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Abstract

In this thesis, we explore numerical approximation of elliptic partial differential
equations posed on domains with a high number of interfaces running through.
The finite element method is a well-studied numerical method to solve partial
differential equations, but requires alterations to handle interfaces. This can
result in either unfitted or fitted methods. In this thesis, our focus lies on fitted
methods.

From finite element methods, one obtains large linear systems that need to
be solved, either directly or via an iterative method. We discuss an iterative
method, which converges faster when using a preconditioner on the linear
system. The preconditioner that we utilise is based on domain decomposition.

In Paper I, we consider this kind of partial differential equation posed on a
domain with interfaces, and show existence and uniqueness of a solution. We
state and prove a regularity result in two dimensions. Further, we propose a
fitted finite element approximation and derive error estimates to show conver-
gence. We also present a preconditioner based on domain decomposition that
we use together with an iterative method, and analyse the convergence. Finally,
we perform numerical experiments that confirm the theoretical findings.

Keywords: Finite element method, mixed dimensional partial differential
equation, a priori error analysis, subspace decomposition, preconditioner.
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Paper I

1 Introduction

Partial differential equations (PDEs) constitute an important field in applied
mathematics, with many problem formulations arising from physics and en-
gineering. A few examples of areas that give rise to PDEs are aerodynamics,
fluid dynamics and thermodynamics, although this list can be considerably
extended.

In this thesis, our interest lies in domains with interfaces running through. The
bulk and the interface areas are governed by different PDEs, connected via cou-
pling conditions. This setting is a so-called mixed-dimensional model, where
the governing equations are defined in different dimensions. An application
of this can for instance be permeable rocks with cracks, which in reality are
3-dimensional structures, but may be modelled as 2-dimensional interfaces
instead.

PDEs are in general very hard, often impossible, to solve analytically. This
raises a need for numerical methods that are able to solve them approximately.
Many such methods have been developed over the years, for instance the
widely used finite difference methods and finite volume methods. The most
prominent method though, and the one that will be subject to our interest
in this thesis, is the finite element method (FEM). This method transforms
infinite-dimensional PDE problems to finite-dimensional ones, resulting in
linear systems that need to be solved.

In its basic form, FEM is defined on simple domains. In order to tackle domains
with interfaces and other structures, several variations of the finite element
method have been developed. In this thesis, we will focus on the so-called
fitted finite element method, which means that the interfaces are taken into
consideration when creating the discretisation of the domain.

To this thesis, one paper is appended, where we present a PDE problem on
a domain with a large number of interfaces, a fitted finite element method to
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2 1. Introduction

discretise the problem, and an iterative solver to solve the linear system that
arises from the fitted FEM. We show

• existence and uniqueness of a solution to the presented problem, along
with regularity results in two dimensions,

• an a priori error estimate of the finite element solutions, and

• rapid convergence of the presented iterative solver.

The outline of the thesis is as follows.

In Chapter 2, we give some background information that is needed before
one delves into the areas of the actual research presented in this thesis. This
includes an introduction into elliptic partial differential equations, along with
derivation of the weak formulation and some theoretical results. Further, we
present the finite element method and an estimate of the error that comes with
using it. Lastly, we present an iterative method that enables us to solve large
linear systems.

In Chapter 3, we introduce the setting with interfaces that is our actual research
interest. We first look at how the problem can be formulated, derive the weak
formulation and present some theoretical results. We continue by presenting
an altered version of FEM, the fitted finite element method, that can deal with
our new setting. Lastly, we present an elevated version of the iterative method
along with a preconditioner of the linear system that suits our presented
problem.

In Chapter 4, we summarise the appended paper and describe the planned
future work.

2 Background

In this chapter, we go through some mathematical background that is needed
in order to understand the article and the ongoing work. In Section 2.1, we
introduce an elliptic PDE problem together with some analysis of it. In order
to solve partial differential equations, one generally needs a numerical method
that provides an approximate solution. The finite element method is such a
method and constitutes the foundation of both the article, ongoing work and
other concepts that need to be explained before the article. Thus, it is natural to
introduce it in Section 2.2.

With the help of FEM, one can discretise an infinite-dimensional problem by
dividing it into smaller parts, finite elements, and thus simplifying the problem
into being finite-dimensional. There are many books on the subject, see for
example introductory books such as (Asadzadeh, 2020; Larsson and Thomée,
2009), or somewhat more advanced books like (Brenner and Scott, 2002). In
this chapter, we describe the general idea behind the method, focusing on
elliptic problems with homogeneous Dirichlet boundary conditions in order to
demonstrate the method in a rather easy way. We will also go through some
fundamental concepts. Some analysis of the method is done, in order to see that
it produces good results. We focus our attention on error analysis, examining
how close the obtained approximation is to the true solution of the problem.

The finite element method generates a, usually large, linear system that needs
to be solved in order to obtain the solution. A linear system can either be solved
via a direct method, e.g. Gaussian elimination, that provides the exact result up
to machine precision, or an iterative method that provides an arbitrarily good
approximation. With the large linear systems that we handle in this thesis, an
iterative method is the viable option, and we thus present such a method, the
conjugate gradient (CG) method, in the end of the chapter. The conjugate gradient
method is also a well-studied method in applied mathematics, first proposed
in (Hestenes and Stiefel, 1952). There are several books that present the CG
method, see for example (Greenbaum, 1997; Demmel, 1997).

3
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4 2. Background

2.1 An elliptic model problem

In this section, we introduce an elliptic PDE problem with homogeneous
Dirichlet boundary conditions. We present the strong form of the problem,
derive the weak form and comment on the existence and uniqueness of a
solution. Lastly, we examine the regularity of the solution.

2.1.1 Problem formulation

We consider an open and connected domain Ω in Rd, where d = 1, 2 or 3, with
Lipschitz boundary, on which we have the following elliptic partial differential
equation equipped with homogeneous Dirichlet boundary conditions:

−∇ · (A0∇u) = f, in Ω, (2.1a)
u = 0, on Ω, (2.1b)

where the diffusion coefficient A0 and the source term f are both functions
defined on Ω. Henceforth, we will assume that the boundary ∂Ω is polytopal,
since it is then easier to define the finite element method.

2.1.2 Variational formulation, existence and uniqueness

In order to express equation 2.1 weakly, we need to have a clear concept of
certain norms and vector spaces. We will heavily use the Hilbert space H1

0 (Ω)

equipped with the H1-norm, defined by∥·∥2H1(Ω) =∥·∥2L2(Ω) +∥∇·∥2L2(Ω). The
L2(ω) scalar product will frequently be denoted (·, ·)ω, and in the case when
ω = Ω, we simply write (·, ·).

In the following, we will assume that V is a Hilbert space with norm ∥·∥V
and scalar product (·, ·)V , typically V = H1

0 (Ω) equipped with the standard
H1-norm.

In equation (2.1), we are looking for a solution u ∈ V . The vector space V is
then called the trial space of the problem.

In order to obtain the variational formulation, or weak formulation, of a PDE
problem, one multiplies the differential equation by a test function from a test
space V and integrates. The test space can differ from the trial space, but often
they are the same, which they will be in this thesis. Here, in order to obtain

2.1. An elliptic model problem 5

the weak form corresponding to (2.1), we multiply (2.1a) by a test function
v ∈ H1

0 (Ω), and integrate to obtain

−
∫

Ω

∇ · (A0∇u) v dx =

∫

Ω

fv dx.

Using Green’s formula, we move a weak derivative to the test function:
∫

Ω

A0∇u · ∇v dx =

∫

Ω

fv dx.

