
BERTp p .835 .837
BERTp ¬p .816 .822
BERT¬p ¬p .819 .820
BERT¬p p .830 .833

Table 9.2: The effect on punctuation on all three models in terms of
accuracy of theMNLI dataset. MA indicate thematched andMM the
mismatched test split. original is trained on the unaugmented data,
p models trained with punctuation and ¬p models trained without
punctuation

The results indicate that when the RNN-based models are tested
on the same dataset as it is trained on, the results are similar to

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 156

that of the original model. However, when we test on the oppo-
site dataset the performance drops drastically (about 30 percentage
points). We see that the drop in accuracy is about the same for both
the matched and mismatched test set. In contrast to the RNN-based
models, the transformer model only shows a slight drop in accuracy
when presented with test data different from its training data.

9.5.2 Second experiment set

Full results from the second experiment can be found in Table 9.4,
a subset of the examples can be found in Table 9.3. The experiment
shows the predictions by the HBMP and BERT models trained with
and without punctuation on our hand-crafted dataset.

9.5.3 Experiment one analysis

The experiment shows that the BLSTM and HBMP models trained
with punctuation drops significantly in accuracy when tested on
data without punctuation. This indicates that when removing punc-
tuation the model changes its prediction incorrectly. Most of the
removed punctuation does not change the meaning, rather some in-
formation irrelevant the the relationship between the two sentences
(such as sentence-final stop).

Inspecting the output of the HBMP model we can see that in
many cases, removing a sentence-final stop flips the models’ predic-
tion. In example (30) and (31), both the model trained on punctua-
tion and the one without fail to predict that the final stop does not
add any meaning.

In examples (32) and (33)6, the sentence-final stop has been re-
moved, as well as a comma. In such a case, the comma does not add
any meaning but acts as a separator of clauses. The removal or ad-
dition of this comma flips the prediction of the models. This shows

6For clarity, the premise is indicated by P and the hypothesis by H.

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 157

that irrelevant changes both involving commas and sentence-final
stops can flip the model’s prediction without any semantic motiva-
tion.

n Premise Hypothesis Gold Pred Model
0 I thank, my mother, Anna, Smith and John I thank four people E N HBMP¬p
1 I thank, my mother, Anna Smith and John I thank three people E N HBMP¬p
8 I hear John says ’come here’ I hear John speaking E E HBMP¬p
9 I hear ’John says come here’ I hear John speaking C N HBMP¬p
14 No, god is good God is good E E HBMP¬p
15 No god is good There is no good god E E HBMP¬p
16 No, god is good There is no good god C E HBMP¬p
17 No god is good God is good C C HBMP¬p

0 I thank, my mother, Anna, Smith and John I thank four people E E HBMPp
1 I thank, my mother, Anna Smith and John I thank three people E E HBMPp
8 I hear John says ’come here’ I hear John speaking E E HBMPp
9 I hear ’John says come here’ I hear John speaking C E HBMPp
14 No, god is good God is good E E HBMPp
15 No god is good There is no good god E E HBMPp
16 No, god is good There is no good god C E HBMPp
17 No god is good God is good C C HBMPp
0 I thank, my mother, Anna, Smith and John I thank four people E E BERT¬p
1 I thank, my mother, Anna Smith and John I thank three people E C BERT¬p
8 I hear John says ’come here’ I hear John speaking E C BERT¬p
9 I hear ’John says come here’ I hear John speaking C E BERT¬p
14 No, god is good God is good E E BERT¬p
15 No god is good There is no good god E E BERT¬p
16 No, god is good There is no good god C E BERT¬p
17 No god is good God is good C E BERT¬p

0 I thank, my mother, Anna, Smith and John I thank four people E E BERTp
1 I thank, my mother, Anna Smith and John I thank three people E C BERTp
8 I hear John says ’come here’ I hear John speaking E C BERTp
9 I hear ’John says come here’ I hear John speaking C E BERTp
14 No, god is good God is good E E BERTp
15 No god is good There is no good god E E BERTp
16 No, god is good There is no good god C E BERTp
17 No god is good God is good C E BERTp

Table 9.3: Results on a subset of the examples in our constructed
dataset. E is entailment, N is neutral and C is contradiction. The
model column indicate which HBMP model configuration was used
(trained with punctuation p, or without ¬p).

(30) not yourself . & only you . (C)
HBMPp = C
HBMP¬p = E
BERTp = N
BERT¬p = N

(31) not yourself & only you (C)
HBMPp = E

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 158

HBMP¬p = C
BERTp = N
BERT¬p = N

(32) P = so they set about clearing the land for agriculture ,
setting fire to massive tracts of forest .
H = as a result , the land was devastated by erosion . (N)

HBMPp = N
HBMP¬p = C
BERTp = N
BERT¬p = N

(33) P = so they set about clearing the land for agriculture setting
fire to massive tracts of forest
H = as a result the land was devastated by erosion (N)

HBMPp = C
HBMP¬p = N
BERTp = E
BERT¬p = C

BERT assigns the neutral class regardless of punctuation in exam-
ples (30) to (32), indicating that the choice of punctuation in train-
ing and test does not impact its decision. For example (8) there is no
punctuation in the premise and hypothesis, but the different BERT
models assign two different classes, entailment by the model trained
on punctuation and contradiction by themodel trainedwithout punc-
tuation.

A possible explanation for why the accuracy of BERT does not
behave similarly to that of the LSTM based models is that the pre-
training of BERT allows the model to better ignore variations in the
input. However, the HBMPmodel also uses pre-trained information
in the form of GLoVE vectors, yet we do not see HBMP handling

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 159

the discrepancy between the training and the test well. Albeit the
pre-training of GLoVE and BERT are different, in the essence they
are the same. Both model the meaning of words based on their sur-
roundings in the neural architecture. Thus, the relevant difference
between the models relevant to the absence or presence of punctu-
ation is whether the model use self-attention or an LSTM to create
representations of sentences. From this, we pose a tentative hypoth-
esis that self-attention more easily learn to ignore irrelevant input
tokens for a task than the LSTM. However, to confirm this we need
to perform more expensive experiments.

9.5.4 Experiment two analysis

None of the models perform very well for this dataset. The HBMPp

model has an accuracy of 61.1% while the HBMP¬p has an accu-
racy of 44.4%. The BERTp model has an accuracy of 44.4% while
the BERT¬p has an accuracy of 38.8%.

For example, both models are tricked by comma removal in (27).
An interesting case involves cases where the comma is removed
from “No, god” turning it into a negative quantifier “no god”. The
models are tricked when asked to infer “There is no good god” from
“No, god is good” (they predict E instead of C). Another example
where the models are tricked by comma removal is when listing
items. In the example ”I thank, my mother, Anna Smith and John”
there are three entities being thanked. The comma placement indi-
cates that ”Anna Smith” is one person, and not two. Only HBMPp

successfully predicts that ”I thank three people” is an entailment for
this example. The quotation examples are also challenging. Both
systems are tricked when they are asked to judge whether “I hear
John speaking” follows: a) from “I hear John says ‘come here’ ”, and
b) “I hear ‘John says come here’ ”. Both models correctly predict a)
but fail on b). However, they give a different wrong label, (N) for
HBMP¬p and (E) for HBMPp.

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 160

9.6 Conclusions

The conclusions of this paper can be summarized as follows: Only
BERT is robust to irrelevant changes in punctuation (H1 is validated
for BERT). The other models see a significant drop in performance
when for any mismatch of the presence of punctuation between
training and testing sets. However, the presence or absence of the
full stop at the end of a sentence has little effect. This statement
rests on the observation that punctuation is generally semantically
insignificant in MNLI. This fact has not been tested using a model
but rather relies on manual inspection of the data.

We have evidence that nomodel is capable of taking into account
caseswhere punctuation ismeaningful. At this stage of our research,
this evidence does not rely on a large body of data. This result is not
surprising because of the above observation (namely, there is not
enough meaningful punctuation in the training set). Yet, we use pre-
trained embeddings (BERT) which have been trained on very large
dataset, and it could not be ruled out a priori that such embeddings
did not contain information related to the meaning of punctuation.

As a general remark, it seems to us useful, if not necessary, to ex-
tend the present datasets for NLI to include examples where punctu-
ation is actuallymeaningful. In general, this is part of a discussion of
extending current datasets to include cases of inference where more
fined-grained phenomena are taken into consideration Chatzikyr-
iakidis et al. (2017); Bernardy, Chatzikyriakidis (2019, 2020). This
also connects with the generalization capabilities of NLI models that
were briefly brought up in the introduction. However, the goal
should not only be to create many diverse datasets that can get very
fine-grained for numerous syntactic phenomena. What we further
need are models that will have the ability to generalize well to new
data after they have been trained on datasets that represent a much
more diverse and rich picture of NLI, and are not prone to similar
problems as these have been reported in the literature (Glockner

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 161

et al., 2018; Talman, Chatzikyriakidis, 2019; Wang et al., 2019b; Po-
liak et al., 2018).

9.7 Future work

In future work, we plan to continue pursuing the question of model
generalizability by investigating how neural models for natural lan-
guage inference can be adapted to take into account fine-grained se-
mantic phenomena. More specifically, how can models be adapted
to learn what constitutes a meaningful part of a sentence, in terms
of semantics, and what is not meaningful. We can notice that the
phenomena of punctuation is primarily ”syntactic sugar”, by con-
structing a sentence in a certain way syntactically (by inserting or
removing punctuation). To exploit this we plan to incorporate syn-
tactic representations of sentences.

