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Abstract—Artificial intelligence employs machine learning to
create intelligent systems. Experiment management tools have
been created to support machine learning practitioners in their
development efforts relating to the management of artifacts and
metadata. Although the technical capabilities of such tools in
terms of features have been widely examined, which tools are
used as well as the tool´s benefits, limitations and challenges,
remain unknown. This paper provides an empirical investigation
addressing the questions previously stated. Those interested in
gaining a better understanding of the users of these tools, such
as tool developers and researchers looking for initial data on
this topic, could find the results presented valuable. This was
achieved by developing and distributing an online questionnaire
to elicit qualitative and quantitative data concerning experiment
management tools from 24 machine learning practitioners. Par-
ticipants reported benefiting from the tools in areas such as
reproducibility, time savings, traceability, and result analysis.
Reported challenges and limitations of the tools included a lack
of features, quality and integration with other systems. Many
participants combined tools in order to achieve the desired work-
flow. The three most commonly used tools were TensorBoard,
MLFlow, and SageMaker. The empirical contributions of the
survey improved the understanding of experiment management
tools from the perspective of machine learning practitioners. The
data can be leveraged towards building better supporting tools
for AI development and serve as a basis for further research in
related areas.

Index Terms—Experiment management tools, machine learn-
ing, experiment management, experiment tracking, artificial
intelligence.

I. INTRODUCTION

Machine learning (ML) is considered a subset of the
artificial intelligence domain as its purpose is to develop
intelligence via different types of learning [1]. ML is currently
delivering significant value within a wide variety of applica-
tions due to the remarkable advancements in the field. When
disruptive technologies emerge, such as the internet, cloud
computing, or ML, organizations must address the inherent
challenges faced when attempting to take advantage of such
technologies.

One inherent challenge of ML, on a management level,
is its need for extensive skills in software development,
mathematics, statistics, and data. However, such expertise is

often lacking in conventional software teams. The requirement
for diverse skill sets has made it increasingly challenging
to achieve effective team collaboration and coordination. [2].
This difficulty has been attributed to the difference in team
members’ training background, e.g., an engineer’s training
vs. that of a data scientist or a mathematician [3]. Several
technically challenging aspects of ML exist, three of which
are exemplified below.

First, intelligent components built using ML are often
entangled in complex ways. This entanglement leads to non-
monotonic error propagation. Therefore, changes that lead to
improved performance in one component could cause multiple
other components to have decreased performance. The CACE
principle, “changing anything changes everything”, stems from
this entanglement trait of ML [4]. Second, Amershi et al. [5]
state that handling data in terms of discovering, managing, and
versioning within the context of usage in ML applications is
much more complex than other types of software engineering.
Third, according to D. Sculley et al. [4], [6], ML systems are
more prone to accumulate technical debt than non-intelligent
systems due to distinct risk factors such as data dependencies,
hidden feedback loops, and multiple system-level anti-patterns.

An experiment management tool (EMT) is designed to assist
ML practitioners with their experiment management efforts. It
achieves this by allowing its users to make queries regarding
previous ML experiments. For example, a user’s query could
search for experiment results or specific components of runs
to gain insight into how the results were achieved. EMTs
offer several benefits by addressing previously discussed chal-
lenges of ML. Examples of such benefits include: (i) from
an organizational perspective, team collaboration can benefit
by knowing who was involved in running which experiments,
(ii) identification of questions for consideration of efficient
technical debt payoff as studied by D. Scully et al. [6], three
of which are listed below:

1) How precisely can the impact of a new change to the
system be measured?

2) Does improving one model or signal degrade others?
3) How quickly can new team members be brought up to

speed?



An EMT that can query and visualize information from
previous and current runs could be significantly helpful in the
aspects touched by all three questions above, and (iii) the same
abilities of an EMT could be used to mitigate the complexity
of data management and the entanglement described by the
CACE principle. Additionally, experiment management and
EMTs have been shown to reduce redundant development
efforts and allow more efficient testing and debugging [7].
Such positive effects can be extrapolated to substantially
impact a project’s progress and overall costs in time, human
resources, or money.

