
Computational Content of Fixed Points

Submitted in partial fulfillment of the requirements

for Licentiate Degree in

LOGIC

Giacomo Barlucchi

Under the guidance of

Bahareh Afshari

Graham E. Leigh

Examiner

Fredrik Engström

University of Gothenburg

Opponent

Sebastian Enqvist

Stockholm University

Department of Philosophy, Linguistics and Theory of Science

20 December, 2022

Sammanfattning

Vi studerar det beräkningsmässiga innehållet hos fixpunkter i förhållande till två logiska
system med olika egenskaper. Gemensamt för båda studierna är en metod för att han-
tera fixpunkternas iterativa karaktär. I den första delen riktas intresset mot ett cykliskt
system ICA för intuitionistisk aritmetik. Den formella definitionen av systemet följs av
införandet av en typad λY -kalkyl, vars termer representerar den deduktiva processen för
cykliska bevis. Här ges en metod för att producera rekursionsscheman från instanser av
cykliska bevis. Resultatet är en grammatik vars språk består av λ-termer, som fångar
det beräkningsmässiga innehållet som finns i det ursprungliga beviset. I den andra delen
tittar vi på iteration av fixpunkter i termer av tillslutningsordinaltal för formler i den
modala µ-kalkylen. Här presenteras en metod för att bestämma en övre gräns för till-
slutningsordinaltal och den tillämpas på formler i fragment av Σ1-klassen, där resultaten
ligger i linje med redan existerande arbeten. De viktigaste verktygen för att fastställa
en övre gräns är kommenterade strukturer, för att spåra hur modelländringar påverkar
ordinaltalen, och en pumpteknik för dessa strukturer.

Abstract

We study the computational content of fixed points in relation to two logical systems with
distinct characteristics. Common to both research strands is a method for dealing with
the iterative nature of fixed points. In the first part the interest is directed to a cyclic
system ICA for intuitionistic arithmetic. The formal definition of the system is followed
by the introduction of typed λY -calculus, whose terms represent the deductive process of
cyclic proofs. A method for producing recursion schemes from instances of cyclic proofs
is given. The result is a grammar whose language consists of λ-terms, capturing the
computational content implicit in the initial proof. In the second part, we look at the
iteration of fixed points in terms of closure ordinals of formulas in the modal µ-calculus.
A method for determining an upper bound on closure ordinals is presented and applied
to formulas in fragments of the Σ1 class, with results that are in line with the already
existing works. Annotated structures, to track how model changes affect the ordinals,
and a pumping technique for these structures are the main tools used to establish an
upper bound.

Acknowledgements

I would like to thank Bahareh, my supervisor, for her guidance and support in these two
years. I am also grateful for the positivity that she brings in every situation. Thanks
to Graham, my second supervisor, for his constant help and, most importantly, his
patience. Thanks to Tjeerd, fellow traveler in this adventure, and to Mattias and Dominik
for motivating me. I owe my thanks to the Logic group at Gothenburg University, for
accepting me so kindly into their company and creating an inspiring environment. Thanks
to the Department of Philosophy, Linguistics, Theory of Science for the opportunity to
work in this field. I wouldn’t even be here if it wasn’t for Chiara, so my final thanks to
her.

Contents

Introduction 2

I Cyclic Proofs 4

1 Intuitionistic Cyclic Arithmetic 9
1.1 LJIDω and induction. 9
1.2 Cyclic proofs and Arithmetic . 14
1.3 Σ-terms and types . 15
1.4 Heyting Arithmetic . 20
1.5 Cyclic terms . 23
1.6 Recursion Schemes . 24

2 A recursion scheme for ICA 27
2.1 Properties of Hπ . 33
2.2 The language L(Hπ) . 44
2.3 Conclusion . 49

II Closure ordinals 51

3 MLµ, conservativity and closure ordinals. 57
3.1 Syntax and semantics . 57
3.2 Conservative well-annotations . 59
3.3 Closure ordinals . 64

4 A bound on closure ordinals 66
4.1 Closure ordinal of primary formulas . 66
4.2 An attempt with disjunctive formulas . 74
4.3 ΣML

1 formulas . 78
4.4 ΣW

1 and future steps . 89
4.5 Conclusion . 93

Bibliography 98

Introduction

In the present work we investigate the computational content of fixed points. The fixed
points of a function f are defined in general as those elements x such that f(x) = x. In-
trinsic in their nature is a process of iteration given by the infinite series of substitutions
x = f(x) = f(f(x)) = Among the many possible fixed points of a function, partic-
ular importance is attributed to the least and greatest of them, that share an intimate
bond with induction and coinduction. It is an established fact that a monotone function
f on a complete lattice has both a least and a greatest fixed point,1 and that both can
be obtained by iteration starting from the bottom or top elements respectively, through
a series of self-applications. The possibility to define operators that pick out least and
greatest fixed points, that is, to compute the fixed point of a given function by iteration,
enriches the expressibility and deductive power of a logical system, hence it has been
studied and implemented in a variety of contexts. In the present work, we focus on two
specific systems, in which the process of iteration is studied from different perspectives.

In the first part we investigate the role of fixed points in cyclic proof systems, a relatively
new formal method of proof that originates from Fermat’s proof by infinite descent. The
core of its success is the possibility to reduce an infinite deduction to a compact finite
object. While the generality of the claim is preserved in the finite representation by the
prospect of an infinite iteration of the argument, at the same time the soundness of the
deduction is guaranteed by relying on an external well-founded structure, preventing an
actual infinite regress. Not surprisingly, cyclic proofs systems have been implemented
to include induction structurally, with interesting results for example with Peano and
Heyting arithmetic. In this work we focus on one of these cyclic systems for intuitionistic
arithmetic. To be able to talk about the process of computation that is expressed by
an intuitionistic cyclic proof, an appropriate formally defined object is necessary. Typed
λ-calculus is known to be apt for the role, thanks to the Curry–Howard correspondence.
In that language the iteration process is achieved through the introduction of a combi-
nator Y that defines fixed points. Terms of λY -calculus can then be used to describe the
program expressed by a cyclic proof, the regular trees generated by the term correspond-
ing to the derivation trees. An equivalent way of expressing terms of the λY -calculus is
through higher-order recursion schemes, that is a series of term rewriting operations on a

1Thanks to the Knaster–Tarski’s theorem.

2

typed language that reflects the computational steps of the reduction of a λ-term. As a
consequence, the grammar so obtained generates λ-terms, capturing the computational
content implicit in the initial proof.

In the second part, the process of fixed point iteration is studied in the context of modal
µ-calculus. It is possible to compute the denotation of the least and greatest fixed points
of a modal µ-formula in a Kripke structure with a transfinite series of applications of the
formula to itself, starting from the empty set or from the whole domain, for the least or
greatest fixed point respectively. Considering positive (i.e. monotone) formulas, there
necessarily exists an ordinal that corresponds to the least number of iterations in which
the fixed point is reached on a given model. The notion of closure ordinals is motivated
by a generalisation of this property over all possible models. For a given formula, or even
classes of formulas, it is possible that after a definite number of iterations the fixed point is
always obtained. Not every formula has a closure ordinal, and there is no known uniform
method for deciding whether a single formula possesses one. Despite this limitation, it
is known that an upper bound can be given for some fragments of the calculus, meaning
that either a closure ordinal exists below a certain threshold, or some formula does not
have a closure ordinal. The value of a closure ordinal depends on both the structure of
the formula and the form of its model. That is not surprising if we consider that the
structure of the formula determines the possibilities for satisfaction, i.e., the conditions
for a progress. The models, on the other hand, realise (or not) the conditions, ultimately
determining the ordinal. Any small modification in the structure or valuation is capable
of having a great effect in terms of the computation of fixed points. In order to keep a
control over both these factors, we start with a simple class of formulas with no nesting
of fixed points, and focus on developing a toolbox to perform modifications on models.
The goal consists in the definition and test of these tools, with the prospective of a future
extension to more complex formulas.

In summary, the two parts of this thesis examine the computational content of fixed points
under two different lights. In the first part, the work proceeds from the existence of a
cyclic proof to arrive at a formalism that computes fixed point iterations at a syntactic
level. In the second part, the fixed point operators are already defined in the language,
and the perspective is directed towards the way in which their iterative process is reflected
in the semantics, that is, we focus on the fixed points of a formula in a model.

3

Part I

Cyclic Proofs

Introduction

In this first chapter we explore the computational content of cyclic proofs. In recent
years the interest and research around cyclic proof systems has grown significantly. The
possibility to represent potentially infinite proofs as finite objects has evident advantages
in all those situations where induction and recursion are involved. The core idea be-
hind cyclic proofs is to give a formal structure to the reasoning process that goes under
the name of proof by infinite descent. Also known as Fermat’s method of descent, the
argument was already known by ancient Greeks2 and follows a common-sense way of
reasoning. The canonical example is the proof of the irrationality of

√
2, where from the

assumed existence of a rational a/b equal to
√

2, the existence of another rational c/d is
deduceed, with c < a and d < b. Since an infinite decreasing list of natural number is
impossible, the non-existence of the initial a/b is established. The key components of a
proof by infinite descent are a deductive argument that returns to some previous step,
opening the door to its potentially infinite repetition; and a condition that guards such
a door, ensuring that the argument is indeed potentially infinite, and hence generally
applicable, but never such when adopted in concrete instances.

In cyclic proof theory the two components correspond to the existence of a cyclic de-
duction, i.e., returning to a point in the argument already seen in the proof, and a well-
ordered structure, on which a regression in every potentially infinite derivation guarantees
soundness. It was only in the 2000s that the idea of defining proof systems to exploit
the power of this argument was pursued. Among the first proof systems that explicitly
use infinite descent were Santocanale [San02], and Dam and Gurov [DG02] and Sprenger
and Dam [SD03] in the context of modal µ-calculus, where tableau proof systems were
introduced with proof search in mind. In his doctoral thesis [Bro06],3 and later with
Simpson [BS11], Brotherston developed a theoretical framework for cyclic sequent cal-
culi with inductive predicates, starting from the work of Martin-Löf on systems of natural
deductions with inductive predicates [Mar71]. Simpson in [Sim17] defined a cyclic proof
system equivalent to Peano Arithmetic. Berardi and Tatsuta in the same year presented
an intuitionistic cyclic system CLJIDω and proved its equivalence with Martin-Löf’s in-
ductive system LJID, under the assumption that Heyting Arithmetic is added to both

2The first known appearance is reported by [Wir04] to be in the works of Hippasus of Metaponto, V
century b.C.

3The system was given already in [Bro05].

5

(see [BT17c]). Cyclic proof systems in the style of [Bro06] are not equivalent to inductive
ones in general, as showed by Berardi and Tatsuta [BT17a], but they become such in the
presence of arithmetic (see [BT17b]). In the next chapter an intuitionistic cyclic sequent
calculus ICA for arithmetic is defined, which is a version of CLJIDω + HA adjusted to
the necessities of the present work.

A correspondence exists between proofs in sequent calculi and terms of typed λ-calculus,
a relation that goes under the name of Curry–Howard correspondence. The relationship
can be seen in different aspects: proofs can be transformed into terms of λ-calculus, that
is programs or functions; formulas, on the other hand, can be seen as the types of the
λ-terms, in a sense describing their behaviour and talking about their meaning. λ-terms
are one possible way of actualising the notion of witnesses for proofs, that is the core
of the Brower–Heyting–Kolmogorov (BHK) interpretation of constructive provability.
According to their proposed interpretation, the meaning of a proof in an intuitionistic
framework is an object that is able to be a witness of the argument, a realisation of
the process of proving the desired statement. A proof of an implication, for example,
is an object that, working as a function, transforms any witness of the antecedent into
an argument for the consequent. Inside the philosophical standpoint on the nature of
proofs, there is room for different ways of converting the vague notion of object-witness
into a formally defined entity. One of the first attempts has been Kleene’s realisability,
that is the choice to use a coding to assign numbers to proofs, and interpret deductions
as the application of numerical functions to the obtained witnesses (see [Tro98]). A closer
approach to Curry–Howard correspondence in the context of intuitionistic arithmetic is
Gödel’s system T (see [AF98]). The process of deduction is translated into functionals,
i.e., typed combinators: combinatory completeness and the addition of recursion make
the representation of intuitionistic arithmetic possible. A cyclic version of Gödel’s T has
been recently given by Das in [Das20], together with an analysis of the complexity of the
circular system CT with respect to the standard system T.

A well-defined representation of a proof carries in itself information about its content, and
the formalism adopted can influence the kind of data displayed by a given witness. In the
context of classical logic, an information of great interest is a set of terms ti that satisfies
Herbrand’s theorem. It is a famous result from Herbrand that every prenex formula
∃x0 . . . xn.ϕ of first order logic is equivalent to the disjunction of a series of quantifier-free
instances ϕ(t0)∨ · · · ∨ϕ(tn) called Herbrand disjunction. A direct way of computing the
set of terms t0, . . . , tn consists in passing through cut-elimination, a costly procedure that
might produce distinct cut-free proofs, with different possible sets of terms. Attention
has been devoted to alternative ways of producing such a set. Gerhardy and Kohlenbach
[GK03] gave a first description of a method to extract Herbrand disjunction using Gödel’s
functional interpretation. The first step of their method consists in the production of a
witness, a functional realiser of the proof, followed by the reduction to its β-normal form
from which they extract the desired terms.

The idea of exploiting recursion schemes to extract computational content from proofs
is presented in details in [Het12] and [AHL15], where the connection between grammars

6

(recursion schemes) and proofs is motivated in the context of term extraction. Build-
ing on these ideas, Afshari, Hetzl and Leigh in [AHL20] proposed a method to extract
the Herbrand set from a proof in classical one-sided sequent calculus using higher-order
recursion schemes (HORS). From each proof a recursion scheme can be defined, where
one production rule corresponds to each specific deductive step of the proof. The ob-
tained non-deterministic rewrite system is proved to be invariant with respect to the
process of cut elimination. As a result, the language of the rewrite system subsumes the
Herbrand sets obtained from any classical process of extraction through cut-elimination,
circumventing the problem of different Herbrand disjunctions.

The connection between recursion schemes and typed λ-calculus is well known and almost
immediate. Reduction rules of λ-calculus can be seen as rewrite rules, and abstraction
can be simulated by functionals (non-terminals). At the same time, the structure of
higher-order recursion schemes allows for an almost direct correspondence between proofs
and schemes. The possibility to establish a one-to-one relationship between the deduction
steps of a proof and the rules in the corresponding HORS is an unquestionable advantage
in terms of readability and manageability, with respect to the λ-terms of the Curry–
Howard correspondence.

Overview

In the next two chapters we will present a method for defining higher-order recursion
schemes from cyclic proofs of Heyting Arithmetic. Given the cyclic nature of our proof,
we will first define a correspondence with terms of λY -calculus, that is, with the addition
of a fixed point combinator Y. Recursion schemes present no limitation in treating cycles
and it is already known that they can be seen as another syntax for λY -calculus.4 This
last connection closes the argument motivating the present work. In the framework of
Curry–Howard correspondence, we show the relationship between a cyclic system ICA
for Heyting Arithmetic and terms of λY -calculus. The close correspondence between this
last formalism and higher-order recursion schemes will motivate the definition of a HORS
Hπ to extract witnesses from a given proof, in line with the work in [AHL20]. Once Hπ
has been defined, the rewriting process determines a grammar whose specification at the
moment is left open for future analysis, but that corresponds, in a general perspective, to
the production of terms-witnesses for the given initial proof, from which the extraction
of relevant content can be implemented.

In Chapter 1 we introduce the language L= of arithmetic, the standard sequent calculus
for intuitionistic logic with equality, and present the cyclic system ICA, motivating its
development from the works of Brotherston and Simpson and Berardi and Tatsuta. Once
the notions of proof and pre-proof have been characterised, the λ-terms constituting the
language Σ are defined together with their types. After a brief comment on the rules and
type of the inductive predicate N , we proceed with the definition of cyclic terms thanks

4See [SW12].

7

to the introduction of the fixed point combinator Y . The last section is devoted to the
definition of recursion schemes and their rewriting procedure.

Chapter 2 begins with the definition of the higher-order recursion scheme Hπ built from
a cyclic proof π. The language ΣH of the terminals is defined, and the rules of the HORS
are motivated. In Section 2.1 some properties of the schemes are showed, regarding type,
substitution, cut-strategies and their order. In the last part a closer look is given to
the process that extracts the language from a Hπ, with some result and comment on
confluence, reduction strategies, normal forms and termination.

8

Chapter 1

Intuitionistic Cyclic Arithmetic

The language L= is the language of arithmetic: the set of terms is defined by individual
variables x, y, . . . , a constant 0 and functors +, ·, s(−) for the usual arithmetic operations

t ::= x | 0 | t+ t | s(t) | t · t

The set For of formulas of the language is defined by

ϕ ::= ⊥ | t = s | Nt | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∃x.ϕ | ∀x.ϕ

Atomic formulas are equalities and the unary predicate Nt, which is the predicate for
natural numbers; the remaining formulas are defined using booleans and quantifiers. A
constant symbol ⊥ for falsum is used to define negation ¬ϕ := ϕ→ ⊥. Sequents of the
form Γ ⇒ ϕ are interpreted as lists of formulas of L=, with ϕ the unique formula on
the right-hand side. The intuitive meaning of a sequent Γ ⇒ χ is

∧
Γ → χ. The proof

system ICA defined in this chapter is a cyclic sequent calculus for intuitionistic arithmetic.
The proper definition of ICA will be given later in the chapter, after the aspects that
differentiate it from a standard sequent calculus have been presented, starting with the
introduction of inductive predicates.

1.1 LJIDω and induction.

In [BS11]1 Brotherston and Simpson defined the system LKID, a sequent calculus for
classical first-order logic with equality and inductive predicates, and an infinitary exten-
sion LKIDω was given in the same paper. An intuitionistic version is defined here, similar
to the system LJIDω by Berardi and Tatsuta [BT17b] but with some minor variations.
The rules of LJIDω are the following:

1See table on page 1184.

9

Axioms

(Ax)
t = s,Γ⇒ t = s

(L⊥)
⊥,Γ⇒ t = s

Structural rules

Γ⇒ ϕ ϕ,∆⇒ χ
(cut)

Γ,∆⇒ χ

Γ⇒ χ
(W)

ϕ,Γ⇒ χ

ϕ, ϕ,Γ⇒ χ
(C)

ϕ,Γ⇒ χ

Γ⇒ χ
(Sub)

Γ[θ]⇒ χ[θ]

Logical rules

Γ⇒ ϕ ψ,∆⇒ χ
(L→)

ϕ→ ψ,Γ,∆⇒ χ

ϕ,Γ⇒ ψ
(R→)

Γ⇒ ϕ→ ψ

ϕ,ψ,Γ⇒ χ
(L∧)

ϕ ∧ ψ,Γ⇒ χ

Γ⇒ ϕ ∆⇒ ψ
(R∧)

Γ,∆⇒ ϕ ∧ ψ

ϕ,Γ⇒ χ ψ,∆⇒ χ
(L∨)

ϕ ∨ ψ,Γ,∆⇒ χ

Γ⇒ ϕi (R∨)
Γ⇒ ϕ0 ∨ ϕ1

ϕ(z),Γ⇒ χ
(L∃)

∃y.ϕ(y),Γ⇒ χ

Γ⇒ ϕ(t)
(R∃)

Γ⇒ ∃y.ϕ(y)

ϕ(t),Γ⇒ χ
(L∀)

∀y.ϕ(y),Γ⇒ χ

Γ⇒ ϕ(z)
(R∀)

Γ⇒ ∀y.ϕ(y)

The eigenvariable condition requires that z /∈ FV (Γ, χ) in rules (L∃) and (R∀). Without
loss of generality, we adopt the convention that the eigenvariables do not occur outside of
the subproof above their respective existential or universal rule, an assumption that we
call regularity condition from [AHL20]. Unlike [BT17b], here we opt for a multiplicative
sequent calculus. The axiom rules (Ax) and (L⊥) present only equalities t = s as princi-
pal, in order to facilitate future inductive arguments. In the rest of the paper, however,
we will treat sequents of the form ϕ,Γ⇒ ϕ and ⊥,Γ⇒ ϕ as axioms for any formula ϕ,
inaccurately but truthfully. It is provable, in fact, that both are always derivable in ICA.2

The present version of LJIDω has left contraction even if it is not present in [BT17b],
because of a different interpretation of sequents as multisets instead of lists. Notice also
that there is an explicit rule (Sub) for substitution, where [θ] stands for some substitution
of free variables with terms. Usually, substitution is an operation that we perform at
a meta-level: given a proof of a sequent Γ ⇒ χ we agree that it is always possible to
instantiate the free variables with terms and have a proof of Γ[θ]⇒ χ[θ]. In ICA a formal

2An easy proof by induction, where the interesting case is the one with ϕ ≡ Nt. See Example 1.11.

10

rule is defined for that. Brotherston and Simpson, reflecting on the role of the substitu-
tion rule in [BS11], conjectured that it is essential for cyclic proofs in order to achieve
perfect correspondence between sequents, necessary in the case of cyclic proofs. The
conjecture appears to be more than reasonable, but they left the question open to future
work. In all the rules above, and also in general, the principal formula is the one that is
subject of the proof; the cut-formula is the ϕ in the example. Finally we have the rules for

Equality

(id)
Γ⇒ t = t

Γ[t/x, s/y]⇒ χ[t/x, s/y]
(L=)

t = s,Γ[s/x, t/y]⇒ χ[s/x, t/y]

where (L =) gives the opportunity to switch terms in the whole sequent whenever they
are known to be identical.

The system described so far is an intuitionistic first-order sequent calculus with equality
and an explicit rule for substitution. The list of rules of LJIDω is completed by the
rules for the inductive predicates. For a finite set of inductive predicates {P0, . . . , Pk} in
our language, we introduce a number of rules for each one of them. Given an inductive
predicate Pj , its right rules have the form

Γ0 ⇒ Pj0 . . . Γn ⇒ Pjk
(RPj)

Γ0, . . . ,Γn ⇒ Pj

Where the Pji’s are determined by the inductive definition of Pj . If Pj is the natural
number predicate Nx, for example, the definition says that N holds always for 0, and
for s(t) if is true of t. The left rule for Pj is more complicated to describe. In its general
form3 it is given in [BS11] as

case distinctions (LPj)
Pjt,Γ⇒ χ

where the case distinctions are defined by the set of predicates from which Pj depends
according to its inductive definition. We are not going to look into the details of the
definition of minor premises, the gist being a finite series of sequents of the form

t = s, Pj0, . . . Pjm, Qj0, . . . , Qjn,Γi ⇒ χ

with P ’s and Q’s being respectively inductive and non-inductive predicates. The Pji’s
are also called case descendant of Pj . The result is that the inductive definition is
decomposed into all the possible cases. In the language L= just one inductive predicate
Nx is defined, hence we have three rules according to the construction seen above:

3The rule below is already the one defined for the cyclic version of LKIDω: in the non-cyclic one (see
p.1185) we consider also another predicate F constituting the induction hypothesis. There is no point
in giving that formulation here since LJID is presented only as an introductory step.

11

Natural numbers

(RN0)
Γ⇒ N0

Γ⇒ Nt (RN1)
Γ⇒ Ns(t)

t = 0,Γ⇒ χ t = s(r), Nr,∆⇒ χ
(LN)

Nt,Γ,∆⇒ χ

To (LN) the eigenvariable condition applies, preventing r ∈ FV (Γ,∆, χ). For each rule
we call principal formula the resulting formula Nt and in the case of (LN) we also call
Nr in the right premise the case descendant of Nt. From now on, we assume that the
principal formula always appears as leftmost in the conclusion of each left rule. In order
to have such a property syntactically, we should define a rule that formally takes care of
adjusting the order of the list in the antecedent

Γ, ϕ, ψ,∆⇒ χ
(ex)

Γ, ψ, ϕ,∆⇒ χ

Including such a rule in LJIDω or later in ICA would have the effect of making the work
and presentation more tedious, without any relevant addition. We decide, then, to don’t
include (ex) among the rules. Instead, we will assume that before any instance of each
rule, the order of the formulas in the antecedent has been implicitly organised so that
the rule is applicable, without any chance for misinterpretation or confusion, as if an
analogous of the exchange rule was contained and operating in each formula.

1.1.1 Pre-proofs and proofs

Now that the rules have been presented, it is possible to look at what is an infinite proof
in LJIDω. Deduction trees with possibly infinitely long branches are called pre-proofs:

Definition 1.1 (Pre-proof). A pre-proof of a sequent Γ ⇒ χ in LJIDω is a possibly
infinite labelled tree D such that Γ ⇒ χ is labelled at the root, and every child node is
given according to the rules of LJIDω.

It is easy to show that pre-proofs are not sound in general.

Example 1.2.
...

x = 1⇒ x = 2 x = 2⇒ x = 2
x = 1⇒ x = 2 x = 2⇒ x = 2

x = 1⇒ x = 2

With an infinite trivial application of cut we can have a pre-proof of any formula.

12

In order to ensure soundness of derivations, transforming pre-proofs into proofs by infinite
descent, we need to impose a control condition on infinite paths. The condition consists
in the request that on every infinite path the inductive predicates are unfolded infinitely
often. The infinite regression becomes then only potential, since the path is bound to the
well-founded structure of the natural numbers. To track the evolution of the computation
with respect to each formula the notion of a trace is necessary.

Definition 1.3 (Path). A path P in a derivation tree D is a possibly infinite list of
sequents (Γi ⇒ χi) such that the i + 1th element of the list is a child node of the ith

element, for all 0 ≤ i ∈ N.

Definition 1.4 (Trace). 4 A trace along a path (Γi ⇒ χi)i≥0 in a pre-proof D is a
possibly infinite sequence of formulas τi = Pjti such that:

1. τi ∈ Γi

2. if Γi ⇒ χi is the result of a substitution θ, then τi+1[θ] = τi;

3. if Γi ⇒ χi is the result of a (L =) for t = s principal formula, then there is a
formula ϕ and variables x, y such that τi = ϕ[t/x, s/y] and τi+1 = ϕ[s/x, t/y];

4. if Γi ⇒ χi is the result of a (LPj) and τi is principal, then τi+1 is the case-
descendant of τi;

5. if Γi ⇒ χi is the result of any other rule, then τi+1 = τi

As desired, the trace follows an inductive predicate along a path, adjusting to potential
term changes due to (Sub) and (L =), and progresses only when an inductive predicate
Pj is the principal formula. The steps described by point 4 are called progressions of the
derivation, and a trace with infinite progressions is an infinitely progressing trace.

Definition 1.5 (Global trace condition). For every infinite path P there is an infinitely
progressing trace following some tail of the path.

We have all the elements now to define the notion of a proof in LJIDω.

Definition 1.6 (Proof). A pre-proof D is a proof if it satisfies the global trace condition.

Theorem 1.7 (Soundness). The system LJIDω is sound: if there is a proof of Γ ⇒ χ,
then Γ⇒ χ is valid with respect to standard models.

Proof. In [Bro06] soundness of LKIDω with respect to standard models5 is proved by
local soundness of the rules and the fact that any derivation of an unsatisfiable sequent
contains an infinite trace generating an infinitely decreasing chain of ordinals, leading to
a contradiction. The same argument can be made for proofs in LJIDω.

4See the Definitions in [BS11], p.1196.
5In which inductive predicates are interpreted as the fixed points of the denotation of their corre-

sponding operator.

13

1.2 Cyclic proofs and Arithmetic

Systems like LKIDω and LJIDω are powerful and constitute good instruments to deal with
induction in sequent calculus, but they are impractical to manage given their infinitary
nature, the most evident problem being the fact that the global trace condition has to
be checked on all infinite paths. An informal look at their structure, however, strongly
suggests the existence of a finite method to represent such infinite arguments. There
exist, in fact, systems CLKIDω and CLJIDω that consist of finite objects, corresponding
to a relevant subset of the derivations of LKIDω and LJIDω, namely those derivations
that are regular. A regular proof is a possibly infinite tree in which there are only
finitely many distinct subtrees. In order to have cyclic proofs, it is necessary to define a
relation between leaf-nodes s (called buds) and some internal nodes t, identified as their
companions.

Definition 1.8 (Bud/companion relationship). Let D be a labelled tree and s a leaf that
is not an instance of an axiom (bud). R is a function from bud nodes to internal nodes
in D such that R(s) = t for some node t with the same labelled sequent as s.

The two nodes must share the very same sequent for the relation to hold between them.6

Notice, however, that it is not necessary for them to appear on the same path. With the
definition of such relation we can define cyclic pre-proofs. The rules of CLJIDω are the
same of LJIDω.

