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Syntax-based Concept Alignment for Machine Translation
Arianna Masciolini
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis presents a syntax-based approach to Concept Alignment (CA), the task
of finding semantical correspondences between parts of multilingual parallel texts,
with a focus on Machine Translation (MT). Two variants of CA are taken into ac-
count: Concept Extraction (CE), whose aim is to identify new concepts by means of
mere linguistic comparison, and Concept Propagation (CP), which consists in look-
ing for the translation equivalents of a set of known concepts in a new language. As
opposed to standard statistical alignment methods, our approach allows to simul-
taneously align individual words and multiword expressions (even discontinuous).
Since phrase-level alignments are useful to correctly translate idiomatic expressions,
this can be beneficial for grammar-based translation pipelines, such as those based
on Grammatical Framework (GF), which we use to put our system to the test. This
is made possible by the fact that the alignments extracted by our CA model are not
correspondences between strings, but rather between grammatical objects. Another
advantage of our system with respects to the solutions adopted in statistical MT is
that, being essentially rule-based, it performs consistently well even on extremely
small amounts of data. Our system does, however, rely on the quality of the anal-
yses of the parallel corpora it is applied to. In order to mitigate the consequences
of the lack of robustness of existing GF and, in general, constituency parsers, align-
ment is performed on the Universal Dependency (UD) trees generated by a neural
dependency parser. The resulting concepts are then used, exploiting the similarities
between UD and GF, as a starting point for automatically generating a GF lexicon
to be used in translation. The tangible fruit of this work is a Haskell library, accom-
panied by a number of executables offering a user-friendly interface to perform both
variants of CA, extraction and propagation, evaluate their results and use them in
MT experiments.

Keywords: computational linguistic, machine translation, concept alignment, syn-
tax, dependency parsing, Universal Dependencies, Grammatical Framework
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1
Introduction

Concept Alignment (CA) consists in finding semantical correspondences between
parts of multilingual parallel texts. Such task, often preliminary to further linguistic
analysis, is routinely performed by learners of classical languages when working
with a translation alongside the original text. It can - and usually does happen
simultaneously - at different degrees of abstraction, ranging from word to sentence
level. While in some cases the student identifies new concepts thanks to language
comparison itself (concept extraction), there are instances where a set of concepts is
already known and the objective becomes finding the corresponding expressions in
a certain language (concept propagation).
Another task that involves CA is natural language translation: the human transla-
tor, almost subconsciously, first identifies concepts in the source text and only then
looks for ways to render them in the target language. It is then natural to wonder
whether it is possible to make use of CA in Machine Translation (MT) as well. The
hypothesis motivating this project, whose objective is to develop and test strategies
for automating CA, is that it can serve as a step of a compositional MT pipeline. In
such case, its users could easily be provided with a way to verify the correctness of
the results by examining - at any level - the ways a concept is expressed in different
languages instead of having to compare the entire text in the source language to its
automatically translated counterparts. From this perspective, CA can help develop
a more easily interpretable, and therefore more reliable MT system.
While MT, and in particular Statistical Machine Translation (SMT), does make
use of some alignment models, traditional solutions focus on aligning words or, at
most, sequences of words, thus generally putting raw strings of text in different
languages in relation with each other. This makes it hard to operate at multiple
levels of abstraction simultaneously. Nevertheless, there are several reasons why a
system able to do that is desirable. First of all, choosing the abstraction level to
operate at is not trivial, to the point that one could argue that, even within the
particular context of translation, correspondences at different levels of abstraction
may be more or less useful according to the specific pair of sentences they occur in.
As an example, let us take the following two English-Italian pairs of sentences:

1. “May I have a piece of cake?” and “Potrei avere un pezzo di torta?”
2. “Finding useful correspondences isn’t exactly a piece of cake” and “Trovare

corrispondenze utili non è proprio scontato”
In the first case, correspondences on the word level, like “piece”-“pezzo” and “cake”-
“torta” are definitely relevant, but in the second sentence pair “piece of cake” is used
idiomatically and it would probably be more useful to just put the whole phrase in

1



1. Introduction

relation with “scontato”.

Figure 1.1: An English sentence aligned with its Italian translation. In this case,
we are looking for the smallest possible alignments, but it is also possible to find
correspondences at a higher level of abstractions, such as “useful correspondences”
and “corrispondenze utili”, which puts two noun phrases in relation with each other.

In cases like this, a syntactical comparison between the two sentences can help, if not
to extract meaningful correspondences only, which would be the case in the example
above, where the complement of the copula ”is” (resp. “è”) is a multiword expression
in English and a one-word in Italian, at least to obtain a series of alignments at all
levels of abstraction from which to select the most relevant at a later stage1. The
idea is that, in rule-based MT, using aligned phrases (as opposed to aligned words) is
often useful for translating idiomatic expressions correctly and, in general, beneficial
in terms of fluency of the output sentences.
Furthermore, taking syntax into account allows to easily deal with non-contiguous
multiword expressions, another situation which is challenging to deal with by means
of traditional statistical approaches. For instance, if we consider the sentence “With-
out any linguistic knowledge, it is definitely hard” and its Italian translation “Senza
conoscenze linguistiche, è decisamente arduo”, a syntactical analysis would make it
possible to extract the correspondence “is hard”-“è arduo”, even if in both cases the
copula and its complement are separated by an adverb.
Last but not least, a syntax-based approach can produce correspondences between
grammatical objects, as opposed to pairs of strings. Alignments of this kind are
valuable, as they can more easily be utilized in rule-based MT systems.
With this thesis, we propose a syntax-based approach to both of the above mentioned
variants of CA - concept extraction and concept propagation - composed of a neural
Universal Dependencies (UD) parser and a rule-based alignment module. We put
our system to the test by integrating it in a prototype domain-specific MT system
based on Grammatical Framework (GF).

1An example of a more difficult case could be the alternative translation “Trovare corrispondenze
utili non è proprio un gioco da ragazzi”, roughly corresponding to “a child’s play” (literally “a game
(played) by children”). In this case, trying to align the sentence based on a syntactical comparison
would yield both “piece of cake”-“gioco da ragazzi” and the more questionable correspondences
“piece”-“gioco” and “of cake-“da ragazzi”.

2



1. Introduction

Structure of the thesis
This work is structured as follows. Chapter 2 gives a few basic definitions, including
a more rigorous one of CA itself, as well as providing the necessary background and
contextualizing our project by reviewing a few related works. Chapters 3 and 4
focus respectively on extraction and propagation, presenting both our approach to
each task and the corresponding experimental results, while Chapter 5 describes the
experiment designed to produce evaluate how well our CA component performs in
the context of MT. Finally, Chapter 6 consists of a discussion of the overall results
and proposes some ideas for future work.

3
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2
Theory and Technologies

In this chapter, we first review the preliminary notions of Computational Linguistics
relevant to this work. We then give a more rigorous definition of the problem at hand
and present the basic idea behind our proposed automation approach, comparing it
to the existing ones and mentioning the technologies involved.

2.1 Preliminary notions
This first section consists of an overview of the basic notions that are necessary for
a full understanding of the approach we propose. First, we discuss the principle
of compositionality. After that, we describe and compare the grammar formalisms
involved in the project, focussing on the two playing the most prominent roles in
this work and comparing them to other, related approaches.

2.1.1 Semantic compositionality
The principle of semantic compositionality states, in its most general form, that
the meaning of a complex expression is determined solely by the meanings of its
components and by the manner in which these components are combined [38].
A useful variant of this formulation, which refers to natural languages in particular,
is the following:

Definition 1 For every complex expression e in a language L, the meaning of e in
L is determined by the structure of e and the meanings of the constituents of e in L.

Questions of structure and constituency are settled by the syntax of L, while the
meanings of simple expressions are given by the lexical semantics of L, meaning
that syntax and lexical semantics, together, are sufficient to determine the entire
semantics of L [38].
According to this definition, then, if L is compositional, the meaning of an expression
e in L cannot depend directly on the context in which S is used in or on the intentions
of the speaker who uses it, even though it might be the case that the meanings of the
constituents of e depend on the context or on the speaker’s intentions, thus making
the sentence indirectly depend on them [18].
While many artificial languages, such as programming languages, are compositional
by construction, the general validity of this principle for natural languages is, despite
many arguments in favor, under debate. In this work, we make the assumption that

5



2. Theory and Technologies

compositionality also holds for natural languages, or at least that it is a useful notion
applying to most natural language sentences1.
In particular, we adapt the notion of semantic compositionality to translation. The
intuitive idea is that the translation of a sentence is composed of translations of each
part of the original one. Adjusting Definition 1:
Definition 2 For every complex expression e in a source language S, the translation
of e in a target language T is determined by the structure of e and the translations
of the constituents of e in T .

2.1.2 Constituency grammars
The idea of taking advantage of semantic compositionality is not new in the field
of Computational Linguistics. Doing so traditionally involves using some kind of
constituency grammar.
The notion of constituency or phrase structure grammar, introduced by Noam Chom-
sky in [9], is usually known to computer scientists due to the fact that a class of
phrase structure grammars, namely that of Context-Free Grammars (CFGs), that
can be used to describe programming languages and plays an central role in compiler
theory. As a consequence, we find giving a complete formal definition of the latter
unnecessary and will restrict ourselves to an informal review of the aspects that are
particularly relevant for the specific subject of this thesis.
A constituency grammar consists essentially in a set of rewrite rules, such as

S → NP VP ,

which we can read as “S can be rewritten as (or substituted with) a NP followed by
a VP”, or as “a sentence S is constituted by a noun phrase NP and a verb phrase
VP”.

S

N P VP

C N V

N

r u l egrammars

S → NP VP
NP → CN
VP → V
CN → N
N → " grammars "
V → "rule"

Figure 2.1: Parse tree of the simple sentence “grammars rule”. On the right, the
fragment of the simple but linguistically informed grammar necessary to obtain such
tree.

1In Section 3.2.3, however, we will see that idiomatic expressions, often used as an arguments
against compositionality, are also challenging to deal with in the context of grammar-based CA.

6



2. Theory and Technologies

Replacing the term “constituted” with “composed” makes it easy to understand in
which way phrase structure grammars are related to the aforementioned principle
of compositionality.

In the context of MT, the idea of exploiting the constituency relation and, as such,
compositionality, was proposed by Curry in the early 1960s [10] and first put in
practice two decades later in the form of an experimental interlingual translation
system, not coincidentally named Rosetta, which requires the definition of two dis-
tinct logically isomorphic Montague grammars2 - one for the Source Language (SL),
one for the Target Language (TL) - and constructs an intermediate representation
based on such isomorphism [23].

2.1.2.1 Synchronous grammars

Among constituency grammars, other formalisms that have been employed in more
recent MT systems are that of synchronous CFG, originally developed for program-
ming language compilation [2] and adapted to natural language translation in several
settings [30, 41, 42, 8], and, later on, that of synchronous TAG [36], a variation of
TAG (Tree-Adjoining Grammar) [19]. Both formalisms are meant to characterize
correspondences between languages by having as their elements, instead of single
rewrite rules, pairs of rules - one for the source and one for the target language. In a
synchronous TAG, the constituents of a SL rule may be linked to their counterparts
in the corresponding TL rule, and such links may be used to identify concepts in a
syntax-based fashion.

2.1.2.2 Grammatical Framework

As the repeated mention of programming language compilers in the above may sug-
gest, it is possible to draw a very close parallel between compiler and MT pipelines.
From this perspective, a natural language translation system can consist of:

• a frontend, where the SL is analyzed or parsed and whose output is an inter-
mediate representation most frequently in the form of an Abstract Syntax Tree
(AST)

• a backend, where the AST is linearized by means of application of a set of rules,
a process usually referred to as code generation in the context of programming
languages and that we will refer to as Target Language Generation (TLG)
or, when the context makes it clear that what the TL is, Natural Language
Generation (NLG).

2Montague grammars are a semantics-oriented development of categorial grammars, which are
in turn a type of constituency grammars.
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Figure 2.2: Steps of programming language compilation and, in the case of GF,
natural language translation. In compilation, the input is usually a high-level pro-
gramming language and the output is machine code (or code in a lower-level lan-
guage). In the case of MT, the input and the output are strings in two different
natural languages.

Grammatical Framework (GF), being a grammar formalism and programming lan-
guage designed with this parallel in mind, goes a step further in the direction of
synchronous CFGs and TAGs. It introduces in fact a clear distinction between the
abstract syntax, whose aim is to capture the syntactic structures all natural lan-
guages taken into account have in common, and the concrete syntaxes, specific to
each individual language, consisting in their linearization rules [32] [33]. This makes
it possible to deal with multiple languages by writing only one grammar, whose
components are an abstract syntax and several concrete syntaxes, providing a solid
basis for a system able to translate between any pair of for which a concrete syntax
is available, in any direction.
With respects to this, GF can be also seen as an interlingual MT system where
the intermediate representation or interlingua is an AST. Interlingua-based systems
have the advantage, in terms of efficiency, of making it unnecessary to build n(n−1)
translation functions to cover all possible pairs of n languages: having 2n is in
general enough. In GF in particular, using a multilingual grammar makes it so that
translation can be performed, for each pair of languages, in both directions, so that
n translation functions (or rahter n concrete syntaxes and an abstract syntax) are
already sufficient.
An advantage of GF in particular, in addition, is the availability of a set of resource
grammars - the Resource Grammar Library (RGL) - for a variety of languages. A
resource grammar is essentially a grammar that captures only the syntactic and
morphological structures of a language, i.e. a grammar in the traditional sense of
the term, and that can be easily extended to construct what is usually referred
to as an application grammar, i.e. a domain-specific grammar aiming to describe
the language in a way that is not only syntactically correct, but also semantically
accurate [33].
Extending the RGL in various ways, translation experiments with GF grammars
have been conducted in the field of eXplainable Machine Translation (XMT), as
the ASTs produced by SL analysis can serve both as to some extent automatically
checkable certificates for the correctness of translation - by backlinearization to the
SL - and as fully inspectable explanations aimed towards expert users [34].
While the approach described above has proved successful for domain-specific trans-
lation, i.e. in cases where the natural languages in question can be reduced to
Constrained Natural Languages (CNLs), when it comes to open-domain translation,
while target language generation remains effective, the results are negatively affected
by the lack of robustness of the GF-based parsers available at the time of writing.

8
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2.1.3 Dependency grammars
A class of grammar formalisms alternative to phrase structure, first proposed in
[39], is that of dependency grammars, the main difference between the two being the
relation they are based on. As opposed to constituency, dependency is a word-to-
word correspondence, meaning that words are simply put in relation with each other
via directed links, called in fact dependencies. Each dependency is, then, composed
of two words: a head and a dependent that refers to it. For instance, if we try to
look at syntactic dependencies in the sentence “grammars rule”, we could identify
the verb “rule” as the head and the noun “grammars”, its subject, as its dependent.

Intuitively, this means that dependency trees are simpler than their phrase structure
counterparts. This makes them an easier target for the frontend, possibly ML-based,
of a MT system such as the one outlined in the above. Existing dependency parsers,
such as UDPipe [37] and the Standford parser [7], are often - but not always [4]
- neural pipelines trained on dependency treebanks, significantly more robust than
their phrase structure counterparts.
On the other hand, there is currently no effective way to use these trees as a starting
point for NLG: dependency grammars are an effective way to describe language, but,
unlike phrase-structure grammars, they are not generative,3.
One idea is, then, to develop a hybrid system where the frontend is a dependency
parser and the backend a grammaticality-preserving GF-based target language gen-
eration module. This work goes in this direction, and the connecting link between
these two seemingly incompatible stages of the pipeline is, as we will elaborate on
in Section 2.2.3.2, a CA component able to identify matching dependency trees and
generate the corresponding GF concrete and abstract syntax functions: concepts.
While there are several different dependency-based frameworks, the following section
focuses on the one we find most well suited to this purpose, Universal Dependencies.

2.1.3.1 Universal Dependencies

Universal Dependencies (UD) is a framework for cross-linguistically consistent gram-
matical annotation. The UD project aims at developing parallel treebanks for many
languages in order to support, among other things, the development of multilingual
dependency parsers, such as the aforementioned UDPipe [37]. In order to do so, it
specifies an annotation scheme and a standard format for dependency trees consist-
ing in an evolution of (universal) Stanford dependencies [12, 11], Google universal
part-of-speech tags [28], and the Interset interlingua for morphosyntactic tagsets
[43]. The basic idea behind such standard is to provide a set of Part-Of-Speech
(POS) tags, dependency relations and annotation guidelines as language-agnostic
as possible - so to facilitate its application in multilingual settings - while allowing
language-specific extensions whenever necessary.
In the following, we give a quick overview of the standard format UD uses to store

3That does not mean, however, that dependency grammars have not been made use of in
MT research, in conjunction with statistical techniques, in order to better capture grammatical
generalizations [29].
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dependency trees and of the aspects of the annotation scheme that are most relevant
to the task at hand. Appendix A provides a more comprehensive, but not completely
exhaustive, description of all the POS tags and dependency labels mentioned in
the examples appearing in this work based on that in [31]. The reader interested
in a full specification of the UD annotation scheme may refer to the official UD
documentation4.

