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Abstract:

The objective of this study is to compare the performance of different GARCH

models, under different conditional distribution assumptions, to predict one-

day-ahead Value-at-Risk (VaR) for three stocks: Swedbank, Handelsbanken,

and SEB over the Covid-19 period. The performance is evaluated using Ku-

piec, Christoffersen tests and the Quadratic Loss. The results show that the

assumed distribution, model specification, and confidence level together play

an important role in VaR estimation, as these factors can substantially affect

the accuracy of the estimate. Models that assume the skew t-distribution and

the t-distribution generally perform well, while the performance of models that

assume the normal distribution changes dramatically as a function of the con-

fidence level. Regarding the models, the study shows that the EGARCH spec-

ification resulted in the lowest losses and that the worst performing model is

ARCH, especially when the assumed distribution is normal.
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1 Introduction

1.1 Background

Risk is the possibility that something negative will occur in the future. In fi-

nance, it refers to the probability of loss or uncertainty in financial markets or

investments. Major events such as the Asian financial crisis in 1997, the global

financial crisis in 2008, and the recent Covid-19 pandemic highlight the im-

portance of effective risk management in the financial industry. According to

McNeil et al. (2005, p. 4), financial institutions need to manage different types

of risk to maintain their stability and viability. These include credit risk, which

is the risk of not receiving the promised repayment of investments due to the

default of a borrower; operational risk, which is the risk of loss due to inade-

quate internal processes, people, systems, or external events; and market risk,

which is the risk of potential loss due to changes in the value of the underlying

assets. In this thesis we focus on market risk, specifically one of its risk mea-

sures. A popular method to help financial actors manage their market risk is

Value-at-Risk (VaR), first introduced by JP Morgan in the early 1990s. Later,

the publication of the G30 report and other reports such as that of the Basel

Committee on Banking Supervision highlighted the usefulness of the VaR sys-

tem and its potential (Dowd 2005, p. 10). There are different definitions of VaR

depending on how the calculation is performed. According to the definition

of Xekalaki and Degiannakis (2010, p. 239), VaR is the predicted amount of

financial loss of a portfolio over a given time horizon and at a given probabil-

ity level. According to Danielsson (2011, p. 93), there are two main methods

for predicting VaR: the nonparametric and the parametric. The nonparametric

method, also called historical simulation, is a simple, straightforward method

that uses the empirical distribution of an asset’s return to calculate VaR. This

method does not require statistical model assumptions or parameter estimates.

In the parametric method that we will use in this thesis, we need to specify the

statistical distribution of an asset’s return. Then we can predict the VaR by sim-

ply estimating the volatility for the assumed distribution.
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Volatility is a term commonly used in the financial market that refers to the

dispersion of an asset’s return. That is, the fluctuation in the price of an asset.

In statistics, volatility is the standard deviation. Accurate prediction of volatil-

ity is essential for calculating reliable VaR measures. For this purpose, we will

use the GARCH ( Generalized Autoregressive Conditional Heteroscedasticity)

model, as it is a widely used method for estimating volatility. The GARCH

model, developed by Bollerslev (1986), is particularly effective in capturing the

phenomenon of volatility clustering, which refers to the tendency for large price

movements to be followed by other large price movements. This implies that

volatility is not constant but fluctuates over time, and there is strong empirical

evidence for the existence of volatility clusters (Slim et al., 2017; Cont, 2001).

Other factors can also affect the accuracy of VaR measures. For example, the

choice of the underlying statistical distribution of an asset’s return can substan-

tially affect VaR estimates because VaR is, by definition, the quantile of that

distribution, i.e., the threshold below which a given percentage of returns is ex-

pected to fall. For example, if a portfolio has a VaR of $1 million at a 99%

confidence level, the probability of losing less than $1 million is one percent

over a given time horizon. Therefore, the 1% quantile in this example is the

VaR. If we assume a normal distribution, the returns are symmetric and the

model is unable to capture extreme values because the probability of observing

values that are 3 standard deviations away from the mean is highly unlikely.

Therefore, the model may not be able to capture extreme shocks if we assume

a normal distribution (Slim et al., 2017). On the other hand, there are other

distributions that can account for skewness and excess kurtosis, such as the t-

distribution and skew t-distribution, which can be particularly important when

working with financial data because it accounts for the presence of ”fat tails”

and skewness in the return distribution, meaning that negative extreme values

are more likely to occur than assumed with the normal distribution. However, it

can also be difficult to determine the exact shape of the tails of the return distri-

bution (Cont, 2001). Several studies have applied different statistical distribu-
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tions to financial data and have reached similar conclusions about the distribu-

tion. For example, Bao et al. (2007), Köeksal and Orhan (2012), and Angelidis

et al. (2004) found in their studies that distributions that account for skewness

and leptokurtosis perform better than the normal distribution. Another factor

that determines the accuracy of VaR is the choice of GARCH model, as many

models have been developed for different stylized statistical properties, such

as those mentioned above. For example, Hansen and Lunde (2005) found that

more complex GARCH models do not necessarily perform better than simpler

models. In contrast, Oberholzer and Venter (2005) found that more complex

model specifications performed better during periods of high volatility. How-

ever, accurately predicting volatility can be difficult due to the complexity of

financial markets.

There are also other factors that must be considered, such as the time period

chosen to estimate the parameters. For example, if a period with high volatility

is used to estimate the parameters, this can lead to overfitting and inaccurate

predictions for new observations. Another factor is the length of the window

used to fit the model: A short window may cause the parameters to be more

sensitive to change, while a long window may have the opposite effect.

In this study, we will look at different GARCH models and examine how they

perform in combination with different conditional distributions in a period of

high volatility. We will then compare the results with the most commonly used

methods based on backtesting measures according to Xekalaki and Degiannakis

(2010, p. 246), namely Kupiec and Christoffersen tests to evaluate Value-at-

Risk (VaR).

1.2 Purpose

The objective of this study is to compare the performance of four general-

ized autoregressive conditional heteroscedasticity (GARCH) models for pre-

dicting one-day-ahead Value-at-Risk (VaR) for three stocks: Swedbank, Han-

7



delsbanken, and SEB. The four conditional volatility structures are ARCH (1),

GARCH(1,1), APARCH(1,1) and EGARCH(1,1). The performance of the mod-

els will be evaluated at both 99% and 95% VaR levels using the Kupiec, Christof-

fersen tests and the Quadratic Loss. The study will also examine the impact of

three different distributions on the performance of the GARCH models: Normal

distribution, t-distribution, and skew t-distribution.

2 Theory

This chapter presents the theoretical foundations and methodology used in this

study. The first section explains the notation of the various GARCH models.