Now the variational formulation reads: find u ∈ H1
0 (Ω) such that

a(u, v) = L(v), for all v ∈ H1
0 (Ω), (2.2)

where a(u, v) = (A0∇u,∇v) is a bilinear form and L(v) = (f, v) is a linear
functional.

Noteworthy is that the Lax-Milgram theorem states that if

• a is continuous/bounded, i.e. there is a positive constant α such that∣∣a(u, v)∣∣ ≤ α∥u∥V ∥v∥V for all u, v ∈ V ,

• a is coercive, i.e. there is a constant α > 0 such that a(v, v) ≥ α∥v∥2V for all
v ∈ V ,

• L is continuous, i.e. there is a positive constant C such that
∣∣L(v)∣∣ ≤ C∥v∥V

for all v ∈ V ,

then there is a unique solution u ∈ V such that (2.2) holds. For a proof of this,
see for example (Larsson and Thomée, 2009; Asadzadeh, 2020).

If A0(x) ∈ [α, α] for all x ∈ Ω, then the bilinear form a clearly satisfies continuity,
and when also applying the Poincaré inequality,

∥v∥L2(Ω) ≤ C∥∇v∥L2(Ω) for all H1
0 (Ω),

one additionally obtains coercivity. If f ∈ L2(Ω), then the linear functional
L is bounded. In fact, it actually suffices that f ∈ H−1(Ω), with∥f∥H−1(Ω) =

supv∈H1
0

∣∣f(v)∣∣ /∥v∥H1(Ω), see (Asadzadeh, 2020), but for simplicity one often
assumes that f ∈ L2(Ω). Henceforth, we will assume that these requirements
are fulfilled and that A0 is smooth. Thus, Lax-Milgram gives us existence and
uniqueness of a solution.
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Remark 1. If one wants to examine an elliptic PDE problem with other types of
boundary conditions, this may lead to other test and trial spaces, and different vari-
ational formulations. For example, with Robin conditions, equation (2.1b) would
instead read A0

∂u
∂n + h (u− g) = 0, and one would use the space H1(Ω) as test

and trial space instead of H1
0 (Ω). In this case, the bilinear form would be defined by

a(u, v) = (A0∇u,∇v)Ω + (hu, v)∂Ω and the linear functional would be defined by
L(v) = (f, v)Ω + (hg, v)∂Ω.

2.1.3 Regularity

The Lax-Milgram theorem gives us that there exists a solution u ∈ H1
0 (Ω). One

question that arises is whether or not the solution has higher regularity than
this. That is, whether u ∈ Hk(Ω) for k > 1. For this analysis, we further assume
that the domain Ω is convex.

Looking again at equation (2.1a), one can rewrite it into

∆u =
−f −∇A0 · ∇u

A0
,

since A0 is assumed to be strictly positive. Since f ∈ L2(Ω), A0 is assumed to
be smooth and ∇u ∈ L2(Ω) by Lax-Milgram, we conclude that ∆u ∈ L2(Ω).
For convex polygonal domains Ω, it holds that|u|H2(Ω) ≤∥∆u∥L2(Ω). Thus, we
conclude that u ∈ H2(Ω) and u is a strong solution to equation (2.1) as well.

2.2 The finite element method

The finite element method is a method to transform the potentially very hard
problem (2.1) to a solvable finite-dimensional linear system, typically solved
using a computer. The overall process of the finite element method, after one
has obtained the weak form (2.2), can be described in the following steps:

1. Discretise the equation (2.2) by restricting the trial and test spaces to the
finite-dimensional space Vh ⊂ V . The problem is then expressed in the
finite element formulation.

2. Choose a basis for the finite-dimensional trial and test spaces in order to
formulate the problem as a linear system.

3. Solve the linear system.

2.2. The finite element method 7

In this section, we first present the finite element formulation, introduce inter-
polation and then derive an a priori error estimate to make sure that the FEM
converges properly.

2.2.1 Finite element formulation

To obtain the finite element formulation, we first introduce some triangulation
Th = {K} of our domain Ω, i.e. a subdivision of Ω into closed simplices that
fulfil that no vertex lies in the interior of an edge of another simplex, see Figure
2.1. Here, h = maxhK , where hK is the diameter of simplex K. Letting h vary
and become smaller, we have a family of triangulations, {Th}h. When refining the
mesh, one wants to somehow preserve the shape of the simplices. The family
of triangulations should be non-degenerate, meaning that there is a positive
constant C such that each simplex K contains a ball of radius ρK ≥ ChK .
Essentially, this requirement prevents the simplices from becoming arbitrarily
thin.

Figure 2.1: Examples of a valid (left) and invalid (right) triangulation.

We restrict the infinite-dimensional space V to a finite-dimensional space Vh ⊂
V based on Th. Typically, Vh can be e.g. the set of all piecewise linear functions
on Th. The finite element formulation of our problem thus reads: find uh ∈ Vh

such that
a(uh, vh) = L(vh), for all vh ∈ Vh. (2.3)

Note that since Vh ⊂ V , it also holds that a(u, vh) = L(vh) for all vh ∈
Vh. Subtracting (2.3) from this, we obtain the so-called Galerkin orthogonal-
ity: a(u− uh, vh) = 0 for all vh ∈ Vh. This means that the error u− uh between
the actual solution and the approximation is orthogonal to the space Vh with
respect to the scalar product a(·, ·). It also implies that the finite element (FE)
approximation is the best approximation with respect to the so-called energy
norm, which is defined by∥·∥2a = a(·, ·).

To concretise the FE formulation further, we choose a basis {ϕi}i ∈I for Vh,
where I is the set of interior nodes in the triangulation, and let uh and vh be
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linear combinations of the basis functions. This results in the system

∑
j∈I

ξj

∫

Ω

A0∇ϕj · ∇ϕi dx =

∫

Ω

fϕi dx, for all i ∈ I,

where ξj are the degrees of freedom. Defining a stiffness matrix A = (aij) with
entries aij =

∫
Ω
A0∇ϕj · ∇ϕi dx, a vector ξ = (ξj) with obvious entries, and a

load vector b = (bi) with entries bi =
∫
Ω
fϕi dx, this can be written as a matrix

equation. The goal is then to find a vector ξ such that

Aξ = b.

Thus, problem (2.1) is now approximated by a finite-dimensional linear system,
which can be solved with the help of a computer.

One feature that affects how fast the resulting linear system can be solved is
the condition number κ(A) of the matrix A. In section 2.3, we will see more
precisely how it affects the conjugate gradient method, but first, let us see
which order of magnitude one can expect for the condition number to have.

We assume a quasi-uniform family of triangulations, which is defined by the
existence of a ρ > 0 such that the largest ball inside any simplex has a diameter
of at least ρh diamΩ. In essence, this means that the simplices in one triangula-
tion should be around the same size. Then, for d ≥ 2, it can be shown that for
some constant C,

C−1h2vT v ≤ vTAv ≤ CvT v,

meaning that

λmin(A) ≥ 1

C
h2,

λmax(A) ≤ C
⇒ κ(A) =

λmax(A)

λmin(A)
≤ C2

h2
. (2.4)

For more details on this, we refer to (Brenner and Scott, 2002). In other words,
the condition number of A depends on the mesh size of the triangulation and
gets worse with a finer mesh.

2.2.2 Interpolation

In order to move forward with error estimates, one needs to discuss the concept
of interpolation. There are many different interpolants to choose from, and
they rely on the discretisation of the problem. The classical choice is the nodal

2.2. The finite element method 9

interpolant Ih : C(Ω) → Vh. It is defined by

Ihv(xi) = v(xi),

where xi are the nodal points of the triangulation. The interpolation operator
thus maps a function to the space Vh, but requires a continuous function
to begin with. If v ∈ H2(Ω)‚ it is continuous by Sobolev’s inequality, but
the interpolant is not well-defined for arbitrary v ∈ H1(Ω). There are other
interpolants that produce similar results, that one can use instead. One example
is the Scott-Zhang interpolant, which will be introduced in chapter 3.