2.1.3.1.1 The CoNLL-U format

The standard plain text format for dependency trees, CoNLL-U, is an extension
of CoNNL-X [6] which may contain comment lines, starting with #, blank lines
marking sentence boundaries and word lines containing the annotation of a single
token (generally a word, with some exceptions5 in 10 tab-separated fields:

1. ID: integer6 representing the position of the word in the sentence, starting from
1

2. FORM: inflected from of the word
3. LEMMA: lemmatized form of the word
4. UPOS: universal POS tag
5. XPOS: language-specific POS tag (optional)
6. FEATS: list of (universal or language-specific) morphological features (optional)
7. HEAD: head of the current word, i.e. either the value of the ID of another word

in the same sentence or 0 in case the word at hand is a root
8. DEPREL: universal dependency relation to the HEAD (root in case the word at

hand is itself the root)
9. DEPS: enhanced dependency graph in the form of a list of HEAD-DEPREL pairs

(optional)
10. MISC: any other annotation (optional)

1 this this PRON _ _ 5 nsubj _ _
2 is be AUX _ _ 5 cop _ _
3 a a DET _ _ 5 det _ _
4 dependency dependency NOUN _ _ 5 compound
_ _
5 tree tree NOUN _ _ 0 root _ _

this is a dependency tree
PRON AUX DET NOUN NOUN

' $
?

nsubj' $
?

cop#  
?

det� �
?

compound

?

root

Figure 2.3: A dependency tree in CoNNL-U format alongside its graphical repre-
sentation. Optional fields in the CoNLL-U file are left blank.

2.1.3.1.2 Universal POS tags

Universal POS tags mark the core part-of-speech categories, such as nouns, verbs,
pronouns and determiners.

4Available at universaldependencies.org.
5Examples of such exceptions are Italian contractions such as “dello”, which is generally divided

into “del” + “lo”.
6Again, there are exceptions: in the case of Italian contractions and other multiword tokens,

ranges may be used. Furthermore, empty nodes are characterized by decimal numbers between 0
and 1.
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An important distinction we can make based on POS tags is, as we will see in
Section 3.1.2.1, that between content and function words. Content or open class
words are words with a lexical meaning (nouns, lexical verbs, adjectives, adverbs
and interjections). Function words, like pronouns and determiners, only have a
grammatical meaning. Since they do not readily accept new members7, they are
often referred to also as closed class words.
While the majority of Universal POS tags correspond to the grammatical categories
of traditional grammars, the UD annotation scheme does have its peculiarities. Most
importantly for the following discussion, verbs are divided into lexical verbs, tagged
VERB, and auxiliaries, tagged AUX, thus providing an easy way to distinguish between
content verbs and function verbs. A more systematic description of UPOS tags is
given in A.1.

2.1.3.1.3 Universal dependency relations

Universal dependency relations, largely based on [11], represent, as mentioned in
the above, syntactic dependencies between individual pairs of words occurring in
the same sentence. In particular, according to the CoNLL-U standard (cf. Section
2.1.3.1.1), each word is assigned a dependency label indicating in which way it is
liked to its HEAD.
In this sense, the only exceptional case, which will be the starting point for our
short overview of dependency relations, is that of the root label, generally assigned
to the main verb of a sentence, ignoring any auxiliaries. For instance, “smoked” is
the root of the sentence

Example 1 “Katia has just smoked a cigarette”

In cases such as the following, where the main verb is a copula, the root is its
complement and the verb is linked to it with the label cop.

Example 2 “Katia is a psychologist”

If a sentence contains is no verbs at all, there is no fixed rule excepts that, in order
to avoid unnecessary discrepancies between languages, the root should be a content
word.
Other dependency labels commonly found in simple clauses and that will be dwelt
on in Chapter 3, all exemplified in Figure 2.4, are:

• nsubj, marking the link between a noun, proper noun, pronoun or numeral to
the root of a sentence or, more in general, to the head of a clause

• aux, marking auxiliary verbs other than the copula
• obj, iobj and obl marking the link between a verb and its object, indirect

object and other complements respectively
• advmod, amod, nummod and nmod, marking links between modifiers and the

nouns or verbs they refer to
• flat, indicating a flat multiword expression, and compound, appearing in com-

pound nouns whenever they are written as two or more separate words.
7One exception is the recent introduction of the gender-neutral pronoun “hen” in Swedish.
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Katia has just smoked a cigarette
PROPN AUX ADV VERB DET NOUN

' $
?

nsubj' $
?

aux� �
?

advmod ��
?

det
' $

?

obj

?

root

Katia has worked in a big school library
PROPN AUX VERB ADP DET ADJ NOUN NOUN

#  
?

nsubj��
?
aux

' $
?

case' $
?

det#  
?

amod� �
?

compound

' $
?

obl

?

root

Katia is a psychologist
PROPN AUX DET NOUN

' $
?

nsubj# 
?

cop��
?
det

?

root

Katia showed me a book about the Stone Age
PROPN VERB PRON DET NOUN ADP DET PROPN PROPN

� �
?
nsubj � �

?
iobj ��

?
det

#  
?

obj #  
?

case��
?
det

' $
?

obl

� �
?

flat

?

root

Figure 2.4: UD trees showing the common dependency relations that are discussed
in Chapter 3. The three on the left correspond to examples 1 and 2.

A more detailed description of all the UD labels mentioned in this work is given in
A.2. However, because the topic will arise in Chapter 3, it is also worth mentioning
that CoNNL-U trees can present UD labels followed by a subtype, separated by
the label itself by a semicolon and used to indicate grammatical relations that are
specific to one language or a small group of related languages. A subtype that
is commonly used in English is, for instance, pass, added to both the (clausal or
nominal) syntactic subject and aux of a sentence in passive voice.

Katia reads a magazine
PROPN VERB DET NOUN

� �
?

nsubj ��
?

det
' $

?

obj

?

root

A magazine is read by Katia
DET NOUN AUX VERB ADP PROPN

��
?

det
' $
?

nsubj:pass��
?

aux:pass ��
?

case
' $

?

obl

?

root

Figure 2.5: The UD trees of an example active sentence and its passive counterpart.

2.1.3.1.4 Relation to GF

The complementarity of constituency and dependency grammars and the multilin-
gual nature of UD make it interesting to use in conjunction with GF, and experi-
ments aimed at exploiting their similarities have already been performed [22, 35]. In
the case of hybrid MT pipelines as the one sketched in Section 2.1.3, UD trees need
to be at some point converted into GF ASTs, albeit with the disadvantage that, un-
like its reverse, the UD-to-GF conversion is a non-deterministic search problem. An
algorithm for conversion in this direction is presented in [35], where gf-ud, a pro-
gram for converting GF ASTs into UD trees initially presented in [22], is extended
to also be able to do the reverse.

2.2 Concept Alignment
In this section, we aim to give an exhaustive description of CA and of the subtasks it
consists of. In order to do that, we deem it necessary to start by giving a definition
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PredVPS :  S

UsePron  :  NP UseComp :  VP

they_Pron  :  Pron CompAP :  Comp

PositA : AP

different_A : A

they are different
PRON AUX ADJ

' $
?

nsubj��
?

cop

?

root

Figure 2.6: A GF AST and its UD counterpart. Note how the copula is implicit
in the GF AST and subordinate to its complement in UD.

of what we commonly refer to as concepts.

2.2.1 Concepts
Intuitively, concepts are the components of meaning, and therefore, in a multilingual
context, the units of translation. If we assume the principle of compositionality to
be valid and apply it to translation, these meaning components are the common
denominator between an expression in the source language and its translation, which
can be generated using them as the starting point.
From the compiler-like perspective described in Section 2.1.2.2, this means that
concepts are what the abstract syntax should represent, i.e. that they are the
“interlingua” of the MT system. This raises the question of how to obtain the
abstract syntax needed for GF-based MT starting from a corpus of parallel texts,
and it is at this point that language comparison and, as such, CA, come into play.

2.2.2 Alignments
In terms of parallel text analysis, an alignment consists in a pair of semantically
equivalent (i.e., in this context, sharing the same abstract syntax) concrete ex-
pressions, one in the source and one in the target language. Even though, unless
otherwise specified, we will keep referring to language pairs, with a source and a tar-
get language, it is easy to see how this can be generalized to a more-than-bilingual,
multidirectional definition. The pair just mentioned simply becomes a tuple of
equivalent expressions in different languages. Formally,

Definition 3 An n-lingual alignment is an n-uple 〈e1, ..., en〉 of semantically equiv-
alent expressions, where each expressions ei is in a different language Li.

While this general definition does not specify it, expressions are not necessarily
represented as strings, but can rather be defined as tree-like structures, and in the
present case as dependency trees that can later be replaced by GF ASTs. Matching
ASTs can finally be used to generate the rules of a multilingual GF grammar, as we
will discuss in Chapter 5.
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As mentioned in the Introduction, the task of aligning concepts comes in two vari-
ants:

1. Concept Extraction (CE), which consists in identifying new concepts via
linguistic comparison and whose output is a set of bilingual alignments

2. Concept Propagation (CP), i.e. the task of finding the concrete expressions
corresponding to a set of known concepts in a particular language. Here,
by concepts we do not mean necessarily ASTs, as a suitable approach is to
propagate UD tree alignments before obtaining the corresponding abstract
representation.

If, as in the case of this project, the aim is to develop a multilingual MT system,
these two tasks can be seen as two potentially subsequent steps. A first objective,
in fact, can be to extract a set of concepts by comparing two translations of the
same text. Once these concepts are in adequate number and of sufficient quality,
it becomes possible to provide support for additional languages by simply looking
for the concrete expressions that, in the new language, correspond to each of the
previously gathered concepts. In other situations, clearly, CE alone can be enough
or, if a set of concepts is already known, CP can be applied independently from CE
to find their equivalents in a new language.

2.2.3 Approaches to automation
Some form of manual, semi- or fully automated CA is in a sense at the heart of all
traditional, even very early, MT systems. In the following section, we review some
standard approaches. After discussing their limitations, we conclude the chapter
with an overview of the grammar-based approach proposed in this thesis.

2.2.3.1 Existing methods

In the simplest case, word alignment consists in finding pairs of individual words
that translate to each other and store them in a dictionary. The standard automatic
approaches to this task are statistical, and among them the five IBM Models [5] and
their numerous variations stand out. The IBM Models are a sequence of increasingly
complex alignment models [40]:

• Model 1 is based exclusively on lexical translation probabilities
• Model 2 takes word order (i.e. the absolute word positions) into account
• Model 3 takes even a fertility parameter into account (fertility being the num-

ber of target words that can be generated from a given source word)
• Models 4 and 5 take the context (i.e. the relative position of the words) in

which each word occurs into account in a broader sense
The GIZA++ toolkit [26], an open source implementation of the IBM models based
on the initial GIZA package [3], is widely used, for instance in SMT systems such
as Moses [21].
As mentioned in the Introduction, however, alignment can be performed at different
levels of abstraction: to bring this to the extreme, there are contexts in which we
might want to align full sentences, or even whole documents. While the latter two
levels of abstraction are not necessarily relevant to MT, only aligning individual
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words is also, as discussed in the Introduction, not always the best option. For this
reason, word alignment is often generalized to phrase alignment. In systems like
GIZA++, whose output is a list of pairs of word positions indicating which words
in the SL string are to be aligned with which words in the TL string (commonly
referred to as the pharaoh format), extracting phrase alignments by combining the
indices is realtively straightforward.

SL “Word alignment with standard statistical tools”

TL “Allineamento parola per parola con strumenti
statistici standar”

0-1 0-2 0-3 1-0 2-4 3-7 4-6 5-5

• 0-1 0-2 0-3: 〈“word”, “parola per parola”〉

• 1-0: 〈“alignment”, “allineamento”〉

• 2-4: 〈“with”, “con”〉

• 3-7: 〈“standard”, “standard”〉

• 4-6: 〈“statistical”, “statistici”〉

• 5-5: 〈“tools”, “strumenti”〉

• 0-1 0-2 0-3 1-0: 〈“word alignment”, “allineamento parola per parola”〉

• ...

...

Figure 2.7: The pharaoh format output of optimal word alignment on a pair of
Italian-English sentences and, below, some of the phrase alignments that can be
derived from it.

However, it must be noted that, in the context of statistical MT, the term “phrase”
is not to be intended in its grammatical sense, but can refer to any sequence of
- typically contiguous - words. In any case, both for word and phrase alignment,
the relation that is established with these statistical methods is merely between
strings in different languages: there is no intermediate representation capturing the
concepts themselves.
The parallel between MT and compiler pipelines proposed in Section 2.1.2.2 sug-
gests instead that a more flexible approach, applicable at any level of abstraction,
could be grammar-based. This is particularly useful in cases, not at all uncommon,
where the minimal translation units are, in one or both the source and the target
language, multiword - potentially discontinuous - expressions or even more complex
constructions that phrase alignment is not able to handle.
Over time, various constituency grammar-based approaches have been proposed
[25, 20]. These approaches, which make use of parallel treebanks, can be referred to
as tree-to-tree alignment methods [40]. While theoretically appealing, however, their
use in data-driven MT is limited, since they tend to suffer not only from the scarce
availability of large-scale manually annotated corpora and the lack of robustness
of the existing parsers, but also from the fact that, in general, the monolingual
grammars used for parsing tend to be designed independently from each other,
following different traditions, formalisms and linguistic theories [17], thus making it
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often impossible to find a common representation describing a complete mapping
from one tree to another [40].

2.2.3.2 Our approach

Given that GF solves the latter problem, that it provides a good basis for NLG
and that the intermediate representations it makes use of preserve all the syntactic
information present in a sentence, the idea of trying to perform CA by comparing
GF ASTs seems tempting. However, since ASTs need to be obtained from raw - or,
at most, barely sentence-segmented - text, CA would suffer from the same problem
that, as mentioned in in Section 2.1.2.2, affects other tree-to-tree alignment methods
and GF-based open-domain translation: the lack of a sufficiently robust analysis
stage and, as a consequence, the inadequacy of the resulting parse trees.
As anticipated throughout this chapter, we attempt to solve this problem by taking
advantage of dependency parsing. In particular, UD is our formalism of choice since
its focus on “universality” (i.e. on abstracting away from cross-lingual differences)
makes it as interesting as GF itself when it comes to the possibility of establishing
mappings between trees in different languages. Furthermore, when it comes to MT
itself, using UD allows us to take advantage of the tools that have been developed
to leverage its similarities with GF (cf. Section 2.1.3.1), thus enabling GF target
language generation.
Concretely, this means that the system we propose requires the following elements,
whose reciprocal relations are shown in Figure 2.8:

• a UD parser
• an alignment module based on dependency tree comparison, which is the tan-

gible output of this project and whose CE and CP components are described
and evaluated in detail in Chapters 3 and 4 respectively

• a program, based on gf-ud, that converts the alignments into GF ASTs to
then generate a domain-specific GF lexicon8.

The CE and CP modules are implemented as part of the project, while the UD
parser and gf-ud are independently developed open source software, even though
the latter, being currently under development was adapted and extended as part of
the process. In addition, we provide a simple GF-based translation script to evaluate
the performance of the CA module to the test.

8CA is performed on UD trees, i.e. before conversion to GF, to reduce the possibility of errors.
The reason is that, as mentioned in Section 2.1.3.1.4, in fact, such conversion is not obtained by
means of a deterministic procedure and, as such, is not always guaranteed to be correct.
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Figure 2.8: Relationship between the different components of the system proposed
in this work. The diagram shows the minimal, trilingual use case in which both CE
and CP can be made use of.

17



2. Theory and Technologies

18



3
Concept Extraction

As mentioned in Section 2.2.2, extracting a set of concepts via linguistic comparison
is the first and most important step of CA. This chapter describes our CE module,
delineates our strategy to evaluate it independently from the other components of
the system illustrated in Figure 2.8 and presents the results of such preliminary
evaluation.

3.1 Method and implementation
For the reasons discussed in Section 2.2.3.2, our syntax-based approach to CE is
based on comparing, instead on ASTs, dependency trees, and UD trees in particular.
The task of dealing with UD trees is facilitated by the existence of a series of Haskell
modules written in the context of the development of the aforementioned gf-ud and
of some preliminary unpublished CA experiments1.
In this context, as shown in Figure 3.1, dependency trees are represented as rose
trees, i.e. tree data structures with an unbounded, variable number of branches per
node.

data UDWord = UDWord {
udID :: Int ,
udFORM :: String ,
udLEMMA :: String ,
udUPOS :: String ,
udXPOS :: String ,
udFEATS :: [ String ],
udHEAD :: Int ,
udDEPREL :: String ,
udDEPS :: String ,
udMISC :: [ String ] }

data RTree n = RTree n [RTree n]

type UDTree = RTree UDWord

type Alignment = (UDTree , UDTree )

Figure 3.1: Fundamental data types used for representing dependency trees in the
CA module.

