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ABSTRACT

The main objective of this PhD thesis was to evaluate the significance of proteasome 
genes as prognostic markers for different cancer types and identify specific cancer forms 
that respond to proteasome inhibition. The proteasome (PSM) plays an important role 
in maintaining cellular proteostasis and degrades the majority of proteins that require 
breakdown in the cell. Elevated PSM activity has been detected in most cancer types, 
making it an interesting target for cancer treatment. PSM inhibitors interfere with 
protein degradation, leading to a decrease in free amino acids, increased accumulation 
of proteins, and apoptosis. This doctoral thesis is based on five studies focusing on the 
proteasome and cancer.

In Study I, pan-cancer data from The Cancer Genome Atlas (TCGA) was used to study the 
relationship between PSM gene expression patterns and genetic changes, as well as 
expression and patient survival. Several PSM genes (e.g., PSMB4-5, PSMD2) were 
identified and shown to affect patient survival. In Study II, comprehensive bortezomib 
sensitivity, genomic and transcriptomic data from >800 cell lines were used to investigate 
the effect of PSM inhibition on e.g., cancer cell survival. We identified 33 genes involved 
in bortezomib resistance and cancer types that were sensitive to bortezomib. In Study 
III, we developed a strategy to identify and minimize the influence of environmental and 
experimental factors to improve the replicability and reproducibility of cell viability 
analysis. Several confounding factors (e.g., number of solvent controls, drug storage, 
plate construction) were shown to have an impact on the replicability and reproducibility 
of the resazurin-based cell viability assay. In Study IV, extensive data from e.g., CMap 
were used to study the transcriptomic signature of compounds to identify putative 
proteasome inhibitors similar to known proteasome inhibitors (bortezomib, MG-132, 
and MLN-2238). Six possible proteasome inhibitors were identified with a high affinity 
for the chymotrypsin-like catalytic domain (β5) of the proteasome. In Study V, a high-
throughput drug screen was performed to identify chemotherapeutic agents 
(conventional breast cancer chemotherapy and proteasome inhibitors) used as single 
agents or in combination that can potentially improve the treatment of triple-negative 
breast cancer (TNBC). We identified potent drugs e.g., bortezomib and cisplatin (as 
single) or e.g., bortezomib+nedaplatin (in combination) that had an adverse impact on 
the survival of TNBC cells. 

In summary, several cancer types demonstrated an association between PSM gene 
expression and clinical outcome, as well as sensitivity to proteasome inhibitors. 
Therefore, the proteasome is an attractive target for cancer treatment.

5

SAMMANFATTNING PÅ SVENSKA

Huvudsyftet med denna doktorsavhandling var att utvärdera betydelsen av 
proteasomgener som prognostiska markörer för olika cancertyper och identifiera 
specifika cancerformer som svarar på proteasomhämning. Proteasomen (PSM) spelar en 
viktig roll för att upprätthålla cellulär proteostas och bryter ner majoriteten av proteiner 
som kräver nedbrytning i cellen. Förhöjd PSM-aktivitet har upptäckts i de flesta 
cancertyper, vilket gör det till ett intressant mål för cancerbehandling. PSM-hämmare 
stör proteinnedbrytningen, vilket leder till en minskning av fria aminosyror, ökad 
ackumulering av proteiner och apoptos. Denna doktorsavhandling bygger på fem studier 
med fokus på proteasomen och cancer.

I Studie I användes pan-cancerdata från The Cancer Genome Atlas (TCGA) för att studera 
genetiska förändringar, genuttryck av PSM-gener och patientöverlevnad. Flera PSM-
gener (t.ex. PSMB4-5, PSMD2) identifierades och visade sig påverka patientens 
överlevnad. I Studie II, omfattande data om bortezomib känslighet, genomiska och 
transkriptomiska data från >800 cell liner användes för att undersöka effekten av PSM-
hämning på t.ex. cancercellöverlevnad. Vi identifierade 33 gener, involverade i 
bortezomib känslighet och identifierade cancertyper som var känsliga för bortezomib. I 
Studie III, utvecklade vi en strategi för att identifiera och minimera påverkan av miljö- 
och experimentella faktorer för att förbättra replikerbarheten och reproducerbarheten 
av cellviabilitetsanalysen. Flera faktorer identifierades (t.ex. antal 
lösningsmedelskontroller, läkemedelslagring, plattkonstruktion) som hade inverkan på 
replikerbarheten och reproducerbarheten av den resazurinbaserade 
cellöverlevnadsanalysen. I Studie IV användes omfattande data från bl.a. CMap för att 
studera föreningars transkriptomiska signatur för att identifiera okända 
proteasomhämmare liknande den för kända proteasomhämmare (bortezomib, MG-132, 
och MLN-2238). Sex möjliga proteasomhämmare identifierades och dessa hade hög 
affinitet till den kymotrypsin-liknande katalytiska domänen på proteasomen. I Studie V 
utfördes en multipel läkemedelstestning för att identifiera cytostatika (konventionell 
bröstcancerkemoterapi och proteasomhämmare) både ensamt och i kombinationer som 
har potential att förbättra behandlingen av trippelnegativ bröstcancer (TNBC). Vi 
identifierade flertalet potenta läkemedel t.ex. bortezomib och cisplatin (ensamma) eller 
t.ex. bortezomib+nedaplatin (kombination) som hade en negativ inverkan på 
överlevnaden på TNBC-celler.

Sammanfattningsvis identifierades ett samband mellan cancertyper, PSM-genuttryck 
och kliniskt utfall, samt känslighet för proteasomhämmare. Därför är proteasomen ett 
attraktivt mål för cancerbehandling.
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9

AIMS

The main objective of this PhD thesis was to assess the prognostic relevance of 
proteasome genes in different cancer types and identify specific cancer forms that 
respond to proteasome inhibition.

This was achieved through the following specific objectives:

Study I

To (1) investigate the prevalence of genetic alterations in the proteasome gene family in 
a pan-cancer dataset from The Cancer Genome Atlas (TCGA) and (2) analyze the impact 
of dysregulated proteasome genes on clinical outcome.

Study II

To (1) evaluate the sensitivity of cancer cell lines to proteasome inhibitors and (2) identify 
a correlation between genomic or transcriptomic factors and sensitivity/insensitivity to 
proteasome inhibition.

Study III

To improve the replicability and reproducibility of 2D high-throughput viability screens 
for cancer cell lines by identifying and minimizing the influence of assay-associated 
confounding factors.

Study IV

To identify putative proteasome inhibitors based on (1) drug-induced transcriptomic 
profiles and (2) the binding affinity to the β5 proteasome catalytic site.

Study V

To determine (1) the chemosensitivity of triple-negative breast cancer (TNBC) cell lines 
to proteasome inhibitors and clinically relevant chemotherapy in mono- and 
combination settings, and (2) the potential synergistic effect of combination therapy with 
proteasome inhibitors and common chemotherapy. 
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the reviewers and editors.
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13

INTRODUCTION

Cancer

In 2020, about 19.3 million people were diagnosed with some type of cancer and 10 
million cancer-related deaths were reported worldwide 1,2. However, the number of 
unreported cases is expected to be large because some countries have no working 
reporting system. The number of new cancer cases is expected to increase to about 25-
28 million by the year 2040 1,2. Today it is expected that every fourth person will develop 
cancer during their lifetime 3. 

Cancer is a collective term for many diseases where the accumulation of 
genetic and epigenetic alterations causes cells to divide and spread uncontrollably in the 
body 4-7. The specific type of cancer is named after the tissue of origin, e.g., breast cancer 
originates in the breast 5,8. Approximately 200 primary cancer types have been identified 
in the human body 8. As some cancer types can be further stratified by cell type 
(subtypes), there are possibly more than 200 different cancer types 8. The main cause of 
cancer development is environmental factors (e.g., tobacco smoking and radon), while 
only about 5% is caused by internal factors e.g., genetic predisposition 9,10. Cancer 
develops when a single cell change normal behavior to abnormal behavior due to 
accumulation of genomic alterations (e.g., DNA amplification and other mutations; 
Figure 1) and can therefore not control its own processes and begins to divide and spread 
uncontrollably in the body 7,8,11-14. These events lead to genomic instability 4,6,7,15. This 
cancer cell will give rise to a new population of cancer cells by clonal expansion  7. The 
molecular characteristics of a cancer cell are e.g., genomic instability, while the 
phenotypical characteristics are e.g., abnormal growth rate, division immortality, drug 
resistance, escaping the immune system, increased metabolism, and invasion 
capabilities 9,16-21. 
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Figure 1. Cancer development. Cancer is initiated by the accumulation of genetic and epigenetic 
alterations in a single cell. This cell divides (clonal expansion) and give rise to a population of cancer cells. 
Genomic instability causes diversity between cells in the cancer population and invasion and/or metastasis 
can occur. The figure was created in BioRender.com.

Cancer statistics

Cancer was the most common cause of mortality in 2020 2. Approximately 18.1 and 19.3 
million new cancer patients were reported worldwide in 2018 and 2020, respectively 2,22. 
This is an increase of around 1 million cases during a 2-year period 2,22. In 2020, the 
cancer forms (including both sexes) with >1 million newly diagnosed cases were cancers 
of the breast (2.3 million diagnosed; 700,000 deaths), lung (2.2 million diagnosed; 1.8 
million deaths), prostate (1.4 million diagnosed; 400,000 deaths), nonmelanoma of skin 
(1.2 million diagnosed; 64,000 deaths), colon (1.1 million diagnosed; 600,000 deaths), 
and stomach (1.1 million diagnosed; 800,000 deaths) 2,23.  Moreover, the cancer types 
with a mortality rate ≥90% were cancers of the pancreas (94%), liver (92%), and 
esophagus (90%) 2. Lung cancer is the leading cause of cancer-related death (18% of all 
cancer deaths) 2,23. In women, the most common cancers are breast-, stomach-, 
colorectal-, and esophageal cancer, while lung-, prostate-, and colorectal cancer are most 
common among men 2,24,25. 

In Sweden, approximately 68,810 individuals (36,015 [52%] men and 
32,795 [48%] women) were diagnosed with malignant tumors in 2021 26. Breast cancer 
was the most common cancer for women (8,619 individuals) and prostate cancer for 
men (10,199 individuals) 26. Compared to the three years (2017-2019) prior to the Covid-
19 pandemic, the incidence of female breast cancer cases during 2021 had increased 
with 3.7% (average [2017-2019] 160.4/100,000 citizens and 166.6/100,000 citizens in 
2021) and prostate cancer incidence had decreased with 8.9% (average 212.0/100,000 
citizens [2017-2019] and 194.6/100,000 citizens [2021]) 26. The type of cancer afflicting 
an individual and corresponding survival rates have been shown to depend on gender 27. 
Hormones can either have a stimulatory or inhibitory effect on different cancer types. 
For example, right-sided colon cancer is more common in women, while the left side is 
more common in men. Tumor sidedness in colon cancer is dependent on estrogen, which 
in turn is linked to patient survival as right-sided colon cancer is more severe 27,28. 

Cancer genetics

Despite improved cancer treatment in recent decades, treatments for some cancers 
(e.g., colorectal and pancreas) have not improved survival rates, especially in later stages 
29. Cancer types (e.g., breast- and hematological cancer) have improved their treatments 
in the recent three decades and experience increased survival rates 29,30. Furthermore, 
treatment response is linked to genomic heterogeneity, which leads to patients 
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diagnosed with the same type of disease and despite similar treatment regimens having 
different survival rates 31. In 2003, the Human Genome Project provided us with a better 
understanding of the different molecular mechanisms associated with cancer and their 
use in diagnostics, risk assessment, and prognosis 10. This knowledge also provided the 
opportunity to use personalized treatment strategies for individual cancer patients 31. 
The Cancer Genome Atlas (TCGA) is a comprehensive dataset of >30 cancer types and 
>11,000 tumor samples screened for e.g., gene expression and genetic alterations that 
has enhanced our knowledge about genetic variability between different cancer types 
and the differences between patients diagnosed with same type of cancer 31,32.

It is known that various molecular events (e.g., DNA amplifications [≥5 gene 
copies], insertions, deletions, translocations, and methylation) lead to genetic instability 
and increase the risk of cancer 4,6,12. Several types of genes controlling the phenotype of 
cells are susceptible to genetic alterations such as proto-oncogenes (ERBB2), tumor 
suppressors (TP53), as well as apoptosis and DNA repair genes (BRCA1 and BRCA2) 10. 
Genetic alterations can induce activation or inactivation of genes 14. A common genetic 
alteration in cancer is DNA amplification. Amplification of a genomic region often occurs 
where oncogenes (e.g., ERBB2) are located and can span a wide range of genes that may 
also be involved in cancer progression 12,14. Amplification events have also been 
associated with drug resistance 12. In contrast, functional DNA repair is critical for 
maintaining genomic integrity 33. Impairment of the DNA repair system increases 
genomic instability and is likely to cause the accumulation of mutations with subsequent 
cancer development and progression 4,6,15. The identification of genomic and 
transcriptomic markers is crucial for detecting genes involved in drug resistance, choice 
of treatment, prediction of side effects, prognosis, diagnosis, and novel targets for 
improved cancer treatment 31. These biomarkers can also be used in cancer prevention 
programs to detect the early development of cancer and improve survival in high-risk 
patients 29. 