Section 2.2 provides an overview of Value-at-Risk (VaR), followed by a discus-

sion of the probability density functions used. Section 2.4 presents the Kupiec

and Christoffersen tests, two important statistical tools for evaluating the per-

formance of VaR models. The final section outlines the forecasting procedure

and describes the out-of-sample forecasting method used.

2.1 Conditional Heteroscedastic Models

Many models used to forecast volatility belong to the GARCH family. The

first such model, introduced by Engle (1982), is the autoregressive conditional

heteroscedasticity (ARCH) model, which allows the conditional variance to

vary over time based on squared past returns. A modified version, the general-

ized ARCH (GARCH) model proposed by Bollerslev (1986), includes lagged

volatility and is the most commonly used volatility model. However, both the

GARCH and ARCH models have the weakness that they assume that positive

and negative shocks have the same impact on volatility (Tsay 2010, p.119). To

address these weaknesses, Nelson (1991) introduced the exponential GARCH

(EGARCH) model, which allows positive and negative shocks to have different

effects on variance. To determine the basic structure for the ARCH framework,

we first define the daily return as:

Yt = 100(lnPt − lnPt−1)
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Where Yt is the percentage log return and Pt is the closing price of an asset.

According to Xekalaki and Degiannakis (2010, p.11), the dependent variable

Yt can be decomposed into two parts, the predictable component µt and the

unpredictable component εt, thus:

Yt = µt + εt

µt = µ(θ|It−1)

εt = σtZt

σt = g(θ|It−1)

Here µ(θ|It−1) and g(θ|It−1) are the functional forms of the conditional mean

and conditional variance, where by conditional is meant that, µt and σt depend

on the information set available up to time It−1 and depend on the parameter

vector θ. This is in contrast to the unconditional variant, where we simply

use the entire sample. The conditional mean µ(θ|It−1) can be estimated by

an autoregressive moving average (ARMA), where the return can be expressed

as a function of the conditional variance. Consistent with the conclusion of

Angelidis et al. (2004), that the mean process does not add anythings significant

to the models except the complexity in the estimation, we assume in this study

that the conditional mean is zero. The return on day t then becomes:

Yt = σtZt

Where Zt is i.i.d with mean 0 and variance 1 and σt is the standard deviation, can

be estimated using conditional variance models. The parameters of the models

are estimated using the so-called Maximum Likelihood method (ML). The ML

is typically used to estimate the GARCH parameters and aims to find the pa-

rameters that maximise the likelihood that the model will produce the observed

data, (see A.3 in the Appendix)
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2.1.1 ARCH

The ARCH specification is giving as follow:

σ2
t = α0 +

q∑
i=1

αiY
2
t−i

Where q is the number of lags that is included to estimate the variance. The αi

parameters explain how fast the conditional variance at time t reacts to news.

The ARCH(1) given as:

σ2
t = α0 + α1Y

2
t−1

For the conditional variance to be positive, the parameters should satisfy a0 > 0

and ai ≥ 0 for i = 1, ..., q.

2.1.2 GARCH

According to Danielsson (2011, p.38) the problem with ARCH is the long of lag

length that is required to estimate the volatility. Despite that ARCH is simple, it

often needed many parameters to define the volatility (Tsay, 2010, p.119). The

GARCH model is basically the same as ARCH, but with the inclusion of lagged

volatility. GARCH model’s specification:

σ2
t = α0 +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βjσ
2
t−j

Where α0 > 0, αi ≥ 0 for i = 1, ..., q and βj ≥ 0 for j = 1, ..., p.

The most popular GARCH model is GARCH(1,1):

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1

A high value of βj means that the volatility takes long time to change and a high

value of αi means that volatility reacts fast to market movements (Dowd, 2005).
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2.1.3 EGARCH

According to Xekalaki and Degiannakis (2010, p.13), Fischer Black was the

first to observe that changes in asset’s returns are often negatively correlated

with changes in the volatility of returns. Volatility tends to increase on nega-

tive news and decrease on positive news, a phenomenon known as the leverage

effect. As a result, it can be assumed that a negative return today will lead to

higher volatility tomorrow. The GARCH model is effective at capturing fat-

tailed return and volatility clusters, but it has a significant limitation: it uses

the square of today’s return to estimate tomorrow’s volatility, without consid-

ering the sign of the return. To address this issue, Nelson (1991) introduced

the EGARCH model, which captures the effects of both negative and positive

shocks on variance, and accounts for the asymmetry of volatility ,the fact that

negative shocks have a greater impact on volatility than positive shocks. The

EGARCH model is expressed in Xekalaki and Degiannakis (2010, p.43) as fol-

lows:

log(σ2
t ) = α0 +

q∑
i=1

g
(
εt−i

σt−i

)
+

p∑
j=1

βj log σ2
t−j

g(εt/σt) = α1(εt/σt) + γ1(|εt/σt| − E|εt/σt|)

The function g is defined as a combination of two terms: the product of the pa-

rameter α1 and the ratio of the error term to the variance, and the product of the

parameter γ1 and the difference between the absolute residuals and the expected

value of the absolute residuals.

The terms α1(εt/σt) and γ1(|εt/σt|−E|εt/σt|) represent the sign and the magni-

tude effect, respectively. Also, the term α1(εt/σt) stands for the leverage effect.

When α1 = 0, it means that bad news and good news have the same effect on

volatility, and when α1 < 0 it means that bad news causes higher volatility than

positive news, so the model is asymmetric. On the other hand, γ1 is a parameter

that captures the effect of the absolute value of the residuals on the variance.
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Note that εt = σtZt and Zt ∼ i.i.d. with expectation 0 and variance 1, thus

Zt = εt/σt. Unlike the GARCH model, no inequality restrictions need to be

imposed for model estimation, as the logarithm of the variance is estimated.

2.1.4 APARCH

The APARCH (Asymmetric Power ARCH) model was introduced by Ding et

al. (1993) as a way to combine the power model proposed by Taylor (1986)

with the leverage effect proposed by Nelson (1991). The APARCH model is

defined by the following equation:

σδ
t = α0 +

q∑
i=1

αi(|εt−i| − γiεt−i)
δ +

p∑
j=1

bjσ
δ
t−j,

where

αo > 0, δ > 0, bj ≥ 0, j = 1, ..., p, αi ≥ 0

and

−1 < γi < 1, i = 1, ..., q

In this equation, σδ
t is the conditional standard deviation at time t, and εt−i is

the residual at time t − i. The terms αi and γi capture the magnitude and the

sign effects, respectively, while δ is the size of the power transformation. To

understand how the sign effect works lets consider the asymmetric ARCH(1)

model. We have:

σ2
t =

α0 + α1(1− γ1)εt−1 if εt−1 ≥ 0,

α0 + α1(1 + γ1)εt−1 if εt−1 ≤ 0

Hence, we see that the effect on the current volatility is higher when the εt−1 is

negative and γ1 > 0 than if the εt−1 was positive. In other words, bad news has a

higher effect on volatility than good news and the constraint γi ≥ 0 make sure to

capture the asymmetric property in financial series. The APARCH model uses
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an asymmetric absolute value instead of the squared residual, which allows it

to take into account the absolute return rather than just the squared return. Ac-

cording to Danielsson (2011, p.52), the autocorrelation function (see section

4.1) of absolute return and return square sometimes shows that absolute return

has stronger autocorrelations than squared return. This is why the APARCH

model may be more effective at estimating volatility than the GARCH model,

which only uses the past squared return. The APARCH model includes seven

ARCH models as special cases, including the GARCH model (obtained by set-

ting γi = 0 and δ = 2).