1Aarne Ranta and Prasanth Kolachina, code available at github.com/aarneranta/
concept-alignment/tree/master/old_ca_versions/v1
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3. Concept Extraction

As shown in Figure 3.1, the type of the nodes of such trees, UDWord, is a record type
whose fields mirror those of a CoNLL-U file (cf. 2.1.3.1.1). Alignments are, as for
Definition 3, simply pairs of UD trees.

1 another another DET _ _ 3 det _ _
2 dependency dependency NOUN _ _ 3 compound _ _
3 tree tree NOUN _ _ 0 root _ _

RTree {
root = UDWord {
udID = 3, udFORM = "tree", udLEMMA = "tree", udUPOS = "NOUN", (...), udHEAD = 0,
udDEPREL = "root", (...)},

udDEPREL = "root", (...)},
udDEPREL = "root", (...)},

subtrees = [
RTree {
root = UDWord {
udID = 1, udFORM = "another", udLEMMA = "another", udUPOS = "DET", (...),
udHEAD = 3, udDEPREL = "det", (...)},

udHEAD = 3, udDEPREL = "det", (...)},
udHEAD = 3, udDEPREL = "det", (...)},

subtrees = []},
RTree {
root = UDWord {
udID = 2, udFORM = "dependency", udLEMMA = "dependency", udUPOS = "NOUN", (...),

udID = 2, udFORM = "dependency", udLEMMA = "dependency", udUPOS = "NOUN", (...),
udID = 2, udFORM = "dependency", udLEMMA = "dependency", udUPOS = "NOUN", (...),
udHEAD = 3, udDEPREL = "compound", (...)},

udHEAD = 3, udDEPREL = "compound", (...)},
udHEAD = 3, udDEPREL = "compound", (...)},

subtrees = []}]}

3 tree tree NOUN _ _ 0 root _ _
1 another another DET _ _ 3 det _ _
2 dependency dependency NOUN _ _ 3 compound _ _

Figure 3.2: The CoNLL-U and rose tree representation of a dependency tree. In the
rose tree in the middle, fields left black in the CoNLL-U representation are omitted
for compactness. The third representation, easier to read, resembles CoNNL-U
notation while graphically showing the structure of the tree. This notation will be
used for the other examples of this chapter.

3.1.1 Baseline
The original CE algorithm, dating back to the above mentioned CA experiments,
has two stages, sketched respectively in Figure 3.3 and 3.4. The first consists in,
given two trees corresponding to a sentence and its translation, aligning the entire
trees by recursively sorting and padding their lists of subtrees. In particular:

• sorting is based on the UD label of their root
• what is meant by padding is the insertion of a dummy dependency subtree

wherever a tree in the source (resp. target) language has a subtree with UD
label l that is missing in its target (resp. source) language counterpart. This
is useful, for instance, for dealing with cases where a determiner in a sentence
in the SL is omitted in its translation.
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The result of this first step is a pair of perfectly aligned trees, i.e. trees with identical
shape that can later be used to extract the pairs of aligned subtrees.

align :: (UDTree , UDTree ) → Alignment
align (RTree n ts ,RTree m us) = (RTree n pts , RTree m pus)

where
(pts ,pus) = unzip [align (t,u) |
(t,u) <- padSubtrees ( sortSubtrees ts) ( sortSubtrees us)]

where
root (RTree n _) = n
sortSubtrees = sortOn ( udDEPREL . root)
padSubtrees xs ys = case (xs ,ys) of

(x:xs ', y:ys ')
| k x == k y → (x,y): padSubtrees xs ' ys '
| k x < k y → (x,d): padSubtrees xs ' ys
| k x > k y → (d,y): padSubtrees xs ys '

(_ ,[]) → [(x,d) | x <- xs]
([],_) → [(d,y) | y <- ys]
_ → []
where

d = padUDNode -- dummy node used for padding
-- padding key to compare subtrees
k t = ( udDEPREL (root t),

distanceDepNode (root t))

Figure 3.3: The alignment step of the basic CE algorithm. Given two full sentence
trees, it aligns them by sorting and padding.

Once two sentence trees are aligned, extracting pairs of aligned subtrees is just a
matter of recursively obtaining the lists of all subtrees of each sentence and zip-
ping them together. Every time a pair of subtrees with depth greater than 1 is
extracted, in addition, a new pair of subtrees whose only nodes are their roots is
added. This makes it possible to find single-word alignments, which we refer to as
head alignments, that would otherwise be ignored.

extract :: Alignment → [ Alignment ]
extract (t,u) = zip (subts ' t) (subts ' u)

where
subts ' t = let ts = subts t in ts ++ map headt ts

where
subts t = t: concatMap subts ( immediateSubts t)

where immediateSubts (RTree _ ts) = ts
headt (RTree n _) = RTree n []

Figure 3.4: The extraction step of the basic CE algorithm. Given two perfectly
aligned trees, it returns a list of pairs of aligned subtrees. To do that, it extracts all
subtrees (at any depth, cf. subst’) of each member of the sentence alignment. For
each extracted subtree, a new tree whose only node is its root is also created (cf.
headt).

After extracting subtree alignments, it is possible and generally useful to remove the
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dummy subtrees added during alignment they contain.

4 aligned aligned ADJ _ _ 0 root _ _
1 we we PRON _ _ 4 nsubj _ _
2 are be AUX _ _ 4 cop _ _
3 perfectly perfectly ADV _ _ 4 advmod _ _

3 allineati allineato ADJ _ _ 0 root _ _
1 siamo essere AUX _ _ 3 cop _ _
2 perfettamente perfettamente ADV _ _ 3 advmod _ _

⇓ sorting

4 aligned aligned ADJ _ _ 0 root _ _
3 perfectly perfectly ADV _ _ 4 advmod _ _
2 are be AUX _ _ 4 cop _ _
1 we we PRON _ _ 4 nsubj _ _

3 allineati allineato ADJ _ _ 0 root _ _
2 perfettamente perfettamente ADV _ _ 3 advmod _ _
1 siamo essere AUX _ _ 3 cop _ _

⇓ padding

4 aligned aligned ADJ _ _ 0 root _ _
3 perfectly perfectly ADV _ _ 4 advmod _ _
2 are be AUX _ _ 4 cop _ _
1 we we PRON _ _ 4 nsubj _ _

3 allineati allineato ADJ _ _ 0 root _ _
2 perfettamente perfettamente ADV _ _ 3 advmod _ _
1 siamo essere AUX _ _ 3 cop _ _
D

we are perfectly aligned
PRON AUX ADV ADJ

' $
?

nsubj' $
?

cop� �
?

advmod

?

root

D siamo perfettamente allineati
AUX ADV ADJ

' $
?

' $
?

cop� �
?

advmod

?

root

• 〈“we are perfectly aligned”, “siamo perfettamente allineati”〉

• 〈“aligned”, “allineati”〉 (head alignment)

• 〈“are”, “siamo”〉

• 〈“perfectly”, “perfettamente〉

• 〈“aligned”, “allineati〉

Figure 3.8: Steps of the baseline CE algorithm. First, the rose tree representations
of two yet-to-align dependency trees. Just below, the two rose trees after sorting
and padding. Finally, the graphical representations of the resulting perfectly aligned
trees and the linearizations of the aligned subtrees extracted from them. Since,
in Italian, the subject is implicit, a dummy node, marked as D, is added to the
corresponding tree during the padding step.

Obviously, the “full-sentence” tree pair is itself an alignment, even though a trivial
one, as it represents a sentence-level correspondence in a case where, due to the
approach being syntactic comparison, the inputs are assumed to be sentences that
correspond to each other2.

2Contrary to what it may seem, however, sentence-level alignment is in general not na trivial
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As we will see in the following sections, such algorithm is useful both as a baseline
and as a source of inspiration for our improved CE program.

3.1.2 Proposed improvements
While one of the most important ideas in the improved version of the CE module
proposed in this thesis remains aligning (sub)trees with identical root UD labels,
using this criterion alone makes our baseline both unable to detect many of the ex-
isting correspondences and prone to extract incorrect ones. This happens both when
syntactic similarity is only apparent and when words are aligned based exclusively
on the fact that they are the roots of two aligned subtrees3. As a consequence, the
objective of this part of the project is to improve both the precision and the recall
of the algorithm (or rather, for reasons that will be discussed in Section 3.2.2, two
approximations of such metrics).

3.1.2.1 Multiple alignment criteria

One obvious way to increase the total number of alignments the algorithm detects is
to, instead of considering as aligned only subtrees in matching contexts, i.e. whose
heads are attached to the same node, and with matching UD labels, make use of a
set of additional, possibly more relaxed, criteria. In the following, formal definitions
of all the criteria used in the current implementation, including the original one, are
given.

3.1.2.1.1 Label matching

As mentioned in section 3.1.1, the only alignment criterion the original version of the
CE module makes use of is based on comparing the UD labels of each pair of trees
candidate for alignment, i.e. of each pair of trees in matching contexts. Formally:

Criterion 1 (Matching UD labels) Two dependency trees t, u will be aligned if
their roots share the same UD label.

When referring to UD labels we disregard, unless otherwise specified, subtypes.

3.1.2.1.2 POS-equivalence

As mentioned in Section 2.1.3.1, dependency trees provide information not only on
the syntactic role of each word, but also on their grammatical category, represented
as a universal Part Of Speech (POS) tag. Intuitively, if the words corresponding to
the nodes of two trees in matching contexts have the same POS tags, the two trees
are generally more likely to correspond to each other than if not. As a consequence,
a useful relation to define between dependency trees is that of POS-equivalence:

task, as it is often the case, especially in certain language pairs, that one orthographic sentence,
i.e. a sentence defined based on the presence of a full stop, maps to more than one orthographic
sentences in the translated text, or vice versa.

3See Section 3.1.2.2.2 for a more detail discussion on head alignment.
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Criterion 2 (POS-equivalence) Two dependency trees t, u are POS-equivalent
(and, as such, will be aligned) if M1 = M2 6= ∅, where Mi is defined as the multiset
of POS tags of all the meaning-carrying (see below) word nodes of ti.

The definition specifies that the two multisets should not contain the POS tags of
all the words in the sentence but rather only those of the meaning-carrying ones,
referring to words belonging to a particular set of classes. Words that should gener-
ally be taken into account, in fact, correspond roughly to content words (cf. Section
2.1.3.1.2), but this term was deliberately avoided in Definition 2 due to the fact
that it can be useful also to include some function words, for instance pronouns
and some kinds of determiners. In particular, the current implementation considers
as meaning-carrying all words that belong to an open class - defined as in the UD
documentation [1] - and numerals, but this set of tags has been obtained empirically
working with English-Italian and might not be ideal for all language pairs. On the
other hand, words belonging to other classes, such as auxiliary verbs, adpositions
and conjunctions can and should be in most cases ignored as they are often omitted
or rendered with words with different POS tags when the sentence is translated to
another language, especially if the two languages in the pair at hand differ signifi-
cantly.
Applied alone, this criterion can be used to capture correspondences that would
otherwise be missed, thus increasing recall, but a decrease in precision is also to be
expected. Perhaps more interestingly, however, another way to apply this criterion
is in conjunction with other ones, and in particular together with UD label matching
(cf. Criterion 1), in context where high precision is more important than recall. We
will get back to combining criteria in Section 3.2.4.

3.1.2.1.3 Handling divergences

While we do not want to make our CE module language pair-specific, there are
many cases where parallel texts present significant and systematic cross-linguistic
distinctions. Some of these distinctions, formalized in [13], have nothing to do with
idiomatic usage or aspectual, discourse, domain or word knowledge and are not
specific of particular language pairs, even though they do occur more often in some
than they do in others. Drawing inspiration from [13] and [16], we refer to these
distinctions as divergences and introduce a third alignment criterion based on them:

Criterion 3 (Known divergence) Two dependency trees t, u will be aligned if
they match a known divergence pattern.

In [13], seven classes of divergences are identified: thematic, promotional, demo-
tional, structural, conflational, categorial and lexical. However, because the author’s
proposed way to resolve divergences assumes the availability of more than merely
syntactic information4 and because, working with UD trees, we do not have access
to anything but strictly syntactical and morphological annotations, the very task of
identifying these distinctions at this level of granularity becomes, in our position,

4In particular, of a lexicon of Root Lexical Conceptual Structures specifying, for instance, the
logical subject, arguments and modifiers of each verb.
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extremely challenging. Consequently, we refer to the simpler classification and less
formal definitions proposed in [16], where promotional and demotional divergences
are merged in a wider-coverage category of head-swapping divergences and where
lexical divergences, the hardest to handle in the absence of any kind of semantic
information, do not appear at all. In the following, we give definitions and examples
for each of these classes of divergences, specifying to what extent and how5 each of
them is handled in the proposed language-agnostic CE module. We do not attempt
to cover all possible cases, but rather provide a few examples as a proof of concept.

Categorial divergence A categorial divergence happens when the translation of
a word with POS tag P1 is a word with a different POS tag P2. The instances of
this class of divergences our CE module handles explicitly are some of those that
cannot be captured by Criterion 1 alone due to the fact that the difference in POS
tags also causes the UD labels to be different, and in particular:

• cases where an adverb in the source language corresponds to an adjective in
the target language (and vice versa: all rules the program is based on are
symmetrical), e.g.

Example 3 “Roberta listens distractedly” VS “Roberta lyssnar distraherad”

where the English “distractedly” is an adverb and the Swedish “distraherad”
is an adjective and, as such, would be labelled respectively as an advmod of
“lyssnar” and as an amod of “Roberta”

• cases where a nominal modifier (nmod) in the source language is rendered as an
adjectival modifier (amod) in the target language, like the following, where the
English adjective “doctoral” becomes the Italian noun “dottorato”, preceded
by the preposition “di”:

Example 4 “Herbert completed his doctoral thesis” VS “Herbert ha comple-
tato la sua tesi di dottorato”

• cases where an adverb is rendered as an oblique, such as

Example 5 “Nicola studies consistently” VS “Nicola studia con costanza”

There are indeed other divergences of this kind that can occur in a parallel text and
cannot be captured by Criterion 1, such as

Example 6 “Claudio is hungry” VS “Claudio ha fame”

where, in the original sentence, the complement of the copula “am”, “hungry”, would
be labelled as its root but, in Italian, the noun “fame” is the object of the root verb
“ha”. It proved hard to detect cases like this via purely syntactic rules without
causing the program to extract a lot of incorrect alignments as well, but if necessary
it is easy to modify the program by removing or adding rules of this kind, potentially
even language-specific.

5Unless otherwise specified, each divergence can be expressed as a set of simple rules in the form
of boolean functions taking the pair of UD trees candidate for alignment as input. An example of
this can be found in Appendix C.3.
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Conflational divergence Conflational divergences involve the translation of two
or more words in the source language using a single word that combines their mean-
ings in the target language. A straightforward example is that of compounds, for
instance
Example 7 “Filippo is interested in game development” VS “Filippo är intresserad
av spelutveckling”
but there are also other cases, like
Example 8 “I’ll come and say hi to Bruno and Andrea” VS “Verrò a salutare
Bruno e Andrea”
where the single word “salutare” is not a compound but expresses the same meaning
as “say” and “hi” together. Divergences like the one described in the latter example
are usually captured by Criterion 1, while compounds often need to be taken care
of explicitly. For reasons that will become clear later, these cases are discussed in
Section 3.1.2.2.2.

Structural divergence Structural divergences happen when the subject, object
or indirect object of a sentence in the source language are rendered as obliques in
the source language. For instance, in the sentences
Example 9 “I called Francesco” VS “Ho telefonato a Francesco”
what is the direct object in English (“Francesco”) becomes a prepositional phrase
(“a Francesco”) in Italian. Even though in many cases these divergences can be
captured by POS-equivalence, in order to ensure higher precision, the CE module
handles all of them explicitly via rules that combine it with UD label checking and
whose priority is higher than that of the basic Criterion 2.

Head swapping divergences Head swapping divergences always involve a head
verb and a logical modifier and occur when the logical modifier is placed lower (resp.
higher) in the source language sentence than in its target language counterpart. For
instance, in the following example
Example 10 “Anna usually goes for walks” VS “Anna brukar promenera”
in Swedish, the logical modifier “usually” is implicitly expressed by the verb “brukar”
itself, i.e. placed “higher up”.
These divergences are, while not uncommon, hard to handle without access to a
lexicon where entries for verbs are complete with a list of arguments and modifiers6.