Definition 1.9 (Cyclic Pre-Proof). A pre-proof of a sequent Γ ⇒ χ is a pair (D, R)
where D is a finite derivation of Γ ⇒ χ from the rules of CLJIDω, and R is a function
that assigns to each of the non-axiomatic leaves a node inside D with the same label.

The definition of a path in (D, R) is like the one for LJIDω adjusted to include bud nodes.

Definition 1.10 (Path). A path P in a derivation tree D is a possibly infinite list of
sequents (Γi ⇒ χi) such that the i+ 1th element of the sequence is a child node of the ith

element, or its companion.

The definition of trace, progressing trace and global trace condition are the same as in
the infinite proof system.

Definition (Proof). A cyclic pre-proof (D, R) is a cyclic proof if it satisfies the global
trace condition.

Even though by definition the paths of a cyclic proof of CLJIDω are potentially infinite,
the object that constitutes a proof is a finite tree. It is decidable whether a pre-proof
is a proof.7 As we mentioned, the proofs of the cyclic system CLJIDω correspond to a
proper subset of the proofs of LJIDω. As a consequence, we have that the soundness of
the former can be inferred by the soundness of the latter.

6See comment on (Sub) rule above.
7For a formal proof of this fact using automata see Proposition 7.4 of [BS11].

14

As a first example of a cyclic proof, let’s see the proof of the fact that Nt,Γ ⇒ Nt is
always provable

Example 1.11.

(RN0)

Γ⇒ N0
(L =)

t = 0,Γ⇒ Nt

Nt,Γ⇒ Nt (?)
(Sub)

Ns,Γ⇒ Ns
(RN1)

Ns,Γ⇒ Ns(s)
(L =)

t = s(s), Ns,Γ⇒ Nt
(LN)

Nt,Γ,Γ⇒ Nt

Nt,Γ⇒ Nt (?)

In this example we can see the cycle generated by the right branch, where the bud node
is labelled likewise the root, and the trace is coloured in blue, progressing every time in
which the rule (LN) is applied.

1.3 Σ-terms and types

Following the BHK interpretation, having a proof of a formula ϕ in intuitionistic arith-
metic means for us to have an object that justifies the assertion of ϕ. A proof of a
statement of the form ψ0 ∧ ψ1, for example, is an object consisting of a proof of ψ0 and
a proof of ψ1. For ψ0 → ψ1, we need an object that, like a function, takes a proof of ψ0

and turns it into a proof of ψ1. A proof of a disjunction is an object that, in accordance
with the meaning of disjunction in intuitionistic logic, is already a proof of one of the
disjuncts.

In the present paper we adopt the proofs-as-programs principle of the Curry–Howard
correspondence, namely the fact that to an intuitionistic proof of a formula ϕ it is possible
to assign a λ-term (the program) whose type is the type corresponding to ϕ. We use
terms of the λ-calculus as proof-objects to describe our derivations. With this goal in
mind, the set of types corresponding to formulas in our language L= is defined, followed
by the set of terms inhabiting those types, i.e. the term language Σ. We begin by
introducing the set of types that are called basic

Definition 1.12 (Basic Types).

• ι is the type of individuals

• ε the unit type

• ⊥ is the empty type;

• for σ, τ types

– σ → τ is the function type

– σ × τ is the product type

15

– σ + τ is the sum type

The correspondence between terms or formulas of L= and types is given in the following
table:

Term or Formula Type
t ι

t = s ε
⊥ ⊥

ϕ→ ψ σϕ → σψ
ϕ ∧ ψ σϕ × σψ
ϕ ∨ ψ σϕ + σψ
∀x.ϕ ι→ σϕ
∃x.ϕ ι× σϕ

Types ι and ε are called ground types. Quantified formulas correspond to dependent
types, meaning that they represent a collection of types depending on the individual
object they receive as input. A formula ϕ(x) with a free variable needs to be read as a
class of types given by all the formulas ϕ(t) for t an individual term. We will often use
greek letters ρ, σ, ν, . . . as meta-variables for types. In the rest of the paper we will use
formulas and their corresponding types as interchangeable, choosing one instead of the
other for the sake of clarity. The expression [ϕ] is to be read as “the type of the formula
ϕ”.

We introduce now the language Σ of λ-terms that inhabit the types defined above. For
each type except ⊥ and ground ones there are two operations to construct and de-
construct a term of the given type. We adopt the usual notation r : σ to indicate that
the Σ-term r is of type σ. Since we need to be able to refer to individual terms of L= in
our Σ, we also agree that for each individual variable, term and functor in the alphabet
of L= we use in Σ a corresponding identical term. Formally speaking, however, the term
0 in Σ is a different object than the term 0 in L=, and the same is true for variables,
successor and the other function symbols.

Definition 1.13 (Basic Σ-terms and types). The definition establishes the basic elements
of Σ and the relation between terms and types:

Type Terms Constructors De-constructors
ι 0 : ι s() : ι→ ι a : ι s(t) : ι

(+) : ι→ ι→ ι t+ s : ι
(·) : ι→ ι→ ι t · s : ι

ε 〈〉 : ε
⊥ ∗ψ : ⊥ → [ψ] ∗ψ p : ψ

σ → τ λpσ.rτ : σ → τ (qσ→τpσ) : τ
σ × τ 〈pσ, rτ 〉 : σ × τ π0q

σ×τ : σ π1q
σ×τ : τ

σ + τ κ0p
σ : σ + τ κ1r

τ : σ + τ Case∨p,r(kiq, n
ρ
p, n

ρ
r) : ρ

In order to minimise confusion, from now on we adopt the following notational convention:

16

• greek letters like ϕ,ψ, χ . . . will be used as meta-variables for formulas, while

• greek letters like ρ, σ, ν, . . . will be meta-variables for types

• a, b, c, . . . are used for individual variables (in both L= and Σ)

• t, r, s, . . . will be meta-variables for individual terms (in both L= and Σ)

• x, y, z, . . . will be used as variables for λ-terms in Σ

• p, q, n, . . . are meta-variables for Σ-terms

We will try to carefully follow this distinction, explicitly mentioning the nature of the
symbols when necessary.

We have presented so far the usual terms corresponding to the types of first order in-
tuitionistic formulas. The correspondence is reflected by the following term-calculus,8

where, to each rule of the first order fragment of ICA, corresponds a term of the type
of the formula. To each sequent Γ, ϕ ⇒ ψ obtained in ICA corresponds a sequent
x : Γ, y : ϕ ⇒ p : ψ. The λ-term p is a witness of the type [ψ], while the whole sequent
can be represented by the term λxy.p, reflecting the dependency relation between the
set of assumptions and the term on the right. Define the following term-calculus, where
w is a fresh variable (we omit the context Γ for readability)

(Ax)y : ε⇒ y : ε
(L⊥)

y : ⊥ ⇒ ∗ε y : ε

⇒ n : ϕ y : ϕ⇒ p : ψ
(cut)

⇒ p[n/y] : ψ

⇒ p : ψ
(W)

w : ϕ⇒ p : ψ

y : ϕ,x : ϕ⇒ p : ψ
(C)

y : ϕ⇒ p[y/x] : ψ

⇒ p : ψ
(Sub)

⇒ p[θ] : ψ

⇒ p0 : ϕ y : ψ ⇒ p1 : χ
(L→)

w : ϕ→ ψ ⇒ p1[(wp0)/y] : χ

y : ψ ⇒ p : ϕ
(R→)

⇒ λy.p : ψ → ϕ

y : ψ, z : ϕ⇒ p : χ
(L∧)

w : ψ × ϕ⇒ p[(π0w)/y, (π1w)/z] : χ

⇒ p : ψ ⇒ q : ϕ
(R∧)

⇒ 〈p,q〉 : ψ × ϕ

y : ψ ⇒ p0 : χ z : ϕ⇒ p1 : χ
(L∨)

w : ψ + ϕ⇒ Case∨y,z(w,p0,p1) : χ

⇒ p : ψi (R∨)
⇒ κi(p) : ψ0 + ψ1

8These rules in Troelstra-Schwittenberg [TS00] constitute the term-calculus t-G2i.

17

y : ϕ⇒ p : ψ
(L∃)

w : ι× ϕ⇒ p[(π0w)/a, (π1w)/y] : ψ

⇒ p : ϕ
(R∃)

⇒ 〈t,p〉 : ι× ϕ

y : ϕ⇒ p : χ
(L∀)

w : ι→ ϕ⇒ p[(wt)/y] : χ

⇒ p : ϕ
(R∀)

⇒ λa.p : ι→ ϕ

(id)
⇒ 〈〉 : ε

⇒ p : ψ
(L=)

w : ε⇒ p : ψ

Instead of going through the meaning of each rule, let’s just highlight some motivation for
the term assignment above. The dependency relation between terms in the antecedent
and consequent is visible in almost all the left rules, and clearly in the implication rules.
(R →) produces a term λy.p from a term p and a context that includes y. Dependency
can also be vacuous, as it appears evidently in the case of (W): the introduction of a
fresh variable w doesn’t affect the term on the right, in accordance with the intuitive
meaning of the weakening rule. A remark on rule (L =): dependency can be vacuous
even when some connection between the new variable and the right term potentially
exists. This should not be surprising, because from the point of view of dependent types
[ϕ(t)] = [ϕ(s)] under the assumption that t = s, hence if p : [ϕ(t)] then p : [ϕ(s)].

The role of right rules is to act as definitions. They combine the material in the an-
tecedents to produce terms of the new type on the right. The case of (R∨) reflects the
intuitionistic nature of the rule, by keeping track of the disjunct that witnesses the va-
lidity of the formula with κ0 or κ1. Left rules re-define dependency. To the principal
formula in the context is assigned a fresh variable w of the correct type, while every
possible occurrence of the old variable(s) on the right-hand side is substituted by a new
term. The new term is usually a de-constructor on the new variable. For example: in the
case of left conjunction the variable corresponding to the first element y occurring in p
is replaced by the first projection π0w of the new variable of pair type w. The (L∨) rule
requires some explanation. An intuitionistic disjunction always comes from one specific
disjunct. The fresh variable w stands for a term of the form κiq but since it is a variable,
we don’t know the value of i. We are forced to consider both cases: Case∨y,z(w, p0, p1)
tells us that “depending on w being of the type of y or z, the witness for the final formula
is given by p0 or p1”. The same convoluted principle holds for the inductive predicate
case, as we will see. A few comments on the (cut) and quantifiers’ rules. In a cut, the
variable y : ϕ in the right antecedent is substituted by the term p : ϕ from the left,
resulting in an instantiation of the variable. Looking at the term witnessing the whole
sequent of the right premise, i.e., λyx.q, a cut corresponds to the β-reduction of the term
(λyx.q)p→β λx.q[p/y]. The rules for quantifiers mimic faithfully the rules for the pairing
and abstraction as seen in conjunction and implication, following the interpretation of
dependent types. The only difference here is that the first object has a specific type,
namely ι.

18

The term assignment using Σ-terms follows the assignment present in literature, see
[TS00]. In order to define terms that fully represent the cyclic ICA we still need to define
the type of N and address the cyclic behaviour. Before moving to that, we want to
spend a few words on substitution. For reasons that will become clear later, we would
like to have the chance to differentiate between explicit and implicit substitutions.9 In
λ-calculus we commonly use implicit substitutions, for example in the definition of β
reduction (λx.M)N →β M [N/x] we write M [N/x] to indicate the term obtained by a
substitution of all the occurrences of x inside M with N . The substitution is written in
square brackets to underline its effect and it is syntactically immediate: M [N/x] is an
actual term M ′ where N replaces x. Working with proof terms we might like to keep
track of a substitution, but wait to evaluate its effect until some other internal process
has finished. In this case we talk about explicit substitution, and for this purpose we
introduce a term α of type ς called substitution stack. To Definition 1.13 we add the
following lines:

Type Terms Constructor De-constructor
ς [t 7→ a]ας : ς

ρ basic p ◦ α : ρ

The meaning of [t 7→ a] is precisely what one expects: the term t replaces the variable a.
With p ◦ α : ρ we indicate the Σ-term p together with the substitutions listed in α. The
formal definition of an implicit substitution is given by

Definition 1.14 (Implicit substitution). For p, q ∈ Σ, the result of a substitution [t/a]
is given by the following definition:

0[t/a] −→ 0 (s(r))[t/a] −→ s(r[t/a])

(s+ r)[t/a] −→ s[t/a] + r[t/a] b[t/a] −→ b

a[t/a] −→ t

〈〉[t/a] −→ 〈〉 ∗ ψq[t/a] −→ ∗ ψq
(λa.q)[t/a] −→ λa.q (λy.q)[t/a] −→ λy.(q[t/a])

(pq)[t/a] −→ (p[t/a]q[t/a]) 〈p, q〉 −→ 〈p[t/a], q[t/a]〉
(πiq)[t/a] −→ πi(p[t/a]) (κip)[t/a] −→ κi(p[t/a])

([s 7→ b]β)[t/a] −→ [s[t/a] 7→ b]β[t/a] (b ◦ β)[t/a] −→ b[t/a] ◦ β[t/a]

The correspondence between implicit and explicit substitution at the term level is given
by the process of evaluation, that is when α is actually enforced and the two notions
become equivalent.

Definition 1.15 (Evaluation). Given a Σ term (s ◦β) with s ∈ Σ basic and substitution
stack β ≡ [t0 7→ a0] . . . [tn 7→ an], the evaluation sβ of s relative to β is the Σ term given

9This idea is taken from [AHL20].

19

by s[t0/a0] . . . [tn/an]. The term resulting from the evaluation of all the substitutions in
s is indicated with s◦.

For example ϕ(a, b) ◦ [t0 7→ a][t1 7→ b] will result in ϕ(t0, t1) after evaluation, that is
precisely ϕ(a, b)[t0/a, t1/b]. In section 2.1 we will see that in our recursion schemes the
two different kinds of substitution coincide under a few assumptions. We are ready now
to talk about arithmetical axioms, λ-terms for natural number predicate and cyclic terms.

1.4 Heyting Arithmetic

Let’s finally introduce arithmetic in both ICA and the language Σ. To the list of rules
presented above, add the 6 axioms of arithmetic given in the form of zero-premise rules:

(⊥0)
st = 0,Γ⇒

(+0)
Γ⇒ t+ 0 = t

(+s)
Γ⇒ r + st = s(r + t)

(·0)
Γ⇒ t · 0 = 0

(·s)
Γ⇒ r · st = (r · t) + r

(= s)
Γ, st = sr ⇒ t = r

Any term of unit type can be a witness for an axiom, since its validity is not depending
on the context but on the arithmetic content. We then have

(⊥0)
y : ε⇒ ∗⊥ y : ⊥ (= s)y : ε⇒ y : ε (∗?)⇒ y : ε

where ∗ ∈ {+, ·} and ? ∈ {0, s}.

Remember that it is not necessary to introduce an inductive scheme or rule, because
induction is taken care already by the cyclic proof and the inductive predicates: it is
possible to prove the inductive scheme for any formula ϕ as follows

ϕ(0), ∀x.ϕx→ ϕ(s(x))⇒ ϕ(0)
(L =)

y = 0, ϕ(0),∀x.ϕx→ ϕ(s(x))⇒ ϕ(y)

Ny,ϕ(0)⇒ ϕ(y)
(Sub)

Nz, ϕ(0),⇒ ϕ(z) ϕ(s(z))⇒ ϕ(s(z))
(L→)

Nz, ϕ(0), ϕ(z)→ ϕ(s(z))⇒ ϕ(s(z))
(L∀)

Nz, ϕ(0), ∀x.ϕx→ ϕ(s(x))⇒ ϕ(s(z))
(L =)

y = s(z), Nz, ϕ(0), ∀x.ϕx→ ϕ(s(x))⇒ ϕ(y)
(LN)

Ny,ϕ(0), ∀x.ϕx→ ϕ(s(x))⇒ ϕ(y)

With some substitution, weakening and contraction, the open node is equivalent to the
root node, hence this is a cyclic proof of Ny,ϕ(0),∀x.ϕx→ ϕ(s(x))⇒ ϕ(y).

20

1.4.1 The N predicate

Introducing inductive predicates in general, we defined the left and right rules for the
atomic predicate N of ICA:

(RN0)
Γ⇒ N0

Γ⇒ Nt (RN1)
Γ⇒ Ns(t)

t = 0,Γ⇒ χ t = s(r), Nr,∆⇒ χ
(LN)

Nt,Γ,∆⇒ χ

Before introducing the corresponding λ-terms in Σ, let’s look at the type of N . A
definition of the property of being a natural number of a term t can be given as Nt :=
t = 0 ∨ ∃y.t = s(y) ∧Ny. Such a formula, translated directly into a type, results in

ω = ι→ (ε+ (ι× (ε× ω)))

Building a term for Nt following the assignment already given would generate terms
κ0〈〉 : N0 and κ1(〈t, 〈〈〉, α〉〉 : Ns(t), with α being itself a term of type ω. As much as
this is a faithful representation of the meaning of Nt, it is not reflecting the step indicated
by the rules in our system (and it is also not optimal for its verbosity). Notice that from
a literal reading of the definition we could have defined rules like

Γ⇒ t = 0 ∨ ∃y.t = s(y) ∧Ny
(RN∗)

Γ⇒ Nt

t = 0 ∨ ∃y.t = s(y) ∧Ny,Γ⇒ χ
(LN∗)

Nt,Γ⇒ χ

while the rules of ICA are a condensed version of them. From the point of view of
derivability, to change (RNi)/(LN) with (RN∗)/(LN∗) does not make a difference, for
example

Example 1.16.

t = 0⇒ χ

t = s(y), Ny ⇒ χ

t = s(y) ∧Ny ⇒ χ

∃y.t = s(y) ∧Ny ⇒ χ

t = 0 ∨ ∃y.t = s(y) ∧Ny ⇒ χ
(LN∗)

Nt⇒ χ

If we were to take the new rules we could define the type ω as the fixed point of the
definition of natural number, with the rules being just the folding of the definition.
While an additional positive side of those rules would be the perfect symmetry between
left and right rules, we find ourselves with a system that excessively lingers on each
step: we would have to undergo many troubles in dealing with them, since we would be
bound with disjunctions and existential quantification to unravel each time, steps that
at this point not necessarily occur right above the (L/R-N∗) rule. It seems that the
best solution is to take the original ICA rules, and accept a non-completely matching

21

situation in terms of syntax between the typed terms and the rule. In the end, we are
interested into collecting just some of the information available. We concisely define the
type ω := ε+(ι×ω) and introduce two functional terms fN0 : ε→ ω and fN1 : (ι×ω)→ ω
such that

Type Terms Constructor Destructor
ω f0

N : ε→ ω f0
N (〈〉) : ω

f1
N : (ι× ω)→ ω f1

N (t, p) : ω CaseNq,(tp)(f
i
Nr, n

ρ
q , n

ρ
tp) : ρ

where CaseNq,(tp)(f
i
Nr, n

ρ
q , n

ρ
tp) has the same behaviour of the disjunctive case, with the

difference that if r ≡ q then the witness is nq from the left branch, ntp from the right
branch if r ≡ (tp). Note that the disjunctive step was inevitable also in the definitional
extended approach. The assignment defines the following rules:

(RN0)
⇒ f0N(〈〉) : N0

⇒ p : Nt
(RN1)

⇒ f1N(t,p) : Ns(t)

y : ε⇒ p0 : ϕ v : ε, z : Nt⇒ p1 : ϕ
(LN)

w : Ns(t)⇒ CaseNy,z(w,p0,p1) : ϕ

Now that we have given a type to all formulas of L=, including the natural number
predicate, it is possible to define the order of each type

Definition 1.17 (Order). The order of a type ρ is defined as follows:

• ord(ι) = ord(ε) = 0

• ord(ρ→ σ) = max{ord(ρ) + 1, ord(σ)}

• ord(ρ× σ) = max{ord(ρ), ord(σ)}

• ord(ρ+ σ) = max{ord(ρ), ord(σ)}

• ord(ς) = 0

• ord(ω) = 0

The choice of 0 as the order for ι and ε is taken from [AHL20], where it is motivated by
technicalities. We follow that choice, and assign the same value to the order of ω: if we
consider it as being defined by ω := ε+ (ι× ω) we have :

ord(Nt) = max{0,max{0, ord([Ny])}}

assuming ord(N0) = 0 for the base case we have

ord(ω) = 0

22

1.5 Cyclic terms

The Σ-terms represent faithfully the initial part of a cyclic proof, up to the bud nodes.
To be able to introduce cycles we need a new term in the language of λ-calculus. Not
surprisingly, it is possible to represent iterations through fixed points. A series of new
terms Y is then introduced into the language Σ to be the fixed point combinators, with
type (ρ → ρ) → ρ for all basic types ρ. The system resulting from the expansion of the
simply typed λ-calculus with such combinators is the λY -calculus, where the reduction

Y p→ p(Y p)

defines the behaviour of Y . We add to Definition 1.13 also the combinator Y , obtaining
finally a complete definition of the language Σ and the corresponding typing:

Definition 1.18 (Σ terms and types). The following table defines the set of Σ-terms
and their type

Type Terms Constructor Deconstructor
ι 0 : ι s() : ι→ ι a : ι s(t) : ι

(+) : ι→ ι→ ι t+ s : ι
(·) : ι→ ι→ ι t · s : ι

ε 〈〉 : ε
⊥ ∗ψ : ⊥ → [ψ] ∗ψ t : ψ

σ → τ λpσ.rτ : σ → τ (qσ→τpσ) : τ
σ × τ 〈pσ, rτ 〉 : σ × τ π0q

σ×τ : σ π1q
σ×τ : τ

σ + τ κ0p
σ : σ + τ κ1r

τ : σ + τ Case∨p,r(kiq, n
ρ
p, n

ρ
r) : ρ

ω f0
N : ε→ ω f0

N (〈〉) : ω
f1
N : (ι× ω)→ ω f1

N (t, p) : ω CaseNq,(tp)(f
i
Nr, n

ρ
q , n

ρ
tp) : ρ

ρ basic Y : (ρ→ ρ)→ ρ Y p : ρ

ς [t 7→ a]α : ς
ρ basic p ◦ α : ρ

The Y combinator makes it possible to represent cyclic proofs as terms. For every cyclic
proof π, there is a series of pairs of nodes according to the bud-companion relation R. So
far no Σ-term has been assigned to the formulas at bud nodes. We stipulate now that to
the right-hand side of each bud sequent Γ⇒ ψ is assigned a fresh term variable z of the
appropriate type [ψ], that provisionally represents the term resulting from the process
that occurred in a previous cycle above. The rest of the leaves have terms assigned
according to the rules for axioms. Proceeding to the definition of λ-terms with the rules
of our term assignment, whenever the companion node is reached we find a term t with
z open variable inside. Notice, in fact, that z is never deleted as an effect of some rule,
nor changed, given that it is fresh and so it doesn’t appear on the left-hand side. Hence
z is a variable occurring free in t. We also know that z and t are two witnesses for
the same proof of ψ, so they not only have the same context by definition, but most
importantly they are of the same type [ψ]. They are two terms representing the same

23

sequent, hence we could in principle substitute one for the other: z = t(z). The solution
of the equivalence for z is

z = Y (λx.t[x/z])

from which we have that

Y (λx.t(x))→ t(Y (λx.t(x)))→ t(t(Y (λx.t(x))))→ . . .

The resulting term assignment is then Y (λx.t(x)) for the bud node and t(Y (λx.t(x))) for
the companion. Whenever we reach a bud node from below, the fixed point combinator
Y generates a new term corresponding to the companion node, producing another cycle
of the proof. In other words: by unfolding the fixed point we jump from the bud to the
companion node in the path along the tree. The next figure gives an intuition of the
correspondence with cyclic proofs:

⇒ ϕ

⇒ t(Y t)

⇒ p ⇒ Y t

⇒ ϕ

⇒ tt(Y t)

⇒ p
⇒ t(Y t)

⇒ p ⇒ Y t

⇒ ϕ

⇒ ttt(Y t)

⇒ p
⇒ tt(Y t)

⇒ p
⇒ t(Y t)

⇒ p ⇒ Y t

As a result we have defined a set of rules that allow us to build terms in the λY -calculus,
terms that represent the corresponding proofs in the cyclic system ICA. Whenever a
potentially infinite computation is expressed by a finite deduction tree π according to
the rules of ICA, we have a method to express such a computation with a single term
in the typed λY -calculus. In the last section of this chapter we introduce the definition
of recursion schemes: a term rewriting system in which we can compute terms of our
language in an direct formalism.

1.6 Recursion Schemes

The final part of this chapter defines recursion schemes. The main reason for introducing
the notation via λ-terms is that each intuitionistic proof is also a prescription, a function
that is able to determine the components of the proof from a given input. For a proof
with ϕ ⇒ ψ at the root, the corresponding term assignment x ⇒ p tells us that λx.p is
the function that, for every input of type ϕ, the computation expressed by p will result
in a proof of ψ. The process of computation follows the rules of β-reduction, that is a
series of substitutions of equivalent subterms inside the main term, until no additional
substitution is possible. In the case of recursion schemes the process is similar. We start

24

from a list of equivalences, as in the case of β, with the difference that we don’t have one
unique kind like (λx.m)n = m[n/x] but a finite list of the form

n0n1 . . . nk = p

n′0n
′
1 . . . n

′
k′ = p′

n
′′
0n
′′
1 . . . n

′′

k′′
= p

′′

.

By taking an oriented reading of the equivalences from left to right, and assigning one
functional term called non-terminal to each one of them, the result is a series of rewriting
rules that defines the computation. The easiest way of seeing the relation with λ-calculus
is to take the closed terms S,K, I and express their β-reductions as rewrite rules:

Kab→ a

Sabc→ ac(bc)

Ia→ a

Recursion schemes have the same expressive power of λ-terms and even more, including
the ability to mimic the Y combinator thanks to internal cycles.10

We give a general presentation of recursion schemes, referring to the next chapter for a
detailed definition of schemes tailored for our necessity. A higher-order recursion scheme
is given by an alphabet Λ of typed terms, a set of functions Fi called non-terminals and
a set R of oriented equations Fx = p assuming the role of rewrite rules.

Definition 1.19 (Higher-Order Recursion Scheme). A HORS is a tuple H = 〈Λ, F,F⊥,R〉
where

• Λ is a typed alphabet

• F is a set of non-terminals Fi each one of a given arity

• F⊥ ∈ F is a starting symbol of ground type

• R is a set of production rules of the form

Fjx0 . . . xk → p

one for each non-terminal Fj ∈ F, with p a term of Λ ∪ (F\F⊥) ∪ {x0 . . . xk}.

The set of H-terms is given by the terms from Λ together with the non-terminals in F.
The language Λ is a typed language, and nonterminals are also typed: each Fj whose
rule of production in H is Fjx0 . . . xk → p has the type

[x0]→ [x1]→ · · · → [p]

10See [SW12] for a direct translation from λY terms to HORS and vice versa.

25

As a consequence each Fi ∈ F has an order according to Definition 1.17, and the rewrite
system H has an order corresponding to the supremum of the orders of its non-terminals.
Similarly to the β-reduction in λ-calculus, it is possible to define a relation of reduction
→R (together with its reflexive transitive closure �R) on H-terms:

Definition 1.20 (→R,�R). Given a set of rewrite rules R and two H-terms p, q, we
say that p→R q:

1. if p ≡ Fp0 . . . pn and there is a rule Fx0 . . . xn → q ∈ R then p→R q[p0/x0, . . . , pn/xn]

2. if p→R q then r(p)→R r(q)

�R is the reflexive transitive closure of →R.

Alternative systems with respect to the ones of Definition 1.19 can be defined where de-
terminism is not requested, hence multiple rules might start with the same non-terminal,
and so different computations can result from the same input. Another possible feature is
the introduction of pattern matching. It consists in the possibility to specify the structure
of some of the input-terms taken by the non-terminal, and subordinate the activation of
the rule to the presence of an input of the given form. There is no direct relation between
pattern-matching and non-determinism: a system can have one without the other, as we
will see in the next chapter. We will make use of pattern-matching for our recursion
schemes.

In the next chapter we will translate each sequent from a proof into a typed functional
term, with the left-hand side as input and the right-term as output, similarly to what
we did with λx.p above. A sequent like x : Γ ⇒ p : ψ, for example, will become a term
Fx = p. The way in which the reduction rules will be defined will make the computation
climb the proof, building step-by-step the desired term-witness.