A. Problem domain and motivation

The need for asset management and EMTs have been
well documented in previous literature [8]. ML practitioners
have been interviewed in previous studies with fundamental
questions like “Can’t we go back to see how we used to
be doing?” referring to aspects of a previous experiment
[7]. ML practitioners described their solutions as ad hoc or
myopic and reported them to include emails, notes, file-naming
conventions, databases, VCS, and Git. The same practitioners
state that a critical negative aspect of these solutions is the
ratio of their value to the time and effort required to implement
them. As a result, they would often have to compensate for
the shortcomings of the solutions with face-to-face meetings.

As identified by Berger et al. [9], something lacking from
academia is the empirical data on ML practitioners’ usage of
EMTs in terms of which tools they use and their perspectives
and opinions of these tools. This lack of knowledge hampers
the ability of EMT developers to improve their tools relative to
their user base needs. Additionally, it impairs new grounds for
further research and development of industry practices relating
to experiment management and EMTs.

B. Research goal and research questions

The survey conducted in this study is focused exclusively on
EMTs and aims to fill the established research gap by eliciting
information via an online questionnaire. The questions asked
in the survey via the questionnaire were based on the following
three research questions:

• RQ1: What experiment management tools are used?
• RQ2: What are the benefits of using the tools?
• RQ3: What are the major challenges and limitations of

using the tools?
Limitations focus on the lack of features and technical ca-
pabilities that obstruct a tool’s utility. Similarly, challenges
are oriented toward aspects that make the tool difficult to use.
The results presented in this paper could be found valuable by
researchers needing initial data on this aspect of experiment
management and EMT developers wanting to understand their
user base better.

C. Structure of the Article

The next sections of the paper are organized as follows.
First, related work and background are discussed in Section

II. Next, Section III describes the methodology, the question-
naire´s design, distribution, and the analysis used. The results
of the analysis are reported in Section IV. These results are
then discussed in Section V, with threats to the results’ validity
and opportunities for future research. General conclusions are
finally drawn in Section VI.

II. BACKGROUND AND RELATED WORK

This section discusses terms and concepts that will allow
for a deeper understanding of both EMTs and the content
primarily presented in Sections III, IV, and V. It comprises
four subsections where the first three are used to build a frame
for the fourth: (i) ML workflows, (ii) ML assets, (iii) ML
concerns, and (iv) foundations of EMTs.

A. ML workflows

The development process of ML is described as exploratory
as it iteratively utilizes multiple series of experiments. This
development style is closer to that used in data science than
traditional engineering [10]. A conducted experiment is often
referred to as an experiment run. After a run, the experiment
and its results are carefully reflected upon for insights into
what modifications can evolve the system. The process then
repeats with subsequent experiment runs. The runs often
reach large quantities due to numerous iteration cycles [8].
Extensively repeated experiment runs are not exclusive to the
development phase but also extend to the maintenance phase,
where re-training via more runs is used to keep the system
performing as desired [11].

A few ML methodologies have been more prominently
adopted than others by academia and industry. In particular,
two methodologies exemplifying this are the Cross-Industry
Standard Process for Data Mining (CRISP-DM) [12] and
the more recent Team Data Science Process (TDSP) [13]. A
case study focusing on the ML workflows at Microsoft was
conducted by Amershi et al. [5]. The researchers found that
Microsoft used a workflow with commonalities to CRISP-DM
and TDSP. Using a case study approach, they presented nine
consecutive stages to represent all phases encapsulating the life
cycle of an ML project. The first of these nine stages was the
”Model requirements” stage, followed by three consecutive
data-related steps: (i) data collection, (ii) data cleaning, and
(iii) data labeling. The remaining five steps included feedback
loops which could lead back to previous steps. These remain-
ing five consecutive steps were more strongly related to models
rather than data and comprised of: (i) feature engineering,
(ii) model training, which could lead back to the feature
engineering stage, (iii) model evaluation, which could lead
back to any of the previous stages relating to data or models,
(iv) model deployment, and (v) model monitoring, which could
lead back to any of the previous stages relating to data or
models.