Assuming that v ∈ H2(Ω) and moving forward with the nodal interpolant, it
holds that

∥Ihv − v∥L2(Ω) ≤ Ch2∥v∥H2(Ω) ,∥∥∇ (Ihv − v)
∥∥
L2(Ω)

≤ Ch∥v∥H2(Ω)

(2.5)

for all v ∈ H2(Ω), where h is the maximum diameter of the triangulation mesh.
The constant C is independent of h since the family of triangulations is non-
degenerate. We refer to (Brenner and Scott, 2002; Asadzadeh, 2020; Larsson
and Thomée, 2009) for further details.

2.2.3 A priori error estimate

One natural question that arises from approximating the solution u to (2.2)
with the solution uh to (2.3), is how close this approximation is to the actual
one, or in other words, how big the error u− uh is. This can be measured in
different ways. Firstly, one can be interested in this error in terms of either the
(often unknown) solution u or the numerically gained solution uh. An estimate
in terms of the former is called an a priori error estimate, whereas an estimate
based on the latter is called an a posteriori error estimate. Here, we derive an a
priori error estimate as this gives us convergence of the method, as opposed to
a posteriori error estimates.

Secondly, one needs to decide in which norm the error estimates should be
computed. Two natural choices of the norm is either the energy norm, as
introduced above, or the vector space norm, which in our example is the H1-
norm. The energy norm and the vector space norm are equivalent, see (Larsson
and Thomée, 2009). Here, we use the vector space norm∥·∥H1(Ω).

In order to obtain an a priori error estimate, one gets from coercivity of a,
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Galerkin orthogonality and boundedness of a, that

α∥u− uh∥2H1(Ω) ≤ a(u− uh, u− uh) ≤ a(u− uh, u− v) ≤

≤ α∥u− uh∥H1(Ω)∥u− v∥H1(Ω) ,

for any v ∈ Vh, leading to

∥u− uh∥H1(Ω) ≤
α

α
∥u− v∥H1(Ω) . (2.6)

Equation (2.6) is usually referred to as Céa’s lemma.

Using an interpolant and a corresponding interpolation estimate, such as (2.5),
this can be simplified to

∥u− uh∥H1(Ω) ≤ Ch∥u∥H2(Ω) .

We conclude that the FE approximation uh converges towards the exact solution
u as h → 0.

2.3 Iterative methods

Given a linear system
Ax = b, (2.7)

where A is an n × n symmetric and positive-definite matrix, one can either
solve it by using a direct method or an iterative one. When the linear system is
large, which PDE problems often are, one needs to use an iterative algorithm,
since direct methods require considerably more memory. The algorithm used
in the appended article is based on the conjugate gradient method. We proceed
by first explaining the idea behind it, then presenting the algorithm, and lastly
analysing the convergence of the method.

2.3.1 The idea behind the conjugate gradient method

Two vectors u and v are said to be A-orthogonal or conjugate with respect to the
matrix A if uTAv = 0. This defines a scalar product since A is symmetric and
positive-definite: uTAv = (u,Av) = (Au, v) = (u, v)A.

If P = {p1, ..., pn} are mutually conjugate vectors, P constitutes a basis for Rn.

2.3. Iterative methods 11

That means that any vector, and specifically the optimal solution x∗ to our
linear system (2.7), can be written as a sum of the vectors pi: x∗ =

∑
i αipi.

Hence, Ax∗ =
∑

i αiApi. Multiplying (2.7) by one of the conjugate vectors pk,
we obtain

pTk b = pTkAx∗ =
∑
i

αip
T
kApi =

∑
i

αi(pk, pi)A = αk(pk, pk)A,

because of conjugacy between the vectors pi. This gives us αk = (pk,b)
(pk,pk)A

.

In other words, the exact solution x∗ can be found by first computing n con-
jugate vectors with respect to A, and then for each of them, computing αk as
above.

Finding n conjugate vectors can be a very time- and memory-consuming task,
though, if the system (2.7) is large. In those cases, it might be better to turn
this into an iterative algorithm by finding one or more conjugate vectors and
terminating when the approximation of the solution is good enough.

2.3.2 The algorithm

In an iterative method, one needs an initial value x0 that improves in each
iteration. We can assume that x0 = 0. Just as in the gradient descent method,
in the first iteration, we choose to move in the direction of p0 = b − Ax0. In
the following iterations, though, the direction pk should be conjugate to the
previous directions pi, i < k. All directions pk, k > 0‚ will be conjugate to the
gradient Ax− b of the minimising function 1

2x
TAx− xT b, which is where the

name of the method derives from.

The approximation xk of the solution of equation (2.7) will be updated in each
iteration as per

xk+1 = xk + αkpk, (2.8)

for some step length αk. The residual is defined as rk = b−Axk. Using (2.8), it
is easy to verify that rk+1 will be given by

rk+1 = rk − αkApk, (2.9)

which is computationally cheaper to compute in each iteration since the product
Apk will need to be computed either way, and will thus be used from now on.

In addition to the directions pk being mutually conjugate, we also require that
the residuals rk in each iteration are orthogonal to each other, since that leads
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to several desirable properties. To construct the step directions pk, we use this
fact, and build the directions in a Gram-Schmidt-like manner, using the current
residual and subtracting components of the previous directions pi in order to
preserve conjugacy between directions:

pk = rk −
k−1∑
i=0

βkipi. (2.10)

We will soon determine the constants βki in equation (2.10), but first, we will
focus our attention on the step lengths αk.

Since p0 = r0, equation (2.10) means that the direction pk will be a linear
combination of the residuals ri, i = 0, ..., k. Because of our condition that the
residuals are mutually orthogonal, that also means that the next residual rk+1

is orthogonal to the direction pk. This makes sense since that means that we do
not have to move in any of the old directions again. In other words, the step
length in every iteration will be optimal.

Orthogonality between rk+1 and pk, i.e. (rk+1, pk) = 0, together with equation
(2.9) leads to (rk, pk) − αk(pk, pk)A = 0. We thus obtain αk = (rk,pk)

(pk,pk)A
. Now,

taking the inner product between equation (2.10) and rk, we notice that

(pk, rk) = (rk, rk)−
k−1∑
i=0

βki(pi, rk) = (rk, rk),

which means that we can formulate αk as

αk =
(rk, rk)

(pk, pk)A
. (2.11)

Now returning to the constants βki, we take the inner product between (2.10)
and Apℓ:

(pk, Apℓ) = (rk, Apℓ)−
k−1∑
i=0

βki(pi, Apℓ)

0 = (rk, pℓ)A − βkℓ(pℓ, pℓ)A,

leading to

βkℓ =
(rk, pℓ)A
(pℓ, pℓ)A

, ℓ < k.

In order to simplify the nominator, we take the inner product between rℓ and

2.3. Iterative methods 13

equation (2.9):

(rℓ, rk+1) = (rℓ, rk)− αk(rℓ, Apk)

αk(rℓ, Apk) = (rℓ, rk)− (rℓ, rk+1) {ri ⊥ rj , if i ̸= j}

(rℓ, pk)A =




1
αℓ
(rℓ, rℓ), ℓ = k,
1

αℓ−1
(rℓ, rℓ), ℓ = k + 1,

0, else.

Thus, most of the βkl-terms disappear:

βkℓ =


− 1

αk−1

(rk,rk)
(pk−1,pk−1)A

, k = ℓ+ 1,

0, else.