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 162

Appendix

n Premise Hypothesis Gold Pred Model
0 I thank, my mother, Anna, Smith and John I thank four people E N HBMP¬p
1 I thank, my mother, Anna Smith and John I thank three people E N HBMP¬p
2 I thank, my mother Anna, Smith and John I thank two people C E HBMP¬p
3 I thank, my mother Anna Smith and John I thank three people C E HBMP¬p
4 I thank, my mother Anna, Smith and John I thank more than two people E N HBMP¬p
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N N HBMP¬p
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N N HBMP¬p
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E HBMP¬p
8 I hear John says ’come here’ I hear John speaking E E HBMP¬p
9 I hear ’John says come here’ I hear John speaking C N HBMP¬p
10 The notion of good, god, is incomprehensible Good is incomprehensible E N HBMP¬p
11 The notion of good god is incomprehensible Good god is incomprehensible E E HBMP¬p
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E HBMP¬p
13 The notion of good god is incomprehensible Good is incomprehensible N C HBMP¬p
14 No, god is good God is good E E HBMP¬p
15 No god is good There is no good god E E HBMP¬p
16 No, god is good There is no good god C E HBMP¬p
17 No god is good God is good C C HBMP¬p
0 I thank, my mother, Anna, Smith and John I thank four people E E HBMPp
1 I thank, my mother, Anna Smith and John I thank three people E E HBMPp
2 I thank, my mother Anna, Smith and John I thank two people C E HBMPp
3 I thank, my mother Anna Smith and John I thank three people C E HBMPp
4 I thank, my mother Anna, Smith and John I thank more than two people E N HBMPp
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N N HBMPp
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N N HBMPp
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E HBMPp
8 I hear John says ’come here’ I hear John speaking E E HBMPp
9 I hear ’John says come here’ I hear John speaking C E HBMPp
10 The notion of good, god, is incomprehensible Good is incomprehensible E E HBMPp
11 The notion of good god is incomprehensible Good god is incomprehensible E E HBMPp
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E HBMPp
13 The notion of good god is incomprehensible Good is incomprehensible N C HBMPp
14 No, god is good God is good E E HBMPp
15 No god is good There is no good god E E HBMPp
16 No, god is good There is no good god C E HBMPp
17 No god is good God is good C C HBMPp
0 I thank, my mother, Anna, Smith and John I thank four people E E BERT¬p
1 I thank, my mother, Anna Smith and John I thank three people E C BERT¬p
2 I thank, my mother Anna, Smith and John I thank two people C E BERT¬p
3 I thank, my mother Anna Smith and John I thank three people C E BERT¬p
4 I thank, my mother Anna, Smith and John I thank more than two people E E BERT¬p
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N E BERT¬p
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N E BERT¬p
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E BERT¬p
8 I hear John says ’come here’ I hear John speaking E C BERT¬p
9 I hear ’John says come here’ I hear John speaking C E BERT¬p
10 The notion of good, god, is incomprehensible Good is incomprehensible E E BERT¬p
11 The notion of good god is incomprehensible Good god is incomprehensible E E BERT¬p
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E BERT¬p
13 The notion of good god is incomprehensible Good is incomprehensible N E BERT¬p
14 No, god is good God is good E E BERT¬p
15 No god is good There is no good god E E BERT¬p
16 No, god is good There is no good god C E BERT¬p
17 No god is good God is good C E BERT¬p

HOW DOES PUNCTUATION AFFECT NEURAL MODELS IN
NATURAL LANGUAGE INFERENCE 163

0 I thank, my mother, Anna, Smith and John I thank four people E E BERTp
1 I thank, my mother, Anna Smith and John I thank three people E C BERTp
2 I thank, my mother Anna, Smith and John I thank two people C E BERTp
3 I thank, my mother Anna Smith and John I thank three people C E BERTp
4 I thank, my mother Anna, Smith and John I thank more than two people E E BERTp
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N E BERTp
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N E BERTp
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E BERTp
8 I hear John says ’come here’ I hear John speaking E C BERTp
9 I hear ’John says come here’ I hear John speaking C E BERTp
10 The notion of good, god, is incomprehensible Good is incomprehensible E E BERTp
11 The notion of good god is incomprehensible Good god is incomprehensible E E BERTp
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E BERTp
13 The notion of good god is incomprehensible Good is incomprehensible N E BERTp
14 No, god is good God is good E E BERTp
15 No god is good There is no good god E E BERTp
16 No, god is good There is no good god C E BERTp
17 No god is good God is good C E BERTp

Table 9.4: Constructed dataset. E is entailment, N is neutral and C is
contradiction. The Model column indicate which model was used (trained
with punctuation p, or without ¬p).

Bibliography

Abzianidze Lasha, Bjerva Johannes, Evang Kilian, Haagsma Hessel,
Van Noord Rik, Ludmann Pierre, Nguyen Duc-Duy, Bos Johan. The
parallel meaning bank: Towards a multilingual corpus of transla-
tions annotated with compositional meaning representations //
arXiv preprint arXiv:1702.03964. 2017.

Abzianidze Lasha, Bos Johan. Towards universal semantic tagging
// arXiv preprint arXiv:1709.10381. 2017.

Ács Judit, Kádár Ákos, Kornai András. Subword Pooling Makes a
Difference // Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main
Volume, EACL 2021, Online, April 19 - 23, 2021. 2021. 2284–2295.

Agresti Alan, Coull Brent A. Approximate is better than “exact” for in-
terval estimation of binomial proportions // The American Statis-
tician. 1998. 52, 2. 119–126.

Aharoni Roee, Goldberg Yoav. Morphological Inflection Generation
with Hard Monotonic Attention // Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers. 2017. 2004–2015.

Alajrami Ahmed, Aletras Nikolaos. How does the pre-training ob-
jective affect what large language models learn about linguistic

164

BIBLIOGRAPHY 165

properties? // Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022. 2022. 131–147.

Amanaki Eirini, Bernardy Jean-Philippe, Chatzikyriakidis Stergios,
Cooper Robin, Dobnik Simon, Karimi Aram, Ek Adam, Gian-
nikouri Eirini Chrysovalantou, Katsouli Vasiliki, Kolokousis Ilias,
Mamatzaki Eirini Chrysovalantou, Papadakis Dimitrios, Petrova
Olga, Psaltaki Erofili, Soupiona Charikleia, Skoulataki Effrosyni,
Stefanidou Christina. Fine-grained Entailment: Resources for
GreekNLI and Precise Entailment // Proceedings of theWorkshop
on Dataset Creation for Lower-Resourced Languages within the
13th Language Resources and Evaluation Conference. Marseille,
France: European Language Resources Association, VI 2022. 44–
52.

Anastasopoulos Antonios, Neubig Graham. Pushing the Limits of
Low-Resource Morphological Inflection // Proceedings of the
2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019. 2019. 984–996.

Angeli Gabor, Johnson Premkumar Melvin Jose, Manning Christo-
pher D. Leveraging Linguistic Structure For Open Domain In-
formation Extraction // Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Beijing, China: Association for Compu-
tational Linguistics, VII 2015. 344–354.

Arora Sanjeev, Liang Yingyu, Ma Tengyu. A Simple but Tough-to-
Beat Baseline for Sentence Embeddings // 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. 2017.

BIBLIOGRAPHY 166

Ataman Duygu, Aziz Wilker, Birch Alexandra. A Latent Morphol-
ogy Model for Open-Vocabulary Neural Machine Translation //
8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. 2020.

Attardi Giuseppe. Experiments with aMultilanguage Non-Projective
Dependency Parser // Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL 2006, New
York City, USA, June 8-9, 2006. 2006. 166–170.

BNC Consortium . The British National Corpus, version 3 (BNC XML
Edition). 2007 // Distributed by Oxford University Computing
Services on behalf of the BNC Consortium. 2007.

Ba Lei Jimmy, Kiros Jamie Ryan, Hinton Geoffrey E. Layer Normal-
ization // CoRR. 2016. abs/1607.06450.

Bahdanau Dzmitry, Cho Kyunghyun, Bengio Yoshua. Neural Machine
Translation by Jointly Learning to Align and Translate // 3rd In-
ternational Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings. 2015.

Batsuren Khuyagbaatar, Goldman Omer, Khalifa Salam, Habash
Nizar, Kieras Witold, Bella Gábor, Leonard Brian, Nicolai Gar-
rett, Gorman Kyle, Ate Yustinus Ghanggo, Ryskina Maria, Mielke
Sabrina J., Budianskaya Elena, El-Khaissi Charbel, Pimentel
Tiago, Gasser Michael, Lane William, Raj Mohit, Coler Matt,
Samame Jaime Rafael Montoya, Camaiteri Delio Siticonatzi, Ro-
jas Esaú Zumaeta, Francis Didier López, Oncevay Arturo, Bautista
Juan López, Villegas Gema Celeste Silva, Hennigen Lucas Tor-
roba, Ek Adam, Guriel David, Dirix Peter, Bernardy Jean-Philippe,
Scherbakov Andrey, Bayyr-ool Aziyana, Anastasopoulos Antonios,
Zariquiey Roberto, Sheifer Karina, Ganieva Sofya, Cruz Hilaria,

BIBLIOGRAPHY 167

Karahóga Ritván, Markantonatou Stella, Pavlidis George, Plu-
garyov Matvey, Klyachko Elena, Salehi Ali, Angulo Candy, Baxi
Jatayu, Krizhanovsky Andrew, Krizhanovskaya Natalia, Salesky
Elizabeth, Vania Clara, Ivanova Sardana, White Jennifer, Maud-
slay Rowan Hall, Valvoda Josef, Zmigrod Ran, Czarnowska Paula,
Nikkarinen Irene, Salchak Aelita, Bhatt Brijesh, Straughn Christo-
pher, Liu Zoey, Washington Jonathan North, Pinter Yuval, Ataman
Duygu, Wolinski Marcin, Suhardijanto Totok, Yablonskaya Anna,
Stoehr Niklas, Dolatian Hossep, Nuriah Zahroh, Ratan Shyam, Ty-
ers Francis M., Ponti Edoardo M., Aiton Grant, Arora Aryaman,
Hatcher Richard J., Kumar Ritesh, Young Jeremiah, Rodionova
Daria, Yemelina Anastasia, Andrushko Taras, Marchenko Igor,
Mashkovtseva Polina, Serova Alexandra, Prud’hommeaux Emily,
Nepomniashchaya Maria, Giunchiglia Fausto, Chodroff Eleanor,
Hulden Mans, Silfverberg Miikka, McCarthy Arya D., Yarowsky
David, Cotterell Ryan, Tsarfaty Reut, Vylomova Ekaterina. Uni-
Morph 4.0: Universal Morphology // CoRR. 2022. abs/2205.03608.

Belinkov Yonatan, Glass James. Analysis Methods in Neural Lan-
guage Processing: A Survey // Transactions of the Association
for Computational Linguistics. 2019. 7. 49–72.

Bengio Yoshua, Ducharme Réjean, Vincent Pascal. A Neural Proba-
bilistic Language Model // Advances in Neural Information Pro-
cessing Systems 13, Papers from Neural Information Processing
Systems (NIPS) 2000, Denver, CO, USA. 2000. 932–938.

Bengio Yoshua, Frasconi Paolo, Simard Patrice Y. Theproblem of learn-
ing long-term dependencies in recurrent networks // Proceedings
of International Conference on Neural Networks (ICNN’88), San
Francisco, CA, USA, March 28 - April 1, 1993. 1993. 1183–1188.

Bengio Yoshua, Louradour Jérôme, Collobert Ronan, Weston Jason.
Curriculum learning // Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML 2009, Montreal,

BIBLIOGRAPHY 168

Quebec, Canada, June 14-18, 2009. 382. 2009. 41–48. (ACM Inter-
national Conference Proceeding Series).

