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Abstract  
 
Is it possible that some students’ primary difficulty with equation-solving is neither 
handling the literal symbols nor the equality, but the numbers used as coefficients? 
It is well known that many students find algebra a difficult topic, and there is much 
research on how students experience this strand of mathematics, with indications 
of how it can be taught. Still, a perspective not often fronted in this research – that 
has been suggested as an area potentially important – is how numbers, other than 
natural numbers, in algebra, are perceived by students. Such kinds of numbers 
(negative numbers and decimal fractions) have been used in this thesis to explore 
how the numbers influence students’ equation-solving. Two studies with a 
phenomenographic approach have explored how students (n1=5, n2=23) perceive 
linear equations of similar structure but with different kinds of numbers as 
coefficients, e.g., 819 = 39 ∙ 𝑥𝑥  and 0.12 = 0.4 ∙ 𝑥𝑥. In the second study, a test 
was also used to investigate the magnitude of the influence of a change of 
coefficients for 110 students while solving equations with a calculator. The 
findings show that equations with decimal fractions and negative numbers are less 
likely to be solved by these students, and decimal fractions as coefficients can even 
make a student unable to recognize a kind of equation they just solved with natural 
numbers. The interviews display that, depending on the number in a linear 
equation, some students focus on different aspects of the equation, and that the 
numbers influence what meaning the students see in the equation and how they 
can justify their solution. Following the phenomenographic approach, differences 
in the way that students experience the equations were specified, and critical 
aspects were formulated. This implies a wider use of different kinds of numbers 
in teaching algebra, as different kinds of numbers hold different challenges, 
thereby also varying learning potential, for students. 
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Sammanfattning 
 
Är det möjligt att vissa elevers huvudsakliga svårighet med ekvationslösning är – 
varken att hantera bokstavssymboler eller likheten – utan talen? Det är väl känt 
att många elever tycker att algebra är ett svårt ämne, och därför finns det mycket 
forskning om hur elever erfar den här delen av matematikämnet, med 
indikationer om hur algebra bör undervisas. Trots det, är ett område som ofta 
inte lyfts fram i forskning – men som har föreslagits som potentiellt viktigt – hur 
tal, andra än de naturliga talen, upplevs av elever i den algebraiska kontexten. 
Negativa tal och tal i decimalform har använts i den här uppsatsen för att 
utforska hur talens egenskaper påverkar elever när de löser ekvationer. Två 
studier med fenomenografisk ansats har utforskat hur studenter (n1=5, n2=23) 
erfar linjära ekvationer av liknande struktur men med olika tal som koefficienter, 
ex. 819 = 39 ∙ 𝑥𝑥  och 0.12 = 0.4 ∙ 𝑥𝑥. I den andra studien användes även ett test 
för att undersöka omfattningen av påverkan på 110 studenters hantering av 
ekvationer (med miniräknare) då koefficienterna byts ut. Resultaten visar hur det 
är mindre sannolikt att elever löser ekvationer med decimaltal och negativa tal, 
samt att decimaltal som koefficienter kan göra elever oförmögna att känna igen 
en typ av ekvation som de precis har löst, men med naturliga tal. Intervjuerna 
visar att beroende på typ av tal i ekvationer så fokuserar elever på olika delar i 
ekvationen, och talen påverkar med vilken mening eleven förstår ekvationen och 
berättigar sin lösning. Genom den fenomenografiska ansatsen identifierades 
skillnader i hur eleverna erfar ekvationerna och kritiska aspekter formulerades. 
Det här implicerar en bredare användning av tal i algebraundervisning, eftersom 
olika typer av tal bär med sig olika utmaningar och därmed också olika potential 
för elevers lärande. 
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Chapter 1 Introduction 

An important part of being a teacher is, not just to be able to understand difficult 
equations and how to solve them, but also to be able to see the subject matter in 
the eyes of the students. If a teacher does not know what students need to learn, 
then the choice of content is based on chance and quite likely ineffective. 

This is especially delicate in algebra, a subject matter that combine several areas 
of mathematics, like knowledge of numbers, algorithms, and mathematical 
structures of different kinds. It is a challenge to teach as the students need to use 
several areas of their prior knowledge when interpreting algebra. There is a lot of 
research on students’ previous experiences concerning specific concepts like the 
variable and the equality sign (see section 2.2.1-2.2.2). However, it is important 
also to look at how students’ experience equations in their complexity, the 
combination of numbers, variables and equalities, not just as isolated concepts. 

 Starting doctoral studies, I recalled that several of my students in vocational 
education did not have any 
trouble solving equations 
with natural numbers but 
found similar equations, 
about an electric problem 
with decimal fractions, as 
more difficult. Exploring 
the reason for this has led to 
this thesis about how 
different types of numbers 
in equations influence 
students’ experiences of the 
equations (see Figure 1.1). 
In contrast to many studies that elaborate on effective strategies for equation-
solving (see section 2.1.2), this thesis focuses on the effort made by students to 
understand what they see before using a strategy.  

If “you want to prepare learners to handle future, novel, situations in powerful 
ways, you have to help them to learn to see those situations in powerful ways” 

Figure 1.1: The relevance of numbers – one students’ 
answers to three equations in consecutive order from a 
test preceding the first study in this thesis. 

6. CONCLUSION AND OUTLOOK ...................................................................................... 36 

BIBLIOGRAPHY ................................................................................................................... 39 

APPENDED PAPERS ............................................................................................................ 45 
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Chapter 2 Previous research on 
solving linear equations 

Equation solving is a key topic in educational research on algebra and there is a lot 
of research specifically concerning teaching and learning of linear equations 
(Blanton et al., 2015). This chapter will review some of this research; starting with 
overviewing the process and how the equation-solving competence usually is 
described, and then reviewing central concepts. Finally, a perspective that is not as 
often raised in research – the influence of coefficients, and especially from 
different number domains (Kieran, 2022; Vlassis & Demonty, 2022) – will be 
displayed. 

2.1 Solving equations from a learner’s 
perspective 
This section will display different views of the process of solving equations. 
Starting with an overview of the concept linear equations, then the process of 
solving equations and research on students’ strategies. Finally, the common 
description of algebraic thinking will be elaborated on in relation to the thesis. 

2.1.1 The subject matter linear equations 
There is no official definition of what an equality is, but the definitions suggested 
usually include a statement of mathematical equality (Tossavainen at al., 2011). 
There is therefore a wide range of equations, starting by simple mathematical 
sentences like 7=7 advancing to differential equations. The subject matter in focus 
in this thesis is linear equations, also called polynomial equations of degree one – 
where the exponent for any variable is zero or one. This allows for a wide range 
of different ways of writing the equation as a gap or a point can be used to indicate 
that there is a variable of degree one (Herscovics & Linchevski, 1994; Xie & Cai, 
2002), wherefore 4 + □ = 9 can be interpreted as a linear equation. 

Linear equations are usually a part of students’ first encounter with algebra as 
well as equations. Some equations are easier for beginners to interpret with their 
previous knowledge. A distinction, often referred to, is made between “arithmetic 

 2 THE INFLUENCE OF NUMBERS WHEN STUDENTS SOLVE EQUATIONS 

 

(Marton, 2014, p. 68). Students do not need to see all possible structures and 
strategies of equation-solving, but they need help to guide their focus and direct 
their attention to the relevant aspects of equations and the solution process. When 
students learn to see equations in powerful ways, they will also handle them 
powerfully. This epistemological assumption from the phenomenographic 
approach has guided the research in this thesis. 

This thesis adds knowledge on what aspects need to come into focus in 
teaching in upper secondary school regarding equation-solving so that students 
can develop as mathematical individuals and handle formulas (and equations) in 
powerful ways in their professional life.

1.1 Aim and specific object 
The aim of this thesis is to contribute to research regarding students’ experience 
of equations while solving them and how the nature of numbers influence the way 
students conceive equations. Therefore, this research explores the following 
question: How does the nature of numbers influence students’ conceptions of 
equations while solving them? 
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(Kirshner, 1989). Another example is from 11–12-year-old students in China that 
had learnt to solve linear equations arithmetically with brackets for the unknown 
value (•) (Xie & Cai, 2022). After learning formal strategies, the students tended to 
favour a formal strategy over arithmetic strategies more for equations with a 
variable x, compared with the same equations with bracket (•) representing the 
unknown.  Insecurity with the new strategy and an insecurity concerning the new 
symbol – not seeing how it is irrelevant – resulted in lower solution frequencies 
for the equations with x as variable. For example, 97.6% of the students (N=126) 
solved 9 − (•) = 5, but only 77.8% of the same students solved 9 − 𝑥𝑥 = 5 on 
the same test. Another example of the importance of what students notice is from 
a study by de Geer (1987). He gave similar word-problems to 12-13-year-old 
students but with different numbers (e.g., changing a number larger than one for 
another between zero and one). By this, he could show that the students changed 
their approach to the problem because of the change of numbers, even though 
they had calculators. 
It is not only the parts of the equation, like x and the spacing, that influence a 
student’s experience. The combination of all symbols needs to be interpreted using 
the student’s prior experiences. One such aspect of experiencing equations often 
emphasized in research is whether the equation is seen as an object to handle or a 
process to perform (Tossavainen et al., 2011; Tuominen et al., 2018; Wettergren 
et al., 2021). Two other aspects where experiences of equations can differ are 
described by Carraher & Schliemann (2007) in Table 2.1; the dimension of focus 
and the dimension of control. The focus dimension concerns whether an algebraic  

Table 1.1: Two underlying dimension when approaching algebra, by Carraher & 
Schliemann (2007,p. 677). The vertical “focus” dimension and the horizontal “control” 
dimension. 