2.2 Value-at-Risk

VaR has become a popular risk measure in financial institutions due to its sim-

plicity, as it reduces the risk associated with any portfolio to a single number.

According to Xekalaki and Degiannakis (2010, p.240), for a given probability

(1−α), VaR is the predicted amount of financial loss of a portfolio over a given

time horizon. The mathematical definition of VaR can be expressed as follows:

Pr(Yt < V aR(1− α)) = α

and

V aR(1− α) = µ− σtza

Here Yt is the daily log return as defined in Section 2.1, and (1− α) is the con-

fidence level. The µ is the mean return and we have assumed that it is equal to

zero. The critical value for the assumed distribution is za for area α and σt is the

conditional variance, which can be estimated using various GARCH models. If

we assume that the return on an asset is normally distributed, the probability

of a loss less than VaR(95%) = -1.645 is equal to α = 5%. Figure 1 shows

a theoretical normal distribution, with the probability density function in blue.

The red areas under the curve represent the α values at a VaR of 95% and 99%,

indicated by the dashed red vertical lines.

13



VaR95%VaR99%

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

P
ro

ba
bi

lit
y 

D
en

si
ty

Theoretical Normal Distributions

Figure 1: Theoretical normal distributions with α values at a 95% and 99% VaR, which are
indicated by the dashed red vertical lines.

It is important for investors and financial institutions to estimate VaR accu-

rately. If VaR is overestimated, investors put in more reserve than necessary

and miss out on potential gains. On the other hand, if VaR is underestimated,

the capital may not be enough to cover the risk. The simplest way to evaluate

VaR is to count the number of losses that exceed VaR and compare them to the

expected loss. If the difference is small, the VaR forecast is calculated correctly.

According to Xekalaki and Degiannakis (2010, p.246), the methods proposed

by Kupiec 1995 and Christoffersen 1998 is the most commonly used methods

to evaluate Value-at-Risk (VaR).

2.3 Distributions

In this thesis, we will use three different distributional assumptions in the GARCH

models to estimate VaR: the normal distribution, the t-distribution, and the skew

t-distribution. By using these three distributions, we can compare the results and

determine which distribution provides the most accurate VaR estimates.
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2.3.1 Normal distribution

The normal distribution, also known as the Gaussian distribution, is a continu-

ous probability distribution that is defined by a bell-shaped curve. The distribu-

tion is completely described by the mean µ and the variance σ2. Figure 2 shows

different normal distributions with different values for the mean and variance.

The probability density function (PDF) of the normal distribution is given by

the following equation:

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
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Figure 2: Theoretical normal distributions with different means and standard deviations.

2.3.2 t-distribution

The t-distribution, also called the Student’s t-distribution as used by Bollerslev

(1987), has a heavier tails than the normal distribution, which makes it more

suitable for modelling financial data that may contain extreme values. In ad-

dition, the tail of the t-distribution can be adjusted by the degrees of freedom

parameter. When the degrees of freedom approach infinity, the t-distribution

becomes a normal distribution. By looking at Figure 3, we can see how the de-

grees of freedom affect the distribution. The density for t-distribution is given
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by:

f(x; v) =
Γ(v+1

2 )
√
vπΓ(v2)

(
1 +

x2

v

)− v+1
2

The gamma function Γ(.) is used to give the distribution a specific shape and

behavior. The degrees of freedom v determines the shape of the distribution, and

the gamma function helps to ensure that the distribution is properly normalized.
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Figure 3: Theoretical t-distributions with Different Degrees of Freedom.

2.3.3 Skew t-distribution

The main difference between the t-distribution and the skew t-distribution is

that the latter allows for the possibility of skewness in the distribution, while

the standard t-distribution is a symmetric distribution. According to Fernandez

and Steel (1998), the density function for the skew t-distribution is given by:

f(x; γ) =
2

γ + 1
γ

{
f

(
x

γ

)
I[0,∞)(x) + f(γx)I(−∞,0)(x)

}
The skew t-distribution is a t-distribution scaled by the skewness parameter γ.

The skewness parameter γ ∈ (0,∞) determines the degree of skewness of the

distribution, where a value of 1 indicates a symmetric distribution and values

greater than or less than 1 indicate a skewed distribution. The function f(.) is
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the density function of the t-distribution as defined in the previous section and

I(.) is an indicator function. In Figure 4, we see that the distribution (in red) is

symmetric when γ = 1, and that the distribution is right-skewed, i.e., it has a

thicker tail to the right when γ > 1 and vice versa.
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Figure 4: Theoretical Skew t-distributions with different values for skewness parameter γ and
fixed degrees of freedom.

2.4 Backtesting

In this section, we will introduce the Kupiec and Christoffersen tests, two im-

portant statistical tools for evaluating the performance of VaR models. The Ku-

piec test compares the observed number of VaR exceedances with the expected

number of exceedances based on the confidence level, while the Christoffersen

test also considers the magnitude of the exceedances.

2.4.1 Kupiec Test

To evaluate the performance of VaR, we create an indicator variable:

It =

1 if Yt < V aRt

0 otherwise

Where It = 1 if the daily return exceeds VaR, and 0 otherwise.

Let N =
∑T

t=1 It be the number of trading days in the given period T on which
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the return exceeds VaR. Thus, the null hypothesis of the test is H0 : N
T = α.

That is, the empirical quantity is equal to the nominal quantity. Accordingly,

N under the null hypothesis follows a binomial distribution with parameters T

and α, i.e., N ∼ binomial(T, a). Thus, according to Xekalaki and Degiannakis

(2010, p. 245-247), the likelihood ratio under the null hypothesis is as follows:

LRun = 2log

(
(1− N

T
)T−N(

N

T
)N
)
− 2log

(
(1− α)T−NαN

)
The likelihood ratio for unconditional coverage LRun approximately follows

the χ2 distribution with one degree of freedom. This test yields zero under the

null hypothesis and the more N
T deviates from α, the larger the test becomes.