Using this together with equation (2.11), we rename βkℓ, change signs and
simplify:

βk =
(rk+1, rk+1)

(rk, rk)
. (2.12)

Thus, equation (2.10) can be updated to

pk+1 = rk+1 + βkpk. (2.13)

We are now ready to present the conjugate gradient method as a whole in
Algorithm 1.

Algorithm 1 The conjugate gradient method
x0 gets some initial value
r0 = p0 = b−Ax0

k = 0
while rk small enough do

αk =
rTk rk
pT
k Apk
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rTk+1rk+1

rTk rk
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k = k + 1

end while
return xk
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2.3.3 Convergence

One of the implications of the conjugate gradient method is that both {ri}ki=0

and {pi}ki=0 span the same subspace. It is easy to see that this subspace is a
so-called Krylov subspace - a subspace that is generated by repeatedly applying
one matrix to one vector. In this case, the subspace is span{r0, Ar0, A

2r0, ...}.
Since the subspace is Krylov, one can express the error in iteration k as

x∗ − xk = Pk(A) (x∗ − x0) ,

where Pk is a polynomial of order ≤ k such that Pk(0) = 1. For more details on
this, we refer to (Demmel, 1997).

Letting vi denote the orthonormal eigenvectors to the matrix A, and λi the
corresponding eigenvalues, we have that Pk(A)vi = Pk(λi)vi. With the initial
error written using vi as a basis, i.e. x∗ − x0 =

∑n
i=1 ξivi, in iteration k it holds

that:

x∗ − xk =

n∑
i=1

ξiPk(λi)vi,

A(x∗ − xk) =

n∑
i=1

ξiPk(λi)λivi,

which gives us

∥x∗ − xk∥2A =

n∑
i=1

ξ2i Pk(λi)
2λi.

The conjugate gradient method finds xk (and hence Pk(A)) so that this expres-
sion is minimised, meaning that we obtain

∥x∗ − xk∥2A ≤ min
Pk

P (0)=1

max
λ∈σ(A)

Pk(λ)
2

n∑
i=1

ξ2i λi =

= min
Pk

P (0)=1

max
λ∈σ(A)

Pk(λ)
2∥x∗ − x0∥2A ,

where σ(A) denotes the spectrum of A. By rewriting the polynomial Pk as a
scaled and shifted Chebyshev polynomial, one can show that the following
holds:

∥xk − x∗∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x0 − x∗∥A , (2.14)

2.3. Iterative methods 15

where κ(A) = λmax(A)/λmin(A) is the condition number of A. For more details
on this, we again refer to (Demmel, 1997).

Our conclusion is thus that the convergence of the CG method depends on the
condition number of the matrix A. A higher condition number leads to slower
convergence. When the matrix A is ill-conditioned, which is the case for PDE
problems in general, it is thus a good idea to find a suitable preconditioner in
order to achieve faster convergence.
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3 Mixed-dimensional PDEs

Oftentimes, in real world applications, thin cracks, fractures or reinforcements
occur in domains where PDEs are applicable. This raises a need to expand
the model problem in Section 2.2 to one that can handle such cases. Examples
of applications with these kinds of structures can be flow in porous media,
such as permeable rocks with cracks, cell membranes, see (Schwartz et al.,
2005), or blood vessels in tissue, see (Fritz et al., 2022). It is often advantageous
to model such structures as lower dimensional interfaces instead of narrow
3-dimensional cracks or similar. This results in mixed-dimensional models
with bulk areas and interfaces that need to be coupled.

There are different ways to solve such mixed-dimensional PDEs. The main
method in this thesis is the fitted finite element method, which is also seen in
e.g. (Arrarás et al., 2019; Boon et al., 2018; Jaffre et al., 2006). There are also a
few other techniques, for example trace based methods, see e.g. (Burman et al.,
2019, 2015; Olshanskii et al., 2009).

In this chapter, we will first go through the problem formulation of mixed-
dimensional PDEs, as formulated in the article, followed by a description of the
fitted finite element method. Thereafter, we will use a domain decomposition
approach to precondition the arising linear system, before solving it with the
CG method.

3.1 A mixed-dimensional model problem

In this section, we start by formulating a mixed-dimensional PDE problem.
First, we go through the geometry needed in order to properly formulate the
problem, and then we present a strong formulation, which primarily serves as
intuitional understanding of where the weak formulation comes from, since
it is not certain that there is enough smoothness in the problem for a strong

17
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solution to be well-defined. The weak formulation is then presented, along
with some results on existence, uniqueness and regularity of a solution.

3.1.1 Problem formulation

We consider an open, connected domain Ω ∈ Rd, where d = 2 or 3. We let Ω be
convex and partitioned into subdomains Ωc of codimensionalities c = 0, 1, ..., d
such that

Ω =
⋃
c

Ωc.

The codimensionality indicates the number of dimensions lower than d. For
example, in R2, Ω0 may consist of planes, Ω1 of lines, and Ω2 of dots. Each
subdomain is similarly partitioned into subdomain segments Ωc

ℓc
:

Ωc =
⋃
ℓc

Ωc
ℓc .

We assume that each subdomain segment is open and dense. For details
on the topologies, see the appended paper. We further assume that either
Ωc+1

ℓc+1
⊆ ∂Ωc

ℓc
or Ωc+1

ℓc+1
∩ Ωc

ℓc
= ∅, so the lower dimensional subdomain seg-

ments are either fully part of the boundary to a higher dimensional subdomain
segment, or not at all.

Essentially, these requirements mean that interface segments separate bulk
segments, and points (in a 2-dimensional setting) separate interface segments.
See Figure 3.1 for an example domain. For simplicity, we also assume that
all subdomain segments are polytopal with Lipschitz boundaries, ruling out
slits that go into subdomain segments. Now, we can introduce the adjacency
relation

(ℓc, ℓc+1) ∈ Ec if Ωc+1
ℓc+1

⊆ ∂Ωc
ℓc , (3.1)

which is needed when expressing the PDE. Equation 3.1 says that if for example
an interface, of codimensionality 1, is part of the boundary of a bulk segment,
which has codimensionality 0, then the corresponding pair of indices belongs
to the set E0. The set E0 will thus contain information about which interfaces
coincide with which bulk boundaries and E1 will correspondingly contain
information about which segments of codimension 2 coincide with which
interface boundaries.

We will restrict our focus to the subdomain codimensionalities 0, 1 and 2. To

3.1. A mixed-dimensional model problem 19
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Ω0
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Figure 3.1: An example of a domain Ω with interfaces.

simplify notation, we therefore let

Ω0 =
⋃
i∈I

Ω0
i , Ω1 =

⋃
j∈J

Ω1
j , Ω2 =

⋃
k∈K

Ω2
k.

Moving on to the strong formulation of a PDE problem on such a domain, we
consider an equation of the form (2.1a) on the bulk and interface areas, couple
them by Robin conditions, and apply homogeneous Dirichlet conditions on the
outer boundary ∂Ω. We then seek a solution u, split into the parts u0

i : Ω0
i → R

on the bulk segments and u1
j : Ω1

j → R on the interface segments. We formulate
the differential equation as

−∇ ·
(
Ai∇u0

i

)
= fi in Ω0

i ,

u0
i = 0 on Ω0

i ∩ ∂Ω,

−∇τ ·
(
Aj∇τu

1
j

)
−Bj

(
u0
i − u1

j

)
= fj in ∂Ω0

i ∩ Ω1
j ,

u1
j = 0 on Ω1

j ∩ ∂Ω,

(3.2)

where ∇τ denotes the gradient in the tangential direction. The diffusion co-
efficients Ai : Ω0

i → R and Aj : Ω1
j → R fulfil 0 < α ≤ Ai, Aj ≤ α for some

constants α, α, the Robin coupling coefficient Bj : Ω1
j → R similarly fulfils

0 < β ≤ Bj ≤ β for constants β, β, and the source terms fi : Ω0
i → R and

fj : Ω
1
j → R are assumed to be L2.