Thematic divergence Thematic divergences can happen when the logical subject
of a sentence in the target language differs from its grammatical subject. An example
of thematic divergence is the following:
Example 11 “Yana likes books” VS “A Yana piacciono i libri”

6On the other hand, developing the CA module further could be a way to construct such a
“rich” lexicon, as will be discussed in Chapter 6.
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In this case, in the Italian translation, the (logical and grammatical) subject of the
English sentence, Yana, is expressed, even though it is still the logical subject of the
sentence, as an oblique; the object books becomes the grammatical subject (i libri)
in Italian, while the head verb remains in both cases the root.
Similar to this are the cases where a passive sentence in the source language is
rendered as active in the target language and, as a consequence, the subject and
complements are swapped:
Example 12 “The game had only been tried by Andrea” VS “Solo Andrea aveva
provato il gioco”

One could object that divergences like the above (and some other) could - and
maybe should - be avoided when translating a text. We will not dwell upon this,
since what matters for the purpose of CA is not what is desirable in natural language
translation but rather what divergences do occur in the human-translated parallel
texts available for analysis.
Given that UD provides a subtype pass for nsubjs and auxiliary verbs, it is easier to
explicitly handle cases such that of Example 12, while those that resemble Example
11 are left, for the moment, unhandled.

3.1.2.2 New extraction algorithm

The decision to use different alignment criteria simultaneously, together with the
nature of the criteria described in the above themselves, implies that perfect align-
ment must be given up: the new algorithm is such that aligned subtrees are not
extracted from a pair of sorted and padded sentence trees but rather obtained by
direct comparison between the original trees. Aligning a pair of sentences means,
then, checking if the corresponding UD trees t, u match any of the criteria at hand
and, if they do, considering them as the members of an alignment, adding the align-
ment to a collection and recursively repeating the same procedures for all possible
pairs t′, u′, where t′ is a subtree of t and u′ is a subtree of u.

3.1.2.2.1 Pruning alignments

In its most basic version, this algorithm does nothing to avoid subtrees in the source
language to be aligned with multiple subtrees in the target language and vice versa.
As a consequence, it systematically overgenerates alignments.
To avoid overgeneration, or rather to counter it, we need a way to select, in the
very common case that the algorithm detects several alignments alternative to each
other within the same sentence, the one that is more likely to be correct. A way to
do this is to sort such alignments based on their “reliability” and only keeping the
first alternative. The question becomes, then, how to sort the alignments.
To answer this, it must be first of all said that the criteria described in Section 3.1.2.1
are not to be considered equally reliable nor describe equally frequent situations. For
this reason, a way to obtain a series of alignments that are, in part, implicitly sorted
is to apply criteria (or particular combinations of criteria) in a specific order that
can be determined empirically and is easily modifiable thanks to the fact that, in its
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type Criterion = UDTree → UDTree → Bool

alignExtract :: [ Criterion ] → (UDTree , UDTree ) → [ Alignment ]
alignExtract cs (t@(RTree n ts), u@(RTree m us)) =

if (not . null) applyingCriteria
then (t,u): concatMap ( alignExtract cs) [(t',u') |

t' <- sortSubtrees ts , u's <- sortSubtrees us]
else []
where

applyingCriteria = filter (\c → c t u) cs
sortSubtrees = sortOn ( udDEPREL . root)

Figure 3.9: Basic version of the improved CE algorithm. Instead of aligning full
sentence trees and only then extract concepts comparing the structure of the trees
and their UD labels only, it recursively extracts pairs of aligned subtrees directly.
To do so, for each pair of subtrees occurring in the same context, it tries to apply
multiple criteria, implemented as boolean functions telling whether two trees should
become the members of an alignment.

current implementation, the algorithm outlined above takes a list of criteria assumed
to be in order of priority as one of its parameters.
It can happen, however, that two trees match more than one of the criteria. For
instance, two trees might have their roots sharing the same UD label (cf. Criterion
1) and be POS-equivalent. In such cases, it intuitively makes sense to consider
them more likely to be exact, as there are literally more reasons to align them.
This makes the implicit ordering that the solution just described produces “for free”
insufficient and leads to the necessity to keep track of the set of reasons why an
alignment has been extracted and only then sort the alternative alignments. From
the implementative point of view, each alignment is simply associated with a Set of
labels, whose type is in fact named Reason and has an ordering defined over. The
final sorting is based on:

1. the number of reasons for alignment
2. the priority level of the highest-priority reason

These labels can even be part of the final output of the CE module, thus adding an
ulterior level of explainability to the system it belongs to.

3.1.2.2.2 Aligning heads

As mentioned in Section 3.1.1, the original version of the algorithm creates, every
time an alignment is extracted, an additional one for the for the heads of its two
members, which we refer to as a head alignment. Doing this is a crucial part of the
algorithm, as the following example, concerning a straightforward to align pair of
sentences, shows:

Example 13 Consider the English sentence “Enrico eats a banana” and its Italian
equivalent “Enrico mangia una banana”. As the figure below shows, their trees are
perfectly aligned without any need for padding or sorting:
Without head alignments, the output of the algorithm described so far would be:
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Enrico eats a banana
PROPN VERB DET NOUN

� �
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Enrico mangia una banana
PROPN VERB DET NOUN
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?
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?

det
' $

?

obj

?

root

• 〈“Enrico eats a banana”, “Enrico mangia una banana”〉
• 〈“Enrico”, “Enrico”〉
• 〈“a banana”, “una banana”〉
• 〈“a”, “una”〉

while introducing head alignment leads to detecting two additional, equally relevant
one-word correspondences7:

• 〈“eats”, “mangia”〉
• 〈“banana”, “banana”〉

While it is of extreme importance not to miss alignments like the last two in the
example above, aligning heads is not always appropriate, especially when, as in
the present case, common translation divergence patterns are one of the criteria.
For instance, when two trees are aligned because of a categorial divergence such
as that of Example 4, where “doctoral” corresponds to “di dottorato”, it is at least
questionable to also align “doctoral” with “dottorato”. Consequently, in the current
implementation of the algorithm, each alignment criterion is associated with a flag
telling whether heads should also be aligned whenever a new alignment is extracted
because of that criterion.
In a way, even though it is handled differently from the others discussed so far, that
of aligning heads could also be seen as another alignment criterion:

Criterion 4 (Heads of matching trees) The roots n1, n2 of two trees t, u will
be aligned if t and u are aligned.
There are also cases where some sort of head alignment is desirable but it is not as
simple as creating an additional alignment from the roots of each pair of aligned sub-
trees. As a consequence, an important part of the improved CE module developed
within this project is a function alignHeads that performs head alignment with the
necessary caveats. Following are the two special cases its current implementation
is able to handle correctly despite being less straightforward. As for translation
divergences, there may well be other cases that can be taken care of similarly: the
objective of what has been implemented so far is mostly to demonstrate how this
can be done.

Auxiliaries When the translation counterpart of a verb in the SL is composed of
a lexical verb and one or more auxiliaries (or vice versa), it is desirable to align the

7Note how, even with head alignments, not all potentially interesting alignments are found. In
this example, for instance, it could be useful to align the verb phrase “eats a banana” with its
Italian counterpart “mangia una banana”, whose members are also not, strictly speaking, subtrees
of the original sentences. The approach we use for head alignment, as we will discuss in Chapter
6, could be generalized to cases like this.
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SL verb to the entire TL subtree composed of the head verb and its auxiliaries, like
in the following example:
Example 14 “Many important decisions were taken by Tommaso” VS “Många
viktiga beslut togs av Tommaso”
Achieving this is relatively straightforward: before aligning a pair of head verbs,
their dependents labelled aux must be looked for. In case the head verb in the TL
has one or more such dependents, but its SL counterpart does not, the TL member
of the new alignment will not be composed by the head exclusively, but will include
the aux subtrees.

Compounds We mentioned compounds as a type of conflational divergence (cf.
Section 3.1.2.1.3). Given the variety of ways in which the translation equivalent of
a compound can be expressed and the subsequent variety of related UD labels (a
compound can be rendered as another compound, as a compound (space-separated)
expression, as a noun modified by an adjective and/or another noun, as a flat
multiword expression, as a combination of these things...), compounds are slightly
harder to align than main verb + auxiliaries constructions in practice, but the
solution is conceptually the same: before aligning two heads, we check whether the
list of their immediate dependents contains anything labelled compound, flat, amod
or nmod. If that’s the case in, for instance, only the sentence in the source language,
then it is likely that the head of the tree in the target language is in fact a compound.
If so, it is aligned not just with the head of the tree in the source language, but with
the tree composed of the head and the list of subtrees labelled as compound, flat,
amod or nmod. In this way, our program is generally able to find the counterparts of
a compound even when they are very complex, such as in the following case:
Example 15 “Giorgio took a course on Machine Learning techniques” VS “Giorgio
deltog i en kurs om maskininlärningstekniker”

3.1.2.2.3 Counting and reusing alignments

We mentioned how knowing why a certain alignment was identified is important to
know to what extent we can trust the program to having taken the right decision.
When working on a full parallel text instead of on a single sentence, another im-
portant information is the number of occurrences of that alignment (disregarding
all sentence-specific information such as the linear positions of its nodes) through-
out the entire corpus: unless it is the result of a systematic error (and even in this
case, having it presented as a first-class alignment will help finding the mistake), an
alignment occurring multiple times can be considered “more reliable” as it is in a
way “corroborated”. As a consequence each alignment produced by our CE module
is associated with a pair whose first element is the set of reasons for that specific
alignment and whose second element is its total number of occurrences.
Furthermore, the fact that an alignment has already occurred can be used as an
additional, backup criterion for when none of those described in section 3.1.2.1
apply:
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Criterion 5 (Known alignment) Two dependency trees t, u will be aligned if
such alignment belongs to a set K of known ones.

In the case at hand, K is initialized as empty and iteratively augmented with the
results of aligning each pair of sentences, but it is not hard to imagine cases in which
starting with a nonempty set would be useful.

3.2 Evaluation
We conclude this chapter by describing the data and the approaches used to evaluate
the CE module described in Section 3.1 independently from the subsequent stages
of the proposed pipeline and by presenting the results of such early evaluation.

3.2.1 Data
3.2.1.1 PUD treebanks

Because we want part of our evaluation to be independent from the quality of the
dependency trees obtained by automatically parsing sentence-aligned text, a portion
of the data used for this purpose consist in manually annotated data.
In particular, we use a subset of the Parallel UD (PUD) corpus, a set of hand-
crafted8 multilingual treebanks in CoNLL-U format created for the CoNLL 2017
shared task on Multilingual Parsing from Raw Text to Universal Dependencies [44].
This prevents the CE module from failing because of parse errors, even though a
small number of annotation inconsistencies and imprecisions is still present.
PUD treebanks are available in 20+ languages, of which we selected Italian, English
and Swedish, and are composed of 1000 sentences taken from the news domain and
from Wikipedia. Due to the lack of a gold standard to refer to in terms of CE and to
the consequent need to manually assess the correctness of each alignment obtained,
for most of the evaluation we only use the first 100 of these sentences.

3.2.1.2 Course plans

When it comes to testing the program on raw text to be parsed automatically,
we use two bilingual sentence-aligned corpora consisting of course plans from the
Department of Mathematics and Computer Science of the University of Perugia (for
English-Italian) and from the Department of Computer Science and Engineering
(CSE) shared between the University of Gothenburg and the Chalmers University
of Technology (for English-Swedish). For brevity, we will refer to these two datasets
as to the DMI and CSE corpora throughout the text.
Part of this data were collected and sentence-aligned specifically for this work, but a
core of CSE plans had already been gathered as part of another thesis project [15].

8For some languages, dependency labels were actually automatically converted to UD format
from other standards. Furthermore, manual annotation often only concerns some of fields of
the CoNLL-U files, but some manual annotation is generally involved in assigning POS tags and
dependency relations.
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Our parser of choice is UDPipe [37]. For parsing the two corpora, we use language
models trained on two distinct parallel treebanks: for English-Italian, we selected
ParTUT, an originally Italian-only treebank including texts of various genres, while
for English-Swedish our choice was LinES, a larger bilingual treebank [1].

3.2.2 Evaluation metrics
While precision and recall are two well-known performance metrics that would be
very well suited to the evaluation of our CE module, the lack of a CE gold standard
forces us to approximate them with respectively:

• the number of correct alignments the program is able to extract
• the ratio between such number and the total number of alignments extracted

Determining whether an alignment is correct is not, however, a completely trivial
task, since there are correspondences which are correct but not easily reusable in
contexts other than that in which they were found. For instance, in the following
case:

Example 16 “He missed the boat” VS “Ha perso il treno”

it is hard to deny that “boat” has been “translated” as “treno”, “train”, so our CE
module would - and should - be able to detect it, but in most situations it is by
no means desirable that such correspondence at the word level is made use of, for
instance by storing it in an bilingual lexicon! As a consequence, each alignment can
be marked as:

• correct and useful for translation (+)9

• correct but not useful for translation (=). This means that the CE module is
working as expected and that we are are faced with a divergence in the broader
sense of the term, i.e. potentially due to an idiomatic usage of language

• incorrect (-).
For instance, if we feed the CE module the pair of sentences of Example 16, as a
result10 we get:
+he missed the boat|ha perso il treno[UD,POS]1
+missed|ha perso[UD,POS,HEAD]1
=the boat|il treno[UD,POS]1
=boat|treno[UD,POS,HEAD]1
+the|il[UD]1

Furthermore, the absence a reference solution makes it so that comparing the up-
dated versions of the module with the baseline described in Section 3.1.1, thus
focussing on measuring the improvements with respect to it rather than the quality
of the results under absolute terms, is in practice the best way to assess the results.
While not ideal, repeatedly performing this kind of evaluation, starting already

9At least to some extent: we observe that perfect translation equivalents that can be replaced
with each other in all contexts are extremely rare, just like perfect synonyms.

10This is what the actual output of the program in evaluation (or “linearized") mode after
annotation looks like. The abbreviations in square brackets refer to alignment Criteria 1, 2 and 4
described in the above.
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during the early stages of its development, proved to be useful to understand the
impact of each of the changes made, thus guiding further modifications and helping
debugging the program when necessary.

3.2.3 Implementation details
In order to be able to perform the type of evaluation described in the above Section
and because manual inspection of the results was indispensable, the program was
made able to write alignments in the reader-friendly output format shown above.
The notation is the following:
linearized SL tree|linearized TL tree[R1,R2,...,Rn]N

where [R1,R2,...,Rn] is the list of criteria the members of the alignment match
and N is the number of occurrences of the alignment in the corpus.
With alignments in this format available, a simple way to evaluate a specific version
of the CE module is to manually assess the correctness of each of the correspondences
the program identifies and compute some statistics about them. A separate Haskell
module, whose usage is described in Appendix C, was written to parse files in the
above format and compute a series of useful statistics:

• the total number of alignments found
• the number of distinct alignments, i.e. the number of alignments with distinct

linearizations
• the percentage of correct alignments
• the percentage of correct alignments that are also useful for translation
• the percentage of alignments found due to each combination of criteria, and

how many of them are correct.
While labelling all alignments by hand was necessary to evaluate the baseline, as
long as the corpus does not change, it is possible to evaluate later versions of the
program semi-automatically, as the correctness of many alignments is most likely
already known thanks to the first round of manual annotation or to any of the
successive ones. EvAlign can in fact also be run interactively with a labelled file
and an unlabelled file as input. When this is the case, the program tries to label
as many alignments as possible based on the content of the labelled file (which,
of course, can even be the result of merging multiple files obtained with different
versions of the program), asking the user to assess the correctness of newly found
ones only. If run in this modality, the program also displays some more statistics
that make comparison it with the older, labelled file easier, such as the number of
new correct alignment found and that of incorrect alignments lost.

3.2.4 Evaluating CE against a baseline
Table 3.1 compares the results obtained with the baseline with those obtained with
the proposed improved version on the 100-sentence manually annotated corpus de-
scribed in Section 3.2.1, both for English-Italian and for English-Swedish.
As the table shows, for both language pairs, the raw number of distinct alignments
extracted increases, which suggests an increase in recall. Most importantly, the
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baseline improved version
en-it en-sv en-it en-sv

distinct alignments 1097 1257 1198 1314
correct (+ and =) 830 (58%) 995 (79%) 964 (80%) 1105 (84%)
correct and useful (+) 776 (54%) 976 (78%) 896 (75%) 1082 (82%)

Table 3.1: Comparison between the baseline and the improved version of the CE
module using manually annotated sentences from the PUD treebank in two different
language pairs, English-Italian and English-Swedish.

percentage of correct alignments, our approximation for precision, increases signif-
icantly, and in particular by more than 20% for English-Italian, the language pair
most used during development. There are also significant, but easily explainable
differences between the two language pairs considered: in general, results are better
for English-Swedish due to the syntactical similarity between the two.

3.2.5 Evaluating specific criteria

When it comes to the improved version, it is also interesting to look at criterion-
specific statistics, summarized in Table 3.2.