Breast cancer

Breast cancer (BRCA) is an heterogenous disease characterized by several intrinsic 
molecular subtypes (luminal A, luminal B HER2-, luminal B HER2+, HER2 enriched, and 
triple-negative breast cancer [TNBC]) with varying biologic features (e.g., gene 
expression patterns) and prognosis (Figure 2) 34,35. Surrogate subtyping can be 
performed with immunohistochemistry using antibodies for three receptors (estrogen 
[ER], progesterone [PR], and human epidermal growth factor receptor 2 [HER2]) and a 
cell proliferation marker (Ki67) 36,37. In addition to other patient (e.g., age) and tumor 
characteristics (e.g., tumor size, histological grade, and metastatic spread), subtyping can 
help clinical teams to design treatment plans for each patient with BRCA. If the breast 
cancer is local, surgery with adjuvant therapy (e.g., radiation) is used. Commonly is also 
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to use systemic treatment in the adjuvant or neoadjuvant settings. Furthermore, 
endocrine therapy and HER2-targeted therapy have been used successfully for decades 
to treat BRCAs showing positivity for the hormone receptors and HER2 receptor, which 
has significantly prolonged the life of these patients 38. However, which therapy is used 
is determined whether the cancer is local or, if it is spread, and what subtype it is 39. Due 
to the lack of ER, PR, and HER2 expression, TNBCs do not respond to endocrine therapy 
or HER2-targeted therapy 40.

Figure 2. Breast cancer classification. Breast cancer can be classified into four distinct subtypes (Luminal 
A, Luminal B HER2-, Luminal B HER2+, Non-luminal HER2-positive, and triple-negative [TNBC]) according 
to receptor expression (estrogen [ER], progesterone [PR], and human epidermal growth factor receptor-2 
[HER2]). Luminal A has the best prognosis, while TNBC has the worst prognosis. TNBC can be further 
divided into four subtypes (basal-like 1 [BL1], basal-like 2 [BL2], mesenchymal-like [M], and luminal 
androgen receptor [LAR]) according to molecular analysis. The figure was created in BioRender.com.

Triple-negative breast cancer (TNBC)

About 15-20% of all diagnosed breast cancers are classified as TNBC, which is one of the 
breast cancer subtypes with the worst prognosis 41-45. Approximately 70% of basal-like 
BRCAs are classified as TNBC 46. Omics analysis is commonly used to further stratify TNBC 
into four subtypes (basal-like 1 [BL1], basal-like 2 [BL2], mesenchymal-like [M], and 
luminal androgen receptor positive [LAR]) 46. Patients with M and BL2 subtypes are more 
likely to have relapses within 3-years and probably hence the poorer survival rate 47,48. 
In 2020, 2.3 million individuals were diagnosed with breast cancer, of which 
approximately 400,000 were TNBC 2. In Sweden, 8,619 women were diagnosed with 
breast cancer in 2020, with around 1,000 TNBC diagnoses 26. Despite lacking expression 
of ER, PR, and HER2, TNBCs have previously been associated with another receptor 
(folate receptor alpha [FRα], epidermal growth factor receptor (EGFR) and androgen 
receptor (AR)) 49,50.  Recently, malignant tumors (bladder and pancreatic) have been 
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associated with elevated FRα expression, which in turn is correlated with cell growth and 
unfavorable prognosis 49-51. In primary breast cancer, ER-negativity has been correlated 
with elevated FRα expression. Astvatsaturyan et al. revealed that expression levels of 
EGFR and AR were associated with prognosis (disease-free survival; DFS) in TNBC 52. Cells 
with high levels of EGFR and low of AR were associated with more unfavorable prognosis 
52. The LAR subtype in TNBC has low EGFR and high AR, which is associated with better 
survival 52. However, this needs further evaluation 52.    

TNBC is common in premenopausal women (40 years of age or younger), 
certain ethnicities (African American and Hispanic origin) and obese women 44,46,53,54. In 
contrast, non-TNBC is more common in elderly women (>55 years of age) 39,54. 
Approximately 20% of all TNBCs harbor BRCA1 or BRCA2 mutations 46,54, which can lead 
to genomic instability, the accumulation of mutations, and tumor progression 4,6,46,54. 
The 5-year survival rates for patients with TNBC are approximately 75% 41,42,46,55,56. For 
breast cancer in general the 5-year survival rate is approximately 90% 57. Tumor size is 
significantly larger for TNBCs than non-TNBCs, often above 2 cm 55. Risk of locoregional 
recurrence is also common for TNBCs in comparison with non-TNBCs, but lymph node-
positivity is more common in HER2+ breast tumors than in TNBC 42,58. Holleczek et al. 
recently showed an increase in locoregional recurrence or distant metastasis in TNBCs 
(23%) compared to non-TNBCs (8% and 11%, respectively) 59. For patients with TNBC, 
distant recurrence frequently occurs within 3 years of diagnosis, but seldom after 8 years 
42,46,55,58. The tumors are larger and the time for recurrence risk (within 3 years) is shorter 
than non-TNBC shows that TNBC is a more aggressive breast cancer subtype 42,46,54,55,58. 
Distant metastases to the brain and lungs are mostly found 42,46.

TNBC treatment

Standard treatment for TNBC is surgery, chemotherapy (neoadjuvant and/or adjuvant 
settings), and radiation. But other therapies for TNBC can also be chosen according to 
BRCA mutations and programmed cell death ligand 1 status (PD-L1 positive or negative) 
39,60,61. If the tumor harbors BRCA1 or BRCA2 (BRCA1/2) mutations, PARP inhibitors (e.g., 
olaparib) alone or in combination with carboplatin can be administered 60. BRCA1/2 are 
involved in DNA repair. If this process is deficient, the enzyme poly(adenosine 
diphosphate ribose) polymerase (PARP) will step in and help repair the DNA damage 62. 
Inhibition of PARP will decrease the efficiency of the DNA repair system, thereby leading 
to an accumulation of unfixed DNA damage and apoptosis 62. By adding platinum agents 
(e.g., carboplatin) to PARP treatment, DNA damage will increase, and the cell will 
undergo apoptosis 39,62,63. Moreover, if the tumor is positive for PD-L1 marker, 
immunotherapy alone or in addition with a taxane (e.g., docetaxel) can be administered 
39,60,62,63. However, if the status for BRCA1/2 mutations and PD-L1 is unknown, 
chemotherapy is commonly recommended 60. Stage II and III disease are commonly 
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treated with chemotherapy using taxanes (e.g., docetaxel), platinum agents (e.g., 
carboplatin), or anthracyclines (e.g., epirubicin) 60,64,65. 

The proteasome

The 26S proteasome (PSM; 2,500 kDa) is an evolutionarily conserved protein complex 
with protease degradation properties that is responsible for regulating multiple 
fundamental processes (cell cycle checkpoints, apoptosis, and metabolism) and recycling 
of amino acids for the production of new proteins, controlling protein quality, and 
protein homeostasis in the cell 66-68. In the human body, there are five different PSMs 
(constitutive proteasome, immunoproteasome, spermatoproteasome, 
thymoproteasome, and intermediate proteasome) found in different cell types with 
varying functions 69-73. Only the constitutive proteasome is present in all cell types 69,73,74. 
The PSM complex is divided into one 20S core subunit (700 kDa) with catalytic activity 
and one or two 19S regulatory particles (RP; 900 kDa). The RP consists of two subunits 
(base and lid) 67,75-80 that regulate which proteins enter the core particle for degradation 
67. The PSM is part of the ubiquitin-proteasome system (UPS) 67. Other important 
components involved in the UPS include ubiquitin-activating enzymes (E1), ubiquitin-
conjugating enzymes (E2), and ubiquitin ligases (E3) which are involved in initiating and 
tagging proteins targeted for degradation with ubiquitin molecules 67,75. Ubiquitin-
tagged proteins are degraded to small peptide fragments of <25 amino acids (Figure 3) 
73,75,79.
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Figure 3. Ubiquitin-proteasome system (UPS) workflow. The protein degradation process starts when a 
protein is tagged with ubiquitin (Ub) molecules for degradation. Three enzymes (E1, E2, and E3) help to 
attach Ub to proteins, an ATP-driven process (when pyrophosphate (PPi) is separated from ATP the energy 
is used to attach UB to protein). When the protein is polyubiquitinated, it will be transported to the 
proteasome for degradation. The Ub molecules will be detached and recycled, while the protein will be 
cut into fragments less than 25 amino acids in length. The figure was created in BioRender.com.

Proteins chosen for degradation are ubiquitinated with at least four ubiquitin molecules 
which will activate transport to the PSM for degradation 66-68,75,77,79,81. The destiny of 
ubiquitinated proteins can change, with the detachment of ubiquitin by deubiquitylating 
enzymes (DUBs) 67,68,75,82. These DUBs are also involved in the recycling of ubiquitinated 
proteins 67,82. About 80% of amino acids that make up new proteins in the human body 
are from recycled proteins 78. The UPS system is important for degradation of these 
proteins (e.g., misfolded and temporary proteins) in the cell, accounting for about 80% 
of all degraded proteins and the rest are broken down with other systems such as 
proteases 75,78,83-85. 

The PSM consists of six catalytic sites, with two of each type (chymotrypsin-
like [β5], caspase-like [β1], and trypsin-like [β2]) in the core particle. β5 is the most 
important catalytic site, which is responsible for degradation of 11-50% of total protein 
degradation in comparison with the β1 and β2 sites that are responsible for 12-22% and 
3-35% of degraded proteins, respectively 86. A previous study demonstrated no or only 
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very slight changes to the cellular phenotype and growth following disruption of the β1 
and β2 processes, but disruption of β5 caused phenotypical defects, reduced cell growth, 
and accumulation of proteins in the cell 86-90. Although inhibition of the β1 and β2 sites 
has little to no effect on the phenotype, they may play an important role in the cell 88. 

In total, 49 PSM genes are involved in the PSM complex but not all are 
involved in same type of PSM 67. There are five different classes of PSM genes, α- and 
two β in the 20S core particle (class I), 26S subunit with ATPases and non-ATPases (class 
II), activators (class III), inhibitor (class IV), and assembly chaperones (class V) involved 
in PSM assembly and function 72. The 20S core subunit consists of four rings (two α- and 
two β-rings) 73,78,91. The α-rings are encoded by PSMA1-8 and β-rings by PSMB1-11. The 
six PSM catalytic sites are located (β1, β2, and β5) in the β-rings 73, with different catalytic 
sites depending on the type of PSM. The RP base contains six ATPases (Rpt1-6; PSMC1-
6) that form a ring attached to the core particle 80. The chaperones PSMG1-4 are 
responsible for attaching the regulatory particle (RP) to the core particle. Individual 
chaperones are responsible for specific parts of the RP for accurate assembling and 
attachment to the core particle 80,92. 

A non-functional protein degradation process performed by the PSM will 
induce e.g., neurodegenerative- or cardiovascular disease (e.g., Alzheimer’s disease) 
because of the accumulation and aggregation of damaged proteins 93,94. A recent study 
using a neuronal model of Huntington’s disease showed that an increase in the 
expression of PSM activators (PA28) will lead to an increase in cell survival 95,96. Elevated 
PSMC1-6 expression has previously been associated with poor prognosis in breast cancer 
97. Other PSM genes have been associated with increased risk of colorectal cancer and 
autoimmune diseases (e.g., PSMB8-9) when mutated 71,91. Mutations in genes in the 
catalytic site of the constitutive proteasome (PSMB5, PSMB6, and PSMB7) are 
uncommonly observed, which are most likely deleterious events for the cell 71. A non-
functional PSM is correlated with the accumulation of damaged proteins, which leads to 
cell death 88,93,94,98. PSM inhibitors exploit this advantage in cancer treatment to disrupt 
the degradation process by inducing protein accumulation in the cell followed by 
apoptosis (Figure 4) 88,93,94,98.  