B. ML assets

From every experiment run, various assets can be derived.
Examples of these assets are artifacts relating to data, models,



software, dependencies, and metadata of the experiment and its
results [14]. The discipline of storing these assets so they can
be queried at a future point is called experiment management
[9]. This type of management enables leveraging information
from previous runs to, for instance, better evolve a system’s
performance or to efficiently onboard a new team member.
Growth in an ML project in terms of, for example, scope,
models, data, the number of runs, or collaborators tends to
compound ML challenges. However, this can be offset by
experiment management; consequently, the utility potential
of experiment management increases with the growth of an
ML project. The assets that can be produced or derived from
an ML run are many and often difficult to classify. Idowu
et al. [9] provides a comprehensive taxonomy that defines
experiment assets more clearly. The taxonomy establishes four
different categories to enable the classification of assets: (i)
support software assets (including source code, notebooks,
and parameters), (ii) resources (including datasets, models,
and generic resources), (iii) various metadata (including ex-
periments, code, data, and models), and (iv) ExecutionData
(including dependencies, jobs, ExecutionMetadata).

C. ML concerns

During an ML project, modifications made between runs
essentially create a new version of the experiment, similar
to how in traditional software engineering development, new
versions of a codebase are created as developers modify it.
Versions of a codebase can be managed using mature version
control tools such as Git. However, two critically differentia-
tive factors between the development of ML and traditional
software engineering, as it pertains to leveraging knowledge
from previous versions of a project, are listed below. Firstly,
the number of versions produced is usually significantly higher
in an ML project due to more frequent iteration cycles, i.e.,
the experiment runs. Secondly, the complexity of each version
is higher in an ML project due to the number of different
assets that can be modified in each iteration being significantly
higher in ML development. Consequently, these two factors
have caused some aspects to be more difficult to manage.
Exemplifying such aspects are the following prominent ML
concerns listed below, along with a question to understand the
scope of each concern better:

1) Auditability [15], [16]: How well can audits, internal or
external from third parties, be made regarding the results
and how results were achieved?

2) Collaboration [2], [3]: How well can ML practitioners
collaborate in an ML project?

3) Interpretability [17], [18]: How well can the underlying
logical principles of a model be understood?

4) Reproducibility [19]–[21]: As per Tatman et al. [22],
how well can the results of an experiment be recreated
in a new experiment using the same input data, models,
and analysis?

5) Replicability [23]: As per Tatman et al. [22], how well
can the results of an experiment be recreated in a new

experiment using the same models and analysis but with
new input data?

6) Traceability [24], [25]: To what degree are aspects
relating to data and models documented?

D. Foundations of EMTs

The inadequacy of traditional tools and ad hoc solutions
to not adequately address the previously discussed challenges
and concerns of ML lays the foundation from which the EMT
class of tools has emerged. Figure 1 illustrates how EMTs can
achieve this new type of support by integrating the ML projects
running the experiments. This support is, as illustrated, enabled
by allowing the tool to extract and store relevant assets to allow
users to retrieve and visualize them.

E. Related work

Multiple surveys review EMTs [26]–[29]. Literature com-
paring and evaluating EMTs and related ML support systems
has also been published [9], [19], [30]–[32]. Schlegel et al.
[31] conducted a comprehensive survey on the functional
scope of over 60 systems and platforms. They discuss ML
support systems, including EMTs, as an essential building
block to managing ML concerns. By reviewing the literature,
they derive functional and non-functional criteria that they
then use to assess the scope of their selected systems and
platforms. Weißgerber et al. [30] delivered an open science-
centered process model for machine learning research based on
the author’s review of features of over 40 tools, platforms, and
standards. Based on these findings, they list the tools found to
be central to the paper’s research process. Isdahl et al. [19] sur-
veyed several systems’ abilities to enable the reproducibility of
empirical ML results. They propose a quantitative method that
can be used to assess the system’s reproducibility support and
then apply this method to evaluate the state of reproducibility
supporting tools. All four studies [19], [28], [30], [31] involved
EMTs, but tools that fall outside of experiment management
solutions, such as model and pipeline management, are also
included. Idowu et al. [9] surveyed the capabilities of 17
tools within the experiment tracking and management domain.
Additionally, they provided a feature model that describes
EMTs’ variability and commonalities, which can be used to
assess current and future tools. Similarly, Quaranta1 et al. [32]
evaluated 19 tools to create a taxonomy of what support tools
can provide concerning ML reproducibility.
By contrast, the research questions presented in Section I, are
only concerned with the tool’s features or capabilities through
the lens of their users, which separates the study from surveys
with purely a technical perspective. Hill et al. [7] conducted
interviews at a company to better understand ML practitioners
in the context of what skills they need, what tools they use,
and what problems they face. Data on ad hoc experiment
management solutions, skills needed for ML development, and
ways of working are elicited from interviewees and presented
in the study. However, it lacks the inclusion of the EMTs as
this class of tools has evolved significantly since the study
was published in 2016. Zhang et al. [2] conducted an online



Fig. 1. Illustration of how an EMT can support its users via interacting with a machine learning project.

survey in which they elicited information from 183 participants
working in data science concerning what tools they use, what
roles they have, and their workflows, all from the perspective
of collaboration. The study briefly mentions Google Colab, a
tool with EMT features, and how it is used for collaboration.
Despite the literature presented in this section, the research
questions, as defined in Section I, have not yet been sufficiently
addressed using empirical data.