26

Chapter 2

A recursion scheme for ICA

In the introduction we stated that the goal is a process that is able to extract the
computational content from an intuitionistic cyclic proof of an arithmetical statement.
The rewrite process has the form of a higher-order recursion scheme as defined above.
We will make use of the structure of the non-terminals and the possibility given by cycles
in the recursion scheme to reduce the number of symbols necessary with respect to the
language Σ above. We can exploit the function type of non-terminals to avoid using λ-
abstraction: to a term of the form λp.ψ corresponds a rule F with type σp → ρψ. We still
need the converse of abstraction, i.e. application. A similar consideration can be made
for the Y combinator, since the unfolding of the fixed point can also be simulated by a
series of rewrite rules. We also drop all the de-constructors (except application, of course)
because the decomposition of complex terms is delegated to rules with pattern matching.
Let’s start by introducing the term language ΣH specific for our recursion schemes, and
then proceed to define the higher-order recursion scheme for cyclic arithmetic.

Definition 2.1 (ΣH -Terms). The following definition sets the list of terms of ΣH and
their type:

Type Terms Constructor Deconstructor
ι 0 : ι s() : ι→ ι a : ι s(t) : ι

(+) : ι→ ι→ ι (·) : ι→ ι→ ι t+ s : ι t · s : ι
ε 〈〉 : ε
⊥ ∗ψ : ⊥ → [ψ] ∗ψ t : ψ

σ → τ (qp) : τ
σ × τ 〈p, r〉 : σ × τ
σ + τ κ0p : σ + τ κ1r : σ + τ

ω fN0 : ε→ ω fN1 : (ι× ω)→ ω fN0 (〈〉) : ω fN1 (t, p) : ω

ς [t 7→ a]α : ς
ρ basic p ◦ α : ρ

27

Together with ΣH -terms, the H-language is completed by a set F of nonterminals.

Definition 2.2 (Hπ). Given an ICA proof π, Hπ is a higher-order recursion scheme
〈Σ, F,F⊥,R〉 such that

• Σ is the typed alphabet ΣH of Definition 2.1

• F is a set of non-terminals Fi, one for each occurrence of a rule in π1

• F⊥ : ε ∈ F is the starting symbol

• R is a set of production rules of the form

Fjαx0 . . . xk → p

Fj ∈ F is of type ς → σx0 → · · · → σxk → [p], where p ∈ H\F⊥. Depending on the
last rule R of each subproof π, we add to the list R a production rule Fπαx0 . . . xk →
p as determined by the next table

In the table below Fπ is the non-terminal corresponding to the last sequent of the proof
π. By notational convention: when the rule is a one-premise, π0 is the subproof above
the last rule R; in case R is a two-premise rule, the two subproofs are called π0 and π1

as in the following scheme 2

Γ′ ⇒π0 ϕ
′

Γ⇒π ϕ

Γ′ ⇒π0 ϕ
′ Γ′′ ⇒π1 ϕ

′′

Γ′,Γ′′ ⇒π ϕ

x′ ⇒π0 p
′

x⇒π p

x⇒π0 r y ⇒π1 q

x, y ⇒π p

We also stipulate that [Γ] = γ, while y is the term of the type of the principal formula
when the rule has not pattern-matching. α is a substitution stack (possibly empty).
Finally: we introduce one rule for each bud-node such that the subproof π above the
bud-node is identified with the subproof π′ above the companion node.

1In the case of (L∨) and (LN) we have two formally, see considerations on determinism below.
2The order of the premises is not fixed, but we take the order from left to right with respect to the

graphical representation given in the first chapter.

28

R Type of Fπ Production Rule
(Ax) ς → ε→ γ̄ → ε Fπαyx −→ y

(L⊥) ς → ⊥→ γ̄ → ε Fπαyx −→ ∗ε y
(id) ς → γ̄ → ε Fπαx −→ 〈〉
(L =) ς → ε→ γ̄ → ϕ Fπαyx −→ Fπ0αx
(L→) ς → (ϕ→ ψ)→ γ̄ → χ Fπαyx −→ Fπ1α(yFπ0αx0)x1

(R→) ς → γ̄ → ϕ→ ψ Fπαx −→ Fπ0αx
(L∧) ς → (ϕ× ψ)→ γ̄ → χ Fπα〈y, z〉x −→ Fπ0αyzx
(R∧) ς → γ̄ → (ϕ× ψ) Fπαx −→ 〈Fπ0αx0,Fπ1αx1〉
(L∨) ς → (ψ0 + ψ1)→ γ̄ → χ Fπα(kiy)x −→ Fπiαyxi
(R∨) ς → γ̄ → (ψ0 + ψ1) Fπαx −→ kiFπ0αx
(L∃) ς → (ι× ϕ)→ γ̄ → χ Fπα〈t, y〉x −→ Fπ0 [t 7→ a]αyx

(R∃) ς → γ̄ → (ι× ϕ) Fπαx −→ 〈t ◦ α,Fπ0αx〉
(L∀) ς → (ι→ ϕ)→ γ̄ → χ Fπαyx −→ Fπ0α(yt)x

(R∀) ς → γ̄ → (ι→ ϕ) Fπαx −→ Fπ0αx

(RN0) ς → γ̄ → ω Fπαx −→ f0
N (〈〉)

(RN1) ς → γ̄ → ω Fπαx −→ f1
N (t ◦ α,Fπ0αx)

(LN) ς → ω → γ̄ → χ Fπαf0
N (〈〉)x −→ Fπ0α〈〉x

(LN) ς → ω → γ̄ → χ Fπαf1
N (t, p)x −→ Fπ1 [s 7→ a]α〈〉px

(cut) ς → γ̄ → χ Fπαx −→ Fπ1α(Fπ0αx0)x1

(W) ς → ϕ→ γ̄ → χ Fπαyx −→ Fπ0αx
(C) ς → ϕ→ γ̄ → χ Fπαyx −→ Fπ0αyyx
(Sub) ς → γ̄ → χ Fπαx −→ Fπ0 [θ]αx

(⊥0) ς → γ̄ → ε→ ⊥ Fπαyx −→ ∗⊥ y
(+0) ς → γ̄ → ε Fπαx −→ 〈〉
(+s) ς → γ̄ → ε Fπαx −→ 〈〉
(·0) ς → γ̄ → ε Fπαx −→ 〈〉
(·s) ς → γ̄ → ε Fπαx −→ 〈〉
(= s) ς → ε→ γ̄ → ε Fπαyx −→ y

Start ε F⊥ −→ Fπ
Cycle ε Fπ −→ Fπ′

We proceed with a closer look at the rules and give some explanation.

29

Axioms and equality

(Ax) Fπαyx −→ y (L⊥) Fπαyx −→ ∗εy
(id) Fπαx −→ 〈〉 (L =) Fπαyx −→ Fπ0αx
(⊥0) Fπαyx −→ ∗⊥y (?∗) Fπαx −→ 〈〉
(= s) Fπαyx −→ y

where ? ∈ {+, ·} and ∗ ∈ {0, s}. Whenever the axiom is independent from the context,
it returns directly 〈〉 or f0

N 〈〉. In the remaining cases, the input term from which the
right-hand side depends, and that is witnessing the axiom, is returned, while the rest
of the input is deleted since there is nothing left to consider. In the case of (L =) the
rule removes the input term of type ε, the justification being that the substitution occurs
between two terms whose equivalence is an arithmetical fact and not a logical one, hence
from our perspective there is no change in the computational content. Finally: in the
cases of (L⊥) and (⊥0) the term obtained is a function from an input of type ⊥ to an
object of type ε or ⊥ respectively.

Implication

(L→) Fπαyx −→ Fπ1α(yFπ0αx0)x1 (R→) Fπαx −→ Fπ0αx

(L →) is branching, so its rewrite rule takes the input y : ϕ → ψ and applies to it the
subproof of the branch with type Fπ0αx0 : ϕ. The result is that the type of the right
branch Fπ1 is matched: ς → γ → ψ → χ. Notice that, despite the fact that the proof
splits into two branches, we still have just one term with two non-terminals. The term
obtained by (R→) has the same function type as before: we have Fπ0 : ς → γ → (ϕ→ ψ)
hence Fπ0αx : ϕ→ ψ with an argument for ϕ that needs to be given as input to produce
a term of type ψ. The motivation for this choice will become clear when cut reduction
is analysed.

Conjunction and disjunction

(L∧) Fπα〈y, z〉x −→ Fπ0αyzx (R∧) Fπαx −→ 〈Fπ0αx0,Fπ1αx1〉
(L∨) Fπα(kiy)x −→ Fπiαyxi (R∨) Fπαx −→ kiFπ0αx

There is not much to say about these logical rules, except pointing out how the left rules
have pattern-matching, de-constructing the term of a specific form. The right rules,
on the other hand, move the computation inside, re-constructing the term outside of
the non-terminal. Note that in the disjunction case we are talking about two distinct
rules with pattern matching: depending on the value of i ∈ {0, 1} we have two different
left production rules. It is a good point here to consider what happens when pattern
matching fails. From the point of view of the computation, if instead of kip we have an
unspecified term r of sum type, it means that we still need some additional information

30

as input in order to proceed with the reduction. Maybe r is waiting to be constructed
by another non-terminal: the intended purpose of pattern matching is precisely to stop
the computation until more detailed data is available. When the term is constructed
and the information is complete, the specific content of the input forces a decision about
the correct branch. However, since we are giving a general definition here and we are
working with meta-variables, it is sometimes useful to act as if we had a specific term,
but considering both possibilities. In that case, we will write, for example

Fπα(kiy)x −→ Fπ0αyx0 | Fπ1αyx1

to be able to follow both branches.

Quantifiers

(L∃) Fπα〈t, y〉x̄ −→ Fπ0 [t 7→ a]αyx̄ (R∃) Fπαx −→ 〈t ◦ α,Fπ0αx〉
(L∀) Fπαyx −→ Fπ1α(yt)x (R∀) Fπαx −→ Fπ0αx

As in the case of implication, we don’t need to use the λ-abstractor to work with ∀, it
is sufficient to take advantage of the functional type of the non-terminal. The left rule
behaves like in the case (L →), with the difference that t is an individual term, while
the right rule leaves everything unchanged and gives a term that waits for an object of
type ι in accordance with the dependent type of open formulas. Existential quantifier
is worth a closer look, since it presents the most peculiar behaviour. Similarly to the
conjunctive case the right rule produces a pair of objects. In this case, the first element is
an individual term t, together with the stack of substitutions α that has been produced
at that moment. The choice for the stack to be copied together with the term comes from
the fact that any future substitution results from a rule above in the proof, hence doesn’t
involves the term. The expansion of the substitution stack results from left existential
rule, where the pattern-matching demands an input of the right form, and an individual
term can be extracted from the pair. The substitution for the eigenvariable a is inserted
on top of the stack. That is because a substitution [t 7→ a] informally corresponds to an
instantiation of the eigenvariable a with the term t in the rest of the above subproof.3

The following example clarifies the process

π
...

ψ(a)⇒ χ

∃x.ψ(x)⇒ χ

(1)

D[t 7→ a]

...
w[t 7→ a]⇒ p

〈t, w〉 ⇒ p

(2)

π[t/a]

...
ψ(a)[t/a]⇒ χ

∃x.ψ(x)⇒ χ

(3)

3See Lemma 2.8 below.

31

If we consider a pair 〈t, w〉 as witnessing the existential claim, we have already a candidate
for the eigenvariable a in (1). On the other hand, the reduction proceeds ignoring the
information, so in the recursion scheme the term w : [A(a)] is considered. The rule adds
the substitution to the stack and continues with the subproof, that is what happens in the
case (3). Unsurprisingly, left and right existential rules are thought to be complementary.
An example is the following

⇒B ϕ(t)

⇒A ∃y.ϕ(y)

ϕ(a)⇒4 ψ(s(a))

ϕ(a)⇒3 ∃y.ψ(y)

∃y.ϕ(y)⇒2 ∃y.ψ(y)

⇒1 ∃y.ψ(y)

A suitable candidate to witness the existential claim, hence to instantiate the variable a,
can be found on the left branch of the proof via a cut. The rewriting process is then

F⊥ −→ F1

−→ F2(FA)

−→ F2〈t,FB〉
−→ F3[t 7→ a]FB
−→ 〈s(a) ◦ [t 7→ a],F4[t 7→ a]FB〉
= 〈s(t),F4[t 7→ a]FB〉

The final term is a pair with the individual term s(t) and FB : ϕ(a) witnessing ∃y.ϕ(y).

N predicate

(RN0) Fπαx −→ f0
N (〈〉) (RN1) Fπαx −→ f1

N (t ◦ α,Fπ0αx)

(LN) Fπαf0
N (〈〉)x −→ Fπ0α〈〉x (LN) Fπαf1

N (t, p)x −→ Fπ1α〈〉px

As already seen, the right rules push the computation inside and build the term outside,
preserving the final type. Clearly (RN0) does not introduce a new non-terminal, since the
computation ends for 0; (RN1) constructs a term of type Ns(t) by giving as argument
to f1

N the predecessor t together with a proof of Nt. Once again, this is intended to
match the left rules. Depending on the presence of f0

N or f1
N as input we have two

pattern-matching rules, like in the case of disjunction. As we pointed out in Section
1.4.1, what these rules are doing is condensing a series of implicit steps corresponding to
the unravelling of the definition of N . In the first scenario, (LN) substitutes Nt with its
justification t = 0, hence to the term fN0 〈〉 of type N0 corresponds a term 〈〉 : ε. In the
second case, the individual term t is forgotten, because the focus shifted onto Nt. An
extra term 〈〉 is necessary to match the additional assumption t = s(r). Pattern-matching
is again essential to determine the correct branch of the derivation. As in the previous
case of ∃, consider the following derivation in which after a (LN) rule, the formula Nt
is cut:

32

Γ⇒00 (?)
R

Γ⇒0 Nt

t = 0,∆′ ⇒10 χ t = s(r), Nr,∆′′ ⇒11 χ

Nt,∆⇒1 χ

Γ,∆⇒ χ

The subproof on the left gives a construction for Nt to be used as premise in the right
branch. Depending on the value of t, the possible computations are the following

F⊥xy −→ Fxy
−→ F1(F0y)x (cut)

−→ F1f
0
N (〈〉)x (RN0) | F1f

1
N (r,F00y)x (RN1)

−→ F10〈〉x0 (LN) | F11〈〉(F00y)x1 (LN)

Structural rules

(cut) Fπαx −→ Fπ1α(Fπ0αx0)x1 (W) Fπαyx −→ Fπ0αx
(C) Fπαyx −→ Fπ0αyyx (Sub) Fπαx −→ Fπ0 [θ]αx

Weakening and contraction can be viewed as simple adjustments of the premises, both
affecting the left-hand side of the sequent. Notice that contraction is the only rule that
duplicates input-terms. The substitution rule is reported in the stack, for the same
motivation given in the existential case. Even if the term-value of the variable is known,
the subproof might need to keep working with the variable. Once written on the stack,
however, the substitution is performed in the case of an individual term extracted by R∃
or RN1. The rule for cut introduces the term resulting from the left branch of the proof
in the context of the right branch, as we already discussed above. Note that despite the
branching, the rule produces just one H-term with two different non-terminals inside for
the two branches, as in the case of implication.

2.1 Properties of Hπ

In this section we show some of the characteristics of the recursion schemes defined above.
The first straightforward property is that the rules of any system Hπ are type preserving.
This fact is evident by inspection of the rules, and as a consequence we have that any
H-term obtained by a series of reduction rules of a recursion scheme Hπ from a proof π
of Γ⇒ ϕ are of type [ϕ].

Lemma 2.3 (Type preservation). Given a recursion scheme Hπ from a proof π, for any
m,n terms obtained by a series of reduction rules from the start symbol, if m�R n then
[m] = [n].

Proof. By induction on the length of m �R n. The base case is trivial, while the
induction step holds by inspection of the rules, see Definition 2.2.

33

Corollary 2.4. Given a proof π of a sequent Γ ⇒ ϕ, any H-term obtained by a series
of reduction rules from F⊥ is of type [ϕ].

Introducing higher-order recursion schemes in Section 1.6 we mentioned the existence
of non-deterministic schemes. If with ‘deterministic’ we refer to the presence of only
one rule in R for each non-terminal, then our schemes Hπ should be considered non-
deterministic, because the rules (L∨) and (LN) give two different outcomes based on
the kind of input-term they receive. However, thanks to pattern-matching we know that
there is never confusion about which rule is to be applied. The non-terminal either needs
to wait for some term of the proper form, or there is only one rule that can be applied:
the system is then deterministic.

Directly connected with the type of recursion schemes is its order. In [AHL20] a bound
of n on the order of the recursion scheme was established, for cut-formulas all in Πn or
Σn and in prenex-form. In the present context we can determine an easy correspondence
between the complexity of the cut-formulas and the order. Recall that the order of a
non-terminal Fπ was defined as the one of its type according to Definition 1.17, and the
order of a recursion scheme is the supremum of the orders of its non-terminals. Let’s
indicate with o(ϕ) the order associated to the type of ϕ. From a superficial look at the
definitions, we see that for any non-terminal Fπ : ς → γ0 → · · · → γm → ρ it can be
defined o(Fπ) := max{o(ρ), 1 + o(γi) : i ≤ m}. This is because by Definition 1.17 the
order of an implication o(ϕ → ψ) := max{o(ψ), 1 + o(ϕ)} and o(ς) = 0. We also know
that the reduction rules are type preserving, hence the value o(ρ) can either be the same
of the previous non-terminal, or it can be decreased after a right rule. The same happens
with left rules, where terms are de-constructed and reduced to lower complexity, hence
the order of γi will either be the same or decreased. The only rule that can increase the
order of a non-terminal with respect to the previous one is cut. That determines a value
for the order of recursion schemes in terms of the maximal order of the (types of) all cut
formulas.

Theorem 2.5 (Order of Hπ). Given a cyclic proof π, for ϕ0, . . . , ϕm being all the cut
formulas in π, and Fπ : the first non-terminal, the order of Hπ is

o(Hπ) = max{o(Fπ), o([ϕi]) + 1 : i ≤ m}

Proof. By inspection of the rules we see that the order of Fπ and any following non-
terminal can be increased only by cut. If there are no cuts, or the maximum order of
a cut is lower than o(Fπ), the order of the recursion scheme is the same as the one of
its initial non-terminal. If m is at least the same value of o(Fπ), since the cut-formulas
occur as input of some non-terminal, its order is by definition m + 1, as it is the final
order of the higher-order recursion scheme.

The bound given here is as straightforward as it is uninformative. It is true that the proof
π is a finite object and so we know for sure the order of its cut-formulas, but there is not
much more that can be add here, since the notion of order of a type corresponds to the

34

functional complexity of the formula, and we have no way of restricting the complexity
of the cut formulas under a known threshold.

Let’s focus on the properties of a higher-order recursion scheme with respect to the terms
that can be obtained as a result of the reduction rules. In particular, we are interested
in the language that a given Hπ generates, assuming that the inputs are well-typed.

Definition 2.6 (Language). The language of a recursion scheme Hπ with F⊥ as starting
symbol is

L(Hπ) := {t ∈ ΣH | F⊥s�R t}

for s any series of closed input terms of the right type.

The language is given by all the terms without non-terminals that can be obtained from
a reduction sequence. Since the system has pattern-matching, the input must be not
only of the right type, but also detailed enough to let the computation progress. If we
have a non-terminal of the type F : ς → [ϕ] → [ψ] and a variable x : [ϕ] there is a high
probability that the computation will not be completed due to failed pattern-matching.
Looking at the Definition 2.1 of the ΣH terms, however, we notice that variables can
only be of type ι. It is a characteristic of every scheme Hπ that every term of each type
is formed by (a.) a constant term, like 0 and 〈〉 for the ground types, or an individual
variable a : ι; (b.) the unique constructor of each type, like kip or f1

N (t, p) from typed
subterms; or (c.) it is given by a functional Fp : [ψ] or ∗ψ p with [ψ] = ε. It follows
that the only free variables in a well-typed ΣH -term can be individual variables. When
no free variable occurs in a term p we say that p is closed.

Since L(Hπ) is given by the end-terms of a computation, we would like to know if the
recursion scheme has the property of termination. Unfortunately, this is not the case
for recursion schemes extracted from generic cyclic trees. In fact, even if at the level
of proofs we have a global trace condition, we don’t have an equivalent notion in the
corresponding recursion schemes. We will come back to this issue in Section 2.2, but
notice already that there is no structural difference between the recursion schemes that
can be extracted from a proof and from a pre-proof. It is possible to define a recursion
scheme from the unsound pre-proof of Example 1.2, obtaining a series of reductions
that compute the same steps Fπ〈〉 → Fπ′(Fπ′′〈〉) → Fπ′〈〉 → Fπ〈〉 . . . infinitely often.
Moreover, we cannot appeal to some property of λY -calculus or cyclic recursion schemes
in general, since both don’t have the normalisation property. We leave this issue aside for
the present section, accepting the possibility of non-terminating reductions and focusing
on the characteristics of the language resulting from those that do terminate eventually.

So far we have stated without motivation that there is a correspondence between implicit
and explicit substitution. If that is immediate at the individual term level, given the way
in which the implicit substitution was defined in Section 1.3, we need to prove that
the same extends to the non-terminals of H. The kind of correspondence that we are
interested into is with respect to the language L(H), i.e., we want to be sure that the
presence of one kind of substitution instead of the other will have no effect in the language.

35

Let’s introduce, then, a symbol for such a relation

Definition 2.7 (∼). Given two H-terms p, q, we say that p � q iff given any H-term
m(x), if m(p) �R u ∈ ΣH then there is a v ∈ ΣH such that m(q) �R v and u◦ = v◦.
Whenever p � q and q � p then the two are said to be equivalent: q ∼ p.

Notice already that by Definitions 1.14 and 1.15, it is always true that 〈〉 ◦ [t 7→ a] =
〈〉[t/a] ∼ 〈〉, and as a consequence the same holds for f0

N (〈〉). It is also true that ∗ψ y◦[t 7→
a] = (∗ψ y)[t/a] ∼ ∗ψ y, since y is a term of type ⊥.

The next lemma ensures that the use of explicit or implicit substitution does not affect the
language of the recursion scheme Hπ. To be able to prove it, however, we need to assume
that in the proof π not only there is no eigenvariable outside the subproof above its rule
application, as it is already by regularity, but also that the terms in the substitution stack
of Fπ contain none of the other eigenvariables of π. This request is not implausible, as it
was assumed and proved to be sufficiently general already in [AHL20], where this is one
of the conditions that determines the so called normal terms.4 Informally we can argue
that the only way in which a term of α : ς can contain an eigenvariable is through the
left existential rule or a substitution rule. In both cases there is no problem in opting for
a different term, since the two occurrences of the variable are not logically related.

Lemma 2.8 (Substitution equivalence). Given a proof π, terms t, b : ι and a substitution
stack α. Fπi [t 7→ a]αx is such that: if for some m, m(Fπi [t 7→ a]αx)�R p and p ∈ ΣH ,
then there is a q ∈ ΣH such that m(Fπ[t/a]

i αx)�R q and p◦ = q◦. That is

Fπi [t 7→ a]αx ∼ Fπ[t/a]
i αx

Proof. Assuming that m(Fπi [t 7→ a]αx) � p, by co-induction on the distance from the
final term p we prove the lemma. We distinguish between two main possibilities: (1.)
the next step reduces a non-terminal in m different than Fπi , or (2.) the next step is a
reduction of Fπi .

1. If the redex is another non-terminal in m we have three sub-cases:

(a) the reduction does not affect Fπi , since it involves only the context. In this
case we have that

m(Fπi [t 7→ a]αx)→ m′(Fπi [t 7→ a]αx)� p

and since m(Fπ[t/a]
i αx)→ m′(Fπ[t/a]

i αx) we conclude by hypothesis

m(Fπ[t/a]
i αx)→ m′(Fπ[t/a]

i αx)� q

for p ∼ q.

(b) the reduction does not affect Fπi but occurs in one of its arguments. The
conclusion is analogous to (1a).

4See Definition 6.3 §1, p.28

36

(c) Fπi is affected by the reduction. That is possible only if the rule is (L =) or
(W) and Fπi is principal, or if it is not principal in any axiom. In any case
the whole term (Fπi [t 7→ a]αx) is cancelled, so we have

m(Fπi [t 7→ a]αx)→ m′ � p

and
m(Fπ[t/a]

i αx)→ m′ � p

2. The redex is Fπi . We proceed by cases on the rule. In the majority of possibilities
the reduction produces new non-terminal(s) without modifying the substitution
stack. As a consequence a simple inductive step is sufficient. We give just two
potentially interesting examples

• with (cut) we have

m(Fπi [t 7→ a]αx)→ m(Fπj1[t 7→ a]α(Fπj0[t 7→ a]αx0)x1)� p

and also m(Fπ[t/a]
i αx) → m(Fπ[t/a]

j1 α(Fπ[t/a]
j0 αx0)x1). By hypothesis for both

the non-terminals obtained

m(Fπ[t/a]
i αx)→ m(Fπ[t/a]

j1 α(Fπ[t/a]
j0 αx0)x1)� q

• even in the case (L∀) of a universal quantifier there is no change in the sub-
stitution stack α

m(Fπi [t 7→ a]αwx)→ m(Fπj [t 7→ a]α(ws)x)� p

and also m(Fπ[t/a]
i αwx)→ m(Fπ[t/a]

j α(ws)x). By hypothesis

m(Fπ[t/a]
i αwx)→ m(Fπ[t/a]

j α(ws)x)� q

The relevant cases are the ones that extract the stack α, or determine a different
one after the first reduction, that is (L∃), (R∃), (RN1), (LN) and (Sub). We focus
here on the two existential rules, the remaining cases being analogous.

• (R∃) the reduction rule extracts the term together with the substitution stack.
We know by definition that explicit and implicit substitutions coincide at the
level of individual terms. We have that

m(Fπi [t 7→ a]αx)→ m(〈s ◦ [t 7→ a],Fπj [t 7→ a]αx〉)� p

and also m(Fπ[t/a]
i αx)→ m(〈s[t/a],Fπ[t/a]

j αx)〉. Since by definition
(s ◦ [t 7→ a])◦ = s[t7→a] = s[t/a], it follows by hypothesis

m(Fπ[t/a]
i αx)→ m(〈s[t/a],Fπ[t/a]

j αx)〉� q

37

• the case (RN1) is analogous in the sense that it also extracts an individual
term with the stack. The conclusion follows from the same argument.

• (L∃). In this case we need to invoke the assumed property that no eigen-
variable appears in some individual term in the substitution stack. That is
because from the assumptions we have

m(Fπi [t 7→ a]α〈s, y〉x)→ m(Fπj [s 7→ b][t 7→ a]αyx)� p

and m(Fπ[t/a]
i α〈s, y〉x)→ m(Fπ[t/a]

j [s 7→ b]αx) from which we cannot proceed
further, because the necessary hypothesis is m(Fπj [t 7→ a][s 7→ b]αyx), and in
general it is not true that

Fπj [t 7→ a][s 7→ b]αx ∼ Fπj [s 7→ b][t 7→ a]αx

However, thanks to the condition on eigenvariables we have that π[t/a][s/b] =
π[s/b][t/a], so we can conclude that

m(Fπ[t/a]
i α〈s, y〉x)→ m(Fπ[t/a]

j [s 7→ b]αx)� q

• the cases (Sub) and (LN) are analogous to the latter, since they also introduce
a new substitution on top of the stack. By the same argument we can conclude
the desired reduction.

A final remark for the axiom cases of Fπi [t 7→ a]αx. In many instances the term
obtained is 〈〉, hence no stack or substitution has any effect. The same for the cases
(RN0) with f0

N (〈〉), and (L⊥) with ∗ε y. For (Ax) and (s(=)), when the resulting
term of type ε is not 〈〉, then it must be the case that p[t/a] ∼ p. As we pointed out
above, in ΣH the only possible terms of such a type are 〈〉, ∗ε y or an application
(Fkr). We just discussed the first and second terms. If it is the case that (Fkr),
by hypothesis we have the conclusion.

Theorem 2.9 (Cut reduction invariance). Given a cyclic proof π, if π′ is the proof that
results from the application of one step of the cut reduction strategy, then Fπ⊥ ∼ Fπ

′
⊥ .

Proof. We proceed by cases considering the last rules applied before the cut that is
being reduced. Let’s call 〈R1, R2〉 the pair of last rules respectively on the left and right
branches above the cut. The structure of the argument consists of four main cases, with
some subcases:

A. R1 is an axiom

B. R2 is an axiom

C. the cut-formula ϕ is principal in both R1, R2

38

D. ϕ is not principal in at least one branch

For each scenario, we will highlight the reasons that make the recursion scheme invariant
with respect to the application of a permutation/reduction rule.