Proteasome inhibitors

An impaired PSM protein degradation process leads to instability of protein homeostasis 
and amino acid starvation, resulting in disease development or apoptosis 94. Disruption 
of PSM activity has emerged as a target for inducing apoptosis 94,98. Bortezomib (BTZ; 
Velcade®) was the first PSM inhibitor to be developed and approved (U.S. Food and Drug 
Administration [FDA] and European Medicines agency [EMA]) for medical use 94 in the 
treatment of multiple myeloma (MM). It has since been approved for use in the 
treatment of mantel cell lymphoma (MCL) 94. Both cancers are hematological 
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malignancies 94. As single agents, proteasome inhibitors have not been fully successful 
in clinical studies. Twelve metastatic breast cancer patients were treated with 
bortezomib as single agent and no response was observed 99. But Petrocca et al, showed 
that basal-like TNBC cell lines were sensitive for proteasome inhibition 100. Interestingly, 
bortezomib in combination with docetaxel or carboplatin, phase 1 studies in lung cancer 
and ovarian cancer have shown increased antitumoral activity with a response rate of 
47% 101-103. It has also been shown that proteasome inhibitors have higher antitumoral 
activity when IKK/NF-kB is dysregulated as in ER-negative breast cancer 104,105. The 
primary target of most PSM inhibitors is to disrupt the activity of the chymotrypsin-like 
catalytic site (PSMB5, [β5]) in the core particle 94,98. BTZ resistance has been observed 
when treating some patients with MM and MCL, likely due to e.g., mutations in the 
PSMB5 gene 106. To overcome resistance, second-generation PSM inhibitors have been 
developed (e.g., carfilzomib, delanzomib, epoxomicin, and MLN-2238) 85,106. Carfilzomib 
is now also approved for the treatment of MM 107. Increased PSM activity has been 
observed in cancer, which makes these cells more vulnerable to PSM inhibition (Figure 
4) 108,109. This shows that proteasome inhibitors in single or combination therapy can 
improve survival of cancer patients. More studies need to be conducted to reveal potent 
combinations and cancer patients that will benefit from that treatment.  
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Figure 4. Proteasome inhibition. The proteasome is responsible for the degradation of 80-90% of proteins, 
thereby controlling protein homeostasis. When this process is disrupted by e.g., proteasome inhibitors, 
there will be an accumulation of proteins in the cell and the cell will undergo programmed cell death 
(apoptosis). The figure was created in BioRender.com.

Drug repurposing

Drug repurposing is a drug discovery approach where existing FDA/EMA-approved drugs 
are used to treat a different disease for which it was originally intended 110. Traditional 
drug development is a high-risk and expensive process that may not pass clinical trials 
111. Few drugs tested in clinical trials are eventually FDA/EMA-approved, while costing 
around $1-3 billion (repurposing a tenth of that cost) and taking up to 15 years from 
target identification to drug approval (5-7 years longer than drug repurposing) 110,112-114.  
Between 2000 and 2015, success rates for newly developed oncology drugs were as low 
as 3.4% 115. The success rates for a drug improves if patients have been selected 
according to biomarkers 115. 

Several drug repurposing approaches have been used in research and 
clinical trials, e.g., transcriptome-based (drug-disease similarity or drug-drug similarity) 
and molecular docking (computational chemistry) 112. By using drug-induced 
transcriptomic profiles (before and after treatment) to identify novel, potent alternative 
drugs with the same or similar mechanism-of-action to the query drug, treatment 
resistance and/or side effects could be prevented 116. To identify novel drugs for a 
disease, drug signatures and disease signatures can be matched 117. Experimental drug 
repurposing studies frequently use large drug libraries and cells in high-throughput 
screens (HTS) 110,114. In recent years, drug repurposing has been used to improve 
treatment for a number of diseases e.g., Ebola virus disease, Alzheimer’s disease, COVID-
19, breast cancer (e.g., tamoxifen), and colorectal cancer (e.g., aspirin) 110,111,118-120. The 
advantage of repurposing existing FDA/EMA-approved drugs is they have already passed 
safety measures and if drug dose and treatment strategy is nor changed, they can 
therefore be tested in simple clinical trials 110,121. 
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MATERIALS AND METHODS

Data sources

Study I

In this study, we used transcriptomic and genomic data for the 49 PSM genes and 11,000 
TCGA patient tumor samples derived from 33 cancer types representing 11 organ 
systems (e.g., gynecologic and thoracic) and normal samples (16 cancer types 
representing eight organ system). PSM genetic alterations (e.g., DNA amplification and 
missense mutation) were downloaded from cBioPortal (https://www.cbioportal.org/), 
which contained data for 10,967 tumor samples (10,953 patients) representing 30 
cancer types and 10 organ systems (e.g., gastrointestinal and head and neck). GISTIC2 
copy number and RNA sequencing data for the PSM genes were downloaded from Broad 
GDAC Firehose (https://gdac.broadinstitute.org/). Focal and/or arm level DNA 
amplification of the PSM genes and the resulting impact of these events on gene 
expression was evaluated using UNC RNASeqV2 level 3 expression (normalized RSEM; 
mRNA; Figure 5). Using previously published lists of cancer drivers, we correlated DNA 
amplification, genomic location, and their effect on PSM gene expression 122,123. We 
performed multivariable Cox regression analysis using clinical data from UCSC Xena 
browser (https://xena.ucsc.edu/) and Genomic Data Commons (GDC; 
https://portal.gdc.cancer.gov/). Using FPKM log2 (RNA-seq) gene expression data and 
median expression as a reference, high or low expression was determined. External 
validation was performed using in-house genomic profiling data (SNP genotyping and 
RNA-seq) for 229 breast cancers and mutation data for 23/229 samples 124,125. Survival 
was interpreted using overall survival (OS, time from diagnosis to death of any cause) 
and progression-free interval (PFI, life span during and after treatment without 
worsening disease). The multivariable analysis was adjusted using age and/or tumor 
grade, when available. The correlation between PSM gene expression and OS was 
accessed with RNA microarray data for breast-, gastric-, lung-, and ovarian cancer and 
RNA-seq data for liver cancer using the interactive Kaplan-Meier plotter site (KM plotter; 
https://kmplot.com/analysis/).
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Figure 5. The workflow for the evaluation of genetic changes, gene expression of PSM genes, and patient 
survival. Genetic alteration (e.g., amplification) frequency of PSM genes was determined in all 33 cancer 
types and the amplification on the broad or focal levels was investigated. Using data from Broad institute, 
differences in gene expression of PSM genes between cancer and normal tissue and also if there was a 
positive or negative correlation between PSM genes were evaluated. Multivariable Cox regression analysis 
was used to determine if PSM gene expression levels were correlated with patient survival. External 
validation of the findings in genetic alteration and prognosis analyses was performed using an in-house 
breast cancer dataset and KM plotter.  

Study II

We retrieved drug sensitivity data for cell lines treated with BTZ from two publicly 
available datasets (https://www.cancerrxgene.org/), i.e., Sanger (GDSC1; 791 cell lines) 
and Massachusetts General Hospital (GDSC2; 756 cell lines) that were merged and 
narrowed down to 860 cell lines after removing duplicates from the GDSC2 dataset. The 
860 cell lines represented 30 cancer types and were derived from 13 organ systems. 
Sensitivity data for the half maximal inhibitory concentration (IC50) and area under the 
curve (AUC) were stratified into two BTZ-sensitivity groups (insensitive and sensitive) 
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using thresholds for BTZ-sensitivity (natural logarithm IC50 [LNIC50] < -6 and AUC < 0.6) 
and BTZ-insensitivity (LNIC50 > -3 and AUC > 0.9). Sanger COSMIC Cell Lines Project (970 
cell lines [mutation data] and 1,007 cell lines [gene expression data]) and Cell Model 
Passport (1,318 cell lines) supplied data for mutations, gene expression, and mutated 
cancer drivers for the BTZ-sensitive and insensitive groups. Mutation data for the NCI-
H2595 and SK-MEL-1 cell lines were missing, while cancer driver data were missing for 
the EHEB and QIMP-WIL cell lines. Gene expression levels were determined using Z-score 
values, where a score <2 corresponded to underexpression and >2 was overexpression. 
Five cell lines (A-172 [glioblastoma], A-375 [melanoma], and three breast cancer cell 
lines [MCF-7, BT-474, and ZR-75-30]) were used to validate BTZ sensitivity in the GDSC1 
and GDSC2 datasets, BTZ-induced gene expression, and mechanism-of-action. Over- or 
underexpressed genes in >1/5 of cell lines in either group were taken into account 
(Figure 6). Cell culture information is listed in Table 1.

Figure 6. Genomic and transcriptomic events confer resistance to bortezomib (BTZ). Two comprehensive 
datasets (GDSC1 and GDSC2) were used to evaluate BTZ sensitivity in different cancer types. The mutation 
frequency of cancer drivers was investigated using datasets from Sanger Cell Model Passport. Further 
analysis on the influence of mutations and gene expression on sensitivity were evaluated using the Sanger 
COSMIC dataset. The findings for BTZ-sensitivity and induced gene expression were validated using in vitro 
studies of the A-172, A-375, MCF-7, BT-474, and ZR-75-30 cell lines.
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Study III

The reproducibility and replicability of cell viability screens was evaluated using three 
breast cancer cell lines (HCC38, MCF-7, and MDA-MB-436) and one control breast 
fibrocystic disease cell line (MCF-10A) treated with bortezomib, carboplatin, cisplatin, 
and DMSO (Figure 7). The following parameters of the drug screens were evaluated:

(1) seeding density (5.0 x 103, 7.5 x 103, and 1.0 x 104 cells per 96-well),
(2) drug solvent (DMSO concentrations 0.33-30%),
(3) medium type (growth medium + 0-15% FBS or HuMEC serum-free medium),
(4) medium volume (100-240 µL),
(5) medium/drug renewal every 24h (only for 48h and 72h treatment), 
(6) antibiotics (penicillin/streptomycin [with or without]), 
(7) solvent controls (concentration matched or single), 
(8) resorufin detection (absorbance or fluorescence), 
(9) resazurin exposure time (1-6h), 
(10) resazurin concentration (5-20%), 
(11) compound cross reaction (no cells). 

We also evaluated the impact of evaporation on the drug- and cell plates. Our results 
from the optimized cell viability assay were validated using drug sensitivity data for 
bortezomib and cisplatin from the PharmacoDB database (https://pharmacodb.ca/) 126 
and Hafner et al 127. Cell culture information is listed in Table 1.
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Figure 7. Optimization of the cell viability assay. First, a biological model (e.g., cell line and drugs) was 
chosen that could be validated after optimization. The assay setup was determined according to previously 
published performance. Confounding factors were identified and evaluated according to their influence 
on viability using statistical analysis and quality control metrics (QCM) to validate the assay performance 
after optimization. The optimized setup was run three times to verify replicability and reproducibility 
before comparing the results to previously published data.  

Study IV

To identify novel PSM inhibitors, we used gene signature data, structure-based virtual 
screening, and PSM activity perturbation analysis. In the gene signature analysis, we 
used three known PSM inhibitors (BTZ, MG-132, and MLN-2238) as query in Broad 
Institute Connectivity Map (CMap; https://clue.io/about and Library of Integrated 
Network-based Cellular Signatures (iLINCS; http://www.ilincs.org/ilincs/), which are 
platforms with comprehensive gene expression profiling data for cell lines before and 
after treatment with clinically relevant drugs and other perturbagens (Figure 8) 128-130. 
Using bortezomib as query, iLINCS data were retrieved for 60 cell lines representing 
cancers of the breast, central nervous system, colon, large intestine, large intestine 
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epithelial, leukemia, lung, melanoma, ovarian, prostate, and renal. A threshold was set 
to identify the top 100 differentially expressed genes per perturbation, giving an output 
of 5,448 genes. From these genes, the top 250 genes were selected. CMap uses the 
L1000 technology where expression for 978 landmark genes is used to predict the 
expression of 11,350 genes in nine cell lines (A-375, A549, HA1E, HCC515, HEPG2, HT29, 
MCF-7, PC3, and VCAP). The MG-132 and MLN-2238 PSM inhibitors were used as query 
(BTZ was missing in the CMap dataset). The 250 differentially expressed genes were 
identified by transcriptTool R package (version 0.0.0.9000) 131. Hierarchical clustering of 
the expression patterns for the identified genes was performed using pheatmap R 
package (version 1.0.12) using the Manhattan distance metric and Ward’s minimum 
variance method (Ward.D2) to identify concordant genes for further Gene Ontology 
analysis using Reactome  (https://reactome.org/) 132.

To identify perturbagens with similar transcriptomic profiles as known PSM 
inhibitors, CMap was used with BTZ, MG-132, and MLN-2238 as input compounds. 
Further analysis was performed on perturbagens with tau-score ≥ 95, indicating strong 
similarity (similar drug-induced gene expression patterns). The identified novel PSM 
inhibitors were analyzed using L1000 fireworks plot with The L1000 fireworks display 
(L1000FWD; https://maayanlab.cloud/l1000fwd/#) 116, followed by analysis of docking 
score (binding affinity) to the PSM β5 catalytic site. Novel PSM inhibitors with (1) similar 
transcriptome profiles to known PSM inhibitors and (2) high binding affinity were further 
evaluated to test drug potency (cell viability assay) and inhibition of PSM activity for the 
three catalytic sites (β5, β1, and β2). Differential expression of DNAJB1 and HMOX1 
(geometric mean of the HPRT1, PPIA, and PUM1 endogenous controls) was validated 
using MCF-7 cells treated with 10 µM BTZ for 1, 6, and 24h with quantitative real-time 
PCR and the ΔΔCt method.
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Figure 8. Drug repurposing. Known proteasome inhibitors (BTZ, MG-132, and MLN-2238) were used as 
query to identify genes that were differentially expressed in connection with drug treatment. Validation 
of differentially expressed genes were done using BTZ and the MCF-7 cell line. Drugs with similar gene 
signatures were identified and further evaluated according to their binding affinity to the β5 catalytic site. 
The compounds with the highest affinity to the β5 catalytic site were evaluated for drug potency and their 
ability to inhibit the β5 catalytic site in MCF-7 cells.