III. RESEARCH METHODOLOGY

An online questionnaire survey was deemed most appro-
priate to elicit information from ML practitioners regarding
EMTs. The target population was ML practitioners, i.e., re-
searchers performing ML experiments. The insights from mul-
tiple discussions with members of the international research
group named EASElab influenced the survey’s scope and
the questionnaire design. Informal interviews with ML prac-
titioners regarding experiment management were conducted
at Gothenburg Artificial Intelligence Alliance (GAIA). The
knowledge gained from these interviews was then leveraged
towards the survey and questionnaire.

The research scope of the survey was iteratively narrowed
until it was finalized into three research questions defined
in Section I. As recruiting survey participants is a lengthy
process, the questionnaire was distributed as soon as the
scope was deemed sufficiently defined. The guidelines for a
questionnaire-based survey presented by Linaker et al. [33]
were used as a reference guide throughout the survey.

A. Questionnaire design

The questionnaire was designed to take ten minutes of the
participant’s time, with minimal mental resources to complete
while still eliciting sufficient information. All participants
had to respond via checkboxes for consent and voluntary
participation in the survey. If consent was not given, the
participant could not continue answering the survey questions.

The questionnaire constituted of six sections: (i) participants
performing ML experiments, (ii) participants who do not use
EMTs, (iii) participants who use EMTs, (iv) limitations and
challenges of EMTs, (v) participant info, and (vi) contact
information. The first was a control question to see if the
respondent was qualified enough to answer the questionnaire
by asking about the person’s history with ML experiments.
Through these six sections, there were two separate tracks a
participant could take: (i) path one for those who reported
they did use EMTs, and (ii) path two for those that did
not use EMTs. Participants that reported not using EMTs
were not asked the questions in sections named “Participants
who use EMTs” and “Limitations and Challenges of EMTs”
but were instead asked the questions in “Participants who
do not use EMTs”. This structure made it possible to tailor
the questionnaire to suit all types of participants relevant
to the survey. The survey instrument elicited qualitative and
quantitative data from participants. Both open, closed, and
partially-structured questions were used. The questionnaire
was peer-reviewed multiple times throughout its creation by
research group members before distribution.

In order to validate and assess the survey instrument, dry
runs were conducted with the recruitment of potential pilot



participants undertaken via convenience sampling. The dry
runs commenced when the peer-reviews deemed the survey
instrument to be matured. The participants were then sent an
online questionnaire asking them to: (i) report any issues and
suggest potential improvements, (ii) experiment with tracks for
both ‘EMT users’ and ‘non-EMT users’, and (iii) measure and
report the time taken to respond to each path. The response
generated to the three points, in addition to the level of famil-
iarity of participants with ML and EMTs, was then used to
conduct unstructured interviews with each participant to elicit
information useful for further enhancing the questionnaire.

Some key changes made to the survey instrument based
on the interviews include: (i) formulating the cover letter’s
value proposition to promote a higher participation rate, (ii)
enhanced understanding of the survey instrument via improved
clarity of questions and section descriptions resulting in the
reduced completion time of the questionnaire while eliciting
information with increased accuracy, and (iii) adapting answer
options, e.g., changing an open-ended textbox-type question
to a structured multiple-choice question to elicit more specific
and accurate information. A participation time of ten minutes
was observed during the pilot study, which validates the
general design of survey instruments in this aspect. In total,
five people participated in the dry runs, which ran over a period
of one week. The survey instrument was built in google forms,
and the participants’ responses to the questionnaire can be
found here: https://cutt.ly/P2dky7c.