Looking at equation 3.2, it consists of differential equations on the bulk and
interface areas along with boundary conditions at the outer boundary ∂Ω. We
need additional coupling conditions where different subdomains meet. We
insert a Robin type coupling condition between the bulk and interface segments,



18 3. Mixed-dimensional PDEs

solution to be well-defined. The weak formulation is then presented, along
with some results on existence, uniqueness and regularity of a solution.

3.1.1 Problem formulation

We consider an open, connected domain Ω ∈ Rd, where d = 2 or 3. We let Ω be
convex and partitioned into subdomains Ωc of codimensionalities c = 0, 1, ..., d
such that

Ω =
⋃
c

Ωc.

The codimensionality indicates the number of dimensions lower than d. For
example, in R2, Ω0 may consist of planes, Ω1 of lines, and Ω2 of dots. Each
subdomain is similarly partitioned into subdomain segments Ωc

ℓc
:

Ωc =
⋃
ℓc

Ωc
ℓc .

We assume that each subdomain segment is open and dense. For details
on the topologies, see the appended paper. We further assume that either
Ωc+1

ℓc+1
⊆ ∂Ωc

ℓc
or Ωc+1

ℓc+1
∩ Ωc

ℓc
= ∅, so the lower dimensional subdomain seg-

ments are either fully part of the boundary to a higher dimensional subdomain
segment, or not at all.

Essentially, these requirements mean that interface segments separate bulk
segments, and points (in a 2-dimensional setting) separate interface segments.
See Figure 3.1 for an example domain. For simplicity, we also assume that
all subdomain segments are polytopal with Lipschitz boundaries, ruling out
slits that go into subdomain segments. Now, we can introduce the adjacency
relation

(ℓc, ℓc+1) ∈ Ec if Ωc+1
ℓc+1

⊆ ∂Ωc
ℓc , (3.1)

which is needed when expressing the PDE. Equation 3.1 says that if for example
an interface, of codimensionality 1, is part of the boundary of a bulk segment,
which has codimensionality 0, then the corresponding pair of indices belongs
to the set E0. The set E0 will thus contain information about which interfaces
coincide with which bulk boundaries and E1 will correspondingly contain
information about which segments of codimension 2 coincide with which
interface boundaries.

We will restrict our focus to the subdomain codimensionalities 0, 1 and 2. To

3.1. A mixed-dimensional model problem 19

Ω0
1

Ω0
2

Ω0
3

Ω1
1

Ω1
2

Ω1
3

Ω2
1

Figure 3.1: An example of a domain Ω with interfaces.

simplify notation, we therefore let

Ω0 =
⋃
i∈I

Ω0
i , Ω1 =

⋃
j∈J

Ω1
j , Ω2 =

⋃
k∈K

Ω2
k.

Moving on to the strong formulation of a PDE problem on such a domain, we
consider an equation of the form (2.1a) on the bulk and interface areas, couple
them by Robin conditions, and apply homogeneous Dirichlet conditions on the
outer boundary ∂Ω. We then seek a solution u, split into the parts u0

i : Ω0
i → R

on the bulk segments and u1
j : Ω1

j → R on the interface segments. We formulate
the differential equation as

−∇ ·
(
Ai∇u0

i

)
= fi in Ω0

i ,

u0
i = 0 on Ω0

i ∩ ∂Ω,

−∇τ ·
(
Aj∇τu

1
j

)
−Bj

(
u0
i − u1

j

)
= fj in ∂Ω0

i ∩ Ω1
j ,

u1
j = 0 on Ω1

j ∩ ∂Ω,

(3.2)

where ∇τ denotes the gradient in the tangential direction. The diffusion co-
efficients Ai : Ω0

i → R and Aj : Ω1
j → R fulfil 0 < α ≤ Ai, Aj ≤ α for some

constants α, α, the Robin coupling coefficient Bj : Ω1
j → R similarly fulfils

0 < β ≤ Bj ≤ β for constants β, β, and the source terms fi : Ω0
i → R and

fj : Ω
1
j → R are assumed to be L2.

Looking at equation 3.2, it consists of differential equations on the bulk and
interface areas along with boundary conditions at the outer boundary ∂Ω. We
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require continuity between interface segments and express a Kirchoff’s law
equation between interface segments:

nΩ0
i
·Ai∇u0

i +Bju
0
i = Bju

1
j on ∂Ω0

i ∩ Ω1
j , (3.3a)

u1
j = u1

j′ on ∂Ω1
j ∩ ∂Ω1

j′ , (3.3b)∑
j:(j,k)∈E1

nΩ1
j
·Aj∇τu

1
j = 0 on ∂Ω1

j ∩ Ω2
k. (3.3c)

3.1.2 Variational formulation, existence and uniqueness

In order to express equations (3.2) - (3.3) weakly, we need to properly define
the vector spaces and norms that we will use. For bulk functions v0, we define
the space

V 0 = H1(Ω0) =
∏
i∈I

H1(Ω0
i ),

with V 0
0 = {v ∈ V 0 : v|∂Ω = 0}. Similarly, for interface functions v1, we first

define
V 1
b = H1(Ω1) =

∏
j∈J

H1(Ω1
j ).

However, these functions need to be continuous over codimension 2 as per
equation 3.3b, which they are not in V 1

b . Hence, we further define

V 1 = {v1 ∈ V 1
b : v1j |Ω2

k
= v1j′ |Ω2

k
for all pairs (j, k), (j′, k) ∈ E1},

where the continuity at intersections is enforced. We also let V 1
0 = {v ∈ V 1 :

v |∂Ω = 0} be the corresponding space with homogeneous boundary condi-
tions.

We now combine these spaces into:

V = V 0 × V 1 and V0 = V 0
0 × V 1

0 ,

on which we also define the norm

∥v∥2V = ∥v0∥2H1(Ω0) + ∥v1∥2H1(Ω1).

These spaces are Hilbert spaces, allowing us to later apply the Lax-Milgram
theorem.
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Through a similar process as in Section 2.2, we multiply the differential equa-
tions in 3.2 by v0 ∈ V 0

0 and v1 ∈ V 1
0 respectively, integrate, apply Green’s

formula and adhere to the boundary conditions (3.3). Consequently, we obtain
the variational formulation: find u ∈ V0 so that

a(u, v) = F (v) for all v ∈ V0, (3.4)

where
a(v, w) =

∑
i∈I

(Ai∇v0i ,∇w0
i )Ω0

i
+
∑
j∈J

(Aj∇τv
1
j ,∇τw

1
j )Ω1

j

+
∑

(i,j)∈E0

(Bj(v
0
i − v1j ), w

0
i − w1

j )Ω1
j
, and

F (w) =
∑
i∈I

(fi, w
0
i )Ω0

i
+
∑
j∈J

(fj , w
1
j )Ω1

j
.

Here, wc
ℓc

denotes the restriction of wc to the subdomain segment Ωc
ℓc

.

In order to deduce existence and uniqueness of a solution, one has to show
that F (v) is bounded, which is true since we assume that fi ∈ L2(Ω0

i ) and
fj ∈ L2(Ω1

j ), and that the bilinear form a is coercive and bounded.

It is not straightforward to show that a is coercive, since the domain geome-
try allows for more complicated partitions, where subdomain segments are
detached from the boundary ∂Ω. To show coercivity, one has to go through
an iterative process, starting at some subdomain segment at the boundary
and reaching all the other subdomain segments along the way. For a proof of
coercivity, we refer to the paper appended to the thesis. One obtains the bound

a(v, v) ≥ C
(
α−1 + β−1

)−1

∥v∥2V , (3.5)

where C depends on the geometry of the problem.