One of the main things the results suggests is that, even though most alignments
are still found by applying the original criterion (cf. Criterion 1 in Section 3.1.2), a
combination of criteria 1 and 2 is still able to detect many correspondences (more
than 30% of the total for both language pairs, if we combine regular and head
alignments extracted in this way) while having higher (>90%) precision.

This data also give an empirical confirmation of the observation made in Section
3.1.2.2.2 about the problem that the baseline has when it comes to head alignment,
indicating that POS-equivalence is especially important when extracting head align-
ments. The small size of the corpus cause Criterion 5 to remain extremely marginal.
Cross-language pair differences are, in this case, minimal, confirming that the cri-
teria used and their priority order are not specifically tailored for the language pair
used for under-development experiments.

3.2.6 Working with raw text

Of course, it is also interesting to compare the performance of the CE module on
manually annotated data with the results obtained on the automatically parsed
course plans corpora, summarized in Table 3.3.
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criteria alignments extracted correct (+ and =)
en-it en-sv en-it en-sv

matching UD labels 39% 38% 79% 80%
POS-equivalence 3% 2% 83% 83%
known divergence 2% 1% 52% 56%
known alignment 0% 0% - -
matching UD labels
+ POS-equivalence 21% 25% 93% 95%

matching UD labels
+ head alignment 22% 20% 68% 77%

POS-equivalence
+ head alignment 1% 1% 75% 65%

matching UD labels
+ known alignment 0% 0% 67% 83%

matching UD labels
+ POS-equivalence
+ head alignment

11% 13% 95% 90%

Table 3.2: Criterion-specific statistics. The leftmost column specifies a criterion or
combination of criteria. The central column indicates the percentage of alignments
extracted because of each set of criteria, and the rightmost one specifies how many
of them were marked as + or -.

DMI (en-it, 798 sentences) CSE (en-sv, 498 sentences)
distinct alignments 352 529
correct (+ and =) 243 (69%) 368 (70%)
correct and useful (+) 229 (65%) 351 (66%)

Table 3.3: Performance of CE on barely sentence-aligned data, parsed automat-
ically. Two distinct corpora of different size have been used for the two different
language pairs, so the two columns are not to be compared with each other, but
rather with Table 3.1.

As it is to be expected, results are not as good for automatically parsed sentences
as they are for manually annotated data. In particular, the percentage of correct
alignments drops - but interestingly it is virtually the same for both language pairs.
The difference between the two pairs seems instead to be in the total number of
alignments found: despite English-Italian corpus being significantly larger, more
concepts are extracted for the Swedish-Italian one.

3.2.7 Comparison with methods from Statistical MT
Another kind of evaluation that can be performed before the aligned dependency
subtrees are converted to GF ASTs to be fed to the last stage of the pipeline is to
compare them with those obtained by means of application of existing statistical
algorithms. Among the well known solutions mentioned in Section 2.2.3.1, we have
chosen to focus on fast_align [14] because of its ease of use and installation.
A Haskell script converts the CoNNL-U files that are fed to our CE module into the
input format required by fast_align, so that the exact same tokenization is used.
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A second script converting its output into that used by EvAlign allows to reuse all of
the evaluation infrastructure described in Section 3.2.2. Finally, Table 3.4 summa-
rizes the results of a comparison between the improved CE module and fast_align
run with 10 iterations in EM training and symmetrizing the alignments found by
running the program in both directions.
Because fast_align is a purely statistical approach, we trained it not only on the
same 100-sentence subset of PUD used for evaluating our proposed improved CA
module against the baseline, but also on the full 1000-sentences dataset. In the latter
experiment, the alignments obtained for the last 900 sentences were discarded before
evaluating the results. Due to the time required to manually annotate the numerous
alignments extracted by fast_align, this evaluation has been conducted only for
the most challenging language pair, English-Italian. For a fairer comparison, since
fast_align works at the word level, only the one-to-one, one-to-many and many-
to-one word alignments produced by the CE module were kept.

our system fast_align 100 fast_align 1000
distinct alignments 716 1440 1435
correct 536 (75%) 410 (28%) 656 (46%)
correct and useful 491 (69%) 371 (26%) 590 (41%)

Table 3.4: Comparison between the improved CE module and fast_align trained
on the first 100 only (column 2) and on the whole PUD corpus (column 3).

As the table shows, since fast_align tries to find a correspondent in the TL for each
word in the SL, the number of alignments found by our CE program is roughly half
of that of those found statistically. The percentage of correct alignments is, however,
much higher for our system, even when the full PUD corpus is used in the training
step of fast_align. This shows that our approach is particularly well suited to
smaller datasets and can even be used on individual sentence pairs, provided that
they are analyzed correctly.
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Concept Propagation

After a set of concepts is known, it can be useful to look for the corresponding
concrete expressions in a new language. In this chapter, we describe our approach
to this task and present an evaluation of the corresponding module.

4.1 Method and implementation
As mentioned in Section 2.2.2, Concept Propagation (CP) is the task of finding
the concrete expressions corresponding to a set of known concepts, represented by
a set of alignments and/or their abstract representations. Since our method for
propagating concepts makes use of dependency tree alignments only, CP can take
place before and, in general, independently from a potential conversion of the UD
trees into GF trees.
There are two scenarios in which CP can prove useful:

1. when working on a parallel text A in more than two languages. In this case,
CP can be used, after CE has been performed on a pair of languages 〈L1, L2〉,
to propagate the extracted alignments in a third version of the text in a new
language L3. In this case, the expectation is for the program to be able to
propagate the vast majority1 of the concepts in the set

2. when working on two bilingual parallel texts A and B with one language in
common, say A in two languages 〈L1, L2〉 and B in two languages 〈L2, L3〉.
After performing CE on the first pair, CP can be used to look for the extracted
concepts in the L2 version of the second and, if they do appear in such text,
find their counterparts in L3. Of course, the number of concepts that can be
propagated in this scenario can be significantly lower, especially if the two
parallel texts do not belong to the same domain.

Our algorithm is meant to be as general as possible, and as such it is not optimized
for the first scenario, but rather covers both without making any assumptions in
terms of sentence alignment2. It works as follows: for each alignment obtained by
performing CE on text A, we consider the dependency tree in language L2. We then

1Even though handling common translation divergences help, free translation involving radical
differences in sentence structure can make it so that some concepts lack a clear counterpart in the
text in L3.

2A way to make the algorithm more efficient for the first scenario could in fact be to rely on
the fact that the n-lingual parallel text is sentence-aligned, keep track of the sentence from which
a particular concept has been extracted and only try to find a equivalent in the corresponding L3
sentence.
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Figure 4.1: The two CP scenarios compared. On the left, Scenario 1, when CP
is applied on three translations of the same text. On the right, Scenario 2, dealing
with two distinct bilingual texts.

look for such tree among all subtrees the L2 version of text B is composed of. If a
sentence in the L2 version of text B does contain a2

i , we align such sentence to its
L3 counterpart using the same procedure as described in Section 16 for CE. Finally,
if multiple possible correspondences are found, the L3 dependency subtree which is
closest in depth to a2

i is selected. This is meant to avoid, for instance, mistakenly
aligning a full sentence tree to a dependency tree extracted when aligning heads,
which would otherwise be likely, as their heads are obviously both labelled root. In
the next two sections, we discuss some important details of the algorithm, and in
Section 4.1.2 in particular will get to other issues related to head alignment.

propagate :: [ Criterion ] → ([ UDTree ],[ UDTree ]) → UDTree →
Maybe Alignment

propagate cs ([],_) _ = Nothing
propagate cs (t:ts ,u:us) c =

let as = sortAlignments ( alignExtract cs (t,u))
in case find (\(sl ,_) → sl == c) as of

Nothing → propagate cs (ts ,us) c
a → a

where
sortAlignments = sortOn ( depthDiff . fst)

where
depthDiff t = abs (depth t - depth c)

Figure 4.2: The CP algorithm. The concept to propagate is looked for among
the SL subtree of each alignment obtained by comparing the sentences of the new
corpus. If it is found, the alignment it belongs to is returned. If there are multiple
possible alignments, the alignment whose TL side is closest in depth to the concept
itself is returned.

4.1.1 Ignoring details of UD trees
One point that becomes of extreme importance when dealing with Scenario 2, i.e.
when the text used for CP is not a translation of the one used for CE, is the way we
look for subtrees in the L2 version of text B. Since we work with two different L2
texts, in fact, we cannot expect text B’s subtrees to match L2 concepts extracted
from T1 exactly: as we saw in Section 3.1, nodes of UD trees contain information,
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particularly about the position of each word and its head, that should be disregarded
in this context.
To make the CP algorithm more robust to minor parse errors, our decision was to
consider two (sub)trees equivalent based on a comparison of just their shape and
their FORM, LEMMA, UPOS and DEPREL fields. In this way, not only all optional fields
(which might well differ or be blank for only one of the texts), but word position
information is also ignored.

4.1.2 Propagating head alignments
The propagation of head alignments is by far the most challenging aspect of CP.
This is due to the fact that the head of a dependency tree t, as defined for the
purposes of CE (cf. Section 3.1.2.2.2), is not, strictly speaking, a subtree of t (even
though in a broader sense it is, of course, a part of t). When head alignments are
extracted, in fact, their members are either:

• trees composed exclusively of the root of a dependency subtree
• trees composed of the root of a dependency subtree and some of its immediate

subtrees. As discussed in Section 3.1.2.2.2, this happens in cases such as
when the root in the SL is a compound (written as a one-word) and its TL
counterpart is a multiword.

Not only, then, is it necessary to look for each concept to propagate among all the
dependency subtrees of each SL sentence of the corpus CP is performed on, but for
each subtree it is also necessary to check whether the concept could be a head of
such subtree. This is implemented by means of a function isHeadOf specular to
alignHeads.
If this is the case, i.e. if the concept the program is trying to propagate is the head
of a certain SL subtree, then the resulting alignment should be with the head of the
TL counterpart of such subtree.

4.2 Evaluation
In the following three sections, we describe both the CP experiments performed and
their results. Clearly, for all the experiments, we make use of the evaluation script
used for CE, which has been extended to also compute CP-specific statistics, such
as the percentage of (successfully) propagated concepts.

4.2.1 Preliminary testing
One way to check the CP module for obvious flaws before trying to assess its per-
formance in the two scenarios described above is to try to re-obtain the alignments
obtained with the CE module via propagation. This means running both programs
on the exact same input treebanks as used for CE. It represents a special case of
Scenario 1 in which the program is expected to be able to propagate all alignments,
with no exceptions.
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The fact that many of the alignments obtained via propagation are the same as the
ones extracted initially is generally a good indication that the program is working
according to expectations. However, this has to be taken with a grain of salt: as
discussed in the above, the program looks for one possible counterpart per concept
only and is provided no indication about what sentence in particular it should look
into, so that in presence of multiple valid alternative alignments the user should
not expect it to identify the same correspondences as the extraction procedure, but
rather just correct, potentially different correspondences.

4.2.1.1 Experimental results

This kind of pre-evaluation has been run on the first 100 sentences of the PUD
treebanks in English and Italian, one of the corpora used for evaluating CE. Most
importantly, the experiment confirms that the CP module is in fact able to find all
the alignments extracted by CE. The results also show that the vast majority of
the propagated alignments is identical to its extracted counterpart, and that most
often, even when it is not, that does not imply that the propagated alignment is
incorrect. Out of a total of 224 (18.69%) incorrect propagated alignments, only
28 (12.5%) introduce an alignment error which was not already present in their
extracted counterparts, and there are even instances where propagated alignments
are, conincidentally, correct even though their extracted counterparts are not.

4.2.2 Scenario 1
For evaluating how well CP works in the first scenario, the corpus we use is the
same as for testing, but in three instead of two languages: the concept extracted by
means of comparing the English to the Italian version are propagated to Swedish,
using both English and Italian UD trees as the starting point.
Considering that we are working with three versions of the same text, the expectation
is for the program to be able to propagate the vast majority of the concepts with
a precision similar to that obtained during the extraction stage, even though free
translation, unhandled translation divergences and annotation inconsistencies can
make it possible for some of them not to be found in the Swedish translation or not
to be aligned correctly.
As for when it comes for CE, comparing the results of CP for two different language
pairs, English-Swedish and Italian-Swedish, can be interesting to see how much
easier it is to propagate concepts in two more syntactically similar languages.

4.2.2.1 Experimental results

As Table 4.1 shows, the experimental results of this type of evaluation match the
above expectations. First, the number of alignments the program is able to propa-
gate is, for both language pairs, smaller than that obtained in the testing phase but
still relatively large, while the amount of propagation errors increases marginally.
Furthermore, the English-Swedish pair gives slightly better results than the Italian-
Swedish pair, both in terms of the number of alignments the program is able to
propagate and in terms of the amount of alignment errors.
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It is interesting to notice, however, that the amount of errors is significantly (>
5%) inferior when concepts are propagated to Swedish starting from English, as
opposed to Italian, dependency trees. This is most likely due to the syntactical
features shared by the former two languages. This means that not all Italian-English
extraction errors are propagated and it seems to suggest that, if we were to only use
the trilingual alignments obtained by English-Italian extraction followed by English-
Swedish propagation, some of the initial incorrectly extracted alignments would be
automatically discarded.

en-sv it-sv
propagated 1019 (85%) 979 (85%)
tot. errors 133 (13%) 187 (19%)
CP-introduced 75 (56%) 84 (45%)

Table 4.1: Results of propagating the Italian-English alignments obtained via CE
on the first 100 sentences of the PUD corpus to Swedish, using either the English
or Italian subtrees as a starting point.

4.2.3 Scenario 2
The PUD corpus is composed of extracts of texts on a variety of subjects. As a
consequence, performing an evaluation of CP in Scenario 2 using, for extraction
and propagation, two different subsets of the corpus, would not help assess whether
the module is well suited for the most relevant subcase of such scenario, i.e. when
working with two texts belonging to the same domain.
On top of evaluating the program on PUD data dividing the set of sentences used
so far into two equally sized subsets, then, the two course plans corpora described
in Section 3.2.1.2 have been also used to put the program to the test.
These two small bilingual corpora allow us to perform two additional experiments:

1. to extract English-Swedish alignments from the CSE corpus and propagate
them to Italian using the DMI corpus

2. vice versa, to extract English-Italian alignments from the DMI corpus and
propagate them to Swedish using the CSE corpus.

4.2.3.1 Experimental results

4.2.3.1.1 Propagation with texts in different domains

When it comes to the first set of experiments, where we use PUD data, being the
subsets of selected sentences extremely small and having the correctness of most
alignments been already assessed in previous experiments, it is easy to work with
all possible pairs of languages. The results, summarized in Table 4.2, show that, in
general, only a small fraction of the extracted alignments are actually propagated in
this case. As mentioned above, this is to be expected since different sentences belong
to different domain. A closer look to the set of alignments returned by propagation,
the vast majority of which has single words as members, shows that most of them are
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common function words, which, alone, are not always relevant for a GF-based MT
pipeline. Common determiners such as articles, for instance, can be better handled
by RGL grammars alone. Prepositions, on the other hand, are only useful with
some information about the context in which they occur in, since it is customary for
them to be used differently across different, even closely related languages. However,
some common content words, like 〈“always”, “sempre”, “alltid”〉, 〈“new”, “nuovi”,
“nya”〉 and 〈“same”, “stesso”, “samma”〉 are also aligned correctly.

en-it-sv it-en-sv en-sv-it sv-en-it it-sv-en sv-it-en
extracted 638 638 687 687 608 608
propagated 92 (14%) 92 (14%) 98 (14%) 84 (12%) 101 (17%) 87 (14%)
tot. errors 46 (50%) 21 (23%) 42 (43%) 24 (29%) 21 (21%) 28 (32%)
CP-introduced 33 (72%) 11 (52%) 21 (50%) 12 (50%) 12 (57%) 21 (75%)

Table 4.2: Results of CP for various language pairs using PUD (non-homogeneous)
data. For each column, the first two languages are the ones used for extraction and
the second two the ones used for propagation.

The table also shows, like the results obtained from Scenario 1 suggest too, that the
order in which languages are used is not completely irrelevant: while the percentage
of propagated alignments does not vary widely, the amount of errors is significantly
lower when the propagation step involves the two syntactically more similar lan-
guages, English and Swedish. The fact that CP works better with English-Italian
than with Italian-Swedish, on the other hand, may simply be a result of the fact that
the latter language pair was never used for testing the program during its develop-
ment, which might have caused some of the criteria to be not completely language
pair-independent.

Finally, the percentage of errors introduced by CP is significantly higher than that
recorded for Scenario 1. One factor that contributes to this is the fact that function
words, which are by far more numerous in the propagated alignments than content
words, are often used differently in different languages and contexts. When it comes
to the languages we are considering, this applies in particular to prepositions: be-
cause it is hard to know what the correct translation equivalent is without looking
at the specific sentence, when CP is performed on a text different from the one used
for CE, many preposition-to-preposition alignments have to be marked as incorrect
even though they might be correct in some specific cases.