B. Sampling strategy and questionnaire distribution

The non-probabilistic convenience sampling method was
utilized to find the participants for the survey by following
the approaches as outlined in this section. As this study aims
to gain insight into ML practitioners’ usage of tools and
opinions, the convenience sampling method was optimal due
to its inherent advantages, including reduced time requirement,
high speed, and low operational cost.

For the distribution of the survey instrument, contact infor-
mation was collected from ML practitioners attending GAIA
via personal interactions with those willing to participate or
who would be able to distribute the questionnaire to their
friends and colleagues. Similarly, all research group members
distributed the questionnaire via email to colleagues. Addi-
tionally, posts were made on six different ML-related forums
and five ML-focused LinkedIn community groups. The forums
used for such posts were focused on ML and, therefore were
expected to have community members interested in the topic
and, by extension, an interest in experiment management tools.
The names of the forums and the newsletters are discussed
in the subsequent subsection III-C and can be found via the
following link: https://cutt.ly/o3kqEa5.

The cover letter included in the questionnaire encouraged
the participants to refer the survey instrument to other potential
participants. This type of referencing was used to enable the
effect of snowball sampling [34] and further increase survey
participation. Additionally, the cover letter was designed to
promote participation by providing an option to receive a sum-

mary of the questionnaire’s results. The survey was open for
a period of six weeks to collect data, with a total engagement
of 24 participants undertaking the survey.

C. Distribution issues

A high participation rate was anticipated to be difficult.
However, practically it was observed to be significantly chal-
lenging. The incentive of receiving a result summary report
and the opportunity to contribute to improving the experiment
management field seemed insufficient. An example to illustrate
this issue is a forum post made on Reddit (see link in
Section III-B for details), which gathered over 2500 views,
with only 2 of them undertaking the survey. Additionally,
fifteen different ML-related newsletters were contacted, with
no positive outcome for distributing the survey further. It
was observed that personal connections had a higher success
rate in attracting participants than forum posts. The tactic of
sending reminder emails to all who had received the initial
invite to participate was used with some success as some
participants reported having forgotten to participate after the
initial invitation.

D. Data analysis

The quantitative data were analyzed using descriptive statis-
tics, and the qualitative data were analyzed using thematic
analysis with deductive coding following the guidelines pro-
vided by Braun and Clarke [35]. The sample size is relatively
small, as only 24 individuals participated. The implications of
the sample size are further discussed in Section V.

IV. RESULTS

This section presents the results from the questionnaire
instrument as described in Section III. The first subsection
includes the findings from questions that all participants an-
swered. The subsequent two subsections present results from
questions asked to those who did not use EMTs, followed
by results from those who did use EMTs. Some of the
questions allowed participants to make multiple choices. The
term “relative selection” is used in illustrations for multiple-
choice questions. The calculation of the relative selection was
based on each answer´s frequency count divided by the total
number of participants responding to the question. Some of the
questions elicit information using Likert scales where partici-
pants can agree or disagree with a written statement presented
to them. These questions focus on participants’ sentiments and
include a linear trendline for a more straightforward overview.
Open-ended questions were analyzed using thematic analysis
as described in Section III. Figure 13 in the appendix is a
visual representation of the themes and codes per each open-
ended question.

A. Survey participants

Table I lists a grouped representation of the participant’s
years of experience working with ML experiments. The par-
ticipant with the most experience was 20 years, while the
participant with the least experience was 1 year. Moreover,

https://cutt.ly/P2dky7c
https://cutt.ly/o3kqEa5


the average participant’s years of experience was 5.8 years.

TABLE I
GROUPED YEARS OF EXPERIENCE WITH ML EXPERIMENTS.

Years of experience Frequency Percentage
1–3 9 45
4–7 7 35
8–11 2 10
> 11 2 10

Together the respondents represented 14 different industry
domains, see Figure 2 with technology being the most com-
mon, followed by health, finance, and education.

Fig. 2. Illustrates responses to the question ”In which domains do you
currently work?”.

Figure 3 illustrates the roles which participants found most
accurately describe their current work. Here “data scientists”
was the most commonly reported role with 61% of the par-
ticipants selecting it, followed by “ML engineer” which was
selected by 52% of the participants. Further, when participants
were asked if they used EMTs, 30.4% responded that they did
not use such tools, and the remaining 69.6% responded that
they did use such tools.

Fig. 3. Illustrates responses to the question ”What are your current roles?”.