Bergmanis Toms, Kann Katharina, Schütze Hinrich, Goldwater Sharon.
Training Data Augmentation for Low-Resource Morphological
Inflection // Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection, Vancouver,
BC, Canada, August 3-4, 2017. 2017. 31–39.

Bernardy Jean-Philippe. Can recurrent neural networks learn nested
recursion? // Linguistic Issues in Language Technology. 2018. 16.

Bernardy Jean-Philippe, Chatzikyriakidis Stergios. What kind of
Natural Language Inference are NLP systems learning: Is this
enough? // ICAART (2). 2019. 919–931.

Bernardy Jean-Philippe, Chatzikyriakidis Stergios. Improving the pre-
cision of natural textual entailment problem datasets // Proceed-
ings of the 12th Language Resources and Evaluation Conference.
2020. 6835–6840.

Bernardy Jean-Philippe, Lappin Shalom. Using Deep Neural Net-
works to Learn Syntactic Agreement // Linguistic Issues In Lan-
guage Technology. 2017. 15, 2. 15.

Bernardy Jean-Philippe, Lappin Shalom, Lau Jay Han. The influence
of context on sentence acceptability judgements // Proceedings
of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 2018. 456–461.

Bhattamishra Satwik, Ahuja Kabir, Goyal Navin. On the Ability and
Limitations of Transformers to Recognize Formal Languages //
Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Online: Association for Com-
putational Linguistics, XI 2020. 7096–7116.

BIBLIOGRAPHY 169

Bishop Christopher M, Nasrabadi Nasser M. Pattern recognition and
machine learning. 4, 4. 2006.

Bjerva Johannes, Plank Barbara, Bos Johan. Semantic tagging with
deep residual networks // arXiv preprint arXiv:1609.07053. 2016.

Blacoe William, Lapata Mirella. A Comparison of Vector-based Rep-
resentations for Semantic Composition // Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea. 2012. 546–556.

Blevins James P. Introduction: Morphological paradigms // Trans-
actions of the Philological Society. 2001. 99, 2. 207–210.

Blodgett Su Lin, Barocas Solon, III Hal Daumé, Wallach Hanna M.
Language (Technology) is Power: A Critical Survey of ”Bias” in
NLP // Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. 2020. 5454–5476.

Bojanowski Piotr, Grave Edouard, Joulin Armand, Mikolov Tomás. En-
riching Word Vectors with Subword Information // Trans. Assoc.
Comput. Linguistics. 2017. 5. 135–146.

Bouma Gosse, Seddah Djamé, Zeman Daniel. Overview of the IWPT
2020 Shared Task on Parsing into Enhanced Universal Dependen-
cies // Proceedings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies. Seattle, US, July 2020.

Bouma Gosse, Seddah Djamé, Zeman Daniel. From raw text to en-
hanced universal dependencies: The parsing shared task at iwpt
2021 // Proceedings of the 17th International Conference on Pars-
ing Technologies (IWPT 2021). 2021. 146–157.

BIBLIOGRAPHY 170

Bowman Samuel R., Angeli Gabor, Potts Christopher, Manning Christo-
pher D. A large annotated corpus for learning natural language
inference // Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. 2015. 632–642.

Bugliarello Emanuele, Cotterell Ryan, Okazaki Naoaki, Elliott
Desmond. Multimodal Pretraining Unmasked: A Meta-Analysis
and a Unified Framework of Vision-and-Language BERTs //
Transactions of the Association for Computational Linguistics.
2021. 9. 978–994.

Buyko Ekaterina, Hahn Udo. Evaluating the impact of alternative
dependency graph encodings on solving event extraction tasks
// Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. 2010. 982–992.

Candito Marie, Guillaume Bruno, Perrier Guy, Seddah Djamé. En-
hanced UD Dependencies with Neutralized Diathesis Alternation
// Proceedings of the Fourth International Conference on Depen-
dency Linguistics (Depling 2017). Pisa,Italy: Linköping University
Electronic Press, IX 2017. 42–53.

Chatzikyriakidis Stergios, Cooper Robin, Dobnik Simon, Larsson
Staffan. An overview of Natural Language Inference Data Collec-
tion: The way forward? // Proceedings of the Computing Natural
Language Inference Workshop. 2017.

Chaudhary Aditi, Zhou Chunting, Levin Lori, Neubig Graham,
Mortensen David R, Carbonell Jaime G. Adapting Word Embed-
dings to New Languages with Morphological and Phonological
Subword Representations // Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. 2018.
3285–3295.

BIBLIOGRAPHY 171

Chen Danqi, Manning Christopher. A fast and accurate dependency
parser using neural networks // Proceedings of the 2014 con-
ference on empirical methods in natural language processing
(EMNLP). 2014. 740–750.

Chen Qian, Zhu Xiaodan, Ling Zhen-Hua, Wei Si, Jiang Hui, Inkpen
Diana. Enhanced LSTM for Natural Language Inference // Pro-
ceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers. 2017. 1657–1668.

Chen Xinxiong, Xu Lei, Liu Zhiyuan, Sun Maosong, Luan Huan-Bo.
Joint Learning of Character and Word Embeddings // Proceed-
ings of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015. 2015. 1236–1242.

Cheng Jianpeng, Dong Li, Lapata Mirella. Long Short-TermMemory-
Networks for Machine Reading // Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, XI 2016.
551–561.

Cheng Kefei, Yue Yanan, Song Zhiwen. Sentiment Classification
Based on Part-of-Speech and Self-Attention Mechanism // IEEE
Access. 2020. 8. 16387–16396.

Chollet François, others . Keras. 2015.

Chu Yoeng-Jin. On the shortest arborescence of a directed graph //
Scientia Sinica. 1965. 14. 1396–1400.

Chung Junyoung, Gülçehre Çaglar, Cho KyungHyun, Bengio Yoshua.
Empirical Evaluation of Gated Recurrent Neural Networks on Se-
quence Modeling // CoRR. 2014. abs/1412.3555.

BIBLIOGRAPHY 172

Church Kenneth Ward. Emerging trends: Subwords, seriously? //
Nat. Lang. Eng. 2020. 26, 3. 375–382.

Clark Kevin, Khandelwal Urvashi, Levy Omer, Manning Christo-
pher D. What Does BERT Look at? An Analysis of BERT’s
Attention // Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP,
BlackboxNLP@ACL 2019, Florence, Italy, August 1, 2019. 2019.
276–286.

Conneau Alexis, Khandelwal Kartikay, Goyal Naman, Chaudhary
Vishrav, Wenzek Guillaume, Guzmán Francisco, Grave Edouard,
OttMyle, Zettlemoyer Luke, Stoyanov Veselin. Unsupervised Cross-
lingual Representation Learning at Scale // Proceedings of the
58th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020. 2020. 8440–8451.

Conneau Alexis, Kiela Douwe, Schwenk Holger, Barrault Loïc, Bordes
Antoine. Supervised Learning of Universal Sentence Representa-
tions from Natural Language Inference Data // Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017. 2017. 670–680.

Dehaene Stanislas, Meyniel Florent, Wacongne Catherine, Wang Lip-
ing, Pallier Christophe. The neural representation of sequences:
from transition probabilities to algebraic patterns and linguistic
trees // Neuron. 2015. 88, 1. 2–19.

Demszky Dorottya, Guu Kelvin, Liang Percy. TransformingQuestion
Answering Datasets Into Natural Language Inference Datasets //
CoRR. 2018. abs/1809.02922.

Speech understanding systems: summary of results of the five-year
research effort at Carnegie-Mellon University. // . 4 1977.

BIBLIOGRAPHY 173

Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina.
BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding // Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). 2019. 4171–4186.

Dobnik Simon, Cooper Robin, Ek Adam, Noble Bill, Larsson Staffan,
Ilinykh Nikolai, Maraev Vladislav, Somashekarappa Vidya. In
Search of Meaning and Its Representations for Computational
Linguistics // Proceedings of the 2022 CLASP Conference on
(Dis)embodiment. Gothenburg, Sweden: Association for Compu-
tational Linguistics, IX 2022. 30–44.

Deep Biaffine Attention for Neural Dependency Parsing. // . 2017.

Duchi John C., Hazan Elad, Singer Yoram. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization // J.
Mach. Learn. Res. 2011. 12. 2121–2159.

Ebrahimi Javid, Gelda Dhruv, Zhang Wei. How Can Self-Attention
Networks Recognize Dyck-n Languages? // Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. Online: As-
sociation for Computational Linguistics, XI 2020. 4301–4306.

Edman Lukas, Toral Antonio, Noord Gertjan van. Subword-Delimited
Downsampling for Better Character-Level Translation // CoRR.
2022. abs/2212.01304.

Edmonds Jack, others . Optimum branchings // Journal of Research
of the national Bureau of Standards B. 1967. 71, 4. 233–240.

Ek Adam, Bernardy Jean-Philippe. Composing Byte-Pair Encodings
for Morphological Sequence Classification // Proceedings of the

BIBLIOGRAPHY 174

FourthWorkshop on Universal Dependencies (UDW 2020). 2020a.
76–86.

Ek Adam, Bernardy Jean-Philippe. How much of enhanced UD is
contained in UD? // Proceedings of the 16th International Con-
ference on Parsing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies. 2020b. 221–
226.

Ek Adam, Bernardy Jean-Philippe. Training Strategies for Neural
Multilingual Morphological Inflection // Proceedings of the 18th
SIGMORPHONWorkshop on Computational Research in Phonet-
ics, Phonology, and Morphology. Online: Association for Compu-
tational Linguistics, VIII 2021. 260–267.

Ek Adam, Ghanimifard Mehdi. Synthetic Propaganda Embeddings
To Train A Linear Projection // Proceedings of the Second Work-
shop on Natural Language Processing for Internet Freedom: Cen-
sorship, Disinformation, and Propaganda. Hong Kong, China: As-
sociation for Computational Linguistics, XI 2019. 155–161.

Ek Adam, Ilinykh Nikolai. Vector Norms as an Approximation of
Syntactic Complexity // Proceedings of the Second Workshop on
Resources and Representations for Under-Resourced Languages
and Domains (RESOURCEFUL-2023). Tórshavn, the Faroe Islands:
Association for Computational Linguistics, V 2023. 121–131.

Ek Adam, Wirén Mats. Distinguishing narration and speech in prose
fiction dialogues // DHN. 2019.

El Kholy Ahmed, Habash Nizar. Orthographic and morphological
processing for English–Arabic statistical machine translation //
Machine Translation. 2012. 26, 1-2. 25–45.

Elman Jeffrey L. Finding Structure in Time // Cogn. Sci. 1990. 14, 2.
179–211.