(A). R1 is an instance of a rule (Ax), (L⊥), (id) or arithmetic axiom (the case of
R1 = (RN0) is different and it is included in (C) and (D) below). ϕ ≡ t = s is
principal in both, so depending on the nature of R2 there are only two possible
scenarios: (i) the resulting sequent is an instance of an axiom itself, or (ii) the final
sequent can be obtained via weakening from the right branch. Since the second
case is also covered by (C), we show only the first case here. An example of (i) is
〈Ax,L⊥〉:

(Ax)

t = s,Γ⇒0 t = s
(L⊥)

t = s,⊥,∆⇒1 r = q

t = s,⊥,Γ,∆⇒ r = q
(L⊥)

t = s,⊥,Γ,∆⇒ r = q

F⊥wzxy −→ Fwzxy F⊥wzxy −→ Fw⊥xy
−→cut F1(F0wzx)y −→L⊥ ∗ εz
−→Ax F0wzx

−→L⊥ ∗ εz

The rest of the combinations with R1 an axiom are analogous.

(B) R2 is an instance of a rule (Ax), (L⊥), (id), (RN0) or arithmetical axiom. We have
again two possible scenarios. In the first the cut-formula is in the context of R2

but it is irrelevant for the reduction, so we always have that the final sequent is an
axiom itself like in the following example 〈R1, RN0〉:

Γ′ ⇒0 ϕ
′

(R1)

Γ⇒1 ϕ
(RN0)

ϕ,∆⇒2 N0

Γ,∆⇒ N0
(RN0)

Γ,∆⇒1 N0

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0x)y −→RN0 f0

N (〈〉)
−→RN0 f0

N (〈〉)

In the second scenario there is a dependency between the input term and the result,
that is for R2 = (Ax) or (= s). We have for example 〈R1, Ax〉

39

Γ⇒0 t = s
(Ax)

t = s,∆⇒1 t = s

Γ,∆⇒ t = s
Γ⇒0 t = s

(W)

Γ,∆⇒1 t = s

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0x)y −→W F0x

−→Ax F0x

(C) in the third case the cut formula ϕ is principal in both R1 and R2. The strategy
for cut reduction consists in producing cuts of a lower complexity. The way in
which the rewrite rules are defined takes care of this strategy. We will give here the
cases of disjunction, existential quantifier and N predicate, because they present
the most interesting situations.

• ϕ ≡ ψ0 ∨ ψ1

∆⇒00 ψi
(R∨)

∆⇒0 ψ0 ∨ ψ1

ψ0,Γ
′ ⇒10 χ ψ1,Γ

′′ ⇒11 χ
(L∨)

ψ0 ∨ ψ1,Γ
′,Γ′′ ⇒1 χ

Γ′,Γ′′,∆⇒ χ

∆⇒00 ψi ψi,Γ
i ⇒1i χ

(cut)

Γi,∆⇒B χ
(W)

Γ′,Γ′′,∆⇒A χ

F⊥x0x1y −→ Fx0x1y F⊥x0x1y −→ FAx0x1y

−→cut F1(F0y)x0x1 −→W FBxiy
−→R∨ F1κi(F00y)x0x1 −→cut F1i(F00y)xi

−→L∨ F1i(F00y)xi

This example shows that the computation does not need to inspect all the
branches, once the input in the context indicate the one that it is to pursue.

• ϕ ≡ ∃z.ψ(z)

∆⇒00 ψ(s)
(R∃)

∆⇒0 ∃z.ψ(z)

ψ(v),Γ⇒11 χ
(L∃)

∃z.ψ(z),Γ⇒1 χ

Γ,∆⇒ χ

∆⇒00 ψ(s) ψ(v)[s/v],Γ⇒11 χ
(cut)

Γ,∆⇒ χ

F⊥ −→ Fxy F⊥ −→ Fxy

−→cut F1(F0y)x −→cut F [s/v]
11 (F00y)x

−→R∃ F1〈s,F00y〉x
−→L∃ F11[s 7→ v](F00y)x

40

In this case we use Lemma 2.8 to be sure that F1[s 7→ v](F0y)x ∼ F [s/v]
1 (F0y)x

are equivalent with respect to the final language.

• ϕ ≡ Nt. We need to distinguish between two cases: (a) t = 0,5 and (b)
t = s(s). In both cases there is not a direct reduction strategy for the system
we have defined. We can, however, build two reductions by using (id) and the
knowledge of whether (a) or (b).

(a) In the first case we can reduce the cut to an atomic one by taking the
axiom ∆ ⇒ 0 = 0 instead of ∆ ⇒ N0. If N0 is the cut-formula, in fact, we
have that t ≡ 0 also on the right branch.

∆⇒0 N0

0 = 0,Γ′ ⇒10 χ 0 = s(s), Ns,Γ′′ ⇒11 χ
(LN)

N0,Γ′,Γ′′ ⇒1 χ

Γ′,Γ′′,∆⇒ χ

⇒10 0 = 0 0 = 0,Γ′ ⇒11 χ

Γ′ ⇒A χ

Γ′,Γ′′,∆⇒ χ

F⊥x0x1y −→ Fx0x1y F⊥x0x1y −→ Fx0x1y

−→cut F1(F0y)x0x1 −→W Fx0

−→RN0 F1f
0
N (〈〉)x0x1 −→cut F11(F00)x0

−→LN F11〈〉x0 −→id F11〈〉x0

(b) In the second case we have again to consider the fact that t ≡ s(s) and
use the axiom ⇒ s(s) = s(s). We can then perform the following

∆⇒00 Ns

∆⇒ Ns(s)

s(s) = 0,Γ′ ⇒ χ s(s) = s(a), Na,Γ′′ ⇒11 χ

Ns(s),Γ′,Γ′′ ⇒ χ

Γ′,Γ′′,∆⇒ χ

becomes

∆⇒00 Ns

⇒ s(s) = s(s) s(s) = s(a)[s/a], Na[s/a],Γ′′ ⇒11 χ

Na[s/a],Γ′′ ⇒ χ

Γ′′,∆⇒ χ

Γ′,Γ′′,∆⇒ χ

5In this case we consider R1 = RN0.

41

F⊥x0x1y −→ Fx0x1y F⊥x0x1y −→ Fx0x1y

−→cut F1(F0y)x0x1 F⊥ −→W Fx1y

−→RN1 F1f
1(s,F00y)x0x1 −→cut F [s/a]

1 (F00y)x1

−→LN F11[s 7→ a]〈〉(F00y)x1 −→cut F [s/a]
11 (F10)(F00y)x1

−→id F [s/a]
11 〈〉(F00y)x1

By Lemma 2.8

F11[s 7→ a]〈〉(F00y)x1 ∼ F [s/a]
11 〈〉(F00y)x1

Note that C covers also the cases of ϕ principal with R2 being (W) or (C).
In the first case we simply make use of weakening on the right premise to fix
the context, while in the second case we have that

∆⇒0 ϕ

ϕ,ϕ,Γ⇒1 χ

ϕ,Γ⇒2 χ

Γ,∆⇒ χ

∆⇒0 ϕ

∆⇒10 ϕ ϕ,ϕ,Γ⇒11 χ

ϕ,Γ⇒1 χ

Γ,∆⇒ χ

and as a result we have the computations

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0y)x −→cut F1(F0y)x

−→C F1(F0y)(F0y)x −→cut F11(F0y)(F10y)x

with F10 = F0.

(D) ϕ is not principal in at least one of the branches. This generates four possibilities
depending on the number of premises of the rule under scrutiny, plus the case of
one of the rules being a cut. Let’s see the case of ϕ non-principal in a rule R1 with
one premise:

∆′ ⇒00 ϕ
(R1)

∆⇒0 ϕ ϕ,Γ⇒1 χ

Γ,∆⇒ χ

∆′ ⇒00 ϕ ϕ,Γ⇒1 χ

Γ,∆′ ⇒A χ
(R1)

Γ,∆⇒ χ

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0y)x −→R1 FAxy0

−→R1 F1(F00y0)x −→cut F1(F00y0)x

42

The rules such that R1 has two premises are (L∨) and (LN) only. We already saw
how their pattern-matching restricts the reduction to just one of the two branches,
hence they are similar to the case of a one premise rule. Say ϕ is not principal in
R2 with two premises.

∆⇒0 ϕ

ϕ,Γ′ ⇒10 χ
′ Γ′′ ⇒11 χ

′′

ϕ,Γ⇒1 χ

∆,Γ⇒ χ

∆⇒0 ϕ ϕ,Γ′ ⇒10 χ
′

∆,Γ′ ⇒A χ
′ Γ′′ ⇒11 χ

′′

∆,Γ⇒ χ

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0y)x −→R2 F11(FAx1y)x0

−→R2 F11(F10x1(F0y))x0 −→cut F11(F10x1(F0y))x0

The final structure of F11(F10x1(F0y))x0 depends on the nature of R2, but we
know that the combination preserves the two distinct subterms, hence the result.
The case of a one-premise rule is easier and not given here. It remains to show the
case of two consecutive cuts that are inverted, which is similar to what we just saw.
Say that R2 is a cut

∆⇒0 ϕ

ϕ,Γ′ ⇒10 ψ ψ,Γ′′ ⇒11 χ

ϕ,Γ⇒1 χ

∆,Γ⇒ χ

∆⇒0 ϕ ϕ,Γ′ ⇒10 ψ

∆,Γ′ ⇒A ψ ψ,Γ′′ ⇒11 χ

∆,Γ⇒ χ

and as a computation

F⊥xy −→ Fxy F⊥xy −→ Fxy
−→cut F1(F0y)x −→cut F11(FAyx0)x1

−→cut F11(F10(F0y)x0)x1 −→cut F11(F10(F0y)x0)x1

The case R1 = (cut) is analogous.

This concludes the analysis of the possible cases of cut-reduction. It remains to remark
that the case of (Sub) has not been analysed, but it sufficient to point out that the
strategy in that case consists in a simple substitution of terms for variables. As for the
existential rule, we obtain the desired final term by noticing that (Fαx)[t/x] ∼ F [t/x]αx,
as resulting from Lemma 2.8.

43

2.2 The language L(Hπ)

Now that we have shown some preliminary properties of Hπ, we want to conclude this
work by looking at the language obtained. In this section we focus on the language L(Hπ)
and the process of reduction in general. First of all, we prove that �R is confluent, that
is for t�R p0 and t�R p1 there is a term p such that p0 �R p and p1 �R p.

Theorem 2.10 (→R confluence). The reduction relation →R is confluent, i.e., for all
t, p0, p1, if t�R p0 and t�R p1 there is a term p such that p0 �R p and p1 �R p.

Proof. For →+
R the reflexive closure of →R we prove that if t→+

R p0 and t�R p1 there
is a term p such that p0 �R p and p1 →+

R p.
6 Let Fx be the redex in t that is reduced

to obtain p0, that is t(Fx)→R t(F ′x′) ≡ p0. There are four possibilities for the series of
reductions t�R p1

1. Fx still occurs in p1 ≡ t′(Fx) untouched, meaning that all the reductions in-
volved redexes outside of the term Fx. Clearly we have t(F ′x′) �R t′(F ′x′) and
t′(Fx)→+

R t
′(F ′x′)

2. F still occurs in p1 ≡ t′(Fx′′) but some reduction changed some of the terms xi.
Since all the rules are type preserving it is still possible to reduce Fx′ and obtain
t′(Fx′′)→+

R t
′(F ′y), while clearly t(F ′x′)�R t′(F ′y).7

3. Fx has been deleted by some reduction in t(Fx)�R p1. Then we have t(F ′x′)�R
p1 and the conclusion for p ≡ p1

4. Fx has been reduced in the process t(Fx) �R t′(Fx) →R t′(F ′x′) �R p1. We
have that t(F ′x′)�R t′(F ′x′)�R p1.

A direct application of the property showed proves confluence.

As a consequence, whenever a term has a normal form, that is unique. The next property
of�R is the leftmost reduction property, that is: if there is a normal form, then a strategy
that reduces always the leftmost possible redex terminates. Before we are able to prove
that, it is convenient to define normal forms of H-term and characterise them by showing
that they don’t contain non-terminals.

Definition 2.11 (Normal form). A term q ∈ H is in normal form iff there is no term
q′ ∈ H such that q →R q′.

Given a recursion scheme Hπ, let assume that p is a series of input terms of the right
type for the initial non-terminal F⊥, and also that no individual variable occurs in p, i.e.
it is a closed term. We prove that

6This is called Strip Lemma in [Bar84], p.282. A version for rewrite systems can be found in [Klo92],
p.72 as Parallel Moves Lemma, whose argument we follow here.

7The possibility is a consequence of the fact that no pattern matching is blocked by a reduction on
an argument term.

44

Lemma 2.12 (Normal form). Given a recursion scheme Hπ, a closed input p : [Γ] and
an initial non-terminal F⊥ : [Γ] → [ψ], if F⊥p �R q and q is in normal form, then
q ∈ ΣH does not contain non-terminals.

Proof. Assume F⊥p �R q and q is in normal form. Either q ∈ ΣH , then we are fine,
or there is a non-terminal Fi such that Fix cannot be reduced. That is the case if
either some input-term is not of the right type, but that is impossible for the assumption
on p and Lemma 2.3, or because a pattern-matching rule cannot be reduced. As we
pointed out already, for every type [ψ] there are in H three possible kinds of terms by
definition: a term obtained by a constructor from well-typed subterms, a term ∗ε y : ε
of unit type, or a functional term Fjy : [ψ]. Every rule with pattern matching can be
reduced in the first case, while no pattern matching exists for a term of type ε, hence
the situation is necessarily Fi(Fjy)x. The reason why the initial Fi is stuck is because
another irreducible non-terminal occurs as argument. However, since our term is finite,
we can find an innermost non-terminal Fk that cannot be reduced and doesn’t have non-
terminals as input. Since this is impossible, we have that no term in normal form has
non-terminals.

Now that we are sure that non-terminals don’t appear in normal forms, we can prove
that if a term in normal form exists, the leftmost reduction strategy terminates with that
term. Remember that the leftmost possible reduction is not necessarily on the outermost
non-terminal, in this context for pattern-matching.

Definition 2.13 (Leftmost strategy). We say that a reduction p →l
R p′ is a leftmost

reduction iff the reduction is operated on the first possible redex read from the left.

Lemma 2.14 (Leftmost reduction). Given a recursion scheme Hπ on a closed input p,
if F⊥p �R q for q in normal form, then q can be computed from F⊥p by reducing at
every step the leftmost possible redex.

Proof. Assume that F⊥p�R q for q in normal form. By Lemma 2.12 q does not contain
non-terminals, hence the leftmost redexes have been reduced at some point during the
computation. Say that F⊥p →R p0 →R . . . →R pm →R q and notice that necessarily
pn →l

R q. Since all the leftmost redexes during the reduction are computed eventually,
we just need to re-order the series of reductions so that the result is in the desired
order. Take the first such that pi(F0,F1)→R pi+1(F0,F ′1)�l

R q, where (F0,F1) are the
leftmost reduction and the one computed instead, respectively. Since the remaining are
all leftmost reductions, we know that pi+1(F0,F ′1) →l

R pi+2(F ′0,F ′1) �l
R q. Depending

on the rule for F0 that starts the leftmost reduction sequence, we can have three possible
situations:

1. F ′1 is copied

2. F ′1 is cancelled

3. F ′1 is duplicated, if F0 is the (C) rule for contraction.

45

In the first case, by reducing F0 instead of F1 we can postpone its reduction until it is the
leftmost (if it is not cancelled before). We have that pi(F0,F1)→l

R pi+1(F ′0,F1)�l
R q.

In the second case, then we simply jump one step and have pi(F0,F1)→R pi+2(F ′0)�l
R

q. In the third case we have that pi(F0,F1) →R pi+1(F ′0,F1,F1). As in the first case,
we can wait until each occurrence of F1 is either cancelled or is the leftmost. We
know that these are the only possibilities because in the initial computation we have
pi+1(F0,F ′1) →l

R pi+2(F ′0,F ′1,F ′1) �l
R q. Applying this strategy to the whole reduction

sequence guarantees that the leftmost reduction strategy eventually terminates.

2.2.1 On termination

The reduction relation is confluent, the normal form is unique (when exists) and we
have a strategy that terminates whenever there is a normal form. These results are not
surprising given that the same holds for λY -terms. The remaining question is about
termination. On the one hand, we know that λY -calculus does not have the property of
termination, due to the behaviour of the fixed point combinator Y :

Y p = p(Y p) = p(p(Y p)) . . .

The simple correspondence with term-witnesses is not enough for us to believe that the
process of term rewriting might terminate. On the other hand, at the very core of the
motivation for cyclic proofs is the certainty that to every instantiation of formulas with
closed terms corresponds a finite computation, the infinite regression being possible only
at the limit. From this fact and the faithful correspondence between HORS and cyclic
proofs we would reasonably expect that the reduction starting on closed ΣH -terms can
terminate, that is, has a normal form.

As we anticipated above, these two positions are compatible together if we consider
that the realisation via λY -terms covers all cyclic trees including pre-proofs, while the
argument for termination holds in the case of proofs only. It is perfectly reasonable, then,
to expect non-termination in general, and at the same time that there is a finite reduction
for every Hπ defined from a proof π that satisfies the global trace condition. The key
point is the absence in the definition given of Hπ of a counterpart for the global trace
condition. Notice, in fact, that even if the rewrite rules are determined by the deduction
rules of π, the reduction steps don’t follow a specific path, but insist on multiple points
of the derivation at the same time, hence insist on multiple paths. Whenever a rewrite
rule branches into two non-terminals, we have that the computation splits, and from the
next step considers the two branches of the subproof. In the framework of Definition 2.2
we cannot claim that we are able to track the progress of an inductive formula in a single
trace. In order to be able to do so, we need to expand further our toolbox of definitions,
a goal that we defer to future work. Nonetheless, since we believe that the processes
on closed terms really terminate, we want to conclude this first part with an informal
description of infinite reductions, giving an insight on the tools required to formally prove
termination.

46

Following the argument for the soundness of cyclic proofs, to prove termination we assume
the existence of infinite reductions for Hπ recursion schemes where π is a proof, and on
closed inputs. Then we want to derive the existence of an infinitely decreasing chain
of natural numbers to conclude its impossibility. As a first step we connect the infinite
reduction in Hπ to the progression on an infinite path in π, to be able to refer to the
global trace condition. Strictly speaking, every non-terminal is different from the non-
terminals generated by its reduction, so we need to define some notion of position in
the term of Hπ that is fixed along the reduction process. Assume that we have defined
the notion of position in a Hπ-term. Between the position in the latter and the points
of π there is a correspondence: for every reduction step, the term at a given position
corresponds to the sequence one step up along a path. We can then argue by cases:

1. there is a position in the term where the non-terminals are reduced infinitely often

2. every position is reduced finitely many times

Every reduction step of a non-terminal corresponds to a step of a path in the proof. As
a consequence, to the non-terminal progressing along the proof infinitely many times in
the first case corresponds already an infinite path in π. Notice that when it reaches an
axiom, a path is ended, but not necessarily the computation. It might be the case that
a non-terminal was witnessing the principal formula on the left of (Ax)8 and that the
rewrite rule for the axiom gives

m(F0(F1y)x)→R m(F1y)

corresponding to a jump in the proof tree to another path:

F1 now occupies the position of F0. In the informal correspondence between reductions
and paths, that represents the continuation of the computation on another path, (we can
consider the previous segment as a detour). If there is a position that is reduced infinitely
often, then we have a correspondence with an infinite path in π. If instead every position
is reduced finitely many times while the reduction is infinite, that is possible only because
every non-terminal at some point is stuck by pattern-matching, waiting for an input of
the proper form to be produced by some internal computation.9 That is, at some point
the computation is pushed inside infinitely many times. Similar to the case of the axiom,
a non-terminal inside is created by an occurrence of a cut at some lower level. To continue
the computation on the newly generated non-terminal inside corresponds to jumping to
the other path of a cut rule. Since this process is infinite while our cyclic proof is only
finitely branching, it follows that the computation progresses along an infinite path in π.

The second and final component of an argument for termination is a proof of the fact that
from the global trace condition of π it follows an impossibility for such an infinite path to
exist on closed inputs. That is where our notation comes short, since we don’t have yet

8An identical situation occurs for the rest of axioms where a left argument is the result of the
reduction.

9See proof ofs Lemma 2.12.

47

a method to track the progression of a single term t over an infinite reduction. We know
that by construction of Hπ with respect to π, any infinite reduction that corresponds to
an infinite path must have infinitely many steps of the form Fiαf1

N (ti, p)x→LN Fjαpx.
Assuming that nothing happened to p that might have changed the value of the individual
term in it, we can conclude that an infinite reduction entails an infinite descending chain
of natural numbers t, hence it is never the case.

48

2.3 Conclusion

In the previous chapter a sequent calculus ICA for cyclic Heyting Arithmetic was pre-
sented. A corresponding λY -calculus was defined in the spirit of Curry–Howard corre-
spondence, in order to obtain a faithful representation of the computation expressed by
a given proof. Thanks to the close correspondence between lambda terms and recursion
schemes, in the second chapter a method to define higher-order recursion schemes was
given, such that the reduction steps correspond to the rules of the initial proof π. The
recursion scheme so obtained preserves the typing constraints and generates terms in
the language of λ-calculus that witness the proof of the final statement. The language
obtained by the reduction procedure is not affected by substitutions being expressed in-
ternally in the λ-term or directly on the proof, nor it is influenced by some modification
in the proof driven by a cut-reduction strategy. Since there are no constraints on the
cut-formula complexity, the order of the recursion scheme is dependant on it, in addition
to the obvious connection with formulas in the final sequent. The computation induced
by the recursion scheme has the expected property of confluence, and we showed that
a leftmost reduction strategy guarantees the reachability of the normal form whenever
a normal form exists. Unfortunately, the formalism defined is not able to conclude ter-
mination, a property of the system that we expect for recursion schemes generated by
actual proofs. The impossibility to track formally the evolution of progressing traces
forced us to give just an informal argument for termination.

Any potential future work originating from the present one must start by addressing
termination. That is not only because of its intrinsic importance, but also because the
informal argument reveals how the present correspondence between cyclic proofs and
recursion schemes is not complete, an equivalent notion to the one of progressing trace
still missing. Once we are sure that from any sound proof π we can compute ΣH -terms,
the analysis on the information that it is possible and desirable to extract from it can be
pursued. At the present stage we can already imagine that the recursion schemes might
be expanded with additional reductions to extract relevant data, even from terms not
in normal form. For example, assuming a cyclic proof of a Σ1 prenex formula, from the
behaviour of the rules we know that all the individual term-witnesses can be extracted
already from a term whose leftmost non-terminal has reached the first leaf, the rest of the
computation to the normal form being only the definition of a λ-term for the quantifier-
free formula. We can imagine an extended recursion scheme where rules are introduced
to extract the desired informative terms without the necessity of a full reduction. The
HORS defined here can be seen as the basis for implementation in specific contexts.

We didn’t stress in this work the advantages of having an arithmetic language, nor the
benefit received by the intuitionistic logic. Having to deal with just one inductive predi-
cate, whose definition is as simple as can be, made the definition of the recursion schemes
easier than it could have been in a more general setting. An interesting direction for sub-
sequent work is represented by the generalisation to a system with a list of inductive
predicates.

49

The choice to work with intuitionistic logic represented an advantage in terms of an obvi-
ous correspondence with λ-terms, but also for the possibility of a deterministic recursion
scheme. In the present definition of the system, each rule matches the functional char-
acter of sequents: at every step there is a clear set of input-terms and only one output.
In [AHL20], the choice of a classical environment resulted in a non-deterministic system,
due to the fact that that direct correspondence is lost. It would be interesting to work
in the direction of cyclic Peano Arithmetic, and classical cyclic proofs in general.

50

Part II

Closure ordinals

Introduction

We now turn to look at the semantic content of another system with fixed points by
investigating the notion of closure ordinal for the modal µ-calculus (MLµ). The system
is obtained by the addition of greatest and least fixed point quantifiers (ν and µ) to
propositional modal logic. To work with modal µ-calculus means looking at the crossroad
of many different but contiguous areas of research: modal logic, automata theory, game
theory and program verification. Its central position, together with its extremely powerful
language, contributes to make MLµ an interesting and challenging topic.

Any general overview of the origins of MLµ retraces the different intersections with the
already mentioned fields. The interests around fixed points in modal logic began in
the 1970-80s, in parallel with the development of modal temporal logics and logics of
programs. It immediately was entwined with automata theory and game theory, a bond
from which mutual benefits resulted. There is general consensus now in appointing the
work of Kozen [Koz83] as the place where modal µ-calculus is defined for what it is known
today.

µ-calculus can be presented as Hennessy–Milner logic (HML) with fixed points10 referring
to its connections with dynamic logics and logics for programming. MLµ is capable of
talking about properties of labelled transition systems and tree models, hence it has
been used to reason about the computation tree of given programs. Expressions can be
formalised that are fundamental for talking about a program, like safety : “something bad
will never happen” or liveness: “something good will eventually happen”, that cannot be
stated in a simple modal logic nor in HML.

The popularity that modal µ-calculus gained is not surprising, given that the presence of
fixed point operators increases substantially the expressivity of the system with respect
to the rest of temporal logics. Already in the aforementioned [Koz83] it was proved
that MLµ is strictly more expressive than propositional dynamic logic PDL.11 In the
following years other temporal logics have been proved to be strictly included in MLµ,
like for example computation tree logic CTL and linear temporal logic LTL.12 Fixed

10It is the case, for example, of [BS07], but also [Jun10].
11PDL was defined by Fischer Ladner [FL79]. Its syntax includes atomic terms for programs and

ways of composing them, its purpose being to reason about their properties.
12The two are temporal logics on branching trees and linear models (respectively), and both have a

52

points can be useful or necessary also in the context of other modal logics. For example
in modal epistemic logic, the definition of common knowledge involves a potentially
infinite iteration of the concept of shared knowledge, and that can be achieved via a
fixed point operator, see for example [Bar88].

Great expressive power comes not only from the presence of fixed points but also from
the possibility of alternating and nesting them. Intuitively, infinitely many levels Πn

and Σn can be defined, corresponding to n levels of alternation similar to the quantifier
case, having a ν or µ as outermost quantifier respectively. There are multiple definitions
of hierarchy for fragments of modal µ-calculus, characterising the interactions between
different fixed points in slightly different ways. In the present work the definition from
Niwiński [Niw86] is chosen (see Definition 3.14). The hierarchy was proven to be strict
by Bradfield [Bra98], and it is also known that the aforementioned temporal logic are
expressible already at the low levels.13 As a consequence, most of the everyday tasks of
MLµ can be performed with relatively easy level of complexity, which is a positive fact if
we agree with the common saying that no one really understands µ-formulas with more
than two nested fixed points. Despite our human incapability of treating nesting, another
reason for the success of modal µ-calculus is due to the fact that great expressivity comes
with a quite simple complexity. MLµ is known to have the finite model property,14 and
both the model checking and the satisfiability problems are decidable, i.e., whether a
formula ϕ holds in a given model, and the existence of a model for ϕ, respectively.15

Even though they are not a part of the present work, automata theory and game seman-
tics gave an undeniable contribution to the study of modal µ-calculus. Many of the results
mentioned above have been obtained using concepts and methods of automata and game
theory. Examples of this include the satisfiability problem of µ-calculus reduced to the
emptiness problem for finite automata by Street and Emerson [SE89], or the proof that
MLµ corresponds to the bisimulation invariant fragment of monadic second order logic
given by Janin and Walukiewicz [JW96], as well as the model checking problem for MLµ
proved equivalent to a parity game on finite graphs [EJS93]. An axiomatisation of modal
µ-calculus was given in [Koz83] and in an infinitary version in [Koz88]. The system was
proved to be sound and complete in [Wal00].

Background

The present work focuses on the closure ordinals for formulas of the modal µ-calculus.
The concept of closure ordinal comes directly from the approximation interpretation of
fixed points formulas in connection to a Kripke models. Fixed points are usually defined

syntax that includes temporal operators to talk about paths of the model. They are known to be not
equivalent, despite the fact that both are subsumed by another temporal logic: CTL∗. The inclusion of
the latter in MLµ is proven in [Dam94].

13See the introduction of [KV03].
14Proved by Kozen in [Koz88]. A small model theorem was already known as a corollary of the

decision procedure proposed by Street and Emerson [SE84].
15See [KP84].

53

as the solutions to equations of the form X = F (X). In the context of Kripke models,
positive formulas with free variables determine monotone operators on the powerset of
the domain, as a result of the interpretation of the free variables. We have that a fixed
point of ϕ(x) is a set of states of the model such that ‖x‖ = ‖ϕ(x)‖.