  
Extra-mathematical 

 

 
Semantics-driven 

  
Syntax-driven 

 
 
 

 
Intra-mathematical 
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equations”, that only include a variable on one side of the equality, e.g., 4 ∙ 𝑥𝑥 +
6 = 30, and “non–arithmetical equations”, that contain variables on both sides, 
e.g., 4 ∙ 𝑥𝑥 + 6 = 7 ∙ 𝑥𝑥 − 12, (Filloy & Rojano, 1989). The latter is also called an 
“algebraic” equation (Andrews & Sayers, 2012). Non-arithmetical equations are 
not possible to “undo” by simply using arithmetic skills and inverting the 
operations but requires handling the variable and seeing that the left and right side 
of the equality are of the same nature (Andrews & Sayers, 2012; Filloy & Rojano, 
1989; Kieran, 1992). A remark here is that the first kind of equation, the 
arithmetical, is possible to regard as either arithmetical or algebraic from a student’s 
perspective, depending on how the student sees the equation. Either a student sees 
solving 4 ∙ 𝑥𝑥 + 6 = 30 as an arithmetic procedure, e.g., (30 − 6)/4 = 𝑥𝑥 when 
“undoing” calculations, or as a structure where variables and coefficients are 
arranged, e.g., 4 ∙ 𝑥𝑥 − 0 ∙ 𝑥𝑥 = 30 − 6 when collecting similar terms. With this idea 
in mind, it is very likely that students solving linear equations in the same classroom 
are practising ideas from different areas of mathematics – some are solving 
equations arithmetically and some algebraically. Therefore, practising algebra in 
the classroom does not necessarily evolve students’ algebraic thinking.  This makes 
it rather difficult for teachers to know the quality of students’ learning of algebra. 

Equations in this thesis concern the first kind of equations, arithmetic 
equations, with the unknown on one side of the equality. The research interest 
here is how students recognize similar structures from an algebraic perspective. 

2.1.2 The process of equation-solving 
There are many different aspects covered in the literature regarding equation-
solving. Pierce and Stacey (2004) suggest that the thinking process in algebra that 
students need to develop concerns: recognition of conventions and basic 
properties, identification of structure, and identification of key features (which 
includes linking form with solution type). In this section, research concerning these 
parts of equation-solving with special relevance for this thesis, will be reviewed: 
how students direct their attention, see meaning in equations and apply a strategy. 

There is much literature, that we soon shall address, that concerns students’ 
choice of strategy when solving equations. However, before applying a strategy 
student needs to notice that the specific task is suited for a certain strategy. 
Depending on where a student directs her attention, she can interpret the task in 
different ways. How the equation is presented is therefore of significance – even 
the spacing between the symbols has been registered as affecting students 
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2019). There are benefits to both formal methods. Transposition is a general 
solution method to linear equations with one unknown, but it does not connect to 
students’ previous experiences (Vlassis, 2002). Some authors stress that there is a 
risk that the method of transposition can become a rout-learnt strategy, “swap side 
swap sign”, without knowledge of the equation-solving process (Andrews & 
Öhman, 2019; Kieran, 1992). However, operating on both sides does not seem to 
be a guarantee for success in algebra (Andrews & Öhman, 2019). 

There are many factors that influence the choice of strategy a student makes in 
solving equations. The potential context is one such example. Similar (simple) 
equations, one set in a context and one not, can have different solution frequency 
for students, where the equation set in a context tend to have the higher solution 
frequency (Linsell, 2009, p. 37). A possible reason is that a context can help 
students to see an equation from new perspectives. However, factors of a context 
can also impede the solution process when the order of the numbers in a word 
problem does not align with the order of the numbers in respective equation 
(Clement, 1982). A frequently occurring example in studies concerning research 
on teaching and learning algebra is when “Six times as many students as 
professors” should be formulated as 𝑆𝑆 = 6𝑃𝑃, but sometimes is mistaken for 6𝑆𝑆 =
𝑃𝑃 as it follows the word-order. The choice of strategy can also be directed by what 
numbers are included in equations, e.g., large numbers prohibit the use of number 
facts (Herscovics & Linchevski, 1994). Moreover, the choice of strategy has also 
been registered as culturally dependent, e.g., students from different countries tend 
to expand parentheses or use the factorized form of equations to varying extent 
(Star et al., 2022). 

2.1.3 Algebraic thinking 
There have been many attempts to describe the ability to handle algebra. A term 
usually referred to is algebraic thinking that, depending on how it is described, puts 
emphasize on different aspects of algebra and equation-solving.  

In 1980s researchers started to discuss what characterizes algebraic thinking 
(e.g., Filloy & Rojano, 1989). There is still no consensus as to what characterizes 
algebraic thinking in mathematics education, but two terms that often are used in 
discussing algebra are the use of symbols and making generalizations. Some 
emphasize making generalizations as what characterizes algebraic thinking (Mason, 
2008) while others stress the symbolization process as most relevant (Kaput, 2008). 
Radford (2018) means that both views are too narrow as it is fully possible to 
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task can be interpreted as purely mathematical or with references from other 
domains, e.g., applying a context to the problem. The control dimension concerns 
how students overview the solution process – while solving – and meanwhile 
justify their solutions. Either inferences are drawn by refering to the solution 
process as transformations of something concrete, e.g., adding by thinking of 
several things put together, or by theoretical assumptions, e.g., relying on 
mathematical properties and rules of the representation form (Balacheff, 2001; 
Carraher & Schliemann, 2007; Kirshner, 2001). The terms semantic and syntacitc are 
used for this distinction. These concepts, known from the terminology of linguistic 
are also since long established in mathematics education for distinguishing 
between either regarding algebraic expressions as primarily representing a content 
or as displaying a certain form (Balacheff, 2001; Filloy & Rojano, 1989). To 
conclude this section, a student interprets what she has noticed in an equation, and 
depending on how aspects of the equation are in focus, the whole equation can be 
experienced in different ways. 

Moving on, a student either approaches the task with a strategy or a sequence 
of choices that afterwards can be regarded as a strategy (Threllfall, 2002). 
Distinctions between strategies – in some texts referred to as methods – for 
solving an equation are commonly made in studies on equation-solving (e.g., 
Andrews, 2020; Andrews & Öhman, 2019; Filloy & Rojano, 1989; Vlassis, 2002; 
Xie & Cai, 2022). Kieran (1992, p. 400) has categorized students’ equation-solving 
methods as follows: 
 

a. use of number facts, 
b. use of counting techniques, 
c. cover-up, 
d. undoing, 
e. trial-and-error substitution, 
f. transposing,  
g. performing the same operation on both sides. 

 
The two last strategies are considered as formal (Kieran, 1992), transposing being 
considered a shortened version of “doing the same thing on both sides”. 
Advantages with these two strategies have been discussed under a long period of 
time, e.g., transposing terms is also called the “the Viète model” and operating on 
both sides with inverses “the Eulerian model” (Filloy & Rojano, 1989), but they 
are also discussed in more recent literature (Andrews, 2020; Andrews & Öhman, 
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handle it, equation-solving is reduced to performing computations. This section 
will raise topics in research concerning how equality is perceived by students and 
how it is relevant to the ability to solve equations.  

Mathematically the equal sign is used to state that two expressions represent 
the same thing (Kiselman & Mouwitz, 2008). Equality is an example of an 
equivalence relation, since it is reflexive 𝑎𝑎 = 𝑎𝑎 (any expression is equal to itself), 
symmetric (𝑎𝑎 = 𝑏𝑏 ↔ 𝑏𝑏 = 𝑎𝑎), and transitive (if 𝑎𝑎 = 𝑏𝑏 och 𝑏𝑏 = 𝑐𝑐 → 𝑎𝑎 = 𝑐𝑐). 
Studies have shown that difficulties to conceptualize these properties can lead to 
difficulties with identifying what an equation is (Tossavainen et al., 2011). 
Accepting these properties of the equality is the foundation for understanding an 
equation as a structure (Kieran, 1992). A distinction is usually made between a 
relational understanding of the equality sign and an operational understanding 
(Kiearan, 1981; Madej, 2022). The latter way of considering the equality sign 
implies that it is a sign for doing something and one side as representing “the 
answer” (Kieran, 1981; Tossavainen et al., 2011). This conception seems to be 
persistent and can be viewed even among students at the university level 
(Tossavainen et al., 2011). The description of students’ understanding of equality 
has also been developed further, indicating that there are different levels of 
operational and relational understanding of equality (Rittle-Johnsson, Taylor, 
Matthews, 2011). For example, students who approach equations with an 
operational view can be more or less willing to accept operations on the right side 
of the equality, as in 37 = 5 ∙ 𝑥𝑥 + 2.   

Giving a correct definition of equality as a relation does not necessarily imply 
that this understanding is displayed in students handling of the equality sign 
(Madej, 2022; Sumpter & Löwenhielm, 2022). However, reaching a relational 
understanding of equality has been seen to be a prerequisite for success in algebra 
(Knuth et al., 2006). 

2.2.2 The variable 
A central concept when solving equations is the variable – explicitly suggested as 
one of the “big ideas” within mathematics education focusing on algebra (Blanton 
et al., 2015). That the variable is central in teaching and research on algebra is not 
surprising as symbolization is usually considered one of the characteristics of 
algebra (Kaput, 2008). However, the variable has proven a versatile concept as it 
is presented in different contexts and therefore also inhibits different properties 
depending on the situation.   
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perform algebraic reasoning with natural language (without symbolism) and 
generalizing is a central competence in other areas than mathematics and is 
therefore not exclusive to algebraic thinking. Radford (2018) means that algebraic 
thinking deals with “indeterminate quantities in an analytic manner” (p. 8) and with 
several different modes of representation. The word analytic is central in his 
definition, making deductions as a manner of reasoning. 

