Multimodal and multiscale characterization of bone and bone interfaces in health and disease

Akademisk avhandling

Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet, kommer att offentligen försvaras i hörsal Arvid Carlsson, Medicinaregatan 3, måndagen den 12:e juni 2023, klockan 13:00.

av Chiara Micheletti

Fakultetsopponent:

Prof. Håvard J. Haugen, Avdeling for biomaterialer, Institutt for klinisk odontologi, Universitetet i Oslo, Norge

Avhandlingen baseras på följande delarbeten

- I. <u>Micheletti C</u>, Jolic M, Grandfield K, Shah FA, Palmquist A. Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium. Bone. 2023;172:116747.
- II. <u>Micheletti C</u>, DiCecco L-A, Larsson Wexell C, Binkley DM, Palmquist A, Grandfield K, Shah FA. Multimodal and multiscale characterization of the bone-bacteria interface in a case of medication-related osteonecrosis of the jaw. JBMR Plus. 2022;6:e10693.
- III. <u>Micheletti C</u>, DiCecco L-A[#], Deering J[#], Chen W, Ervolino da Silva AC, Shah FA, Palmquist A, Okamoto R, Grandfield K. Micro-to-nanoscale characterization of the osseointegration and lacuno-canalicular network at the interface with an additively manufactured implant for local genistein delivery. *Submitted for publication*. [#]Equal contribution.
- IV. Gomes-Ferreira PHS, <u>Micheletti C</u>, Buzo Frigério P, de Souza Batista FR, Monteiro NG, Bim-júnior O, Lisboa-Filho PN, Grandfield K, Okamoto R. PTH 1-34-functionalized bioactive glass improves peri-implant bone repair in orchiectomized rats: Microscale and ultrastructural evaluation. Biomater Adv. 2022;134:112688.
- V. <u>Micheletti C</u>, Gomes-Ferreira PHS, Casagrande T, Lisboa-Filho PN, Okamoto R, Grandfield K. From tissue retrieval to electron tomography: Nanoscale characterization of the interface between bone and bioactive glass. J R Soc Interface. 2021;18:20210181.
- VI. <u>Micheletti C</u>, Shah FA, Palmquist A, Grandfield K. Shedding light (... electrons) on human bone ultrastructure with correlative on-axis electron tomography and energy-dispersive Xray spectroscopy tomography. *Submitted for publication*. Preprint available in *bioRxiv*, DOI: 10.1101/2023.04.20.537681.

SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR KLINISKA VETENSKAPER

Multimodal and multiscale characterization of bone and bone interfaces in health and disease

Chiara Micheletti

Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden, 2023.

Department of Materials Science and Engineering, McMaster University, ON, Canada.

Abstract

Seeing is believing. Our understanding of phenomena often involves their direct observation. However, bone architecture is challenging to visualize given its multi-level hierarchical organization. In this thesis, bone and bone interfaces are characterized via multimodal and multiscale platforms, combining different techniques across several length scales. Imaging techniques across the micro-nano continuum are complemented by spectroscopy methods to explore, respectively, the structure and composition of bone and bone interfaces, using both light and electron probes. By applying a characterization methodology more typical of materials science, this thesis aims to unveil structural and compositional abnormalities of bone induced by disease [Papers I-II], and bone response to functionalized biomaterials in compromised conditions [Papers III-IV]. Additionally, it expands three-dimensional (3D) characterization opportunities at the nanoscale in both native and peri-implant bone [Papers V-VI].

This characterization approach uncovered changes in bone quality (structure and/or composition) in the compromised conditions under investigation in this thesis, i.e., leptin receptor (LepR) deficiency and medication-related osteonecrosis of the jaw (MRONJ) [Papers I-II]. In a preclinical model of LepR deficiency for type 2 diabetes/obesity, multimodal characterization of bone at the microscale showed structural abnormalities indicative of delayed skeletal development, despite unaffected bone matrix composition [Paper I]. A combination of multiscale imaging and spectroscopy techniques spanning the micro-to-nanoscale enabled a detailed study of the interface between necrotic bone and bacteria in a case of MRONJ, shedding light on possible mechanisms of bone degradation. When applied to bone-biomaterial interfaces, the application of a multimodal and multiscale characterization workflow informed perspectives on bone response to novel biomaterial solutions aimed to promote osseointegration in osteoporotic conditions via local drug delivery of phytoestrogens [Paper III] or anabolic agents [Paper IV]. This highlighted the importance of studying peri-implant bone at the mesoscale [Paper III] and of confirming biomaterial behaviour *in vivo* in the presence of surface functionalization [Paper IV]. Lastly, this thesis emphasized the importance of 3D imaging at the nanoscale with electron tomography to resolve bone ultrastructure at biomaterial interfaces [Paper V] and in native conditions [Paper VI]. Specifically, in Paper VI, artifact-free on-axis electron tomography resolved some long-debated aspects regarding the organization of mineralized collagen fibrils, the fundamental building block units of bone.

Keywords: bone; osseointegration; characterization; mineralization; ultrastructure; diabetes; osteoporosis; MRONJ; surface functionalization; local drug delivery; titanium; bioactive glass; imaging; spectroscopy; microscale; nanoscale; micro-computed X-ray tomography; micro-Raman spectroscopy; scanning electron microscopy; transmission electron microscopy; PFIB-SEM tomography; electron tomography.

ISBN 978-91-8069-183-3 (PRINT) ISBN 978-91-8069-184-0 (PDF) http://hdl.handle.net/2077/75903