The critical values of χ2 for 10%, 5%, and 1% are 2.706, 3.841, and 6.635,

respectively. If LRuc is greater than 6.635, i.e., the null hypothesis is rejected at

1%, it means that the model specification is not appropriate to estimating VaR.

Kupiec test is limited by two shortcomings. First, the test does not provide

information on the magnitude of losses. This means that a 1% violation carries

the same weight as a 5% violation. Second, Kupiec test only considers the

frequency of losses and not the timing of their occurrence, i.e., it is not able to

detect the independence of violations (Dowd, 2005).

2.4.2 Christoffersen Test

Christoffersen (1998) suggests a model that allows us to test the independence

of VaR exceedances. In other words, the test checks whether the probability

of observing a violation today is independent of observing a violation yester-

day. The null hypothesis for this test is that the probability of observing a VaR

violation today, given that a VaR violation occurred yesterday, is equal to the

probability of observing a VaR violation today. This null hypothesis can be

formulated as follows:

πij = P (It = j|It−1 = i) = P (It = j), i, j = 0, 1

That is , whether the violation is independent or not. Thus, the null hypoth-
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esis is H0 : π01 = π11 = p where π01 is the probability of observing a VaR

violation today given that there was a non-VaR violation yesterday, π11 is the

probability of observing a VaR violation today given that there was a violation

yesterday, and p is the desired percentage of failures. The indicator variable{
It
}T
t=1

is defined in the same way as in the previous section. The test is a

likelihood ratio test with χ2 distribution and 1 degree of freedom. Thus, the

likelihood ratio for independence LRind under the null hypothesis according to

Xekalaki and Degiannakis (2010, p. 247) is obtained as:

LRind = 2

(
log((1− π̂01)

n00 π̂n01
01 (1− π̂11)

n10 π̂n11
11 )

−log

((
1− N

T

)n00+n10
(
N

T

)n01+n11
))

Where π̂ij = nij/
∑

j nij is the estimated probability for state j on any given

day, given that state i occurred on the previous day, and nij is the number of

days that j occurred after state i occurred on the previous day. For example,

if n01 is the number of days that state 1 occurred after state 0 occurred the

day before, and n00 + n01 is the total number of days that state 0 occurred the

day before, then π̂01 = n01/(n00 + n01). Similarly, π̂11 = n11/(n10 + n11). In

addition, Christoffersen (1998) introduces a modified version that can be used to

simultaneously check whether the percentage of failures is equal to the desired

value and whether the violations are independently distributed, i.e..:

H0 : p
∗ = p and π01 = π11 = p,

where p∗ is the true percentage of failures and p is the desired percentage. The

alternative hypothesis is:

H1 : H0 : p
∗ ̸= p or π01 ̸= π11 ̸= p,

The likelihood ratio test with χ2 is now with 2 degrees of freedom. The
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likelihood ratio for the conditional coverage LRcc, under the null hypothesis

according to Xekalaki and Degiannakis (2010, p. 247), is given as:

LRcc = −2log
(
(1− p)T−NpN

)
+ 2log ((1− π̂01)

n00π̂n01
01 (1− π̂11)

n10π̂n11
11 )

where N is the number of violations and T is the total number of observations

The conditional coverage test addresses the Kupiec test’s shortcoming of not

being able to detect independence of violations, which we discussed earlier.

The conditional coverage test rejects a model that produces either too many or

too few clustered violations. The critical value for the χ2 distribution with 2

degrees of freedom for a significance level of 10%, 5%, and 1% is 4.61, 5.99,

and 9.21, respectively.

2.5 Forecast Procedure

The out-of-sample forecasting method is commonly used to evaluate the pre-

dictive power of a model. In this method, data are divided into an in-sample

period, an out-of-sample period, and the data used to estimate model param-

eters are different from the data used to evaluate model performance. In this

study, we used the rolling-window approach with fixed length to implement the

out-of-sample forecast. In this approach, the estimation window is fixed and is

moved forward by one day at a time. In our study, the in-sample period consists

of the first 1000 observations, while the remaining 759 observations constitute

the out-of-sample period. To clarify, let n be the total size of the sample, see

Figure 5, and w is the length of the rolling window. The first window consists of

the first observation up to w and is used to train the model and forecast one-day-

ahead h for day w + 1. The next day, the window moves by one day, excluding

the first observation and including the second observation up to w + 1. This

process continues until all 759 values have been forecasted. We then compare

the predicted values with the actual observations using a specific tester.
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Figure 5: Illustrating the Rolling window approach.; Source: Titov, C. (2022)

Determining the optimal rolling window’s length can be a challenge. While

large rolling windows can improve the generalizability of the model and reduce

its sensitivity to small changes in the data distribution, they can also reduce the

flexibility of the model and slow its response to new observations. Previous

research has reached conflicting conclusions about the optimal window length.

Brownlees, Engle, and Kelly (2011) found that the longest possible estimation

window produced the best results, while Köksal and Orhan (2012) and McNiel

and Frey (2000) used window lengths of 1000 observations. Given the high

volatility in our out-of-sample period due to the Covid outbreak, we have opted

for a rolling window of 500 observations. We will also readjust the model pa-

rameters every 10 days to maintain flexibility, as recommended by Brownlees,

Engle, and Kelly (2011).

3 Previous studies

There are numerous studies on VaR in the literature. The reasons for this are

the property of VaR to reduce the risk associated with an asset to a single num-

ber and, as Iorgulescu (2012) described it, that it is considered as a benchmark

for risk measurement. Several studies have been conducted on this topic, using
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different time periods and models. The results of these studies reach different

conclusions, but there are also some commonalities.

Köksal and Orhan (2012) compared a list of comprehensive GARCH mod-

els to estimate VaR in a period of high volatility. The authors used data for

stock market indices from both emerging markets (Brazil and Turkey) and de-

veloped markets (Germany and the United States) over the period of the global

financial crisis. The study applies different GARCH specifications to estimate

one-day-ahead variance and calculate VaR. The results show that the specifica-

tion ARCH, followed by GARCH(1,1), provides the most favorable results. In

addition, the t-distribution performed slightly better than the normal distribu-

tion. The study also shows that the worst performance is the non-linear power

GARCH. Orhan and Akin (2011) conducted a similar study. They compared the

performance of VaR for different indices of the Istanbul Stock Exchange during

the global crises. The authors concluded that GARCH with normal distribution

gives the best results, in contrast to GARCH with t-distribution. It is important

to note that the authors used only the unconditional Kupiec test to evaluate the

performance.