Given a Kripke model and a formula ϕ(x), its least and greatest fixed points can be
seen as the results of a process of iteration, that approximates the interpretation of the
free variable starting with the empty set (µ) or the whole domain (ν). It is a process
that is potentially transfinite and most importantly can be counted, and that necessarily
has a point in which it stabilises: for some ordinal α the denotation of the αth iteration
corresponds to the denotation of the α+ 1th. The value α is what we call closure ordinal
of ϕ(x) with respect to the given model. The notion of closure ordinal, in fact, not only
depends on the formula, but it is clearly bound by the size of the model. The notion
of closure ordinal in a model can naturally be extended to a more general idea of upper
bound, resulting from the consideration of all possible models that satisfy the formula.
Given a MLµ formula ϕ, we call its closure ordinal the least ordinal that is an upper
bound with respect to all possible models for ϕ, if such an ordinal exists. It is this last
notion of closure ordinal that we will investigate.

Closure ordinals have been a topic of interest since the past 20 years. Fontaine in [Fon08]
and [Fon10] investigated the relationship between continuous and constructive formulas,
that is, formulas whose fixed point is always reached in a finite number of steps, or at
most ω respectively. It is known that continuity entails constructivity, while the con-
verse doesn’t hold. Fontaine and Venema [FV18] provided a syntactic characterisation
to several semantic properties of modal µ-formulas, from finite width or depth models
to continuity. At the same time the question of the possibility of a syntactic presenta-
tion of constructive formulas is left open. In 2010 Czarnecki [Cza10] showed that each
ordinal α < ω2 is the closure ordinal of a Σ1 formula in disjunctive form. On top of the
importance of the result in itself, that paper has had a great relevance in furnishing a
standard way of defining formulas whose approximation interpretation is bigger than ω,
called Czarnecki’s formulas, and in making almost canonical the folklore’s method for
building models associated with ordinals. The method used by Czarnecki to prove the
existence of such formulas is extremely effective: a formula in disjunctive form is built,
and each disjunct plays the role of a fuse. Each disjunct, in fact, has a point where it
starts to hold in the model, that is where the fuse is lighted, and a point where it ceases
to be satisfied, that is when the fuse is exhausted. The specific syntactic structure of the
formula ensures that each fuse cannot be reused once it has been exhausted. Depending
on its structure, each disjunct corresponds to the successor or the limit step. We will see
how much this idea has influenced the present work.

A particular class of formulas called primary, with a structure similar to Czarnecki’s
formulas, inspired the work of Afshari and Leigh [AL13]. After having showed that
such a class of formulas has a closure ordinal bounded by ω2, with a semantic argument
involving the use of a tableaux system they were able to prove that the whole alternation-

54

free fragment of modal µ-calculus has an upper bound of ω2 for its closure ordinals.16

The structure of the argument can be summarised as follows. A minimal order α can
be associated to each tableau of a formula ϕ in the alternation-free fragment of MLµ .
The order corresponds to the closure ordinal of the formula in the model constructed by
the tableau. Given a formula and assumed the existence of a model with closure ordinal
greater or equal to ω2, by performing a series of substitution on top of the tableau it
is possible to obtain a new model where the minimal order is increased. That being
a contradiction with the assumed existence of an upper bound on the order, it follows
that there is no closure ordinal greater or equal than ω2. The structure of the argument
heavily reminds the reader of the pumping lemma for regular languages (see [RS59]). The
possibility to consider a tableau-proof of a formula as directly providing a model, and
hence the possibility to quickly change the lens from a syntactic to a semantic perspective,
makes the tableaux method extremely powerful. At the same time, the progression of
the argument in [AL13] shows that in order to employ such a method, the details given
by tableaux are not necessary: the same argument could be carried on directly on the
model.

Kozen in the already mentioned [Koz88] gave a proof of the finite model theorem using
a tableau-like method. The main tool used to show the existence of a finite model for
every satisfiable formula is the definition of well-annotations. By annotating the formulas
satisfied at each state of the model and saturating the corresponding sets, he was able to
show the existence of a well-quasi-order between those sets of formulas. As a consequence,
it is always possible to assert the existence of a finite model thanks to the properties of
well-quasi-orders, and some cut-and-paste operation on the annotated models. The good
functionality of well-annotations in dealing with substitution of sub-models was already
recognised by Kozen: “the following definition of well-annotation gives local syntactic
conditions that insure that states of an annotated model satisfy their labels. [...] This is
useful in performing surgery on models, because in practice it is easily checked that these
local conditions are preserved by certain cutting and pasting operations.”17

Overview

The present work is heavily based on the ideas and methods from [AL13] and [Koz88].
In the next two chapters we will explore the possibility to replicate the argumentative
structure from [AL13] using directly well-annotations to refer to models. The nature
of the cut-and-paste operations that need to be performed by a pumping argument will
reveal the kind of conditions that are necessary to conclude the non-existence of closure
ordinals for given fragments of MLµ . With this plan in mind, the remaining part of the
work is structured as follows.

In chapter 3 we introduce the syntax and semantics of modal µ-calculus, in the language

16The alternation-free fragment of MLµ corresponds to Σ2 ∩Π2 in the Niwiński hierarchy mentioned
above.

17[Koz88] pp. 236-237, the italic is not from the original text.

55

with explicit ordinal annotation for the least fixed point quantifiers.18 The definition
of well-annotation is given, together with a property called conservativity, that corre-
sponds to a minimality condition. The models we will be using are all conservative
well-annotations, so in the central part of the chapter we establish the necessary corre-
spondence between models and annotations. In the final part of the chapter we introduce
properly the notion of closure ordinal with respect to a model and in general, and con-
clude with two lemmas that express the relationship between the existence of closure
ordinals and conservative well-annotations.

Chapter 4 is where the defined concepts are tested and refined. A first result is obtained:
a bound of ω2 on the closure ordinal for primary formulas. The result was already given
in [AL13], but this time it is given via well-annotations. This preliminary step is useful
to test the usability of a pumping-like argument in the current framework, at least on a
very restricted fragment. In section 4.2 there is the account of the attempt to apply the
same argumentative structure to a more general level, namely disjunctive Σ1 formulas.
The attempt proved to be harder than expected, but we decided to present it anyway to
motivate the changes made in the next part. Section 4.3 contains the most important part
of this work: it is where we refine and apply the formalism to a more general fragment.
We prove that ω2 is a bound for formulas in the defined ΣML

1 fragment, namely those
formulas with only one µ-quantifier. The result does not cover the whole Σ1, but it
is still fundamental because it represents the major step toward a generalisation of the
argument. An insight of the way in which the result can be obtained for formulas with
multiple non-nesting least fixed points is also given. In the final part of the chapter
we present the direction for future work: some final consideration about the whole Σ1

fragment, together with some notes on the difficulties that the extension of our framework
to multiple and different fixed points could bring.

18This language is also taken from [Koz88].

56

Chapter 3

MLµ, conservativity and closure
ordinals.

3.1 Syntax and semantics

We start by presenting the syntax and semantics of the modal µ-calculus. The version
defined here is already the one with explicit approximants instead of µ, following Kozen’s
method. The formulas of the language L+

µ are defined as follows:

ϕ := p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | αx.ϕ | νx.ϕ

VAR is a countable set of variables x, y, . . . ; PR is a finite set of propositional constants
p1, p2, p3, . . . ; negation is applied to propositional constants only. We define ⊥ := p∧¬p.
ν represents the greatest fixed point quantifier, while α is an ordinal. The formula αx.ϕ
stands for the αth approximation of the least fixed point of ϕ(x). Formulas of language
Lµ are obtained by replacing all the occurrences of ordinals in a formula ϕ ∈ L+

µ with µ.
Formulas are interpreted into labelled transition systems:

Definition. A labelled transition system T := (S,→, λ) consists of

• S: a set of nodes (states);

• →: S × S a binary relation on S;

• λ : S 7→ P(PR) a labelling function from states to propositional constants

In particular we restrict our interest to tree transition systems, namely transition systems
such that for any node v there exists a unique u such that u→ v, except for a root node
ρ such that u 6→ ρ for any u ∈ S. The semantics for the formulas is the following: given

57

a model T and a valuation function V : VAR→ P(S)

‖p‖TV = {v | p ∈ λ(v)} ‖¬p‖TV = {v | p /∈ λ(v)}
‖x‖TV = V(x) ‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV
‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV ‖�ϕ‖TV = {s ∈ S | ∀t.s→ t⇒ t ∈ ‖ϕ‖TV)}

‖♦ϕ‖TV = {s ∈ S | ∃t.s→ t ∧ t ∈ ‖ϕ‖TV)} ‖νx.ϕ‖TV =
⋃
{U ⊆ S | U ⊆ ‖ϕ‖TV[x 7→U]}

Together with these standard clauses, in the language Lµ the denotation of a least fixed
point formula is usually defined as ‖µx.ϕ‖TV =

⋂
{U ⊆ S|‖ϕ‖TV[x 7→U] ⊆ U}. Often such

definition is followed by the inductive definition of approximation

‖0x.ϕ‖TV = ∅ ‖(α+ 1)x.ϕ‖TV = ‖ϕ(αx.ϕ)‖TV
‖λx.ϕ‖TV =

⋃
β<λ

‖ϕ(βx.ϕ)‖TV λ limit ordinal

In L+
µ we work with explicit approximants, hence we use directly the above definition in

the unified version
‖αx.ϕ‖TV =

⋃
β<α

‖ϕ(βx.ϕ)‖TV

and define at the meta-level ‖µx.ϕ‖ =
⋃
α ‖αx.ϕ‖ for all ordinals α. In the rest of the

paper we will want to refer to a formula ψ that has some ordinal quantifier in it, e.g.
ψ = χ∧αx.ϕ, by showing a superscript on ψ. The intended meaning of an expression of
the form ψα is the formula ψ in which the ordinal quantifier is α. Since the meaning of
closure ordinal for multiple occurrences of the µ-quantifier will be discussed only in the
last section, we begin here by focusing on formulas of L+

µ with at most one least fixed
point variable x, and the ordinal superscript will indicate the ordinal that is binding it
inside the formula.

Definition 3.1. The meaning of ϕα where ϕ ∈ Lµ is

pα = p (¬p)α = ¬p
(ϕ ∧ ψ)α = ϕα ∧ ψα (ϕ ∨ ψ)α = ϕα ∨ ψα

(♦ϕ)α = ♦ϕα (�ϕ)α = �ϕα

(νy.ϕ)α = νy.ϕα (µx.ϕ)α = αx.ϕ

Sometimes it will be useful to refer to the structure of a formula ϕ ∈ L+
µ regardless of the

ordinals. In those situation we use the notation ϕ− to refer to the template formula of
ϕ, that is, to the formula in the language Lµ corresponding to ϕ ∈ L+

µ . With templates
we can easily compare two instances ϕα and ϕβ of the same formula ϕ− that differ in
the ordinal:

Definition 3.2 (�). We say that ϕ � ψ if ϕ− = ψ− and the ordinal in ϕ is not greater
than the ordinal in ψ. When Γ,∆ are sets of formulas, we say that ∆ � Γ if for all ψ ∈ Γ

58

then there is a ψ′ ∈ ∆ such that ψ′ � ψ. The smallest Γ′ ⊆ Γ such that Γ′ � Γ is called
kernel of Γ: Ker(Γ)

When talking about subformulas of a formula ϕ ∈ Lµ we use the Fischer-Ladner closure
as common in literature.

Definition 3.3 (Fischer-Ladner closure). The Fischer Ladner closure of a formula ϕ in
the language Lµ is the smallest set such that:

1. ϕ ∈ FL(ϕ)

2. if ψ0 ◦ ψ1 ∈ FL(ϕ) where ◦ ∈ {∧,∨} then ψ0, ψ1 ∈ FL(ϕ)

3. if Oψ ∈ FL(ϕ) where O ∈ {�,♦} then ψ ∈ FL(ϕ)

4. if σx.ψ ∈ FL(ϕ) where σ ∈ {ν, µ} then ψ(σx.ψ) ∈ FL(ϕ)

In the case of ϕ ∈ L+
µ , that is when the language expects explicit ordinals, the definition

of Fischer-Ladner closure1 has the extra condition

5. if αx.ψ ∈ FL(ϕ) then ψ[βx.ψ/x] ∈ FL(ϕ) for all β < α.

Sometimes we may commit an abuse of terminology and refer to the formulas ψβ such
that ψ− ∈ FL(ϕ−) as subformulas of ϕα ∈ L+

µ with α ≥ β. We also use the condensed
notation ϕα≤β to express the fact that for some α ≤ β we consider ϕα.

Finally one last assumption: all the formulas in our language are closed, and guarded in
the sense of the following definition:

Definition 3.4 (Guarded). A formula ϕ is guarded if in every subformula σx.ψ of ϕ
where σ ∈ {ν, µ}, every occurrence of the bound variable x occurs under the scope of some
modal operator.

It is an established fact that this does not constitute a limitation, since every formula of
Lµ (and hence of L+

µ) is known to be equivalent to a guarded one ([NW96]).

3.2 Conservative well-annotations

To be able to talk about sets of formulas satisfied at some state and their relations we
will use as a main instrument the notion of well-annotation as defined by Kozen [Koz88],
with a modification to include the appended ordinals. Well-annotations, we said, were
fundamental in the proof of the finite model theorem. However in this context we can’t
just consider satisfiability, we also need to ensure that the formulas with the least possible
ordinal are present in the annotation. For that purpose we then refine the definition of
well-annotation and introduce the notion of conservative well-annotations.

1This is called strong closure for example in [AJL19].

59

Definition 3.5 (Well-annotation). Given a model T , an annotation Θ is a function
associating to each state s of T a set of formulas Θs of the language L+

µ . Θ̂ is called a
well-annotation if the following conditions hold:

1. if pα ∈ Θs ((¬p)α ∈ Θs), then s � p (s � ¬p);

2. if (ϕ ∨ ψ)α ∈ Θs, then either ϕα ∈ Θs or ψα ∈ Θs;

3. if (ϕ ∧ ψ)α ∈ Θs, then both ϕα ∈ Θs and ψα ∈ Θs;

4. if (♦ϕ)α ∈ Θs, then ∃t.s→ t and ∃β ≤ α.ϕβ ∈ Θt;

5. if (�ϕ)α ∈ Θs, then ∀t.s→ t ∃β ≤ α.ϕβ ∈ Θt;

6. if (νx.ϕ)α ∈ Θs, then (ϕ(νx.ϕ))α ∈ Θs;

7. if αx.ϕ ∈ Θs, then ϕ(βx.ϕ) ∈ Θs for some β < α;

It is an immediate consequence of the definition that well-annotations respect satisfaction,
and that any annotation can be extended to a well-annotation.

Theorem 3.6 (Kozen). Given a model T

a. If Θ is a well-annotation, then T, s � Θs for all s ∈ S.

b. If Θ is an annotation s.t. T, s � Θs for all s, then Θ can be extended to a well-
annotation such that

⋃
s Θ−s ⊆

⋃
ϕ∈Θt,t∈T FL(ϕ−)

The proof of the first part is by induction on ϕ ∈ Θs and transfinite induction on α. The
second part is shown by cases. See for both [Koz88] (the proofs can be easily modified to
match with the current version with appended ordinals). From now on, a well-annotation
of ϕ is a well-annotation Θ such that

⋃
s Θ−s ⊆ FL(ϕ). Extending the definition we could

characterise the well-annotation of a set of formulas Γ. A well-annotation of ϕ is called
conservative when, for every ψα that appears in some Θs, there is a ψβ that is the least
approximation of ψ that is satisfied at s. The proper definition is the following

Definition 3.7 (Conservative well-annotation). Given a model T , a well-annotation Θ
of ϕ is conservative if for any Θ′ well-annotation of ϕ and s ∈ T , Θs � Θ′s.

Note that such definition determines another property of conservative well-annotations:
for any formula ψ− ∈ FL(ϕ) that is satisfied at s, an instance of ψβ has to occur in Θs

for some β. If that is not the case, in fact, there exists another well-annotation of ϕ that
is not comparable according to Definition 3.2, hence Definition 3.7 is not satisfied. Given
the possibility of the simultaneous presence of more than one formula with the same
template in the same set, e.g. ψα, ψβ , from now on we adopt the convention that when
we talk about a formula ψα ∈ Θs we are implicitly saying ψα ∈ Ker(Θs), i.e. taking the
occurrence of such formula in the set with the least ordinal, unless stated otherwise. A not
surprising but important fact is that, just like an annotation can always be extended to a
well-annotation, the existence of a well-annotation entails the existence of a conservative
version:

60

Lemma 3.8. For any Θ well-annotation of ϕα, there exists a conservative well-annotation
Θ̂ � Θ of ϕγ for some γ ≤ α.

Proof. In order to prove the existence of a conservative annotation of ϕγ define a new
annotation Θ̂ such that Θ̂s := {ψβ|ψ− ∈ FL(ϕ) and ψβ the least s.t. s � ψβ}. The new
annotation is a well-annotation, as can be checked by confronting Definition 3.3 of FL
and Definition 3.5. It is also conservative of ϕ: given any other well-annotation Θ′ of
ϕ, every formula ψδ ∈ Θ′s is such that ψ− ∈ FL(ϕ) and s � ψδ by Theorem 3.6. By
definition Θ̂s contains the least such, hence Θ̂s � Θ′s. Moreover, from the existence of a
well-annotation of ϕα that ensures that ϕα ∈ Θρ for ρ the root state, and the fact that
Θ̂ρ � Θρ we know that there is ϕγ ∈ Θ̂ρ and γ ≤ α.

Definition 3.7 above captures in a concise way the intended property of conservativity
of a well-annotation, but is unfortunately not detailed enough about the specific charac-
teristics of such annotations. For future purposes, it will be useful to have at hand the
following lemmas.

Lemma 3.9. Given Θ a conservative well-annotation and ϕα the least annotation for ϕ
at Θs

1. if pα(¬pα) ∈ Θs then s � p(¬p) and α = 0;

2. if (ψ0 ∨ ψ1)α ∈ Θs then ψαii ∈ Θs (i ∈ {0, 1}) and α = min{α0, α1};

3. if (ψ0 ∧ ψ1)α ∈ Θs then there are ψα0
0 ∈ Θs and ψα1

1 ∈ Θs and α = max{α0, α1};

4. if (♦ϕ)α ∈ Θs then there is a t such that s→ t and ϕα ∈ Θt and ∀tj .(s→ tj) if
tj � ϕβj then βj ≥ α;

5. if (�ϕ)α ∈ Θs then ∀(s→ ti).ϕ
βi ∈ Θti for some βi ≤ α and α = sup(

⋃
i βi);

6. if (νx.ϕ)α ∈ Θs then (ϕ(νx.ϕ))α ∈ Θs;

7. if αx.ϕ ∈ Θs then ϕ(βx.ϕ) ∈ Θs and α = β + 1;

Proof. By cases:

1. if pα(¬pα) ∈ Θs then also p0(¬p0) ∈ Θs, otherwise it would be possible to have a
smaller annotation by adding p0 to Θs;

2. if (ψ0 ∨ ψ1)α ∈ Θs then ψαii ∈ Θs for i either 0 or 1, and α cannot be less than
both the αi by Definition 3.5. Assume that α > min{α0, α1}. Since s � (ψ0∨ψ1)αi

then Θs � Θ′s = Θs ∪ {(ψ0 ∨ ψ1)αi}, contradicting conservativity;

3. if (ψ0 ∧ ψ1)α ∈ Θs then there are ψα0
0 ∈ Θs and ψα1

1 ∈ Θs and α cannot be
less than each of the αi by Definition 3.5. It cannot be greater, otherwise for
Θ′s = Θs ∪ {(ψ0 ∧ ψ1)max{α0,α1}} we’d have Θs � Θ′s. Hence α = max{α0, α1}

61

4. if (♦ϕ)α ∈ Θs then there is a t such that s→ t and ϕβ≤α ∈ Θt, by Definition 3.5.
For all tj seen by s, if tj � ϕβj then we know that α ≤ βj , otherwise we would
have a Θs � Θ′s = Θs ∪ {(♦ϕ)βj} contradicting the conservativity of Θ. That also
means that β = α.

5. if (�ϕ)α ∈ Θs, then ∀(s → ti) there exists ϕβi � ϕα such that ϕβi ∈ Θti by
Definition 3.5. Moreover, α = sup(

⋃
i βi), otherwise there exists a Θ′s = Θs ∪

{(�ϕ)γ} with γ = sup(
⋃
i βi) < α that contradicts conservativity;

6. if (νx.ϕ)α ∈ Θs by Definition 3.5 (ϕ(νx.ϕ))α ∈ Θs;

7. if αx.ϕ ∈ Θs, then ϕ(βx.ϕ) ∈ Θs by Definition 3.5 . The same argument seen
above holds for Θ′s = Θs ∪ {(β + 1)x.ϕ} if α > β + 1, hence the conclusion.

Note that in the case of disjunction (2.) the definition of conservative well-annotation
ensures that, if the other disjunct s � ψ

α1−i
1−i , then also ψα1−i

1−i ∈ Θs. If that was not
the case, in fact, we could define a Θ′s = Θs ∪ {ψα1−i

1−i 1} and have that Θs � Θ′s, which
contradicts the conservativity of Θ. In case (4.) of a formula ♦ϕ ∈ Θs, the same argument
makes it necessary that ϕβj ∈ Θtj for all s → tj such that tj � ϕβj . Finally, note that
(7.) has as a consequence that formulas like λx.ϕ -lambda a limit ordinal- cannot be the
least in any well-annotated set Θs. Limit ordinals are introduced only when an infinite
number of successor states with increasing ordinals forces α = sup(

⋃
i βi) = λ. When

that happens, we can only have a formula �ϕλ in Θs that becomes (λ+ 1)x.ϕ ∈ Θs.

Corollary 3.10. In any conservative Θ there are no set Θs, formula ϕ and limit ordinal
λ such that λx.ϕ ∈ Ker(Θs).

The following lemma confirms that what we defined is in fact a conservative well-
annotation in the sense that it contains the least satisfiable occurrence of each template
formula.

Lemma 3.11 (Truth Lemma). Given Θ conservative well-annotation, for all s ∈ T and
ϕα ∈ Ker(Θs), then s 2 ϕβ for all β < α.

Proof. By induction on the ordinal and the formula ϕα. For α = 0 it is vacuously true.
For α > 0

1. ϕ ≡ p: not possible since pα = p0 by Lemma 3.9 (1.);

2. ϕ ≡ ψ0 ∨ ψ1: say ψα0 ∈ Θs and by IH s 2 ψβ0 . Now either s 2 ψα1 and we are
done, or ψα1 ∈ Θs by Lemma 3.9 (2.) and conservativity, hence by IH s 2 ψβ1 (an
analogous argument works starting with ψα1 ∈ Θs);

3. ϕ ≡ ψ0 ∧ ψ1: there are both ψαii ∈ Θs. By Lemma 3.9(3.) αi ≤ α, and by IH
s 2 ψβi ;

62

4. ϕ ≡ ♦ψ: there are some ψα ∈ Θtj for s→ tj , and by Lemma 3.9 (4.) α is the least,
meaning that none of the other successor states’ annotation contains ψβ<α. By IH
tj 2 ψβj for all βj < α, hence s 2 (♦ψ)β

5. ϕ ≡ �ψ: given α > 1 and conservativity, there is a number of ψβi ∈ Θti for s→ ti
and by Lemma 3.9 (5.) α = sup(

⋃
i βi). Either there are ϕα ∈ Θtj such that

Θtj 2 ϕβ by induction hypothesis, or for any βl < α there is a bigger βj such that
ψβj ∈ Θtj and by IH tj 2 ψβl . In both cases s 2 (�ψ)βl for all βl < α.

6. ϕ ≡ νx.ϕ: by definition ϕα(νx.ϕ) ∈ Θs and by IH s 2 ϕβ(νx.ϕ);

7. ϕ ≡ αx.ψ: by Lemma 3.9 (7.) ψ(βx.ψ) ∈ Θs and α = β+1. By induction hypotesis
on the ordinal β, for all γ < β: s 2 ψ(γx.ψ) ∈ Θs, hence s 2 βx.ψ.

Before introducing closure ordinals, let’s give some final definitions.

Definition 3.12. An annotated model T is a model, together with an annotation Θ. A
well-annotated model is an annotated model where Θ is a well-annotation. A conservative
model is a well annotated model where Θ is conservative.

From now on we will use Θs as both the set of formulas annotated at s and the state s
itself (there is no risk of confusion). The final instrument that we want to define here is
that of a path in an annotated model.

Definition 3.13 (Path). A path P trough an annotated model Θ is a sequence of states
such that:

1. Θρ ∈ P (Θρ is the root)

2. if Θs ∈ P and s 6= ρ, then Θt ∈ P for Θt → Θs

3. if Θs ∈ P either Θs is a leaf or there is exactly one Θt such that Θs → Θt ∈ P

In the next chapter we will work inside the Σ1 fragment in the Niwiński hierarchy, hence
we will not consider formulas with the ν quantifier.

Definition 3.14 (Niwiński hierarchy). A formula ϕ with no fixed points is in Π0 and
Σ0. Σn+1 and Πn+1 are defined as the closure of Σn ∪Πn under the following conditions
(respectively):

1. if ϕ,ψ ∈ Σn+1(Πn+1) then ϕ ∧ ψ,ϕ ∨ ψ,�ϕ,♦ϕ ∈ Σn+1(Πn+1)

2. if ϕ ∈ Σn+1(Πn+1) then µx.ϕ ∈ Σn+1(νx.ϕ ∈ Πn+1)

3. if ϕ,ψ ∈ Σn+1(Πn+1) then ϕ(ψ) ∈ Σn+1(Πn+1)

in the last case we require that no capture of free variable of ψ occurs in the substitution.

63

3.3 Closure ordinals

We define now the notion of closure ordinal of a formula in a model. As we said in the
introduction, the closure ordinal expresses the number of steps necessary to reach the
fixed point in a given model

Definition 3.15 (Closure Ordinal in a model). Given a model T , for every formula ϕ
there exists a least ordinal κ such that ‖ϕκ‖T = ‖ϕκ+1‖T . We call κ = COT (ϕ) the
closure ordinal of ϕ in T .

When the perspective is extended to all possible models we have the general definition
of closure ordinal of a formula

Definition 3.16 (Closure Ordinal). Given a formula ϕ, if there is a least ordinal κ such
that COT (ϕ) ≤ κ for all possible models T then κ is the closure ordinal of ϕ: CO(ϕ) = κ.

The way in which we defined conservative well-annotations is intended to match the
desired relation of annotated formulas with closure ordinals, a relationship that is de-
termined by the next important lemmas. Before turning to them, however, we need to
address the case of conservativity for limit-ordinal formulas. In fact, if we can think
of a model with a conservative well-annotation of ϕκ+1 simply by picturing one where
ρ � ϕκ+1 and ϕκ+1 ∈ Θρ, the same is not always possible with ϕκ and κ is a limit ordinal
(Corollary 3.10). Being κ = supi{βi} a limit ordinal we know that for all βi < κ there
is a conservative well-annotated model Tβi+1 with ϕβi+1 at the root, but no state satis-
fies ϕκ itself alone. We consider a conservative well-annotated model of a limit formula
ϕκ the model Θ∗ made of the disjoint union of the conservative models Tβi , with an
extra root element ρ∗ → ρTβi . In this model ρ∗ � �ϕκ, and the well-annotation such
that ϕβi ∈ Θρβi

and �ϕκ ∈ Θρ∗ constitutes -for our purposes- a suitable conservative
well-annotation for ϕκ. With such convention set, we can turn ourselves to the lemmas.

Lemma 3.17. If CO(ϕ) = α then there exists a conservative well-annotation of ϕα.

Proof. By transfinite induction on α. The base case of α = 0 is trivial. If α = κ + 1,
by definition of CO there exists a model T such that at the root ρ � ϕα and ρ 2 ϕβ for
all β < α. Define Θ̂ as Θ̂ρ = {ϕα} and Θ̂si = ∅ for any si 6= ρ. By Theorem 3.6 (b.)
there exists a well-annotation of ϕα, such that all annotated formulas ψ− ∈ FL(ϕ). By
Lemma 3.8 there is a conservative well-annotation Θ̂∗ of ϕγ for some γ ≤ α. We know
that γ = α from the assumption that ρ 2 ϕβ for all β < α and part (a.) of Theorem 3.6.
Θ̂∗ is a conservative well-annotation of ϕα.