Summarizing different views in research, Kieran (2022) has come to a threefold 
distinction of (early) algebraic thinking. The three dimensions of (early) algebraic 
thinking are: analytical thinking, structural thinking, and functional thinking. (As 
the last one is not relevant to this thesis, it will not be described further.) Analytic 
thinking is described as the “thinking that underpins the transformations and 
equivalence aspects of equations and equation-solving”, while structural thinking 
“is more aligned with seeing and expressing structure and properties within 
numbers” (Kieran, 2022, p. 1134). An interesting notion is that Kieran (2022) 
regards these dimensions not as conflicting but complementary and overlapping. 
She explains that analytic and structural thinking could “be collapsed into the 
single, more general dimension of relational thinking” (p. 1134), but making the 
separation reveals thinking with two different focuses. These theoretical 
distinctions can be useful in order to specify what algebraic thinking is and thereby 
register and quantify its occurrences (Molina & Castro, 2021; Vlassis and 
Demonty, 2022).  

2.2 Central concepts  
Linear equations usually consist of variables, equality signs, operations, and 
numbers. The first two mentioned are commonly discussed in research concerning 
teaching and learning algebra, probably because they have a central role in the 
algebraic activity. In this section, some of this research will be reviewed, but also 
research on numbers in equations – that is a topic not often at center of research 
on teaching and learning algebra – will be summarized. Finally, the last section will 
address the concept structure, as it is of relevance to this thesis. 

2.2.1 The equality sign 
Many researchers emphasize the importance of an evolved understanding of 
equivalence for the learning of algebra (Kieran, 1981; Matthews, Rittle-Johnsson 
& Taylor, 2012). This is easy to understand as the idea of equality is part of what 
defines an equation (Tossavainen et al., 2011) and without knowledge on how to 
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50 − 10 + 10 + 10 is seen as 50 − (3 ∙ 10), since students are used to seeing 
multiplication as repeated addition. They call the numbers that induce certain 
associations biasing number combinations. They mean that this is especially delicate in 
the transition from arithmetic to algebra, as students often are encouraged to use 
number combinations and replace them with more efficient ones. “Numbers are 
loaded entities, entities that children are encouraged to take into consideration, to 
refer to- not to ignore” (Linchevski and Livneh, 1999, p192).  

Further on, numbers are also relevant as a prerequisite in algebra (Bush & Karp, 
2013). There are many examples in research literature how students understanding 
of numbers can be insufficient or incorrect – which presumably affects how those 
numbers are handled in algebraic expressions. It is well documented that some 
students confer characteristics of whole numbers to numbers of other domains, 
called the “whole number bias” (Ni & Zhou, 2005). The similar term “natural 
number bias” (Alibali & Sidney, 2015; Vamvakoussi, Van Dooren & Verschaffel, 
2012) makes it explicit that the bias is for positive whole numbers. Some of these 
biases are specific to the syntax of whole numbers, e.g., the reading rule for whole 
numbers always has one as the unit, but for decimal fractions, the unit varies and 
have to be specified (Resnick et al., 1989) This can make it difficult to know how 
“zero point fourteen” (which is the logic of the Swedish way to say 0.14) relates to 
the whole number fourteen. Other examples of natural number bias concern 
values when operating with natural numbers, e.g., that multiplication makes bigger, 
and division makes smaller – which is neither the case for decimal fractions less 
than one nor negative numbers (Christou, 2015; Ekenstam & Greger, 1983; Greer, 
1987).  

A lot of studies on algebra in mathematics education concern reasoning with 
whole numbers (Stephens et al., 2017). Negative numbers and fractions as 
coefficients have received little attention in research on algebraic thinking (Kieran, 
2022; Vlassis & Demonty, 2022). However, there are exceptions. It has been 
registered that changing the numbers in an equation to negative numbers can make 
students that are otherwise able to solve equations, unable to isolate x as it is 
preceded by a negative coefficient (Vlassis, 2002). The difficulties associated with 
negative numbers in equations are explained both by the abstract nature of the 
numbers – how imagining a concrete representation is made more difficult – and 
by the tendency to detach the minus sign from negative numbers (Vlassis, 2002; 
Vlassis & Demonty, 2022). Vlassis & Demonty (2022) explicitly showed that 
algebraic ability concerns how numbers are viewed, as they found that students 
who considered numbers preceded by a minus sign as “subtractive numbers” also 
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The term variable was originally introduced by Leibnitz (1646–1716) and then 
denoted symbols that could assume different values in a functional relationship 
(Philipp, 1992). Since then, the variable has become a term commonly used for all 
literal symbols in mathematics (though a variable does not have to be represented 
by a letter). Therefore, the meaning of a variable is now decided by its context 
(Schoenfeld & Arcavi, 1988), and the variable can have different uses in different 
contexts. A common distinction in literature is between a variable that is an 
unknown (e.g., in equations), a general number (e.g., in algebraic expressions), or 
a variable in a function (Ursini & Trigueros, 2001). However, there are other 
categorizations, and in some of them, coefficients are mentioned explicitly as a 
kind of variable – sometimes called a parameter (Partanen & Tolvanen, 2019; 
Schoenfeld & Arcavi, 1988; Usiskin, 1988).  

Several studies have registered how students struggle to perceive the varying 
meaning of variables in different contexts (Küchemann, 1978; Usiskin, 1988; 
Ursini & Trigueros, 2001). Students can find it confusing that the same letter 
(usually x, y or z) can mean different things in different contexts (Rystedt et al., 
2016). Studies have shown that the variable as an unknown number, in the setting 
of solving linear equations, is not the most difficult context for students to accept 
(Küchemann, 1978). Textbook analyses have shown that the variable as unknown 
(in equations) is usually well-represented in tasks, which gives students a lot of 
practise (Ursinin & Trgiueros, 2001; Partanen & Tolvanen, 2019), which might 
explain why this variable is easier for the students to accept. However, it is not 
only the mathematical meanings of variables that can confuse students. For 
example, the variable can be interpreted as a label for something e.g., D meaning 
Daniel’s hight, as an abbreviation for a word, e.g., c being short for cat or 
corresponding to the letter’s position in the alphabet (Küchemann, 1978; 
MacGregor & Stacey, 2007).  

2.2.3 Numbers in equations 
Coefficients are to some extent variables – as parameters in equations – but as they 
often occur in the form of numbers there are additional dimensions to consider of 
how students perceive them.  

Numbers are relevant as a surface feature in equations, as a change of numbers 
can alter how an equation looks and direct the solver’s attention to different 
aspects of the equation. Linchevski and Livneh (1999) identified that certain 
number combinations can trigger students to make incorrect assumptions, e.g., 
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algebraic ability concerns how numbers are viewed, as they found that students 
who considered numbers preceded by a minus sign as “subtractive numbers” also 
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imply that the mathematical term structure concerns the arrangement of 
mathematical objects. Examining the structure concept further, Kieran (2018) 
presents a rather paradoxical relation between the two concepts generalization and 
structure. On the one hand, some definitions claim that generalization in 
arithmetic involves seeing structure. According to Kaput (2008), arithmetic 
generalizations include seeing general relationships concerning arithmetic 
operations and their form (i.e., structure). On the other hand, structure is 
sometimes defined as seeing generality, building on basic arithmetic principles. 
Mason (2009, p. 10) defines mathematical structure “to mean the identification of 
general properties which are instantiated in the particular situations as relationships 
between elements”. Kieran (2018) concludes that generalization and structure are 
two concepts closely intertwined but argues that the term structure does not only 
concern the most basic arithmetic properties but also includes many other 
mathematical properties such as prime decomposition, multiples, and powers of 
ten. 

However, mathematical relationships can be noticed at different levels of 
generality. Venkat et al. (2019, p. 16) explain that seeing local relationships between 
elements lead to awareness of emergent structure while thinking of the domain of 
applicability. The same relation in different presentations leads to seeing 
mathematical structure. In a way, this clarifies the relation between structure and 
generality – because there are many mathematical aspects that can be generalized 
when we look at a particular expression as 4 ∙ 𝑥𝑥. Still, we need several objects to 
see commonality and generalize, e.g., 4 ∙ 𝑥𝑥 and 9 ∙ 𝑥𝑥 can be seen as emergent 
structures of the sort “expressions where the coefficients are quadratic numbers” 
or simply “a discrete number of x:es”. An additional object, preferably in a 
different form of representation, could help to see the mathematical structure that 
unites the particular objects (Venkat et al., 2019).  

In separating the mathematical properties of a structure from specific 
examples, a student might perceive constraints in the variation allowed. Mason 
(2003) calls these possibly perceived constraints by a student the “range-of-
permissible-change”, e.g., Viète (who introduced symbolic algebra – being born in 
the 16th century – perceived the range of permissible change in roots of equations 
to only included positive solutions, as it was not common to acknowledge negative 
numbers in his time (Viète & Witmer, 2006, p. 8). 