Berkowitz and O’Brien (2002) in their study, evaluated the performance of

VaR for 6 large banks in the USA. They compared the performance of the

bank’s models with a simple ARMA-GARCH model. The VaR prediction

of this model outperformed the models provided by the banks. The author

attributes this shortcoming to the legislation that banks must follow, which

makes the internal model less flexible, making it more difficult to account for

changes in volatility. This result is confirmed by the study of Iorgulescu (2012),

based on a portfolio consisting of four of the most liquid stocks traded on

the Bucharest Stock Exchange (BSE). The volatility of the portfolio was pre-

dicted using a constant conditional correlation model (GARCH-CCC) and a

dynamic conditional correlation model (GARCH-DCC). To account for lep-

tokutosis Iorgulescu (2012) used the following tools: the t-distribution, the
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generalized hyperbolic distribution (GH), extreme value theory (EVT), and the

Cornish-Fischer approximation for quantiles (CF). The result showed that all

VaR models easily passed the unconditional coverage test, but only four of the

original 8 models passed the independence test at a significant level of 10%.

According to the author, the result proves that volatility cluster is a real prob-

lem in determining VaR for both simple and complex models and that the time

period used to estimate the models has a crucial impact on the performance of

the models.

In a similar study, Hansen and Lunde (2005) compared a large number of

volatility models, such as the Exponential GARCH (EGARCH) model, the

Asymmetric Power GARCH (APGARCH) model, and the FIGARCH model,

in terms of their ability to describe the volatility of financial data. To evaluate

the models, the authors used a variety of statistical methods, including mean

square error, mean absolute error, and also considered the out-of-sample fore-

casting performance of the models over different time horizons. The authors

found that when evaluating exchange data, none of the models outperformed

the GARCH(1,1) model. However, when evaluating the returns of IBM stock,

the authors found that the GARCH(1,1) model was outperformed by other mod-

els that could accommodate a leverage effect.

4 Data

In this study, we analyze the daily percentage log returns of Swedbank (SWED-

A. ST), Handelsbanken (SHB-A. ST), and SEB (SEB-A. ST) using data from

Yahoo Finance for the period from January 1 2015 to December 30, 2021. The

analysis was performed using R version 4.2.2.

4.1 Descriptive Statistics and Data Visualization

The results in Table 1 show that all stocks in the analysis have the same number

of observations and their means are very close to zero. Skewness is a measure
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Table 1: Summary statistics for log return
Stock Obs Mean St.Deviation Skewness Kurtosis Min Max JB
SWED-A.ST 1759 0.003% 1.67% -0.56 12.81 -15% 9.8% p<0.00
SHB-A.ST 1759 0.01% 1.60% -0.70 6.96 -12% 8.8% p<0.00
SEB-A.ST 1759 0.03% 1.66% -1.12 10.69 -14% 8.7% p<0.00

of the asymmetry of a distribution, with a value greater than 0 indicating right

skewness and a value less than 0 indicating left skewness. The normal distribu-

tion has a skewness of zero. In this case, the skewness values in Table 1 indicate

that the actual distribution for each stock is left skewed, meaning that the dis-

tribution has a long tail on the left and a short tail on the right. In other words,

negative returns are expected to be more common than positive returns. This

is one of the stylized facts about asset’s returns mentioned earlier. It is worth

noting that the fact of left skewness does not apply to the exchange rate, which

tends to move up and down symmetrically Cont (2000).

The Kurtosis is a measure of the peakedness or flatness of a distribution, with

a value of 3 for the normal distribution. The kurtosis values in Table 1 show

that the actual distribution is leptokurtic, that is, it has a higher peak and thicker

tails than the normal distribution, which means that most of the values in the

distributions are centered around the mean. The Jarque-Bera test, which tests

whether a sample comes from a normally distributed population, significantly

rejects the null hypothesis of normality for each set in the analysis. This shows

that the distributions of the three stock returns are not normally distributed. This

is not surprising since one of the stylized properties of asset’s returns is that its

distribution is not Gaussian and has a thicker tails and a sharp peak, (Cont,

2001).

Figure 6 shows the percentage log returns of each stock over time. A notable

feature of the data is the appearance of the leverage effect at the beginning of

2020, which is characterized by a downward trend in prices and an increase

in volatility, likely due to the negative impact of the Covid 19 pandemic on

the stock market. This result is consistent with the theory proposed by Black

(1976), which states that volatility tends to increase in response to negative news
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Figure 6: Log returns from January 2015 to December 2021 for the three stocks

and decrease in response to positive news. The returns in Figure 6 also show a

clustering of volatility, i.e., the tendency for periods of large price changes to

be followed by other large price changes and vice versa. This means that high

levels of volatility tend to occur in clusters rather than being evenly distributed

over the period.

Figure 7: Autocorrelation function (ACF) for squared return

One way to test the suitability of using GARCH to predict VaR is to use the

autocorrelation function (ACF) (see Section A.1 in the Appendix for the defini-

tion of ACF). Figure 7 shows the ACF for the squared return with a confidence

interval of 95%. It can be seen that the correlations are significant even at long

lags, as in the case of Handelsbanken and SEB, which is strong evidence of

the predictability of volatility. Figure 8 shows the autocorrelation function for

25



Figure 8: Autocorrelation function (ACF) for absolute value of return

absolute returns. The figure shows that the ARCH effect exists for all stocks,

and the results of the Ljung-Box test also confirm this result (see Table 6 in the

Appendix). As we can see, absolute returns have a stronger correlation than

squared returns, which we discussed in Section 2.1.4.

To assess how well the distribution of daily stock returns fits the normal distribu-

tion, we use a Q-Q plot, a graphical tool that compares the empirical distribution

of a data set to a reference distribution. In Figure 9, the black line represents

the normal distribution and the plotted points show the empirical distribution

of stock returns. It can be seen that stock returns deviate significantly from the

normal distribution, as indicated by the deviation of the plotted points from the

line. This is consistent with the results of the Jarque-Bera test in Table 1, which

show that stock returns are not normally distributed.
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Figure 9: Q-Q plot shows the observed distribution of our stock returns to the assumed normal
distribution (straight line)
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Figure 10: Daily return histogram with a normal distribution density curve in blue.

Figure 10 shows the histograms of daily returns along with the hypothesised

normal density curves in blue. It is clear that the normal distribution does not

accurately reflect the distribution of daily returns for all stocks, especially in the

tails that are of particular interest in this study. This supports the conclusion that

the normal distribution may not be an appropriate model for the distribution of

stock returns.