If α is a limit and the closure ordinal of ϕ, the same argument holds except when it is
impossible by Corollary 3.10. However, we stipulated that in those cases the conservative
model is such that �ϕα ∈ Θρ. By definition of CO, there exists a denumerable list of
ordinals βi such that supi{βi} = α, and models Tβi+1 such that ρβi+1 � ϕβi+1. A new
model T ∗ is obtained by taking the disjunct union of all the Tβi+1 plus a root element
ρ such that ρ → ρβi+1. In the same way than the previous case, build a conservative

64

well-annotation for each subtree Tβi+1 by setting ϕβi+1 ∈ Θρβi+1
for all ρβi+1, and then

using Theorem 3.6 (b.) and Lemma 3.8. By construction ρ � �ϕκ. With �ϕκ ∈ Θρ we
have a conservative well-annotation of ϕκ.

Lemma 3.18. If there exists a conservative well-annotation of ϕα then CO(ϕ) ≥ α.

Proof. Let Θ be the conservative well-annotation of ϕα from the hypothesis, the model
being T . ϕα ∈ Ker(Θρ) or �ϕλ ∈ Ker(Θρ)) (for some α = λ). By Theorem 3.6 (a.)
we know that ρ � ϕα (or ρ � �ϕλ). Assume CO(ϕ) = γ < α. By Definitions 3.15 and
3.16 of closure ordinal ‖ϕγ‖T=‖ϕα‖T , so we know that ρ � ϕγ (or ρ � �ϕγ). Define
Θ̂ρ = Θρ∪{ϕγ} (or Θ̂ρ = Θρ∪{�ϕγ}) and Θ̂si = Θsi for si 6= ρ. Extend the annotation
so obtained to have a well-annotation Θ̂′ (Theorem 3.6 (b.)). We have that Θρ � Θ̂′ρ
contradicting the conservativity of Θ. We conclude that CO(ϕ) ≥ α.

The two lemmas that close the chapter will be fundamental in the final step of both
proofs for primary and ΣML

1 formulas. In fact, even if we don’t have a perfect correspon-
dence between well-annotations and closure ordinals, Lemma 3.17 gives us the motivation
for talking about conservative models once the existence of a closure ordinal has been
assumed. Lemma 3.18, on the other hand, will close the argument by giving the desired
contradiction, because from the existence of a conservative model with a greater ordinal
we can invalidate the initial assumption on the existence of a closure ordinal. For their
fundamental role played in the general structure of the argument, they were both proved
here before the specification of the fragment for which the rest of the tools are defined.
We expect to make use of them again every time in which we extend the fragment. In the
next chapter we begin by introducing the first fragment on which we test the possibilities
of our method.

65

Chapter 4

A bound on closure ordinals

In this chapter we present the proof of the existence of an upper bound on closure ordinals
for two fragments of modal µ calculus. The first one consists of primary formulas, that
represent an ideal candidate for a first test of the concepts involved given their peculiar
disjunctive structure. This structure facilitates the construction of a new model that
satisfies the desired formula, limiting the possibility of a trace shifting. Trace shifting is
the main topic of the second section, where we give a presentation of the problem with
formulas with a general disjunctive form. The third section is the one where the set of
working tools is expanded to include all the notions necessary to prove that ω2 is the
bound for ΣML

1 formulas, that is the fragment with just one lest fixed point quantifier.
The final sections contain a description of the case of ΣW

1 with multiple non-interactive
least fixed points, and the conclusion.

4.1 Closure ordinal of primary formulas

We begin the journey towards Σ1 formulas with a particular fragment of formulas of L+
µ

called primary formulas. Similarly to the the case of Czarnecki’s formulas, each disjunct
of a primary formula can be seen as a fuse in the process of approximation of the ordinal
from below.

Definition 4.1 (Primary formulas). A formula of Lµ is primary if it is of the form

ϕ := µx.(P1 ∧�P ′1 ∧ O1x) ∨ · · · ∨ (Pn ∧�P ′n ∧ Onx) ∨�⊥

where P1, P
′
1, . . . Pn, P

′
n are finite conjunctions of elements of PR∪PR, and Oi≤n ∈ {�,♦}.

In the rest of the chapter ϕ stands for a primary formula as in Definition 4.1. Before
moving to the main theorem, let’s highlight some useful definitions that are necessary
to capture the peculiar relations and properties of models and primary formulas. In
particular, the notion of traces and conservative traces play a fundamental role in the
proof.

66

Along a path we want to focus on the dependency relation between subformulas, and
also between ordinals. We trace the first aspect by defining

Definition 4.2 (Trace). A trace T in an annotated model Θ is a sequence (ψα1
1 ,Θ1), (ψα2

2 ,Θ2) . . .
of pairs consisting of annotated elements of FL(ϕ), and states of a path P , such that
ψαnn ∈ Θn and, given a pair (ψαnn ,Θn)

1. if ψn = p or ψn = �ϕ0, then there is no (ψ
αn+1

n+1 ,Θn+1);

2. if ψn = (χ0 ◦ χ1) then (ψ
αn+1

n+1 ,Θn+1) = (χβ≤αni ,Θn) (i ∈ {0, 1} and ◦ ∈ {∧,∨});

3. if ψn = (Oχ) then (ψ
αn+1

n+1 ,Θn+1) = (χβ≤αn ,Θn+1) and Θn → Θn+1 (O ∈ {�,♦});

4. if ψn = αnx.χ then (ψ
αn+1

n+1 ,Θn+1) = (χ(βx.χ),Θn) and (β < αn).

A trace is called principal if Θ1 = Θρ.

To keep track of the ordinal relation, we define a specific kind of traces:

Definition 4.3 (Conservative Trace). A trace T in a conservative Θ is a conservative
trace if given the first element (ψα1

1 ,Θ1) of the sequence ψα1
1 ∈ Ker(Θ1), and for any

pair (ψαnn ,Θn):

1. if ψn = p or ψn = �ϕ0, then there is no (ψ
αn+1

n+1 ,Θn+1) ;

2. if ψn = (χ0 ◦ χ1) then (ψ
αn+1

n+1 ,Θn+1) = (χαni ,Θn), (i ∈ {0, 1} and ◦ ∈ {∧,∨})

3. if ψn = (♦χ) then (ψ
αn+1

n+1 ,Θn+1) = (χαn ,Θn+1) and Θn → Θn+1;

4. if ψn = (�χ) then (ψ
αn+1

n+1 ,Θn+1) = (χβ≤αn ,Θn+1), Θn → Θn+1 with β < αn only
if αn = λ (limit ordinal);

5. if ψn = αnx.χ then (ψ
αn+1

n+1 ,Θn+1) = (χ(βx.χ),Θn) and αn = β + 1.

Thanks to Lemma 3.9, we know that given a trace T in a conservative model Θ it is
always possible to define a conservative trace T̂ . Moreover, comparing this Definition
with Lemma 3.9 and Lemma 3.11 it is straightforward that a conservative trace tracks
only formulas in the kernel of each Θs. It is worth notice from this definition that at each
step the next element of the trace is almost forced. It is not completely forced because a
choice has to be made in the case (2) when both the subformulas have the same min/max
ordinal, in cases (3) and (4) when more than one successor has the minimal/maximal
formula χαn . At this point the necessity of choosing doesn’t constitute a problem, so
we postpone any further comment about that to the next section. Interesting is the
following lemma, that guarantees the existence of conservative traces:

Lemma 4.4. If Θ is a conservative model of a primary ϕ, then for all ϕγ ∈ Θs and all
β < γ there is a conservative trace T from Θs such that (ϕβ,Θt) ∈ T .

Proof. By induction on γ and the formula ψ ∈ FL(ϕ):

1. γ = 0 trivial;

67

2. γ = β+1. We know that ϕγ ∈ Θs. The trace starts with (ϕγ ,Θs). Now, depending
on ψ ∈ FL(ϕ):

(a) ψγ ≡ (ψ0 ∨ ψ1)γ by (2) of Lemma 3.9 there is at least one ψγii annotated at
Θs such that γi = γ. The next step in T is (ψγi ,Θs);

(b) ψγ ≡ (ψ0 ∧ ψ1)γ by (3) of Lemma 3.9 there are ψγii annotated at Θs, and at
least in one case γi = γ. The next step in T is (ψγi ,Θs);

(c) ψγ ≡ (♦ψ0)γ by (4) of Lemma 3.9 there is a Θt such that ψγ0 ∈ Θt. The next
step in T is (ψγ0 ,Θt);

(d) ψγ ≡ (�ψ0)γ by (5) of Lemma 3.9 there are Θtj such that ψβj≤γ0 ∈ Θtj . From
the fact that γ = β + 1 we know that there is at least one Θtk such that
βk = γ. The next step in T is (ψγ0 ,Θtk);

(e) ψγ ≡ γx.ψ0 by (7) of Lemma 3.9 there is ψ0(βx.ψ0) = ψβ0 ∈ Θs. The next
step in T is (ψβ0 ,Θs);

From the fact that at each step (a)-(d) the formula is reduced in complexity but
not in the ordinal, and given the assumption that ϕ is primary, necessarily at some
point case (e) occurs, since Θ is conservative and γ > 0. The trace from (ϕγ ,Θs)
to (ϕβ,Θt) is conservative, and by induction hypothesis for all δ < β there is a
conservative trace to the pair (ϕδ,Θd).

3. γ = λ. (a’)-(c’) are identical to the successor case. In case of a box-formula now
there are two possibilities: either there is a successor with the same ordinal, hence
a next step like in (d) is taken, or the ordinal is decreased. This is the new clause
for box:

(d’) ψγ = (�ψ0)γ by (5) of Lemma 3.9 there are Θtj such that ψβj≤γ0 ∈ Θtj . If
there is at least one Θtk such that βk = γ, then the next step in T is (ψγ0 ,Θtk).
If instead there are infinitely many Θtj such that ψβj0 ∈ Θtj and λ = sup{βj},
then for any βj there is a βj ≤ β < λ such that ψβ0 ∈ Θtk . Any step (ψβ0 ,Θtk)
continues the trace.

(e’) ψγ = λx.ϕ is not possible by Corollary 3.10.

Once again the formula is reduced in complexity while the ordinal is untouched
in steps (a’)-(c’). (e’) is not possible with a limit ordinal, but still an unfolding
is necessary to proceed, otherwise conservativity fails. Hence at some point (d’)
with infinite successors is the case. Each possible trace has the ordinal decreased
to some ordinal βk, giving us (ψβk ,Θk). Given the primary structure of ϕ, at each
state the trace produces one instance of ϕ. The trace from (ϕγ ,Θs) to (ϕβk ,Θt) is
conservative. The rest follows by induction hypothesis and the fact that for each
δ < γ there is a βk > δ.

68

Note that each trace defined by the proof is indeed a conservative trace according to
Definition 4.16.

Corollary 4.5. Assume Θ is a conservative model and T a conservative trace. If there
are two occurrences of the same formula ϕ at different states (ϕαs ,Θs) . . . (ϕ

αt ,Θt) then
αs > αt.

Proof. By definition of trace the ordinal never increases, hence αs ≥ αt. As we have seen
in the proof of the previous lemma, conservativity together with the assumed guardedness
of formulas entails that at each step the formula in the trace is reduced in complexity
with the same ordinal (cases (a.) − (d.), (a′.) − (c′.) and first case of (d′.)), reduced in
the ordinal (second case of (d.′)), or unfolded to the previous ordinal ((e.)). Either (d′.)
or (e.) is always present between two occurrences of the same formula that appear on a
conservative trace, hence the result.

To reach our goal we want to isolate a characteristic that guarantees the possibility of
a series of substitutions to expand the model. The existence of a trace is not enough
to certify such a sequence of substitutions (not even a conservative one). First of all,
for a substitution to be effective we need that the two states satisfy the very same set
of formulas (modulo the ordinals). Secondly, we notice that it is not sufficient to have
a finite difference between those ordinals, because that change could become irrelevant
once a limit step is reached. There are particular traces that satisfy these conditions: we
call them repetition traces.

Definition 4.6 (Repetition trace). A conservative trace T of ϕ is a repetition trace if
there are (ϕαr ,Θr) and (ϕαs ,Θs) such that:

(a.) Θ−s = Θ−r ;

(b.) αr > αs + n for all 0 ≤ n < ω;

For practical reasons we focus our attention to

Definition 4.7 (Principal repetition trace). A repetition trace is principal if, in addition
to Definition 4.6,

(c.) Θr is the root of T

With all of this established, we can finally proceed to prove the bound for primary
formulas. The main lemma of this part is the following, that guarantees an increase
in the final ordinal -the first step of the process of pumping- at any time in which a
conservative model has a principal repetition trace.

Lemma 4.8 (Increase). If there is a conservative model Θ for ϕκ that has a principal
repetition trace, it is possible to build a conservative model for some ϕκ′>κ.

Proof. We give a method to build a bigger model from the initial one.

69

1. Assume the existence of a conservative model with principal repetition trace T ,
such that Θ−s = Θ−ρ , ϕαs ∈ Θs and αs + n < κ for any natural number n.

2. Build a new model Θ′ from Θ by adding to the root of the model a copy of the
path-segment Θρ → · · · → Θs from the repetition trace T .

Θρ

Θs

Θt

Θ′ρ′

Θ′s′

Θ′ρ∗

Θ′t′

Θ′t∗

Notationally, in the new Θ′ we call Θ′t′ any state above Θ′ρ′ corresponding to an
initial Θt; while Θ′t∗ is the state appended below Θ′ρ′ corresponding to a copy of
Θt. The new annotated sets have the following content: ∀Θ′t′ ∈ Θ′, Θ′t′ = Θt; for
all the sets Θ′t∗ in the subpath Θ′ρ∗ → · · · → Θ′ρ′ we take Θ′t∗ = Θt ∩ PR.

3. Given the fact that the valuation function in Θ′ assigns the same propositional
constants to the copied states as in Θ, and given the existence of a conservative
trace in the original model Θ, we know that each state along the new path satisfies
at least one disjunct (Pi ∧ �P ′i ∧ Oiϕγ). Given the particular structure of the
primary formula ϕ, this means that the whole formula is satisfied for some ordinal
γ: this is an annotation that matches the condition of Theorem 3.6 (b.), namely
∀χβ ∈ Θ′r ⇒ r � χβ . We can extend Θ′ to make it a well-annotation such that
ϕα ∈ Θ′ρ∗ . Thanks to Lemma 3.8 we define a conservative model Θ̂ for ϕκ′≤α. It
remains to show that κ′ > κ.

4. In order to prove it we invoke Corollary 4.5 after having showed that the trace
from Θ̂ρ∗ to Θ̂ρ′ is conservative. Θ̂ is conservative, and since Θ was itself con-
servative for ϕκ ∈ Θρ, we have in the new model that ϕκ ∈ Θ̂ρ′ . To check that
(ϕκ

′
, Θ̂ρ∗) . . . (ϕ

κ, Θ̂ρ′) is conservative it is sufficient to note that each state satisfies
the same propositions and (at least one of) the same disjunct(s) with respect to
the original conservative trace (as seen in the previous point). It remains only to
check that at each change of state the successor respects the ordinal as given by
the definition of conservative trace:

(a) for ((♦ϕ)αj , Θ̂tj) we know by conservativity of Θ̂ that there is one successor
such that ϕαj ∈ Θ̂tj , and by construction of the model we know that there is
only one.

(b) for ((�ϕ)αj , Θ̂tj) and αj 6= λ it is the same.

70

(c) ((�ϕ)αj , Θ̂tj) and αj = λ is not possible, given the construction of the model
that forces just one successor, and conservativity.

5. We conclude that the path Θ̂ρ∗ →∗ Θ̂ρ′ has a conservative trace, hence by Corollary
4.5 that κ′ > κ, as desired.

One might think about the case of κ being a limit ordinal, and if that process works as
well when the model Θ ends with a root satisfying �ϕλ, as in the intended meaning of
conservative model for ϕλ. Unfortunately, the initial conditions of Lemma 4.8 exclude the
case of κ = λ, because that would entail Θs = {�ϕαs} and so condition (a) of Definition
4.6 is impossible to meet. Lemma 4.8, then, can only refers to the cases in which κ is a
successor ordinal. This is not a problem, because Corollary 4.10 will cover the limit case
when a repetition trace is not principal (and if there is not a repetition trace then λ is
the actual closure ordinal, and no pumping is possible).

The conservative model built in the proof above has not a repetition trace itself, since
the ordinal κ has been increased by just a finite number, as can be seen from 4(c) in
the proof. We know, however, that an iteration of the same process is always possible,
with the consequence that a new model can be built that has a repetition trace. Before
proving this fact, let’s point out that in the original principal repetition trace there
was (at least) one limit ordinal step, i.e. a segment . . . (�ϕλ,Θp), (ϕ

βk ,Θq) By
construction, that means that in each principal trace T of the new model Θ′ there is a
step . . . (�ϕκ,Θ′p∗)(ϕκ,Θ′q∗) Let’s call this step the jump point of the trace.

Lemma 4.9 (Pumping). If there is a conservative model Θ for ϕκ that has a principal
repetition trace, it is possible to build a conservative model for some ϕη with η > κ+ n
for any n < ω.

Proof. Given a conservative model Θ for ϕκ and a principal repetition trace, let Θ1 be
the conservative model for ϕκ′ obtained with the process described in the proof of Lemma
4.8. The resulting Θ1 does not have a repetition trace, because clause (b.) in Definition
4.6 is not satisfied. Note, however, that we haven’t used that clause at all in the proof
of the previous lemma. That will be necessary only later in this proof to induce a step
to the limit. Since (Θ1

ρ′)
− = (Θ1

ρ∗)
− we can repeat the procedure and add a copy of the

path Θ1
ρ∗ → · · · → Θ1

ρ′ to the root and obtain a new model Θ2 for some ϕκ′′>κ′ . What we
obtain with Θ1 and Θ2 is just an increasing in the ordinal by some finite number. Define
Θn to be the conservative model obtained after n iterations of the increasing process.
Each one of them is conservative for ϕ with an increasing ordinal between κ′ and the
next limit ordinal λ.
In all models Θm the initial segments of the principal conservative trace are identical
to the principal repetition trace of Θ. This means that each Θm has a first jump point
. . . (�ϕβkm ,Θm

p), (ϕβkm ,Θm
q) . . . on the principal trace, with βkm < βkn for any m < n.

Take all the submodels (Θm � Θm
q) -i.e. the submodel of Θm whose root state is Θm

q -

71

and build a new Θ̂ by adding a root state Θ̂r such that Θ̂r → Θm
q for all m. Θ̂r � �ϕλ

with λ = sup{βkm} > κ the next limit ordinal. Moreover: Θ̂r � �P ′i , since all the states
Θm
q satisfy the propositions under the box of the ith disjunct of ϕ, while Θ̂r � Pi can

be stipulated by construction. We conclude that ϕλ+1 ∈ Θ̂r. We can continue with one
copy of the rest of the trace segment that was cut off from each model, and thanks to
Theorem 3.6 and Lemma 3.8 we obtain a new model that is conservative for a formula
ϕη, for η > κ+ ω.

The last model built in the proof of the Lemma has itself a repetition trace between Θ̂ρ

and each one of the Θm
s that started the pumping process, this means that the process

can be iterated starting from ϕη, as stated by the next Corollary, until the next limit
ordinal of the form ωn. Moreover, to generalise the result we remove the constraint that
the repetition trace has to be principal.

Corollary 4.10. If there is a conservative model Θ for ϕκ with ωn−1 < κ < ωn, that has
a repetition trace of ϕ, it is possible to build a conservative model for ϕη with η > λ > κ
for any limit ordinal λ < ωn.

Proof. Assume that there is a repetition trace such that Θs → · · · → Θt and Θ−t =
Θ−s . It is sufficient to point out that such repetition trace is principal in the submodel
Θ̂ = (Θ � Θs). Apply Lemma 4.9 to the submodel Θ̂ and obtain a new model Θ̂1 with
ordinal strictly bigger than the original, but also greater than the next limit ordinal. If
that is not enough to reach an ordinal bigger than λ, the process can be iterated, as
the new model is itself conservative and has a repetition trace,1 reaching every time a
conservative model Θ̂n for a bigger ordinal. We keep iterating the process, and stop only
when we reach a conservative model where ϕη>λ ∈ Θ̂m

s .

With this additional step we removed the condition for Θs to be the root of the model,
but we had to bound η to be lesser than ωn. That is because any finite iteration of the
process described by Lemma 4.9 gives a finite progression with respect to limit ordinals,
never surpassing the limit represented by ωn. However, the case is covered by the next
Lemma.

Lemma 4.11. If there is a conservative model Θ for ϕκ<ωn that has a repetition trace,
it is possible to build a conservative model for some ϕξ with ξ > ωn.

Proof. The model that is built in the proof of Corollary 4.10 has itself a repetition
trace (countably many). Apply the procedure of Corollary 4.10 and build a model with
ordinal η greater than the next limit greater than κ. The model so obtained has - again-
a repetition trace. By iterating the process, for each limit ordinal λ between κ and ωn

we are able to build a conservative model whose annotated formula at the root has to be
greater than λ. Identify in each of those models the first jump point and proceed to find

1Thanks to Lemma 4.9 we now know that condition (b.) of Definition 4.26 is satisfied after each
application.

72

suitable submodels as in the case of Lemma 4.9: add a root to that infinite list of models.
With the same process of the proof above, we have obtained a conservative model for
ϕ(ωn+1).

We have reached the point in which the existence of a repetition trace in a model conserva-
tive for a primary formula ϕ entails the existence of conservative models of ϕ indefinitely
bigger. It remains to define the condition that guarantees the existence of a repetition
trace in a conservative model of ϕ.

Lemma 4.12. Given a primary formula ϕ, if there is a conservative model of ϕα with
α ≥ ω2, then Θ has a repetition trace.

Proof. Let Θ be a conservative model of ϕα. By definition each Θ−s is subset of P(FL(ϕ)),
hence there are at most 2|FL(ϕ)| sets such that Θ−t 6= Θ−s . ϕ is primary and by Lemma
4.4 each ϕγ<α occurs on a principal trace T from the root. Since α ≥ ω2 we know that
there is a trace with more than 2|FL(ϕ)| limit formulas ϕλi . On that trace, necessarily
there are (ϕγr ,Θr) and (ϕγp ,Θp) such that Θ−p = Θ−r and γp < λ < γr. We found a
repetition trace.

Notice that we haven’t used in a strict way the fact that α ≥ ω2, since a bound of
ω · 2|FL(ϕ)| is enough. That brings us to the following corollary:

Corollary 4.13. Given a primary formula ϕ, if there is a conservative model of ϕα with
α > ω · 2|FL(µx.ϕ)|, then Θ has a repetition trace.

Finally we can prove the goal theorem:

Theorem 4.14. The closure ordinal for any primary formula ϕ, if it exists, is α ≤
ω · 2|FL(ϕ)|.

Proof. Define N = ω ·2|FL(ϕ)|. In searching for a contradiction say that CO(ϕ) = β > N .
Lemma 3.17 ensures the existence of a conservative model of ϕβ . By Corollary 4.13 we
know that such conservative model has a repetition trace of ϕ, hence by Lemma 4.10
there is a conservative model Θ̂ of ϕη with η > β. The proof is concluded by Lemma
3.18: we know that CO(ϕ) ≥ η > β, contradicting our initial hypothesis.

As a direct consequence of Corollary 4.13 and the fact that |FL(ϕ)| is always finite,
we have that ω2 is an upper bound on the closure ordinal for all primary formulas, as
we expected. Despite the fact that the progression of lemmas has been tailored on the
specificities of primary formulas, we could expect in principle that a simple adjustment
of the definition to broader fragments would be able to give us the same result in an
almost straightforward way. In the next section we will see why this is not the case, due
to the problem of trace shifting after substitution.

73

4.2 An attempt with disjunctive formulas

This section contains an account of the attempt made to extend the argument for primary
formulas to disjunctive Σ1 formulas. Even if the completion of the task resulted to be
harder than expected, leading to the decision to change the approach for a more general
framework, we decided to include this account to justify the necessity of a refinement of
the notions involved. It is also the opportunity to give an intuition of the problem with
trace shifting, that was avoided in the case of primary formulas but couldn’t be in this
framework. The initial motivations for an attempt with the disjunctive fragment was the
idea that the advantages given by the disjunctive form of primary formulas could be kept
at a broader level. Unfortunately, that expectation was not matched, the reason being
the persistence of the problem with trace shifting.

4.2.1 Trace shifting

Computing the least ordinal of a formula at a given state is relatively easy, but predicting
its value after a modification of the structure is a delicate matter. The ordinal, in fact,
is defined on the values of the subformulas. As we pointed out in the previous section,
not all subformulas nor branches are directly involved in the definition of the ordinal of
a given ϕ. However, all of them are relevant indirectly. For example, consider

ϕ := µx.♦x ∨�p

in the following situation where the model is modified by an addition of a propositional
constant at one successor state:

♦ϕα, (♦ϕ ∨�p)α, ϕα+1

ϕα p

♦ϕα,�p, (♦ϕ ∨�p)α, ϕ1

ϕα, p p

The ordinal of ϕ at the root goes from α+1 to just 1 because now �p holds. In addition,
the trace in the new model2 could change its path and also take the right branch, since the
subformula determining the ordinal is �p, and not ♦ϕ anymore. We face two problems
when we modify even a small detail of the model. The first is that a different situation
about the satisfaction of subformulas could determine a different final ordinal, even when
it is not affecting the satisfaction of ϕ. Moreover, even if we ignore the changes in the
sets Θ−, a second problem is that a different model could determine a different trace.
Consider the same formula of the previous example and the following situations, with
γ > β > α:

2Signalled in the drawing with a thicker line.

74

♦ϕα, (♦ϕ ∨�p)α, ϕα+1

ϕα ϕβ, p

♦ϕβ, (♦ϕ ∨�p)α, ϕβ+1

ϕγ ϕβ, p

Now the increase on the left from α to γ did not result in a final ordinal γ + 1 be-
cause the condition for conservativity of ♦-formulas was satisfied by the lesser β. The
desired increment is not obtained, and the trace is now the one on the right. Both these
possibilities obviously produce some complication when traces and substitutions are the
main ingredients of our argument. In the case of primary formulas, we eliminated these
possibilities by copying just the path segment from the conservative trace, cutting any
possible branch so that the initial situation was freezed. We could do that because of the
disjunctive structure of primary formulas. Clearly we cannot expect to replicate the very
same thing with general formulas, but we might try and look at a fragment of modal
µ-formulas that by definition imposes some condition to the successor states: disjunctive
formulas.

4.2.2 Disjunctive formulas

Instead of working with L+
µ as before, we change the language to one with a unique modal

operator called cover modality in place of the standard �,♦, defining the new language

ϕ := p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | αx.ϕ | νx.ϕ | ∇Γ

where Γ is a set of formulas. The intended meaning of a formula ∇{ψ0, . . . , ψn} is∧
i(♦ψi) ∧ �(

∨
i ψi), in words corresponding to “every formula in the set is satisfied by

some successor, every successor satisfies some formula of the set”. The set of formulas of
L+
µ∇ is defined

Definition 4.15 (Σ1 Disjunctive Formulas).

• p,¬p, x are DF;

• if ψ0, ψ1 are DF, then ψ0 ∨ ψ1 is a DF;

• if ψ(x) is a DF then αx.ψ is a DF;

• if P ⊆ PR ∪ PR (P possibly empty) and Γ is a set of disjunctive formulas, then∧
P and

∧
P ∧∇Γ are DF.

It is an established fact ([JW95]) that every modal formula ϕ can be translated into
an equivalent formula with the ∇ operator, thanks to the following correspondences:
�p := ∇{p} ∨ ∇{∅} and ♦p := ∇{p,>}, where we set

∧
(♦∅) ≡ > and �(

∨
∅) ≡ �⊥.

75

The semantic interpretation of the new formulas in the usual transition systems is given
by

‖∇Γ‖TV = {s ∈ S|∀ϕ ∈ Γ∃t(s→ t ∧ t ∈ ‖ϕ‖TV) ∧ ∀t(s→ t⇒ ∃ψ ∈ Γ(t ∈ ‖ψ‖TV)}

while for our conventional ordinal notation we stipulate that

(∇Γ)α = ∇Γα

where Γα := {ψα0 , . . . , ψαn}. Comments on the ordinal assignment to multiple formulas
are postponed till the end of the chapter, but for the time being let’s say that α is
taken to be big enough to satisfy all the formulas in the set. It is quite straightforward to
adapt all the definitions concerning conservativity to the new syntax, and prove the same
theorems that we showed in chapter 3 for the new language, but we will not include them
here. We limit ourselves to the definition of conservative trace for disjunctive formulas
because it can be helpful in understanding the next examples:

Definition 4.16 (DF Conservative Trace). A trace T in a conservative Θ is a conserva-
tive trace if given the first element (ψα1

1 ,Θ1) of the sequence ψα1
1 ∈ Ker(Θ1), and given

a pair (ψαnn ,Θn):

1. if ψn = p or ψn = ∇∅, then there is no (ψ
αn+1

n+1 ,Θn+1);

2. if ψn = (χ0 ◦ χ1) then (ψ
αn+1

n+1 ,Θn+1) = (χαni ,Θn), (i ∈ {0, 1} and ◦ ∈ {∧,∨});

3. if ψn = αnx.χ then (ψ
αn+1

n+1 ,Θn+1) = (χ(βx.χ),Θn) and αn = β + 1;

4. if ψn = (∇Γ) then (ψ
αn+1

n+1 ,Θn+1) = (χβ≤αn ,Θn+1) and Θn → Θn+1, χ ∈ Γ and
β < αn only if αn is a limit ordinal.