B. Participants not using EMTs
This subsection presents the results from the follow-up

questions asked exclusively to the 30.4% of the total partici-
pants who previously stated that they did not use EMTs. When

asked if they were aware of the existence of EMTs 57.1%
of the respondents answered “yes”, and the remaining 42.9%
responded “no”.

Fig. 4. Sentiment towards EMTs potential utility.

Participants were then questioned on how they perceived
EMTs’ utility as exhibited in Figure 4. They were asked
to respond to the following statement, “EMTs can improve
artifacts and metadata management”, via a Likert scale ranging
from strong disagreement to strong agreement. Despite not
using the tools, 57% of participants agreed with the statement,
and the overall sentiment showed a positive attitude toward the
tool’s potential utility.

When participants, who previously stated they were aware
of EMTs’ existence, were asked why they did not use
such tools via an open-ended question, three unique themes
emerged: (i) use-case (no need for dedicated EMT), (ii) mi-
gration (switch from current tools too cumbersome), and (iii)
tool attributes (learning curve). Participants were then asked
what solution they implemented for the management of ML
assets, if any. Figure 5 presents the results for this question,
which show naming conventions to be most utilized. Only one
respondent reported that they do not manage versions.

C. Participants using EMTs
This subsection presents the results from the follow-up

questions asked to the 69.6% of the total participants who
previously stated that they do use EMTs. From a list of
37 different EMTs, the participants were asked to select
which they used, if any. The participant’s tool selections are
illustrated in Figure 6. TensorBoard was the most used tool,
with seven participants reporting using it.

As it is possible to use more than one tool, participants were
asked to state how many tools they use. The results of this
question are presented in Figure 7, which shows that using a
single tool as well as using three tools were the most frequently
reported options.

Participants were asked to agree or disagree with four
statements regarding the utility of EMTs. The results show that
those who use EMTs are very positive towards the tool’s use-
fulness, stating that they provide benefits in multiple aspects.



Fig. 5. Illustrates responses to the question ”How do you manage versions
of your experiment artefacts and metadata?”.

Fig. 6. Illustrates responses to the question ”If yes, which of the following
experiment management tools do you use?”.

Fig. 7. Tools per user.

This positive attitude was most prominent in the responses to
whether it makes the practitioners perform experiments more
efficiently and if they provide a benefit over the alternative of
not using an EMT, as shown in Figure 8.

Participants were then asked to clarify in which aspects if in

Fig. 8. Sentiment read of EMT benefits.

any, they experienced these benefits. Reproducibility was the
aspect in which most participants reported benefits, closely
followed by time-savings, as shown in Figure 9.

Fig. 9. Illustrates responses to the question ”If applicable, where do you see
the benefits/values of the EMTs that you use?”.

Another question using a Likert scale was then used to
gauge to what degree EMT users felt that the limitations of
their tools were affecting their experiments. The scale once
again ranged from strong disagreement to strong agreement.
The sentiment was favorable towards EMTs as respondents
disagreed with the statement, as shown in Figure 10.

Further, an open-ended question was posed to learn more
about the limitations the participants had experienced. From
the responses to the open-ended question via thematic analysis,
three main themes could be derived: (i) tool attributes (cost),
(ii) features (lack of features, lack of feature quality, user
experience), and (iii) external tool integration (visualization
tools, custom pipelines, version control, databases).

When asked about the challenges participants had experi-
enced concerning EMTs, using another open-ended question,
three similar themes emerged: (i) tool attributes (learning
curve), (ii) features (lack of features, lack of feature quality,
tool documentation, user experience), and (iii) external tool
integration (visualization tools, custom pipelines, version con-



Fig. 10. Sentiment read of EMT limitations.

trol, databases).

V. DISCUSSION

This section intends to answer and discuss results through
three subsections, each relating to one of the research ques-
tions introduced in Section I followed by a discussion on
threats to validity.

A. Answer to RQ1: What experiment management tools are
used?

The EMTs that participants used were presented in Fig-
ure 6. The five most popular of these were: TensorBoard,
MLFlow, KubeFlow, SageMaker, and in-house custom-built
tools. EMTs are often used in combination with each other,
creating a toolchain when practitioners employ a combination
of tools rather than a single tool. The average participant
used about two tools per user. Additional information could
be derived from the raw data generated from the responses
to the multiple-choice question of which tools participants
use. Estimating how often each tool was used with another
tool provides insight into how frequently it is combined in
the workflow with other tools. Figure 11 represent the results
of such calculations and includes all tools reported as being
used in combination with other tools and thereby had a
pairing frequency count higher than one. Higher pairing counts
indicate a tool was included in, for example, shorter toolchains
with many participants or alternatively in longer toolchains
with lesser participants, i.e., toolchains with many tools. Both
the alternatives could be attributed to a tool’s high pairing
count.