5 Results

In this section we will use the Kupiec test to evaluate the performance of the

models for unconditional convergence and the Christoffersen test for condi-

tional convergence. The tests are performed at 99% and 95% VaR for each of

the 12 models, separately for each stock. The significance level is set at 10% as

recommended by Christoffersen, Iorgulescu (2012). This corresponds to a crit-

ical value of 2.7 and 4.6 for the Kupiec and Christoffersen tests, respectively. A

ranking of the models based on the sum of statistical losses and a summary &

discussion of the results follows. The cells shaded in green are those that were

not rejected at a significance level of 10%, and the cells shaded in red are those

with the worst performance.
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5.1 Swedbank

In Table 2, the Kubiec and Christoffersen tests and the violation ratio are used

to evaluate the performance of each model. The ideal violation ratio should

correspond to the selected confidence level α, which in this case is 1% for 99%

VaR and 5% for 95% VaR.

At the 99% VaR level, the specification ARCH with the skew t-distribution

performed best, providing the lowest Kupice test statistic and the violation ratio

was closest to the perfect ratio 1.2%, followed by APARCH and GARCH with

the same distribution. On the other hand, the specification ARCH with a normal

distribution performed the worst, having the highest violation ratio 4.9% and

significantly rejecting the null hypothesis in both tests. Regarding the distribu-

tion, it is clear that the normal distribution performs the worst among the tested

distributions, since the null hypothesis is significantly rejected in both tests for

each specification that uses it, and we can see how the likelihood ratio for both

tests gives a significantly higher value when the distribution is normal. On the

other hand, the skew t-distribution gives the best result and the t-distribution is

somewhere in between.

At the 95% VaR level, we see a different result. As for the distribution, the

normal distribution surprisingly outperforms the other distributions and shows

a significant result in every specification except ARCH, where it still has the

worst performance with a violation ratio of 7.8%. On the other hand, the t-

distribution gives the worst result and is rejected in every specification for both

tests. The GARCH specification with normal distribution has the lowest viola-

tion ratio and provides the lowest Kupiec test statistic, followed by EGARCH

and APARCH. The Skew t-distribution also has good performance here when

used with a specification that accounts for the leverage effect, such as APARCH

and EGARCH.
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Table 2: Kupiec and Christoffersen tests result - Swedbank

VaR99% VaR95%

Model N/T LRun LRcc N/T LRun LRcc

ARCH-N 4.9% 59.569 63.977 7.8% 10.58 13.11
ARCH-t 1.6% 2.22 4.01 7.0% 5.62 8.40

ARCH-skew-t 1.2% 0.25 0.46 6.3% 2.59 2.91
GARCH-N 2.6% 14.14 20.29 5.1% 0.03 1.79
GARCH-t 2.4% 10.41 17.76 7.2% 7.12 10.90

GARCH-skew-t 1.4% 1.36 3.48 7.1% 6.35 10.50
EGARCH-N 2.4% 10.41 11.01 5.4% 0.25 0.28
EGARCH-t 1.8% 4.38 4.90 7.4% 7.93 8.13

EGARCH-skew-t 1.6% 2.20 2.59 6.3% 2.59 2.58
APARCH-N 3.3% 25.19 29.00 5.7% 0.68 1.24
APARCH-t 1.8% 4.38 4.90 7.1% 6.35 6.35

APARCH-skew-t 1.4% 1.36 3.48 6.3% 2.34 2.59

* note: Green and red cells display the superior and poor performance respectively.

5.2 Handelsbanken

The results for Handelsbanken are shown in table 3. Again, we see that the

performance of ARCH with normal distribution is the worst at both levels. The

asymmetric power ARCH (APARCH) with the skew t-distribution gives the best

result, followed by GARCH with skew t-distribution and t-distribution. Again,

it can be seen that the performance of the normal distribution is poor at 99%

VaR, as it is significantly rejected in every specification in both tests, while

skew t-distribution performs well and the t-distribution is very close to it.

For the 95% VaR, all distributions, seem to perform equally well, as almost all

specifications pass the tests. The null hypothesis for unconditional and condi-

tional convergence could not be rejected for 95% VaR for all models except

ARCH with normal distribution, as it showed the worst performance. The

APARCH and EGARCH with normal distribution have the lowest violation ra-

tio and provide the lowest Kupiec test statistic.
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Table 3: Kupiec and Christoffersen tests result - Handelsbanken

VaR99% VaR95%

Model N/T LRun LRcc N/T LRun LRcc

ARCH-N 7.4% 130.2 139.9 10.7% 39.3 49.6
ARCH-t 2.0% 5.69 6.29 6.6% 3.67 3.84

ARCH-skew-t 2.0% 5.69 6.296 6.3% 2.59 2.91
GARCH-N 2.9% 18.28 20.31 6.0% 1.69 4.96
GARCH-t 1.4% 1.36 1.68 5.7% 0.68 0.82

GARCH-skew-t 1.4% 1.36 1.68 5.7% 0.68 0.82
EGARCH-N 2.6% 14.14 15.23 5.3% 0.11 1.65
EGARCH-t 1.7% 3.21 3.66 6.3% 2.59 2.91

EGARCH-skew-t 1.6% 2.20 2.59 5.9% 1.30 1.96
APARCH-N 2.1% 7.14 7.83 5.2% 0.11 0.12
APARCH-t 1.4% 1.36 1.68 5.9% 1.30 1.51

APARCH-skew-t 1.3% 0.70 0.97 5.7% 0.68 0.77

* note: Green and red cells display the superior and poor performance respectively.

5.3 SEB

SEB Bank’s results are shown in table 4. For a VaR of 99%, the specification

ARCH with a normal distribution performed worst in both tests, with a vio-

lation ratio of 8.8%. However, the pattern for SEB looks different from the

previous results, as the null hypothesis for unconditional and conditional con-

vergence was rejected for all specifications at a significant level of 10%. Inter-

estingly, the normal distribution still had the highest Kupiec and Christoffersen

test statistic and the highest violation ratios. When looking at the VaR level of

95%, the models showed slightly better performance. The GARCH specifica-

tion with normal and skew t-distributions had the lowest violation ratio, fol-

lowed by EGARCH and ARCH specifications with skew t-distribution. On the

other hand, the ARCH specification performed the worst with a violation ratio

of 12%. Nevertheless, the normal distribution performed best among all model

specifications, passing both tests for each specification. The skew t-distribution

and the t-distribution have almost the same performance.
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Table 4: Kupiec and Christoffersen tests result - SEB

VaR99% VaR95%

Model N/T LRun LRcc N/T LRun LRcc

ARCH-N 8.8% 177.8 179.5 12.0% 57.1 58.1
ARCH-t 2.4% 10.4 11.1 5.4% 0.25 3.23

ARCH-skew-t 2.0% 5.69 6.786 5.9% 1.31 3.18
GARCH-N 2.8% 16.16 18.47 5.1% 0.03 3.68
GARCH-t 2.1% 7.14 11.30 6.2% 2.12 5.07

GARCH-skew-t 1.7% 3.21 8.96 5.7% 0.68 3.08
EGARCH-N 2.5% 12.22 15.18 5.9% 1.30 1.96
EGARCH-t 1.9% 5.69 10.33 7.2% 7.12 8.16

EGARCH-skew-t 1.7% 3.21 8.96 6.7% 4.28 6.15
APARCH-N 3.3% 25.19 32.36 6.1% 1.69 4.59
APARCH-t 1.9% 5.69 10.33 7.0% 5.62 6.10

APARCH-skew-t 1.8% 4.38 5.68 7.0% 5.62 6.10

* note: Green and red cells display the superior and poor performance respectively.