4.2.3.1.2 Propagation with texts within the same domains

Quantitatively, the results of the last pair of experiments, performed on two different
automatically parsed bilingual corpora composed of course plans of Computer Sci-
ence programmes, are to some extent similar to those obtained using different texts
in different domains (cf. Tables 4.3 and 4.2). Only a tiny fraction of the extracted
alignments is propagated and errors are numerous, as in the previous setting.
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sv-en-it it-en-sv
extracted 1950 1823
propagated 205 (11%) 200 (11%)
tot. errors 66 (32%) 61 (30%)
CP-introduced 33 (50%) 33 (54%)

Table 4.3: Results of CP for using two different bilingual corpora belonging to the
same domain of course plans. For each column, the first two languages are the ones
used for extraction and the second two the ones used for propagation.

More than the quantitative results, however, it is interesting to take a look at some
of the propagated concepts. Because the text are similar both stylistically and,
most importantly, in terms of content, the program is in this case also able to find
trilingual correspondences between content words, sometimed specific of the domain.
Examples of such alignments are 〈“skills”, “capacità”, “färdigheter”〉, 〈“functional”,
“funzionale”, “funktionell”〉, 〈“exam”, “prova”, “tentamen”〉, 〈“course”, “corso”,
“kurs”〉, 〈“lectures”, “lezioni”, “föreläsningar”〉, 〈“prerequisites”, “prerequisiti”, “be-
hörigheter”〉 and 〈“knowledge”, “conoscenza”, “kunskap”〉.
Sometimes, however, the meaning of a word is highly context-dependent and as
a consequence, even if both the pairs of extracted and propagated alignments are
correct, the corresponding trilingual alignment we could infer isn’t (e.g. 〈“learning”,
“conoscere”〉 and 〈“learning”, “inlärning”〉).
Finally, in some rare cases, even correspondences regarding longer expressions, such
as 〈“the aim of the course”, “l’obiettivo del corso”, “syftet med kursen”〉, can be
found. In this case, the English-Italian correspondence is not especially useful, since
the phrase could be translated almost word by word between the two languages, but
the translation to Swedish is not literal, thus making the alignment useful for the
purposes of MT.
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5
Concept Alignment in Machine

Translation

We conclude this work by documenting a first attempt to put our CA component
to use in a MT system. The chapter starts with a discussion of how GF translation
can benefit from using concepts extracted with our method as translation units.
After that, we give a step-by-step description of how this is achieved, also indicating
the changes made to the CA module to adjust it for this specific use case. Finally,
Section 5.2 focuses on the actual evaluation of the resulting system and presents its
results.

5.1 Method and implementation

As discussed in Section 2.1.2.2, GF translation consists in parsing SL strings to
obtain the corresponding ASTs to then linearize them according to the concrete
syntax of the TL. As well as describing the morphological and syntactical features
of the languages involved, a multilingual grammar suited for this task defines a
translation lexicon, i.e. a set of word senses and the corresponding expressions in
the various languages.

Automating CA can be seen, then, as a first step for automatically generating such
lexicon. An important point is that our approach, as opposed to word alignment
techniques, identifies concepts at different levels of abstraction. This allows us to
construct lexical entries not only for the grammatical categories that typically corre-
spond to single words (such as nouns, adjectives and adverbs), but also for phrases
(with the term “phrase” now intended grammatically, as opposed to its meaning
in SMT). Doing so enables GF translation, designed to preserve grammaticality, to
also render idiomatic expressions found in the data used for generating the lexicon
correctly.

Obtaining a multilingual GF grammar from a set of aligned UD trees, however,
is not immediate. In the following three sections, we illustrate the different steps
of this process. We then introduce the simple GF-based MT module used for the
experiments discussed in Section 5.2 and describe the adjustments made to the CA
component in order to optimize it for the task at hand.
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5.1.1 UD-to-GF conversion

The output of both CE and CP is, excepts when linearized for evaluation purposes,
a set of aligned UD trees in CoNNL-U format. In order to be used for GF-based
translation, such trees need to be first converted into GF ASTs, which are then used
to generate a set of grammar rules constiuting the above mentioned multilingual GF
lexicon.

Conversion is based on annotations defining the relation between UD trees and
GF ASTs, which we refer to as dependency configurations. While going into all
the notational details is beyond the scope of this project1, an example of one such
configuration is

#fun PredVP nsubj head

which specifies that a PredVP (predicative Verb Phrase), defined in the RGL as of
type

PredVP : NP -> VP -> Cl

i.e. a function taking two arguments, an NP (Noun Phrase) and a VP (Verb Phrase)
and returning a Cl (clause), corresponds to a UD tree whose head, the VP, has
a nsubj attached to it. Appendix B lists the dependency configurations used for
UD-to-GF conversion in the context of this project.

As discussed in Section 2.1.3.1.4, the UD-to-GF conversion, while being more com-
plex than its reverse, can be performed by gf-ud, a program offering several func-
tionalities useful to work with GF and UD simultaneously. Such program, however,
cannot be fed the alignments obtained via CE and CP directly. This is due to the
fact that the members of most of the relevant alignments are subtrees (or heads
of subtrees) and not complete UD trees. While this makes no difference in terms
of the Haskell data type we represent them with (cf. Figure 3.1), trying to print
them to files in the corresponding CoNNL-U notation with no postprocessing leads
to malformed UD sentences.

The problem, which is due to the lack of a root labelled as such and illegal ID and
HEAD values, was solved by implementing a simple normalization procedure, now
part of the CA library. Called every time a UD subtree has to be converted to
CoNNL-U, it first replaces the UD label (udDEPREL) of its root node with root and
assigns the special value 0 to its udHEAD field. After that, it proceeds to “rescale”
the udID and udHEAD fields of all other nodes so that they end up into the range
[1, n], where n is the number of nodes of the extracted subtrees2.

1A comprehensive description of gf-ud’s annotation scheme is available at github.com/
GrammaticalFramework/gf-ud/blob/master/doc/annotations.md.

2See Section 2.1.3.1.1 and Figure 3.1 for definitions of all the fields of UD trees and their
CoNNL-U representations.
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1 sadly sadly ADV _ _ 5 advmod _ _
2 this this DET _ _ 4 det _ _
3 malformed malformed ADJ _ _ 4 amod _ _
4 subtree subtree NOUN _ 5 nsubj _ _
5 needs need VERB _ _ 0 root _ _
6 postprocessing postprocess VERB _ _ 5 xcomp

⇓

1 this this DET _ _ 3 det _ _
2 malformed malformed ADJ _ _ 3 amod _ _
3 subtree subtree NOUN _ _ 0 root _ _

Figure 5.1: A vanilla noun phrase subtree (highlighted in black) in the context it
was extracted from (gray) and the same subtree after normalization.

Another practical problem that arises when trying to transform a CoNNL-U tree
into a GF AST is that gf-ud easily becomes remarkably resource-intensive when
dealing with ambiguous, large trees. This is due to the fact that conversion in this
direction is a nondeterministic search problem [35]. For this reason, it can be useful
to limit the size3 of the alignments that are actually kept after the extraction (or
propagation) procedure. Since our CA component works at all levels of abstraction,
thus also aligning full clauses, this turned out to be essential and became one of the
command-line parameters of the final executables, as mentioned in Appendix C.

5.1.2 Grammar generation
The result of this UD-to-GF conversion is still a series of tree alignments, but their
resulting format makes a substantial difference, since GF ASTs can be used to
obtain the rules of a generative grammar. gf-ud also provides a way to do this,
given an extraction grammar and a morphological dictionary of the languages of the
alignments.
What we refer to as an extraction grammar is of course a GF grammar, whose
objective is to define the set of basic categories and syntactic rules the entries of the
automatically generated GF lexicon is going to be based on.
A morphological dictionary, on the other hand, contains correspondences between
a large number of lemmas and various word forms. In this case, the morphological
dictionaries themselves are implemented in GF, as part of the RGL.
The program responsible for generating the GF lexicon given these components
has been written in parallel with - but not as part of - this thesis project and is
still under development. As a consequence, some programming work was required
to automate the few parts of the process that still had to be performed manually
and some (minimal) postprocessing is sometimes required before the automatically
generated grammars can be compiled. This happens for instance when Italian words
are incorrectly POS-tagged as verbs and, not having a word ending typical of such

3In this context, the size of an alignment is defined as the number of nodes of its largest member.
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category, produce pattern matching errors when the corresponding strings are passed
to the constructor generating all the verb forms.

5.1.2.1 Extending the extracted grammar

The extraction grammar is designed for the grammar generation module to produce
grammar rules corresponding to small concepts: basic categories, noun phrases, verb
phrases etc. As a consequence, if used directly, grammars resulting from the above
described generation step can only deal with very simple predicative sentences, with
verbs in the present tense of the indicative mood, and their constituents, such as

Example 17 “this sentence is simple”
Of course, some limited variation is still possible. For instance, the determiner can
change or disappear, number can vary, the complement of the copula can become
a noun and an adjectival modifiers and prepositional phrases can be added to each
noun phrase. Here are some examples:
Example 18

• “the sentence is simple”
• “a sentence is simple”
• “sentences are simple”
• “these sentences are simple”
• “this sentence is an example”
• “this short sentence is simple”
• “this sentence of the text is simple”

For languages that are covered by the RGL, however, it is also extremely easy
to extend such grammars with preexisting syntax rules so to make it possible to
generate more complex clauses and sentences and add useful function words. The
grammars used for the experiments that will be described in Section 5.2, for example,
have been extended also to cover negative and interrogative forms, the past and
future tense of verbs in the indicative mood and comparative adjectives. This allows
for plenty of variations, such as:
Example 19

• “this sentence isn’t simple”
• “is this sentence simple?”
• “this sentence was simple”
• “this sentence will be simple”
• “this sentence is simpler than that sentence”

Of course, variations can be combined, so that the grammar can produce sentences
like the following:
Example 20 “won’t these short sentences be simpler than that long sentence?”
This is accomplished by making the automatically generated grammars extend not
only the extraction grammar itself, but also a module that simply imports the
necessary standard RGL categories and functions.

48



5. Concept Alignment in Machine Translation

5.1.3 Translation
Maybe counterintuitively, the MT module itself is by far the simplest component of
the entire system. Built using PGF, the API meant to be used for embedding GF
grammars in Haskell programs, it simply makes use of GF parsing and linearization.
The only difference between translating inside the GF shell and using this ad-hoc
program, apart from the increased ease of use of the latter, are that:

• while GF can parse the SL string in a variety of ways and, as a consequence,
return multiple TL linearizations, our program only outputs the first candidate
translation, preliminarily discarding trees containing terminal nodes that have
no linearization in the TL4

• to facilitate the experiments, our standalone has been written so that it can
translate several newline-separated sentences at once.

5.1.4 Adjustments to the CA component
While the domain of application of CA we focus on in this work is automatic trans-
lation, the system described so far is not in any way optimized for it and can also
be made use of in other contexts. For instance, it is easy to imagine using it to
improve the user interface of online translation memories or to facilitate reading
parallel texts in the context of language learning.
In our particular setting, however, some practical problems arise and some adjust-
ments can be done in order to make the CA software more well suited to the gener-
ation of a translation lexicon.
In the following section, we discuss two ways to mitigate the impact of the annota-
tion errors that inevitably derive from applying automatic dependency parsing on
raw, possibly noisy data. Both techniques aim to increase the number of extracted
alignments without significantly affecting precision. Section 5.1.4.2, going in a sense
in the opposite direction, describes the strategies we apply to filter out irrelevant
alignments.

5.1.4.1 Dealing with parse errors

As discussed in Sections 3.2 and 4.2, both our CE and CP modules give promising
results on manually annotated data. However, when run on UDPipe-generated
dependency trees, performance, and recall in particular, is significantly affected by
errors happening at the parsing stage. Because parsing itself is a process consisting
of several stages, errors differ based on when they happen. In particular, UDPipe
goes through the following steps, each potentially causing one ore more particular
kinds of errors:

1. tokenization, which can, although it is unlikely for the languages considered
in this work, lead to errors in identifying word boundaries

4A linearization can be missing, for instance, if a concrete syntax is postprocessed by sim-
ply getting rid of an “illegal” verb causing compilation problems. In the experiments conducted
during this project, this initially happened even with some irregular (but correctly lemmatized!)
Italian verbs whose infinitive does not end in “-are”, “-ere” or “-ire”, such as “porre.” The Italian
morphological dictionary was then modified so to also handle this type of verbs.
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2. morphological analysis, which can cause lemmatization and, consequently,
POS-tagging errors

3. actual dependency parsing, the potential cause of attachment and labelling
errors

In this context, we focus on the syntax-level errors: attachment and labelling. Of
course, lemmatization and POS-tagging errors can be the first cause of one such
error. In particular, the fact that a word is lemmatized incorrectly can make it so
that it is also attributed the wrong POS tag and, as a consequence, assigned the
wrong dependency label and/or attached to the wrong node.

Example 21 Consider the Italian sentence “quel fa è diesis” (“that F is sharp”).
Notoriously, in Italian, the word “fa” can stand for the musical note F. Since “fa”
is also the third person singular of the present indicative of the verb “fare” (“to do”,
“to make”), it is likely to be lemmatized so (instead of as “fa”). If so, it will also
probably POS-tagged as a VERB and assigned a dependency label typical of verbs (in
this case, with no other lexical verbs in the sentence, most likely root, thus producing
an attachment error as well), while the correct annotation is

1 quel quello DET _ _ 2 det _ _
2 fa fa NOUN _ _ 4 nsubj _ _
3 è essere AUX _ _ 4 cop _ _
4 diesis diesis ADJ _ _ 0 root _ _

quel fa è diesis
DET NOUN AUX ADJ

��
?

det

' $
?

nsubj��
?

cop

?

root

Nontheless, because we do not want to intervene on the parser directly (nor to modify
its results), we ignore the causes and focus on the syntax-level errors directly.

5.1.4.1.1 Working at the clause level

At the highest level of abstraction, the parser often fails to correctly identify the
clauses a sentence is composed of. This happens in a variety of ways: at times,
clauses are simply not identified as such or, on the contrary, non-clauses are labelled
as clauses. Most often, however, clauses are simply not attached to the right node
and/or given a label that, while still identifying them as clauses, does not give
correct information about their type.
To address this problem, the CE module has been modified so that it can try to
align individual clauses instead of sentences. The idea is to obtain, from each pair
of sentence trees to align, a pair of lists of subtrees whose heads are labelled root,
csubj, ccomp, xcomp, advcl or acl5.
These lists of “clauses”6 are then sorted by dependency label and distance from the
root, so that in the absence of annotation errors, when there is in fact an evident

5All these clausal labels are defined in Appendix A.2.
6Note that “clauses” is in quotes since what we are referring to as a clause includes its subclauses

too. This means that the sentence is not segmented into clauses in the literal sense of the term,
but rather that one tree per verb is extracted from them.
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this sentence shows how to work at the clause level to increase recall
DET NOUN VERB ADV PART VERB ADP DET NOUN NOUN PART VERB NOUN
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?

obj

?

root

• “this sentence shows how to work at the clause level to increase recall”

• “how to work at the clause level to increase recall”

• “to increase recall”

Figure 5.3: A sentence and its decomposition into clauses. Note how the sentence
is not actually segmented, but rather used to obtain a set of subsentences, each
having their main verb, marked in bold, as root.

correspondence, they appear in the same position. Finally, the program tries to
align every possible pair of clauses and the pruning procedure described in 3.1.2.2.1
is applied to only keep the ones that are more likely to be correct.

5.1.4.1.2 Dealing with unaligned subtrees

Clearly, however, parse errors do not happen exclusively at the clause level: smaller
units, e.g. verb arguments, can also be misclassified or attached to the wrong node.
To partially work around the problem, the CE module supports what one could refer
to as “alignment by exclusion”: after the extraction procedure described in Section
3.1.2 - or its modified version outlined in the above paragraph - is carried out, the
program can try to find correspondences between the remaining unaligned subtrees.
The idea is the same as above: subtrees are sorted, aligned and lastly alignments are
pruned. This is done ignoring, if necessary, the context in which the subtrees occur
and potentially making only use of a subset of the alignments criteria, for instance
the strictest and safest ones.
This is useful in cases such as that illustrated in Figure 5.4, as well as in the event of
actual attachment ambiguity or when the two versions of the text present syntactical
differences that cannot be handled with the simple divergence patterns introduced
in Section 3.1.2.1.3.
The results of this kind of optimization, however, as well as those of working at
the clause level, vary widely depending on the quality of the parse trees and can be
detrimental, in terms of precision, if applied to high-quality datasets.