The proof to show boundedness of a is more comprehensible, but again, we
refer to the article to see it in detail. The bound one obtains reads

a(v, w) ≤ C
(
α+ β

)
∥v∥V ∥w∥V , (3.6)

where again C depends on the geometry of the problem.

Using the Lax-Milgram theorem, we conclude that there exists a unique solu-
tion u ∈ V0 that solves equation 3.4.
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0 = {v ∈ V 1 :

v |∂Ω = 0} be the corresponding space with homogeneous boundary condi-
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V = V 0 × V 1 and V0 = V 0
0 × V 1

0 ,
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Through a similar process as in Section 2.2, we multiply the differential equa-
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0 and v1 ∈ V 1
0 respectively, integrate, apply Green’s

formula and adhere to the boundary conditions (3.3). Consequently, we obtain
the variational formulation: find u ∈ V0 so that

a(u, v) = F (v) for all v ∈ V0, (3.4)

where
a(v, w) =

∑
i∈I

(Ai∇v0i ,∇w0
i )Ω0

i
+
∑
j∈J

(Aj∇τv
1
j ,∇τw

1
j )Ω1

j

+
∑

(i,j)∈E0

(Bj(v
0
i − v1j ), w

0
i − w1

j )Ω1
j
, and

F (w) =
∑
i∈I

(fi, w
0
i )Ω0

i
+
∑
j∈J

(fj , w
1
j )Ω1

j
.

Here, wc
ℓc

denotes the restriction of wc to the subdomain segment Ωc
ℓc

.

In order to deduce existence and uniqueness of a solution, one has to show
that F (v) is bounded, which is true since we assume that fi ∈ L2(Ω0

i ) and
fj ∈ L2(Ω1

j ), and that the bilinear form a is coercive and bounded.

It is not straightforward to show that a is coercive, since the domain geome-
try allows for more complicated partitions, where subdomain segments are
detached from the boundary ∂Ω. To show coercivity, one has to go through
an iterative process, starting at some subdomain segment at the boundary
and reaching all the other subdomain segments along the way. For a proof of
coercivity, we refer to the paper appended to the thesis. One obtains the bound

a(v, v) ≥ C
(
α−1 + β−1

)−1

∥v∥2V , (3.5)

where C depends on the geometry of the problem.

The proof to show boundedness of a is more comprehensible, but again, we
refer to the article to see it in detail. The bound one obtains reads

a(v, w) ≤ C
(
α+ β

)
∥v∥V ∥w∥V , (3.6)

where again C depends on the geometry of the problem.

Using the Lax-Milgram theorem, we conclude that there exists a unique solu-
tion u ∈ V0 that solves equation 3.4.
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3.1.3 Regularity

For Ω ⊂ R2, one can obtain regularity estimates through a similar process as
the one presented in Section 2.1. The Robin coupling conditions complicate
the proof slightly though, along with the fact that subdomain segments are
allowed to be non-convex. For this setting, one obtains that u0

i ∈ H
3/2(Ω0

i )
and u1

j ∈ H2(Ω1
j ). If the subdomains are convex, one additionally gets that

u0
i ∈ H2(Ω0

i ). For a proof of this, we refer to Appendix A in the appended
paper.

In the case of H2-regularity, the strong formulation (3.2) - (3.3) is well-defined
and corresponds to the weak formulation (3.4).

3.2 Fitted finite element method

In this section, we go through numerical methods to solve mixed-dimensional
systems, with heavy emphasis on the fitted finite element method. We fur-
ther go through interpolation in the mixed-dimensional setting, a priori error
estimates and, lastly, an iterative method to solve the resulting linear system.

3.2.1 Fitted finite element formulation

The main question when formulating a finite element method for a mixed-
dimensional problem is how to define the triangulation on the more complex
geometry that these kinds of problems have. There are several methods to
manage geometries like these. In (Dziuk and Elliott, 2013), several methods
to solve PDEs on this kind of geometries are reviewed. One plausible method
is to use CutFEM, where one utilises an unfitted, structured mesh that is not
adapted to the underlying geometry, where only the mesh cells that are ”cut”
by interfaces will need special treatment. See e.g. (Hansbo and Hansbo, 2002).

We will however turn our attention towards the fitted finite element method,
which in contrast to CutFEM uses a fitted mesh that is adapted to the under-
lying geometry. Fitted FEM is also used in a lot of research, see for example
(Arrarás et al., 2019; Boon et al., 2018; Jaffre et al., 2006).

To define a triangulation on a mixed-dimensional geometry, we first define a
triangulation on the subdomains of codimension 1. Let T 1

h,j be triangulations
of Ω1

j , and T 1
h be the union of all of them. We define a family of triangulations
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{T 1
h,j}h that should be non-degenerate.

Correspondingly, we define T 0
h,i to be triangulations of Ω0

i , with T 0
h =

⋃
i∈I T 0

h,i

being the union of them. Again, we let {T 0
h }h be a non-degenerate family of

triangulations. The parameter h is the maximum diameter of the simplices.

The simplices {K0} of T 0
h and the simplices {K1} of T 1

h are connected in
the following way: either K1 constitutes an edge of a simplex K0, or their
intersection is at most part of the boundary of K1. An example of such a
triangulation in 2 dimensions is shown in figure 3.2.

Figure 3.2: Example of a 2-dimensional domain with interfaces represented as blue
thick lines. The mesh is marked in red in the 2-dimensional subdomains, and mesh
points are marked with blue rings on the 1-dimensional interfaces.

When we have a discretisation of a domain, we need to define the discretised
test and trial spaces. We let

V 0
h =

∏
i∈I

{v0 ∈ C(Ω0
i ) : v

0 piecewise linear on T 0
i , v

0|∂Ω = 0},

and

V 1
b,h =

∏
j∈J

{v1 ∈ C(Ω1
j ) : v

1 piecewise linear on T 1
j , v

1|∂Ω = 0},

V 1
h =

∏
j∈J

{v1 ∈ V 1
b,h : v1j |Ω2,k − v1j′ |Ω2,k = 0 for all pairs (j, k), (j′, k) ∈ E1}.

From these spaces, we also define the composite space Vh = V 0
h × V 1

h .
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Now, we can formulate the finite element problem: find uh ∈ Vh such that

a(uh, vh) = F (vh) for all vh ∈ Vh. (3.7)

Since Vh is also a Hilbert space, and the bounds (3.5) - (3.6) hold for equation
(3.7) as well, Lax-Milgram gives us existence and uniqueness of a solution.

3.2.2 Interpolation

In our setup, the nodal interpolant would not be well-defined since there is
no requirement that the functions are continuous on the different subdomain
segments. We will instead make use of the Scott-Zhang interpolant and define
an interpolant Ih : V0 → Vh by its components Ih(v0, v1) = (I0

hv
0, I1

hv
1), where

I0
h : V 0

0 → V 0
h and I1

h : V 1
0 → V 1

h are Scott-Zhang interpolants.

To introduce the concept of the Scott-Zhang interpolant, we first need to make
a few other definitions. All the nodes z in our triangulation lie on the boundary
of simplices K. For each node z, we choose a simplex Kz such that z ∈
Kz . We then let K̃z be an edge (or equivalent in other dimensions) of Kz . If
z ∈ (∂Ω ∪ Ω1), the simplex and edge are chosen such that K̃z ⊂ Kz ∩ (∂Ω∪Ω1).
See an example of these notations in Figure 3.3.

z
Kz

K̃z

Figure 3.3: An example of a node z with a corresponding simplex Kz and K̃z .