5.4 Quadratic Loss (QL)

One shortcoming of Christoffersen test is that, it does not take the size of the

violation into account. That is, the distance between the observed return and

the predicted VaR value. Therefore, we will use the Quadratic Loss (QL) that

was developed by Lopez (1999) and was used by Köksal and Orhan (2012) and

Angelidis et al. (2004), to measure the accuracy of VaR. The QL defined as:

QLt =

1 + (Yt − V aRt)
2 if Yt < V aRt

0 Otherwise

A VaR model is penalized when a violation occurs. The model that results in

the smallest total loss compared to the other models is the preferred model. For

simplicity, we averaged the losses for the three stocks.

Table 5 shows the result for the QL. It is clear that the skew t-distribution

and the t-distribution outperform the normal distribution at 99% VaR, since the

first 7 specifications have one of these distributions. EGARCH has the low-
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est loss in predicting 99% VaR, followed by GARCH and APARCH with skew

t-distribution. This is not surprising since these models performed best in the

Kupiec and Christoffersen tests. The highest losses are for APARCH, ARCH

and GARCH with normal distribution. For 95% VaR, the result is quite dif-

ferent EGARCH and GARCH with normal distribution perform best, followed

by EGARCH with skew t-distribution, which is consistent with the results of

Kupiec and Christoffersen tests. The specification ARCH with normal and t-

distribution has the worst results. Looking at the 95% VaR, we can concluded

that the distributions do not affect the performance of the models, since the

result does not show a pattern like the 99% VaR.

Table 5: Ranking the models by the sum of statistical losses
Models VaR99% VaR95%

1 EGARCH-skew-t EGARCH-N

2 GARCH-skew-t GARCH-N

3 APARCH-skew-t EGARCH-skew-t

4 EGARCH-t GARCH-skew-t

5 GARCH-t EGARCH-t

6 APARCH-t GARCH-t

7 ARCH-skew-t APARCH-skew-t

8 EGARCH-N APGARCH-t

9 ARCH-t APARCH-N

10 GARCH-N ARCH-skew-t

11 ARCH-N ARCH-t

12 APARCH-N ARCH-N

5.5 Summary & Discussion

At the 99% VaR level, the GARCH specification with skew t-distribution per-

formed best on average among the models tested, followed by the APARCH

and EGARCH models with the same distribution. On the other hand, the ARCH

model with a normal distribution performed the worst. However, when modeled
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with either the skew t-distribution or the t-distribution, acceptable results are ob-

tained. This is in contrast to Köksal and Orhan (2012) who found that ARCH

always performs best with both the normal and t-distributions. The EGARCH

specification results in the lowest losses, which is consistent with Hansen and

Lunde’s (2005) finding that good out-of-sample performance requires a spec-

ification that can account for a leverage effect. In other words, the EGARCH

specification can be considered a good model for predicting volatility in our out-

of-sample period because it is able to give more weight to the negative shock

caused by the Covid 19 outbreak.

As for the conditional distribution, the analysis shows that the normal distri-

bution performs poorly on the 99% VaR. One possible reason for this is the

presence of heavy tails in the distribution of the asset’s return, which also ex-

plains the good performance of the t-distribution. On the other hand, the good

performance of the skew t-distribution may be due to its ability to capture the

asymmetry in the asset’s return. These are some of the stylized facts discussed

by Cont (2000).

At the 95% VaR level, the performance of the models is somewhat different.

The normal distribution performs better than the other distributions, with a good

result for every specification except ARCH, where it has the worst performance.

In a similar study by Angelidis et al (2004), the authors come to the same con-

clusion. They also found that the normal distribution performed better on the

95% VaR than at a higher confidence level.

In summary, this study shows that the accuracy of VaR estimation can be good

in some places and drastically wrong in others. Many factors such as model

specifications, conditional distribution, and sample period (as shown in other

studies such as Angelidis et al. (2004)) can affect the estimate. Therefore, we

agree with Danielsson (2008) that the statistical model should not be consid-

ered a reliable factor for risk measurement because it often does not produce

the desired results, especially for unpredictable events.
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6 Conclusion

To predict one-day-ahead VaR the study found that the EGARCH specification

is the most accurate estimate of Value-at-Risk (VaR), followed by the GARCH

and APARCH models. On the other hand, ARCH shows the worst result.

In terms of distribution, the normal distribution shows poor performance at

the 99% VaR level, but better performance at the 95% VaR level, the skew

t-distribution has good performance at both the 99% and 95% levels, followed

by the t-distribution. The EGARCH specification resulted in the lowest losses,

suggesting that it may be a good choice for modeling the leverage effect. In

summary, it is important to consider the model specifications, confidence level,

and conditional distribution when estimating VaR, as these factors can substan-

tially affect the accuracy of the estimate. However, it should be noted that the

reliability of VaR models for risk measurement should be questioned, especially

in the case of extreme events.
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A Appendix

A.1 Autocorrelation Function ACF

To understand the autocorrelation function, we must first define correlation. The

correlation between two random variables X and Y is defined as:

ρx,y =
Cov(X, Y√

var(X)V ar(Y )
=

E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

Where µx and µy are the mean for X and Y, respectively. The correlation coef-

ficient ρx,y measures the linear dependence between X and Y and takes a value

between -1 and 1. We can say that X and Y are uncorrelated when ρx,y = 0.

Thus, for time series data, when the correlation between the return rt and its past

value rt−i is of interest, the concept of correlation becomes autocorrelation. The

definition of autocorrelation is then as follows:

ρℓ =
Cov(rt, rt−ℓ)√
var(rt)V ar(rt−ℓ)

=
Cov(rt, rt−ℓ)√

var(rt)

According to Tsay (2010, p. 32), if rt is a weakly stationary time series, ρ̂ℓ is

normal with mean zero and variance (1+ 2
∑q

i=1 ρ
2
i )/T . Hence we can use this

to test H0 : ρℓ = 0 vs Ha : ρℓ ̸= 0. The test is:

t ratio =
ρ̂ℓ√

(1 + 2
∑ℓ−1

i=1 ρ̂
2
i )/T

So we reject H0 if |t ratio| > Zα/2.