Study V

A drug sensitivity screen was performed for eight TNBC cell lines, representing the four 
TNBC subtypes (BT-549, CAL-148, HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-
453, MDA-MB-468) and three control cell lines (BT-474, MCF-10A, and MCF-7) treated 
with 11 PSM inhibitors and 7 clinically relevant drugs (2 mitosis inhibitors, 2 
topoisomerase inhibitors, and 3 platinum agents; Figure 9 and Table 2). The cell lines 
were treated with the 18 drugs as monotherapy, while combination treatment was 
performed for 13 drug combinations predicted by IDACombo (version 1.0.2) using the 
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Figure 8. Drug repurposing. Known proteasome inhibitors (BTZ, MG-132, and MLN-2238) were used as 
query to identify genes that were differentially expressed in connection with drug treatment. Validation 
of differentially expressed genes were done using BTZ and the MCF-7 cell line. Drugs with similar gene 
signatures were identified and further evaluated according to their binding affinity to the β5 catalytic site. 
The compounds with the highest affinity to the β5 catalytic site were evaluated for drug potency and their 
ability to inhibit the β5 catalytic site in MCF-7 cells.
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TNBC subtypes (BT-549, CAL-148, HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-
453, MDA-MB-468) and three control cell lines (BT-474, MCF-10A, and MCF-7) treated 
with 11 PSM inhibitors and 7 clinically relevant drugs (2 mitosis inhibitors, 2 
topoisomerase inhibitors, and 3 platinum agents; Figure 9 and Table 2). The cell lines 
were treated with the 18 drugs as monotherapy, while combination treatment was 
performed for 13 drug combinations predicted by IDACombo (version 1.0.2) using the 
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monotherapy data 133,134. SynergyFinder (version 3.2.10) 135 was used to determine the 
sensitivity and synergistic effect of 13 drug combinations in treatment of four TNBC cell 
lines (CAL-148, HCC1806, HCC38, and MDA-MB-468) and one control cell line (MCF-7). 
Western blot (immunoblot) was used to assess androgen receptor (AR) expression for 
the eight TNBC cell lines and one control cell line (BT-474). Analysis of PSM activity was 
performed using the MCF-7 cell line treated with the 11 PSM inhibitors to evaluate their 
ability to inhibit the β5 catalytic site. Cell culture information is listed in Table 1. 
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Figure 9. Drug sensitivity analysis in TNBC cell lines. The eight TNBC cell lines were evaluated for expression 
of androgen receptor (AR). We used 10 cell lines and determined their sensitivity to 18 drugs (11 
proteasome inhibitors, 3 platinum agents, 2 mitosis inhibitors, and 2 topoisomerase inhibitors) in 
monotherapy. The monotherapy results were used to predict possible 2-drug combinations with 
IDACombo. In addition to cell viability, the synergistic effect of the 13 selected 2-drug combinations on 
four TNBC cell lines and one control cell line was determined using SynergyFinder.

Table 1. Cell lines and culture conditions
Cell-line Cancer type Subtypea Medium Supplierb Study
A-172 Glioblastoma DMEM + 10% FBS, suppl. 

with 2 mM L-glutamine 
and 1% sodium pyruvate

MJ II

A-375 Melanoma DMEM + 10% FBS JN II, IV
BT-474 Breast cancer ER+, PR+, HER2+ DMEM + 10% FBS ATCC II, V
BT-549 Breast cancer TNBC*** RPMI + 10% FBS ATCC V
CAL-148 Breast cancer TNBC**** DMEM + 10% FBS DSMZ V
HCC1806 Breast cancer TNBC** RPMI + 10% FBS ATCC V
HCC38 Breast cancer TNBC*** RPMI + 10% FBS ATCC III, V
HCC70 Breast cancer TNBC* RPMI + 10% FBS ATCC V
MCF-10A Breast cancer Breast fibrocystic 

disease
RPMI + 10% FBS suppl. 
with Hydrocortisone (0,5 
mg/mL), EGF (20ng/mL), 
Cholera toxin (100 
ng/ml), insulin (10µg/mL)

ATCC III, V

MCF-7 Breast cancer ER+, PR-, HER2- DMEM + 10% FBS JG II, III, 
IV, V

MDA-MB-436 Breast cancer TNBC** DMEM + 10% FBS ATCC III, V
MDA-MB-453 Breast cancer TNBC**** DMEM + 10% FBS ATCC V
MDA-MB-468 Breast cancer TNBC* RPMI + 10% FCS + 1% 

sodium pyruvate + 1% L-
glutatmine + 1% penstrep

GL V

ZR-75-30 Breast cancer ER+, PR-, HER2+ RPMI + 10% FBS ATCC II
a TNBC = triple-negative breast cancer (ER-, PR-, HER2-) * = BL1 subtype, ** = BL2 subtype, *** = M subtype 
, **** = LAR subtype, bATCC = American Type Culture Collection, DSMZ = Deutsche Sammlung von 
Mikroorganismen und Zellkulturen, MJ = Group, Martin Johansson, University of Gothenburg, JN = Group, 
Jonas Nilsson, University of Gothenburg, JG = Julie Grantham, University of Gothenburg, GL = Group, 
Göran Landberg, University of Gothenburg. 
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Table 2. Pharmaceutical drugs, solvents, and working concentrations
Drug Solvent Working concentration Supplier Study
Proteasome inhibitors
Bortezomib DMSO 1-10000 nM Selleckchem II, III, 

IV, V
Carfilzomib DMSO 1-10000 nM Selleckchem IV, V
Celastrol DMSO 1-10000 nM Selleckchem IV, V
Delanzomib DMSO 1-10000 nM Selleckchem IV, V
Epoxomicin DMSO 1-10000 nM Selleckchem IV, V
MG-132 DMSO 1-10000 nM Selleckchem IV, V
MLN-2238 DMSO 1-10000 nM Selleckchem IV, V
MLN-9708 DMSO 1-10000 nM Selleckchem IV, V
Oprozomib DMSO 1-10000 nM Selleckchem IV, V
PI-1840 DMSO 1-10000 nM Selleckchem IV, V
VR-23 DMSO 1-10000 nM Selleckchem IV, V
Mitosis inhibitors
Docetaxel DMSO 1-10000 nM Selleckchem V
Paclitaxel DMSO 1-10000 nM Selleckchem V
Topoisomerase inhibitors
Doxorubicin DMSO 1-10000 nM Selleckchem V
Epirubicin DMSO 1-10000 nM Selleckchem V
Platinum agents
Carboplatin Milli-Q water 2-1024 µM Selleckchem III, V
Cisplatin 0.9% NaCl 3-768 µM Selleckchem III, V
Nedaplatin Milli-Q water 2-1024 µM Selleckchem V
Putative proteasome inhibitors
kinetin riboside DMSO 1-10000 nM Sigma-Aldrich IV
Manumycin-A DMSO 1-10000 nM Sigma-Aldrich IV
Puromycin 
dihydrochloride

Milli-Q water 1-10000 nM Sigma-Aldrich IV

Tegaserod maleate DMSO 1-10000 nM Sigma-Aldrich IV
Thapsigarin DMSO 1-10000 nM Sigma-Aldrich IV
Resistomycin DMSO 1-10000 nM Cayman Chemicals IV

DMSO = Dimethylsulfoxide
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Data analysis

Resazurin-based cell viability assay

The resazurin-based cell viability assay was used to validate the chemosensitivity of cell 
lines treated with bortezomib in the GDSC1 and GDSC2 datasets (Study II). In Study III, 
the assay was used to determine cell viability at different culturing conditions and 
identify optimal settings that improve the replicability and reproducibility of the drug 
screen. In Study IV, it was used to identify cell lines showing sensitivity to putative PSM 
inhibitors in comparison with known PSM inhibitors. In Study V, the sensitivity of cell 
lines to 18 compounds was determined for both monotherapy and 13 selected 2-drug 
combinations in TNBC cell lines. 

Method

The resazurin-based cell viability assay is a powerful tool with many applications e.g., 
cell proliferation, compound cytotoxicity screening, and optimal seeding density. The 
workflow for compound cytotoxicity screening includes: First, the cells were plated on a 
96-well plate (cell plate) at an appropriate seeding density per well (4 – 7.5 × 103 
cells/well), secondly, after 24h incubation the cells were treated at increasing 
concentrations of the drug and corresponding controls that were prepared on a 96-well 
PCR plate before treatment (drug plate) and third, after 24h treatment, resazurin was 
added to the cells and viability (resorufin absorbance) was measured with a Wallac 1420 
VICTOR2TM plate reader (Perkin Elmer; 560 nm excitation filter and a 615 nm emission 
filter) after 4h incubation.   

Flow cytometry (Annexin V and cell cycle analysis)

Flow cytometry was used to evaluate BTZ-induced cell cycle arrest in cell lines. In Study 
II, the A-172, A-375, BT-474, and ZR-75-30 cell lines were evaluated, while the HCC38 cell 
line was evaluated in Study III. In Study II, BTZ-induced apoptosis (Annexin V) was 
analyzed in the A-172, A-375, BT-474, and ZR-75-30 cell lines. 

Method

In the cell cycle and apoptosis analyses (Annexin V), the cells were first incubated at 37°C 
in a humidified 5% CO2 for 24h. Second, the cells were harvested after treatment for 24h 
or 72h. In the cell cycle analysis, the cells were fixed with 70% ethanol and then stained 
with propidium iodide (DNA staining). The wavelength of 510 nM with the green laser 
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was used. The samples were run in a LSRFortessa™ flow cytometer (BD Biosciences, 
Franklin Lakes, New Jersey, USA). In the apoptosis analysis (Annexin V), the cells were 
suspended in Annexin V Binding Buffer followed by Annexin V-FITC Conjugate. DNA was 
stained with propidium iodide and diluted with more Annexin-V Binding Buffer. The cells 
were run in the BD Accuri™ C6 flow cytometer (BD Biosciences, Franklin Lakes, New 
Jersey, USA) with the FL1 (Annexin V-FITC) and FL3 channels (propidium iodide). The 
results were analyzed and visualized using FlowJo™ software v10.8.1 (BD Life Sciences).  

Proteasome activity assay

The PSM activity assay was used in Study II and III where PSM activity of the β5 catalytic 
site was evaluated in cell lines (Study II [A-172, A-375, BT-474, and ZR-75-30] and Study 
III [HCC38, MCF-10A, MCF-7, and MDA-MB-436]) treated with BTZ. This assay was also 
used in Study IV and V with MCF-7 cells to validate the catalytic activity (β1, β2, and/or 
β5) of the identified putative PSM inhibitors (manumycin-A, kinetin riboside, puromycin 
dihydrochloride, resistomycin, thapsigargin or tegaserod maleate) and known PSM 
inhibitors (bortezomib, carfilzomib, celastrol, delanzomib, epoxomicin, MG-132, MLN-
2238, MLN-9708, oprozomib, PI-1840, and VR-23).

Method

The cells were seeded in white (luminescence) or black (fluorescence) flat-bottom 96-
well plates (ThermoFisher Scientific) at 7.5 × 103 cells per well. The cells were incubated 
for 24h and then the cells were treated with drugs for 2 - 6h and corresponding controls 
before PSM activity markers (Promega kit [Proteasome-Glo-Chymotrypsin-Like Cell-
Based Assay]) or (Z-Leu-Leu-Glu-AMC [caspase-like; Enzo, Cat. BML-ZW9345], Ac-Arg-
Leu-Arg-AMC [trypsin-like; Enzo, Cat. BML-AW9785] or Suc-Leu-Leu-Val-Tyr-AMC 
[chymotrypsin-like; Enzo, Cat. BML-P802]) were added to the cells for 30 min or 2h, and 
the activity was determined by measuring the fluorescence or luminescence intensity 
with a Wallac 1420 VICTOR2™ microplate reader plate reader (Perkin Elmer), which 
correlated to activity.   
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Immunoblot

Immunoblot (also called Western blot) technique was used in Study V to determine the 
protein levels of androgen receptor (AR) across eight TNBC cell lines (BT-549, CAL-148, 
HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-453, and MDA-MB-468); two cell 
lines from each TNBC subtype (BL1, BL2, M, and LAR). The BT-474 cell line was used as 
control and beta-actin was used as a loading control. In Study IV, we studied the 
accumulation of poly-ubiquitinated proteins in MCF-7 cells caused by treatment with six 
putative proteasome inhibitors with a working concentration of 10,000 nM. 