Further, we let P̃z be the finite element space Vh restricted to K̃z , and Ñz be the
set of nodes that correspond to P̃z . We let {ϕK̃z

N : N ∈ Ñz} be the nodal basis
for P̃z and {ψK̃z

N : N ∈ Ñz} be the corresponding L2(K̃z)-basis. Then we have

ψK̃z

M (ϕK̃z

N ) =

∫

K̃z

ψK̃z

M ϕK̃z

N dx = δMN for all M,N ∈ Ñz,

where δ is the Kronecker delta.
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The local average Ñz(v) of a function v around a node z can now be defined as

Ñz(v) = ψK̃z

Nz
(v) =

∫

K̃z

ψK̃z

Nz
v(x) dx,

which leads us to defining the interpolants by

I0
hv

0
i =

∑
z

Ñz(v
0
i )ϕ

0
z

for v0 ∈ V 0 and
I1
hv

1
j =

∑
z

Ñz(v
1
j )ϕ

1
z

for v1 ∈ V 1. An important property of the Scott-Zhang interpolant is that
Ihv = v for all v ∈ Vh.

With these definitions, we obtain the interpolation error estimate

∥v − Ihv∥V ≤ Ch

(∥∥∥D2v0
∥∥∥
L2(Ω0)

+
∥∥∥D2v1

∥∥∥
L2(Ω1)

)
, (3.8)

for all v ∈ V . For a proof of this, we refer to (Brenner and Scott, 2002; Scott and
Zhang, 1990).

3.2.3 A priori error estimate

Now that we have an interpolation error estimate, we are ready to derive an a
priori error estimate for this mixed-dimensional setting. From coercivity of a
(equation (3.5)), Galerkin orthogonality and boundedness of a (equation (3.6)),
we derive

1

C(α−1 + β−1)
∥u− uh∥2V ≤ a(u− uh, u− uh) ≤ a(u− uh, u− v) ≤

≤ C
(
α+ β

)
∥u− uh∥V ∥u− v∥V ,

for all v ∈ Vh, and thus we obtain Céa’s lemma for this mixed-dimensional
setting:

∥u− uh∥V ≤ C
(
α−1 + β−1

)(
α+ β

)
∥u− v∥V .

Letting v = Ihu and using equation (3.8), we formulate the final a priori error
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N : N ∈ Ñz} be the nodal basis
for P̃z and {ψK̃z
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estimate:

∥u− uh∥V ≤ Ch
(
α−1 + β−1

)(
α+ β

)(∥∥∥D2u0
∥∥∥
L2(Ω0)

+
∥∥∥D2u1

∥∥∥
L2(Ω1)

)
.

(3.9)

We can thus conclude that the fitted finite element approximation uh does
converge towards u when h → 0.

3.3 Iterative methods

In order to solve the linear system that arises from problem (3.7), we want to
make use of the conjugate gradient method that was presented in section 2.3.
The condition number is in general very large, though, so we we need to multi-
ply it by a preconditioner, and hence use the slightly modified preconditioned
conjugate gradient (PCG) method instead.

In this section, we will first go through how one can rewrite the linear system
stemming from equation (3.7) into two separate equations corresponding to
the bulk and interfaces, then we briefly introduce the PCG method, and lastly,
we focus on constructing a preconditioner that improves the convergence of
the method.

3.3.1 Schur complement

Equation (3.7) can be written in matrix form as AU = b. The solution uh of
equation (3.7) consists of two parts, u0

h and u1
h. With {φ0

k} and {φ1
ℓ} being the

standard Lagrange basis functions of V 0
h and V 1

h respectively, u0
h and u1

h can be
written as sums u0

h =
∑

k U
0
kφ

0
k and u1

h =
∑

ℓ U
1
ℓ φ

1
ℓ . Hence, the matrix form of

the equation can instead be split up (possibly after reordering) into parts that
correspond to the bulk and interface areas:

[
A00 A01

A10 A11

] [
U0

U1

]
=

[
b0
b1

]
. (3.10)

Here, A00 describes the degrees of freedom in the bulk, and A11 describes the
degrees of freedom on the interfaces. The submatrices A01 and A10, which
are each other’s transposes, describe the connections between the bulk and
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interfaces. From equation (3.10), we get two separate equations,

A00U0 +A01U1 = b0, and (3.11a)
A10U0 +A11U1 = b1. (3.11b)

Equation (3.11a) can be rewritten into

A00U0 = b0 −A01U1. (3.12)

This equation is solvable with reasonable time and memory consumption
because of the block diagonal stucture of A00, which comes from the fact that
the subdomains {Ω0

i }i are disconnected from one another. It does require that
we know U1, though. In order to obtain U1, we form what is known as the
Schur complement, using equations (3.11b) and the resulting expression for U0

from equation (3.12):
(
A11 −A10A

−1
00 A01

)
U1 = b1 −A10A

−1
00 b0.

Letting Ã11 = A11 −A10A
−1
00 A01 and b̃1 = b1 −A10A

−1
00 b0, this can be rewritten

as
Ã11U1 = b̃1. (3.13)

This linear equation does not have the nice properties that (3.12) has, making it
more time and memory consuming to solve. Note that Ã11 is still symmetric
and positive definite.

In order to solve equation (3.13) more efficiently, we want to make use of the
preconditioned conjugate gradient method using a suitable preconditioner.

3.3.2 Preconditioned conjugate gradient method

As noted before, the general linear system (2.7) often comes badly conditioned,
as in the case of equation (3.13). By finding a symmetric, positive definite
matrix T−1 whose inverse T multiplied by the linear system leads to a better
conditioned system, one can from the CG method derive the preconditioned
conjugate gradient (PCG) method. In other words, the PCG method approxi-
mately solves the preconditioned linear system

TAx = Tb.

The reason why this requires a modification of the CG method is that the
product TA in general is not symmetric and positive definite. It is required to
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be symmetric and positive definite with respect to the scalar product induced
by A, though. We will not go through the PCG method here in detail because
of its similarity to the CG method, but instead we refer to e.g. (Demmel, 1997)
for interested readers. It is important to note, though, that the inequality (2.14)
still holds for the preconditioned system, with the only difference being that κ
instead is the condition number of the product TA:

∥xk − x∗∥A ≤ 2

(√
κ(TA)− 1√
κ(TA) + 1

)k

∥x0 − x∗∥A , (3.14)

Some examples of simple preconditioners one may use are the Jacobi precon-
ditioner, where one keeps the diagonal values of A in order to construct T−1,
and let all non-diagonal entries be 0, and incomplete Cholesky factorisation.
These preconditioners are not enough for the problems in the appended article,
though, which is why we present another preconditioner, based on domain
decomposition.

3.3.3 A preconditioner based on domain decomposition

The preconditioner that is implemented in the article is proposed in (Kornhuber
and Yserentant, 2016; Görtz et al., 2022). The first step is to introduce a quasi-
uniform coarse mesh TH of the domain, that does not take the interfaces or
the meshes T 0

h and T 1
h into consideration. See Figure 3.4. On this mesh, we

define a corresponding finite element space WH with standard Lagrange basis
{ϕj}Nj=1.

The idea behind the preconditioner is then to compute the inverse of the
restriction of Ã11 to the overlapping subdomains (subdomains with regards
to the mesh TH ), defined by the support of the Lagrange basis functions. That
means that the preconditioner will be a sum of a lot of matrices with non-
zero elements only where the corresponding Lagrange basis functions are
supported. To construct these parts of the preconditioner, we define Wj =
{v ∈ V 1

h : supp(v) ⊂ supp(ϕj)}, which are subspaces of V 1
h , for j = 1, ..., N .