A.2 Ljung-Box

The specification of the Ljung-Box test according to Tsay (2010, p. 32-34) is

as follow:

Q(m) = T (T + 2)
m∑
ℓ

ρ̂2ℓ=1

T − ℓ

Where Q(m) ∼ χ2
a with m degrees of freedom.
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Table 6: Ljung-Box test result
Ljung-Box 20 lags SWED-A.ST SHB-A.ST SEB-A.ST
squared return p<0.00 p<0.00 p<0.00
absolute return p<0.00 p<0.00 p<0.00

A.3 Maximum Likelihood Estimation

A.3.1 Normal Distribution

Assuming that the εt is normally distributed, the log-likelihood function accord-

ing to Engle (1982) is given as:

l(θ) =
1

T

T∑
t=1

lt(θ),

lt(θ) = −n

2
log(2π)− n

2
log(σ2)− 1

2

ε2t
σ2
t

Where l is the average log-likelihood, lt is the log-likelihood of the tth ob-

servation and T is the sample size. The partial derivation of the log-likelihood

lt with respect to the parameter vector θ is given as:

∂lt
∂θ

=
1

2σ2
t

∂σ2
t

∂θ

(
ε2t
σ2
t

− 1

)
A.3.2 ARCH

ARCH model:

σ2
t = ω +

q∑
i=1

αiε
2
t−i

Define the parameter vector θ = (ω, α1, ..., αq) which is the argument to be

maximized. The partial derivation of the σ2
t with respect to θ:

∂σ2
t

∂θ
= (1, ε2t−1, ..., ε

2
t−q)

′
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A.3.3 GARCH

We continue with the GARCH model and the parameter vector:

θ = (ω, α1, ..., αq, β1, ..., βp)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j

∂σ2
t

∂θ
= st +

p∑
j=1

βj
∂σt−j

∂θ

where

st = (1, ε2t−1, ..., ε
2
t−q, σ

2
t−1, ..., σ

2
t−p)

′

A.3.4 EGARCH

The EGARCH model with θ = (α0, α1, ..., αq, γ1, ..., γq, β1, ..., βp):

log(σ2
t ) = α0 +

q∑
i=1

g
(
εt−i

σt−i

)
+

p∑
j=1

βj log σ2
t−j

g(εt/σt) = α1(εt/σt) + γ1(|εt/σt| − E|εt/σt|)

The differentiating of log σ2
t with respect to θ:

∂ logσ2
t

∂θ
= vt −

1

2

q∑
i=1

{αi(εt−i/σt−i)+γi(|εt−i/σt−i|)}
∂ logσt−i

∂θ
+

p∑
j=1

βj
∂ logσt−j

∂θ

where εt/σt = Zt and

vt = (1, Zt−1, ..., Zt−q, |Zt−1|−E|Zt−1|, ..., |Zt−q|−E|Zt−q|, log σt−1, ..., log σt−p)
′.

A.3.5 APARCH

σδ
t = α0 +

q∑
i=1

αi(|εt−i| − γiεt−i)
δ +

p∑
j=1

βjσ
δ
t−j,
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We define the vectors γ = (γ1, ..., γq), θ = (α0, α1, ..., αq, β1, ..., βp) and the

vector set η = (γ, θ, δ). We can rewrite σ2
t as (σδ

t )
2
δ as in Laurent (2004), we

get:
∂σ2

t

∂(θ, γ)
=

2σ2
t

δσδ
t

∂σδ
t

∂(θ, γ)

and
∂σ2

t

∂δ
=

2σ2
t

δσδ
t

(∂σ2
t

∂δ
− σδ

t ln(σ
δ
t )

δ

)

The partial derivation of σδ
t with respect to θ:

∂σδ
t

∂θ
= dt +

p∑
j=1

βj
σδ
t−j

∂θ

where dt = (1, k(εt−1)
δ, ..., k(εt−q)

δ, σδ
t−1, ..., σ

δ
t−p)

′

and k(εt−i) = (|εt−i| − γiεt−i).

The partial derivation of σδ
t with respect to γ:

∂σδ
t

∂γ
=

q∑
i=1

αi
∂k(εt−i)

δ

∂γi
+

p∑
j=1

βj
σδ
t−j

∂γ

∂k(εt−i)
δ

γi
=

−δk(εt−i)
δ−1 εt−i, if t > 0,

− δ
T

∑T
s=1(|εs − γiεs|)δ−1εs, if t ≤ 0

and ∂σδ
t

∂γ = 0 for t ≤ 0

The partial derivation of σδ
t with respect to δ:

∂σδ
t

∂δ
=

q∑
i=1

αi[k(εt−i)
δ ln k(εt−i)]

Ft−i

[
1

T

T∑
s=1

(|εs| − γiεs)
δ ln(|εt−i| − γiεs)

]1−Ft−i

+

p∑
j=1

βj

(
∂σδ

t−j

∂δ

)Ft−j
[
0.5

(
1

T

T∑
s=1

ε2s

) δ
2

ln

(
1

T

T∑
s=1

ε2s

)]1−Ft−j

41



A.3.6 t-distribution

Assuming that the εt follows t-distributed, the log-likelihood function is given

as:

lt(θ) = log

[
Γ

(
ν + 1

2

)]
− log

[
Γ
(ν
2

)]
− 1

2
log(π(ν − 2))

−1

2

n∑
t=1

[
log(σ2

t ) + (1 + ν)log

(
1 +

ε2t
σ2
t (ν − 2)

)]

A.3.7 Skew t-distribution

Assuming that the εt follows skew t-distributed, the log-likelihood function is

given as:

lt(θ) = log

[
Γ

(
ν + 1

2

)]
− log

[
Γ
(ν
2

)]
− 1

2
log(π(ν − 2))

+ log

(
2

ξ + 1
ξ

)
+ log(s)− 1

2

n∑
t=1

[
log(σ2

t ) + (1 + ν)log

(
1 +

(
sεt

σ2
t (ν − 2)

+
m

ν − 2

)
ξ−It

)
Where ξ is the asymmetry parameters, ν the degree of freedom of the distribu-

tion and I is a indicator function takes two values as:

It =

1 if εt ≥ −m
s

−1 if εt < −m
s

Where

m =
Γ(ν+1

2 )
√
ν − 2

√
πΓ(ν2)

(ξ − 1

ξ
)
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s =

√
(ξ2 +

1

ξ2
− 1)−m2
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