BIBLIOGRAPHY 175

Ettinger Allyson. What BERT Is Not: Lessons from a New Suite
of Psycholinguistic Diagnostics for Language Models // Trans-
actions of the Association for Computational Linguistics. 2020. 8.
34–48.

Fang Meng, Cohn Trevor. Learning when to trust distant supervision:
An application to low-resource POS tagging using cross-lingual
projection // Proceedings of the 20th SIGNLLConference on Com-
putational Natural Language Learning, CoNLL 2016, Berlin, Ger-
many, August 11-12, 2016. 2016. 178–186.

Fares Murhaf, Oepen Stephan, Øvrelid Lilja, Björne Jari, Johansson
Richard. The 2018 shared task on extrinsic parser evaluation: on
the downstream utility of English Universal Dependency Parsers
// Proceedings of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. 2018. 22–33.

Faruqui Manaal, Tsvetkov Yulia, Neubig Graham, Dyer Chris. Mor-
phological Inflection Generation Using Character Sequence to Se-
quence Learning // NAACLHLT 2016,The 2016 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016. 2016. 634–643.

Fernández-González Daniel, Gómez-Rodríguez Carlos. Left-to-Right
Dependency Parsing with Pointer Networks // Proceedings of the
2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers). 2019. 710–716.

FitzGerald Nicholas, Michael Julian, He Luheng, Zettlemoyer Luke.
Large-Scale QA-SRL Parsing // Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Vol-

BIBLIOGRAPHY 176

ume 1: Long Papers). Melbourne, Australia: Association for Com-
putational Linguistics, VII 2018. 2051–2060.

Freedman David, Pisani Robert, Purves Roger. Statistics (international
student edition) // Pisani, R. Purves, 4th edn. WWNorton & Com-
pany, New York. 2007.

Futrell Richard, Mahowald Kyle, Gibson Edward. Large-scale evi-
dence of dependency length minimization in 37 languages // Proc
Natl Acad Sci U S A. VIII 2015. 112, 33. 10336–10341.

Gers Felix A., Schmidhuber Jürgen. LSTM recurrent networks learn
simple context-free and context-sensitive languages // IEEETrans.
Neural Networks. 2001. 12, 6. 1333–1340.

Geva Mor, Schuster Roei, Berant Jonathan, Levy Omer. Transformer
Feed-Forward Layers Are Key-Value Memories // Proceedings of
the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021. 2021. 5484–5495.

Glockner Max, Shwartz Vered, Goldberg Yoav. Breaking NLI Systems
with Sentences that Require Simple Lexical Inferences // Proceed-
ings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 2: Short Papers. 2018. 650–655.

Goldberg Yoav. Neural network methods for natural language pro-
cessing // Synthesis lectures on human language technologies.
2017. 10, 1. 1–309.

Gómez-Rodríguez Carlos, Vilares David. Constituent Parsing as
Sequence Labeling // arXiv:1810.08994 [cs]. X 2018. arXiv:
1810.08994.

BIBLIOGRAPHY 177

Goodfellow Ian J., Bengio Yoshua, Courville Aaron C. Deep Learning.
2016. (Adaptive computation and machine learning).

Graves Alex, Wayne Greg, Danihelka Ivo. Neural Turing Machines //
CoRR. 2014. abs/1410.5401.

Gulordava Kristina, Bojanowski Piotr, Grave Edouard, Linzen Tal, Ba-
roni Marco. Colorless Green Recurrent Networks Dream Hierar-
chically // Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). NewOr-
leans, Louisiana: Association for Computational Linguistics, VI
2018. 1195–1205.

Güngör Onur, Güngör Tunga, Üsküdarli Suzan. The effect of mor-
phology in named entity recognition with sequence tagging //
Nat. Lang. Eng. 2019. 25, 1. 147–169.

Gupta Amulya, Zhang Zhu. To Attend or not to Attend: A Case
Study on Syntactic Structures for Semantic Relatedness // Pro-
ceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Melbourne, Aus-
tralia: Association for Computational Linguistics, VII 2018. 2116–
2125.

Gururangan Suchin, Swayamdipta Swabha, Levy Omer, Schwartz Roy,
Bowman Samuel R., Smith Noah A. Annotation Artifacts in Nat-
ural Language Inference Data // Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-
HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2
(Short Papers). 2018. 107–112.

Hacohen Guy, Weinshall Daphna. On The Power of Curriculum
Learning in Training Deep Networks // Proceedings of the 36th

BIBLIOGRAPHY 178

International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA. 97. 2019. 2535–2544. (Pro-
ceedings of Machine Learning Research).

Hahn Michael. Theoretical Limitations of Self-Attention in Neural
Sequence Models // Transactions of the Association for Compu-
tational Linguistics. 2020. 8. 156–171.

Haruechaiyasak Choochart, Kongthon Alisa. LexToPlus: A thai lex-
eme tokenization and normalization tool // Proceedings of the
4th Workshop on South and Southeast Asian Natural Language
Processing. 2013. 9–16.

Haspelmath Martin. The indeterminacy of word segmentation and
the nature of morphology and syntax // Folia linguistica. 2017. 51,
s1000. 31–80.

Hauser Marc D, Chomsky Noam, Fitch W Tecumseh. The faculty of
language: what is it, who has it, and how did it evolve? // science.
2002. 298, 5598. 1569–1579.

He Luheng, Lewis Mike, Zettlemoyer Luke. Question-Answer Driven
Semantic Role Labeling: Using Natural Language to Annotate
Natural Language // Proceedings of the 2015 Conference on Em-
piricalMethods inNatural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, IX 2015. 643–653.

Hendrycks Dan, Gimpel Kevin. Gaussian error linear units (gelus) //
arXiv preprint arXiv:1606.08415. 2016.

Hewitt John, Hahn Michael, Ganguli Surya, Liang Percy, Manning
Christopher D. RNNs can generate bounded hierarchical lan-
guages with optimal memory // Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, XI
2020. 1978–2010.

BIBLIOGRAPHY 179

Hewitt John, Manning Christopher D. A Structural Probe for Find-
ing Syntax in Word Representations // Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers). 2019. 4129–4138.

Hochreiter Sepp, Schmidhuber Jürgen. Long Short-Term Memory //
Neural Comput. 1997. 9, 8. 1735–1780.

Hord Levi CR. Bucking the linguistic binary: Gender neutral lan-
guage in English, Swedish, French, andGerman //Western Papers
in Linguistics. 2016. 3, 1.

Howard Jeremy, Ruder Sebastian. Universal Language Model Fine-
tuning for Text Classification // Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Pa-
pers. 2018. 328–339.

Htut Phu Mon, Phang Jason, Bordia Shikha, Bowman Samuel R. Do
AttentionHeads in BERTTrack Syntactic Dependencies? // CoRR.
2019. abs/1911.12246.

Huang Chu-Ren, Simon Petr, Hsieh Shu-Kai, Prévot Laurent. Rethink-
ing Chinese Word Segmentation: Tokenization, Character Clas-
sification, or Wordbreak Identification // ACL 2007, Proceedings
of the 45th Annual Meeting of the Association for Computational
Linguistics, June 23-30, 2007, Prague, Czech Republic. 2007.

Ilinykh Nikolai, Dobnik Simon. What Does a Language-And-Vision
Transformer See: The Impact of Semantic Information on Visual
Representations // Frontiers in Artificial Intelligence. 2021. 4.

BIBLIOGRAPHY 180

Jing Yingqi, Liu Haitao. Mean Hierarchical Distance Augmenting
Mean Dependency Distance // Proceedings of the Third Interna-
tional Conference on Dependency Linguistics (Depling 2015). Up-
psala, Sweden: Uppsala University, Uppsala, Sweden, VIII 2015.
161–170.

Jurafsky Daniel, Wooters Chuck, Segal Jonathan, Stolcke Andreas, Fos-
ler Eric, Tajchman Gary N., Morgan Nelson. Using a stochastic
context-free grammar as a languagemodel for speech recognition
// 1995 International Conference on Acoustics, Speech, and Signal
Processing, ICASSP ’95, Detroit, Michigan, USA, May 08-12, 1995.
1995. 189–192.

Kann Katharina, Bjerva Johannes, Augenstein Isabelle, Plank Barbara,
Søgaard Anders. Character-level Supervision for Low-resource
POS Tagging // Proceedings of the Workshop on Deep Learn-
ing Approaches for Low-Resource NLP, DeepLo@ACL 2018, Mel-
bourne, Australia, July 19, 2018. 2018. 1–11.

Katharopoulos Angelos, Fleuret François. Not All Samples Are Cre-
ated Equal: Deep Learning with Importance Sampling // Proceed-
ings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018. 80. 2018. 2530–2539. (Proceedings of Machine Learning Re-
search).

Ke Guolin, He Di, Liu Tie-Yan. Rethinking Positional Encoding in
Language Pre-training // 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. 2021.

Kibort Anna, Corbett Greville G. Features: Perspectives on a Key
Notion in Linguistics. 08 2010.

BIBLIOGRAPHY 181

Kiefer Jack, Wolfowitz Jacob. Stochastic estimation of the maximum
of a regression function // The Annals of Mathematical Statistics.
1952. 462–466.

Kingma Diederik P., Ba Jimmy. Adam: AMethod for Stochastic Opti-
mization // 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015.

Kiperwasser Eliyahu, Goldberg Yoav. Simple and Accurate Depen-
dency Parsing Using Bidirectional LSTM Feature Representations
// Trans. Assoc. Comput. Linguistics. 2016. 4. 313–327.

Kobayashi Goro, Kuribayashi Tatsuki, Yokoi Sho, Inui Kentaro. At-
tention is Not Only a Weight: Analyzing Transformers with Vec-
tor Norms // Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020. 2020. 7057–7075.

Kocmi Tom, Bojar Ondrej. An Exploration of Word Embedding Ini-
tialization in Deep-Learning Tasks // Proceedings of the 14th In-
ternational Conference on Natural Language Processing, ICON
2017, Kolkata, India, December 18-21, 2017. 2017. 56–64.

Kondratyuk Dan. Cross-Lingual Lemmatization and Morphology
Tagging with Two-Stage Multilingual BERT Fine-Tuning // Pro-
ceedings of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology. 2019. 12–18.

Kondratyuk Daniel, Straka Milan. 75 Languages, 1 Model: Pars-
ing Universal Dependencies Universally // Proceedings of the
2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019. 2019. 2779–2795.

BIBLIOGRAPHY 182

Kovaleva Olga, Romanov Alexey, Rogers Anna, Rumshisky Anna. Re-
vealing the Dark Secrets of BERT // Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019. 2019. 4364–4373.

Kudo Taku. Subword Regularization: Improving Neural Network
Translation Models with Multiple Subword Candidates // Pro-
ceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers. 2018. 66–75.