The aspects of “structure” that are of interest in this thesis refer to similar 
forms of algebraic expressions and equations, characterized by their mathematical 
relations. Hoch and Dreyfus (2004, p. 2) formulate this as: 

 12 THE INFLUENCE OF NUMBERS WHEN STUDENTS SOLVE EQUATIONS 

 

had an increased algebraic performance. Another example is from Hackenberg & 
Lee (2015) who explore the idea that fractional knowledge and algebraic thinking 
are related. They suggest that being able to see numbers as compositions with 
different units (e.g., seeing 35 as five units of seven and as seven units of five) can 
help students to represent problems of multiplicative character algebraically, not 
only with natural numbers as multipliers, e.g., 𝑦𝑦 = 5 ∙ 𝑥𝑥, but also with fractions as 
multipliers, e.g., 𝑥𝑥 = 1/5 ∙ 𝑦𝑦. In their study, they also register students’ difficulty 
in giving a concrete meaning to equations when coefficients are fractions 
(Hackenberg & Lee, 2015). Another link between students’ algebraic ability and 
their experiences of numbers from other domains is the well explored notion that 
the variable often is expected by students to represent a natural number, which 
then impedes their algebraic performance (Christou, 2015; Christou et al., 2022; 
Christou & Vosniadou, 2012). 

Looking into textbooks on algebra, numbers are present in almost every task. 
It is, therefore, interesting to consider how students should relate to numbers in 
algebra. Kaput (2008) explains that arithmetic expressions should be viewed in a 
new way in algebra (in the strand generalized arithmetic), focusing on their forms 
instead of their values when calculated. In a popular scientific publication, the two 
reputable researchers Blanton and Kaput (2003, p. 71) use the term “an algebraic 
use of numbers” when students need to look for patterns in a task and see how 
number values depend on various factors, and from this generalize. Kieran (2018, 
p. 101) emphasizes that learning the structure of numbers and numerical 
operations is vital to (early) algebraic thinking. Concluding this, we can see that 
numbers are relevant in algebraic thinking as carrying structural properties, both 
internally – looking at the composition of the numbers – and externally – when 
numbers are part of an expression or a pattern. 

2.2.4 Structure 
Equations are usually defined by the relations between the elements, such as when 
quadratic equations refer to the structure 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0, where 𝑎𝑎 ≠ 0. In this 
thesis, students are exposed to similar linear equations, but with varying 
coefficients, wherefore “structure” is a central concept as it describes what unites 
the equations. However, looking into different definitions, there are several ways 
of interpreting the term structure. 

The word structure is explained by the Cambridge dictionary (n.d.) as “the way 
in which the parts of a system or object are arranged or organized”. This would 
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Chapter 3 The phenomenographic 
approach  

This chapter will first give a short overview how the phenomenographic research 
tradition emerged and has developed. Then some basic assumptions within the 
approach will be outlined, and finally, varying ways to describe conceptions will be 
elaborated on. 

3.1 The phenomenographic research tradition 
In the 1960s and 70s, new qualitative research methods emerged in pedagogical 
research in Sweden, which was otherwise dominated by quantitative methods 
(Englund, 2004). The research approach of phenomenography was developed 
from the work of a research group in Gothenburg in the 1970s, called the INOM 
group (named after the Swedish terms for learning and perception of the outside 
world, “INlärning och OMvärldsuppfattning”) (Åkerlind, 2018; Marton, 2014). 
The term phenomenography was given by Marton (1981) as he proposed that 
research that describes people’s experiences of phenomena belongs in this 
research approach.   

The methodology was developed in the 1990s. Then, Marton and Booth (1997) 
made a publication that both elaborated further on phenomenography as 
methodology, investigating the structure of awareness, but also described learning 
as a change of awareness. This latter theorization gave a new direction for further 
research focusing on learning, initially called the “new phenomenography” which 
at the beginning of the 20th century was called Variation theory (Marton, 2014; 
Åkerlind, 2018). The variation theory came to embrace the exploration of critical 
aspects in teaching, e.g., how students’ learning outcomes change when different 
patterns of variation elicit critical aspects of an object of learning (Marton & 
Booth, 1997; Åkerlind, 2018).  

3.2 Basic principles of phenomenography 
The only possible way to experience the world is through our senses. It is therefore 
impossible to separate the world from our experience of the world (Marton, 1981). 
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Any algebraic expression or sentence represents an algebraic structure. The 
external appearance or shape reveals, or if necessary can be transformed to 
reveal, an internal order. The internal order is determined by the relationships 
between the quantities and operations that are the component parts of the 
structure. 

When exemplifying a structure, Hoch and Dreyfus (2004) mention quadratic 
equations and how transforming them into standard form can reveal a similar 
internal order. When the equations are not in the same form, the similar structure 
is still there – the structure is just hidden. They exemplify that the expressions 
30𝑥𝑥 2 − 28𝑥𝑥 + 6 and (5𝑥𝑥 –  3)(6𝑥𝑥 –  2) are of similar structure but are 
interpreted in different ways. This difference in the two ways of interpreting the 
expressions could also be termed as having “different structures” as they also show 
two ways of ordering the symbolic expression as either expanded or factorized. 
However, in this thesis, the term structure refers to an internal order, both 
concerning the internal order between quantities and operations, and regarding 
how the symbolic expression is ordered. 
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developed the words to become “names” of positions in a sequence. 
Consequently, the different ways of experiencing usually have a logical relation to 
each other as the aspects possible to discern concern the same phenomenon, e.g., 
the more refined ways of experiencing numbers include discerning that numbers 
are called different words. Marton & Booth (1997, p. 125) explain that “the 
hierarchical structure can be defined in terms of increasing complexity, in which 
the different ways of experiencing the phenomenon in question can be defined as 
subsets of the component parts and relationships within more inclusive or 
complex ways of seeing the phenomenon.” 

In his publications, Marton uses many different terms synonymously to ways of 
experiencing: ways of understanding, conceptions, and ways of seeing (Marton, 2014; 
Marton and Booth, 1997) – to mention a few. It might seem confusing to use all 
these different words to denote the same thing. However, Marton (2014) claims 
that several terms can be useful as no word is perfect and they direct attention to 
different aspects of what they all denote.  

3.3 Describing ways of experiencing  
As the phenomenographic research tradition span over more than four decades, 
there is variation in the terminology used and how ways of experiencing are 
described in different studies. This section will first look at how experiences of a 
phenomenon are described in Marton's earlier publication (e.g., Marton & Booth, 
1997) and later (e.g., Marton, 2014). Thereafter, some examples of mathematical 
phenomenographic studies that use different terminology when presenting their 
results will be given. 

Marton and Booth (1997) describe how a way of experiencing is composed of 
aspects of a different kind. Referential aspect is a term used for the meaning seen in 
the phenomenon, e.g., numbers can be seen as random “words”. There are also 
structural aspects in an experience, these concern both how the internal parts of a 
phenomenon are related to each other and how these parts are related to the 
context. Exemplifying with ways of experiencing numbers, structural aspects both 
concerns how the ordering of numbers relate to seeing cardinality in the numbers, 
but also how numbers are separated from the context, e.g., how are numbers 
separated from the situation and the representations (cf. Marton & Booth, 1997)? 
Referential and structural aspects are usually presented in an outcome space, which 
is a description of all the different ways of experiencing a phenomenon in a group 
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However, the aim in phenomenography is – rather than making statements about 
the world – to explore how it is experienced, by taking the perspective of the 
people experiencing it. This is called the second-order perspective. The experience 
of the world is non-dualistic, it is not mental or physical, but consists of an internal 
relationship between the observer and the phenomenon (Marton, 2015; Marton & 
Booth, 1997), e.g., the relation between a student and an equation in a textbook. 
Exploring the nature of these kinds of relations – ways of experiencing – is the 
focus of research in phenomenography (Marton, 1981). 

An individual’s experience is constantly changing. Some aspects of a 
phenomenon are experienced in the foreground, while others are seen in the 
background (Marton & Booth, 1997; Marton, 2014). However, as a person is aware 
of several aspects in the background, a change in situation can put other aspects 
in the foreground and change the way of seeing. Hence, someone’s awareness can 
comprise of different ways of experiencing a phenomenon, but all of these are not 
activated at the same time (Marton & Booth, 1997).  

The study object within a phenomenographic study is the collective awareness, 
the existing ways of experiencing a phenomenon within a group. A way of 
experiencing a phenomenon can be resembled to a snapshot of the awareness 
when focusing on an object (Marton & Booth, 1997).  There is an exhaustible 
number of features to notice, but as we only can hold a limited number of aspects 
in focus at the same time, variation in the different ways of experiencing the 
phenomenon can be studied within a group (Marton, 2014; Marton & Booth, 
1997). It is the essential variations in the varying experiences within a group that are 
researched in phenomenography – the more individual aspects of the experience, 
such as taste, etc., are left out. The assumption that there is a limited number of 
ways of experiencing a phenomenon within a group has also been empirically 
supported (Marton & Booth, 1997). So, in using a phenomenographic research 
approach, the goal is to describe the essential differences in the existing ways of 
experiencing within a group by specifying what aspects of a phenomenon are seen 
differently. The most common method used to do this is to perform interviews 
(Marton & Booth, 1997), but there are other possible methods – such as analyzing 
group work (Cederqvist, 2022). 

An example of a study within the phenomenographic scope is a study on how 
5-6-year-old children experience numbers (Björklund & Kempe, 2019). The 
simplest way of experiencing numbers found in the group of children is seeing 
numbers merely as “words” used randomly without a numerical meaning. A more 
refined way of experiencing found included seeing order in these words, which 
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structural aspects in an experience, these concern both how the internal parts of a 
phenomenon are related to each other and how these parts are related to the 
context. Exemplifying with ways of experiencing numbers, structural aspects both 
concerns how the ordering of numbers relate to seeing cardinality in the numbers, 
but also how numbers are separated from the context, e.g., how are numbers 
separated from the situation and the representations (cf. Marton & Booth, 1997)? 
Referential and structural aspects are usually presented in an outcome space, which 
is a description of all the different ways of experiencing a phenomenon in a group 
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4. Method 

In this chapter methodological issues, as design, data-collection, analysis, ethical 
considerations, and limitations will be described and reflected upon. 