5.1.4.2 Selecting relevant alignments

The pruning procedure described in Section 3.1.2.2.1 is aimed at filtering out align-
ments that, because of their number of occurrences and of the set of criteria thanks
to which they have been extracted, are less likely to be correct. However, not all
the alignments extracted in this way are relevant for the purposes of MT.
On the one hand, most alignments that do not contain any content word are not
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parse this sentence with care
VERB DET NOUN ADP NOUN
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analizza questa frase con cura
VERB DET NOUN ADP NOUN

� �
?

det
' $

?

obj ��
?
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' $

?

nmod

?

root

Figure 5.4: A case where alignment “by exclusion” is beneficial. In this case, while
the two sentences should appear to be structured identically to a human reader,
the Italian parse tree contains a (reasonable) attachment error. As a consequence,
vanilla CE would not be able to align the prepositional phase “with care”, attached
to the main verb “parse”, to its Italian exact counterpart “con cura”, incorrectly
linked to the noun “frase” as an nmod. A second CE pass trying to put unaligned
subtrees in relation with each other, however, is able to detect the POS-equivalence
between the two phrases, thus producing three new correct alignments: 〈with care,
con cura〉, 〈“care”, “cura”〉 and 〈“with”, “con”〉.

useful for the generation of a domain-specific grammar, as many common function
words are already covered by the GF RGL7.
On the other hand, the concepts represented in the GF grammar should intuitively,
in most cases, be “as small as possible”. If we reconsider the example in Figure 1.1
(sentences “finding useful correspondences is not exactly a piece of cake” and “trovare
corrispondenze utili non è proprio scontato”), for instance, while the multi-word
correspondence 〈“a piece of cake”, “scontato”〉 is indeed useful there is usually no
point in keeping correspondences such as 〈“useful correspondences”, “corrispondenze
utili”〉, even if they are correct, when it it also possible to extract the alignments
〈“useful”, “utili”〉 and 〈“correspondences”, “corrispondenze”〉: one-word and, in
general, shorter alignments are more easily reusable in different contexts, especially
since there are language-specific RGL rules capable of handling word order properly.
As a consequence, for the purposes of grammar generation, the CA modules should
in this case only return the following set of alignments:

1. 〈“finding”, “trovare”〉
2. 〈“useful”, “utili”〉
3. 〈“correspondences”, “corrispondenze”〉
4. 〈“is”, “è”〉
5. 〈“not”, “non”〉
6. 〈“exactly”, “proprio”〉
7. 〈“a piece of cake”, “scontato”〉.

If we consider that the RGL can already handle most function words correctly, we
can even discard all alignments that do not contain any content word (in this case,
alignments 4 and 5, which leaves us with only 5 alignment useful to GF).
In some situations, however, larger alignments (such as 〈“useful correspondences”,
“corrispondenze utili”〉) are considered to be relevant since they help understand
which words can be safely used in conjunction with each other. For instance, while

7Small alignments containing both function and content words, such as prepositional phrases,
are on the other hand extremely useful, as they show which specific function word should be used
in a particular context.
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the Italian adjective “brutto” (most often translated as “ugly”) is often used in
conjunction with the word “notizia” (“news”) in expressions such as “brutte notizie”,
in English the adjective “bad” (as in “bad news”) is definitely more appropriate.
Discarding a potential 〈“bad news”, “brutte notizie”〉 alignment is then not always
the right choice, since in a context in which there are many alternative translation
equivalents for the word “brutto” it provides useful information about what adjective
to use to refer to the noun “news”.
Because of this, and since CE could have applications other than MT, selection in
this sense is performed - optionally, as described in Appendix C - after the extraction
phase itself and implemented as an independent function. It works as follows: first,
alignments that do not present any content word are filtered out. Then, among the
remaining ones, superficially perfect alignments containing other extracted align-
ments are also discarded.
To clarify such algorithm, it is worth defining perfect alignment - which was already
mentioned in Section 3.1.1 - more rigorously.

Definition 4 An alignment A = 〈e1, ..., en〉 is perfect if its member dependency trees
e1, ..., en are identical both in their topology and in the dependency labels assigned to
their nodes.

The “shallow” version of perfect alignment the algorithm described above refers to,
which we call superficially perfect alignment, occurs when the definition applies at
least to the roots of the two member trees and the roots of their immediate subtrees.

Example 22 Consider the following pairs of English-Italian sentences:
1. 〈this algorithm selects the relevant alignments, questo algoritmo seleziona gli

allineamenti rilevanti〉
2. 〈this algorithm selects relevant alignments, questo algoritmo seleziona gli allinea-

menti rilevanti〉
While the two English sentences are translated to Italian in the same way, alignment
is perfect only in the first case, where the determiner “the” is present. The two trees
are in fact identical if not for the words themselves and their order.

this algorithm selects the relevant alignments
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questo algoritmo seleziona gli allineamenti rilevanti
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In the second case, however, alignment is still “perfect” if we only compare the root
node and its immediate dependents, thus ignoring the determiner “gli”, which is
absents in English, and the adjectival modifier “relevant/rilevanti”:

this algorithm selects relevant alignments
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questo algoritmo seleziona gli allineamenti rilevanti
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Another concept introduced by this algorithm is that of alignments containing each
other.
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Definition 5 An alignment A = 〈e1, ..., en〉 contains an alignment B = 〈f1, ..., fn〉
if, for each of B’s members, fi is a subtree of ei.

Thus, the algorithm is “safe” in the sense that it does not get rid of any potentially
meaningful alignment. In fact, it only gets rid of superficially perfect alignments
whose subtrees are also members of smaller alignments. This means that when
sentences vary widely syntax-wise, as it happens in cases where translation is not
literal or in the presence of parse errors, the resulting extracted concepts can still
contain a large number of nodes.

5.2 Evaluation

To evaluate the effectiveness of the translation method described in the previous
section, a first, small-scale experiment was designed. The main idea is to auto-
matically translate a set of English sentences to Italian and Swedish, make native
speakers of the TLs correct the output sentences, so to obtain a set of reference,
both grammatically and semantically correct translations, and compare them to the
original machine-generated ones.

The remaining part of this chapter describes the experiment in detail. Section 5.2.1
deals with the automatically generated GF lexica in play, while Sections 5.2.2 and
5.2.3 describe the way the corpus of English sentences and their reference translations
were obtained. After that, Section 5.2.4 introduces the evaluation metrics used in
the experiments. Finally, the results of such experiments are presented in Section
5.2.5.

5.2.1 Lexica

For this first experiment, two distinct GF lexica, built starting from the alignments
extracted from the DMI and CSE course plans corpora respectively, were generated
as described in Section 5.1.2. Both were then enriched with the syntactic constructs
listed in Section 5.1.2.1.

While building a trilingual grammar would have been optimal, the idea was aban-
doned because of the scarce amount of domain-specific terminology obtained by CE
+ CP, even making use of the adjustments described in Section 5.1.4, for all three
languages, as we commented on in Section 4.2.1.1.

This means that only alignments obtained via CE are put to the text in this first
experiment, while CP was not made use of at all. Using PUD treebanks instead of
the two course plans corpora could have been a partial solution to the problem, but
it would have resulted in a lexicon of terms and expressions belonging to the most
disparate contexts. Most importantly, using manually annotated data would also
have meant not testing all the key stages of the pipeline described in Section 2.2.3.2,
where CP, unlike UD parsing, is seen as something optional.
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5.2.2 The English corpus

Even without CP, the small size of these corpora, the limitations of the language
models used for parsing and the issues encountered in the UD-to-GF conversion
make both of the lexica resulting from this process relatively small. This, together
with the issues GF parsing suffers from (as discussed in Chapter 2), makes working
on arbitrary sentences extremely hard. Even only using sentences extracted from
documents that are similar, both stylistically and in terms of content, to those the
course plans corpora are composed of is not especially helpful.

As a consequence, our choice for this first MT experiment was to generate the
sentences to translate directly in the GF shell, making use of its random AST
generation functionality. As discussed in Section 5.1.2.1, in fact, the (extended)
CSE and DMI grammars allow for arbitrary variations - both grammatical and in
terms of content words - over a small set of basic sentences.

Grammatical variation (e.g. turning indefinite forms of nouns into definite forms,
altering the tense of verbs etc.) is meant to highlight how the output of GF trans-
lation typically consists of well-formed sentences. Changes of content words, on the
other hand, allow to test a larger variety of extracted concepts.

While it is indeed possible to generate both an initial subset of sentences and the
corresponding variations entirely randomly, care has been put in selecting only sen-
tences that are semantically plausible. This is meant to facilitate the task of the
human translators and to avoid having them insisting in trying to find some meaning
in the sentences and correcting them using excessively rare word senses.

The results of this process are two small testing corpora, each consisting of 50
sentences in English, generated using the abstract syntax and the English concrete
syntax of the DMI and the CSE grammar respectively. The TL concrete syntaxes
of the two grammars (Italian in the former case and Swedish in the latter) were
only used at a later stage, to make sure that all sentences did have a linearization
in both the source and the target language. A linearization can in fact be missing,
even though rarely, because the grammar generation stage omits linearization rules
derived from pairs of trees that cannot share the same root category.

5.2.3 Reference translations

Reference translations were obtained by asking two native speakers of Italian and
Swedish also proficient in English to compare the original English sentences to their
automatically translated counterparts and to correct the latter. The two participants
were instructed to only make the minimal changes necessary to obtain, starting from
the output of the translation module described in 5.1.3 a set of grammatically and
semantically correct translations.

This makes the reference sentences as similar to the automatically obtained ones to
evaluate as possible, allowing a more meaningful automatic evaluation, as we will
discuss in the following Section.
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5.2.4 Evaluation metrics
The evaluation metric used for this experiment is the BLEU score [27], a widely
adopted, simple, language-independent and inexpensive measure that claims good
correlation with human judgments, as implemented in [24].
Following conventions, we report the cumulative n-gram scores for values of n from
1 to 4 (BLEU-1 to BLEU-4). However, being a significant portion of the sentences
of length 4 or less, we also report BLEU-1 to BLEU-3 scores, BLEU-1 to BLEU-2
scores and scores obtained considering unigrams only.
The way in which the reference translations were obtained is strongly connected to
the choice of this specific evaluation metric. Without going into all the details, it is
in fact important to know that the BLEU score is computed by counting matching
n-grams in the candidate translation to n-grams in the reference text. This means
that, if the reference translations are obtained independently from the automatic
ones, BLEU scores can easily become misleading.
In a preliminary experiment conducted in this way, for instance, the Italian transla-
tion “il docente discute la Didattica” of the English sentence “the teacher discusses
the didactics”, was given the minimum score despite being completely correct and
even idiomatic8. Looking at the two reference translations used at the time, it ap-
pears clear that such a low score is due to the capitalization of the word “Didattica”
and the arbitrary (but equally correct) lexical choices made by the human transla-
tors, who rendered the sentence as “il professore discute i metodi didattici” and “l’
insegnante discute la didattica”9. Coincidentally (but not unlikely for a language
like Italian), this is a case in which these lexical differences affect the choice of the
determiners used in the various translations (cf. “l’insegnante” vs. “il professore”
and “la didattica” vs. “i metodi didattici”), producing a BLEU-1 to 4 score of 0.

5.2.5 Experimental results
Corpus-level BLEU scores for the automatic translations of the 50+50 sentences of
the testing corpora generated as described in Section 5.2.2 are summarized in Table
5.1.
These synthetic figures are useful to give an idea of the general quality of the trans-
lations: overall, although with relatively low scores, English-to-Swedish translation
works significantly better than English-to-Italian. Looking back at the results ob-
tained for CE (cf. Section 3.2), this is not excessively surprising, since both precision
and recall for English-Swedish are consistently higher than they are for English-
Italian. When it comes to the results obtained for CE on the course plans corpora
in particular (cf. Table 3.3), however, the difference in precision between the two
language pairs is negligible. This makes the reason for the substantial difference in

8Typically, the adjective “didattica” is not used in its plural form “didattiche” when nominalized.
The capital D is often used, for this particular term, in official university documents.

9The terms “docente”, “professore” and “insegnante” are almost perfect synonyms, even though
“docente” is mostly used in formal documents to refer to university lecturers, “professore” is more
common in secondary school and colloquial speech, and “insegnante” is the most generic. As such,
it can also refer to elementary school teachers and in some cases even sport coaches. The expression
“metodi didattici” is a perfectly sensible replacement for “didattica”.
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DMI (en-it) CSE (en-sv)
BLEU-1 to 4 55 61
BLEU-1 to 3 63 68
BLEU-1 to 2 70 74
BLEU-1 79 81

Table 5.1: BLEU scores obtained by comparing one candidate automatic trans-
lation per sentence to a reference translation obtained by making the necessary
corrections to the automatically generated ones. Both the initial English sentences
and their automatic translations were generated using the two course plans gram-
mars.

the BLEU scores obtained for the two different corpora unclear, at least at a first
glance.
Looking at sentence-level scores is, however, sometimes more interesting. Regardless
the corpus, scores assigned to individual segments range from the minimum possible
value of 0 to the perfect score of 100, which indicates a perfect correspondence
between the automatic and the reference translation.
Examples of sentences that were assigned a perfect BLEU-1 to 4 score are “the
library provides useful textbooks” (translated to Italian as “la biblioteca fornisce libri
utili”) in the DMI corpus and “this lab is more difficult than the exam” (whose
Swedish translation is “den här laborationen är svårare än tentamen”) in the CSE
corpus.
On the other hand, it is easy for shorter sentences to be assigned the minimum
BLEU-1 to 4 score even when they only contain a single grammatical or semantic
error. This is the case, for instance, of the sentence “the test is oral”, whose last
word, “oral” is translated as “dura” (“hard”) instead of “orale” due to an alignment
error. Nonetheless, it is worth noticing that this is one of the many cases in which
the correct alignment 〈“oral”,“orale”〉 is also found by the CE module. This is hid-
den by the fact that, for simplicity, only the first translation candidate is taken into
account. Moreover, such valid correspondence has a higher number of occurrences
and matches stronger alignment criteria than the wrong one 〈“oral”,“duro”〉. This
suggest that, in contexts where higher precision is necessary, there are obvious im-
provements that can be done either in the choice of the alignment criteria or at a
later stage, when relevant alignments are selected.

5.2.5.1 Error analysis

A problem with using the BLEU score as the only evaluation metric is the fact that
it makes no distinction between content and function words, thus not allowing an
evaluation focused specifically on the extracted concepts. The small size of the cor-
pus, however, allows for some error analysis. While postprocessing the automatic
translations, the participants were asked to indicate what kind of errors they en-
countered in each sentence (grammatical, semantical or both). Their observations
are summarized in Table 5.2.
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type of errors DMI (en-it) CSE (en-sv)
semantical 23 (46%) 23 (46%)
grammatical 10 (20%) 3 (6%)
semantical and
grammatical 3 (6%) 4 (8%)

Table 5.2: Number of automatically translated sentences containing only seman-
tical, only grammatical and both semantical and grammatical errors in the two
synthetic course plans corpora.

Interestingly, while most errors are due to wrong alignments, the main difference
between two corpora lies in the number of translations that only contain grammatical
errors. This explains the significant difference observed in the BLEU scores.
In Italian, grammar errors often involve contractions such as “del” (“di” + “il”, in
English “of the”), some of which are systematically rendered as two separate words.
Another common case is that of wrong (or at least very confusing) adjective colloca-
tion, such as in the translation “il libro presenta una tecnica con miglioramenti vari
utile” (“the textbook presents a useful technique with various improvements”), where
the adjective “utile” (“useful”), referred to “technique” (“tecnica”) is placed far from
such noun, making the sentence hard to interpret10. Grammatical errors in Swedish
are less common and, apart from long adjectives never being turned to the compar-
ative degree periphrastically (e.g. “relevantare” instead of “mer relevant”), less sys-
tematic. Only in one case, for instance, gender is incorrect (“programbiblioteken”).

Some errors regarding the extracted concepts are also interesting to analyze. In
English-Swedish, while several compounds, such as 〈“computer science”, “dataveten-
skap”〉, are aligned correctly, there are cases in which a single-root noun is translated
as a compound (e.g. 〈 “theory”, “automatateori” 〉). This is not necessarily an ac-
tual alignment error, as it might well be the case that the English version of the text
was being less specific than its Swedish counterpart, thus producing an alignment
that, during evaluation, would have been marked as “correct but not reusable” (=).

“Reasonable” alignment errors appear in the DMI corpus sentences too. The English
phrase “attendance of lessons”, for instance, becomes simply “frequenza” in the
Italian translation. Such word is in fact often used alone to replace longer expressions
such as “frequenza delle lezioni”, just like in English “of lessons” can be omitted
when what must be attended is evident from the context. Another interesting
example is the alignment 〈“class”, “classe”〉, which causes the sentence “I will attend
the class” to be (incorrectly) translated as “io seguirò la classe” instead of “io seguirò
la lezione” even though the correspondence is in fact valid in most of the numerous
contexts in which “class” is not to be intended as a synonym of “lesson”.