Kudo Taku, Richardson John. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text
Processing // Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2018: Sys-
tem Demonstrations, Brussels, Belgium, October 31 - November
4, 2018. 2018. 66–71.

Kulmizev Artur, Lhoneux Miryam de, Gontrum Johannes, Fano
Elena, Nivre Joakim. Deep Contextualized Word Embeddings in
Transition-Based and Graph-Based Dependency Parsing - A Tale
of Two Parsers Revisited // Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019.
2019. 2755–2768.

Lakretz Yair, Kruszewski German, Desbordes Theo, Hupkes Dieuwke,
Dehaene Stanislas, Baroni Marco. The emergence of number
and syntax units in LSTM language models // arXiv preprint
arXiv:1903.07435. 2019.

BIBLIOGRAPHY 183

Lau Jey Han, Clark Alexander, Lappin Shalom. Measuring gradience
in speakers’ grammaticality judgements // Proceedings of the An-
nual Meeting of the Cognitive Science Society. 2014.

Lau Jey Han, Clark Alexander, Lappin Shalom. Unsupervised Pre-
diction of Acceptability Judgements // Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Beijing, China: Association
for Computational Linguistics, 2015. 1618–1628.

Lau Jey Han, Clark Alexander, Lappin Shalom. Grammaticality, Ac-
ceptability, and Probability: A Probabilistic View of Linguistic
Knowledge // Cognitive Science. VII 2017. 41, 5. 1202–1241.

Lee Jaejun, Tang Raphael, Lin Jimmy. What Would Elsa Do? Freez-
ing Layers During Transformer Fine-Tuning // CoRR. 2019.
abs/1911.03090.

Lee Yun Joon Jason. Polysemous Words in English Movies, Learn-
ing Obstacles or Gifted Talent? // Journal of English Teaching
through Movies and Media. 2021. 22, 4. 14–26.

Lhoneux Miryam de, Shao Yan, Basirat Ali, Kiperwasser Eliyahu,
Stymne Sara, Goldberg Yoav, Nivre Joakim. From Raw Text to
Universal Dependencies - Look, No Tags! // Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, Vancouver, Canada, August 3-4, 2017.
2017. 207–217.

Li Zhe, Li Xiuhong, Sheng Jiabao, Slamu Wushour. AgglutiFiT: Effi-
cient Low-Resource Agglutinative Language Model Fine-Tuning
// IEEE Access. 2020. 8. 148489–148499.

Lin Zhouhan, Feng Minwei, Santos Cícero Nogueira dos, Yu Mo, Xiang
Bing, Zhou Bowen, Bengio Yoshua. A Structured Self-Attentive

BIBLIOGRAPHY 184

Sentence Embedding // 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. 2017.

Linzen Tal, Dupoux Emmanuel, Goldberg Yoav. Assessing the ability
of LSTMs to learn syntax-sensitive dependencies // Transactions
of the Association for Computational Linguistics. 2016. 4. 521–
535.

Liu Haitao. Dependency distance as a metric of language compre-
hension difficulty // Journal of Cognitive Science. 2008. 9, 2. 159–
191.

Liu Nelson F, Gardner Matt, Belinkov Yonatan, Peters Matthew E,
Smith Noah A. Linguistic Knowledge and Transferability of Con-
textual Representations // Proceedings of the 2019 Conference
of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). 2019a. 1073–1094.

Liu Xuebo, Lai Houtim, Wong Derek F., Chao Lidia S. Norm-Based
Curriculum Learning for Neural Machine Translation // Proceed-
ings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020. 2020a. 427–
436.

Liu Yinhan, Gu Jiatao, Goyal Naman, Li Xian, Edunov Sergey,
Ghazvininejad Marjan, Lewis Mike, Zettlemoyer Luke. Multilin-
gual Denoising Pre-training for Neural Machine Translation //
Trans. Assoc. Comput. Linguistics. 2020b. 8. 726–742.

Liu Yinhan, Ott Myle, Goyal Naman, Du Jingfei, Joshi Mandar, Chen
Danqi, Levy Omer, Lewis Mike, Zettlemoyer Luke, Stoyanov Veselin.
RoBERTa: A Robustly Optimized BERT Pretraining Approach //
CoRR. 2019b. abs/1907.11692.

BIBLIOGRAPHY 185

Loshchilov Ilya, Hutter Frank. SGDR: Stochastic Gradient Descent
with Warm Restarts // 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. 2017.

Lu Yu, Zhang Jiajun. Norm-based Noisy Corpora Filtering and Re-
furbishing in Neural Machine Translation // Proceedings of the
2022 Conference on Empirical Methods in Natural Language Pro-
cessing. 2022. 5414–5425.

Luong Thang, Pham Hieu, Manning Christopher D. Effective Ap-
proaches to Attention-based Neural Machine Translation // Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal, September
17-21, 2015. 2015. 1412–1421.

Ma Xuezhe, Hu Zecong, Liu Jingzhou, Peng Nanyun, Neubig Graham,
Hovy Eduard H. Stack-Pointer Networks for Dependency Parsing
// Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. 2018. 1403–1414.

Maas Andrew L, Hannun Awni Y, Ng Andrew Y, others . Rectifier
nonlinearities improve neural network acoustic models // Proc.
icml. 30, 1. 2013. 3.

Magueresse Alexandre, Carles Vincent, Heetderks Evan. Low-resource
Languages: A Review of Past Work and Future Challenges //
CoRR. 2020. abs/2006.07264.

Makarov Peter, Ruzsics Tatiana, Clematide Simon. Align and Copy:
UZH at SIGMORPHON 2017 Shared Task for Morphological Re-
inflection // Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection, Vancouver,
BC, Canada, August 3-4, 2017. 2017. 49–57.

BIBLIOGRAPHY 186

Manning Christopher D. Part-of-Speech Tagging from 97% to 100%:
Is It Time for Some Linguistics? // Computational Linguistics
and Intelligent Text Processing - 12th International Conference,
CICLing 2011, Tokyo, Japan, February 20-26, 2011. Proceedings,
Part I. 6608. 2011. 171–189. (Lecture Notes in Computer Science).

Marcheggiani Diego, Frolov Anton, Titov Ivan. A Simple and Ac-
curate Syntax-Agnostic Neural Model for Dependency-based Se-
mantic Role Labeling // Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL 2017). Van-
couver, Canada: Association for Computational Linguistics, VIII
2017. 411–420.

Marneffe Marie-Catherine de, Manning Christopher D., Nivre Joakim,
Zeman Daniel. Universal Dependencies // Computational Linguis-
tics. 07 2021. 47, 2. 255–308.

Martin Louis, Müller Benjamin, Suárez Pedro Javier Ortiz, Dupont
Yoann, Romary Laurent, Clergerie Éric de la, Seddah Djamé, Sagot
Benoît. CamemBERT: a Tasty French Language Model // Pro-
ceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020. 2020.
7203–7219.

Matteson Andrew, Lee Chanhee, Kim Young-Bum, Lim Heuiseok. Rich
Character-Level Information for Korean Morphological Analysis
and Part-of-Speech Tagging // Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, COLING 2018,
Santa Fe, New Mexico, USA, August 20-26, 2018. 2018. 2482–2492.

McCarthy Arya D, Silfverberg Miikka, Cotterell Ryan, Hulden Mans,
Yarowsky David. Marrying Universal Dependencies and Universal
Morphology // Proceedings of the SecondWorkshop on Universal
Dependencies (UDW 2018). 2018. 91–101.

BIBLIOGRAPHY 187

McCarthy Arya D, Vylomova Ekaterina, Wu Shijie, Malaviya Chai-
tanya, Wolf-Sonkin Lawrence, Nicolai Garrett, Kirov Christo, Sil-
fverberg Miikka, Mielke Sebastian J, Heinz Jeffrey, others . The SIG-
MORPHON 2019 Shared Task: Morphological Analysis in Con-
text and Cross-Lingual Transfer for Inflection // Proceedings
of the 16th Workshop on Computational Research in Phonetics,
Phonology, and Morphology. 2019. 229–244.

Meteer Marie, Rohlicek Jan Robin. Statistical languagemodeling com-
bining N-gram and context-free grammars // IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP
’93, Minneapolis, Minnesota, USA, April 27-30, 1993. 1993. 37–40.

Michel Paul, Levy Omer, Neubig Graham. Are Sixteen Heads Really
Better than One? // Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. 2019. 14014–14024.

Mikolov Tomás, Chen Kai, Corrado Greg, Dean Jeffrey. Efficient
Estimation of Word Representations in Vector Space // 1st In-
ternational Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings. 2013a.

Mikolov Tomás, Sutskever Ilya, Chen Kai, Corrado Gregory S., Dean
Jeffrey. Distributed Representations of Words and Phrases and
their Compositionality // Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting held De-
cember 5-8, 2013, Lake Tahoe, Nevada, United States. 2013b. 3111–
3119.

Mishra Anshuman, Patel Dhruvesh, Vijayakumar Aparna, Li Xiang,
Kapanipathi Pavan, Talamadupula Kartik. Reading Comprehen-

BIBLIOGRAPHY 188

sion as Natural Language Inference:A Semantic Analysis // Pro-
ceedings of the Ninth Joint Conference on Lexical and Computa-
tional Semantics. Barcelona, Spain (Online): Association for Com-
putational Linguistics, XII 2020. 12–19.

Mitchell Jeff, Lapata Mirella. Composition in Distributional Models
of Semantics // Cogn. Sci. 2010. 34, 8. 1388–1429.

Miwa Makoto, Pyysalo Sampo, Hara Tadayoshi, Tsujii Jun’ichi. Eval-
uating Dependency Representations for Event Extraction // Pro-
ceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010). Beijing, China: Coling 2010 Organizing
Committee, VIII 2010a. 779–787.

Miwa Makoto, Pyysalo Sampo, Hara Tadayoshi, Tsujii Jun’ichi. A
comparative study of syntactic parsers for event extraction // Pro-
ceedings of the 2010 Workshop on Biomedical Natural Language
Processing. 2010b. 37–45.

Montague Richard. Universal grammar // Theoria. 1970. 36, 3. 373–
398.

Nair Vinod, Hinton Geoffrey E. Rectified Linear Units Improve Re-
stricted Boltzmann Machines // Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24,
2010, Haifa, Israel. 2010. 807–814.