4.1 Choice of method 
In order to learn more about the role of numbers for students when learning to 
solve equations, in particular in the form of decimal fractions and negative 
numbers, a phenomenographic approach was chosen as it aims at revealing 
students’ understandings in a qualitative way.  

There is no set method in phenomenographic research, even though semi-
structured interview is the most common method to collect empirical data (Marton 
& Booth, 1997; Neuman, 1999). The semi-structured interview has the advantage 
that the interviewer can control the direction of the interview and lead the subject 
back to speaking about the phenomenon. There is also the possibility to ask further 
questions if something needs to be clarified. However, there are other methods 
that could be used to address the question asked in this thesis. An example would 
be to film the students while working in groups with the equations (cf. Cederqvist, 
2022) and interpret their actions and discussions. This way of observing students 
in groups has the benefit of putting the students in a more natural environment. 
In an interview there is the risk of making the students nervous which could 
possibly change their natural way of experiencing the equations. However, as the 
research intended to capture students’ experiences of equations while solving them 
on their own, not their collective ability, semi-structured interviews was chosen. 
With the knowledge that the interview setting might make the students nervous, 
specific attention was paid to making the situation as natural as possible, with 
informal chatting and without any stress. 

 Marton and Booth (1997, pp. 129-130) describe phenomenographic interviews 
as taking place at two different levels, two ways of relating to the interviewee’s 
awareness. At the first level, the subject responds to a concrete phenomenon, 
whereas at the second level she reflects on her own experience of the 
phenomenon. Marton and Booth (1997) describe both levels of an interview as 
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(Marton & Booth, 1997). This is one possible terminology to use in 
phenomenography, but not the only one. 

In a later publication Marton (2014) does not mention structural or referential 
aspects at all but rather prefers the terms aspects and features. These are terms 
commonly used in studies concerning variation theory. “Aspects” are dimensions 
of variation in a phenomenon (e.g., ordering or not ordering numbers), whereas 
features constitute the values in that dimension (Marton, 2014). When a situation 
gives the opportunity to discern new aspects in a phenomenon, this is called 
“opening up a dimension of variation”. What aspects are called critical aspects are 
specific to groups (or individuals) and concern the aspects that need to come into 
focus for students to discern a phenomenon in a more refined way. Marton (2014, 
p. 24) explains that as long as “the learner has not already made a specific necessary 
aspect her own, it is a critical aspect for her. It is one thing she has to learn to meet 
the learning target”.  

Throughout the phenomenographic tradition we can see a variation in how 
phenomenographic studies are presented. Even within mathematics education 
there are several ways of presenting phenomenographic studies (cf. Björklund & 
Kempe; 2019; Neuman, 1999; Wong et al, 2002). Some studies explicitly position 
themselves within the phenomenographic tradition (Neuman, 1999), whereas 
other do not, even though the aim of their studies is within the phenomenographic 
scope (Wong et al., 2002; Björklund and Kempe, 2019). The choice of terminology 
also varies, e.g., some studies use the terminology from variation theory (Björklund 
and Kempe, 2019), and others a “freer” terminology, using terms such as “what” 
and “how” to describe the way aspects of the phenomenon are perceived 
(Neuman, 1999). 

To conclude this comparison, even though a study is performed within the 
phenomenographic or variation theoretical tradition, there is the liberty to choose 
how to present the results and what terms to use. The two studies in this thesis are 
both within the phenomenographic tradition. Still, the first uses the terminology 
introduced by Marton & Booth (1997) concerning referential and structural 
aspects, while the latter uses more of the terminology from variation theory.
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equation 0.12 = 0.4 ∙ 𝑥𝑥. The other two selected students had solved both 
equations on the test. 

In the second study, seven different classes of 16-year old’s, studying their first 
year in vocational education participated. All secondary schools with vocational 
education specializing in electricity in two large cities in the western part of Sweden 
were contacted through email. Contact was established with three schools, two 
municipal and one owned by a well-known school company in Sweden. One of 
the schools was the same as in the first study, but with another class that the 
researcher had not taught. In phenomenographic studies, the aim is to display 
variation in ways to see a phenomenon and therefore to have as wide a range of 
experiences as possible in the data collection (Marton & Booth, 1997, p129). To 
investigate the extent of the variation in the students’ performances, a survey was 
initially performed with the students. This was used as a selection tool for the 
interviews. All students present in the schools on the days that the questionnaire 
was distributed participated (111 students). After the results from the 
questionnaire were reviewed, 23 students were gradually selected for interviews 
between one and six weeks later. The selection was guided by the ambition to get 
as wide a range of different experiences as possible. Phenomenographic studies 
usually include about 15–30 informants (cf. Larsson, 2010), which should be 
enough not to miss any ways of experiencing, but also sufficiently few not to 
greatly exceed the needed number of interviews to cover the variation in the data. 
This is based on the basic principle in phenomenographic research; that there is a 
limited number of ways to experience a phenomenon within a group (Marton & 
Booth, 1997, p32). To find these ways of experiencing there is the possibility to 
conduct interviews until saturation is reached and no new conceptions present 
themselves. Therefore, the data collection was concluded after 23 interviews. 

4.3 Data collection 
This thesis concern two separate data collections that will be reported in this 
section, one collection for each paper. 

The first data collection – which took place at the beginning of 2020 – was 
initially considered a pilot study but was subsequently decided to constitute a sub-
study on its own. The interviews were performed during the classes’ scheduled 
mathematics lessons but in a separate classroom. Each interview had a duration of 
approximately 10 minutes.  
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important in learning about ways to experience a phenomenon, but that the second 
level, the meta-cognitive level, is more difficult to handle as it is a new way of 
reflecting for the student and requires that the student distinguishes the 
phenomena from the situation. This part of the interview can be supported by 
alternative questions or offering interpretations of what the student have said 
earlier in the interview (Marton & Booth, 1997).  In the two studies described in 
this thesis, the equations presented on paper are in focus, with questions that direct 
students’ attention to the addressed phenomenon. Though, as the role of different 
numbers is an important part of the studies it has been relevant to ask the students 
to reflect on their experience and compare equations, in a meta-cognitive way. 
Both levels of reflection are analyzed as equally important.   

In the second article, quantitative methods have been applied, which is not 
traditionally within the scope of phenomenographic studies. However, 
phenomenograpic investigation is suitable to use in mixed methods as it does not 
reject the physical nature of objects (Feldon & Tofel-Grehl, 2018), even though 
the phenomenograpic approach is focused on the subjects’ experience. The 
quantitative methods were primarily used to motivate further inquiry, seeing how 
relevant the issue of different kinds of numbers is to a larger group of students.  

4.2 Selection 
In the first study, six 16-year-old students attaining vocational education, 
specializing in electricity, in an upper secondary school in Sweden participated 
(though only five of these were analyzed as one interviewee did not solve either 
equation). The school class that all six students were a part of was selected for this 
study as a choice of convenience, as the researcher previously had worked at the 
school – but not taught this class. As a part of a larger project, the class had 
participated in a test on learning algebra which revealed that several students had 
difficulties solving a multiplicative equation containing decimal fractions, despite 
calculator aid and having just solved a similar whole number equation. The six 
students were therefore selected for semi-structured interviews to clarify their 
reasoning or some other aspect of their answers. As the phenomenographic 
approach was selected as the scientific approach in a later stage, identifying a wide 
range of possible experiences in the group was not prioritized in the selection 
process– but rather searching for examples of ways of experiencing multiplicative 
equations that can be developed further. Of the six students selected, four had 
managed to solve the whole number equation 42 = 3 ∙ 𝑥𝑥, but not the decimal 
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mathematics lessons – but in separate rooms. The students were offered to use a 
pencil, paper, and calculator during the interview. The ten equations from the test 
(and one additional) were used as a base in the interview guide, though without 
the goal to discuss them all – but rather to choose the ones appropriate to probe 
the specific student’s understanding. Some students developed their thoughts in a 
rich way addressing only three equations, whereas others approached seven 
equations during the interview. The interviews lasted between 15 and 40 minutes. 
Mostly the length of the interviews was decided in relation to whether there 
seemed to be more to know about their way of seeing. Unfortunately, the length 
of the interviews was sometimes affected by the length of the class’s lessons. 

The interviews in the second data collection were recorded by a video camera, 
capturing the conversation as audio and the students’ writings as visual data (except 
for the last three interviews that only recorded audio as they were performed 
digitally – due to the pandemic – which meant that it would have been technically 
more demanding to only capture students’ writing). A mobile phone was also used 
as a audio recording device, as a safety measure. The choice to film the students’ 
equation solving was not obvious, as video cameras might make students nervous. 
However, a discreet camera was chosen, and the students were told that it was just 
their writing that was in focus, not themselves. With a video camera, it is easier to 
follow the conversation as the students make notes. A weakness is that the camera 
did not capture what the students typed on the calculator. Sometimes the 
researcher asked the students to describe their activity with the calculator (e.g., 
“What are you typing on the calculator?”) or confirmed loudly what the students 
had typed, but in a few cases, this activity is not possible to extract from the 
recordings. 

4.4 Analysis 
This section will display the analysis of the collected data. First, some general 
phenomenographic guidelines that have been relevant will be presented, and 
thereafter concrete examples from the analysis of the first study will be given. 