The definitions of repetition trace and principal repetition trace are not changed. Looking
at how smoothly the new language fits in the old structure, one could expect that the
same happens for the rest of the argument. That is, unfortunately, not the case. The way
in which we defined disjunctive formulas, in fact, shares with primary formulas the issue of
multiple disjuncts being satisfied at some successor states, with the consequent possibility
that the conservative trace is changed by some modification in the above subtree. The
reason why the very same procedure doesn’t work is that we cannot freely cut all the
branches that are not our repetition trace: because of the existential component of ∇ we
need to have at least one instance of each formula in Γ that is satisfied. As a consequence,
we cannot easily limit trace shifting. Here is an example: consider the formula

ϕ := ∇{∇{x,>},∇{x} ∨ ∇∅} ∨ p

whose L+
µ equivalent formula is ♦♦x ∧ ♦�x ∧ �(♦x ∨ �x). Say ψ0 := ∇{x,>} and

ψ1 := ∇{x} ∨ ∇∅ (the trace is expressed by thicker lines in the drawings)

76

ϕ8

ψ3
0, ψ

11
1 ψ5

0, ψ
7
1

ϕ3 ϕ11 ϕ7 ϕ5

ϕ12

ψ3
0, ψ

11
1 ψ5

0, ψ
ω+7
1

ϕ3 ϕ11 ϕω+7 ϕ5

In the starting model we have that the formula responsible for the final ordinal (8) is
ψ7

1 on the right branch, while after the substitution, the conservativity condition for ♦
determines a trace shifting to ψ11

1 in the left branch. We have that the ordinal is increased,
but the process cannot be automatically iterated because the trace has changed.3

Since a surgical modification of the model like in the primary case is not possible, we
tried to translate disjunctive formulas ϕ into disjunctive formulas ϕ̂, in which all logically
independent formulas in the scope of a ∇ are also mutually inconsistent. In this setting,
in fact, we have that each successor state satisfies one and only one of the formulas in
the scope of the modality, so we would be able to respect the existential condition on the
one hand, and eliminate the possibility of a trace shifting on the other. Unfortunately,
we couldn’t rule out the possibility that Θs � ϕ̂α and Θs � ϕβ for some β < α. This
is problematic because any claim we could make about the ordinal of the mutually-
inconsistent disjunctive formula ϕ̂ would have no measurable implication on the ordinal
of the original formula ϕ. Most importantly: the reason for that, it turned out, is again
the possibility of a trace shifting.

At this point we decided that the effort to establish a bound for such a peculiar fragment
was exceeding the benefit of a possible success, since the method would be, again, ad hoc
and not replicable. After this attempt, it seems that the problem of trace shifting cannot
be easily tackled by completely removing the possibility of it. With the perspective of
building a tool to facilitate the generalisation of the results, we then opt for a different
approach. Instead of trying to remove the trace shifting, we will try to control them by
restricting our attention to all the paths and nodes that we might encounter when trace
shiftings occur. By ensuring an increment on all those paths, we can obtain the certainty
of an increment in the final ordinal.

3In this simple case, we could cut the left branch and solve the problem, but we need to be sure that
a solution is always possible.

77

4.3 ΣML
1 formulas

Since it seems extremely cumbersome –if not impossible– to eliminate trace shifting we
need to consider it a possible outcome of a substitution. We leave then the ∇ notation
and return to the initial language. We focus now on ΣML

1 , that is the fragment of Σ1

with only one fixed point quantifier.

Definition 4.17 (ΣML
1 formulas). The set of formulas of ΣML

1 is defined by

ϕ := p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | αx.ψ

where ψ is a formula of modal logic.

If we have to accept the possibility of trace shifting after a substitution, we need to find
a way to track all the possible traces that a series of substitution might determine. In
order to find a set of states in the model that are sufficient to pump in order to produce
an ordinal increment at the root, we need to establish a dependency relation between
states in a model. Let’s introduce the definition of a bar over a state in the model. Given
a model Θ = (S,→, λ) and a state s, we define a bar T :

Definition 4.18 (Bar). A bar over s is a set T of pairwise incomparable elements of S
(wrt →) such that

1. ∀t ∈ T t 6→ s

2. every infinite path from s intersects T

We denote with BarΘ(s) the set of bars over a state s in Θ (from now on omit the model
when it is not necessary). Note that by definition we have that {s} ∈ BarΘ(s) for all
models Θ, and no other bar contains the state s. In a model with no infinite paths, like
the ones we are interested at the present time, the set of all leaves is also in BarΘ(s) (as
well as any set of incomparable elements that are not below s). On the other hand, there
is no restriction on the size of T , that might also be infinite. Later on we will restrict our
interest to a specific subset of BarΘ(s) to perform the substitutions that are necessary
to increase the final ordinal. The purpose of a bar is the ability to restrict, or prune,
the model below a certain limit. Once we have defined a bar T over a state s in Θ we
can focus on the subtree below the bar, indicated by ΘT . In particular we are interested
in the dependency relation that the ordinals at a given state s share with the ordinals
assigned to formulas at states in T .

Let’s define a set of ordinal assignments A := {a | a : (Θ × Form) → Ord} as a
set of functions that for each state and formula of a model produce an ordinal. We
define then AT for any T set of states as the set of ordinal assignments relative to it:
AT := {a | a : T → A}. Finally, we use at(x) : Θ−t → Ord to indicate a formula
assignment at a specific state t. With this notation we can express as a function the
dependency between bars and ordinal annotations.

78

Definition 4.19. Let the function g : AX → A take an assignment from any set X of
states and produce a new assignment A. For every set T and single state r, the function
gr,T : A → ar is an ordinal assignment at state r that depends on the assignment at T .
The function is defined as follows for every a ∈ AT and ψ in Θr:

1. if r ∈ T then gr,T (a, ψ) = a(r, ψ) = ar(ψ);

2. if r /∈ T and there is no s such that r → s, by induction on ψ

gr,T (a, p) := 0 gr,T (a,�ψ) := 0

gr,T (a, ψ0 ∨ ψ1) := min(gr,T (a, ψ0), gr,T (a, ψ1)) gr,T (a, σx.ψ) := gr,T (a, ψ) + 1

gr,T (a, ψ0 ∧ ψ1) := sup(gr,T (a, ψ0), gr,T (a, ψ1))

while gr,T (a,♦ψ) is not defined at leaf states since Θr 2 ♦ψ.

3. if r /∈ T and r has r0, r1, . . . successors

gr,T (a, p) := 0 gr,T (a,♦ψ) := min(grj ,T (a, ψ))

gr,T (a, ψ0 ∨ ψ1) := min(gr,T (a, ψ0), gr,T (a, ψ1)) gr,T (a,�ψ) := sup(grj ,T (a, ψ))

gr,T (a, ψ0 ∧ ψ1) := sup(gr,T (a, ψ0), gr,T (a, ψ1)) gr,T (a, σx.ψ) := gr,T (a, ψ) + 1

the rj ranging over all the successor states of r.

If we choose a set T to be a bar with a ∈ AT , we have that the function gr,T defines
the assignment to every formula ψ across the model depending on the actual values of a.
Clearly we expect the assignment gs,T (a, ϕ) to correspond to the least ordinal satisfying
ϕ at s in Θ whenever a matches the conservative annotation at the bar states.

Lemma 4.20. Given Θ a conservative well-annotation, for any s ∈ Θ and T ∈ Bar(s),
if we take a ∈ AT such that a(r, ϕ) = β iff ϕβ ∈ KerΘr for all r ∈ T , then

gs,T (a, ϕ) = β ⇐⇒ ϕβ ∈ KerΘs

for all formulas ϕ.

Proof. Inductively on the distance4 of s from T and the complexity of ϕ. The base
step T = {s} is trivial by point (1.) of Definition 4.19 and the assumption on a. The
induction steps follow by looking at the clauses of Definition 4.19 and the corresponding
clauses in the Lemma 3.9 defining conservative well-annotations, that is, the conditions
for ϕβ ∈ KerΘs in a conservative annotation. In the case of ϕ ≡ �ψ, for example, we
have by definition gs,T (a,�ψ) = sup(gsj ,T (a, ψ)). By induction hypothesis gsj ,T (a, ψ) =

βj ⇐⇒ ψβj ∈ Θsj , and by Lemma 3.9 (5) sup(βj) = β iff ψβ ∈ KerΘs, hence

gs,T (a,�ψ) = β ⇐⇒ (�ψ)β ∈ KerΘs

4We haven’t properly defined the notion of distance from a bar, but since there are not infinite paths
we just use an informal notion, that could be for example the sum of the length of all the paths ending
in a state in the bar T .

79

We know, then, that the function works as desired: it gives the same least ordinal that
satisfies a formula ϕ, like the conservative annotation does, whenever the assignment at
the bar does the same, so it faithfully represents the dependency relation between bars
and the rest of states, in terms of ordinals. Some useful properties of the function gs,T
are expressed in the next lemma, but first let’s define the relation a � b between two
assignments over the same bar T if and only if for all states t and formulas ϕ

a(t, ϕ) ≤ b(t, ϕ)

Lemma 4.21. Given a conservative model Θ, for every state s and every bar T :

a. if there is not a path from s to t ∈ T then for every a ∈ AT :

gs,T (a) = gs,T\{t}(a\at)

b. gs,T is monotone wrt �

c. gs,T is closed under composition: assume T ∈ Bar(s), t ∈ T , T ′ ∈ Bar(t) and
T̂ = T\{t}∪T ′. Denote with a the assignments for T\{t}, with a′ for T ′ and â for
T̂ such that they all agree on the assignments in the shared states.

gs,T̂ (â) = gs,T (a, gt,T ′(a
′))

Proof. a. by induction on the Definition 4.19. The base cases are straightforward, the
situation (1.) where s ∈ T being

gs,T (a)(ψ) = a(s, ψ) = a\at(s, ψ) = gs,T\{t}(a\at, ψ)

Case (2.) instead is independent of T , hence trivially true. Case (3.) is also direct
from the induction hypotheses, for example:

gs,T (a, ψ0 ∨ ψ1) =df min(gs,T (a, ψ0), gs,T (a, ψ1))

=IH min(gs,T\{t}(a\at, ψ0), gs,T\{t}(a\at, ψ1))

=df gs,T\{t}(a\at, ψ0 ∨ ψ1)

In the case of a modality, it is sufficient to point out that if s 6� t then also any
successor state sj 6� t, and then proceed by induction.

b. Assume a bar T and a � b. By induction on Definition 4.19 we can prove that for
all s and ψ

gs,T (a, ψ) � gs,T (b, ψ)

as follows:

80

1. for s ∈ T we have gs,T (a, ψ) =df a(s, ψ) � b(s, ψ) =df gs,T (b, ψ)

2. for s /∈ T a leaf, the assignment is independent from the bar, hence gs,T (a) =df

gs,T (b)

3. the other cases by induction hypothesis. As an example the modalities:

gs,T (a,♦ψ) =df min(gsj ,T (a, ψ)) gs,T (a,�ψ) =df sup(gsj ,T (a, ψ))

�IH min(gsj ,T (b, ψ)) �IH sup(gsj ,T (b, ψ))

=df gs,T (b,♦ψ) =df gs,T (b,�ψ)

The rest of the cases conclude that proof of the claim.

c. By induction on the definition of gs,T :

1. we have that s = t, so T\{s} = ∅. By definition T̂ = T ′ and â = a′, hence
gs,T̂ (â) = gt,T ′(a

′) = gs,T (gt,T ′(a
′)), the second equivalence holds since by

definition gs,T (a, ψ) = a(s, ψ) for s ∈ T ;

2. if s is a leaf, then also by definition gs,T̂ (â) = gs,T (a, gt,T ′(a
′)) since any

function gs,T /gs,T̂ is locally defined independently from the bar assignment;

3. the inductive step we relies on the hypothesis for the subformulas, with a help
in the case of modalities from part (1) of this Lemma already proven above,
for example:

gs,T̂ (â,♦ψ) =df min(gsj ,T̂ (â, ψ))

• if sj 6→ t then by (1) above we can remove any reference to T ′ and have
min(gsj ,T̂ (â, ψ)) = min(gsj ,T (a, ψ)) = gs,T (a,♦ψ). By the same (1) we
also know that gs,T (a,♦ψ) = gs,T (a, gs,T ′(a

′),♦ψ);

• if sj → t then by IH gsj ,T̂ (â, ψ) = gsj ,T (a, gt,T ′(a
′), ψ)

hence the result. The same argument works for gsj ,T̂ (â,�ψ).

Now that we have defined gs,T we can look at the model. We already know that, in
order to have a working definition of a repetition condition, we cannot restrict ourselves
to traces nor conservative traces: these might change after a substitution and we don’t
have a method to avoid that. On the other hand, we want to identify the cases in which
a substitution is considered (and later known) to produce some effective increase in the
ordinal. What is necessary is to find an intermediate level, one that isolates precisely that
subset of states Φ ⊆ Θ that contains all the formulas potentially sufficient for an ordinal
increment at our desired state. Before doing that, let’s define the ordinal neighbourhood

81

(or level) of a formula ψβ as the set of ordinals between (and including) the first limit
ordinal λ smaller than β and the next one λ′:

[β) := {γ | β = γ + n or γ = β + n for some 0 ≤ n < ω}

The definition of the structure Φ requires a detailed presentation, so it is worth to give
some preliminary justification. We will be extracting all the relevant traces from the end
formula that we want to pump. Each state Φs will be a set of formulas Φs ⊆ Θs, and
the transition relations of Φ will be determined by the structure of Θ and the formulas
in each Φs. In order to keep under control the ordinal neighbourhood of each Φs, we will
begin the definition of each state in Φ by determining some initial sets Φ?

s of formulas
all of the same ordinal level. After the decomposition into subformulas, we will cut all
the formulas with an ordinal not in the initial neighbourhood. Since in some particular
cases we will need to select multiple initial states for the same Φs in order to control
the ordinal level, the final Φs will be the union of all the Φ?

s. Once Φs has been finally
determined, from the modal formulas in the set we proceed to define the initial set(s) of
the next states, according to the model Θ.

Definition 4.22 (Structure Φ). From a conservative Θ and a formula ϕα at the root,
we can define a tree structure Φ that has an accessibility relation taken from Θ, such that
Φs → Φt only if Θs → Θt, and the Φs extracted from Θ with the following method:

1. Starting from the root of the model, take the singleton {ϕα} = Φ?
ρ as the initial set

at the root.

2. from each initial set Φ?
s proceed with the decomposition of the formulas according

to the definition of the FL closure, and include all the subformulas satisfied at Θs

in Φ?
s

3. remove from each Φ?
s all those formulas whose ordinal is not in the same initial

neighbourhood, which was unique. Then finally define the set Φs :=
⋃

Φ?
s

4. determine the initial set of the states visible from Φs among the visible states of Θs

by looking at the set of modal formulas in Φs in the following order:

(a) for every formula ♦ψαii ∈ Φs and reachable state Θt � ψ
βi
i with [αi) = [βi),

let ψβii ∈ Φ?
t if there already exists a state Φt, otherwise define Φt such that

Φs → Φt and ψ
βi
i ∈ Φ?

t ;

(b) for every formula �ψαii ∈ Φs and reachable state Θt � ψ
αi
i let ψαii ∈ Φ?

t if Φt

exists already, otherwise define it as in (a);

(c) for every formula �ψαii ∈ Φs such that no reachable state Θt � ψ
αi
i , for all

states s.t. Θr � ψ
βi
i define a new Φr such that Φs → Φr and ψβii ∈ Φ?

r;

5. repeat the procedure from (2.) with the initial states just defined.

82

A few comments are necessary at this point, before we proceed to prove some properties
of Φ. The purpose of this procedure is to restrict the focus to those paths that at the
given moment determine the level of the final ordinal. The goal of the definition of Φ is
to keep only those paths that either determine the final ordinal, or that can potentially
do that after a substitution has been performed. In other words: we are isolating those
paths whose ordinal is sufficient to increase if we want to be sure that the increment
propagates down to the root. Starting at the root with ϕ, at each state we define the
sets of formulas that we are tracking -the initial formulas- and the corresponding ordinal
level, and proceed with the backtracking of the dependency. Before moving to the next
state, we get rid of all the subformulas obtained such that their level is of an interval
higher or lower that the initial one. The motivation for this is the following:

• if the level is lower, then it is the result of the decomposition of a conjunction. Since
for a conjunction we will always take the maximum ordinal of its subformulas, it is
enough to increase the other conjunct, hence we discard the smaller formulas;

• conversely, if the level is higher, we know that the subformula comes from a dis-
junction. An increase in that term would produce no effect if the other disjunct is
not increased at least to the same level. Hence we ignore that path at the moment.

Once we have restricted the set of formulas to those of the appropriate level, we need to
determine which of the visible states are relevant, and for each one of them we list the
sets of initial formulas. In order to keep control over the ordinal progression, we need to
ensure that each of the initial sets has a unique level, otherwise step 3 cannot proceed.
That is the reason for the case distinction of step 4. In order to ensure that all the next
initial Φ?

t have a definite ordinal level, we (a) define one Φt for each state Θt that satisfies
some diamond formula(s). The next step (b) consists of adding those formulas in the
scope of a box that are not limit cases5 by first considering the possibility of an already
existing set, then creating one if that is not the case. Finally the limit case (c) defines
a new set for each visible state. It is possible, then, that we have two sets Φ?

s and Φ?
s′

both corresponding to the same Θs. That happens when there is a set Φs defined at 4
(a) or (b) that is duplicated by (c). The situation is not problematic: the two Φ?

s and
Φ?
s′ have different ordinal levels by construction. When step 3 is performed again, after

each set has been restricted to the proper initial level, the two are merged again into Φs,
from which the modal formulas are taken. For future convenience, we agree that

Definition 4.23. Any state Φs ∈ Φ has a unique ordinal level that is the maximum level
of its formulas. The ordinal level of a state in Φ is called its order.

An important remark is necessary at this point. For how it is built, Φ is not necessarily
a model for the initial formula ϕ, and that is not its purpose. The structure Φ is a tree
structure for which the definitions of Bar(s) applies, and with some additional care also
the function gs,T . The following lemma guarantees that the ordinal assignment given by

5Note that it might be the case that the ordinal αi is a limit ordinal, but the step is not a limit step
because some other modality must be considered first.

83

the function g in Φ corresponds to those in Θ when the bars and assignment share the
same values on the common states.

Lemma 4.24. Given a model Θ, let Φ be defined as in Def. 4.22. For every bar T̂ and
bar assignment â in Φ, let T be a bar in Θ such that Φs ∈ T̂ ⇒ Θs ∈ T , and a an
assignment such that â(Φr, ψ) = a(Θr, ψ) for all Φr ∈ T̂ . Then

gs,T (a, ψ) = gΦs,T̂
(â, ψ)

for all Φs ∈ Φ and ψ.

Proof. By induction on the definition of g. The base cases are trivial. For the induction
step, here an example with ∨ and one with �.

• ψ ≡ ψ0 ∨ ψ1

gΦs,T̂
(â, ψ0 ∨ ψ1) =df min(gΦs,T̂

(â, ψi))

=IH min(gs,T (a, ψi))

=df gs,T (a, ψ0 ∨ ψ1)

• ψ ≡ �ϕ

gΦs,T̂
(â,�ϕ) =df sup(gΦsj ,T̂

(â, ϕ))

By Definition 4.22 there exist Φsj � ϕ, and by induction hypothesis gΦsj ,T̂
(â, ϕ) =

gsj ,T (a,�ϕ). Since all the existing visible states Θsk satisfying ϕ either have a Φsk

or a lesser ordinal by construction of Φ, we conclude that

sup(gΦsj ,T̂
(â, ϕ)) = sup(gsj ,T (a, ϕ)) =df gs,T (a, ϕ))

The lemma certifies that the structure Φ captures the ordinal dependency relation be-
tween formulas as expressed by the function g. The next corollary highlights precisely
this fact: the assignments at the root correspond in both Θ and Φ, with respect to T
and T̂ .

Corollary 4.25. Given a conservative annotation Θ of ϕ, gρ,T (a, ϕ) = gΦρ,T̂
(â, ϕ) for

any T, T̂ and a, â as in Lemma 4.24.

Proof. From Lemma 4.24 and the fact that ϕ ∈ Φρ by construction.

If it is true that Φ captures the essential structure for pumping, we can characterise the
condition for a good repetition using Φ:

84

Definition 4.26 (Repetition condition). Given a conservative model Θ, two states Θr �
Θs on a path P are repetition states if:

(a.) Θ−r = Θ−s ;

(b.) Φ−r = Φ−s and the first has a higher order than the second.

The first condition is the same of the primary formulas, and it is necessary to ensure that
the substitution will not be problematic with respect to satisfaction of formulas. The
second condition ensures that after the substitution all the relevant formulas of Θs will
be actually increased in their order. Note that the mere facts that (a.) and that there
exists a corresponding path in Φ between the two states is not a guarantee that the two
sets of relevant formulas coincide.

Now that we have defined the condition for having a series of fruitful substitutions, the
argument proceeds as follows: we take a conservative model that is big enough and
define a T ∈ Bar(ρ) from the root that ensures that a substitution is possible on all
the necessary paths. Such a T is given by a number N of limit steps encountered on
a path, that entails the presence of a pair of repetition states. We then prove that the
substitutions occurring at the repetition stats ensure the increment of the order in Φρ,
hence the existence of a model with bigger closure ordinal.

Definition 4.27. Given a conservative annotation Θ with root ρ, define a T ∈ Bar(ρ)
by taking from all paths

• the first Θtj such that for some Φsj → Φtj , (Θsj ,Θtj) is a pair of repetition states,
or if there isn’t one

• take the first state Θtk after N limit steps from the root, or

• the leaf of the path, if the path is shorter.

N is given by the size of the closure of ϕ as in the case of primary formulas, but this time
we need a bigger limit to ensure that both conditions (a.) and (b.) of Definition 4.26 are
met, so N = 22·|FL(ϕ)|. Pruning the model above T determines a new tree where all the
leaves Θt are in one of the following situations:

1. Θt is in a repetition pair with a corresponding state below

2. there is no Φt in Φ for Θt

3. Θt was already a leaf in Θ.

as a consequence of Definition 4.27. Notice that in the second and third case we don’t
expect the substitution to be possible, nor it is necessary for the final result. Let’s proceed
with the theorem that gives us an increase in the final order. Given a model Θ we call
ΘT the model pruned at T .

Lemma 4.28 (Increase). Let N be as above. Given a conservative model Θ for a formula
ϕα, if α > ω ·N then there is a conservative model Θ′ for ϕα′>α. Moreover, α′ ≥ α+ ω.

85

Proof. The fact that α > ω · N guarantees that we can find a bar T ∈ Bar(ρ) as in
Definition 4.27 and define the pruned tree ΘT . Any repetition pair by definition has a
corresponding pair in Φ and by Lemma 4.24 the closure ordinal α of ϕ in ΘT depends on
the initial assignment a at the nodes tj ∈ Φ. We can define a model in which each subtree
above a repetition pair in Θ is replaced by the subtree generated by the companion. We
call the new assignment deriving from this substitution b. We can then restrict our focus
on those paths in Φ that present a repetition pair. Let’s call Φ̂ ⊆ Φ the sub-structure
formed only by those paths in Φ that end in a repetition pair. No structural change
occurred between T and ρ, so gρ,T is the same function as before. Having changed the
input a with b we can show that α = gρ,T (a, ϕ) < gρ,T (b, ϕ) = α′. The conclusion comes
from the following inductive argument. We already proved that gs,T is monotone with
respect to �, and in this case it is also strictly increasing. We will prove, in fact, that
for all Φs ∈ Φ̂: gs,T (b, ψ) ≥ gs,T (a, ψ) + ω. That can be done by showing that the order
of all Φs ∈ Φ̂ is increased by the substitution, including Φρ. By induction looking at the
definition of gs,T :

1. we know by assumption that btj (ψ) ≥ atj (ψ) + ω for all the leaves Φtj in Φ̂ and
ψ ∈ Φtj .

2. by hypothesis we have

(a) ψ ≡ p is not possible6

(b) for ψ ≡ ψ0 ∨ ψ1 we have

gΦs,T (b, ψ0 ∨ ψ1) =df min(gΦs,T (b, ψi))

≥IH min(gΦs,T (a, ψi)) + ω

=df gΦs,T (a, ψ0 ∨ ψ1) + ω

the second step following from the fact that either both ψi ∈ Φs, or that ψi is
and gΦs,T (a, ψ1−i) ≥ gΦs,T (a, ψi) + ω already (by Definition 4.22)

(c) for ψ ≡ ψ0 ∧ ψ1 we have

gΦs,T (b, ψ0 ∧ ψ1) =df sup(gΦs,T (b, ψi))

≥IH sup(gΦs,T (a, ψi)) + ω

=df gΦs,T (a, ψ0 ∧ ψ1) + ω

the second step following from the fact that either both ψi ∈ Φs, or that ψi is
and gΦs,T (a, ψ1−i) < gΦs,T (a, ψi) already (by Definition 4.22)

(d) for ψ ≡ ♦ψ0 we have

gΦs,T (b,♦ψ0) =df min(gΦsj ,T
(b, ψ0))

≥IH min(gΦsj ,T
(a, ψ0)) + ω

=df gΦs,T (a,♦ψ0) + ω

6By definition, in fact, p ∈ Φs only if Θs is a leaf.

86

the second step following from the fact that for all the successor states Θsj ,
either Θsj ∈ Φ̂, or gΘsj ,T

(a, ψ0) ≥ gΘs,T (a,♦ψ0) + ω already (by Definition
4.22 (4.a)).

(e) for ψ ≡ �ψ0 we have

gΦs,T (b,�ψ0) =df sup(gΦsj ,T
(b, ψ0))

≥IH sup(gΦsj ,T
(a, ψ0))

=df gΦs,T (a,�ψ0)

the second step following from the fact that among all the successor states,
there are some such that Θsj ∈ Φ̂. In this case we need to ensure that
sup(gΦsj ,T

(b, ψ0)) ≥ sup(gΦsj ,T
(a, ψ0))+ω, that is, that the gΦsj ,T

(b, ψ0)) are
also increasing and hence maintaining the limit jump. This is the case indeed,
as it appears if we consider that all the gΦsj ,T

(a, ψ0) were increasing, that the
function g is not changed and b cannot be infinitely decreasing at the bar. As
a consequence

gΦs,T (b,�ψ0) ≥ gΦs,T (a,�ψ0) + ω

(f) for ψ ≡ σx.ψ0 we have

gΦs,T (b, (σ + 1)x.ψ0) =df 1 + (gΦs,T (b, ψ0[σx.ψ0]))

≥IH 1 + (gΦs,T (a, ψ0[σ′x.ψ0])) + ω

=df gΦs,T (a, (σ′ + 1)x.ψ0))

(remember that for a formula αx.ψ to occur not in the scope of a modality it
means that α = σ + 1 for some sigma, see Corollary 3.10).

We conclude that at any state Φs ∈ Φ̂, the result of changing the initial assignment a to
b produces an increment at least to the next limit ordinal. Since Φρ ∈ Φ̂ and ϕ ∈ Φρ, and
the fact that the assignment given by gΦs,T reflects the conservative feature of the ordinal
assignment (Lemma 4.20 and Lemma 4.24), we have that the new model is conservative
for ϕα′ and α′ ≥ α+ ω.

Notice that after the substitutions, we have obtained another model entirely. This means
that if we want to re-apply the Lemma we can, but clearly the bar T has to be re-defined,
and it will probably be made of a different set of states, and the same is true for Φ and
Φ̂. Apart from that, we can clearly iterate the result and conclude that from α > ω ·N ,
we can define a conservative model for any α′ ≥ α+ ω. As a consequence, we have that
the process has an upper bound in the first ordinal of the form ωn bigger than α. To be
able to make that step, we need to push the argument as we did for the primary case.