Nivre Joakim, Abrams Mitchell, Agić Željko, Ahrenberg Lars, Anton-
sen Lene, Aplonova Katya, Aranzabe Maria Jesus, Arutie Gashaw,
Asahara Masayuki, Ateyah Luma, Attia Mohammed, Atutxa Aitz-
iber, Augustinus Liesbeth, Badmaeva Elena, Ballesteros Miguel,
Banerjee Esha, Bank Sebastian, Barbu Mititelu Verginica, Basmov
Victoria, Bauer John, Bellato Sandra, Bengoetxea Kepa, Berzak
Yevgeni, Bhat Irshad Ahmad, Bhat Riyaz Ahmad, Biagetti Er-
ica, Bick Eckhard, Blokland Rogier, Bobicev Victoria, Börstell Carl,

BIBLIOGRAPHY 189

Bosco Cristina, Bouma Gosse, Bowman Sam, Boyd Adriane, Bur-
chardt Aljoscha, Candito Marie, Caron Bernard, Caron Gauthier,
Cebiroğlu Eryiğit Gülşen, Cecchini Flavio Massimiliano, Celano
Giuseppe G. A., Čéplö Slavomír, Cetin Savas, Chalub Fabricio, Choi
Jinho, Cho Yongseok, Chun Jayeol, Cinková Silvie, Collomb Au-
rélie, Çöltekin Çağrı, Connor Miriam, Courtin Marine, Davidson
Elizabeth, Marneffe Marie-Catherine de, Paiva Valeria de, Ilarraza
Arantza Diaz de, Dickerson Carly, Dirix Peter, Dobrovoljc Kaja,
Dozat Timothy, Droganova Kira, Dwivedi Puneet, Eli Marhaba,
Elkahky Ali, Ephrem Binyam, Erjavec Tomaž, Etienne Aline, Farkas
Richárd, Fernandez Alcalde Hector, Foster Jennifer, Freitas Cláudia,
Gajdošová Katarína, Galbraith Daniel, Garcia Marcos, Gärdenfors
Moa, Garza Sebastian, Gerdes Kim, Ginter Filip, Goenaga Iakes, Go-
jenola Koldo, Gökırmak Memduh, Goldberg Yoav, Gómez Guino-
vart Xavier, Gonzáles Saavedra Berta, Grioni Matias, Grūzītis Nor-
munds, Guillaume Bruno, Guillot-Barbance Céline, Habash Nizar,
Hajič Jan, Hajič jr. Jan, Hà Mỹ Linh, Han Na-Rae, Harris Kim,
Haug Dag, Hladká Barbora, Hlaváčová Jaroslava, Hociung Florinel,
Hohle Petter, Hwang Jena, Ion Radu, Irimia Elena, Ishola Ọlájídé,
Jelínek Tomáš, Johannsen Anders, Jørgensen Fredrik, Kaşıkara
Hüner, Kahane Sylvain, Kanayama Hiroshi, Kanerva Jenna, Katz
Boris, Kayadelen Tolga, Kenney Jessica, Kettnerová Václava, Kirch-
ner Jesse, Kopacewicz Kamil, Kotsyba Natalia, Krek Simon, Kwak
Sookyoung, Laippala Veronika, Lambertino Lorenzo, Lam Lucia,
Lando Tatiana, Larasati Septina Dian, Lavrentiev Alexei, Lee
John, Lê Hồng Phương, Lenci Alessandro, Lertpradit Saran, Le-
ung Herman, Li Cheuk Ying, Li Josie, Li Keying, Lim KyungTae,
Ljubešić Nikola, Loginova Olga, Lyashevskaya Olga, Lynn Teresa,
Macketanz Vivien, Makazhanov Aibek, Mandl Michael, Man-
ning Christopher, Manurung Ruli, Mărănduc Cătălina, Mareček
David, Marheinecke Katrin, Martínez Alonso Héctor, Martins An-
dré, Mašek Jan, Matsumoto Yuji, McDonald Ryan, Mendonça
Gustavo, Miekka Niko, Misirpashayeva Margarita, Missilä Anna,

BIBLIOGRAPHY 190

Mititelu Cătălin, Miyao Yusuke, Montemagni Simonetta, More
Amir, Moreno Romero Laura, Mori Keiko Sophie, Mori Shinsuke,
Mortensen Bjartur, Moskalevskyi Bohdan, Muischnek Kadri, Mu-
rawaki Yugo, Müürisep Kaili, Nainwani Pinkey, Navarro Horñi-
acek Juan Ignacio, Nedoluzhko Anna, Nešpore-Bērzkalne Gunta,
Nguyễn Thị Lương, Nguyễn Thị Minh Huyền, Nikolaev Vitaly,
Nitisaroj Rattima, Nurmi Hanna, Ojala Stina, Olúòkun Adédayọ̀,
Omura Mai, Osenova Petya, Östling Robert, Øvrelid Lilja, Par-
tanen Niko, Pascual Elena, Passarotti Marco, Patejuk Agnieszka,
Paulino-Passos Guilherme, Peng Siyao, Perez Cenel-Augusto, Per-
rier Guy, Petrov Slav, Piitulainen Jussi, Pitler Emily, Plank Bar-
bara, Poibeau Thierry, Popel Martin, Pretkalniņa Lauma, Prévost
Sophie, Prokopidis Prokopis, Przepiórkowski Adam, Puolakainen Ti-
ina, Pyysalo Sampo, Rääbis Andriela, Rademaker Alexandre, Ra-
masamy Loganathan, Rama Taraka, Ramisch Carlos, Ravishankar
Vinit, Real Livy, Reddy Siva, Rehm Georg, Rießler Michael, Rinaldi
Larissa, Rituma Laura, Rocha Luisa, Romanenko Mykhailo, Rosa
Rudolf, Rovati Davide, Roșca Valentin, Rudina Olga, Rueter Jack,
Sadde Shoval, Sagot Benoît, Saleh Shadi, Samardžić Tanja, Samson
Stephanie, Sanguinetti Manuela, Saulīte Baiba, Sawanakunanon
Yanin, Schneider Nathan, Schuster Sebastian, Seddah Djamé, Seeker
Wolfgang, Seraji Mojgan, Shen Mo, Shimada Atsuko, Shohibussirri
Muh, Sichinava Dmitry, Silveira Natalia, Simi Maria, Simionescu
Radu, Simkó Katalin, Šimková Mária, Simov Kiril, Smith Aaron,
Soares-Bastos Isabela, Spadine Carolyn, Stella Antonio, Straka
Milan, Strnadová Jana, Suhr Alane, Sulubacak Umut, Szántó
Zsolt, Taji Dima, Takahashi Yuta, Tanaka Takaaki, Tellier Isabelle,
Trosterud Trond, Trukhina Anna, Tsarfaty Reut, Tyers Francis, Ue-
matsu Sumire, Urešová Zdeňka, Uria Larraitz, Uszkoreit Hans, Vaj-
jala Sowmya, Niekerk Daniel van, Noord Gertjan van, Varga Viktor,
Clergerie Eric Villemonte de la, Vincze Veronika, Wallin Lars, Wang
Jing Xian, Washington Jonathan North, Williams Seyi, Wirén Mats,
Woldemariam Tsegay, Wong Tak-sum, Yan Chunxiao, Yavrumyan

BIBLIOGRAPHY 191

Marat M., Yu Zhuoran, Žabokrtský Zdeněk, Zeldes Amir, Zeman
Daniel, Zhang Manying, Zhu Hanzhi. Universal Dependencies 2.3.
2018. LINDAT/CLARIAH-CZ digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Nivre Joakim, Agić Željko, Ahrenberg Lars, al. et. Universal Depen-
dencies 2.0. 2017. LINDAT/CLARIN digital library at the Institute
of Formal and Applied Linguistics (ÚFAL), Faculty of Mathemat-
ics and Physics, Charles University.

Nivre Joakim, De Marneffe Marie-Catherine, Ginter Filip, Goldberg
Yoav, Hajic Jan, Manning Christopher D, McDonald Ryan T, Petrov
Slav, Pyysalo Sampo, Silveira Natalia, others . Universal Depen-
dencies v1: A Multilingual Treebank Collection. // LREC. 2016.

Nivre Joakim, Fernández-González Daniel. Arc-Eager Parsing with
the Tree Constraint // Comput. Linguistics. 2014. 40, 2. 259–267.

Nivre Joakim, Hall Johan, Nilsson Jens. MaltParser: A Data-Driven
Parser-Generator for Dependency Parsing // Proceedings of the
Fifth International Conference on Language Resources and Evalu-
ation, LREC 2006, Genoa, Italy, May 22-28, 2006. 2006. 2216–2219.

Oktavianti Ikmi Nur, Ardianti Novi Retno. A corpus-based analysis
of verbs in news section of The Jakarta Post: How frequency is
related to text characteristics // JOALL (Journal of Applied Lin-
guistics and Literature). 2019. 4, 2. 203–214.

Osborne Timothy, Gerdes Kim. The status of function words in de-
pendency grammar: A critique of Universal Dependencies (UD)
// Glossa (Online). 2019.

Compounding in a Swedish blog corpus. // . 2013.

BIBLIOGRAPHY 192

Özates Saziye Betül, Özgür Arzucan, Gungor Tunga, Öztürk Balkiz.
A Morphology-Based Representation Model for LSTM-Based De-
pendency Parsing of Agglutinative Languages // Proceedings of
the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, Brussels, Belgium, October 31
- November 1, 2018. 2018. 238–247.

Pan Sinno Jialin, Yang Qiang. A Survey on Transfer Learning // IEEE
Trans. Knowl. Data Eng. 2010. 22, 10. 1345–1359.

Pan Yirong, Li Xiao, Yang Yating, Dong Rui. MorphologicalWord Seg-
mentation onAgglutinative Languages for NeuralMachine Trans-
lation // CoRR. 2020. abs/2001.01589.

Partee Barbara. Lexical semantics and compositionality // An invi-
tation to cognitive science. 1995. 1. 311–360.

Partee Barbara H. A brief history of the syntax-semantics interface
in Western formal linguistics // Semantics-Syntax Interface. 2014.
1, 1. 1–21.

Pascanu Razvan, Mikolov Tomás, Bengio Yoshua. On the difficulty of
training recurrent neural networks // Proceedings of the 30th In-
ternational Conference onMachine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013. 28. 2013. 1310–1318. (JMLRWorkshop
and Conference Proceedings).

Pauls Adam, Klein Dan. Large-scale syntactic language modeling
with treelets // Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume
1. 2012. 959–968.

Pennington Jeffrey, Socher Richard, Manning Christopher D. Glove:
Global Vectors forWord Representation // Proceedings of the 2014

BIBLIOGRAPHY 193

Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL. 2014. 1532–1543.

Peters Matthew E., Neumann Mark, Iyyer Mohit, Gardner Matt, Clark
Christopher, Lee Kenton, Zettlemoyer Luke. Deep contextualized
word representations // Proc. of NAACL. 2018a.