4.4.1 A phenomenographic analysis 
As in the phenomenographic tradition, the formation of the outcome space was 
guided by the variation found in the empirical data (Larsson, 2010). The focus of 
the analysis was to construct categories of description from the data to reveal 
critical differences between the categories and not the conceptions in full. Marton 
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During the interviews in the first data collection, the student received equations 
on paper, one at a time. The tasks and follow-up questions in the interview guide 
were developed in cooperation with two senior researchers. The guide consisted 
of six multiplicative equations and one startup task to assess their ability to use the 
calculator. In letting the students address the equations under similar conditions, 
the intention was to probe their understanding of the phenomenon of 
multiplicative equations on the form 𝑎𝑎 = 𝑏𝑏 ∙ 𝑥𝑥. The students were asked to think 
out loud concerning the equations and possible solutions, but also to reflect on 
their experienced degree of difficulty concerning the different equations and to 
compare them. They had a calculator, pen, and paper as tools during the interview. 
The students’ reflections and the conversation with the researcher were recorded 
on a mobile phone and after the interviews transferred to a computer. 

The second data collection – that took place in 2020–2021 – was considered as 
a continuation of the first data collection, in search for more information on how 
students perceive equations with numbers from other number domains, this time 
with different arithmetical structures (not just multiplicative equations). An initial 
test was planned to guide the selection of students for interviews. However, as this 
selection tool was distributed to a large number of students (n=111) it came to be 
regarded as containing important data that could display the extent of the issue 
that students solve equations with some kind of numbers, but not others. 
Therefore, this data was analysed as a part of its own in the second paper. 

The questions on the test consist of ten equations with three different kinds of 
arithmetical structures and coefficients from different number domains; natural 
numbers, decimal fractions, one with negative numbers, and one without specified 
coefficients, displayed as 𝑎𝑎 = 𝑏𝑏 ∙ 𝑥𝑥 (the equations are specified in Paper 2). Some 
equations were borrowed from the first study described in this thesis and from 
other studies (Vlassis, 2002), whereas others were carefully designed in 
collaboration with two senior researchers to capture different aspects of the 
phenomena. Advice in the design of the questionnaire was also sought from a 
professor in statistics. One of the ten equations was added after the test had been 
performed in one class to add further information in the rest of the data collection. 
At the beginning of the test, three simple tasks were used to test students’ abilities 
to use the calculator. The quality of the survey was piloted on three other students 
prior to the data collection, leading to some alterations. The degree of difficulty 
was not changed, but several formulations were adjusted.  

From the survey, 23 students were selected to participate in interviews. As in 
the previous study, the interviews were made during the classes’ scheduled 
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4.4.2 Analysis Paper 1 
When the material from the first data collection was finished, a sortation of what 
interview data that was considered relevant started. The interview guide included 
some questions that the students answered in the interviews but that later was 
disregarded, e.g., an equation with fractions that was judged as too difficult for 
most of the students. The analysis was therefore limited to addressing three 
equations with whole numbers and decimals (0.12 = 0.4 ∙ 𝑥𝑥, 42 = 3 ∙ 𝑥𝑥 and 
0.25 = 5 ∙ 𝑥𝑥), and a task where students’ skills in performing division with 
decimals on the calculator were tested (0,360,6 ). The focus of the study was narrowed 

down to focus on how students can experience multiplicative equations with 
decimal fractions and whole numbers. As one student did not solve either equation 
with or without decimals, he was excluded from the analysis. 

The interviews were transcribed. As a first part of the analysis the entire 
transcripts were read several times. By reading them repeatedly an idea started to 
form on three aspects of the phenomena that was discerned in different ways by 
the interviewed students; the role of the type of numbers used, the solution 
methods and their aim in handling the phenomenon. The parts of the transcript 
that concerned these dimensions of variation were marked in different colors to 
help make connections between different statements. The printed transcripts were 
also cut into chunks, depending on whether they concerned the equation with 
whole numbers or the equations with decimals. Two distinctly different ways of 
experiencing the phenomena emerged in the analysis, which seemed like a not too 
large number of conceptions for a group of five people.   

An example from the analysis process concerns the role of the type of numbers used, 
which was an identified aspect that varied in students’ ways of perceiving 
multiplicative equations. All students that addressed the whole number equation 
(42 = 3 ∙ 𝑥𝑥) connected division as a solution method to the equation. However, 
they all approached the equation with two decimal fractions (0.12 = 0.4 ∙ 𝑥𝑥) in 
another way; 

Student two: x should be three because three times 0.4 is 0.12 […] But I can’t 
describe how I get it. 

Student five: Something times it will be 0.12…  

Student six: […] I thought it had something to do with these two, like times 
or division. But I’m not sure. 
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and Booth (1997) emphasize that there is no complete description of any 
experience. The descriptions do not focus on the feelings of the observer like a 
psychological approach would. Neither is the physical nature of the object 
considered, as in a study from a first-order perspective. Instead, categories of 
descriptions intend to capture the variation in subjects’ experiences of the 
phenomenon’s character (Marton & Booth, 1997). 

Marton & Booth (1997) outline three rules that constitute as criteria for a way 
of experiencing. The first is that each conception should relate to the phenomenon 
and show a distinct way of seeing it. The second is that the ways of experiencing 
must relate to each other in a logical way, which often is hierarchical. The third 
rule is that the number of categories should be limited and only include categories 
necessary to display the variation. These rules have been present in both analyses 
reported on in this thesis. 

In a phenomenographic analysis, there are two different traditions of how to 
approach the collected data (Larsson, 2010). The first approach assumes that one 
student can display several ways to experience a phenomenon in a single data 
collection. The empirical material is then considered a pool of meaning, where the 
interviews are considered a great collection of statements. Each statement is 
situated in two contexts: the context of the collective and the context of the 
individual interview (Marton & Booth, 1997). By focusing on one dimension of 
variation in the phenomenon at a time while keeping other aspects frozen and 
viewing the statements in these two different contexts, there is an openness in the 
analysis to variation and to taking the second-order perspective. The other 
approach in a phenomenographic analysis is to consider the whole interview as 
representing a specific way of experiencing the phenomenon (Larsson, 2010). The 
analysis is then focused on finding similar conceptions of a phenomenon between 
individuals. An advantage of this tradition is that the resulting categories are more 
related to the individual’s actual experiences, as it is not divided into different 
categories. Both studies presented in this thesis have applied the first approach 
based on the argument that there is a possibility that one person experiences a 
phenomenon in several ways during an interview. However, the first smaller study 
did not contain as much data, which made it easier to also take individual 
experiences into consideration. Therefore, the outcome space of the first study 
displays ways of experiencing multiplicative equations (where the phenomenon is 
two or more equations of a similar kind but with different numbers) and not ways 
of experiencing one equation independent of the kind of number used as coefficients 
(as in Paper 2). 
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Thereafter, solution frequencies were calculated for different equations and 
confidence intervals (using the formula for a normal distribution with 95% 
confidence). These values display how competent this group of students are in 
solving these equations. To receive a measure of how relevant these results are, a 
significance test was performed, using SPSS. The test used, called McNemar’s test, 
compares paired nominal data. In this case the individual is the unit, and his 
solution to two different equations (e.g., 819 = 39 ∙ 𝑥𝑥 and 0.12 = 0.4 ∙ 𝑥𝑥) is the 
paired data that can have nominal results, either correct (1) or not correct (0). By 
comparing individuals that solve the first equation but not the other, to students 
that solve the second equation but not the first, we can evaluate the null hypothesis 
that the likelihood that a student solves the first equation p1 is the same as the 
likelihood that she solves the second equation p2. 

The second part of the quantitative analysis was to gather solutions from 
students that had solved 819 = 39 ∙ 𝑥𝑥 but not a similar equation (0.12 = 0.4 ∙ 𝑥𝑥, 
−24 = 6 ∙ 𝑥𝑥 or 0.657 = 0.045 ∙ 𝑥𝑥). After a first review, a sketch was made of 
categories that could explain why students did not use the same solution method 
for the other equation as the equation with natural numbers. The answers were 
then again categorized and solutions that were hard to interpret were then 
categorized in consultation with another researcher (see Paper 2). The final 
number of categories was six:  
 

1. Natural number bias, for answers that implied that a negative number or 
decimal fraction somehow was mistaken for a natural number. 

2. Wrong operation, for solutions that wrote down or used the wrong operation. 
3. Error in calculation, where there was an error that implied computational 

issues. 
4. Correct solution but does not provide the correct answer, for solutions that gave a 

correct explanation but had not marked an answer. 
5. Other issues concerning numbers, a category that did not meet the above criteria, 

but implied difficulties concerning the numbers in the equations. 
6. The answer does not reveal why, all solutions that did not give a hint as to why 

the students only solved the equation with natural numbers, e.g., the student 
left a blank space. 
 

The qualitative data (all 23 interviews) were initially transcribed verbatim. During 
the transcription, the researcher was acquainted with the data material, making 
small notes to get an overview of them. A few of the interviews were selected for 
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The two students making the first two statements could explain why they divided 
one or both sides of the equations with whole numbers for the first equation. 
Then, as we see in the quotes, as the equations include decimal fractions, they are 
no longer able to connect division as a solution method and explain why. As the 
students did not connect the same solution method to the two equations, they 
experienced them in different ways. The two first quotes are, therefore, examples 
of when numbers are discerned as a part of the structure, which is a part of experiencing 
equations as Different kinds of equations (conception B in Paper 1).  

The third quote, on the other hand, instantly links multiplication and division 
to the equation with decimal fractions. However, an uncertainty is displayed of 
which of the two operations to apply to the new equation, which was not present 
when the equation only concerned natural numbers. The type of number used is 
now discerned as affecting the solution method, which is a part of experiencing equations 
as Different tasks (conception C in Paper 1).  

As two categories were distinguished in the group, a third was constructed to 
display the most advanced way of experiencing multiplicative equations as the goal 
of learning, even though this understanding was not present in the interviews. The 
categories were then critically reviewed by seeing how the interviews relate to the 
conceptions presented, to see how well the conceptions display the interviews’ all 
different ways of experiencing the phenomenon. The result was also discussed and 
revised in consultation with three senior researchers.   