Furthermore, the pairing count can be used for additional
insights into what tools are most commonly combined with
others on a relative basis. Dividing each tool’s pairing count,
as illustrated in Figure 11, with the number of participants
reported using it, as illustrated in Figure 6 yields the result
presented in Figure 12. Higher numbers indicate a tool was
more frequently used by participants with longer toolchains.

The relative pairing counts are noteworthy as DVC, a tool
with a comparatively narrow feature scope, is followed by

SageMaker and kubeFLow, two tools focusing on the full ML
life cycle. These results indicate that ML practitioners’ tool
selection is complex and varied. The findings also open up
broad ranges of avenues for future work, which are discussed
in Section VI. The tool found to be combined with other EMTs
most often relative to how many participants reported using it
was found to be DVC.

Fig. 11. Paring count of all tools combined more than once with others
illustrating how often each tool was combined with other tools.

Fig. 12. Relative Paring count of all tools combined more than once with
others illustrating how common each tool was to combine with others relative
to the number of participants reported using a specific tool.

B. Answer to RQ2: What are the benefits of using the tools?

Both categories of participants who do and do not use EMTs
demonstrate an overall positive sentiment toward the utility an
EMT tool can provide, as illustrated by the data in Figures 4
and 8. In Figure 9, benefits were reported across six particular
aspects relating to ML. The least frequently reported categories
of benefits were collaboration and replicability, although a
significant share of 60% out of all EMT-using participants
stated that they did experience their EMT as providing value
in these two areas. Reproducibility was found to be the aspect
in which most participants experienced benefits. Being able to
reproduce results and experiments others have created is an
integral part of conducting research within academia. Due to
the challenges of ML as described in Section I and Section
II, research publications involving ML have had difficulty



achieving reproducible experiments and results. The issue of
reproducibility is so pronounced that Gundersen [36] referred
to it as a crisis. It is reasonable to conclude that EMTs could
play a significant role in addressing the reproducibility issue as
80% of EMT users reported that their tool benefits them in this
aspect. Other notable findings more closely related to concerns
valuable to industry rather than academia are time savings,
collaboration, and result analysis. All three aspects could have
an essential impact on industry ML projects’ success, and all
three aspects saw at least 60% or more respondents reporting
experiencing benefits in these areas.

C. Answer to RQ3: What are the tool’s challenges and limi-
tations?

The thematic analysis of the data concerning challenges
and limitations share the same common themes and differ
only slightly in the codes that make up the themes. For
example, the learning curve and tool documentation were two
aspects uniquely reported as challenges that made the tools
difficult to use. In terms of limitations, the cost was the
only aspect that could not be found reported as a challenge.
The term quality, used in the thematic analysis, describes
bugs, robustness, and reliability issues. At the same time,
the lack of features is simply the absence of capability in
some aspects. The lack of quality and capability in terms
of tool features indicates that EMTs as a class of tools are
relatively new and are yet to reach maturity, as also indicated
by the findings in RQ1 where most participants use more than
one tool to satisfy use-case needs. Furthermore, integration
is widely reported as both a challenge and a limitation, and
should be considered a key aspect of an EMT. ML practitioners
have strong interest in being able to integrate their EMTs
with a broad range of independently intricate systems, such as
databases and visualization tools. Therefore, providing high-
quality and capable integration options with EMTs though
particularly challenging for tool developers, would be greatly
appreciated by users if delivered.

D. Threats to validity

This section discusses the threats to validity and reliability
in relation to the current survey.

1) Construct validity threats: To ensure that the questions
of the survey instrument would elicit data that could be used
to answer the research questions as defined in Section I
peer-reviews were used. Additionally, the research questions
were designed and reviewed to ensure they were clear and
focused enough not to threaten the construct validity of the
survey. To avoid participants misinterpreting any part of the
survey clarifying explanations and examples were provided in
instances where this was deemed a risk. Efforts to mitigate
the risk of survey participants misconstruing any part of the
questionnaire were made during each follow-up interview
conducted after every dry run.