Peters Matthew E., Neumann Mark, Zettlemoyer Luke, Yih Wen-tau.
Dissecting Contextual Word Embeddings: Architecture and Rep-
resentation // Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: As-
sociation for Computational Linguistics, X-XI 2018b. 1499–1509.

Peters Matthew E., Ruder Sebastian, Smith Noah A. To Tune or Not to
Tune? Adapting Pretrained Representations to Diverse Tasks //
Proceedings of the 4th Workshop on Representation Learning for
NLP, RepL4NLP@ACL 2019, Florence, Italy, August 2, 2019. 2019.
7–14.

Pimentel Tiago, Ryskina Maria, Mielke Sabrina J., Wu Shijie, Chodroff
Eleanor, Leonard Brian, Nicolai Garrett, Ghanggo Ate Yustinus,
Khalifa Salam, Habash Nizar, El-Khaissi Charbel, Goldman Omer,
Gasser Michael, Lane William, Coler Matt, Oncevay Arturo, Mon-
toya Samame Jaime Rafael, Silva Villegas Gema Celeste, Ek Adam,
Bernardy Jean-Philippe, Shcherbakov Andrey, Bayyr-ool Aziyana,
Sheifer Karina, Ganieva Sofya, Plugaryov Matvey, Klyachko Elena,
Salehi Ali, Krizhanovsky Andrew, Krizhanovsky Natalia, Vania
Clara, Ivanova Sardana, Salchak Aelita, Straughn Christopher, Liu
Zoey, Washington Jonathan North, Ataman Duygu, Kieraś Witold,
Woliński Marcin, Suhardijanto Totok, Stoehr Niklas, Nuriah Zahroh,
Ratan Shyam, Tyers Francis M., Ponti Edoardo M., Aiton Grant,
Hatcher Richard J., Prud’hommeaux Emily, Kumar Ritesh, Hulden
Mans, Barta Botond, Lakatos Dorina, Szolnok Gábor, Ács Judit, Raj

BIBLIOGRAPHY 194

Mohit, Yarowsky David, Cotterell Ryan, Ambridge Ben, Vylomova
Ekaterina. SIGMORPHON 2021 Shared Task on Morphological
Reinflection: Generalization Across Languages // Proceedings of
the 18th SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology. Online: Association
for Computational Linguistics, VIII 2021. 229–259.

Pires Telmo, Schlinger Eva, Garrette Dan. How Multilingual is Multi-
lingual BERT? // Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers. 2019. 4996–5001.

Plank Barbara, Klerke Sigrid. Lexical Resources for Low-Resource
PoS Tagging in Neural Times // Proceedings of the 22nd
Nordic Conference on Computational Linguistics, NoDaLiDa
2019, Turku, Finland, September 30 - October 2, 2019. 2019. 25–
34.

Competence-based Curriculum Learning for Neural Machine Trans-
lation. // . 2019. 1162–1172.

Poesio Massimo, Bruneseaux Florence, Romary Laurent. The MATE
meta-scheme for coreference in dialogues in multiple languages
// ACL’99 Workshop Towards Standards and Tools for Discourse
Tagging. 1999. 65–74.

Poliak Adam, Naradowsky Jason, Haldar Aparajita, Rudinger Rachel,
Durme Benjamin Van. Hypothesis Only Baselines in Natural Lan-
guage Inference // Proceedings of the Seventh Joint Conference
on Lexical and Computational Semantics, *SEM@NAACL-HLT
2018, New Orleans, Louisiana, USA, June 5-6, 2018. 2018. 180–191.

Ponti Edoardo Maria, O’Horan Helen, Berzak Yevgeni, Vulic Ivan, Re-
ichart Roi, Poibeau Thierry, Shutova Ekaterina, Korhonen Anna.

BIBLIOGRAPHY 195

Modeling Language Variation and Universals: A Survey on Ty-
pological Linguistics for Natural Language Processing // Comput.
Linguistics. 2019. 45, 3. 559–601.

Qi Peng, Zhang Yuhao, Zhang Yuhui, Bolton Jason, Manning Christo-
pher D. Stanza: A Python Natural Language Processing Toolkit
for Many Human Languages // Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics: Sys-
temDemonstrations, ACL 2020, Online, July 5-10, 2020. 2020. 101–
108.

Raffel Colin, Shazeer Noam, Roberts Adam, Lee Katherine, Narang
Sharan, Matena Michael, Zhou Yanqi, Li Wei, Liu Peter J. Explor-
ing the Limits of Transfer Learning with a Unified Text-to-Text
Transformer // J. Mach. Learn. Res. 2020. 21. 140:1–140:67.

Raganato Alessandro, Tiedemann Jörg. An Analysis of Encoder Rep-
resentations in Transformer-Based Machine Translation // Pro-
ceedings of the Workshop: Analyzing and Interpreting Neural
Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels, Bel-
gium, November 1, 2018. 2018. 287–297.

Rama Taraka, Beinborn Lisa, Eger Steffen. ProbingMultilingual BERT
for Genetic and Typological Signals // Proceedings of the 28th
International Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13, 2020. 2020. 1214–
1228.

Reddy Siva, Täckström Oscar, Petrov Slav, Steedman Mark, Lapata
Mirella. Universal Semantic Parsing // Proceedings of the 2017
Conference on Empirical Methods in Natural Language Process-
ing. Copenhagen, Denmark: Association for Computational Lin-
guistics, IX 2017. 89–101.

Reimers Nils, Gurevych Iryna. Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks // Proceedings of the

BIBLIOGRAPHY 196

2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019. 2019. 3980–3990.

Ren Xiang, Wu Zeqiu, He Wenqi, Qu Meng, Voss Clare R., Ji Heng, Ab-
delzaher Tarek F., Han Jiawei. CoType: Joint Extraction of Typed
Entities and Relations with Knowledge Bases // Proceedings of
the 26th International Conference on World Wide Web, WWW
2017, Perth, Australia, April 3-7, 2017. 2017. 1015–1024.

Ruder Sebastian. An overview of gradient descent optimization al-
gorithms // CoRR. 2016. abs/1609.04747.

Rumelhart David E, Hinton Geoffrey E, Williams Ronald J. Learning
representations by back-propagating errors // nature. 1986. 323,
6088. 533–536.

Do Syntax Trees Help Pre-trained Transformers Extract Informa-
tion? // . 2021. 2647–2661.

Salimans Tim, Kingma Diederik P. Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Net-
works // Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain. 2016. 901.

Santos Cícero Nogueira dos, Guimarães Victor. Boosting Named En-
tity Recognition with Neural Character Embeddings // Proceed-
ings of the Fifth Named Entity Workshop, NEWS@ACL 2015, Bei-
jing, China, July 31, 2015. 2015. 25–33.

Saphra Naomi, Lopez Adam. Language Models Learn POS First //
Proceedings of the 2018 EMNLPWorkshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP. Brussels, Belgium:
Association for Computational Linguistics, XI 2018. 328–330.

BIBLIOGRAPHY 197

Schuster Sebastian, Krishna Ranjay, Chang Angel, Fei-Fei Li, Manning
Christopher D. Generating Semantically Precise Scene Graphs
from Textual Descriptions for Improved Image Retrieval // Pro-
ceedings of the FourthWorkshop onVision and Language. Lisbon,
Portugal: Association for Computational Linguistics, IX 2015. 70–
80.

Schuster Sebastian, Manning Christopher D. Enhanced english uni-
versal dependencies: An improved representation for natural
language understanding tasks // Proceedings of the Tenth In-
ternational Conference on Language Resources and Evaluation
(LREC’16). 2016. 2371–2378.

Sejnowski Terrence J. The unreasonable effectiveness of deep learn-
ing in artificial intelligence // Proc. Natl. Acad. Sci. USA. 2020.
117, 48. 30033–30038.

Sennhauser Luzi, Berwick Robert. Evaluating the Ability of LSTMs to
Learn Context-Free Grammars // Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
works for NLP. Brussels, Belgium: Association for Computational
Linguistics, XI 2018. 115–124.

Sennrich Rico, Haddow Barry, Birch Alexandra. Neural Machine
Translation of Rare Words with Subword Units // Proceedings
of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 1: Long Papers. 2016.

Silveira Natalia G. Designing syntactic representations for NLP: An
empirical investigation. 2016.

Singh Anil Kumar. Natural Language Processing for Less Privileged
Languages: Where do we come from? Where are we going?

BIBLIOGRAPHY 198

// Third International Joint Conference on Natural Language Pro-
cessing, IJCNLP 2008, Hyderabad, India, January 7-12, 2008. 2008.
7–12.

Søgaard Anders, Lhoneux Miryam de, Augenstein Isabelle. Nightmare
at test time: How punctuation prevents parsers from generaliz-
ing // Proceedings of the Workshop: Analyzing and Interpreting
Neural Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels,
Belgium, November 1, 2018. 2018. 25–29.

Stanovsky Gabriel, Ficler Jessica, Dagan Ido, Goldberg Yoav. Getting
more out of syntax with props // arXiv preprint arXiv:1603.01648.
2016.

Strzyz Michalina, Vilares David, Gómez-Rodríguez Carlos. Sequence
Labeling Parsing by Learning across Representations // Proceed-
ings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers. 2019a. 5350–5357.

Strzyz Michalina, Vilares David, Gómez-Rodríguez Carlos. Viable De-
pendency Parsing as Sequence Labeling // Proceedings of the
2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers). 2019b. 717–723.

Sun Mingming, Hua Wenyue, Liu Zoey, Wang Xin, Zheng Kangjie,
Li Ping. A Predicate-Function-Argument Annotation of Natural
Language for Open-Domain Information eXpression // Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). 2020. 2140–2150.

SundermeyerMartin, Ney Hermann, Schlüter Ralf. From Feedforward
to Recurrent LSTM Neural Networks for Language Modeling //

BIBLIOGRAPHY 199

IEEE ACM Trans. Audio Speech Lang. Process. 2015. 23, 3. 517–
529.

Sutskever Ilya, Vinyals Oriol, LeQuoc V. Sequence to Sequence Learn-
ing with Neural Networks // Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal,Quebec,
Canada. 2014. 3104–3112.

Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, Wo-
jna Zbigniew. Rethinking the inception architecture for computer
vision // Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016. 2818–2826.

Tai Kai Sheng, Socher Richard, Manning Christopher D. Improved Se-
mantic Representations From Tree-Structured Long Short-Term
Memory Networks // Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Beijing, China: Association for Computa-
tional Linguistics, VII 2015. 1556–1566.

Talman Aarne, Chatzikyriakidis Stergios. Testing the Generalization
Power of Neural Network Models across NLI Benchmarks // Pro-
ceedings of the 2019ACLWorkshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, BlackboxNLP@ACL 2019,
Florence, Italy, August 1, 2019. 2019. 85–94.