4.4.2 Analysis Paper 2 
The analysis of the second study was two-fold as the test and the interview data 
were analyzed separately. 

The quantitative data that, in the form of 111 test replies, was first corrected in 
two different ways. In one correction, the answer was marked as right if the correct 
answer was found anywhere in the solution, whereas the other correction 
categorized a solution as correct if the correct answer was marked in a way that 
could imply that the answer was given intentionally. Later in the analysis process, 
when the rules of correction could be ruled out as influencing the results, the 
second correction was adapted and reported on in the paper. One student was 
excluded from further analysis as he did not show proficiency in using the 
calculator in the initial “control tasks”, as the calculator is an important tool in 
being able to apply similar solution methods to equations with decimal fractions 
or negative numbers, as with natural numbers. 
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All students, both those answering the questionnaire and those asked to 
participate in interviews, were made aware that participation was voluntary. A 
confirmation of this was given as a few students did not want to identify 
themselves and thereby did not make themselves available for interviews, and a 
few students declined the request to participate in interviews. As students accepted 
the invitation to be interviewed, they were also made aware of the possibility to 
withdraw their participation at any time. The aim of the study, and that the data 
would be analyzed and compiled in order to create scientific articles – where their 
names would not be mentioned – was also accounted for. 

4.6 Limitations 
The idea of phenomenography is to reveal qualitative differences in how people 
perceive a phenomenon (Marton, 1981; Marton & Booth, 1997). In both studies, 
there is a knowledge claim regarding how a certain group of students experiences 
the phenomena in a qualitative way. However, in a phenomenographic study, the 
purpose of the research is to describe possible ways to perceive a phenomenon in 
a certain group, but that can exist in other similar groups.  

In the first study in this thesis, there is an apparent limitation of having few 
participants and short interviews. However, the main claim of this article is to be 
explorative rather than generalizing. In the second study, there is a relatively large 
(n=111) number of students considered in the selection for interviews, ending up 
with 23 completed interviews when saturation in the different ways of 
experiencing was considered reached. As the students in the present group showed 
a wide range of understandings, it is possible to find qualitatively similar 
experiences in other groups of students. The research is, therefore, relevant as the 
phenomena addressed in this study are something that students and teachers work 
with every year. The results give a qualitative description of how it is possible to 
experience the phenomena, and educationally critical differences between the 
understandings, i.e., the critical aspects (Marton & Booth, 1997). 

The initial questions posed in Chapter 1.1 speak of “students” as a general term, 
which implies claims of general nature. This claim refers to students in a similar 
stage in their education but could also be relevant in lower secondary school when 
students start to learn to solve equations. The general claim of this thesis, how 
students are influenced by the nature of numbers when solving equations, is 
supported by the analysis of the test in Paper 2, as this test has collected 
information from all 111 students. However, in the quantitative analysis presented 
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initial analysis, where the researcher looked at how different aspects of a linear 
equation were focused on by different individuals while ignoring other aspects. 
The goal was to identify critical variation in how certain aspects was experienced. 
When having reviewed an aspect, such as numerical operations, both in the pool 
of data and in the individual contexts, a new aspect was chosen as focus and the 
process was repeated. Two aspects were then considered as containing interesting 
variation in the data; the aim that the students experienced in the equation, and 
how the numbers in the equations were considered as specific, belonging to a 
group of numbers, or in a general way. This categorization guided the coding of 
the entire data set. The qualitative data analysis tool NVivo was used in this 
process. 

Analyzing the interviews further showed that the students experienced the 
equation solving as either a concrete transformation or as a theoretical action. This 
aspect of seeing different meanings in the equation was seen to relate to how the 
numbers were considered. Reviewing the dataset, this aspect gave explanations as 
to why the equations of similar structure were experienced in such different ways. 
Five different ways of experiencing equations were found that display both how 
students see different meanings in the equation, and how the structure and/or 
numbers are in the foreground or background of their attention. 

Finally, the five ways of experiencing were compared, looking for critical 
differences between the conceptions – what the students must see in the 
phenomenon to gain more refined ways of experiencing. In this way, four critical 
aspects were discerned that can guide teaching to help students evolve in equation 
solving.  

The main analysis was performed by one researcher. However, the analysis has 
at all stages (from initial analysis to final editing) been supported and discussed 
thoroughly with three senior researchers. Additionally, the process and results have 
been presented in several seminars and conferences.   

4.5 Ethical considerations 
The data collection in these studies has been performed in alignment with the 

ethical research guidelines from the Swedish research council (2002). All 
participants were 15 years or older, and they were thereby considered old enough 
to decide whether they wanted to participate or not. No sensitive data was handled 
in the studies. 
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5. Summary of  papers 

5.1 Paper 1: Different ways of experiencing 
linear equations with a multiplicative structure  
This study explores five students’ experiences of multiplicative equations, differing 
only in the type of numbers used as coefficients, such as: 0.12 = 0.4 ∙ 𝑥𝑥, 42 = 3 ∙
𝑥𝑥 and 0.25 = 5 ∙ 𝑥𝑥. The students had calculator aid as a way of making the 
calculations equally simple independent on numbers.  

The results display that changing coefficients in a multiplicative 
equation for decimal fractions can make students unable to discern a structure they 
are usually familiar to handle. This is seen when a student that has solved 42 =
3 ∙ 𝑥𝑥 by dividing with three on both sides – explaining “then the three goes away, 
so it is x on this side” (p.5 in Paper 1), in the next moment is asked if there are 
similarities with 0.12 = 0.4 ∙ 𝑥𝑥, but thinks a while and then concludes “I’m not 
sure”. 

Furthermore, the phenomenographic analysis show two ways of 
experiencing multiplicative equations (see table 5.1, where conception A was not 
found empirically, but was theoretically constructed). In this study we can see that 
both the experience of multiplicative equations as an equality to balance 
(conception B) and as tasks to solve (conception C) can be influenced by a new 
kind of numbers – but in different ways. In the former case, the new set of 
numbers makes it difficult to recognize that this is an equation of similar structure 
as the equation with whole numbers, that can be balanced in the same way. In 
the latter case, the focus is on finding the correct operation to solve the task – 
even with decimal fractions as coefficients – but the new kind of numbers are 
seen as possibly affecting the solution method. 

Despite the small empirical basis – which limits the possibility of 
making generalizations concerning other students – these findings are relevant to 
the teaching of algebra. First, it shows that it is not possible to teach equation-
solving in whole numbers and expect all students to transfer the solution method 
by themselves to other numerical contexts. Secondly, it supports research that 
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– when using McNemar’s test to compare the probabilities for students to solve 
two equations of similar structure but with different numbers – the number of 
observations used in the calculations is once again smaller and would have 
benefited from a larger sample (e.g., 26 students solved 819 = 39 ∙ 𝑥𝑥 but not 
0.12 = 0.4 ∙ 𝑥𝑥, and four students that solved 0.12 = 0.4 ∙ 𝑥𝑥 but not 819 = 39 ∙
𝑥𝑥). Another possible limitation regarding the significance testing concerns the case 
of the multiple-comparison problem (Rice, 2007) – that there is an increased 
likelihood of finding a significant result when making repeated comparisons with 
one variable. In Paper 2, repeated comparisons was made as the probabilities of 
solving multiplicative equations with negative numbers or decimal fractions, were 
compared to the probability of solving the same equation with natural numbers, 
819 = 39 ∙ 𝑥𝑥. However, as the results seemed credible, considering earlier 
research, this was not considered a threat anymore. 
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by themselves to other numerical contexts. Secondly, it supports research that 
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Table 5.2: Frequencies of correct answers to different items on the test arranged 
horizontally according to their structure. To the left, p values showing the probability that 
there is equal probability for students to solve Equation 2 as Equation 1 (Holmlund, n.d.) 

 
same way to equations of similar multiplicative structure (Figure 5.1). These results 
show that some students tend to treat equations with decimal fraction containing 
few digits as natural numbers (natural number bias).  

 
Figure 5.1: Indications given in answers why students solved linear equation with natural 
numbers, but not a similar one with other numbers. *Some student used division to solve 
other multiplicative equations on the test (three for −24 = 6 ∙ 𝑥𝑥, three for 0.12 = 0.4 ∙ 𝑥𝑥 
and four for 0.657 = 0.045 ∙ 𝑥𝑥) (Holmlund, n.d). 
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claims that issues concerning whole number bias are relevant for students learning 
algebra (cf. Christou & Vosniadou, 2012). 

Table 5.1: Outcome space horizontally displaying three ways of experiencing linear 
equations. In the columns variation in different aspects concerning the experiences are 
outlined (cf. Marton & Booth, 1997). Table from Holmlund (2022, p. 92). 

 

5.2 Paper 2: The significance of numbers when 
learning to solve linear equations 
In this paper, students’ attention to the nature of numbers while solving linear 
equations is investigated. The research results are divided in two parts. The first 
concerns answers, from 110 students in vocational education, to a test with 
equations. The second part address 23 student interviews. 

The quantitative results, concerning a test with ten equations that the students 
(n=110) performed within 40-50 minutes with a calculator at hand, is displayed in 
Table 5.2. Reading the table horizontally displays that students’ frequencies of 
correct answers are lower for linear equations with decimal fraction and negative 
numbers, than with natural numbers. The right-most column displays that the 
probability of solving an equation with natural numbers (column Equation 1) is 
significantly different for all structures, compared to the probability of solving 
equations with other rational numbers (column Equation 2). Further on, solutions 
were categorized according to putative reasons why a student did not answer the  
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Table 5.3: Displaying five conceptions of how linear equations can be experienced while 
solving with a decreasing influence from the numbers on the solution process as the 
structure comes more in focus (from E to A). Figure from Holmlund (n.d.). 