2) Internal validity threats: The first research question of
this survey, regarding which tools are used, is less prone to
outside influences than the other two research questions as

they elicit sentiment-related data. Additionally, the fact that
only one research method, an online survey questionnaire,
was used adds to this threat. Sentiment data was elicited
more than once using open and partially structured questions
to mitigate this threat. The decision to use online forums
made the survey more prone to receive malicious or fake
responses, which could harm the internal validity. This threat
was mitigated by having all responses analyzed manually to
detect such responses. No responses were deemed to fall into
such categories. Furthermore, to strengthen internal validity,
each participant was asked whether they had performed ML
experiments as the first question of the questionnaire. If the
participant provided a negative response to the question, they
were unable to continue with the survey. This was used to
ensure that participants had domain knowledge.

3) External validity threats: The limited sample size is a
threat to validity that must be considered. The challenges of
increasing the sample size and all the steps taken to mitigate
the issue are more extensively described in Section II.

According to Searle [37], convenience sampling is prone to
the issue of having too many survey participants similar to
our own social and cultural groups. By extension, the attempt
to achieve the snowball sampling effect via the cover letter,
the usage of colleagues and personal networks, and the GAIA
conference attendance to find survey participants all add to the
threat of external validity.

Babbie [38] explains how the inability to control a study’s
sample distribution in terms of representativeness is at the
core of the issue when utilizing convenience sampling. In
an attempt to detect the over-representation of a particular
type of participant in the survey, the data elicited on roles,
industries, and years of experience can be assessed. When
considering the distributions in these three areas, it becomes
clear that some segments in some categories hold a significant
majority, technology in industries and data scientists in roles.
However, considering that these two questions were multiple-
choice questions combined with the fact that participants are
ML practitioners, such over-representation in these categories
could exist even in a healthy distribution of survey participants
and is, therefore, not necessarily a cause for concern.

4) Reliability threats: During data analysis, no inconsisten-
cies were found in the responses, including questions regarding
sentiments toward EMTs. The consistency in similar-themed
questions producing similar results strengthens reliability. A
link to the questionnaire used by survey participants is pro-
vided in this report to promote reliability through replicability
and reproducibility. Limited sample size also meant less data
requiring thematic analysis, which lowered the amount of data
prone to the threat of author bias. To further mitigate this
threat, fellow researchers’ opinions of the data were considered
during thematic analysis.

VI. CONCLUSIONS & FUTURE WORK

This paper presents a survey based on an online ques-
tionnaire that elicited information on ML practitioners’ use
and opinions of EMTs. By analyzing the qualitative and



quantitative data, insights into which EMTs are used, their
benefits, and their deficiencies in terms of challenges and
limitations, could be derived from ML practitioners. The senti-
ment towards the tools was overall positive. A majority of the
participants reported benefiting from the tools in areas such as
reproducibility, time savings, traceability, and result analysis.
Reported challenges and limitations of the tools included
a lack of capability and quality in terms of features and
integrations with other EMTs and non-EMT systems. Many
participants combined tools in order to achieve the workflow
they desired. The average participant using EMTs combined
the use of two such tools and the three most commonly used
tools were TensorBoard, MLFlow, and SageMaker. The tool
found to be combined with other EMTs most often relative
to how many participants reported using it was found to be
DVC. I believe that the findings presented in this paper will
promote increased interest from academia and industry and
consequently improve this class of tools and the development
of future ML systems.

Concerning future work, numerous approaches could be
pursued to learn more about EMTs. Replicating this survey
with a larger sample size could be used to determine the
validity of the results and conclusions drawn from the data
presented in this survey. Valuable insights, especially as it per-
tains to expanding on the findings regarding RQ1, could come
from eliciting data on the context from which decisions and
opinions around EMTs are made and formed using additional
data sources such as interviews. A deeper understanding of
the context, e.g., team size, use-case, could enable more fine-
grained comparisons of which EMTs are used when and why.
That data could enable many avenues of investigation such
as sentiments towards the tools utility and their challenges by
applying the research questions RQ2 and RQ3 as per I but
within the new contexts identified.
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VIII. APPENDIX

Fig. 13. Thematic overview of open-ended questions.
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