TalmanAarne, Yli-Jyrä Anssi, Tiedemann Jörg. Sentence embeddings
in NLI with iterative refinement encoders // Nat. Lang. Eng. 2019.
25, 4. 467–482.

Tenney Ian, Das Dipanjan, Pavlick Ellie. BERT Rediscovers the Clas-
sical NLP Pipeline // Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence,

BIBLIOGRAPHY 200

Italy, July 28- August 2, 2019, Volume 1: Long Papers. 2019. 4593–
4601.

Tesnière Lucien. Éléments de syntaxe structurale. 1959.

Tieleman Tijmen, Hinton Geoffrey, others . Lecture 6.5-rmsprop: Di-
vide the gradient by a running average of its recent magnitude
// COURSERA: Neural networks for machine learning. 2012. 4, 2.
26–31.

Tiktinsky Aryeh, Goldberg Yoav, Tsarfaty Reut. pybart: Evidence-
based syntactic transformations for ie // arXiv preprint
arXiv:2005.01306. 2020.

Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones
Llion, Gomez AidanN., Kaiser Lukasz, Polosukhin Illia. Attention is
All you Need // Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017.
5998–6008.

Verwimp Lyan, Pelemans Joris, hamme Hugo Van, Wambacq Patrick.
Character-Word LSTM Language Models // Proceedings of the
15th Conference of the European Chapter of the Association for
Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7,
2017, Volume 1: Long Papers. 2017. 417–427.

Vig Jesse, Belinkov Yonatan. Analyzing the Structure of Attention
in a Transformer Language Model // Proceedings of the 2019
ACLWorkshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Florence, Italy: Association for Computational
Linguistics, VIII 2019. 63–76.

Vikner Carl, Vikner Sten. Hierarchical morphological structure and
ambiguity // Merete Birkelund, Maj-Britt Mosegaard Hansen and
Coco Norén, eds. 2008. 541–560.

BIBLIOGRAPHY 201

Vinyals Oriol, Fortunato Meire, Jaitly Navdeep. Pointer Networks //
Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, De-
cember 7-12, 2015, Montreal, Quebec, Canada. 2015. 2692–2700.

Vries Wietse de, Wieling Martijn, Nissim Malvina. Make the Best
of Cross-lingual Transfer: Evidence from POS Tagging with over
100 Languages // Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2022, Dublin, Ireland, May 22-27, 2022. 2022. 7676–
7685.

Wang Alex, Pruksachatkun Yada, Nangia Nikita, Singh Amanpreet,
Michael Julian, Hill Felix, Levy Omer, Bowman Samuel R. Super-
GLUE: A Stickier Benchmark for General-Purpose Language Un-
derstanding Systems // Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada. 2019a. 3261–3275.

Wang Alex, Singh Amanpreet, Michael Julian, Hill Felix, Levy Omer,
Bowman Samuel R. GLUE: AMulti-Task Benchmark and Analysis
Platform for Natural Language Understanding // Proceedings of
the Workshop: Analyzing and Interpreting Neural Networks for
NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November
1, 2018. 2018. 353–355.

Wang Haohan, Sun Da, Xing Eric P. What if We Simply Swap the
Two Text Fragments? A Straightforward yet Effective Way to
Test the Robustness of Methods to Confounding Signals in Nature
Language Inference Tasks // The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial In-

BIBLIOGRAPHY 202

telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019. 2019b. 7136–7143.

Wang Peilu, Qian Yao, Soong Frank K., He Lei, Zhao Hai. Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Re-
current Neural Network // CoRR. 2015. abs/1510.06168.

Wang Shaonan, Zhang Jiajun, Zong Chengqing. Learning Sentence
Representation with Guidance of Human Attention // Proceed-
ings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017. 2017. 4137–4143.

Warstadt Alex, Bowman Samuel R. Grammatical Analysis of Pre-
trained Sentence Encoders with Acceptability Judgments // CoRR.
2019. abs/1901.03438.

Webster Jonathan J., Kit Chunyu. Tokenization As The Initial Phase
In NLP // 14th International Conference on Computational Lin-
guistics, COLING 1992, Nantes, France, August 23-28, 1992. 1992.
1106–1110.

White Aaron Steven, Reisinger Drew, Sakaguchi Keisuke, Vieira Tim,
Zhang Sheng, Rudinger Rachel, Rawlins Kyle, Van Durme Benjamin.
Universal decompositional semantics on universal dependencies
// Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. 2016. 1713–1723.

Wieting John, Bansal Mohit, Gimpel Kevin, Livescu Karen. Towards
Universal Paraphrastic Sentence Embeddings // 4th International
Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016.

Wilcox Ethan, Levy Roger, Futrell Richard. Hierarchical Representa-
tion in Neural Language Models: Suppression and Recovery of

BIBLIOGRAPHY 203

Expectations // Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP.
Florence, Italy: Association for Computational Linguistics, VIII
2019. 181–190.

Williams Adina, Drozdov Andrew, Bowman Samuel R. Do latent
tree learning models identify meaningful structure in sentences?
// Transactions of the Association of Computational Linguistics.
2018a. 6. 253–267.

Williams Adina, Nangia Nikita, Bowman Samuel R. A Broad-
Coverage Challenge Corpus for Sentence Understanding through
Inference // Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2018, NewOr-
leans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers).
2018b. 1112–1122.

Wirén Mats, Ek Adam, Kasaty Anna. Annotation Guideline No. 7:
Guidelines for annotation of narrative structure // Journal of Cul-
tural Analytics. 2020. 4, 3. 11772.

Wolf Thomas, Debut Lysandre, Sanh Victor, Chaumond Julien, De-
langue Clement, Moi Anthony, Cistac Pierric, Rault Tim, Louf
Rémi, Funtowicz Morgan, Brew Jamie. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing // CoRR. 2019.
abs/1910.03771.

Wolf Thomas, Debut Lysandre, Sanh Victor, Chaumond Julien, De-
langue Clement, Moi Anthony, Cistac Pierric, Rault Tim, Louf Rémi,
Funtowicz Morgan, Davison Joe, Shleifer Sam, Platen Patrick von,
Ma Clara, Jernite Yacine, Plu Julien, Xu Canwen, Scao Teven Le,
Gugger Sylvain, Drame Mariama, Lhoest Quentin, Rush Alexan-
der M. Transformers: State-of-the-Art Natural Language Process-
ing // Proceedings of the 2020 Conference on Empirical Meth-

BIBLIOGRAPHY 204

ods in Natural Language Processing: System Demonstrations,
EMNLP 2020 - Demos, Online, November 16-20, 2020. 2020. 38–
45.

Wu Yonghui, Schuster Mike, Chen Zhifeng, Le Quoc V., Norouzi Mo-
hammad, Macherey Wolfgang, Krikun Maxim, Cao Yuan, Gao Qin,
Macherey Klaus, Klingner Jeff, Shah Apurva, Johnson Melvin, Liu
Xiaobing, Kaiser Lukasz, Gouws Stephan, Kato Yoshikiyo, Kudo
Taku, Kazawa Hideto, Stevens Keith, Kurian George, Patil Nis-
hant, Wang Wei, Young Cliff, Smith Jason, Riesa Jason, Rudnick
Alex, Vinyals Oriol, Corrado Greg, Hughes Macduff, Dean Jef-
frey. Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation // CoRR. 2016.
abs/1609.08144.

Xu Yang, Liu Jiawei. Implicitly incorporating morphological infor-
mation into word embedding // arXiv preprint arXiv:1701.02481.
2017.

Xue Linting, Constant Noah, Roberts Adam, Kale Mihir, Al-Rfou Rami,
Siddhant Aditya, Barua Aditya, Raffel Colin. mT5: A Massively
Multilingual Pre-trained Text-to-Text Transformer // Proceedings
of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2021, Online, June 6-11, 2021. 2021. 483–
498.

Yang Baosong, Wang Longyue, Wong Derek F., Chao Lidia S.,
Tu Zhaopeng. Assessing the Ability of Self-Attention Networks
to Learn Word Order // Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, VII 2019. 3635–3644.

Yasunaga Michihiro, Kasai Jungo, Radev Dragomir R. Robust Multi-
lingual Part-of-Speech Tagging via Adversarial Training // Pro-

BIBLIOGRAPHY 205

ceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers). 2018. 976–986.

Yu Xiang, Vu Ngoc Thang. Character Composition Model with Con-
volutional Neural Networks for Dependency Parsing on Morpho-
logically Rich Languages // Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 2: Short Papers.
2017. 672–678.

Zeman Daniel, Popel Martin, Straka Milan, Hajic Jan, Nivre Joakim,
Ginter Filip, Luotolahti Juhani, Pyysalo Sampo, Petrov Slav, Pot-
thast Martin, Tyers Francis M., Badmaeva Elena, Gokirmak Mem-
duh, Nedoluzhko Anna, Cinková Silvie, Jr. Jan Hajic, Hlavácová
Jaroslava, Kettnerová Václava, Uresová Zdenka, Kanerva Jenna,
Ojala Stina, Missilä Anna, Manning Christopher D., Schuster Se-
bastian, Reddy Siva, Taji Dima, Habash Nizar, Leung Herman,
Marneffe Marie-Catherine de, Sanguinetti Manuela, Simi Maria,
Kanayama Hiroshi, Paiva Valeria de, Droganova Kira, Alonso Héc-
tor Martínez, Çöltekin Çagri, Sulubacak Umut, Uszkoreit Hans,
Macketanz Vivien, Burchardt Aljoscha, Harris Kim, Marheinecke
Katrin, Rehm Georg, Kayadelen Tolga, Attia Mohammed, El-Kahky
Ali, Yu Zhuoran, Pitler Emily, Lertpradit Saran, Mandl Michael,
Kirchner Jesse, Alcalde Hector Fernandez, Strnadová Jana, Baner-
jee Esha, Manurung Ruli, Stella Antonio, Shimada Atsuko, Kwak
Sookyoung, Mendonça Gustavo, Lando Tatiana, Nitisaroj Rattima,
Li Josie. CoNLL 2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies // Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing fromRawText to Universal De-
pendencies, Vancouver, Canada, August 3-4, 2017. 2017. 1–19.

Zhang Sheng, Rudinger Rachel, Van Durme Benjamin. An evalua-

BIBLIOGRAPHY 206

tion of PredPatt and open IE via stage 1 semantic role labeling
// IWCS 2017—12th International Conference on Computational
Semantics—Short papers. 2017.

Zhao Peilin, Zhang Tong. Stochastic Optimization with Importance
Sampling for Regularized LossMinimization // Proceedings of the
32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015. 37. 2015. 1–9. (JMLR Workshop and
Conference Proceedings).