 
 

 
Figure 5.2: Schematic overview of five ways of experiencing linear equations, with critical 
aspects on the right. Figure from Holmlund (n.d.).
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Further insight as to why students do not treat equations of similar structure – 
but with different types of numbers – in the same powerful way, was given by the 
23 student interviews. Using a phenomenographic approach, five ways of 
experiencing were found (Table 5.3). These ways of seeing the equations are not 
individual, but a student can change conception depending on what aspects of an 
equation that are focused upon. Two conceptions (E and D) describe when 
students do not see a structure in the equations, whereas conception C–A see 
structure but in different ways and with varying focus on the numbers. The 
descriptions outline that when experiencing equations semantically (C), with 
concrete inner representations, numbers can impede the possibility to recognize 
familiar equations. An example is given where the equations −24 = 6 ∙ 𝑥𝑥 and 
0.12 = 0.4 ∙ 𝑥𝑥 does not have a meaning to a student, as division is seen as “fitting 
a quantity into another”, which is not possible if the product is lesser than the 
given factor. Also, when an equation is experienced syntactically, as a system of 
symbols, numbers can still be foregrounded and affect how the equation is 
experienced, e.g., concerning imagined constraints or rules for what numbers are 
allowed (B). 

In comparing the conceptions, four critical aspects were formulated that 
describe the differences between the categories (Figure 5.2). These aspects can be 
beneficial to use in teaching to help students to a more refined way of experiencing 
equations. 

Summary 
The nature of the numbers in an equation directs students’ attention – what they 
notice and how they interpret the equations – but the numbers are also given 
varying attention depending on how the equation is experienced and how well the 
number fits in this experience. This is summarized in a framework of five 
categories that shows that whether numbers are experienced in foreground or 
background, and whether the equation is seen as a semantic or syntactic construct, 
influences how much the nature of the numbers influence the solution process. 
This framework can be used for research, when analyzing students’ algebraic 
thinking, but also in teaching. The results show the importance for teachers to 
incorporate how students perceive the numbers in their teaching, and to use a wide 
range of numbers. 
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students do before they apply a strategy – looking for what is relevant 
in the equation and trying to see meaning in it.  

• The studies have provided two outcome spaces (Table 5.1 and Table 
5.3) displaying how students perceive equations (multiplicative equations in 
Paper 1 and a linear equation in Paper 2). Comparing these, we can see 
that the most refined ways of seeing (conception A in both tables) 
corresponds to each other, where numbers do not influence the 
equation-solving. Conception B in the first study, experiencing 
multiplicative equations as “different kinds of equations” to balance, can 
corresponds to several conceptions in the second framework as it 
describes possible experiences where balancing the equation works for 
natural numbers, but not for other numbers. Conception C in the first 
study describes a focus on operations, but without a clear understanding 
of why it works – which can be compared to conception D in the second 
study, experiencing an equation as “numbers to compute”. Overall, the 
conceptions found in the second study were formed from several 
interviews – longer than in the first study – and therefore gives more 
elaborate explanations on the influence of numbers and are more suited 
for using in research e.g., as a framework when analysing students ways 
of experiencing equation-solving or what possibilities to experience 
equations that are enabled in teaching or textbooks. 

• Linear equations with small natural numbers are easily solved for most 
students in these studies and do not offer enough variation to fully 
display all dimensions of variation of the structures of equations, such 
as its abstract character and the relevance of numbers. Whereas 
equations with negative numbers and decimal fractions can be more 
difficult to visualize while solving and thereby encourages a more 
syntactic understanding of the equation-solving process. The presence 
of these numbers can also challenge students’ possible natural number 
bias, e.g., multiplication makes bigger. In this way, varying the kinds of 
numbers used in equations – including negative numbers and decimal 
fractions less than one – opens other dimensions of variation in the 
structure of linear equations and thereby enables other learning 
opportunities. 

 
Returning to the statement made by Marton (2014, p. 68) – that in order to prepare 
students to handle new situations in powerful ways, we need to “help them to learn 

 

 

6. Conclusion and outlook 

Finally, combining the current papers in this thesis gives a joint contribution to 
research that addresses the initial research question of how the nature of numbers 
influences students’ conceptions of equations in the solution process. These 
contributions are summarized in the following bullet points: 

 
• In both Paper 1 and Paper 2 there are examples where students could 

not see the similarities between a multiplicative equation with whole 
numbers that they just solved and an equation of similar structure with 
decimal fractions. Hence, decimal fractions in linear equations can cause 
what looks like a “temporary loss of previous abilities” (Filloy & Rojano, 
1989, p. 21) – when students do not recognize an equation they were 
previously able to solve. In a somewhat similar way, Vlassis (2002) found 
that, despite previous equation solving, some students were unable to 
isolate x when there was a negative coefficient. Our results show that 
the presence of decimal numbers can be critical to students’ equation-
solving abilities, even though they have a calculator and are able to solve 
a corresponding equation with natural numbers. 

• Looking at the papers, we can see that the influence of decimal fractions 
and negative numbers on students’ equation-solving is not negligible. It 
is registered on two occasions and with a large group of students. We 
can also see from the results in Paper 2 that the influences are of 
statistical significance. This calls for increased attention to students’ 
experiences of different kinds of numbers in research on learning 
algebra, which otherwise is scarce (Kieran, 2022; Vlassis & Demonty, 
2022). 

• The nature of numbers, e.g., if they are large, small, discrete, negative, 
or positive, can affect how students experience an equation, not only 
directing (or limiting) students’ attention. It can also limit the possibility 
of experiencing the meaning of the equation in certain ways, e.g., the 
difficulty to experience the solution process of −24 = 6 ∙ 𝑥𝑥 as fitting 6 
into –24 (see Paper 2). This displays the importance of the work that 
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to see those situations in powerful ways” – the results from this thesis can be a 
tool in helping students achieve a more powerful way of seeing linear equations. 
One possibility is to put focus on the critical aspects in Figure 5.2 (in section 5.2) 
in teaching. This can direct students’ attention to a syntactic and algebraic view on 
equations, and with this – a focus on numbers’ form and structure rather than their 
values (see Kaput, 2008; Kieran, 2018). Also, the five conceptions formulated in 
Paper 2 can be used to assess students’ experiences of equations. 

Another possibility for teaching, which is also an outlook at potential further 
research, is to investigate the learning potential in using different numbers in 
algebra teaching more systematically. A study with this kind of approach has been 
made by Zazkis (2001), who displays the learning potential of using large numbers 
to impede urges to compute and instead focus on structures. This might also hold 
for negative numbers or very small numbers – which is an interesting area of 
research. In line with these thoughts, Greer (2006) wonders why second-degree 
equations like this one, 2.67𝑥𝑥2 –  3.86𝑥𝑥 –  12.23 =  0, are rare even though 
students should be able to solve them with a calculator. The learning potential in 
these numbers, with many decimals, would also be interesting to examine further. 
This could be done through designing teaching and measuring students’ progress, 
either quantitively with pre- and posttests, or qualitatively, seeing how handling 
numbers in equations might be connected to the quality of their algebraic thinking 
(see Vlassis & Demonty, 2022). Another suggestion for future research is to look 
at how textbook supports students’ understanding of equations as syntactic 
structures, comparing how theory and problems in textbooks suggest that 
equation-solving should be justified – relying on mathematical theory or concrete 
examples. 
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to see those situations in powerful ways” – the results from this thesis can be a 
tool in helping students achieve a more powerful way of seeing linear equations. 
One possibility is to put focus on the critical aspects in Figure 5.2 (in section 5.2) 
in teaching. This can direct students’ attention to a syntactic and algebraic view on 
equations, and with this – a focus on numbers’ form and structure rather than their 
values (see Kaput, 2008; Kieran, 2018). Also, the five conceptions formulated in 
Paper 2 can be used to assess students’ experiences of equations. 

Another possibility for teaching, which is also an outlook at potential further 
research, is to investigate the learning potential in using different numbers in 
algebra teaching more systematically. A study with this kind of approach has been 
made by Zazkis (2001), who displays the learning potential of using large numbers 
to impede urges to compute and instead focus on structures. This might also hold 
for negative numbers or very small numbers – which is an interesting area of 
research. In line with these thoughts, Greer (2006) wonders why second-degree 
equations like this one, 2.67𝑥𝑥2 –  3.86𝑥𝑥 –  12.23 =  0, are rare even though 
students should be able to solve them with a calculator. The learning potential in 
these numbers, with many decimals, would also be interesting to examine further. 
This could be done through designing teaching and measuring students’ progress, 
either quantitively with pre- and posttests, or qualitatively, seeing how handling 
numbers in equations might be connected to the quality of their algebraic thinking 
(see Vlassis & Demonty, 2022). Another suggestion for future research is to look 
at how textbook supports students’ understanding of equations as syntactic 
structures, comparing how theory and problems in textbooks suggest that 
equation-solving should be justified – relying on mathematical theory or concrete 
examples. 
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Sumpter, L., & Löwenhielm, A. (2022). Differences in grade 7 students’ understanding of the 
equal sign. Mathematical Thinking and Learning, 1–16. 
https://doi.org/10.1080/10986065.2022.2058160  

The Swedish Research Council. (2017). Good Research Practice. The Swedish Research Council.  

Threllfall, J. (2002). Flexible Mental Calculation. Educational Studies in Mathematics, 50, 29–47. 
https://doi.org/10.1023/A:1020572803437 
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