Method

Firstly, Benzonase® Nuclease, protease inhibitor, and phosphatase inhibitor were added 
to the Qproteome Mammalian Lysis Buffer (Qiagen, Hilden, Germany), followed by cell 
lysis and protein isolation. Second, Bradford Protein Assay Dye Reagent Concentrate 
(BioRad, Hercules, CA, USA) was used to determine the protein concentration with a 
Wallac 1420 VICTOR2TM plate reader (Perkin Elmer) set at 595 nm. Third, 50 µg of protein 
was loaded in each well on a NuPAGE 4-12% Bis-Tris gel (ThermoFisher Scientific) and 
two ladders (Novex® Sharp Pre-stained Protein Standard [3.5 – 260 kDa] and the 
MagicMark™ XP Western Protein Standard [20–220 kDa]; ThermoFisher Scientific). The 
proteins were separated by molecular weight with gel electrophoresis and then 
transferred to a nitrocellulose membrane. Unspecific sites on the membrane were 
blocked with non-fat dry milk overnight in the refrigerator and then the protein of 
interest was probed with the primary antibody and then the secondary antibody (Table 
3). SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher) was used 
as detection reagent. Images were taken with the Fujifilm LAS-1000 Luminescent Image 
Analyzer and the protein band concentration on the membrane was quantified using 
ImageJ version 1.53t software.
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Table 3. Primary and secondary antibodies for immunoblot
Antibody Dilution Host Cat. nr Supplier Note Study
Primary antibody
Anti-androgen 
receptor (AR)

1:250 Rabbit ab133273 Abcam V

Anti-ubiquitin 1:200 Mouse VU-0101 LifeSensors IV
Anti-beta-actin 1:2000 Mouse ab6276 Abcam LC IV, V
Secondary antibody
Anti-mouse HRP-
linked

1:2000 Sheep NA931V Amersham IV, V

Anti-rabbit HRP-
linked

1:2000 Donkey NA934V Amersham V

LC = loading control

Gene expression analysis (qPCR)

In Study II and Study IV, gene expression analysis was performed using quantitative real-
time PCR to evaluate the genes induced by BTZ treatment in different cell lines (Study II 
[BT-474, MCF-7, and ZR-75-30] and Study IV [MCF-7]). 

Method

Both untreated (DMSO) and treated (1, 6, and 24h with 10 µM BTZ) cells were used. RNA 
was extracted from cells using the RNeasy Lipid Tissue Mini Kit (Qiagen). RNA integrity 
and concentration were evaluated with TapeStation (Agilent) and Qubit (ThermoFisher 
Scientific), respectively. Superscript III First-Strand Synthesis for qRT-PCR kit 
(ThermoFisher Scientific) was used to construct cDNA and TaqMan Gene Expression 
Assays were used to assess gene expression for genes of interest and three endogenous 
controls (Table 4).

Table 4. Primers for qPCR

EC = Endogenous controls (geometric mean was used)

Gene Assay ID Supplier Note Study

SHARPIN HS00229642_m1 ThermoFisher Scientific II
VPS28 HS01598026_m1 ThermoFisher Scientific II
HPRT1 HS02800695_m1 ThermoFisher Scientific EC II, IV
PPIA HS99999904_m1 ThermoFisher Scientific EC II, IV
PUM1 HS00472881_m1 ThermoFisher Scientific EC II, IV
HMOX1 HS01110250_m1 ThermoFisher Scientific IV
DNAJB1 HS00428680_M1 ThermoFisher Scientific IV
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Computational analysis

Statistical analyzes were performed using Bioconductor in R (versions; 3.6.1 [Study I], 
4.0.3 [Study II and Study III] and 3.14.0 [Study V]) and Microsoft Excel 2016/2019 (Study 
II). A p-value < 0.05 was statistically significant.
Manhattan Distance Metric (MDM) and Ward's Minimum Variance Method (Ward.D2) 
were used together with the pheatmap package (version 1.0.12) 136 to compare and 
visualize PSM gene expression between normal and cancer tissues (Study I; Log2 relative 
RNA-seq) and gene expression (Study II; Z-Score).

Study I

Wilcoxon test and Benjamin-Hochberg adjusted p-value (ns = not significant (P > 0.05); 
*P < 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001) was used to determine the 
amplification effect on expression and individual PSM gene expression between cancer 
and normal samples and were visualized using boxplots (ggpubr [version 0.2.4.999] 137 
and rstatix [version 0.4.0.999]) 138. Co-expression of PSM genes were determined using 
pairwise Pearson's correlation coefficient (r) (0 < r < 0.4 (weak); 0.4 < r < 0.7 (moderate); 
r > 0.7 (strong)), clustered using Ward.D2, and it was visualized with R package corrplot 
(version 0.84) 139. Multivariable Cox regression analysis (age and tumor grade) was used 
to determine overall survival (OS) and progression-free interval (PFI) of individual PSM 
genes and their expression pattern.
 
Study II

Two sensitivity groups (insensitive and sensitive) were stratified by AUC and IC50 
(LNIC50) values for bortezomib. MDM and Ward.D2 along with pheatmap package 
(version 1.0.12) 136 were used to visualize gene expression (Z-score) in cell lines. The 
Limma R package (version 3.50.0) 140 was used to assess the differentially expressed 
genes between sensitivity groups. R-package ggstatsplot (version 0.9.1) and 
ggbetweenstats141 were used to evaluate and visualize the mutation frequency between 
the sensitive groups. Stratification of the 50 most mutated genes across in each sensitive 
groups were visualized using maftools (version 2.10.0) and GenVisR142,143. Cell cycle 
distribution and apoptosis were assessed after treatment with bortezomib 
(concentration range 1-100nM) using FlowJo™ software v10.8.1. Statistically significant 
differences between concentrations were assessed using one-way ANOVA and dplyr in 
R-package (version 1.0.8) 144.   



36

Table 3. Primary and secondary antibodies for immunoblot
Antibody Dilution Host Cat. nr Supplier Note Study
Primary antibody
Anti-androgen 
receptor (AR)

1:250 Rabbit ab133273 Abcam V

Anti-ubiquitin 1:200 Mouse VU-0101 LifeSensors IV
Anti-beta-actin 1:2000 Mouse ab6276 Abcam LC IV, V
Secondary antibody
Anti-mouse HRP-
linked

1:2000 Sheep NA931V Amersham IV, V

Anti-rabbit HRP-
linked

1:2000 Donkey NA934V Amersham V

LC = loading control

Gene expression analysis (qPCR)

In Study II and Study IV, gene expression analysis was performed using quantitative real-
time PCR to evaluate the genes induced by BTZ treatment in different cell lines (Study II 
[BT-474, MCF-7, and ZR-75-30] and Study IV [MCF-7]). 

Method

Both untreated (DMSO) and treated (1, 6, and 24h with 10 µM BTZ) cells were used. RNA 
was extracted from cells using the RNeasy Lipid Tissue Mini Kit (Qiagen). RNA integrity 
and concentration were evaluated with TapeStation (Agilent) and Qubit (ThermoFisher 
Scientific), respectively. Superscript III First-Strand Synthesis for qRT-PCR kit 
(ThermoFisher Scientific) was used to construct cDNA and TaqMan Gene Expression 
Assays were used to assess gene expression for genes of interest and three endogenous 
controls (Table 4).

Table 4. Primers for qPCR

EC = Endogenous controls (geometric mean was used)

Gene Assay ID Supplier Note Study

SHARPIN HS00229642_m1 ThermoFisher Scientific II
VPS28 HS01598026_m1 ThermoFisher Scientific II
HPRT1 HS02800695_m1 ThermoFisher Scientific EC II, IV
PPIA HS99999904_m1 ThermoFisher Scientific EC II, IV
PUM1 HS00472881_m1 ThermoFisher Scientific EC II, IV
HMOX1 HS01110250_m1 ThermoFisher Scientific IV
DNAJB1 HS00428680_M1 ThermoFisher Scientific IV
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Computational analysis

Statistical analyzes were performed using Bioconductor in R (versions; 3.6.1 [Study I], 
4.0.3 [Study II and Study III] and 3.14.0 [Study V]) and Microsoft Excel 2016/2019 (Study 
II). A p-value < 0.05 was statistically significant.
Manhattan Distance Metric (MDM) and Ward's Minimum Variance Method (Ward.D2) 
were used together with the pheatmap package (version 1.0.12) 136 to compare and 
visualize PSM gene expression between normal and cancer tissues (Study I; Log2 relative 
RNA-seq) and gene expression (Study II; Z-Score).

Study I

Wilcoxon test and Benjamin-Hochberg adjusted p-value (ns = not significant (P > 0.05); 
*P < 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001) was used to determine the 
amplification effect on expression and individual PSM gene expression between cancer 
and normal samples and were visualized using boxplots (ggpubr [version 0.2.4.999] 137 
and rstatix [version 0.4.0.999]) 138. Co-expression of PSM genes were determined using 
pairwise Pearson's correlation coefficient (r) (0 < r < 0.4 (weak); 0.4 < r < 0.7 (moderate); 
r > 0.7 (strong)), clustered using Ward.D2, and it was visualized with R package corrplot 
(version 0.84) 139. Multivariable Cox regression analysis (age and tumor grade) was used 
to determine overall survival (OS) and progression-free interval (PFI) of individual PSM 
genes and their expression pattern.
 
Study II

Two sensitivity groups (insensitive and sensitive) were stratified by AUC and IC50 
(LNIC50) values for bortezomib. MDM and Ward.D2 along with pheatmap package 
(version 1.0.12) 136 were used to visualize gene expression (Z-score) in cell lines. The 
Limma R package (version 3.50.0) 140 was used to assess the differentially expressed 
genes between sensitivity groups. R-package ggstatsplot (version 0.9.1) and 
ggbetweenstats141 were used to evaluate and visualize the mutation frequency between 
the sensitive groups. Stratification of the 50 most mutated genes across in each sensitive 
groups were visualized using maftools (version 2.10.0) and GenVisR142,143. Cell cycle 
distribution and apoptosis were assessed after treatment with bortezomib 
(concentration range 1-100nM) using FlowJo™ software v10.8.1. Statistically significant 
differences between concentrations were assessed using one-way ANOVA and dplyr in 
R-package (version 1.0.8) 144.   
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Study III

Quality control metrics (QCM; signal window [SW], Z-factor [Z], coefficient of variation 
[CV]) 100,145 were used to assess the performance of the optimized cell viability assay. The 
Wilcoxon test was used to determine the evaporative effect on the inner or outer well 
of a 96-well plate. R-packages ggpubr (version 0.2.1.999) 137 and rstatix (version 
0.1.1.999) 138 were used to create bar charts and statistical analysis using t-test or 
Wilcoxon test with Benjamin-Hochberg adjusted p-value.

Study IV

To determine whether the data were normally distributed, the Shapiro-Wilks test and 
the R-package dplyr (version 1.0.8) 146 were used. The result of this test tells us what test 
to use, normally distributed = parametric test and if not normally distributed = Wilcoxon 
test. R-packages ggpubr (version 0.4.0) 137 and ggplot2 (version 3.3.6) 144 were used to 
generate bar charts and violin charts respectively and Benjamin-Hochberg statistical 
analysis corrected p-values in bar charts. 
 
Study V

The metrics GR50, GRmax, IC50 and AUC mean, and standard deviation were used to 
determine the efficacy of the drugs on cell lines. R-package IDACombo was used to 
predict possible potent drug combinations and was visualized using R-package 
pheatmap (version 1.0.12) 136 and the MDM and Ward.D2. R-package ggplot2 (version 
3.3.6) 144 was used to create scatterplots, dotplots and used in correlation analysis 
between GR50 and band quantification of western blot (AR).   
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RESULTS AND DISCUSSION

Study I

Analysis of genomic and transcriptomic alterations reveals PSM genes involved in 
patient overall survival  

Genomic changes in the cell have been associated with cancer progression 147. These 
events can alter gene expression and are used to classify tumors and identify pathways 
for cancer progression genes, which can then be used as therapeutic targets to improve 
the survival of cancer patients 147,148. To identify genetic alterations and transcriptomic 
profiles for PSM genes associated with clinical outcome in Study I, we therefore used 
datasets from The Cancer Genome Atlas (TCGA) project with its comprehensive genomic, 
transcriptomic, and survival data for approximately 11,000 samples 32,149-151. The TCGA 
data were retrieved from various online databases, including mutational and copy 
number alteration data (cBioPortal and Broad GDAC Firehose), gene expression data for 
normal and cancer samples (Broad Institute), and patient survival data (UCSC Xena 
browser). To correlate between PSM gene expression and overall survival, external 
validation of our findings was performed with an in-house breast cancer cohort and the 
interactive Kaplan-Meier plotter website (KM plotter; RNA microarray data for breast-, 
gastric-, lung-, and ovarian cancer as well as RNA-seq data for liver cancer). 