10The manually postprocessed translation is “il libro presenta una utile tecnica con miglioramenti
vari”.
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Conclusions

The main objective of this thesis project was to develop a syntax-based Concept
Alignment system and put it to the test in the context of domain-specific MT.
The approach we propose basically consists in analyzing texts with a dependency
parser, UDPipe, and comparing the resulting trees. For the MT evaluation, such
dependency trees are converted to Abstract Syntax Trees, from which the rules of
a multilingual generative phrase-structure grammar are derived. The framework
we make use of to this extent, GF, makes the grammar itself sufficient to perform
simple MT experiments.
The tangible fruits of this work are a Haskell library and a number of executables,
whose usage is described in Appendix C, offering an easy to use and configure
interface to perform both variants of CA, extraction and propagation, and a variety
of kinds of evaluations. To assess the quality of the alignments obtained with such
system, the extraction and propagation components were first tested without taking
the target application context into account.
When it comes to CE, the core part of this work, comparison against a pre-existing
basic implementation shows significant improvements in terms of both the quality
and the quantity of the resulting alignments. With respects to traditional statis-
tical approaches, one of the most useful consequences of adopting a syntax-based
approach is that it makes it possible to identify correspondences between multiword
expressions, even when discontinuous. Another important advantage over stan-
dard word alignment techniques is that, even though it can still benefit from large
amounts of data, our system works consistently well even when run on extremely
small corpora. This is confirmed by one of our experiments, where we compare it
with fast_align. Furthermore, the alignment criteria our software makes use of
are easy to modify, add and remove, paving the way to a variety of experiments.
CP, a less studied variant of CA, has been explored in two different scenarios. On
the one hand, it can be useful to generate large multilingual lexica if applied to
more-than-bilingual parallel corpora. On the other, it can also be used to identify
shared terminology between two bilingual corpora having one language in common.
The first experiments show promising results, but suffer from the scarce availability
of sentence-segmented large multilingual corpora.
Finally, the CA module was adapted to the task of MT. The results of the first,
small-scale experiments conducted in this sense highlight the strengths of GF in
terms of NLG but also indicate the need for a more aggressive alignment selec-
tion strategy, as the numerous correct alignments are sometimes overshadowed by
alternative incorrect ones.
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Future work
These results, while encouraging, suggest that there is still much room for improve-
ment in many different directions, even if we were to restrict ourselves to CA per
se, without focussing on its MT applications.

Further integration with statistical alignment techniques
With regards to the CA component itself, it is important to remember that both
the quantity and the quality of the alignments are a direct consequence of those
of the dependency trees they are obtained from. Apart from working on depen-
dency parsers directly, a possibility is to experiment more with hybrid alignment
approaches, integrating the results produced by statistical tools (which only depend
on the quantity and quality of raw data rather than also on that of their analyses)
with those of our rule-based system. A basic way to do that has already been im-
plemented, but has not been made use of in the final MT experiments due to the
small size of the corpora involved.

Aligning verb phrases
Early in this work we noticed how only aligning subtrees is not enough to identify all
the concepts present in a pair of sentences. As a consequence, significant effort has
been made to also align subtree heads correctly. While this increases the number
of concepts the program is able to find, it does not cover all cases. For instance,
aligning complete verb phrases (i.e. verbs together with their arguments) could
prove extremely useful. Generalizing the approach used for head alignment could
be a way of addressing this problem. This would make it possible to use CA to
construct “rich” lexical entries for verbs, whose lack, as discussed in Chapter 3,
currently makes it hard to handle some types of common translations divergences.

Iterative CA
The current implementations of CE and CP try to apply a set of priority-sorted
criteria one after another to each pair of sentences in the corpus, allowing for later
ranking of the alignments obtained based on the criteria they match. Another
possibility is to go through the entire corpus multiple times, for instance using only
the strictest criteria first and only falling back to the less reliable ones at later
iterations, until no more alignments are found. The same hypothetical iterative
algorithm could also have the size of the alignments, and not (or not only) the
criteria they have to satisfy, as a parameter.

Optimizing propagation for multilingual corpora
CP was not the main focus of this work. As noted in Chapter 4, however, opti-
mizing it for the simpler scenario in which it is applied to a more-than-2-lingual
parallel text is straightforward and would improve both the quality of the results
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and, arguably, running time. Once this is done, generating multi-, as opposed to
bi-, lingual domain-specific grammars will be more realistic, especially if gf-ud’s
grammar generation functionality will also be further developed in parallel.

Generalizing CE to n languages
As an alternative to this optimization, CE could be generalized to an arbitrary
number of languages. The expectation is for the resulting concepts to be of slightly
larger size than those obtained with the current system, since comparing more trees
simultaneously increases the possibility of encountering small divergences, with the
term “divergence” intended in its broader sense. This approach would probably help
identifying longer idiomatic expression and could provide a better way to deal with
multilingual corpora. While intuitive, however, it does present some implementation
challenges.

Stricter and language pair-specific criteria
When it comes to using the concepts as actual translation units, getting rid of
incorrect alignments is crucial. While manual selection is still more feasible than
manual extraction, it would be desirable to devise better alignment selection policies
or stricter alignment criteria. One idea would is to tune the alignment criteria for
the language pair(s) at hand, both by removing the noisier ones for semantically
related languages and by adding language-pair specific criteria. The criteria-specific
statistics reported in Section 3.2 can serve as a starting point for work in this
direction.
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A
Universal POS tags and

dependency labels

While most of them are also briefly discussed in Section 2.1.3.1, this appendix pro-
vides systematic definitions for all the main UD Universal Part Of Speech tags and
dependency relations used in the examples of this work. Complete lists and a good
number of examples in several languages can be found in [1] and [31].

A.1 UPOS tags
The official UD documentation [1] distinguishes between open class or content words
and closed class or function words.

A.1.1 Open class words
When it comes to open class words, the categories that are relevant to this work are
the following:

• NOUN, the class of words typically denoting a person, place, thing, animal or
idea. Unlike nouns in traditional grammars, NOUNs are intended for common
(as opposed to proper) nouns only

• ADJ, the class of adjectives as in their traditional definition
• ADV, the class of adverbs, also following the traditional definition
• PROPN, the class of nominals used as names (or part of names) of a specific

individual, place, or object, i.e. proper nouns
• VERB, designating events and actions. This category refers to content verbs

only, while auxiliaries should be assigned the tag AUX (cf. A.1.2)

A.1.2 Closed class words
Among closed class words, the categories used in the examples of this thesis are:

• PRON, defined as in traditional grammars: the class of substitutes for nouns or
noun phrases, whose meaning is recoverable from the context

• AUX, the class of function words that accompany the lexical verb of a verb
phrase and express grammatical distinctions not carried by such lexical verb.
The most common example of verbs that fall into this category is perhaps
that of tense auxiliaries (e.g. “has” in the verb phrase “has completed”), but
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A. Universal POS tags and dependency labels

passive auxiliaries, like “was” in “was completed, modal auxiliaries like “must”
and “should” and verbal copulas should also be tagged as AUX

• ADP, designating pre- and postpositions
• DET, a wide-coverage class for the different types of determiners, i.e. words that

modify nouns or noun phrases expressing the reference of the noun phrase in
context. It includes articles, pronominal numerals and words like all and every

• CCONJ and SCONJ, for coordinating (resp. subordinating) conjunctions.

A.2 DEPRELs
Dependency relation are used to label links connecting the word nodes of a de-
pendency tree with their heads, indicating the syntactic relation occurring between
them.
The only “exceptional” label is root, which connects a dummy node to the root, i.e.
usually the main VERB, of a sentence. To avoid discrepancies between languages, the
root of a sentence is always supposed to be a content word, meaning for instance
that, if the main verb is a copula, it is its complement that ought to be labelled
root.
The other dependency labels we refer to in this text can, like POS tags, be grouped
according to the nature of the nature of the dependent they link to a head.

A.2.1 Open class dependents
Open class words can be assigned various kinds of labels:

• labels linking the core arguments of a verb to the verb they refer to (i.e., in
case of a single-clause sentence, to its root):
– nsubj, indicating the nominal subject of a clause (a noun, proper noun,

pronoun or numeral)
– obj and iobj, indicating its direct (resp. indirect) object. With direct

object we refer to the noun phrase that denotes the entity acted upon or
which undergoes a change of state or motion, while the indirect object of
a verb is a nominal phrase that is a core argument of the verb but is not
its subject or (direct) object

• obl, linking complements (i.e. non-core arguments, introduced by preposi-
tions) to the verb they refer to

• labels for modifier words:
– amod, linking adjectives to the nominals they modify
– advmod, linking adverbs to the words (which can belong to several cate-

gories) they modify
– nmod, used for marking the relation between a nominal and another NOUN,

PNOUN or noun phrase
– nummod, linking number phrases to the NOUN they modify with a quantity

• flat, used to connect the words following (in terms of position in the sentence)
the head (i.e. the first word) of a flat multiword expression, and compound,
playing a similar role in compounds written as two or more separate words
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• labels linking non-root verbs to other verbs, specifying what kind of clause
they are heads of:
– csubj, for clausal subjects
– ccomp, for clausal complements, i.e. clauses that function as objects of a

verb
– xcomp, for open clausal complements, i.e. clausal complements whose

subject is determined by the higher clause
– advcl, for adverbial clauses modifying a predicate
– acl, for clauses modifying a nominal.

A.2.2 Closed class dependents
When it comes to closed class words, commonly used dependency labels are:

• cop, linking copulas to their complements
• aux, linking an AUX to the lexical verb it refers to
• det, marking the link between a determiner and the nominal it refers to
• case, linking words (such as pre- and postpositions) marking the case of a

nmod to the nmod itself in languages that do not express case morphologically
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B
Dependency configurations

This appendix provides the complete list of the abstract dependency configurations
used for the UD-to-GF conversion of the alignments extracted by the CA module.

B.1 Category annotation
Category annotations describe a mapping between GF categories and UD UPOS tags
(cf. Appendix A.1).

#cat A ADJ primary
#cat Adv ADV primary
#cat Det DET primary
#cat N NOUN primary
#cat PN PROPN primary
#cat Prep ADP primary
#cat Pron PRON primary
#cat V VERB primary
#cat Conj CCONJ primary

B.2 Function annotations
Function annotations, on the other hand, put GF functions in relation with UD
DEPRELs (cf. Appendix A.2). The following list also serves the purpose of enumerat-
ing the types of concepts GF lexica automatically generated as described in Chapter
5 consist of.

#fun AdjCN amod head
#fun AdvVP head advmod
#fun ComplV head obj
#fun DetCN det head
#fun AdvCN head advmod
#fun PredVP nsubj head
#fun PrepNP case head
#fun PrepCN head nmod
#fun FlatPN head flat -- PN -> PN -> PN
#fun CompoundN compound head
#fun PrepPP head obl
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C
Installing, using and configuring

the CA module

This appendix provides installation and usage instructions for the CA software de-
veloped as part of this thesis project, whose source code, as well as this report, is
available at github.com/harisont/concept-alignment. The repository’s readme
consists in an extended version of this appendix which will be kept up to date as
the software is further developed.

C.1 Installation
To compile the CA module, we recommend the Haskell Stack1. To build the
project, clone the above mentioned GitHub repository, move into the correspond-
ing directory and run stack build. This will generate a Haskell library, named
concept-alignment, and the following five executables:

• extract-concepts, the CE module described in Section 3
• propagate-concepts, the CP module described in Section 4
• evalign, a script for evaluating CP and CE
• generate-grammar, for automatically generating a grammar as described in

Section 5.1.2
• translate, the simple MT module presented in Section 5.1.3

C.2 Usage

C.2.1 extract-concepts

Using the CE module with the default parameters is straightforward:
stack exec -- extract-concepts SL.conllu TL.conllu

The program, however, supports a number of command-line options. Most impor-
tantly:

• –file=FILE can be used to specify where to write the resulting alignments.
Unless otherwise specified (see below), the output consists in two new aligned
.conllu files, stored at the chosen location, whose names are prefixed with SL
and TL respectively

1docs.haskellstack.org
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• –linearize specifies that concepts should be in the linearized format de-
scribed in Section 3.2.3, useful for evaluation purposes

• –maxsize=INT sets the maximum size of the extracted alignments
• –all specifies that the selection step described in Section 5.1.4.2 should be

skipped
• –clauses enables clause segmentation (cf. Section 5.1.4.1.1)
• –rest enables a second pass of alignment “by exclusion” (cf. Section 5.1.4.1.2)
• –pharaoh=FILE is used to specify a file in pharaoh format (cf. Figure 2.7) to

use as backup.

C.2.2 propagate-concepts

CP requires two, instead of three, .conllu files, one with the concepts to propagate
and the following two containing the corpus of annotated sentences where they
should be looked for. As a consequence, running it with the default parameters is
as follows:

stack exec -- propagate-concepts SL_concepts.conllu SL.conllu
TL.conllu

All extract-concepts options that are also relevant for CP (i.e. all of them excepts
–maxsize and pharaoh) are also valid for this second executable.

C.2.3 evalign

The evaluation script evalign can be run in three different “modes”:
1. single-file mode (stack exec – evalign linearized.txt):

given a pre-annotated file in the linearized format described in Section 3.2.3,
it prints out basic statistics about precision, recall and amount of reusable
alignments.

2. extraction mode (stack exec – evalign extraction old.txt new.txt):
given an annotated and a new, possibly yet-to-annotate file containing lin-
earized alignments, it allows interactive minimal annotation of the latter (if
needed) and, on top of printing out the basic statistics, it compares the new
alignments to the old ones, telling how many correct and incorrect alignments
were lost and/or found

3. propagation mode (stack exec – evalign propagation new.txt new.txt):
similar to extraction interactive mode, excepts that the statistics are CP-
specific (percentage of successfully propagated alignments, number of errors
introduced by CP etc.).

The command line option –reasons can be used when criterion-wise statistics are
needed.

C.2.4 generate-grammar

The grammar generation module can be run as follows:
stack exec -- generate-grammar path_to_extract_grammar
paths_to_morphodicts paths_to_aligned_conllu_files
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Here, path_to_extract_grammar should point to the extraction grammar in .pgf2

format. paths_to_morphodicts stands for the path of the morphological dictionar-
ies of the languages involved, also in .pgf format.
Similarly, paths_to_aligned_conllu_files is to be replaced with the files con-
taining the concepts in CoNNL-u format. These files should be, in terms of the
languages they are written in, in the same order as the morphological dictionaries.

C.2.5 translate

The simplicity of the translation module makes it also extremely easy to use. The
string or list of newline-separate strings to translate comes from the standard input
and the only argument is the path to the automatically generated GF grammar to
be used, again in .pgf format. Here is an example of using the program to translate
a single sentence:

echo "this sentence will be translated" | stack exec -- translate
Extracted.pgf

C.3 Configuration: modifying the alignment
criteria

As mentioned in Section 3.1.2.1, modifying the criteria CA makes use of requires
little effort. All criteria are in fact defined in a separate Haskell module Criteria3

that exports the list of criteria to be used only. In the current implementation, it
looks like this:

criteria :: [ Criterion ]
criteria = [udpos , ud , divs , pass , pos]

Removing and/or changing the priority of the criteria is then just a matter of altering
such list.
Adding new criteria is simple too, but it also requires an understanding of the data
type Criterion, defined in module ConceptAlignment:

data Criterion = C {
func :: UDTree → UDTree → Bool ,
reas :: S.Set Reason ,
headAlign :: Bool ,
strict :: Bool

}

As the above code block shows, Criterion is a record type whose fields are:
• a boolean function func specifying a rule to decide whether two trees should

be aligned. For instance, Criterion 1 (UD label matching) is implemented as
udMatch :: UDTree → UDTree → Bool
(RTree n ts) `udMatch ` (RTree m us) =

udDEPREL n == udDEPREL m

2Portable Grammar Format, generated by the GF compiler.
3https://github.com/harisont/concept-alignment/blob/master/Criteria.hs
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• a set of “reasons” reas to be used for ranking the alignments, shown in the
linearized files and used to compute criterion-specific statistics. Reasons, and
not alignment rules (funcs), are what mirrors alignment criteria (as they are
defined in Section 3.1.2.1) exactly. A func can define in fact a more specific
alignment rule, such as “type of categorial divergence in which an adjective is
replaced by adverb”, while a Reason is in practice a more coarse-grained label
associated to potentially many rules

• two boolean flags, headAlign and strict, the former specifying whether head
alignment (cf. Section 3.1.2.2.2) should be performed for UD tree pairs match-
ing that criterion, the latter marking the criterion as either strict (i.e. to be
also used for “alignment by exclusion”, cf. Section 5.1.4.1.2) or not.
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