Together, these spaces constitute V 1
h , making it possible to write any v ∈ V 1

h as
a sum of functions in these spaces; v =

∑N
j=1 vj , where vj ∈ Wj .

We denote the size of the subspace Wj by mj and let Qj ∈ Rm×mj be prolonga-
tion matrices associated with subspace Wj . Prolongation matrices are matrices
that take a subdomain and prolong it to the full domain typically by using zeros,
in this case thus mapping Wj to V 1

h . The transpose QT
j will on the other hand re-
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Figure 3.4: An example of a coarse mesh TH (marked with red) of a domain Ω, which
does not take into account where interfaces (marked with blue) lie.

strict a function v to patch j. The expression xj = (QT
j AQj)

−1QT
j v solves a lin-

ear system on the same patch, corresponding to the equation a(x̂j , w) = (v, w)
for all w ∈ Wj , where x̂j is a function on Wj whose nodal values correspond to
xj . The product Qjxj then prolongs the solution to the full space again.

With this logic, the contributing term to the preconditioner of each subdomain
will be Tj = Qj(Q

T
j Ã11Qj)

−1QT
j , j = 1, ..., N .

One could settle for these parts alone, but by also adding another matrix
corresponding to the coarse mesh itself, but not the interfaces inside, one
drastically improves the convergence of the PCG method, since the coarse
scale effects are then captured directly. To construct this extra part, we let
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Inodal
h : WH → V 1

h be the nodal interpolant from WH to V 1
h . Then we can define

the space W0 = Inodal
h WH , which is a subset of V 1

h . We define Q0 the same way
as above, and similarly let T0 = Q0(Q

T
0 Ã11Q0)

−1QT
0 .

We are then ready to form the full preconditioner as

T =
N∑
j=0

Tj =

N∑
j=0

Qj(Q
T
j Ã11Qj)

−1QT
j . (3.15)

The final matrix T is of size m×m.

By the construction of Tj (see above), TjÃ11 are orthogonal projections onto the
space Wj with respect to the scalar product induced by Ã11. That is, it holds
that (TjÃ11v, w)Ã11

= (v, w)Ã11
for all w ∈ Wj . Because of this, we have that

(u, T Ã11w)Ã11
=

N∑
j=0

(u, TjÃ11w)Ã11
=

N∑
j=0

(TjÃ11u, TjÃ11w)Ã11
=

=
N∑
j=0

(TjÃ11u,w)Ã11
= (TÃ11u,w)Ã11

,

which shows that TÃ11 is Ã11-symmetric. It is also positive definite with
respect to Ã11 since (TÃ11v, T Ã11v)Ã11

= ∥TÃ11v∥2Ã11
≥ 0 with equality if

and only if v = 0. Thus, this preconditioner fulfils the requirement of being
symmetric and positive definite with respect to Ã11, which was required for
the PCG method.

With a few assumptions on the underlying network of interfaces, PCG with
preconditioner T does indeed converge. One can show that the eigenvalues λ
of TÃ11 fulfil

C1(d, α, α, β, β) ≤ λ(TÃ11) ≤ C2(d, α, α, β, β),

where the constants C1 and C2 are independent of h and H , but C1 additionally
depends on the connectivity and density of the network of interfaces. This
means that the condition number κ(TÃ11) is independent of h and H and we
thus gain a much better convergence as per equation (3.14) in comparison to
using the CG-method without a preconditioner, where the condition number
depends on h as described in section 2.2. For the full assumptions and proofs
of convergence and eigenvalues, we refer to the appended article and to (Görtz
et al., 2022).

3.3. Iterative methods 31

When applying this preconditioner, one has to solve one coarse scale linear
problem and n independent local problems. All of these problems can be
solved using a direct solver since they are not very large, and thus applying
this preconditioner for the PCG method results in a semi-iterative method.
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4 Summary and future work

In this chapter, we provide a summary of Paper I, which is appended to this
thesis. We describe the overall aims, findings and conclusions in order to
facilitate the understanding of its contribution to the research field. Following
this, we also discuss future work in this area.

4.1 Paper I: Well-Posedness and Finite Element Ap-
proximation of Mixed Dimensional Partial Dif-
ferential Equations

We present a mixed-dimensional elliptic partial differential equation, which is
given on a domain with a large number of interfaces. The bulk subdomains and
the interfaces are both equipped with differential equations that are connected
to each other via Robin boundary conditions, whilst the boundary of the full
domain is equipped with homogeneous Dirichlet conditions. The PDE is given
by equation (3.4). We show that the bilinear form is coercive and bounded,
equations (3.5) – (3.6), and that the Lax-Milgram theorem thus guarantees the
existence of a unique solution. The model is given in weak form but under the
assumption that all bulk subdomains are convex, we have enough regularity to
conclude that there is a corresponding strong form, which we present briefly,
given by equations (3.2) – (3.3).

A fitted finite element method is presented in the paper, along with the a priori
error estimate (3.9) that shows that the method actually converges.

The resulting linear system is split up into a bulk equation and an interface
equation as described in equation (3.10). The bulk equation (3.12) is solved
directly because of its block diagonal structure, which reduces the time and
memory consumption for a direct solver. The interface equation (3.13) is a
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heavier linear system, though, and may be too large for a direct method to
handle. We have chosen to implement the preconditioned gradient method
with the preconditioner based on domain decomposition that is described in
section 3.3. We show that the PCG method with this preconditioner actually
converges, whereafter we present some numerical examples.

The numerical examples are split into two parts with different purposes –
first, we investigate the convergence of the fitted finite element method with
regards to the mesh size h. Here, we do not separate the bulk and interface
equations, but instead solely use a direct solver, since we have two relatively
small test problems. The main focus lies on reducing h and seeing whether the
anticipated rate of convergence is met. In the case of infinite interfaces, one
obtains convex bulk subdomains, where we predict a linear convergence rate.
The numerical example shows that the expected rate of convergence is met. In
the case of finite interfaces, where one obtains non-convex subdomains, the
expected rate of convergence is h1/2. The obtained rate of convergence in the
numerical example exceeds this, and is thus better than the estimation.

The second part of the numerical examples is the part with a large number of
interfaces and implementation of the iterative method. Here, the main focus
is to analyse how many iterations the PCG method needs before converging,
and to see how the different parameters Aj and Bj affect this. The number of
iterations before applying the preconditioner lie around 5000 to 10000. Using
the preconditioner, the number of iterations reduce significantly – in our test
cases the number of iterations vary between 24 and 87.

The parameter Bj describes the coupling between the bulk areas and the
interfaces, with a higher Bj representing a stronger coupling. The numerical
examples show that a stronger coupling requires more iterations.

The parameter Aj is either a constant 1 or piecewise constant on the different
grid subintervals, uniformly distributed between 0.01 and 1. The system
requires more iterations in the case of the uniformly distributed Aj .

4.2 Future work

There are several natural extensions to the research in the appended paper. In
the domains we have examined so far, we do not allow slits. That is, at the end
of every interface, there must be another interface that takes over. One natural
continuation of our research is thus to examine the case where slits are allowed.

Another planned research topic is to use the super localised orthogonal decomposi-
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tion (SLOD) method in order to solve the PDE problem (3.2)-(3.3). The SLOD
method is based on the localised orthogonal decomposition (LOD) method, which is
a variation of FEM that uses fine-scale correctors based on the problem. See
(Målqvist and Peterseim, 2020). SLOD is a variation of the LOD method that
converges even faster, see (Hauck and Peterseim, 2022).

Yet another extension is to alter the problem formulation itself. As it is now, we
have examined elliptic problems, but it would also be interesting to take a look
at parabolic problems posed on domains with a large number of interfaces.
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