By analyzing the rate of DNA amplification (≥5 gene copies of the same 
gene), fusion, multiple alterations (e.g., fusions and amplification), and mutation events 
in all 49 PSM genes, this analysis showed that DNA amplification was most prevalent 
across the different cancer types. Moreover, esophageal carcinoma (ESCA; 67%) and lung 
squamous carcinoma (LUSC; 66%) had the highest proportion of samples with altered 
PSM genes (Figure 10). Both cancer types have low 5-year survival rates in the US of 19% 
(ESCA) and 20% (LUSC), indicating that a high rate of genetic alterations may have an 
adverse effect on patient survival 152. For specific PSM genes, the cancer samples most 
frequently harbored genetic alterations in PSMD2 (6%), PSMB4 (4%), and PSMD4 (4%) 
(Figure 10). It is then not a surprising that DNA amplification was most prevalent in these 
genes. The PSMD2 gene was altered in 37% of all LUSC samples, while >400 amplification 
events were found in the PSMB4, PSMD2, and PSMD4 genes in the evaluated samples. 
It is suggested that amplicons are developed in connection with DNA double strand 
breakage, which occurs in deficient cells (e.g., cancer cells) that continue in the cell cycle 
without arrest 153. Gene amplification has previously been associated with elevated gene 
expression, treatment resistance, and tumor evolution 153.  

Amplification events often occur at the focal (0.5 kb-85 Mb) or broad level 
(chromosome arm to whole chromosome) and span a wide range of genes 154. DNA 
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amplification regions frequently span oncogenes, leading to their activation and e.g., 
treatment resistance 12,149. Some of the PSM genes were also co-amplified due to their 
proximity on the same cytoband (e.g., PSMB4 and PSMD4; 1q21.3). In contrast, other 
PSM genes span the same cytoband as known oncogenes (ERBB2 and BRCA1), i.e., 
PSMB3 (17q12) and PSME3 (17q21.31), respectively. Focal amplifications of the PSMB4, 
PSMD2, and PSMD4 genes could be detected in about 10 cancer types. Subsequent 
amplification of PSM genes correlated with significant levels of overexpression. Although 
amplification was the most common alteration in PSM genes, we identified other PSM 
genes containing primarily mutational events (e.g., PSME4). Of the 312 mutations found 
in PSME4, 243 were missense mutations (a base pair substitution) that likely results in 
amino acid changes, but how the function of the protein is affected is unknown 155. 

Due to missing gene expression data for 17 normal tissue types, the gene 
expression analysis could only be performed for 16 cancer types and their corresponding 
normal tissues. Nevertheless, most PSM genes had increased expression in cancer 
compared to normal tissue. Interestingly, 7/49 PSM genes (e.g., PSMA1, PSMA4, PSMC1, 
PSMC3IP, PSMD13, and PSMG2-3) were only overexpressed in cancer. PSMB11, which 
encodes for the thymoproteasome, was the least frequent differentially expressed PSM 
genes in only 2/16 cancer types (KICH and THCA), while PSME3 was most frequently 
differentially expressed (15/16 cancer types). PSME3 is involved in activation of the PSM, 
which could be an interesting target for cancer treatment. Furthermore, high levels of 
PSMC genes have also previously been associated with poor prognosis in breast cancer 
97.  The overexpression of PSM genes most likely correlates with the essential features of 
the PSM process that the cell needs for survival 156,157. 

Analysis of co-expressed PSM genes revealed a cluster containing PSMB8-
10 across all cancer types that was generally correlated with positive co-expression with 
PSME1-2. The PSMB8-10 genes encode for the immunoproteasome and are involved in 
the immune system. Interestingly, high expression of these genes has previously been 
associated with prolonged survival in cancer patients, except for hematological cancers 
150. Thus, the role of the immune system and gene expression patterns for PSMB8-10 in 
particular need further investigation for its role in cancer.   

Several PSM genes (e.g., PSMA4, PSMB4, PSMB8, and PSMB10) were 
associated with more unfavorable overall survival (OS) when overexpressed and only 
two genes (PSMA1 and PSMD11) with progression-free interval (PFI). Interestingly, these 
genes (PSMA1 and PSMD11) were identified in both analyses (OS and PFI). Some of these 
genes (e.g., PSMA4 and PSMB5) have previously been associated with reduced survival 
when overexpressed 151,158. In summary, by using large datasets containing cancer 
patient samples in Study I, we were able to identify PSM genes involved in unfavorable 
survival when they were dysregulated. We were also able to identify genes (e.g., PSMB8) 
in a cluster that had positive correlation and are known to be involved in poor cancer 
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prognosis 159. Further research needs to be done to identify putative prognostic 
biomarkers and selection of treatment for improved patient survival. 

Figure 10. Genomic alterations of proteasome genes (PSM) in cancer. Esophageal carcinoma (ESCA) and 
lung squamous carcinoma (LUSC) had the highest percentage of altered PSM genes. The PSM gene PSMD2 
was altered in 37% of the LUSC samples. Amplification was most prevalent.

Study II

Analysis of sensitivity to bortezomib reveals genomic and transcriptomic events 
involved in sensitivity   

Genomic instability and cancer progression are synonymous with each other 147. 
Increased frequency of genomic alterations (e.g., DNA amplification) has previously been 
associated with treatment resistance 9,16-18. Evaluation of genetic alterations, 
transcriptomic profiles, and response to treatment with bortezomib can identify cancer 
types that will benefit from treatment with this PSM inhibitor. In Study II, we performed 
a pharmacogenomic analysis of publicly available data to investigate how effective 
bortezomib is in treating different types of cancer. We also identify genomic and 
transcriptomic events associated with BTZ-sensitivity. For this analysis, we used drug 
sensitivity, genomic, and transcriptomic data for 860 cell lines (GDSC1 and GDSC2 cell 
line datasets) from different sources (e.g., Genomics of Drug Sensitivity in Cancer [GDSC] 
database, Sanger COSMIC, and Sanger Institute Cell Model Passport). We were able to 
stratify this cell line cohort into a small number of cell lines that were insensitive (38 cell 
lines) or sensitive (49 cell lines) to bortezomib. 

Bortezomib is an effective drug that counteracts several important 
biological processes in the cell following treatment. In prostate cancer, bortezomib has 
been shown to inhibit e.g., cell cycle progression and induction of apoptosis 160,161. In 
line with these findings, we also observed that bortezomib treatment of our validation 
cell lines (A-172, A-375, BT-474, and ZR-75-30) resulted in cell cycle arrest in G2/M phase 
and induction of apoptosis. Analysis of genomic and transcriptomic events involved in 
treatment resistance was also investigated. TP53 is a tumor suppressor gene that 
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exhibits an apoptotic and treatment resistance phenotype when mutated 162. We were 
able to identify an increased number of mutated genes in cell lines classified as 
bortezomib-insensitive in comparison with bortezomib-sensitive. Some of the genes 
(e.g., FSIP2, MUC12, and TP53) were concordant between the insensitive cell lines and 
linked to treatment resistance. The mutated genes were involved in e.g., DNA repair.  

Gene expression profiles for cancer cells have previously been associated 
with treatment resistance and tumor progression, which could be due to e.g., epigenetic 
changes leading to the underexpression of tumor suppressor genes and overexpression 
of oncogenes 163. However, 33 dysregulated genes between the two sensitivity groups, 
and especially the LIFR gene, have been associated with cancer progression and 
treatment resistance when overexpressed 164. Interestingly, hierarchical clustering of the 
differentially expressed genes between the sensitivity groups demonstrated that the 
bortezomib-sensitive cell lines clustered together (sorted into their organ system) more 
frequently than bortezomib-insensitive cell lines. This could be due to intra organ system 
variability, suggesting that specific cancer subtypes are insensitive to bortezomib 100. Our 
comprehensive analysis consisted of almost 1000 cancer cell lines derived from 13 organ 
systems, each represented by 14 to 163 cell lines. Therefore, some organ systems were 
represented by relatively few cell lines e.g., thyroid (n=14) and soft tissue (n=19).   

In summary, this comprehensive in silico drug sensitivity, genomic, and 
transcriptomic analysis reveals the importance of identifying therapeutic biomarkers 
before deciding on appropriate treatment strategies for patients. We identify 
dysregulated genes (e.g., ALDH18A1, LIFR, PUF60) and mutated genes (e.g., FSIP2, 
MUC12, and TP53) involved in sensitivity to bortezomib that can be used when choosing 
patient treatment with PSM inhibitors and especially bortezomib. These findings need 
further evaluation to identify patients that will benefit from treatment with PSM 
inhibitors, particularly bortezomib, to improve therapy response rates for patients with 
cancer. 

Study III

Identification of confounding factors improves replicability and reproducibility of cell 
viability screening assays 

The inability to reproduce and replicate results from in vitro drug screens due to intra 
and interlaboratory variability is a major problem in biomedical research 165-168. This 
means that the failure rate during the later stages of the drug discovery process (in vivo 
and clinical trials) is tangible. Inconsistent in vitro drug screening is likely, in part, due to 
the lack of assay optimization to reduce the effect of confounding factors, e.g., cell 
seeding density, evaporation, and the use of multiple controls that produce inconsistent 
results, but perhaps also due to incorrectly performed lab work 169. Therefore, 
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experimental factors that could potentially influence the performance of a cell viability 
assay must be identified and the performance of an assay must be validated to minimize 
the risk of subsequent failure during further preclinical and clinical tests and ensure that 
drug candidates produce reproducible and replicable results 170. 

In Study III, we used established cell lines (HCC38, MCF-10A, MCF-7, and 
MDA-MB-436) and clinically relevant anticancer drugs (bortezomib, carboplatin, and 
cisplatin) to identify factors that can affect cell viability assays. We initially utilized 
commonly used settings for drug concentrations, culture medium composition, seeding 
density, and a single drug solvent control (dimethyl sulfoxide; DMSO). These settings 
affected reproducibility and reproducibility and hence the interpretation of drug 
potency. So, we identified possible confounding factors (e.g., evaporation on the drug 
and cell plates [edge effect], cell seeding density, drug solvent interference, medium 
type, medium volume, number of controls, resazurin [viability marker] incubation time, 
and resazurin concentration) that could affect the performance and interpretation of 
drug potency. Moreover, we set up a drug screen with different experimental 
parameters. One-way ANOVA was used to evaluate the influence of these experimental 
parameters on cell viability, with viability as the dependent variable and multiple 
independent variables (i.e., cell type, drug type, drug concentration, culture medium 
type, medium volume, solvent controls, resazurin concentration, and cell seeding 
density). Not surprisingly, e.g., cell type, drug type, and drug concentrations affect cell 
viability the most. Moreover, evaporation on 96-well microplates has previously been 
associated with affecting cellular metabolic activity 171. Here, all independent variables 
were found to affect cell viability to some extent, which in turn will affect the outcome 
of a drug screen 166,172. 

We investigated how evaporation affects (1) the initial medium volume in 
standard 96-well flat-bottom microplates for cells (i.e., cell plate) stored in an incubator 
(humidified environment, 5% CO2 and at 37°C) and (2) diluted drugs (i.e., drug plate) 
stored in a -20°C freezer for 48h and sealed with parafilm. We observed a significantly 
(P≤0.001), higher degree of evaporation in the perimeter wells (rows A and H, and 
columns 1 and 12), which not surprisingly had a substantial effect on viability 171 since 
drug concentrations will be higher if added to a lower medium volume. We also revealed 
a significantly lower degree of evaporation when using 96-well PCR plates for the diluted 
drugs sealed with aluminum tape when stored in the freezer (P≤0.0001), which is 
preferable to storage in the refrigerator. Drug solvent (DMSO) concentration was also 
evaluated, showing an adverse effect on viability at low (1%) concentrations. Therefore, 
the effect of the drug solvent on cell viability should be minimized so that the assay will 
show the effect of the drug only. Since drug dilutions have different concentrations of 
the drug solvent, the solvent concentration should be matched to that found in each 
drug concentration. This can be time demanding but will ultimately minimize over or 
under estimation of drug potency. 
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exhibits an apoptotic and treatment resistance phenotype when mutated 162. We were 
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Study III
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experimental factors that could potentially influence the performance of a cell viability 
assay must be identified and the performance of an assay must be validated to minimize 
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After optimizing the resazurin assay, we performed the optimized assay 
three times to ensure its replicability and reproducibility. We were therefore able to 
recommend the following experimental parameters for HCC38, MCF-10A, MCF-7, and 
MDA-MB-436 cell lines treated with bortezomib and cisplatin: medium type for each cell 
line, 100 µL medium volume, no drug renewal, multiple matched solvent-concentration 
controls (DMSO), 10% resazurin exposure for 4h, and seeding 7,500 cells/well. The assay 
results were compared to publicly available data at PharmacoDB which provides 
comprehensive drug screening data on cell lines from multiple pharmacogenomics 
projects 126, which were in agreement with our data. However, the experimental 
parameters suitable for other viability assays and/or cell types should always be 
optimized. The performance of our drug screen was evaluated using quality control 
metrics (QCM; Z-factor, signal window [SW], coefficient of variation [CV]) with thresholds 
set to Z-factor > 0.4, SW > 2, and CV < 20%), which showed that assay optimization 
improved reproducibility and replicability. 
  In summary, we established that unoptimized viability assays will likely 
produce inconsistent data that are difficult to compare between labs. We have 
highlighted which factors can affect the assay results, thereby making it both difficult to 
replicate results within a lab and form an idea of which drugs are “good” for a specific 
disease. Therefore, the risk of rejecting “good” drugs increases, but also of 
overestimating the potency of potentially unsuitable drugs. 