Lemma 4.29. Given a conservative model Θ for a formula ϕα and ωn+1 > α > ω · N
there is a conservative model of ϕα′ with α′ > ωn+1.

87

Proof. Let’s prove the lemma for n = 1, the general statement resulting from the same
argument. In case we have a model for ϕδ and ω ·(N+1) > δ > ω ·N we can always apply
Lemma 4.28 once and obtain a conservative model for a new ϕα, hence let’s assume that
we have a conservative model for ϕα and α > ω · (N + 1). Define the structure Φ as in
Definition 4.22, a bar T as in Definition 4.27 and find Φ̂ as in the proof of the previous
Lemma. By construction7 we have that on each path in Φ̂ there is at least a state where
Θr � �ψω·(N+1), and �ψ ∈ Φr. Moreover, by conservativity and Definition 4.22(4.c)
each Θr has an infinite number of successor states in Φ̂ with ordinals bigger than ω ·N .
It follows that we can apply Lemma 4.28 to each one of them: once to the first successor,
twice to the second, . . . We obtain an infinite series of states with increasing ordinals by
at least one limit ordinal with respect to the previous one. In the example let’s call δn
the ordinal ω · (N + n):

�ψω·(N+1)

ψδ0+n0 ψδ0+n1 ψδ0+n2 ψδ0+n3 . . .

�ψω
2

ψδ1+m0 ψδ2+m1 ψδ3+m2 ψδ4+m3 . . .

By Lemma 4.20, Lemma 4.24 and conservativity we have that Θr � �ψω
2 . As we pointed

out, every path in Φ̂ has a state like Θr, hence we can consider the set of those states
as a bar where all the relevant ordinals have been raised over ω2. We conclude that
Θρ � ϕω

2+β for some β. The same procedure applies to any n ≥ 1, hence we obtain ωn+1

and prove the Lemma.

A combination of the last two Lemmas allows to conclude the proof for formulas ϕ ∈ ΣML
1 .

Theorem 4.30 (Closure Ordinal for ΣML
1). For any formula ϕ ∈ Σ1 with at most one

µ-quantifier, either the closure ordinal is an α ≤ ω · 22·|FL(ϕ)|, or there is none.

Proof. Assume that CO(ϕ) = κ > ω ·N for N = 22·|FL(ϕ)|. By Lemma 4.28 and Lemma
4.29 we know that there exists a conservative model for κ′ > κ. By Lemma 3.18 then
CO(ϕ) ≥ κ′, contradicting the hypothesis.

Corollary 4.31 (Upper bound). ω2 is the upper bound on closure ordinals for formulas
in ΣML

1 .

7We can convince ourselves of this fact considering that the order of Φρ is necessarily bigger than
the order of the repetition leaves in Φ̂, and the only step where the order decreases in Definition 4.22 of
Φ is (4.c) for some �ψ.

88

4.4 ΣW
1 and future steps

Despite the machinery involved, the result so far is interesting, although quite restricted.
Our final goal is to use such a machinery to prove a bound on the whole Σ1 fragment, and
possibly more. So far we have been able to test the argument with primary formulas, and
then adjust it to the complications coming from a more general structure of the formula,
i.e. allowing for any ψ with one µ-quantifier. The last step is to tackle the question
about multiple least fixed point occurring in the same formula, and yet we find already
in an undefined situation. The concept of the closure ordinal of a formula with just one µ
quantifier can be described informally by counting the number of times that the formula
has been folded starting from the top.

When multiple instances of µ appear in the same formula, the concept of closure ordinal
ceases to be immediate. In a direct translation of the informal number of steps descrip-
tion, we should list the ordinals appearing in the formula α0, α1, . . . , αn and take the
sum of them. The ordinal so obtained corresponds to the number of iterations of all least
fixed point above. Another way of defining the closure ordinal could be to count the
least ordinal that is sufficient for each fixed point to be fully satisfied. As in the case of
the nabla operator, we could argue that if αj = max(α0, α1, . . . , αn), then it can be seen
as the closure ordinal, because each quantifier certainly reaches its fixed point in that
amount of steps. This interpretation can be said to come from the semantic definition
of closure ordinal as the least ordinal such that ‖ϕα‖ = ‖ϕα+1‖. Whatever the final
definition will be in the end, for the time being we want to keep both interpretations
open: the informal number–of–steps and the formal least–general–ordinal.

Instead of jumping to the Σ1 fragment already, let’s make a step into another fragment,
that nonetheless extends the results obtained so far. Let’s call it ΣW

1 , or sigma-weak
fragment that introduces gradually the presence of multiple least fixed points. The weak
fragment of Σ1 is defined as follows:

Definition 4.32 (ΣW
1). The set of formulas of ΣW

1 is defined by

ϕ ::= p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | µx.ϕ

where every µx.ϕ has no free variables.

We work with formulas that are guarded, and assume that each variable occurs bounded
at most once. The following are examples of formulas in this fragment, assuming x /∈
FV (ψ):

(p ∧�µx.(�x)) ∨ (♦µy.ψ(y)) µx.(ϕ(x)) ∧ µy.(ψ(y))(4.1)
µx.(�(p ∧ x) ∨ ♦µy.�y) �µx.(ϕ(x) ∨�♦µy.ψ(y))(4.2)

In the examples above we have considered only two fixed point quantifiers, from now on
identified by µx and µy. We will continue to consider the number of different quantifiers
to be two, the generalisation to three or more being a direct consequence. Clearly there

89

are two possibilities for formulas in this fragment: (a.) none of the two quantifiers is in
the scope of the other 4.1, or (b.) one is in the scope of the other: µx @ µy 4.2.

Definition 4.33 (@). Given a formula ϕ and two subformulas µx.ψ, µy.ξ ∈ FL(ϕ), we
say that µx.ψ @ µy.ξ iff µx.ψ ∈ FL(µy.ξ).

Notice that for y ∈ FV (ψ) we don’t have µx.ψ ∈ FL(µy.ξ) because µx.ψ[µy.ξ/y] ∈
FL(µy.ξ) according to Definition 3.3. Before presenting the arguments, we need to spec-
ify what is the meaning of an annotation ϕα in this context. We can refer to Definition
3.1 at the beginning, noting that in this context it is not necessarily true that the ordinal
replacing µx corresponds to α, as it was informally until now. It could be the case, for
example, that (βx.(�(p ∧ x) ∨ ♦γy.�y))α, with α ≥ β, γ. To facilitate our work in this
section, let’s call g(ϕ) the ordinal of the formula ϕ as resulting from Definition 3.1, with
the addition of the condition that if µ is the main connective of ϕ, then g(ϕ) is either
the sum or the maximum of the ordinals annotated in ϕ.8 The definition below is a
clarification with respect to Definition 3.1.

Definition 4.34. The meaning of ϕα with x fixed point variables is ϕ[⊥/x] when α = 0;
otherwise:

pα = p (¬p)α = ¬p
(ϕ ∧ ψ)α = ϕα ∧ ψα (ϕ ∨ ψ)α = ϕα ∨ ψα

(♦ϕ)α = ♦ϕα (�ϕ)α = �ϕα (µx.ϕ)α = (αx.ϕα)

Let’s go back to the two categories of formulas in ΣW
1 . From now on we assume the

existence of a model Θ and a generic formula ϕ with two fixed point formulas µx.ψ and
µy.ξ such that µy @ µx. In the case (a.) it is straightforward to argue that the closure
ordinal of the main formula, if it exists, it is bounded by ω2 as well. Whichever the
definition of closure ordinal chosen, the sum or the maximum, each one of the subformulas
falls under the scope of Theorem 4.30, hence they either have no closure ordinal, or it
is an αi < ω2. Depending on the structure of the formula, the closure ordinal -if exists-
is given by one or both subformulas, but it certainly cannot exceed ω2 via sum or max
operations.

In the second case the motivations are similar, but some extra effort must be taken to
be able to assert that. In fact, given µy @ µx we have that the ordinal assigned to the
innermost quantified formula, say µy.ψ could contribute to the final ordinal assigned to
µx, and hence to the whole formula ϕ. Luckily, the contribution of µy can be proved to be
not enough to extend the existing upper bound over ω2. The condition that x /∈ FV (ψ)
allows us to establish a bound on the closure ordinal for the innermost formula. We
know that the subformula µy.ψ is independent from the main formula in determining its
ordinal. Since µy.ψ is in the scope of Theorem 4.30, we already know that its ordinal
is at most some αy < ω2 (under the assumption that a closure ordinal exists for such a
formula).

8The choice of the letter g is to suggest a connection with the function gs,T (a, ϕ) defined above.

90

Let’s assume that µy.ψ has a closure ordinal < ω2. To determine the effect of g(µy.ψ) on
g(ϕ), we can look at the subformula µy.ψ as if it was substituted by a fresh propositional
constant py, whose assigned ordinal is not 0 as usual, but it is the same as µy at each
given state. Let’s call ϕpy the formula ϕ[py/µy.ψ] and ϕp the formula ϕ[p/µy.ψ] with
g(p) = 0 at all states. We prove that CO(ϕpy) = CO(ϕ), and that if CO(ϕp) < ω2 then
CO(ϕpy) < ω2.

Lemma 4.35. If COΘ(ϕp) < ω2 and the ordinal of py < ω2 at all states, then COΘ(ϕpy) <
ω2.

Sketch of the proof. Fix a new Definition of gs,T (a, ϕ) so that to propositional constants
an ordinal other than 0 can be assigned. Take a bar T in the given model Θ. At each
state the value of gs,T (a, ϕpy) either depends on the value of gs,T (a, py) or not. If it does
not, then gs,T (a, ϕpy) = gs,T (a, ϕp) because it doesn’t depend on p either. If it does
depend on gs,T (a, py), then in the worst case scenario gs(a, ϕpy) is sent to gs,T (a, py) by
some supremum-condition. In either cases, the value of gs,T (a, ϕpy) never exceeds the
threshold of ω2, because both gs(a, ϕp) and gs,T (a, py) are smaller (Theorem 4.30 and
assumption). In both interpretations of CO, we either take the sum of gs,T (a, ϕpy) and
gs,T (a, py) or their maximum. As a result, if CO(ϕp) < ω2 and gs,T (a, py) < ω2 at all
states, there is not enough increment to reach ω2, hence also CO(ϕpy) < ω2.

Lemma 4.36. CO(ϕpy) = CO(ϕ)

Sketch of the proof. Since g(µy.ψ) = g(py) at each state by definition, and that is the
only change between ϕpy and ϕ, then gs(a, ϕpy) = gs(a, ϕ) for every s.

Those results relies on the assumption that both ϕp and µy.ψ have a closure ordinal. We
need also to consider the cases where at least one of them has no CO.

Lemma 4.37. If µy.ψ has no closure ordinal, then CO(ϕ) < ω2 or it doesn’t exists.

Sketch of the proof. If µy.ψ has no closure ordinal then in principle we could assign any
ordinal to the proposition py in ϕpy . Now: if gs(a, ϕpy) does not depend on g(py), then
clearly CO(ϕpy) = CO(ϕp), and we know from Theorem 4.30 that CO(ϕp) < ω2 if it
exists. If instead gs(a, ϕpy) does depend on g(py), then there is no limit to the value
of g(py) that can be increased arbitrarily, hence also gs(a, ϕpy). As a result there is no
closure ordinal for CO(ϕpy), and by Lemma 4.36, not one for ϕ.

Lemma 4.38. If ϕp has no closure ordinal, then there is no CO(ϕ).

Sketch of the proof. ϕp has no closure ordinal. By changing p with py we have that
gs(a, ϕp) ≤ gs(a, ϕpy). By the definition of gs(a), in fact, there is no way in which
increasing the ordinal of a propositional constant would determine a lower outcome,
hence the impossibility of a bound in the closure ordinal of ϕpy . By Lemma 4.36 the
same holds for ϕ.

91

Combining all these lemmas we can prove the Theorem

Theorem 4.39. For every formula ϕ ∈ ΣW
1 , if a closure ordinal exists it is less than ω2.

Proof. For any ϕ in the fragment, we can order the quantifiers with respect to the
inclusion relation @. Whenever it is the case that µx 6@ µy and µy 6@ µx, the closure
ordinal of their combination does not exceed the sum of them, that is known to be < ω2.
Consider the case µy @ µx where the innermost subformula is µy.ξ and it immediate
predecessor is µx.ψ. There are four possible cases:

1. both (µx.ψ)[p/µy.ξ] and µy.ξ have a closure ordinal. By Lemma 4.30 we know
that CO((µx.ψ)p) < ω2 and CO(µy.ξ) < ω2. By Lemma 4.35 and Lemma 4.36 we
know that CO(µx.ψ) < ω2.

2. µy.ξ does not have a closure ordinal. By Lemma 4.37 then CO(µx.ψ) < ω2 or it
doesn’t exists.

3. (µx.ψ)[p/µy.ξ] does not have a closure ordinal. By Lemma 4.38 then also µx.ψ has
not a closure ordinal.

4. neither (µx.ψ)[p/µy.ξ] nor µy.ξ have a closure ordinal. By the same argument of
the previous case also µx.ψ has not a closure ordinal.

We have that CO(µx.ψ) < ω2 or it doesn’t exists. We can move to the next µz.χ and
repeat the same argument for µx @ µz. As a result we have that CO(ϕ) < ω2, if it
exists.

92

4.5 Conclusion

In the last chapter we laid the foundations for our future inquiry on closure ordinals for
the modal µ-calculus in general. The definition of conservative well-annotations taken
from Kozen has been the major tool to replicate the argument in [AL13] on primary
formulas, a small subset of the Σ1 fragment. With the application of a pumping-like
argument, the impossibility of a bound equal or bigger than ω2 for primary formulas
was established, and a condition for the application of that process has been given in
the form of the existence of a repetition trace. Once the general machinery have been
tested, an attempt to extend directly the procedure to a bigger fragment of Σ1, that is
disjunctive formulas, proved already to be unfeasible. As a consequence we restricted
our interest towards formulas with no particular structure but only one least fixed point
quantifier. The notion of trace has been replaced by that of a structure Φ, that focuses
on all the paths that is sufficient to involve in the pumping process, in order to guarantee
the ordinal increment. A different representation of the ordinals was defined in terms of
a function gs,T . With these modifications, a new repetition condition in terms of paths
in Φ was defined, and the same process of the primary case works for the fragment of Σ1

with only one least fixed point, showing that ω2 is still an upper bound.

To extend the result to the whole Σ1 we need to address the presence of multiple quan-
tifiers. That raises the question not only of the interaction of several cycles, but already
about the meaning of a closure ordinal for more than one fixed point. A step in the
direction of a solution to the first issue was taken in the previous section, where we de-
scribed how the method can be implemented for an intermediate fragment like ΣW

1 . To
the question about the meaning of closure ordinals of multiple variables we didn’t give
an answer, but we tried to keep both major possibilities into consideration, concluding
that there is no significant difference between them with respect to closure ordinals in
ΣW

1 . We don’t know at the moment if the same could be achieved for Σ1 or more. In
any case, we believe that this neutral approach could potentially give some insight about
the effects of both choices.

The first and main task for subsequent work is to complete the proof of the bound for Σ1.
The aspect that remains unanswered in the present work concerns the way in which the
effects of the interaction between multiple nested µ quantifiers will reflect on a function
like g in Definition 4.19. With the limitations assumed in ΣW

1 it was possible to treat
the innermost fixed point formula as a propositional constant with an arbitrary ordinal
assignment, thanks to the fact that the interaction between the two was limited. While
the same method doesn’t seem to be expandable right away, the framework developed
in the present work suggests that with some minor modification the same result can be
obtained. A study on the nature of the interaction between two nested µ-formulas will
be also the starting point to understand whether a change in the function g is sufficient
to approach the study of greatest fixed point, or a deeper modification is necessary. It is
possible that a different definition of Φ will be necessary.

93

The main challenge to extend the results to Π2/Σ2 will be the definition of a framework
that is able to keep together both kinds of fixed point in a functional way. Very little
appears to be known about the closure ordinals beyond the alternation-free µ-calculus,
[AL13] being one of the most advanced results on the topic. We have to consider, also,
that there are not even examples of formulas with a closure ordinal greater than ω2, at
least in the language and semantics given here. Some motivation for looking at ωω as
a potential next bound comes from two recent works. One is Milanese’s master thesis
[Mil18] where a bound of ωω is given to formulas in the context of bidirectional models.
ωω also appears to be a necessary lower bound to prove the soundness of the infinitary
calculus Kκ

µ+ for the full µ-calculus,9 as showed in [AJL19] by Afshari, Jäger and Leigh.
Another work that could inspire some future development is the one from Gouveia and
Santocanale. In [GS18] they study κ-continuous formulas, that is a generalisation of
the notion of continuous fragment seen in [Fon08]. They show that for ℵ1-continuous
formulas the closure ordinal is the first uncountable ordinal ω1. These examples suggest
possible directions for inquiry, but they cannot be used directly in the present framework.
In any case, we believe that an attempt can be made starting from the work presented
here, if only with the goal of having a better understanding of closure ordinals at higher
levels.

Finally a possible tangent work could be started from the attempted work on disjunctive
formulas. The realisation that using disjunctive formulas was not going to be a shortcut
towards the analysis of Σ1 made us abandon the question on their behaviour with respect
to closure ordinals. However, there is a chance that an approach like the one adopted
here could be a starting point for a research about the changes in ordinals that occur
with semantically equivalent but syntactically different formulas.

9That is µ-calculus extended with converse modalities.

94

Bibliography

[AHL15] Bahareh Afshari, Stefan Hetzl, and Graham E. Leigh. “Herbrand Disjunctions,
Cut Elimination and Context-Free Tree Grammars”. In: TLCA. 2015.

[AHL20] Bahareh Afshari, Stefan Hetzl, and Graham E. Leigh. “Herbrand’s theorem
as higher order recursion”. In: Annals of Pure and Applied Logic 171.6 (2020),
p. 102792.

[AJL19] Bahareh Afshari, Gerhard Jäger, and Graham E. Leigh. “An Infinitary Treat-
ment of Full Mu-Calculus”. In: Logic, Language, Information, and Computa-
tion. Ed. by Rosalie Iemhoff, Michael Moortgat, and Ruy de Queiroz. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2019, pp. 17–34.

[AL13] Bahareh Afshari and Graham E. Leigh. “On closure ordinals for the modal
mu-calculus”. In: Computer Science Logic 2013 (CSL 2013). Ed. by Simona
Ronchi Della Rocca. Vol. 23. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 30–44.

[AF98] Jeremy Avigad and Solomon Feferman. “Chapter V - Gödel’s Functional (“Di-
alectica”) Interpretation”. In: Handbook of Proof Theory. Ed. by Samuel R.
Buss. Vol. 137. Studies in Logic and the Foundations of Mathematics. Else-
vier, 1998, pp. 337–405.

[Bar84] H. P. Barendregt. The lambda calculus : its syntax and semantics. Elsevier
Science Pub., 1984.

[Bar88] Jon Barwise. “Three views of common knowledge”. In: Proceedings of the 2nd
conference on Theoretical aspects of reasoning about knowledge. TARK ’88.
Morgan Kaufmann Publishers Inc., 1988, pp. 365–379.

[BT17a] Stefano Berardi and Makoto Tatsuta. “Classical System of Martin-Löf’s In-
ductive Definitions is not Equivalent to Cyclic Proofs”. In: (2017). doi: 10.
48550/ARXIV.1712.09603.

[BT17b] Stefano Berardi and Makoto Tatsuta. “Equivalence of Inductive Definitions
and Cyclic Proofs under Arithmetic”. In: Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’17. IEEE Press,
2017.

[BT17c] Stefano Berardi and Makoto Tatsuta. “Equivalence of Intuitionistic Inductive
Definitions and Intuitionistic Cyclic Proofs under Arithmetic”. In: (2017). doi:
10.48550/ARXIV.1712.03502.

95

https://doi.org/10.48550/ARXIV.1712.09603
https://doi.org/10.48550/ARXIV.1712.09603
https://doi.org/10.48550/ARXIV.1712.03502

[Bra98] J.C. Bradfield. “The modal mu-calculus alternation hierarchy is strict”. In:
Theoretical Computer Science 195.2 (1998), pp. 133–153.

[BS07] Julian Bradfield and Colin Stirling. “Modal mu-calculi”. In: Handbook of Modal
Logic. Netherlands: Elsevier, 2007, pp. 721–756.

[BS11] J. Brotherston and A. Simpson. “Sequent calculi for induction and infinite
descent”. In: Journal of Logic and Computation 21.6 (2011), pp. 1177–1216.

[Bro05] James Brotherston. “Cyclic Proofs for First-Order Logic with Inductive Defini-
tions”. In: Automated Reasoning with Analytic Tableaux and Related Methods.
Ed. by Bernhard Beckert. Springer Berlin Heidelberg, 2005, pp. 78–92.

[Bro06] James Brotherston. “Sequent calculus proof systems for inductive definitions”.
PhD thesis. 2006.

[Cza10] Marek Czarnecki. “How fast can the fixpoints in modal mu-calculus be reached”.
In: Fixed Points in Computer Science (2010), pp. 35–39.

[Dam94] Mads Dam. “CTL* and ECTL* as Fragments of the Modal mu-Calculus”. In:
Theor. Comput. Sci. 126.1 (1994), pp. 77–96.

[DG02] Mads Dam and Dilian Gurov. “mu-Calculus with Explicit Points and Approx-
imations”. In: Journal of Logic and Computation 12.2 (2002), pp. 255–269.

[Das20] Anupam Das. “A circular version of Gödel’s T and its abstraction complexity”.
In: (2020). doi: 10.48550/ARXIV.2012.14421.

[EJS93] E. A. Emerson, C. S. Jutla, and A. P. Sistla. “On model-checking for frag-
ments of mu-calculus”. In: Computer Aided Verification. Ed. by Costas Cour-
coubetis. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1993, pp. 385–396.

[FL79] Michael J. Fischer and Richard E. Ladner. “Propositional dynamic logic of
regular programs”. In: Journal of Computer and System Sciences 18.2 (1979),
pp. 194–211.

[Fon10] G. M. M. Fontaine. “Modal fixpoint logic: some model theoretic questions”.
PhD thesis. Amsterdam Institute for Logic, Language and Computation, 2010.

[Fon08] Gaëlle Fontaine. “Continuous Fragment of the mu-Calculus”. In: Computer
Science Logic. Ed. by Michael Kaminski and Simone Martini. Springer Berlin
Heidelberg, 2008, pp. 139–153.

[FV18] Gaëlle Fontaine and Yde Venema. “Some model theory for the modal mu-
calculus: syntactic characterisations of semantic properties”. In: Logical Meth-
ods in Computer Science ; Volume 14 (2018), Issue 1, 18605974.

[GK03] Philipp Gerhardy and Ulrich Kohlenbach. “Extracting Herbrand Disjunctions
by Functional Interpretation”. In: BRICS Report Series 03-32 (2003).

[GS18] Maria Joa O Gouveia and Luigi Santocanale. “ℵ1 and the modal mu-calculus”.
In: (2018). doi: 10.23638/LMCS-15\%284\%3A1\%292019.

[Het12] Stefan Hetzl. “Applying Tree Languages in Proof Theory”. In: Language and
Automata Theory and Applications. Ed. by Adrian-Horia Dediu and Carlos
Martin-Vide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 301–
312.

96

https://doi.org/10.48550/ARXIV.2012.14421
https://doi.org/10.23638/LMCS-15\%284\%3A1\%292019

[JW95] David Janin and Igor Walukiewicz. “Automata for the modal mu-calculus and
related results”. In: Mathematical Foundations of Computer Science 1995. Ed.
by Jiří Wiedermann and Petr Hájek. Vol. 969. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1995, pp. 552–562.

[JW96] David Janin and Igor Walukiewicz. “On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic”. In:
CONCUR ’96: Concurrency Theory. Ed. by Ugo Montanari and Vladimiro
Sassone. Vol. 1119. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1996, pp. 263–277.

[Jun10] Natthapong Jungteerapanich. “Tableau systems for the modal mu-calculus”.
PhD thesis. The University of Edinburgh, 2010.

[Klo92] J. W. Klop. “Term Rewriting Systems”. In: Handbook of Logic in Computer
Science. Ed. by S. Abramsky, D. Gabbay, and T. Maibaurn. Vol. 2. Oxford
University Press, 1992, pp. 1–116.

[Koz83] Dexter Kozen. “Results on the propositional mu-calculus”. In: Theoretical
Computer Science 27.3 (1983), pp. 333–354.

[Koz88] Dexter Kozen. “A Finite Model Theorem for the Propositional mu-Calculus”.
In: Studia Logica: An International Journal for Symbolic Logic 47.3 (1988),
pp. 233–241.

[KP84] Dexter Kozen and Rohit Parikh. “A decision procedure for the propositional
mu-calculus”. In: Logics of Programs. Ed. by Edmund Clarke and Dexter
Kozen. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1984,
pp. 313–325.

[KV03] Orna Kupferman and Moshe Y. Vardi. “Π2 ∩ Σ2 ≡ AFMC”. In: Automata,
Languages and Programming. Ed. by Jos C. M. Baeten et al. Springer Berlin
Heidelberg, 2003, pp. 697–713.

[Mar71] Per Martin-Löf. “Hauptsatz for the Intuitionistic Theory of Iterated Inductive
Definitions”. In: Proceedings of the Second Scandinavian Logic Symposium. Ed.
by J.E. Fenstad. Vol. 63. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1971, pp. 179–216.

[Mil18] Gian Carlo Milanese. “An exploration of closure ordinals in the modal mu-
calculus”. Master Thesis. 2018.

[Niw86] Damian Niwiński. “On fixed-point clones”. In: Automata, Languages and Pro-
gramming. Ed. by Laurent Kott. Vol. 226. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1986, pp. 464–473.

[NW96] Damian Niwiński and Igor Walukiewicz. “Games for the mu-calculus”. In: The-
oretical Computer Science 163.1 (1996), pp. 99–116.

[RS59] M. O. Rabin and D. Scott. “Finite Automata and Their Decision Problems”.
In: IBM Journal of Research and Development 3.2 (1959), pp. 114–125.

[SW12] Sylvain Salvati and Igor Walukiewicz. Recursive Schemes, Krivine Machines,
and Collapsible Pushdown Automata. Tech. rep. 2012.

[San02] Luigi Santocanale. “A Calculus of Circular Proofs and Its Categorical Seman-
tics”. In: Foundations of Software Science and Computation Structures. Ed. by

97

Mogens Nielsen and Uffe Engberg. Springer Berlin Heidelberg, 2002, pp. 357–
371.

[Sim17] Alex Simpson. “Cyclic Arithmetic Is Equivalent to Peano Arithmetic”. In:
Foundations of Software Science and Computation Structures. Ed. by Javier
Esparza and Andrzej S. Murawski. Springer Berlin Heidelberg, 2017, pp. 283–
300.

[SD03] Christoph Sprenger and Mads Dam. “On global induction mechanisms in a mu-
calculus with explicit approximations”. In: RAIRO - Theoretical Informatics
and Applications 37.4 (2003), pp. 365–391.

[SE84] Robert S. Streett and E. Allen Emerson. “The propositional mu-calculus is el-
ementary”. In: Automata, Languages and Programming. Ed. by Jan Paredaens.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1984, pp. 465–
472.

[SE89] Robert S. Streett and E. Allen Emerson. “An automata theoretic decision pro-
cedure for the propositional mu-calculus”. In: Information and Computation
81.3 (June 1, 1989), pp. 249–264.

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. 2nd ed. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2000.

[Tro98] A.S. Troelstra. “Chapter VI - Realizability”. In: ed. by Samuel R. Buss. Vol. 137.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1998, pp. 407–
473.

[Wal00] Igor Walukiewicz. “Completeness of Kozen’s Axiomatisation of the Proposi-
tional mu-Calculus”. In: Information and Computation 157.1 (2000), pp. 142–
182.

[Wir04] C.P. Wirth. “Descente Infinie + Deduction”. In: Logic Journal of IGPL 12.1
(2004), pp. 1–96.

98

	Introduction
	I Cyclic Proofs
	Intuitionistic Cyclic Arithmetic
	LJID and induction.
	Cyclic proofs and Arithmetic
	-terms and types
	Heyting Arithmetic
	Cyclic terms
	Recursion Schemes

	A recursion scheme for ICA
	Properties of H
	The language L(H)
	Conclusion

	II Closure ordinals
	ML, conservativity and closure ordinals.
	Syntax and semantics
	Conservative well-annotations
	Closure ordinals

	A bound on closure ordinals
	Closure ordinal of primary formulas
	An attempt with disjunctive formulas
	1ML formulas
	1W and future steps
	Conclusion

	Bibliography