Study IV

PSM inhibitor-induced transcriptomic signatures reveals other compounds with similar 
mechanisms-of-action

Repurposing FDA/EMA approved drugs is beneficial because it is cheaper, less time 
consuming, low risk of failure, and low risk of unknown side effects for patients 112. This 
approach for identifying drugs for a disease or identifying similar potent drugs for the 
same disease could be performed in several different ways. Drug-induced signatures can 
identify similar drugs with the same mechanism-of-action or drug- and disease 
signatures together can reveal suitable drugs for a disease 117. In Study IV, we evaluated 
publicly available drug-induced gene signatures (iLINCS and CMap) and the structure of 
the human 20S proteasome (Protein Data Bank) to identify compounds with previously 
unknown features as PSM inhibitors. First, compounds inducing similar transcriptomic 
profiles as known PSM inhibitors (bortezomib, MG-132, and MLN-2238) were identified. 
The list of compounds was then limited to those with docking scores revealing their 
ability to bind and inhibit the chymotrypsin catalytic site (β5) in the PSM. To identify 
genes that were dysregulated following treatment, we used the iLINCS dataset where 
cell lines were treated with MG-132 or MLN-2238 for 6h or 24h. This analysis revealed 
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11 genes (e.g., BAG3, DNAJB1, and HMOX1) that were upregulated in the tested cell lines 
130. Using CMap, 8 upregulated genes (e.g., BAG3, DNAJB1, and HMOX1) were found to 
be connected with treatment and likely correlated with the drug mechanism-of-action 
173. The identified genes were found to play a role in e.g., cellular response to stress. 
Using the MCF-7 cell line to validate these findings, we confirmed elevated expression 
of DNAJB1 and HMOX1 following ≥6h treatment with ≥100nM bortezomib.

Furthermore, a query for PSM inhibitors (MG-132 and MLN-2238) in CMap 
was performed to search for perturbagens with induced gene expression patterns 
(median tau score ≥95) similar to MG-132 and MLN-2238. This analysis revealed 113 
perturbagens similar to MG-132 and 152 for MLN-2238. However, 96 compounds (e.g., 
manumycin-A and thapsigargin) and 11 gene knockdowns (e.g., PSMB5) were 
concordant in both queries. Furthermore, knockdown of PSM genes has a similar cellular 
effect as inhibition of PSM activity 174,175, which in turn causes protein accumulation in 
the cell and apoptosis. To further evaluate the potency of the identified compounds, we 
used the online GR Metric Calculator (http://www.grcalculator.org/grcalculator/). 
However, only 18/96 compounds were available (missing data for 78 compounds). 
Nevertheless, we were able to identify compounds (e.g., thapsigargin) with similar 
potency in cell lines as bortezomib.
  We then used molecular docking to evaluate the 96 compounds and their 
ability to bind to and inhibit the β5 catalytic site 176. Bortezomib binds to the threonine 
(Thr1) which is proposed to be the chymotrypsin active site (β5 site) in the core particle 
on proteasome 177,178.  We therefore evaluated whether the putative PSM inhibitors bind 
to this site by e.g., hydrogen bonds to that amino acid. We could therefore identify eight 
compounds with high binding affinity to the Thr1 residual 177,178. Moreover, 6/8 
compounds (kinetin riboside, manumycin-A, puromycin dihydrochloride, resistomycin, 
tegaserod maleate, thapsigargin; two compounds were not available for purchase) were 
evaluated for their ability to inhibit the activity of the three PSM catalytic sites 
(chymotrypsin-like [β5], caspase-like [β1], and trypsin-like [β2]). Here, we could conclude 
that inhibition of these sites by the six compounds was poor. These results were 
surprising, so we also evaluated the PSM activity for 11 known PSM inhibitors (e.g., 
bortezomib, carfilzomib, and delanzomib) and evaluated their ability to inhibit the 
activity of the important β5 catalytic site. This analysis showed that bortezomib and 
delanzomib were strong inhibitors of the β5 site, while the remaining PSM inhibitors 
showed poor activity inhibition. We then assessed whether drug treatment resulted in 
accumulation of polyubiquitinated proteins, thereby showing a significant accumulation 
of polyubiquitinated proteins after treatment with manumycin-A. So, there must be 
some other underlying mechanisms-of-action connecting the known and putative PSM 
inhibitors together, such as inhibition of similar proteases in the cells 175. 

In summary, by using transcriptomic profiling and docking scores we could 
identify putative PSM inhibitors (kinetin riboside, manumycin-A, puromycin 



44

After optimizing the resazurin assay, we performed the optimized assay 
three times to ensure its replicability and reproducibility. We were therefore able to 
recommend the following experimental parameters for HCC38, MCF-10A, MCF-7, and 
MDA-MB-436 cell lines treated with bortezomib and cisplatin: medium type for each cell 
line, 100 µL medium volume, no drug renewal, multiple matched solvent-concentration 
controls (DMSO), 10% resazurin exposure for 4h, and seeding 7,500 cells/well. The assay 
results were compared to publicly available data at PharmacoDB which provides 
comprehensive drug screening data on cell lines from multiple pharmacogenomics 
projects 126, which were in agreement with our data. However, the experimental 
parameters suitable for other viability assays and/or cell types should always be 
optimized. The performance of our drug screen was evaluated using quality control 
metrics (QCM; Z-factor, signal window [SW], coefficient of variation [CV]) with thresholds 
set to Z-factor > 0.4, SW > 2, and CV < 20%), which showed that assay optimization 
improved reproducibility and replicability. 
  In summary, we established that unoptimized viability assays will likely 
produce inconsistent data that are difficult to compare between labs. We have 
highlighted which factors can affect the assay results, thereby making it both difficult to 
replicate results within a lab and form an idea of which drugs are “good” for a specific 
disease. Therefore, the risk of rejecting “good” drugs increases, but also of 
overestimating the potency of potentially unsuitable drugs. 

Study IV

PSM inhibitor-induced transcriptomic signatures reveals other compounds with similar 
mechanisms-of-action

Repurposing FDA/EMA approved drugs is beneficial because it is cheaper, less time 
consuming, low risk of failure, and low risk of unknown side effects for patients 112. This 
approach for identifying drugs for a disease or identifying similar potent drugs for the 
same disease could be performed in several different ways. Drug-induced signatures can 
identify similar drugs with the same mechanism-of-action or drug- and disease 
signatures together can reveal suitable drugs for a disease 117. In Study IV, we evaluated 
publicly available drug-induced gene signatures (iLINCS and CMap) and the structure of 
the human 20S proteasome (Protein Data Bank) to identify compounds with previously 
unknown features as PSM inhibitors. First, compounds inducing similar transcriptomic 
profiles as known PSM inhibitors (bortezomib, MG-132, and MLN-2238) were identified. 
The list of compounds was then limited to those with docking scores revealing their 
ability to bind and inhibit the chymotrypsin catalytic site (β5) in the PSM. To identify 
genes that were dysregulated following treatment, we used the iLINCS dataset where 
cell lines were treated with MG-132 or MLN-2238 for 6h or 24h. This analysis revealed 

45

11 genes (e.g., BAG3, DNAJB1, and HMOX1) that were upregulated in the tested cell lines 
130. Using CMap, 8 upregulated genes (e.g., BAG3, DNAJB1, and HMOX1) were found to 
be connected with treatment and likely correlated with the drug mechanism-of-action 
173. The identified genes were found to play a role in e.g., cellular response to stress. 
Using the MCF-7 cell line to validate these findings, we confirmed elevated expression 
of DNAJB1 and HMOX1 following ≥6h treatment with ≥100nM bortezomib.

Furthermore, a query for PSM inhibitors (MG-132 and MLN-2238) in CMap 
was performed to search for perturbagens with induced gene expression patterns 
(median tau score ≥95) similar to MG-132 and MLN-2238. This analysis revealed 113 
perturbagens similar to MG-132 and 152 for MLN-2238. However, 96 compounds (e.g., 
manumycin-A and thapsigargin) and 11 gene knockdowns (e.g., PSMB5) were 
concordant in both queries. Furthermore, knockdown of PSM genes has a similar cellular 
effect as inhibition of PSM activity 174,175, which in turn causes protein accumulation in 
the cell and apoptosis. To further evaluate the potency of the identified compounds, we 
used the online GR Metric Calculator (http://www.grcalculator.org/grcalculator/). 
However, only 18/96 compounds were available (missing data for 78 compounds). 
Nevertheless, we were able to identify compounds (e.g., thapsigargin) with similar 
potency in cell lines as bortezomib.
  We then used molecular docking to evaluate the 96 compounds and their 
ability to bind to and inhibit the β5 catalytic site 176. Bortezomib binds to the threonine 
(Thr1) which is proposed to be the chymotrypsin active site (β5 site) in the core particle 
on proteasome 177,178.  We therefore evaluated whether the putative PSM inhibitors bind 
to this site by e.g., hydrogen bonds to that amino acid. We could therefore identify eight 
compounds with high binding affinity to the Thr1 residual 177,178. Moreover, 6/8 
compounds (kinetin riboside, manumycin-A, puromycin dihydrochloride, resistomycin, 
tegaserod maleate, thapsigargin; two compounds were not available for purchase) were 
evaluated for their ability to inhibit the activity of the three PSM catalytic sites 
(chymotrypsin-like [β5], caspase-like [β1], and trypsin-like [β2]). Here, we could conclude 
that inhibition of these sites by the six compounds was poor. These results were 
surprising, so we also evaluated the PSM activity for 11 known PSM inhibitors (e.g., 
bortezomib, carfilzomib, and delanzomib) and evaluated their ability to inhibit the 
activity of the important β5 catalytic site. This analysis showed that bortezomib and 
delanzomib were strong inhibitors of the β5 site, while the remaining PSM inhibitors 
showed poor activity inhibition. We then assessed whether drug treatment resulted in 
accumulation of polyubiquitinated proteins, thereby showing a significant accumulation 
of polyubiquitinated proteins after treatment with manumycin-A. So, there must be 
some other underlying mechanisms-of-action connecting the known and putative PSM 
inhibitors together, such as inhibition of similar proteases in the cells 175. 

In summary, by using transcriptomic profiling and docking scores we could 
identify putative PSM inhibitors (kinetin riboside, manumycin-A, puromycin 



46

dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). We evaluated their 
ability to inhibit all three PSM catalytic sites, thereby showing that the six putative PSM 
inhibitors had a weak ability to inhibit these and their potency on A-375 and MCF-7 cell 
lines showing that puromycin dihydrochloride was the most potent drug of the six 
putative PSM inhibitors (Figure 11). So, it is likely not inhibition of the PSM catalytic sites 
that these compounds have in common with known PSM inhibitors (bortezomib, MG-
132, and MLN-2238). Instead, these compounds most likely have another unknown 
target(s) in common with PSM inhibitors that warrants further investigation. 

Figure 11. Potency of putative proteasome inhibitors on the A-375 cell line. Sensitivity analysis of putative 
proteasome inhibitors in comparison with a known proteasome inhibitor (bortezomib). The A-375 cell line 
was treated for 24h or 72h. Treatment time of 72h showing decreased cell survival in comparison with 
24h. The most potent putative proteasome inhibitor was puromycin dihydrochloride at 24h and 72h 
treatment.  

Study V

Drug screening identifies promising potent single drugs and 2-drug combinations to 
improve TNBC therapy

Cell viability assays can be used to investigate phenotypic characteristics (e.g., cell 
proliferation and drug cytotoxicity) of cells at different conditions 179.  The most useful is 
to screen large libraries of drugs on cell lines to determine their sensitivity to treatment, 
thereby identifying potentially novel treatment alternatives for a disease 179. In Study V, 
we evaluated whether PSM inhibitors could improve in vitro treatment of TNBC, which 
is a cancer form that relies on chemotherapy 99,180,181. We also (1) compared their ability 
to inhibit the β5 catalytic site to their drug potency and (2) investigated whether a 
synergistic effect occurs between 2-drug combination treatment. We used 8 TNBC cell 
lines and 2 control cell lines that were exposed to 11 PSM inhibitors and 7 clinically 
relevant drugs representing mitosis inhibitors, topoisomerase inhibitors, and platinum 
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agents. These analyses were therefore able to identify drugs that were potent as solitary 
treatment but most interestingly, we identified drug combinations that had a very high 
negative impact on the survival of TNBC cells. 

As single agents, we identified bortezomib, carfilzomib, cisplatin, 
delanzomib, docetaxel, epoxomicin, MLN-2238, MLN-9708, and nedaplatin as highly 
potent drugs according to AUC values for the tested cell lines (Figure 12). The AUC is 
suitable to use when the different drugs have different concentration range. Surprisingly, 
no topoisomerase inhibitors (doxorubicin) were classified as potent drugs for TNBC 
though they are currently used in the clinical management of TNBC 181. Not surprisingly, 
the most potent drugs were bortezomib and cisplatin across cell lines, which have 
previously been associated with TNBC anticancer activity 100,182,183. The least potent 
drugs were the PSM inhibitors PI-1840 and VR-23. The LAR subtype was least sensitive 
to the tested drugs.

Given the varied cytotoxic effect of the 11 PSM inhibitors in the tested cell 
lines, we analyzed the PSM activity to determine their ability to inhibit the important 
20S PSM chymotrypsin-like (β5) catalytic site 184. This analysis showed that PSM 
inhibitors vary in their ability to inhibit the β5 site. Bortezomib and delanzomib strongly 
inhibited the β5 site, while PI-1840 and VR-23 inhibited the β5 site poorly which was not 
surprising according to their drug potency in vitro. The analysis of how the different 
proteasome inhibitors could cause accumulation of poly-ubiquitinated proteins in 
connection with treatment showed that all proteasome inhibitors except PI-1840 and 
VR-23 caused increased numbers of poly-ubiquitinated proteins. However, it was 
surprising that highly potent drugs like epoxomicin showed low ability to inhibit the β5 
site. Therefore, we need to develop a better understanding of the mechanism-of-action 
for epoxomicin and why this drug was potent in TNBC cell lines. We hypothesize that 
epoxomicin might share another mechanism-of-action with PSM inhibitors.

Before setting up the combination treatment analysis, we used the 
IDACombo pipeline to predict potentially potent 2-drug combinations based on the data 
from the single drug treatments. This analysis resulted in 11 combinations; carboplatin 
+ docetaxel and carboplatin + paclitaxel was also included as controls, resulting in 13 
combinations. This screen revealed at least two (bortezomib + nedaplatin and 
epoxomicin + epirubicin) potent combinations that kill almost 100% of cells. The 
combination with bortezomib + nedaplatin showed a high degree of potency on TNBC 
cell lines, but lower on control cell lines which indicates that these combinations were 
very suitable for TNBC cell lines though not TNBC subtype-dependent. These results 
need to be further evaluated in more TNBC cell lines, their subtypes, in vivo models, and 
patient samples. In summary, we identified potent drugs as monotherapy (e.g., 
bortezomib and delanzomib) and even higher efficiency as 2-drug combinations 
(bortezomib + nedaplatin and epoxomicin + epirubicin) in TNBC cell lines. These findings 
need further evaluation using more TNBC cell lines and TNBC patient samples to confirm 
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their potency in vitro and in vivo. Surprisingly, 2-drug combinations with carboplatin + 
taxane showed the highest synergistic effect but have very weak potency in TNBC cell 
lines. Combination treatment with carboplatin and taxanes has previously been shown 
to improve treatment of TNBC 39,60,64. However, it shows that high synergistic effect does 
not necessarily equate to high drug potency. The ability of known PSM inhibitors to 
inhibit the PSM β5 site was sometimes weak, indicating unknown shared mechanisms-
of-action between PSM inhibitors that need more attention to better understand their 
effect on drug potency. 

Figure 12. Drug screen on the HCC38 and MDA-MB-468 cell lines. Potency was interpreted by area under 
the curve (AUC). In HCC38 and MDA-MB-468 cells, bortezomib, cisplatin, and delanzomib were the most 
potent drugs. The least potent drugs in both analyses were carboplatin, doxorubicin, PI-1840, and VR-23.

49

ETHICAL COMMENTARY

Study I

The results of the genomic and transcriptomic analysis were validated using previously 
published data for breast cancer from our research group. Ethical approval to use patient 
tumor samples in the biobank was approved in 2002 (application S 164-02).
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STUDY LIMITATIONS

Study I

• Some cancer types had relatively small sample sizes (e.g., DLBC [n = 48], PAAD [n 
= 56], and UCS [n = 57]) compared to others, making the results statistically less 
robust than those with larger sample size

• The differential gene expression analysis was limited to only 16 out of 33 cancer 
types due to missing data for corresponding normal tissue

• There was no data available on whether the patients had received neoadjuvant 
treatment, which could have affected the results

Study II

• Some organ systems contained relatively few cell lines, such as thyroid (n = 14), 
soft tissue (n = 19), and kidney (n = 23), which can reduce the statistical power of 
the analysis. In addition, information on the passage number and culturing 
conditions of the cell lines was lacking, which may impact the results as high 
passage numbers may affect gene expression and cell proliferation 

• It is challenging to determine the clinical relevance of in vitro experiments 
performed with cell lines, so further investigation in other models (e.g., 
spheroids, patient-derived organoids, and animal model) is needed

Study III

• We did not test other types of 96-well plates which may differ in their ability to 
prevent evaporation

• We did not investigate the effect of different types of drug solvents on cell 
survival

• We did not determine whether the cells can be affected by the frequency of 
putting the 96-well plate in and out of the incubator

• We did not investigate how the cells are affected by the duration they are kept at 
room temperature during e.g., plating and application of treatment

• We did not explore how drug sensitivity for different cell lines is affected by 
different culturing conditions before the analysis starts

• We did not investigate how passage numbers affect the analysis
• We did not test cell lines derived from different organ systems
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Study IV

• We did not investigate whether the putative PSM inhibitors have better 
permeability in solid tumors than, for example, bortezomib

• We did not perform studies in spheroids, patient-derived organoids, or animal 
models to determine whether the drug may be effective in patients

• We did not test the drugs as combination therapy
• We did not analyze the effect of the tested drugs on signaling pathways or 

inhibition of proteases in the cell, which could help in determining their similarity 
to PSM inhibitors

• We did not analyze whether the known PSM inhibitors affected other PSM 
catalytic sites (β1 and β2)

• Analysis of PSM activity was only performed once but should at least be 
performed in three independent experiments

Study V 

• We have limited knowledge about how individual PSM inhibitors function and 
their effects on different processes in the cell

• The number of cell lines used was insufficient to establish a link between 
sensitivity and specific TNBC subtypes

• The identified drugs and drug combinations need to be tested in more 
comprehensive studies such as e.g., spheroids, patient-derived organoids, and 
animal models to determine their potency and toxicity
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STUDY LIMITATIONS
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= 56], and UCS [n = 57]) compared to others, making the results statistically less 
robust than those with larger sample size

• The differential gene expression analysis was limited to only 16 out of 33 cancer 
types due to missing data for corresponding normal tissue

• There was no data available on whether the patients had received neoadjuvant 
treatment, which could have affected the results
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CONCLUSIONS

In this project, we performed a comprehensive investigation of PSM genes at the 
genomic and transcriptomic levels and explored their implications in cancer. We 
therefore demonstrated that proteasome inhibition could be a promising therapeutic 
approach in the treatment of several cancer types, including TNBC. However, more 
research is needed to establish suitable treatments and gain a better understanding of 
genomic and transcriptomic events to select the best treatment for individual patients.

Study I

The aim of this study was to investigate the prevalence of genetic alterations in the 
proteasome gene family in a pan-cancer dataset from The Cancer Genome Atlas (TCGA) 
and analyze the impact of dysregulated proteasome genes on clinical outcome.

Conclusions:

The frequency of genetic alteration varied among the 49 PSM genes, with PSMB4 (4%), 
PSMD2 (6%), and PSMD4 (4%) having the most alterations in the 10,000 samples. The 
most frequently altered genes were found in ESCA and LUSC. Cancer types with the 
highest frequency of altered PSM genes were ESCA (67%) and LUSC (66%). Amplification 
was the most common alteration in PSM genes and was linked to overexpression in 
comparison with normal tissue. Furthermore, overexpression of PSM genes is commonly 
found in cancer and dysregulated PSM genes are associated with poor patient prognosis.

Study II

This study aimed to evaluate the sensitivity of cancer cell lines to proteasome inhibitors 
and identify a correlation between genomic or transcriptomic factors and 
sensitivity/insensitivity to proteasome inhibition.

Conclusions:

Identification and selection of bortezomib-insensitive (38 cell lines) and sensitive (49 cell 
lines) cell lines was based on their sensitivity to bortezomib from a comprehensive 
library of 860 cell lines. Mutated and or dysregulated genes involved in bortezomib 
resistance were identified. Several organ systems (blood, kidney, and nervous system) 
were sensitive to bortezomib, while e.g., lung was insensitive. Mutated genes involved 
in bortezomib resistance were e.g., MUC12, RYR1, and SPTA1 and 33 dysregulated genes 
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(e.g., ATP9A, CCNH, and PARP2) were associated with bortezomib resistance. Further 
research is needed to investigate the involvement of mutations and gene expression 
profiles in bortezomib resistance.

Study III

The aim of this study was to improve the replicability and reproducibility of 2D high-
throughput viability screens with cancer cell lines by identifying and minimizing the 
influence of assay-associated confounding factors.

Conclusions:

Several confounding factors such as drug and cell plate evaporation, drug storage, drug 
solvent controls, and medium volume were found to influence the outcome of the 
resazurin cell viability assay. Failing to minimize the influence of such factors may lead to 
a rejection of suitable drugs and overestimation of the potency of potentially unsuitable 
drugs that could ultimately fail in subsequent preclinical and clinical studies.

Study IV

The aim of this study was to identify putative proteasome inhibitors based on drug-
induced transcriptomic profiles and drug binding affinity to the β5 proteasome catalytic 
site.

Conclusions:

Using drug-induced transcriptomic signatures, drugs with similar mechanism-of-action 
to known proteasome inhibitors were identified. We identified 96 compounds (putative 
proteasome inhibitors) with similar transcriptomic signatures as three proteasome 
inhibitors (bortezomib, MG-132, and MLN-2238), which were further investigated for 
their binding affinity to the β5 site. Eight compounds with high affinity to the β5 site 
were identified, but only six (heliomycin [resistomycin], kinetin-riboside, manumycin-A, 
puromycin dihydrochloride, tegaserod maleate, and thapsigargin) were further 
investigated in vitro. However, all six compounds showed poor inhibition of the 
proteasome activity at all three catalytic sites. Further research is therefore warranted 
to investigate why these compounds have similar transcriptomic signatures and their 
mechanism-of-action.
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Study V

This study aimed to determine (1) the chemosensitivity of triple-negative breast cancer 
(TNBC) cell lines to proteasome inhibitors and clinically relevant chemotherapy in mono- 
and combination settings, and (2) the potential synergistic effect of combination therapy 
with proteasome inhibitors and common chemotherapy.

Conclusions:

We identified the most effective drugs in monotherapy, including mitotic inhibitors 
(docetaxel), platinum agents (cisplatin and nedaplatin), and proteasome inhibitors 
(bortezomib, carfilzomib, delanzomib, epoxomicin, MLN-2238, and MLN-9708). In 
addition, bortezomib + nedaplatin was the most effective 2-drug combination for CAL-
148, HCC1806, MDA-MB-468, and epoxomicin + epirubicin as the most effective 
combination for HCC38 cells. However, further evaluation of these combinations is 
needed in similar or different research models (e.g., animals, patient tumors, and 
additional TNBC cell lines).
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FUTURE PERSPECTIVES

• A panel of drugs was used on several cell lines to determine the chemosensitivity 
of specific cell lines to different drugs and drug efficacy after 24h treatment. 
However, some cells survived treatment. It was also not determined how these 
cells were affected by the 24h treatment phenotypically and whether they could 
continue to divide and give rise to new populations. To investigate the 
consequences of treatment on surviving cells, a follow-up study using clonogenic 
assay is required.

• Bortezomib treatment was found to be effective on TNBC cell lines, but in silico 
analysis showed that other types of cancer could also benefit from treatment 
with this drug. Further studies with bortezomib and the other cancer types 
identified in Study II are required.

• Different subtypes of TNBC responded differently to the same treatments, 
suggesting that despite classification into the TNBC subtypes, there are still 
significant differences within each subtype. To offer the best possible treatment 
for each patient, disease signatures need to be linked to the response to 
treatment with each drug. This could be achieved by using more TNBC cell lines 
and/or animal models. 

• Further investigation is needed to determine how PSM inhibitors affect other 
cellular processes. It was found that different cell lines responded differently to 
PSM inhibitors. These inhibitors, in turn, inhibited the β5 catalytic site differently. 
The effects of different PSM inhibitors on different processes, such as cell cycle 
and DNA repair, needs to be assessed.

• Drugs that had a major impact on TNBC cells in mono drug- and 2-drug screens 
need further evaluation in more TNBC cell lines, spheroids, patient-derived 
organoids before potentially moving on to animal models and clinical trials with 
TNBC patients.
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